
WASD Hypertext Services
- Environment Overview

November 2011

For version 10.1 release of the WASD VMS Web Services.

Abstract

This document is a guide to supporting Web documents within the WASD Web Services
environment. It is not a tutorial on writing HTML documents.

For installation, update and detailed configuration information see ‘‘WASD Web Services - Install
and Config’’

For configuration and use of other significant WASD capabilities see ‘‘WASD Web Services -
Features and Facilities’’

For information on CGI, CGIplus, ISAPI, OSU, etc., scripting, see ‘‘WASD Web Services -
Scripting’’

It is strongly suggested those using printed versions of this document also access the HTML
version. It provides online access to examples, etc.

Author

Mark G. Daniel

Mark.Daniel@wasd.vsm.com.au

A pox on the houses of all SPAMers. Make that two poxes.

Online Search
online search

Online PDF

This book is available in PDF for access and subsequent printing by suitable viewers (e.g.
Ghostscript) from the location WASD_ROOT:[DOC.ENV]WASD_ENV.PDF

Online Demonstrations

Some of the online demonstrations may not work due to the local organisation of the Web
environment differing from WASD where it was originally written.

ii

WASD VMS Web Services

Copyright © 1996-2011 Mark G. Daniel.

This package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; version 3 of the License,
or any later version.

This package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

WASD_ROOT:[000000]GNU_GENERAL_PUBLIC_LICENSE.TXT

http://www.gnu.org/licenses/gpl.txt

You should have received a copy of the GNU General Public License along with this package; if
not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

The Apache Group

This product includes software developed by the Apache Group for use in the Apache HTTP
server project (http://www.apache.org/).

Redistribution and use in source and binary forms, with or without
modification, are permitted ...

OpenSSL Project

This product can include software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

Redistribution and use in source and binary forms, with or without
modification, are permitted ...

Eric A. Young

This package can include cryptographic software written by Eric Young (eay@cryptsoft.com) and
Tim Hudson (tjh@cryptsoft.com).

This library is free for commercial and non-commercial use provided ...
Eric Young should be given attribution as the author ...
copyright notice is retained

Free Software Foundation

This package contains software made available by the Free Software Foundation under the GNU
General Public License.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

iii

Clark Cooper, et.al.

This package uses the Expat XML parsing toolkit.

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd
and Clark Cooper

Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006 Expat maintainers.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

Bjoern Hoehrmann

This package uses essential algorithm and code from Flexible and Economical UTF-8 Decoder.

Copyright (c) 2008-2009 Bjoern Hoehrmann <bjoern@hoehrmann.de>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

Paul E. Jones

This package uses SHA-1 hash code.

Copyright (C) 1998, 2009
Paul E. Jones <paulej@packetizer.com>

Freeware Public License (FPL)

This software is licensed as "freeware." Permission to distribute
this software in source and binary forms, including incorporation
into other products, is hereby granted without a fee.

Ohio State University

This package contains software provided with the OSU (DECthreads) HTTP server package,
authored by David Jones:

iv

Copyright 1994,1997 The Ohio State University.
The Ohio State University will not assert copyright with respect
to reproduction, distribution, performance and/or modification
of this program by any person or entity that ensures that all
copies made, controlled or distributed by or for him or it bear
appropriate acknowlegement of the developers of this program.

RSA Data Security

This software contains code derived in part from RSA Data Security, Inc:

permission granted to make and use derivative works provided that such
works are identified as "derived from the RSA Data Security, Inc.
MD5 Message-Digest Algorithm" in all material mentioning or referencing
the derived work.

Bailey Brown Jr.

LZW compression is implemented using code derived in part from the PBM suite. This code is
copyright by the original author:

* GIF Image compression - LZW algorithm implemented with Tree type
* structure.
* Written by Bailey Brown, Jr.
* last change May 24, 1990
* file: compgif.c
*
* You may use or modify this code as you wish, as long as you mention
* my name in your documentation.

Other

OpenVMS , Compaq TCP/IP Services for OpenVMS , Compaq C , Alpha and VAX
are registered trademarks of Hewlett Packard Corporation.

MultiNet is a registered trademark of Process Software Corporation.

Pathway is a registered trademark of Attachmate, Inc.

TCPware is a registered trademark of Process Software Corporation.

Ghostscript is Copyright (C) 2005 artofcode LLC, Benicia, CA. All rights reserved.

v

Contents

Chapter 1 Introduction

Chapter 2 Document Access and Specification

2.1 Document Content Type . 2–1

2.2 Explicitly Specifying Content-Type . 2–2

2.3 Document Specification . 2–3

2.3.1 Absolute File Path . 2–3

2.3.2 Partial (or Relative) File Path . 2–3

2.4 Extended File Specifications (ODS-5) . 2–4

2.4.1 Characters In Request Paths . 2–4

2.4.2 Characters In Server-Generated Paths . 2–5

2.4.3 Document Cache . 2–5

Chapter 3 Directory Listing

3.1 Controlling Access To A Directory . 3–2

3.2 ‘‘Hidden’’ Files . 3–2

3.3 Server Directives . 3–3

3.3.1 Layout . 3–3

3.3.2 Readme Files . 3–4

3.3.3 Listing Delimiters . 3–4

3.3.4 Suppressing Directories . 3–5

3.3.5 Listing Refresh and Expiry . 3–5

3.3.6 Scripting From Directory Listings . 3–5

3.3.7 Auto-Scripting . 3–5

3.3.8 Specifying Content-Type . 3–6

3.4 Directory Tree . 3–6

iii

Chapter 4 Server Side Includes (SSI)

4.1 Virtual Documents . 4–2

4.2 Last-Modified Information . 4–4

4.3 Pre-Expiring Documents . 4–4

4.4 Directive Syntax . 4–5

4.5 Directives . 4–5

4.5.1 #ACCESSES . 4–6

4.5.2 #CONFIG . 4–7

4.5.3 #DIR . 4–8

4.5.4 #DCL . 4–8

4.5.5 #ECHO . 4–9

4.5.6 #ELIF . 4–10

4.5.7 #ELSE . 4–10

4.5.8 #ENDIF . 4–10

4.5.9 #EXEC . 4–11

4.5.10 #EXIT . 4–11

4.5.11 #FCREATED . 4–11

4.5.12 #FLASTMOD . 4–11

4.5.13 #FSIZE . 4–12

4.5.14 #IF . 4–12

4.5.15 #INCLUDE . 4–13

4.5.16 #MODIFIED . 4–13

4.5.17 #ORIF . 4–14

4.5.18 #PRINTENV . 4–14

4.5.19 #SET . 4–14

4.5.20 #SSI . 4–15

4.5.21 #STOP . 4–15

4.6 Variables . 4–15

4.7 Flow Control . 4–17

4.8 Query Strings . 4–18

4.9 File and Virtual Specifications . 4–19

4.9.1 THE_FILE_NAME . 4–19

4.10 Time Format . 4–19

4.11 OSU Compatibility . 4–22

4.12 Script-Generated SSI Documents . 4–23

iv

Chapter 5 Clickable Image Support

5.1 Image Configuration File . 5–2

5.2 Examples . 5–3

Chapter 6 Document Searching

6.1 Plain-Text Search . 6–1

6.2 HTML Search . 6–1

6.3 Search Syntax . 6–2

6.3.1 ‘‘ISINDEX’’ Search . 6–2

6.3.2 Standard Search Form . 6–3

6.3.3 Forms-Based Search . 6–3

6.3.4 Search Options . 6–3

6.3.5 Example Search Form . 6–4

Chapter 7 VMS Help and Text Libraries

Chapter 8 Bookreader Books and Libraries

Chapter 9 Web Document Update

v

Chapter 1

Introduction

The document assumes a basic understanding of hypertext technologies and uses some terms
without explaining them (e.g. HTTP, HTML, URL, CGI, etc.) It is not a tutorial on writing
HTML documents. The reader is refered to documents specifically on these topics (some are
available online within WASD, but are often best consulted from the Internet WWW).

WASD is using hypertext technologies (a.k.a. Web and WWW) to assist in providing an
integrated and commonly-accessible information environment. The VMS implementation
of this has gone to considerable lengths to integrate as much as possible, all forms of
VMS information. This includes plain-text documents such as programming sources and
environment/include files, release notes, etc., as well as non-plain-text information like HELP,
Bookreader, etc.

The purpose of this document is to describe some of the facilities within the WASD VMS
hypertext environment that can be used from within WASD HTML documents. The WASD
VMS hypertext infrastructure conforms to all the basic conventions of Web technology,
although having some facilities specific-to, or tailored-for its VMS environment.

It is strongly suggested those using printed versions of this document also access the
Hypertext version. It provides online demonstrations of some concepts.

Some of the online demonstrations may not work due to the local organisation of the hypertext
environment differing from WASD where it was originally written.

Introduction 1–1

Chapter 2

Document Access and Specification

Arbitrary documents may not be accessed.

The server can only access files where the path is allowed according to a specified set of rules
specified within the hypertext environment.

Documents must be read-accessible.

The server can only access files that are world readable, or that have an ACL specifically
controlling access for ‘‘HTTP$SERVER’’, the server account.

2.1 Document Content Type
Document (file) retrieval is initiated by providing the server with the file specification as a
URL path. Server configuration determines the format in which the file is returned to the
client. It may contain text or images immediately diplayable by the browser, or by a viewer
external to the browser may be spawned. The server may automatically activate a script
to provide a gateway to non-native information (see description of [AddType] configuration
directive in the Technical Overview). The file type (extension) determines the content type
by which the server returns (and/or interprets) the file.

The following table lists some of the current file types (as examples) and their associated
MIME-style content type. HTML documents are presented layed-up according to the full
HTML-capabilities of the browser. Plain-text documents are presented in a fixed-font format.
Other types require an external viewer to be activated. Here are a few examples.

Document Access and Specification 2–1

.BKB Bookreader document (BNU) text/html, gateway script activated

.BKS Bookreader shelf (BNU) text/html, gateway script activated

.C C source text/plain

.COM DCL procedure text/plain

.CONF configuration file text/plain

.CPP C++ source text/plain

.DECW$BOOK Bookreader document text/html, gateway script activated

.FOR Fortran source text/plain

.GIF GIF image image/gif

.H C header text/plain

.HLB VMS Help library text/html, gateway script activated

.HTML HyperText Markup Language text/html

.HTM HyperText Markup Language text/html

.JPG JPEG image image/jpeg

.LIS Listing text/plain

.MAR Macro source text/plain

.PAS Pascal source text/plain

.PRO IDL source text/plain

.PS PostScript application/PostScript

.TEXT Text text/plain

.TLB VMS text library text/html, gateway script activated

.TXT Text text/plain

.SHTML HyperText Markup Language pre-processed text/html

.ZIP zipped file application/binary

If other file types are required to be defined contact the Web administrator.

2.2 Explicitly Specifying Content-Type
When accessing files it is possible to explicitly specify the identifying content-type to be
returned to the browser in the HTTP response header. Of course this does not change
the actual content of the file, just the header content-type! This is primarily provided to
allow access to plain-text documents that have obscure, non-‘‘standard’’ or non-configured file
extensions.

It could also be used for other purposes, ‘‘forcing’’ the browser to accept a particular file as a
particular content-type. This can be useful if the extension is not configured (as mentioned
above) or in the case where the file contains data of a known content-type but with an
extension conflicting with an already configured extension specifying data of a different
content-type.

Enter the file path into the browser’s URL specification field ("Location:", "Address:"). Then,
for plain-text, append the following query string:

?httpd=content&type=text/plain

For another content-type substitute it appropriately. For example, to retrieve a text file in
binary (why I can’t imagine :^) use

?httpd=content&type=application/octet-stream

This is an example:

online demonstration

It is also posssible to "force" the content-type for all files in a particular directory. See
Section 3.3.8.

2–2 Document Access and Specification

2.3 Document Specification
For the ‘‘http:’’ protocol, file and directory locations are specified using URL path syntax
where slash-separated (‘‘/’’) elements delineate a hierarchy leading to a data item. Anyone
familiar with the syntax of the Unix file system, or the MS-DOS file system (where back-
slashes are hierarchy delimiters), will feel at home with URL syntax. Specifications under
VMS are not case-sensitive.

A VMS directory specification

WEB:[TECHNICAL.HTML-PRIMER]

would be represented in URL syntax as

/web/technical/html-primer/

and a VMS file specification

WEB:[TECHNICAL.HTML-PRIMER]HTML-PRIMER.HTML

represented as

/web/technical/html-primer/html-primer.html

Note
It is not required (although not forbidden) to supply a VMS master file directory
component (‘‘[000000]’’, ‘‘[000000.’’, etc.) in a URL specification. Hence the file
specification

WEB:[000000]HOME.HTML

should be represented as

/web/home.html

2.3.1 Absolute File Path

A file may be specified using an absolute, or full path. This must specify the location of the
file exactly. Absolute paths always begin with a forward-slash (‘‘/’’). For example:

/web/committee/minutes/1994/1994-09-27.txt
/web/committee/constitution.txt
/web/committee/membership/fred-bloggs.txt

2.3.2 Partial (or Relative) File Path

(Strictly speaking, it is a function of the client to construct a full URL from such a relative
URL before sending the request to the server.)

A file may be specified relative to its current location. That is, a current document (or menu)
may specify another document file relative to itself. This may be at the current level, a
subdirectory, or in another part of the directory tree related to the current. Relative paths
never begin with forward-slash (‘‘/’’).

Document Access and Specification 2–3

For example, documents at the same level as the current may be specified without any
hierachy being indicated:

1994-07-22.txt
1994-08-24.txt
1994-09-27.txt

Documents at an inferior point in the hierarchy may be specified as in the following example:

1993/1993-02-17.txt
1993/reports/membership.txt
other/etc.txt

Documents in a related part of the hierarchy may be referenced using the ‘‘../’’ construct. As
with MS-DOS and Unix this syntax indicates the immediately superior directory.

../other_committee/1993/1993-02-17.txt

../other_committee/1993/reports/balance-sheet.txt

../../other_section/committee/constitution.txt

2.4 Extended File Specifications (ODS-5)
OpenVMS Alpha V7.2 introduced a new on-disk file system structure, ODS-5. This brings to
VMS in general, and WASD and other Web servers in particular, a number of issues regarding
the handling of characters previously not encountered during (ODS-2) file system activities.

2.4.1 Characters In Request Paths

There is a standard for characters used in HTTP requests paths and query strings (URLs).
This includes conventions for the handling of reserved characters, for example ‘‘?’’, ‘‘+’’, ‘‘&’’,
‘‘=’’ that have specific meanings in a request, characters that are completely forbidden, for
example white-space, control characters (0x00 to 0x1f), and others that have usages by
convention, for example the ‘‘~’’, commonly used to indicate a username mapping. The request
can otherwise contain these characters provided they are URL-encoded (i.e. a percentage
symbol followed by two hexadecimal digits representing the hexadecimal-encoded character
value).

There is also an RMS standard for handling characters in extended file specifications, some of
which are forbidden in the ODS-2 file naming conventions, and others which have a reserved
meaning to either the command-line interpreter (e.g. the space) or the file system structure
(e.g. the ‘‘:’’, ‘‘[’’, ‘‘]’’ and ‘‘.’’). Generally the allowed but reserved characters can be used
in ODS-5 file names if escaped using the ‘‘^’’ character. For example, the ODS-2 file name
‘‘THIS_AND_THAT.TXT’’ could be named ‘‘This^_^&^_That.txt’’ on an ODS-5 volume. More
complex rules control the use of character combinations with significance to RMS, for instance
multiple periods. The following file name is allowed on an ODS-5 volume, ‘‘A-GNU-zipped-
TAR-archive^.tar.gz’’, where the non-significant period has been escaped making it acceptable
to RMS.

The WASD server will accept request paths for file specifications in both formats, URL-
encoded and RMS-escaped. Of course characters absolutely forbidden in request paths must
still be URL-encoded, the most obvious example is the space. RMS will accept the file name
‘‘This^ and^ that.txt’’ (i.e. containing escaped spaces) but the request path would need to be
specified as ‘‘This%20and%20that.txt’’, or possibly ‘‘This^%20and^%20that.txt’’ although the
RMS escape character is basically redundant.

2–4 Document Access and Specification

Unlike for ODS-2 volumes, ODS-5 volumes do not have ‘‘invalid’’ characters, so unlike with
ODS-2 no processing is performed by the server to ensure RMS compliance.

2.4.2 Characters In Server-Generated Paths

When the server generates a path to be returned to the browser, either in a viewable page
such as a directory listing or error message, or as a part of the HTTP transaction such as
a redirection, the path will contain the URL-encoded equivalent of the canonical form of
an extended file specification escaped character. For example, the file name ‘‘This^_and^_
that.txt’’ will be represented by ‘‘This%20and%20that.txt’’.

When presenting a file name in a viewable page the general rule is to also provide this URL-
equivalent of the unescaped file name, with a small number of exceptions. The first is a
directory listing where VMS format has been requested by including a version component
in the request file specification. The second is in similar fashion, but with the tree facility,
displaying a directory tree. The third is in the navigation page of the UPDate menu. In all
of the instances the canonical form of the extended file specification is presented (although
any actual reference to the file is URL-encoded as described above).

2.4.3 Document Cache

The Web server is most commonly set up to cache static documents (files). A cache is higher
speed storage, in-memory, in the server itself. Cached documents are checked periodically
for changes when being requested. Changes to a file are determined by the comparing the
modification date/time and file length. A common check period is one minute, though it can
set longer or even disabled. If a document has changed the old one is discarded from cache
(called invalidation) and the new one loaded into cache while being transfered to the client.

After making changes to a document it is possible the server will continue to serve the old
one for a short period. This can be overridden by using the browser’s Reload facility. This
directs the server to go and check the on-disk file regardless, invalidating it if necessary.

Document Access and Specification 2–5

Chapter 3

Directory Listing

A directory listing is sometimes refered to as a document Index, and is generally titled ‘‘Index
of . . . ’’.

Unless disabled by the server’s configuration, a directory listing is recognised by the server
whenever a wildcard is present in a specification and there is no query string directing
another activity (e.g. a document search). Compliant with other hypertext implementations,
a directory listing is also generated if a URL specifies a directory only and that directory
contains no home page.

All specifications must be made using URL-style paths. See Section 2.3.

The directory listing is designed to look very much like the basic layout of other servers,
except that all directories are grouped at the top. In the opinion of the author, this looks and
functions better than when interspersed with the files, as is otherwise common. The default
listing provides:

iconic indication of the data type
file name
last revison date/time
size
description

The description can be either be just that, a description of the role of that type of file under
VMS, or if presented within quotes, an HTML document’s own internal description taken
from the ‘‘<TITLE></TITLE>’’ element.

Note that directory listings only processes the physical file system. This may or may not
correspond to the hypertext environment’s virtual mappings.

The following link illustrates the directory listing format:

.

online demonstration

Directory Listing 3–1

VMS-ish Format

The default listing has a generic WWW look about it, however it can be made to look a little
more like the format of the VMS ‘‘DIRECTORY’’ command. In this mode the directories are
presented as VMS subdirectories, the version number is shown, if a version wildcard was
included in the specification then all matching versions are shown, the size is presented in
used and allocated blocks, and automatic script activation is disabled. The VMS-style format
is enabled by providing an explicit or wildcard version number with the specification, as in
the following example: *.*; online demonstration

Listing Icons

By default (and generally) WASD installations are configured to return a binary file (usually
triggering a browser ‘‘save-as’’ dialog) for unknown content-types. For such files and for non-
text files in general, a directory listing icon becomes a link to a plain-text version of the file
(regardless of the actual content). So for files containing such plain-text (often readme files
with ‘‘interesting’’ file names) this becomes a convenient way of access the content.

3.1 Controlling Access To A Directory
The following files (empty, or not), when within a specific directory regulate access to that
directory, and the listing of any parent directory or subdirectories.

• .WWW_HIDDEN - Renders the directory completely invisible to the directory listing
mechanism. Files within the directory may still be accessed if specified explicitly but the
directory content itself cannot be listed by any means.

• .WWW_NOWILD - Renders the directory incapable of being listed using ‘‘*.*’’ characters
at the end of the path, even if allowed by the server. This is a little different to .WWW_
HIDDEN, which hides the directory completely. The no-wild still allows a directory
without a home page to list as a directory, it does however prevent the forced listing

using the ‘‘*.*’’ syntax.

• .WWW_NOP - Any parent directory is not listed.

• .WWW_NOS - Any subdirectories are not listed.

• .WWW_NOPS - Any parent directory or subdirectories are not listed.

3.2 ‘‘Hidden’’ Files
Any file name beginning with a period is hidden from the directory listing mechanism (i.e.
in VMS parlance it has only a type/suffix/extension). If specifically accessed they will be
retrieved however. Hence the following files would not appear in a directory listing:

.WWW_NOPS

.CANT_BE_SEEN

.HIDDEN_FROM_VIEW

.;1

3–2 Directory Listing

3.3 Server Directives
The WASD server behaviour can be modified using server directives. For directory listings this
involves the inclusion of a query string beginning with ‘‘?httpd=index’’. The server detects
this query string and processes it internally, changing the default action of directory listings.

Multiple directives can be combined by concatenating them with intervening ampersands, as
per normal URL syntax.

?httpd=index&autoscript=no
?httpd=index&readme=no
?httpd=index&type=text/plain
?httpd=index&layout=format
?httpd=index&script=script-name
?httpd=index&script=script-name&readme=no
?httpd=index&delimit=none&readme=no&nos=yes

3.3.1 Layout

Allows specification of the directory listing layout from the URL, overriding the server default.
The layout directive is a short, case-insensitive string that specifies the included fields,
relative placement and optionally the width of the fields in a directory listing. Each field
is controlled by a single letter (one with colon-separated parameter) and optional leading
decimal number specifying the width. When a width is not specified an appropriate default
applies. An underscore is used to indicate a single space and is used to separate the fields
(two consecutive works well).

C - creation date
D - description (often best specified last)

D:L - for files, make a link out of the description text
I - icon (takes no field-width attribute)

L - link (highlighted anchor using the name of the file)
L:F - file-system name (for ODS-5 displays spaces, etc.)
L:N - name-only, do not display the extension
L:U - force name to upper-case

N - name (no link, why bother? who knows!)
O - owner (can be disabled)
R - revision date
S - size

S:B - in bytes (comma-formatted)
S:D - decimal kilos (see below)
S:F - kilo and mega are displayed to one decimal place
S:K - in kilo-bytes (and fractions thereof)
S:M - in mega-bytes (and fractions thereof)

U - upper-case file and directory names (must be the first character)

The default layout is:

I__L__R__S__D

Directory Listing 3–3

The following provide other examples:

?httpd=index&layout=UI__L__R__S__D
?httpd=index&layout=I__L__R__S:b__D
?httpd=index&layout=I__L__R__S__D
?httpd=index&layout=I__15L__S__D
?httpd=index&layout=15L__9R__S
?httpd=index&layout=15N_9C_9R_S

The size of files is displayed by default as 1024 byte kilos. When using the ‘‘S:k’’, ‘‘S:m’’ and
‘‘S:f’’ size modifiers the size is displayed as 1000 byte kilos. If it is prefered to have the default
display in 1000 byte kilos then set the directory listing layout using:

?httpd=index&layout=I__L__R__S:d__D

If unsure of the kilo value being used check the ‘‘<META>’’ information in the directory listing.

online demonstration

3.3.2 Readme Files

When a directory listing is generated any ‘‘README.’’, ‘‘README.TXT’’ or ‘‘README.HTML’’
file (or others as configured for the particular server) in the directory will have the contents
displayed immediately below the title of the page. This allows additional information on the
directory’s contents, function, etc., to be presented. This can be suppressed by appending the
following query-string to the directory specification, as in the accompanying example:

?httpd=index&readme=no

. (no <I>readme</I>s)

Read-me files can be SSI documents if configured by the server administrator. General SSI
guidelines apply to these, see Chapter 4

3.3.3 Listing Delimiters

A directory listing is normally delimited by a header, comprising an ‘‘Index of’’, column
headings and horizontal line, and a footer, comprising a horizintal line. This default behaviour
may be modified using the ‘‘delimit=’’ directive.

• header - a header comprising a horizontal rule and column heading is generated

• footer - a footer comprising a horizontal rule is generated

• none - no header or footer is generated

• both - both header and footer is generated (default)

?httpd=index&delimit=none

?httpd=index&delimit=top

3–4 Directory Listing

3.3.4 Suppressing Directories

Parent and subdirectories may be suppressed in a listing using the ‘‘nop’’, ‘‘nops’’ and ‘‘nos’’
directives. These parallel the purpose of the directory listing control files described in
Section 3.1, and if set to true suppress the listing of the corresponding directories.

• nop - any parent directory is not listed

• nops - any subdirectories are not listed

• nos - any parent directory or subdirectories are not listed

?httpd=index&nop=yes

?httpd=index&nops=yes

?httpd=index&nos=yes

3.3.5 Listing Refresh and Expiry

Directory listings and trees may be pre-expired. That is, the listing is reloaded each time the
page is referenced. This is convenient in some environments where directory contents change
frequently, but adds considerable over-head and so is often disabled by default. Individual
directory listings may have either default behaviour over-ridden using syntax similar to the
following examples:

/dir1/dir2/*.*?httpd=index?expired=yes
/dir1/dir2/*.*?httpd=index?expired=no
/tree/dir1/dir2/?httpd=index?expired=yes
/tree/dir1/dir2/?httpd=index?expired=no

3.3.6 Scripting From Directory Listings

When a directory listing is requested a script name can be specified to be used as a prefix
to all of the file links in the listing. When the client selects a file link the script specified is
implicitly activated.

?httpd=index&script=script_name

print *.*

online demonstration

3.3.7 Auto-Scripting

The server’s auto-scripting facility (see description of [AddType] configuration directive in
the Technical Overview) can be suppressed by appending the following query-string to the
directory specification, as in the accompanying example:

?httpd=index&autoscript=no

get me *.*

This implies that any file accessed from the listing will be transfered without any data
conversion possible due to script activation. The browser must then process the document in
some fashion (often by activating a save as dialog).

Directory Listing 3–5

3.3.8 Specifying Content-Type

When accessing files it is possible to explicitly specify the identifying content-type to be
returned to the browser in the HTTP response header. Of course this does not change
the actual content of the file, just the header content-type! This is primarily provided to
allow access to plain-text documents that have obscure, non"-standard" or non-configured file
extensions. See Section 2.2.

It could also be used for other purposes, "forcing" the browser to accept a particular file as a
particular content-type. This can be useful if the extension is not configured (as mentioned
above) or in the case where the file contains data of a known content-type but with an
extension conflicting with an already configured extension specifying data of a different
content-type.

It is posssible to "force" the content-type for all files in a particular directory. Enter the path
to the directory and then add

?httpd=index&type=text/plain

(or what-ever type is desired). Links to files in the listing will contain the appropriate
‘‘?httpd=content&type=...’’ appended as a query string.

This is an example:

online demonstration

3.4 Directory Tree
The ‘‘Tree’’ internal script allows a directory tree to be generated. This script is supplied with
a directory name from which it displays all subdirectories in a hierarchical layout, showing
subordinancies. Selecting any one of the subdirectories displayed generates a directory listing
(see Chapter 3).

Appending a file specification (with or without wildcards) to the directory name results in
the any directory listing displaying only files matching the specification. To display all files
a ‘‘*.*’’ should always be appended.

Note that this script only processes the physical file system. This may or may not correspond
to the hypertext environment’s virtual mappings.

To enable the VMS-style directory listing format, or to use any of the directory server
directives, append one, or a combination of, the following query strings to the directory
specification:

?httpd=index&autoscript=no
?httpd=index&readme=no
?httpd=index&script=script-name
?httpd=index&script=script-name&readme=no

/wasd_root/ tree

/wasd_root/ (VMS-ish) tree

online demonstration

3–6 Directory Listing

Note that this activity is I/O intensive, and can take a considerable period if the tree is
extensive.

Note
The ‘‘tree’’ internal script supercededs the ‘‘Dtree’’ external script which has been
retired.

Directory Listing 3–7

Chapter 4

Server Side Includes (SSI)

The HTML pre-processor is used to provide dynamic information inside of an otherwise static,
HTML (HyperText Markup Language) document. The HTTPd server provides this as internal
functionality, scanning the input document for special pre-processor directives, which are
replaced by dynamic information based upon the particular directive.

As of version 5.1 WASD SSI has been enhanced to provide flow-control statements, allowing
blocks of the document to be conditionally processed, see Section 4.7. These extensions allow
quite versatile documents to be created without resorting to script processing.

Two documents are provided as examples of SSI processing.

• A simple SSI document.

WASD_ROOT:[DOC.ENV]SSI.SHTML

online demonstration

• An SSI document using variable assignment and flow-control.

WASD_ROOT:[DOC.ENV]SSI.SHTML

online demonstration

By default the HTML pre-processor is invoked when the document file’s extension is
‘‘.SHTML’’. As there is a significant overhead with pre-processed HTML compared to nor-
mal HTML, it should only be used when it serves a useful documentary purpose, and not just
for the novelty.

Essential compatibility with OSU Server Side Includes is provided. This may ease any
transition between the two. See Section 4.11 for further information.

Server Side Includes (SSI) 4–1

4.1 Virtual Documents
One effective use for pre-processed HTML is the creation of single virtual documents from two
or more physical documents. That is, the pre-processed document is used to include multiple
physical documents, that may even be independently administered, to return a composite
document to the client. This is a relatively low-overhead activity as SSI goes, but because it
is a dynamic document, without some extra considerations (see Section 4.2).

Example 1

This provides an example of the efficient use of SSI processing to create virtual documents.
Each page will comprise a header (containing the body tag and page header, etc), the document
proper and a footer (containg the end-of-page information, modification date, and end-body
tag, etc).

<HTML>
<HEAD>
<TITLE>Just an example!</TITLE>
</HEAD>
<!--#include virtual="header.shtml" -->
<P> This is the document information.
<P> Blah, blah, blah.
<!--#include virtual="/web/common/footer.shtml" -->
</HTML>

A more efficient variant places the document proper in its own, plain HTML file which is
then #included (it is much, much, much more efficient for the server to throw a file at the
network, than parse every character in one ;^)

<HTML>
<HEAD>
<TITLE>Just an example!</TITLE>
</HEAD>
<!--#include virtual="header.shtml" -->
<!--#include virtual="example.html" -->
<!--#include virtual="footer.shtml" -->
</HTML>

Example 2

This example provides a seemingly more convoluted, but very much more powerful configu-
ration, that uses recursion to greatly simplify maintenance of common-layout documents for
the end-user.

File 1; the document accessed via the browser URL, doesn’t matter what its name is, this
configuration is completely naming independent.

<!--#ssi
#if var={PARENT_FILE_NAME} eqs=""

#set var=TITLE value="Just an Example"
#include virtual="/web/common/template.shtml"

#else
#include virtual="document.html"

#endif
-->

4–2 Server Side Includes (SSI)

File 2; the TEMPLATE.SHTML refered to by the first include above.

<!--#ssi
#include virtual="/web/common/header.shtml"
#include virtual="{DOCUMENT_ROOT}header.html" fmt="?"
#include virtual="{DOCUMENT_URI}"
#include virtual="{DOCUMENT_ROOT}footer.html" fmt="?"
#include virtual="/web/common/footer.shtml"
-->

File 3; the DOCUMENT.HTML refered to by the second include in file 1.

<P> This is just a bunch of HTML!

This is an explanation of how it works . . .

1. the browser accesses file 1 via a URL

2. processing begins with file 1

3. file 1 checks if it has a parent (is the first file processed),
it doesn’t and so . . .

4. file 1 set a variable named TITLE

5. file 1 #includes file 2, a site-common template

6. file 2 substitutes the TITLE variable contents as the document title

7. file 2 #includes a site-common header

8. file 2 #includes an optional document-local header

9. here’s the interesting bit . . .

file 2 now re-#includes the original document, file 1 (!!)

10. file 1 checks if it has a parent (is the first file processed),
it does and so . . .

11. file 1 #includes file 3 (the actual contents of the document)

12. file 3 is a plain HTML document, just added to the output

13. file 1 is now exhausted and processing returns to file 2

14. file 2 #includes an optional document-local footer

15. file 2 #includes a site-common footer

16. file 2 is exhausted and processing returns to file 1

17. file 1 is exhausted and processing stops

The following link provides an example of such a virtual document.

online demonstration

Server Side Includes (SSI) 4–3

4.2 Last-Modified Information
SSI documents generally contain dynamic elements, that is those that may change with each
access to the document (e.g. current date/time). This makes evaluation of any document
modification date difficult and so by default no ‘‘Last-Modified: timestamp’’ information is
supplied against an SSI document. The potential efficiencies of having document timestamps,
so that requests can be made for a document to be returned only if modified after a certain
date/time (‘‘If-Modified-Since: timestamp’’), are significant against the CPU overheads of
processing SSI documents.

WASD allows the document author to determine whether or not a last-modified header field
should be generated for a particular document and which contributing file(s) should be used
to determine it. This is done using the #modified directive. If a virtual document is made
up of multiple source documents (files) each can be assessed using multiple virtual= or file=
tags, the most recently modified will be used to determine if the virtual document has been
modified, and also to generate the last-modified timestamp.

The if-modified-since tag compares the determined revision date/time of the document file(s)
with any ‘‘If-Modified-Since:’’ timestamp supplied with the request. If the virtual document’s
revision date/time is the same or older than the request’s then a not-modified (304 status)
header is generated and sent to the client and document processing ceases. If more recent
an appropriate ‘‘Last-Modified:’’ header field is added to the document and it continues to be
processed.

If a request has a "Pragma: no-cache" field (as with Navigator’s reload function) the document
is always generated (this is consistent with general WASD behaviour). The following example
illustrates the essential features.

<!--#ssi
#modified
#modified virtual="/web/common/header.shtml"
#modified virtual="header.html" fmt="?"
#modified virtual="index.html" fmt="?"
#modified virtual="footer.html" fmt="?"
#modified virtual="/web/common/footer.shtml"
#modified if-modified-since
-->

This construct should be placed at the very beginning of the SSI document, and certainly
before there is any chance of output being sent to the browser. Once output to the client has
occured there can be no change to the response header information (not unreasonably).

4.3 Pre-Expiring Documents
SSI preprocessed documents are dynamic in the sense that the information presented can be
different every time the document is generated (e.g. if time directives are included). If it is
important that each time the document is accessed it is regenerated then an HTML META
tag can be included in the HTML header to cause the document to expire. This will result in
the document being reloaded with each access. This can be accomplished two ways.

• Use the #modified directive to include an ‘‘Expires: timestamp’’ response header field.
Place the following construct at the beginning of the SSI document.

4–4 Server Side Includes (SSI)

<!--#modified expires="Fri, 13 Jan 1978 14:00:00 GMT" -->

An alternative, if the objective to to pre-expire the document, is to specify an expiry of
zero. The is specially handled by the SSI engine. It adds an expiry response header field,
plus cache-control header fields to suppress document caching (on compliant browsers).

<!--#modified expires="0" -->

4.4 Directive Syntax
The syntax follows closely that used by the other implementations, but some directives are
tailored to the WASD and VMS environment. The directive is enclosed within an HTML
comment and takes the form:

<!--#directive [[tag1="value"] [tag2="value"] ...] -->

A tag provides parameter information to the directive. A directive may have zero, one or
more parameters. Values supplied with any tag may be literal or via variable substitution
(see Section 4.6. A value must be encolosed by quotation marks if it contains white-space.

A directive can be split over multiple lines provided the new line begins naturally on
white-space within the directive. For example, this is correctly split

<!--#echo
created[="<EMPHASIS>(time-format)"] -->

while the following is not (and would produce an error)

<!--#echo creat
ed[="<EMPHASIS>(time-format)"] -->

Directive and tag keywords are case insensitive. The tag value may or may not be case
sensitive, depending upon the command/tag. Generally the effect of a command is to produce
additional text to be inserted in the document, although it is possible to control the flow of
processing in a document with decision structures.

4.5 Directives

SSI Directives

Directive Description Section

#accesses document access count Section 4.5.1

#config document processing options Section 4.5.2

#dir directory listing Section 4.5.3

#dcl DCL command processing Section 4.5.4

#echo output information Section 4.5.5

#elif flow control Section 4.5.6

Server Side Includes (SSI) 4–5

Directive Description Section

#else flow control Section 4.5.7

#endif flow control Section 4.5.8

#exec same as ‘‘#dcl’’ Section 4.5.9

#exit flow control, stop current document processing Section 4.5.10

#fcreated output file creation date/time Section 4.5.11

#flastmod output file last modification date/time Section 4.5.12

#fsize output file size Section 4.5.13

#if flow control Section 4.5.14

#include include a text file or another SSI document Section 4.5.15

#modified HTTP response control Section 4.5.16

#orif flow control Section 4.5.17

#printenv list document variables Section 4.5.18

#set assign value to a document variable Section 4.5.19

#ssi block of SSI statements Section 4.5.20

#stop stop SSI processing completely Section 4.5.21

4.5.1 #ACCESSES

The #accesses directive allows the number of times the document has been accessed to be
included. It does this by creating a counter file in the same location and using the same name
with a dollar symbol appended to the type (extension). The count may be reset by deleting
the file. This is an expensive function (in terms of file system activity) and so should be
used appropriately. It can be disabled by server configuration. Three tags provide additional
functionality:

• ORDINAL

<!--#accesses ordinal -->

Provides the count as 1st, 2nd, 3rd, 4th, 5th . . . 10th, 11th, 12th . . . 120th, 121st, 122nd,
etc.

• SINCE

<!--#accesses since="text" -->

This tag includes the specified text immediately after the access count is displayed, then
adds the creation date of the counter file.

4–6 Server Side Includes (SSI)

• TIMEFMT

<!--#accesses since="text" timefmt="[time-format]" -->

Allows the time format of the since tag to be supplied, where time-format is specified
according to Section 4.10.

4.5.2 #CONFIG

The #config directive allows time and file size formats to be specified for all subsequent
directives providing these values. Optional specifications for individual directives may still
be made, and override, do not supercede, any specification made using a config directive. A
config directive may be made once, or any number of times in a document, and applies until
another is made, or until the end of the document.

• ERRMSG

<!--#config errmsg="string" -->

This directive allows the error message generated if a problem problem processing the
SSI document occurs (e.g. miss-spelled directive) to be specified in the document.

• TIMEFMT

<!--#config timefmt="time-format" -->

Where time-format is specified according to Section 4.10.

• SIZEFMT

<!--#config sizefmt="size-format" -->

Where size-format is specified using the following keywords:

• ‘‘abbrev’’ (as bytes, kbytes, Mbytes)

• ‘‘blocks’’ (VMS blocks, used)

• ‘‘bytes’’ (e.g. ‘‘1,256,731 bytes’’)

• TRACE

<!--#config trace="1|0" -->

Switches document processing trace on or off, intended for use when debugging more
complex or flow-controlled SSI documents.

Output from a trace is colour-coded.

• Blue - As a line is read from the document is is displayed in blue. The text is
preceded by a square-bracketed source file line number and flow-control level.

• Red - As an SSI statement is actually processed it is displayed in red. Due to
document parsing this may occur at some point after the line is read from file.

• Magenta - As variables are set or read the variable name and value is displayed. A
variable set has the name separated from the value by an equate symbol (‘‘=’’), when
being read the character is a full-colon (‘‘:’’).

• Black - Document (HTML and text) output is displayed as black plain text.

Server Side Includes (SSI) 4–7

The following link provides an example of a document trace.

online demonstration

4.5.3 #DIR

The #dir directive generates an Index of . . . directory listing inside an HTML document.
Apart from not generating a title (it is up to the pre-processed document to title, or otherwise
caption, the listing) it provides all the functionality of the WASD HTTPd directory listing (see
Chapter 3), including query string format control via the ‘‘par=’’ parameter (note that from
the ‘‘?httpd=index’’ introducer used with directory listings is not necessary from SSI). It is an
WASD HTTPd extension to pre-processed HTML.

• FILE

Listing specified using a VMS file path.

<!--#dir file="file-name" [par="server-directive(s)"] -->

• VIRTUAL

Listing specified using URL-style syntax.

<!--#dir virtual="path" [par="server-directive(s)"] -->

For example:

<!--#dir /wasd_root/src/httpd/" -->

<!--#dir /wasd_root/src/httpd/*.c" par="layout=UL__S&nops=yes" -->

4.5.4 #DCL

The #dcl directive executes a DCL command and incorporates the output into the processed
document. It is an WASD HTTPd extension to the more common exec directive, which is also
included.

By default, output from the DCL command has all HTML-forbidden characters (e.g. ‘‘<’’,
‘‘&’’) escaped before inclusion in the processed document. Thus command output cannot
interfere with document markup, but nor can the DCL command provide HTML markup.
This behaviour may be changed by appending the following tag to the directive:

type="text/html"

Some #dcl directives are for privileged documents only, documents defined as those being
owned by the SYSTEM account, and not being world-writeable. The reason for this should be
obvious. There are implicit security concerns about any document being able to execute any
DCL command(s), even if it is being executed in a completely unprivileged process. Hence
only innocuous commands are allowed in standard documents.

• SAY

Execute the DCL ‘‘WRITE SYS$OUTPUT’’ command, using the specified parameter.

<!--#dcl say="hello." -->

• SHOW

4–8 Server Side Includes (SSI)

Execute the DCL ‘‘SHOW’’ command, using the specified parameter.

<!--#dcl show="device/full tape1:" -->

• DIR

Execute the DCL ‘‘DIRECTORY’’ command, using the supplied file specification. Quali-
fiers may be included in the optional ‘‘par’’ tag to control the format of the listing.

<!--#dcl dir="web:[000000]" -->
<!--#dcl dir="web:[000000]" par="/nohead/notrail" -->
<!--#dcl dir="web:[000000]" par="/size/date" -->

• EXEC (privileged)

Execute the specified DCL command.

<!--#dcl exec="show device/full tape1:" -->

• FILE (privileged)

Execute the DCL command procedure specified as a VMS file path, with any specified
parameters applied to the procedure.

<!--#dcl file="WASD_ROOT:[SHTML]TEST.COM" par="PARAM1 PARAM2" -->

• VIRTUAL (privileged)

Execute the DCL command procedure specified in URL-style syntax, with any specified
parameters applied to the procedure.

<!--#dcl virtual="../shtml/test.com" par="PARAM1 PARAM2" -->

• CGI

Execute the specified CGI script. The CGI response header is suppressed and only the
response body is included in the document.

<!--#dcl cgi="/cgi-bin/calendar?2004" -->

4.5.5 #ECHO

The #echo directive incorporates the specified information into the processed document.
Multiple tags may be used within the one directive.

• VALUE=

VAR=

Any SSI variable (e.g. CREATED), CGI variable (e.g. HTTP_USER_AGENT), or docu-
ment assigned variable (e.g. EXAMPLE1), see Section 4.6.

<!--#echo value={created} var={example1} -->

• CREATED

The date/time of the current document’s creation.

<!--#echo created[="time-format"] -->

• DATE_LOCAL

Server Side Includes (SSI) 4–9

Include the current date/time.

<!--#echo date_local[="time-format"] -->

• DATE_GMT

Include the current Greenwich Mean Time (UTC) date/time.

<!--#echo date_gmt[="time-format"] -->

• DOCUMENT_NAME

The current document’s URL-style path.

<!--#echo document_name -->

• FILE_NAME

The current document’s VMS file path.

<!--#echo file_name -->

• HEADER

Append the specified string to the response header (with correct carriage control). Should
be used as early as possible in the SSI document.

<!--#echo header="Pragma: no-cache" -->
<!--#echo header="X-Extension-Header: just an example!" -->

• LAST_MODIFIED

The date/time of the current document’s last modification.

<!--#echo last_modified[="time-format"] -->

4.5.6 #ELIF

The #elif directive (else-if) allows blocks of HTML markup and SSI directives to be condi-
tionally processed, see Section 4.7 and Section 4.5.14. This directive effectively allows a case
statement to be constructed.

<!--#elif var="[{variable}|literal" -->

4.5.7 #ELSE

The else directive allows blocks of HTML markup and SSI directives to be conditionally
processed, see Section 4.7. It is the default block after an ‘‘#if’’, ‘‘#orif’’ or ‘‘#elif’’.

<!--#else -->

4.5.8 #ENDIF

The #endif directive marks the end of a block of document text being conditionally processed,
see Section 4.7.

<!--#endif -->

4–10 Server Side Includes (SSI)

4.5.9 #EXEC

The #exec directive executes a DCL command and incorporates the output into the processed
document. It is the VMS equivalent of the exec shell directive of some Unix implementations.
It is implemented in the same way as the #DCL directive, and so the general detail of that
directive applies. It supports both the cmd tag and the cgi tag, allowing execution of CGI
scripts (the response header is absorbed).

<!--#exec cmd="show device/full tape1:" -->

<!--#exec cgi="/cgi-bin/calendar?2004" -->

The exec directive is for privileged documents only, documents defined as those being owned by
the SYSTEM account, and not being world-writeable. The reason for this should be obvious.
There are implicit security concerns about any document being able to execute any DCL
command(s), even if it is being executed in a completely unprivileged process.

4.5.10 #EXIT

The #exit directive causes the server to stop processing the current SSI file. If the current
file was an #included SSI file, processing continues back with the parent file. Note that the
#stop directive also is available, it stops processing of the entire virtual document.

<!--#exit -->

4.5.11 #FCREATED

The #fcreated directive incorporates the creation date/time of a specified file/document into
the processed document.

• FILE

Document specified using a VMS file path.

<!--#fcreated file="file-name" [fmt="time-format"] -->

• VIRTUAL

Document specified using URL-style syntax.

<!--#fcreated virtual="path" [fmt="time-format"] -->

4.5.12 #FLASTMOD

The #flastmod directive incorporates the last modification date/time of a specified file/document
into the processed document.

• FILE

Document specified using a VMS file path.

<!--#flastmod file="file-name" [fmt="time-format"] -->

• VIRTUAL

Document specified using URL-style syntax.

<!--#flastmod virtual="path" [fmt="time-format"] -->

Server Side Includes (SSI) 4–11

4.5.13 #FSIZE

The #fsize directive incorporates the size, in bytes, kbytes or Mbytes, of a specified
file/document into the processed document.

• FILE

Document specified using a VMS file path.

<!--#fsize file="file-name" [fmt="size-format"] -->

• VIRTUAL

Document specified using URL-style syntax.

<!--#fsize virtual="path" [fmt="size-format"] -->

4.5.14 #IF

The #if directive allows blocks of HTML markup and SSI directives to be conditionally
processed, see Section 4.7.

• VAR=

Variable the decision will be based upon.

<!--#if var="[{variable}|literal]" -->

• EQS=

Is the string the same as in the variable?

• EQ=

If the variable is a number is it the same as this?

• GT=

If the variable is a number is it greater than this?

• LT=

If the variable is a number is it less than this?

• SRCH=

Search the variable for this string. May contain the ‘‘*’’ wildcard, matching one or more
characters, and the ‘‘%’’, matching any single character.

As in the following examples:

<!--#if value={DOCUMENT_URI} eqs="/wasd_root/doc/env/xssi.shtml" -->
<!--#if value={COUNT} lt=10 -->
<!--#if value="This is a test!" eqs={STRING} -->
<!--#if value={PATH_INFO} srch="*/env/*" -->

4–12 Server Side Includes (SSI)

4.5.15 #INCLUDE

The #include directive incorporates the contents of a specified file/document into the processed
document.

• FILE

Include the contents of the document specified using a VMS file specification.

<!--#include file="file-name" -->

• VIRTUAL

Include the contents of the document specified using URL-style syntax.

<!--#include virtual="path" -->

The contents of the specified file are included differently depending on the MIME content-
type of the file. Files of text/html content-type (HTML documents) are included directly, and
any HTML tags within them contribute to the markup of the document. Files of text/plain
content-type (plain-text documents) are encapsulated in ‘‘<PRE></PRE>’’ tags and have all
HTML-forbidden characters (e.g. ‘‘<’’, ‘‘&’’) escaped before inclusion in the processed document.
An HTML file can be forced to be included as plain-text by using the following syntax:

<!--#include virtual="example.html" type="text/plain" -->

To ‘‘force’’ a file to be considered as text regardless of the actual content (as determined by the
server from the file type), use on of the following depending on whether it should be rendered
as plain or HTML text.

<!--#include virtual="example.html" content="text/plain" -->
<!--#include virtual="example.html" content="text/html" -->

Other SSI files may be included and their content dynamically included in the resulting
document. To prevent a recursive inclusion of documents the nesting level of SSI documents
is limited to five.

4.5.16 #MODIFIED

The #modified directive allows a document author to control the ‘‘Last-Modified:’’/‘‘If-Modified-
Since:’’/‘‘304 Not modified’’ behaviour of an SSI document. See Section 4.1.

• no tag

Get the last-modified date/time of the current document.

<!--#modified -->

• FILE

Get the last-modified date/time of the document specified using VMS file specification.

<!--#modified file="file-name" -->

• VIRTUAL

Get the last-modified date/time of the document specified using URL-style syntax.

<!--#modified virtual="path" -->

Server Side Includes (SSI) 4–13

• IF-MODIFIED-SINCE

Compares any ‘‘If-Modified-Since:’’ request header timestamp to the revision date time
obtained using file or virtual (most recent if multiple). If the document timestamp is
more recent (has been modified) an appropriate ‘‘Last-Modified’’ response header field is
generated and added to the response, and document processing continues. If it has not
been modified a ‘‘304’’ response header is return (document not modified) and document
processing stops.

<!--#modified if-modified-since -->

• LAST-MODIFIED

Adds a ‘‘Last-Modified:’’ response header field using a timestamp retrieved using file or
virtual (note: unnecessary if the if-modified-since tag is used).

<!--#modified last-modified -->

• EXPIRES

Adds a ‘‘Expires:’’ response header field. The string literal should be a legitimate RFC-
1123 date string. This can be used for pre-expiring documents (so they are always
reloaded), set it to a date in the not-too-distant past (as in the example below). Of course
it could also be used for setting the legitimate future expiry of documents.

<!--#modified expires="Fri, 13 Jan 1978 14:00:00 GMT" -->

4.5.17 #ORIF

The #orif directive (or-if) allows blocks of HTML markup and SSI directives to be conditionally
processed, see Section 4.7 and Section 4.5.14. In the absence of any real expression parser
this directive allows a block to be processed if one of multiple conditions are met.

<!--#orif var="[{variable}|literal" -->

4.5.18 #PRINTENV

The #printenv directive prints a plain-text list of all SSI-specific, then CGI, then document-
assigned variables (see Section 4.6). This directive is intended for use when debugging flow-
controlled SSI documents.

<!--#printenv -->

The following link uses the example SSI document, WASD_ROOT:[DOC.ENV]XSSI.SHTML,
to demonstrate this.

online demonstration

4.5.19 #SET

The #set directive allows a user variable to be assigned or modified, see Section 4.6.

<!--#set var="variable-name" value="whatever" -->

Variables are always stored as strings and have a finite but generally usable length. Some
comparison tags provided in the flow-control directives treat the contents of variables as
numbers. A numeric conversion is done at evaluation time.

4–14 Server Side Includes (SSI)

4.5.20 #SSI

The #ssi directive allows multiple SSI directives to be used without the requirement to enclose
them in the normal HTML comment tags (i.e. <!– –>). This helps reduce the clutter in an
SSI document that uses the extended capabilities of variable assignment and flow control.
Document HTML cannot be included between the opening and closing comment elements of
the ‘‘#ssi’’ tag, although of course document output can be generated using the ‘‘#echo’’ tag.

<!--#ssi
#set var=HOUR value={DATE_LOCAL,12,2}
#if var={HOUR} lt=12
#set var=GREETING value="Good morning"

#elif var={HOUR} lt=19
#set var=GREETING value="Good afternoon"

#else
#set var=GREETING value="Good evening"

#endif
-->

The example SSI document, WASD_ROOT:[DOC.ENV]XSSI.SHTML, illustrates this con-
cept.

4.5.21 #STOP

The #stop directive causes the server to stop processing the virtual document. It can be used
with flow control structures to conditionally process only part of a virtual document. Note
that the #exit directive also is available, it stops processing of the current file (for nested
#includes, etc.).

<!--#stop -->

4.6 Variables
The SSI processor maintains information about the server, date and time, request path,
request parameters, etc., accessible via variable name. Although these server variables
cannot be modified by the document the processor also allows the author to create and assign
new document variables by name. SSI variables have global scope, with a small number
of exceptions listed below. That is, the same set of variables are shared with the parent
document by any other SSI documents #included, and any included by those, etc.

Local variables:

• DOCUMENT_DEPTH, the current nesting level for #included SSI files

• PARENT_FILE_NAME, if an #included SSI file the name of the including file

• THIS_FILE_NAME, the name of the SSI file currently being processed

One other special-purpose variable, THE_FILE_NAME, see Section 4.9.1.

Server assigned variables comprise some SSI-specific as well as the same CGI variables
available to CGI scripts.

These may be found listed in the CGI Scripting chapter of the Technical Overview.

online demonstration

Server Side Includes (SSI) 4–15

Whenever a directive uses information from a tag (see Section 4.4) values from variables may
be substituted as as a whole or partial value. This is done using curly braces to delimit the
variable name. For example

<!--#include virtual={FILENAME} -->

would include the file named by the contents of a variable named ‘‘FILENAME’’. When using a
variable in a tag it is not necessary to enclose the tag parameter in quotation marks unless there
is additional literal text. Variables may also be used within literal strings, producing a compound,
resultant string, as in the following example

<!--#echo var="Hello {REMOTE_HOST}, time here is {LOCAL_TIME}" -->

Variables are considered numeric when they begin with a digit. Those beginning with an
alphabetic are considered to have a numeric value of zero.

Variables are considered to be boolean false if empty and true when not empty.

Substrings

It is also possible to extract substrings from variables using the following syntax,

{variable-name,start-index,count}

where the start-index begins with the zeroth character and numbers up to the last character
in the string, and count may be zero or any positive number. If only one number is supplied
it is regarded as a count and the string is extracted from the zeroth character.

To illustrate,

<!--#set var=EXAMPLE value="This is an example!" -->
<!--#echo "{EXAMPLE,2}at was {EXAMPLE,8,999}" -->

would output

That was an example!

Other ‘‘Functions’’

• LENGTH - This ‘‘function’’ returns the length of the parameter string (or substring).

{variable-name[,start-index],count]],length}

For example

<!--#set var=EXAMPLE value="This is an example!" -->
<!--#echo "\"{EXAMPLE}\" is {EXAMPLE,length} characters long." -->
<!--#echo "\"{EXAMPLE,5,2}\" is {EXAMPLE,5,2,length} characters long!" -->

would output

"This is an example!" is 19 characters long.
"is" is 2 characters long!

• EXISTS - This ‘‘function’’ returns true if the variable exists and false if it does not. This
is useful as accessing a non-existant variable will result in an SSI error message with
document processing ceasing!

var={variable-name,exists}

4–16 Server Side Includes (SSI)

For example

<!--#set var=BOGUS_VARIABLE value="irrelevant" -->
<!--#if var={BOGUS_VARIABLE,exists} -->
"BOGUS_VARIABLE" exists!
<!--#else -->
"BOGUS_VARIABLE" does NOT exist!
<!--#endif -->

Example

The example SSI document, WASD_ROOT:[DOC.ENV]XSSI.SHTML, illustrates these con-
cepts.

4.7 Flow Control
WASD SSI allows blocks of document to be conditionally processed. This uses constructs in a
similar way to any programming language. The emphasis has been on simplicity and speed
of processing. No complex expression parser is provided. Despite this, complex document
constructs can be implemented. Flow control structures may be nested up to eight levels.

• #if - Marks the start of a conditionally processed block. If evaluated true the block is
processed.

• #orif - Allows a document block to be processed if one of multiple conditions are met.
Must be used immediately following a ‘‘#if’’ or ‘‘elif’’. (This is the only really WASD-
idiosyncratic element)

• #elif - Allows a series of conditionals to be tested each with its own document block
available for processing. Allows a type of case statement to be constructed.

• #else - Provides a default document block following unsuccessful ‘‘#if’’, ‘‘orif’’ and ‘‘elif’’
testing and consequent non-processed blocks.

• #endif - Terminates a conditional block.

The ‘‘#if’’, ‘‘#orif’’ and ‘‘#elif’’ directives must provide an evaluation. This can be single variable,
which if numeric and non-zero is considered true, if zero if false, or can be a string, which
if empty is false, and if not empty is true. Tests can be made against the variable which
when evaluated return a true or false. Multiple tests may be made against the one variable,
or against more than one variable. Multiple tests act as a logical AND of the results and
terminate when the first fails.

• eqs - If the supplied string is the same as the variable string.

• srch - If the variable string matches the supplied search string. The search string
may contain the ‘‘*’’, matching any zero or more characters, and ‘‘%’’, matching any one
character.

• eq - If the numeric value of the variable is the same as that of the supplied number.
For a numeric value test to be legitimate both values must begin with a digit. Those
beginning with an alphabetic are considered zero.

Server Side Includes (SSI) 4–17

• lt - If the numeric value of the variable is less than that of the supplied number.

• gt - If the numeric value of the variable is greater than that of the supplied number.

Any evaluation can have the result negated by prefixing it with an exclamation point. For
instance, the first of these examples would produce a false result, the second true.

<!--#if value="test" !eqs="test" -->
<!--#if value=20 !lt=10 -->

The following is a simple example illustration of variable setting, use of variable substrings,
and conditional processing of document blocks.

<!--##config trace=1 -->
<HTML>
<!--#set var=HOUR value={DATE_LOCAL,12,5} -->
<!--#if var={HOUR} lt=12 -->
<!--#set var=GREETING value="Good morning" -->
<!--#elif var={HOUR} lt=19 -->
<!--#set var=GREETING value="Good afternoon" -->
<!--#else -->
<!--#set var=GREETING value="Good evening" -->
<!--#endif -->
<HEAD>
<TITLE><!--#echo var={GREETING} -->
<!--#echo var="{REMOTE_HOST}!" --></TITLE>
</HEAD>
<BODY>
<H1>Simple XSSI Demonstration</H1>
<!--#echo var={GREETING} --> <!--#echo var={REMOTE_HOST} -->,
the time here is <!--#echo var={DATE_LOCAL,12,5} -->.
<!--#if var={REMOTE_HOST} eqs={REMOTE_ADDR} -->
(Sorry, I do not know your name, DNS lookup must be disabled!)
<!--#endif -->
</BODY>
</HTML>

The example SSI document, WASD_ROOT:[DOC.ENV]XSSI.SHTML, further illustrates these
concepts.

4.8 Query Strings
A query string may be passed to an SSI document in much the same way as to a CGI script. In
this way the behaviour of the document can be varied in accordance to information explicitly
passed to it when accessed. To prevent the server’s default query engine being given the
request precede any query string with ‘‘?httpd=ssi’’. The server detects this and passes the
request instead to the SSI processor. Just append the desired query string components to
this as if they were form elements. For example:

?httpd=ssi&printenv=no
?httpd=ssi&printenv=yes
?httpd=ssi&trace=yes&test2=one&test2=two&test3=three

The following link uses the example SSI document, WASD_ROOT:[DOC.ENV]XSSI.SHTML,
to demonstrate this. Look for the ‘‘FORM_TEST1=one’’, etc.

online demonstration

4–18 Server Side Includes (SSI)

4.9 File and Virtual Specifications
Documents may be specified using either the ‘‘FILE’’ or ‘‘VIRTUAL’’ tags.

The ‘‘FILE’’ tag expects an absolute VMS file specification.

The ‘‘VIRTUAL’’ tag expects an URL-style path to a document. This can be an absolute or
relative path. See Section 2.3 for further details.

4.9.1 THE_FILE_NAME

Generally, when an error are encountered document processing halts and and an error report
is generated. For some common circumstances, in particular the existance or not of a
particular file, may require an alternative action. For file activities (e.g. #include, #flastmod,
#created, #fsize) the optional fmt="" tag provides some measure of control on error behaviour.
If the format string begins with a ‘‘?’’ files not found are not reported as errors and processing
continues. Other file systems errors, such as directory not found, syntax errors, etc., are
always reported.

Every time a file is accessed (e.g. #include, #flastmod) the server variable THE_FILE_NAME
gets set to that name if successful, or reset to empty if unsuccessful. This variable can be
checked to determine success or otherwise.

• For #included files, the ’fmt="?"’ just suppresses an error report, if the file exists then it
is included.

• For #modified file specifications use ’fmt="?"’ to suppress error reporting on evaluation of
files that may exist but are not mandatory.

• For file statistic directives (e.g. #flastmod, #fcreated, #fsize) the ’fmt="?"’ tag completely
suppresses all output as well as error reporting. This can be used to check for the existance
of a file. For example if the file TEST.TXT exists in the following example the variable
THE_FILE_NAME would contain the full file name, if it does not exist it would be empty,
and the code example would behave accordingly.

<!--#fcreated virtual="TEST.TXT" fmt="?" -->
<!--#if var={THE_FILE_NAME} eqs="" -->
File does not exist!
<!--#else -->
File exists!
<!--#endif -->

4.10 Time Format
Whenever a time directive is used an optional tag can be included to specify the format of the
output. The default looks a little VMS-ish. If a format specification is made it must confirm
to the C programming language function strftime().

The format specifier follows a similar syntax to the C standard library printf() family of
functions, where conversion specifiers are introduced by percentage symbols. Here are some
example uses:

The date is <!--#echo date_local fmt="%d/%m/%y" -->.
The time is <!--#echo date_local fmt="%r" -->.
The day-of-the-week is <!--#echo date_local fmt="%A" -->.

Server Side Includes (SSI) 4–19

A problem with any supplied time formatting specification will be reported.

The following table provides the general conversion specifiers. For futher information on the
formatting process refer to a C programming library document on the strftime() function.

strftime() Format Directives

Specifier Replaced by

a The locale’s abbreviated weekday name

A The locale’s full weekday name

b The locale’s abbreviated month name

B The locale’s full month name

c The locale’s appropriate date and time representation

C The century number (the year divided by 100 and truncated to an integer) as a
decimal number (00 - 99)

d The day of the month as a decimal number (01 - 31)

D Same as %m/%d/%y

e The day of the month as a decimal number (1 - 31) in a 2 digit field with the leading
space character fill

Ec The locale’s alternative date and time representation

EC The name of the base year (period) in the locale’s alternative representation

Ex The locale’s alternative date representation

EX The locale’s alternative time representation

Ey The offset from the base year (%EC) in the locale’s alternative representation

EY The locale’s full alternative year representation

h Same as %b

H The hour (24-hour clock) as a decimal number (00 - 23)

I The hour (12-hour clock) as a decimal number (01 - 12)

j The day of the year as a decimal number (001 - 366)

m The month as a decimal number (01 - 12)

M The minute as a decimal number (00 - 59)

n The newline character

Od The day of the month using the locale’s alternative numeric symbols

Oe The date of the month using the locale’s alternative numeric symbols

4–20 Server Side Includes (SSI)

Specifier Replaced by

OH The hour (24-hour clock) using the locale’s alternative numeric symbols

OI The hour (12-hour clock) using the locale’s alternative numeric symbols

Om The month using the locale’s alternative numeric symbols

OM The minutes using the locale’s alternative numeric symbols

OS The seconds using the locale’s alternative numeric symbols

Ou The weekday as a number in the locale’s alternative representation (Monday=1)

OU The week number of the year (Sunday as the first day of the week) using the locale’s
alternative numeric symbols

OV The week number of the year (Monday as the first day of the week) as a decimal
number (01 -53) using the locale’s alternative numeric symbols. If the week containing
January 1 has four or more days in the new year, it is considered as week 1.
Otherwise, it is considered as week 53 of the previous year, and the next week is
week 1.

Ow The weekday as a number (Sunday=0) using the locale’s alternative numeric symbols

OW The week number of the year (Monday as the first day of the week) using the locale’s
alternative numeric symbols

Oy The year without the century using the locale’s alternative numeric symbols

p The locale’s equivalent of the AM/PM designations associated with a 12-hour clock

r The time in AM/PM notation

R The time in 24-hour notation (%H:%M)

S The second as a decimal number (00 - 61)

t The tab character

T The time (%H:%M:%S)

u The weekday as a decimal number between 1 and 7 (Monday=1)

U The week number of the year (the first Sunday as the first day of week 1) as a decimal
number (00 - 53)

V The week number of the year (Monday as the first day of the week) as a decimal
number (00 - 53). If the week containing January 1 has four or more days in the new
year, it is considered as week 1. Otherwise, it is considered as week 53 of the previous
year, and the next week is week 1.

w The weekday as a decimal number (0 [Sunday] - 6)

W The week number of the year (the first Monday as the first day of week 1) as a
decimal number (00 - 53)

x The locale’s appropriate date representation

Server Side Includes (SSI) 4–21

Specifier Replaced by

X The locale’s appropriate time representation

y The year without century as a decimal number (00 - 99)

Y The year with century as a decimal number

Z Timezone name or abbreviation. If timezone information is not available, no character
is output.

% %

4.11 OSU Compatibility
Essential compatibility with OSU Server Side Includes directives is provided. This is intended
to ease any transition to WASD, as existing SSI documents will not need to be changed
unless any of the WASD capabilities are required. To provide transparent processing of OSU
‘‘.HTMLX’’ files ensure the following WASD configuration is in place.

In HTTPD$CONFIG file:

[AddType]
.HTMLX text/x-shtml - OSU SSI HTML

Note that the content description must contain the string "OSU" to activate some compliancy
behaviours.

In HTTPD$MAP file:

redirect /*.*.htmlx /*.htmlx?httpd=ssi&__part=*

This provides a mechanism for the OSU part-document facility. (Yes, the ‘‘_ _part’’ has two
leading underscores!)

OSU Directives

The following OSU directives are provided specifically for OSU compatibility, although there
is no reason why most of these may not also be deployed in general WASD SSI documents if
there is a requirement. Note that these are OSU-specifics, other OSU directives are provided
by the standard WASD SSI engine.

OSU Compatible Directives

Directive Description

#begin label [label] delimit a part-document (see OSU Parts)

#config verify=1 enable commented-tag trace output

#echo accesses document access count

4–22 Server Side Includes (SSI)

Directive Description

#echo accesses_ordinal document access count

#echo getenv="" output logical or symbol

#echo hw_name system hardware name

#echo server_name HTTPd server host name

#echo server_version HTTPd software version

#echo vms_version HTTPd system version of VMS

#end label [label] delimit a part-document (see OSU Parts)

#include [file | virtual]="" part="label" include only part of a virtual document

If WASD is configured for OSU SSI compatibility the following link provides an online demon-
stration as well as further explanation of the OSU SSI engine using an OSU preprocessor
document from the distribution (included within copyright compliance).

online demonstration

How do we know WASD is processing it? Look for the #echo var=‘‘GETENV=SYS$REM_
ID’’ towards the end of the document. It should indicate ‘‘[VARIABLE_DOES_NOT_EXIST!]’’
because it’s attempting to output a DECnet-related logical name!

OSU ‘‘Part’’s

The OSU processor allows for delimited subsections of an #included document, or a URL
referenced document for that matter, to be included in the output. This is supported, but
only for compatibility. It is only enabled for ‘‘.HTMLX’’ documents and if otherwise used may
interact unexpectedly with WASD SSI flow-control.

4.12 Script-Generated SSI Documents
It is possible to have script output passed back through the SSI engine for markup. This
approach might allow script output to automatically be wrapped in standard site headers
and footers for example. Essentially the script must output an SSI-markup response body
and include in the otherwise standard CGI response header a field containing "Script-Control:
X-content-handler=SSI". The following example in DCL show the essential elements of such
a script.

Server Side Includes (SSI) 4–23

$ say = "write sys$output"
$ say "Status: 200"
$ say "Script-Control: X-content-handler=SSI""
$ say ""
$ say "<HTML>"
$ say "<HEAD>"
$ say "<TITLE>Example of X-content-handler=SSI</TITLE>"
$ say "</HEAD>"
$ say "<BODY>"
$ say "<!--#include virtual=""/site/header.html"" -->"
$ say "<H1>Example of X-content-handler:SSI</H1>"
$ say "Hi there <!--#echo var=""WWW_REMOTE_HOST"" -->"
$ say "<!--#include virtual=""/site/footer.html"" -->"
$ say "</BODY>"
$ say "</HTML>"

4–24 Server Side Includes (SSI)

Chapter 5

Clickable Image Support

Clickable image support is provided as an integral part of HTTPd functionality (i.e. it is does
not require script execution), and so can be quite efficient. It will process both NCSA and
CERN configuration formats (in the same file if necessary, although for clarity that should be
avoided).

Digression . . . How It Works

When the image specified in the anchor is clicked upon the browser sends a mapping
configuration file URL, specified in the HTML anchor, along with the pixel coordinate of
the click, as a query string, to the HTTPd server. The server interprets region specifications
in the configuration file to determine which region corresponds to the coordinates in the query
string. A matching specification’s URL, or a default if none match, is then accessed by the
server (if local), or sent back to, and then transparently reaccessed by the browser (redirected,
if a different protocol or host).

Steps For Using a Clickable Image

1. create an image configuration file (see Section 5.1), mapping pixel coordinates of regions
within the image to URLs

2. specify an HTML anchor using an inline ‘‘<IMG...>’’ tag, the ‘‘HREF=’’ specifies the path
to the image configuration file

3. specify ‘‘ISMAP’’ in the ‘‘<IMG...>’’ tag

For example:

Clickable Image Support 5–1

5.1 Image Configuration File
Image configuration is done using a plain-text file containing region keywords specifying
image pixel coordinates and associated URLs. Clicking within these coordinates results in
the corresponding URL being returned. Four keywords defining geometrically shaped series
of coordinates are provided, along with a default keyword. These can be supplied in either of
two formats. The NCSA format may be more commonly used.

1. NCSA

• circle URL x1,y1 x2,y2

URL to be returned when the click is within a circle of centre-point x1,y1 and a
circumference specified by the edge-point x2,y2.

• rectangle URL x1,y1 x2,y2

URL to be returned when the click is within a rectangle having opposite corners x1,y1
and x2,y2.

• point URL x,y

With multiple points specified, the URL of the point closest to the click.

• polygon URL x1,y1 x2,y2 x3,y3 [... xn,yn]

URL to be returned when the click is within an arbitrary polygon having adjacent
verticies specified by the series of coordinates (x1,y1) through to (xn,yn). If the polygon
is not explcitly closed it is treated as if the first and last coordinates were connected.

• default URL

URL to be returned when the click is not within any of the specified coordinates, and
there has been no point specified.

2. CERN

• circle (x,y) r URL

URL to be returned when the click is within a circle of radius r at centre-point (x,y).

• rectangle (x1,y1)(x2,y2) URL

URL to be returned when the click is within a rectangle having opposite corners
(x1,y1) and (x2,y2).

• point (x1,y1) URL

With multiple points specified, the URL of the point closest to the click (strictly
speaking, this is NCSA only).

• polygon (x1,y1)(x2,y2)...(xn,yn) URL

URL to be returned when the click is within an arbitrary polygon having adjacent
verticies specified by the series of coordinates (x1,y1) through to (xn,yn). If the polygon
is not explcitly closed it is treated as if the first and last coordinates were connected.

• default URL

URL to be returned when the click is not within any of the specified coordinates, and
there has been no point specified.

For online examples of rule usage within configuration files see Section 5.2 below. Note that:

• There must be only one region keyword on each line.

5–2 Clickable Image Support

• The region keywords are scanned from first towards last, the first one with coordinates
encompassing the click having the URL returned. Region coordinates within other regions
should be defined first.

• Either full URLs (protocol://host/path) or partial URLs (/path) may be specified against
the keywords. As an extension to NCSA and CERN capability, this image mapper will
also accept relative URLs (path, ../path, etc.).

• The image mapping utility may return textual error messages if the configuration
keywords or parameters are incorrect.

• The keywords may be abbreviated to circ, rect, poly, poin and def.

• Blank lines are ignored.

• Commentary must be preceded by a ‘‘#’’ or ‘‘!’’ character.

hint . . .
To establish the region keywords and coordinates required for the configuration file it
may be necessary to use a program such as ‘‘XV’’ to display the image, then by using
the mouse locate the required parts of the image, reading off and noting the coordinate
pairs, and finally using these to compose the configuration file.

5.2 Examples
See example in the WASD_ROOT:[EXERCISE] directory.

Clickable Image Support 5–3

Chapter 6

Document Searching

The query and extract scripts provide real-time searching of plain-text and HTML documents,
and document retrieval. The search is a simple-string search, not a GREP-style search. It
is designed to provide a useful mechanism for locating documents containing a keyword, not
for document analysis. It has the useful feature for plain-text documents of allowing the
selective extraction of only the portion near the hit.

Only files with a plain-text or HTML MIME data type (see Chapter 2) will be searched. Others
may be specified, or be selected from wildcard file specification, but they will not actually have
their contents searched.

Directory specifications may include a wildcard elipsis (allowing a directory tree to be
traversed) and/or file name wildcards. In other words, anything acceptable as VMS file system
syntax (except in URL-format of course). See examples in Section 6.3.2.

6.1 Plain-Text Search
A search of a plain-text file is straight-forward. Each line in the file is searched for the
required string. The first time it is encountered is considered a hit. The line is not searched
for any further occurances.

Searches of plain text files allow the subsequent selection of partial documents (i.e. the
retrieval of only a number of lines around any actual hit). This allows the user to selectively
extract a portion of a document, avoiding the need to explcitly scan through to the section of
interest.

6.2 HTML Search
A search of an HTML file is a little more complex. As might be expected, only text presented
in the document text is searched, markup text is ignored. That is, all text not part of an
HTML tag construct is extracted and searched. For example, out of the following HTML
fragment

Document Searching 6–1

<!-- an example HTML document -->
<P>
The document entitled "Example Document"
provides only an <I>overview</I> of the full capabilities of HTML.

only the following text would actually be searched

The document entitled "Example Document" provides only an overview
of the full capabilities of HTML.

The mechanism for partial document retrieval available with plain-text files is not present
with HTML documents. HTML files generally must be treated as a whole, with the formatting
of current sections often very dependent on the formatting of previous sections. This makes
extracting a subsection perilous without extensive syntactical analyis. On the positive side,
HTML documents tend to be already divided into meaningful subdocuments (files), making
retrieval of a hit naturally more-or-less within context.

Instead of partial document retrieval, the document is processed to place anchors for each hit,
making it possible to jump directly to a particular section of interest. Generally this works
well but may occasionally distort the presentation of a document.

6.3 Search Syntax
A search may be initiated in basic three ways:

1. Appending a question-mark and search string to a file specification (the simple syntax
of ‘‘ISINDEX’’-style searching). This is standard HTTP, and of course must conform to
HTTP syntax.

2. Providing the name of the query script followed by the directory path to be searched. The
script then returns a standard search form.

3. Forms-based search, which allows the format and mechanism of the search to be con-
trolled.

6.3.1 ‘‘ISINDEX’’ Search

Placing the HTML tag ‘‘<ISINDEX>’’ within a document’s text is sufficient to inform the
browser that searching is available for that document. The browser will inform the user of
this and allow a search of that document to be initiated at any time. Note that it is limited
to the one document.

Using the keyword search syntax explicitly is another method of initiating a search, and
additionally can use a wildcard in the document specification. For example:

/wasd_root/doc/env/*.*?formatted

online demonstration

6–2 Document Searching

6.3.2 Standard Search Form

Using the ‘‘QUERY’’ script name followed by a URL-format path specifying the directory to
be searched returns a standard, script-generated search form.

online demonstration

As with all search specifications, the directory specification may include wildcard a elipsis
(allowing a directory tree to be traversed) and/or file name wildcards. In other words, anything
acceptable as VMS file system syntax (except in URL-format of course). See the following
examples.

online demonstration

6.3.3 Forms-Based Search

A ‘‘forms-based’’ search is initiated by the server receiving a file specification, which of course
may contain wildcards, followed by a search parameter. This is a typical HTML forms format
URL. For example:

*.txt?search=SIMPLE
/web/.../*.*?search=THIS
sub_directory/*.*?search=THAT
../sibling_directory/*.HTML?search=OTHER

online demonstration

6.3.4 Search Options

Additional URI components may be appended after the initial ‘‘search=’’ parameter. These
are appended with intervening ‘‘&’’) characters.

• Case-Sensitivity. An optional URI component of ‘‘case=yes’’ or ‘‘case=no’’ makes the
search case-sensistive or case-insensistive (the default). The following example illustrates
the use of this syntax:

/web/html/.../*.html?search=Protocol&case=yes
/web/html/.../*.html?search=PrOtOcOl&case=no

online demonstration

• Hits. An optional URI component of ‘‘hits=document’’ or ‘‘hits=line’’ makes the search
results be presented by-document (file) or by line-by-line (the default). The following
example illustrates the use of this syntax:

/web/html/.../*.html?search=protocol&hits=document
/web/html/.../*.html?search=protocol&hits=line

online demonstration

Document Searching 6–3

6.3.5 Example Search Form

To allow the client to enter a search string and submit a search to the server a HTML level
2 form construct can be used. Here is an example:

<FORM ACTION="/web/html/.../*.html">
Search HTML documents for:
<INPUT TYPE=text NAME="search">
<INPUT TYPE=submit VALUE="[execute]">
</FORM>

online demonstration

Bells and Whistles

A form providing all the options refered to in Section 6.3.4 is shown below (some additional
white-space introduced for clarity):

<FORM ACTION="/web/html/.../*.html">

Search HTML documents for:
<INPUT TYPE=text NAME="search">
<INPUT TYPE=submit VALUE="[execute]">

<TT>About this search.</TT>

<TT>Output By:
line <INPUT TYPE=radio NAME="hits" VALUE="line" CHECKED>
document <INPUT TYPE=radio NAME="hits" VALUE="document"></TT>

<TT>Case Sensitive:
no <INPUT TYPE=radio NAME="case" VALUE="no" CHECKED>
yes <INPUT TYPE=radio NAME="case" VALUE="yes"></TT>

</FORM>

online demonstration

6–4 Document Searching

Chapter 7

VMS Help and Text Libraries

Affectionately known as Conan the Librarian, and with all due acknowlegement to Wierd
Al.Yankovic ‘‘:^)’’, this script makes VMS Help and Text libraries accessible in the hypertext
environment.

The librarian script will be automatically activated if the file specified has an extension of
‘‘.HLB’’ or ‘‘.TLB’’. Alternatively it may be explicitly activated by specifying /conan as a prefix
to the file specification (but the ability to provide a relative specification is lost). The following
examples illustrate the syntax:

VMS help
VMS help via /Conan

online demonstration

Other Librarian Functionality

To obtain an index of matching libraries explicitly activate the Conan script providing a
wildcard file specification.

All Help libraries in SYS$HELP

online demonstration

To obtain the library header information add a query string to the library file specification,
as shown in the following example:

VMS help library header

online demonstration

VMS Help and Text Libraries 7–1

Chapter 8

Bookreader Books and Libraries

Access to DEC’s Bookreader format documentation (and any generated internally) is provided
in the WASD hypertext environment via two integrated scripts, HyperReader, which reads
the books, and HyperShelf, which reads the Library and Shelf structures.

The HyperReader and HyperShelf scripts are automatically activated when the document
file’s extension is ‘‘.DECW$BOOK’’ and ‘‘.DECW$BOOKSHELF’’ respectively. Alternatively,
the respective scripts may be explicitly specified (but the ability to provide a relative
specification is lost).

If the server system supports Bookreader documentation collection the following link will
provide an online demonstration:

online demonstration

Bookreader Books and Libraries 8–1

Chapter 9

Web Document Update

The Update facility allows Web documents and file environments to be administered from a
standard browser. This facility is available to Web administrator and user alike. Availability
and capability depends on the authorization environment within the server.

It should be stressed that this is not designed as a full hypertext administration or author-
ing tool, and for document preparation relies on the editing capabilities of the ‘‘<TEXTAREA>’’
widget of the user’s browser. It does however, allow ad-hoc changes to be made to docu-
ments fairly easily, as well as allowing documents to be deleted, and directories to be created
and deleted.

Consult the current Update documentation for usage detail.

online hypertext link

Update Access Permission

Of course, the user must have write (POST/PUT) access to the document or area on the
server (i.e. the path) and the server account have file system permission to write into the
parent directory.

Contact the Web Administrator for further information on the availablility of authentication
and authorization permissions to do online updates of Web paths.

The server will report ‘‘Insufficient privilege or object protection violation ... /path/’’ if it does
not have file system permission to write into a directory.

Write access by the server into VMS directories (using the POST or PUT HTTP methods) is
controlled using VMS ACLs. This is in addition to the path authorization of the server

itself of course! The requirement to have an ACL on the directory prevents inadvertant
mapping/authorization of a path resulting in the ability to write somewhere not intended.

Two different ACLs implement two grades of access.

1. If the ACL grants CONTROL access to the server account then only VMS-authenticated
usernames with security profiles can potentially write to the directory. Only potentially,

Web Document Update 9–1

because a further check is made to assess whether that VMS account in particular has
write access.

This example shows a suitable ACL that applies only to the original directory:

$ SET SECURITY directory.DIR -
/ACL=(IDENT=HTTP$SERVER,ACCESS=READ+CONTROL)

This example shows setting an ACL that will propagate to created files and importantly,
subdirectories:

$ SET SECURITY directory.DIR -
/ACL=((IDENT=HTTP$SERVER,OPTIONS=DEFAULT,ACCESS=READ+WRITE+DELETE+CONTROL), -

(IDENT=HTTP$SERVER,ACCESS=READ+WRITE+DELETE+CONTROL))

2. If the ACL grants WRITE access then the directory can be written into by any authen-
ticated username for the authorized path.

This example shows a suitable ACL that applies only to the original directory:

$ SET SECURITY directory.DIR -
/ACL=(IDENT=HTTP$SERVER,ACCESS=READ+WRITE)

This example shows setting an ACL that will propagate to created files and importantly,
subdirectories:

$ SET SECURITY directory.DIR -
/ACL=((IDENT=HTTP$SERVER,OPTIONS=DEFAULT,ACCESS=READ+WRITE+DELETE), -

(IDENT=HTTP$SERVER,ACCESS=READ+WRITE+DELETE))

9–2 Web Document Update

