
1

Preface

This manual is intended as an introduction to the REX boards equipped with WRAMP processors in
R.G.06. Its purpose is to get you started in programming for the WRAMP processor, and using the
REX boards. It covers the basics of WRAMP assembly language, the WRAMP tools, as well as the I/O
devices supplied on the REX boards.

It is designed to complement the lecture material of the COMP200 course.

Although every effort has been made to make this manual accurate, it is possible that there may be errors
in it. If you find any please report them to contact-comp200@cs.waikato.ac.nz

This manual is mainly the product of a lot of hard work by Matt Jervis and Jamie Curtis. Other people
that have contributed to its content are Murray Pearson, Tony McGregor, and Dean Armstrong.

2

Contents

1 Introduction 7

1.1 Introducing REX and WRAMP . 7

1.1.1 The WRAMP CPU . 7

1.1.2 The REX board . 7

1.1.3 WRAMPmon . 8

1.2 Introduction to the WRAMP Assembly Language . 8

1.2.1 Labels . 8

1.2.2 Directives . 10

1.2.3 Registers . 11

1.2.4 Instructions . 11

1.2.5 Assembling and Linking . 13

1.3 Introduction to WRAMPmon . 14

1.3.1 WRAMPmon commands . 14

1.3.2 Getting started . 14

1.3.3 Uploading and Executing your Program . 15

1.3.4 Debugging your Program . 16

2 Stack Guide 17

2.1 WRAMP Stack Frame . 17

2.2 WRAMP Stack Conventions . 18

2.3 Saving Registers . 18

2.4 Parameter Passing . 19

2.5 Local Variables . 21

2.6 The Stack Frame . 22

3 REX I/O Devices 27

3.1 Introduction . 27

3.2 Serial Devices . 27

3.2.1 Serial Transmit Data Register . 28

3

4 CONTENTS

3.2.2 Serial Receive Data Register . 28

3.2.3 Serial Control Register . 29

3.2.4 Serial Status Register . 30

3.2.5 Serial Interrupt Acknowledge Register . 30

3.3 Parallel Interface . 31

3.3.1 Parallel Switch Register . 31

3.3.2 Parallel Push Button Register . 31

3.3.3 Parallel Left and Right SSD Registers . 32

3.3.4 Parallel Control Register . 32

3.3.5 Parallel Interrupt Acknowledge Register . 32

3.4 Programmable Timer . 33

3.4.1 Timer Control Register . 33

3.4.2 Timer Load Register . 33

3.4.3 Timer Count Register . 33

3.4.4 Timer Interrupt Acknowledge Register . 34

3.4.5 Timer Example . 34

4 Exceptions 35

4.1 Introduction . 35

4.2 CPU Exception Control Registers . 36

4.2.1 $cctrl - CPU Control Register . 36

4.2.2 $estat - Exception Status Register . 37

4.2.3 $evec - Exception Vector Register . 38

4.2.4 $ear - Exception Address Register . 38

4.2.5 $ers - Exception Save Register . 38

4.3 User Interrupt Button . 39

4.4 Using Exceptions . 40

4.5 Exception Procedure . 41

4.6 Compliant Exception Routine . 42

A Instruction Set 43

WRAMP General Purpose Registers . 43

WRAMP Instruction Set Architecture . 43

Arithmetic Instructions . 44

Bitwise instructions . 48

Test instructions . 50

Branch instructions . 54

CONTENTS 5

Memory instructions . 55

Special instructions . 56

B Small Instruction Set 57

WRAMP Instruction Set Summary . 57

C WRAMPmon Commands 61

6 CONTENTS

Chapter 1

Introduction

1.1 Introducing REX and WRAMP

During this course you will be using the REX boards in Lab 1. They should help you gain a practical
understanding of the internal workings of a computer. They were developed at this university by Dean
Armstrong, as part of an undergraduate degree.

1.1.1 The WRAMP CPU

The Central Processing Unit (CPU) is responsible for carrying out instructions. CPUs have devel-
oped at an astounding rate. From the humble Z80 to the 386, and beyond the GHz barrier. But as the
speed increases, so does the complexity. Due to this complexity it is difficult learning to program at a
low level.

The WRAMP CPU was designed to solve this problem. It is much easier to understand because it does
not have the quirks of performance orientated CPUs. Some features of the WRAMP CPU are:

• An easy to understand instruction set. All instructions conform to a clear and consistent structure.

• All operations are carried out on 32 bit words.

• Only a single instruction is executed at a time.

• Memory addressing is easy to understand.

1.1.2 The REX board

For a CPU to be usable a motherboard is needed. The REX board was developed to host the WRAMP
CPU. The REX boards can be found mounted on the walls of Lab 1. Each is connected to the Linux
machine below it and the terminal above it.

The REX board is made up of the following components:

CPU The WRAMP processor is the brain of the REX board.

RAM Capable of storing 128K words, the RAM resides at addresses 0x00000 to 0x1FFFF. The last
2K words are reserved for use by the monitor program. The rest of the RAM is used to store and
execute your programs, which, by default, are loaded starting from address 0x00000.

ROM Capable of storing 256K words, the ROM resides at addresses 0x80000 to 0xBFFFF. It is used
to store the WRAMPmon monitor program.

7

8 CHAPTER 1. INTRODUCTION

Serial Interface Allows the WRAMP processor to interface with two serial ports. One is connected
the Linux machine next to it. The other connects to the terminal on the shelf above. The terminal
will be used in later exercises.

Parallel Interface Allows the WRAMP processor to interface with:

• a set of eight switches from which the CPU can read

• two pushbuttons from which the CPU can read

• two seven segment displays to which the CPU can write

Timer Counts down from a certain value and can interrupt the CPU when finished.

Control Panel Provides the user with the ability to control execution of the WRAMP CPU. It also has
an LCD display showing the current status of the CPU.

Use of these I/O devices will be covered in chapter 3.

1.1.3 WRAMPmon

The REX board has installed on it monitor software known as WRAMPmon. It communicates with
the user through the Linux machine connected to the serial port. WRAMPmon is used to upload your
programs to the REX board and to debug them. This will be covered in more detail in section 1.3.

1.2 Introduction to the WRAMP Assembly Language

To help you get started we will begin by analysing, assembling, executing and debugging a simple
WRAMP assembly language program. Using emacs (or your preferred text editor) enter the program
listed in Figure 1.1. Save it as intro.s

This program first displays a message asking you to enter four numbers. It is then meant to input four
numbers, add them up and display the result. If you have noticed the bug in it, don’t worry as we will
correct this later.

As you read through the source file look for the following:

comments are lines beginning with a hash (#). These work in the same way as // comments in C and
are ignored by the assembler.

labels such as main: are used to refer to a location in the memory. This may be used to move execution
to a different area of code, or to refer to data in the memory.

directives are commands beginning with a period (.). They pass information to the assembler.

subroutine calls are used in this program to perform hardware operations such as reading from the
serial port. For example the lines jal putstr and jal readnum are subroutine calls.

WRAMP instructions such as add $4, $0, $0 get converted to machine code by the assembler.
They can then be executed by the WRAMP CPU.

1.2.1 Labels

A label is a means of referencing a location in memory. Rather than specifying absolute addresses when
accessing data in memory, a label can be used. This makes it much easier for the programmer to write
and understand the code. Labels can also be declared within the code. They can then be used as a
destination for branch and jump instructions.

1.2. INTRODUCTION TO THE WRAMP ASSEMBLY LANGUAGE 9

.text

.global main

main:

Get the address of the welcome message

la $2, welcome_msg

Display the message

jal putstr

Clear our sum register

add $4, $0, $0

Initialise the loop counter

addi $5, $0, 1

loop:

Read a number from the user

jal readnum

Add it to our running total

add $4, $4, $1

Increment our loop counter

addi $5, $5, 1

Test to see if we have done all 4 numbers

slti $1, $5, 4

Keep looping until 4 numbers have been entered

bnez $1, loop

Get the output message

la $2, output_msg

Print it

jal putstr

Move our sum into register $2 to display it

add $2, $0, $4

Print out the number

jal writenum

Return to the monitor

j exit

.data

This is our welcome message

welcome_msg:

.asciiz "Welcome to the world of WRAMP!!!\n\nPlease

type four numbers, pressing enter after each:\n"

This is the output message

output_msg:

.asciiz "The sum of the numbers is : "

Figure 1.1: WRAMP Assembly Language Program

10 CHAPTER 1. INTRODUCTION

A label declaration consists of a name (containing no spaces) followed by a colon (:).

The example code in figure 1.1 has labels main, loop, welcome msg, output msg. The labels main and
loop refer to locations within the code. The labels welcome msg and output msg refer to data.

1.2.2 Directives

Directives (commands preceeded by a .) do not become part of the final executable. They are used to
pass information to the assembler, like # directives do in C.

.text , .data and .bss

A program written in WRAMP assembly can be split into three sections. These are used to seperate
executable code, initialised data, and uninitialised data. The directives .text , .data and .bss are used
to do this. When the assembler encounters one of these directives it knows that all the code following it
belongs in the given section.

The .text section contains WRAMP assembly instructions which will be converted to machine language
which can be executed on the WRAMP CPU.

Within the .data section, space in the memory can be reserved and initialised. This is useful for strings,
constants, and variables which have an initial value.

The .bss section allows memory space to be reserved but not initialised. The advantage of this is that
space can be reserved in chunks using a single command. This feature makes the .bss section useful for
arrays.

Assigning Space

Within the .data and .bss sections memory space is assigned using directives. To be able to access this
you need to place a label before the assigning directive. In the example code, the label welcome msg:

refers to the memory reserved by the .asciiz directive.

welcome_msg:

.asciiz "Welcome to the world of WRAMP!!!\n\n"

Some of the memory assigning directives you may come across:

.word n This assigns one word of memory space and initialises it to the number n.

.asciiz "str" reserves and initialises space for a NULL terminated ASCII string ("str"). This means
that the string is followed immediatly by a NULL character (0). The NULL character can then be
used to identify the end of the string.

.ascii "str" reserves and initialises space for the ASCII string "str" without NULL terminating.

.space n is used to allocate a chunk of space of size n in the .bss section.

The .ascii and .asciiz directives can not be used in the .bss section as they initialise the space they
reserve. The .word directive may be used as long as it is not provided with an argument.

The .global Directive

When linking multiple files, we need to share functions and data. However we do not want to expose all
the labels in a file. Only labels declared as global (using the .global directive) are accessible outside the
current file.

1.2. INTRODUCTION TO THE WRAMP ASSEMBLY LANGUAGE 11

In the example program we have declared the ‘entry point’ main as global. To do this we used the
following directive:

.global main

1.2.3 Registers

Registers are the CPU’s equivalent of variables. There are 16 general purpose registers numbered 0 to
15. They can be used for temporarily storing data while it is used in operations. Registers are generally
referred to by a $-sign followed by a number. For example $0 refers to register zero. The contents of
registers can be transferred to and from main memory. This done using load and store instructions which
are covered in a later section.

Some of the general purpose registers have special uses:

Register $0 is always zero. Any attempts to write to it are ignored. This provides a constant source of
zero that can be used for comparing and initialising registers.

Register fourteen is denoted $sp. This register is defined by convention to be the stack pointer. While
the hardware imposes no special conditions on this register, failure to follow this convention may affect
the ability of code to interoperate with other software.

Register fifteen is denoted $ra. It is defined by convention to be the subroutine return address regis-
ter. When a jump and link instruction is executed this register is loaded with the address of the next
instruction after the jump and link. We will discuss stacks and this register in a later chapter.

In addition to these general purpose registers is a set of special purpose registers. The use of these is
covered in chapter 4.

Various types of instructions are introduced below.

1.2.4 Instructions

Executable machine code is create by assembling WRAMP instructions. Instructions tell the WRAMP
CPU what to do. For example an add instruction will add the contents of two registers and place the
result in another.

Arithmetic

Arithmetic instructions come in four forms, which are listed below, using add as an example:

add Rd, Rs, Rt
Simply performs the specified operation, on Rs and Rt, placing the result in Rd. For example add $1, $2, $0

will add the contents of registers $2 and $0 then place the result in $1.

addi Rd, Rs, Immediate

This is known as immediate form. The argument Immediate is a constant. Thus the specified operation
is performed on Rs and Immediate, and the result placed in Rd. For example addi $1, $2, 4 will add
4 to the contents of $2 and place the result in $1.

addu Rd, Rs, Rd
The u implies that this is an unsigned instruction. Thus it is assumed that both the operands are positive.
This is important when we consider twos complement representation of negative numbers. For example
1111 1111 1111 1111 1111 1111 1111 1111 represents -1 when treated as signed, and 0xFFFFFFFF,
a very large positive number, when treated as unsigned.

12 CHAPTER 1. INTRODUCTION

.text

. . .

#Read from the memory location ‘counter’ into $4

lw $4, counter($0)

#Add 1 to $4

addi $4, $4, 1

#Store the contents of $4 into the memory location ‘counter’

sw $4, counter($0)

. . .

.data

This is our counter

counter:

.word 0

Figure 1.2: Memory I/O Example

addui Rd, Rs, Immediate

This is the combination of the two forms above. It performs an unsigned operation on Rs and the
Immediate value.

For a full listing of arithmetic instructions see Appendix A.

Memory I/O

The WRAMP CPU has a 20 bit memory space. Of this the memory locations 0x00000 to 0x1FFFF are
RAM.

Unlike other CPUs the WRAMP has only a single method of referencing external memory. It consists
of a base address added to an offset. The base address is specified as a constant in the instruction. The
offset is the contents of a specified register.

The notation for this is base(Rs). The base can either be a label or an integer. To load from the memory
location specified by a label, $0 can be used for Rs. For the first few chapters we will use this method
of referencing the memory. Figure 1.2 shows an example. It loads a word of data from memory into a
register, adds 1 to it, then stores it back into the memory.

lw Rd, base(Rs)

Used to get the contents of the specified memory location and place it in the register Rd.

sw Rd, base(Rs)

Will place the contents of Rd into the specified memory location.

Sometimes you will need to know the address of a variable. The instruction ‘load address’ (la) is used
for this. It has the structure:

la Rd, label

Load the address that label refers to into register Rd.

1.2. INTRODUCTION TO THE WRAMP ASSEMBLY LANGUAGE 13

Set Instructions

These instructions are used to compare either two registers, or a register and an immediate value. They
take the same form as arithmetic instructions. If the test passes the destination register is set to 1,
otherwise it is cleared to 0.

For example to test if registers $2 and $3 were equal and store the result in $1 we would use the ‘set if
equal’ instruction: seq $1, $2, $3.

A full listing of test instructions can be found in the instruction set reference, Appendix A.

Program Control

We move execution to a different part of the program using two types of instruction: the unconditional
jump, and the conditional branch.

Jump Instructions
The jump instructions simply move execution to a different line of code. They are unconditional and so
do not perform any tests first. There are four different varieties:

j label - Jump
Jumps to the specified label.

jal label - Jump and link
Stores the address of the next instruction into the return address register $ra. It then jumps to the
specied label. This is used when calling subroutines.

jr Rs - Jump Register
Jumps to the location specified by the contents of the register Rs. Because the WRAMP CPU has only
a 20 bit address space the upper 12 bits of the register are ignored. Jump register is typically used to
return from a subroutine using jr $ra

jalr Rs - Jump and Link Register
A combination of jal and jr. It works in the same way as jr but it stores the address of the next
instruction into the return address register before jumping.

Branch Instructions
Branching instructions are conditional, they look at whether a register is zero or not, and act on that
information. There are two varieties: ‘branch if equal to zero’ beqz and ‘branch if not equal to zero’
bnez. Both of these instructions take a single register and a label as arguments.

For example the ‘branch if not equal to zero’ command ‘bnez $1, loop’ will branch to label loop if $1
is non-zero.

1.2.5 Assembling and Linking

Before we can execute our program on the REX board we need to translate it into machine code, so that
the WRAMP CPU can understand it. This is a two step process.

Assembly

We firstly have to assemble the source code using a program called an assembler. This involves checking
that all the directives and instructions within the program make sense (are syntactically correct). The
program is then translated into a file called an object file . This contains portions of machine code along
with other information about the program.

To assemble our file we use the WRAMP assembler , wasm:

14 CHAPTER 1. INTRODUCTION

wasm intro.s

There should now exist a file called intro.o. This is the object file .

Linking

Next we must link the object file . A program may be comprised of many separate parts. Even our
example program contains functions (subroutines) contained in a separate library . Linking involves
joining all these parts together to create a final program.

The WRAMP linker is called wlink. We will use it to link our file to the library lib ex2.o in the
COMP200 home directory. This file does not need to be copied into your home directory. Issue the
command:

wlink -o intro.srec intro.o /home/200/ex2/lib ex2.o

This command links together the object files to create file called intro.srec. This file is in a form known
as S-Record, which is suitable to be uploaded to the REX board and executed.

1.3 Introduction to WRAMPmon

The WRAMPmon monitor is a program which runs on the REX boards. It provides you with basic
facilities for interacting with the REX board. It is important for hardware and software development,
debugging, testing and troubleshooting. It uses a command line interface to perform these functions.

WRAMPmon communicates through the serial port that is connected to the Linux machine. By running
a terminal program on the Linux machine we can talk to the REX board.

1.3.1 WRAMPmon commands

A set of commands is provided for the user to interact with WRAMPmon including:

• a help command (help, or ?)

• commands to view and alter the memory and register contents

• a command to upload your programs

• commands to execute programs in the memory

• commands for debugging

For a listing of these commands see Appendix C.

1.3.2 Getting started

The REX board uses serial ports as its primary form of communication. The main serial port on the REX
board is connected to a Linux machine. The Linux machine runs a terminal program, called remote, which
transmits anything typed on the keyboard directly to the REX board, and displays any text received
from REX.

To execute the terminal program type remote from a console. Once you have remote running you will
need to reset the REX board by pressing the red RESET button. You should see something like Figure
1.3.

1.3. INTRODUCTION TO WRAMPMON 15

Type ? to obtain a list of commands available within WRAMPmon.

Help on individual commands can be obtained by typing the command and then a question mark, eg:

load ?

Each command gives the required format and available options. An item enclosed in square brackets,
[and], indicates an optional item. An item enclosed in angled brackets, < and >, indicates a compulsory
item.

If you have any problems with the monitor not responding at any stage you should always be able to get
back to the board’s initial state with the start-up message displayed by pressing the red RESET button
on the REX board.

1.3.3 Uploading and Executing your Program

Before you can run your program on the REX board it must first be loaded into the board’s memory.
The easiest way to do this is to set the board into load mode and use the upload option within the remote

program to send the executable file from the Linux machine to the board. To place the board into load
mode, type the following command (then press enter) at the WRAMPmon prompt:

load

After hitting return there should be a reminder response from the board indicating how to send an
executable file. To send the executable type:

<ctrl>-a and then s

Where <ctrl>-a means press and hold the control key and hit the a key and then release both keys.
The remote program does not pass this key sequence on to the REX board but instead enters a command
mode. When you press s, remote will switch into upload mode. A dialog box appears which asks you to
enter the name of the file you wish to upload. Type in the following file name:

intro.srec

After the file name has been entered a series of dots should appear on the screen indicating that the file is
being uploaded, followed by a message which tells you that is has completed. You should then press the
enter key to leave the upload mode of remote at which stage the WRAMPmon prompt should reappear.

Now that the program has been uploaded, you can run it by typing the command:

+--+

| WRAMPmon 0.6 |

| Copyright 2002, 2003 The University of Waikato |

| |

| Written by Dean Armstrong |

+--+

Type ? and press enter for available commands.

>

Figure 1.3: WRAMPmon

16 CHAPTER 1. INTRODUCTION

go

This will start executing your program from the entry point defined by the main label. The program
will prompt you to enter four numbers. You should continue to type a number and hit enter until the
program outputs the resulting sum. The output of your program should appear on your screen. When
the WRAMPmon prompt appears again it indicates that your program has finished executing.

1.3.4 Debugging your Program

The program that you have just run on the REX board should have read four numbers from the keyboard
and output their sum to the terminal. However, when run, only three numbers are read before their sum
is output.

In this section of the exercise you are going to use the debugging features of WRAMPmon to locate the
bug that causes this problem.

The debugging commands within WRAMPmon allow you to trace the execution of a program (i.e. follow
the path of execution) by inserting breakpoints.

If a breakpoint is set at a certain instruction, then when the program is running, and that instruction
is about to be executed, control will be returned to the monitor. From here, you can view register and
memory contents, and maybe resume execution, or step through the program one instruction at a time
to try and identify bugs. The commands for setting, removing and viewing breakpoints are sb, rb, and
vb respectively. The help facilty in WRAMPmon fully describes the operation of these commands. For
example to find out more about the set breakpoint command type

sb ?

Insert a breakpoint at the beginning of the loop in the above program (ie. at memory location 0x00004),
and execute the program using the go command. When a break does occur, use the view registers
command to find out the contents of the registers. You should also notice that the breakpoint register
dump contains identical information to the vr command.

To continue execution type:

cont

This will cause the program to continue execution until either the breakpoint is encountered again or
the program completes execution. Remember that the program will now wait for you to enter a number
before it will break again.

Another feature of the monitor that can be used to help debug you programs is the single-step command
s. This command causes only the immediately next instruction to be executed and then returns back to
WRAMPmon.

To demonstrate the use of the single step command you are to reload the program. Create a new
breakpoint at memory location 0x00005. Once this is done run the program using the go command.

Once you have encountered the breakpoint try single stepping through the program using the s command.
Pay careful attention to the loop counter in $5 and the instructions that increment and test it. As we
are only interested in the loop counter at this stage we will skip the readnum subroutine. We do this
using the ‘step over’ so command. When you reach the instruction jal readnum instead of typing ‘s’
type ‘so’.

At some point you may wish to remove the breakpoint using the rb command and then use cont to make
the program run to completion.

As you may have realised the program is designed with a bug. Although it is intended to add 4 numbers
it will only add 3. You should now use the debugging methods we have just covered to determine the
bug. Then correct it and assemble, link and load the program to confirm it operates correctly.

Chapter 2

Stack Guide

2.1 WRAMP Stack Frame

A stack is a term used to describe a ‘first in, last out’ buffer. New items are placed on the top of the
stack, and must be removed before older items. Two terms are commonly used to refer to the operations
of adding to, and removing values from a stack. A push operation puts a new value at the very top of the
stack, a pop operation removes the item from the top of the stack. These are the only operations allowed
to be performed on a stack, there is no way to remove an older item before a newer one. Stacks provide
an ideal mechanism for passing parameters to a function and providing storage for local variables and
temporary results inside a function. This document describes the reasons a stack is used on the WRAMP
architecture, how the stack is created, and the conventions surrounding its use.

The WRAMP processor itself does not directly support a stack, however it is possible to setup a stack
in software. To achieve this, a block of memory for the stack to reside in must be set aside. On the REX
board the monitor does this for you. The stack starts at the top of memory, with new items placed at
lower memory addresses. Because of this, stacks on the WRAMP architecture are often referred to as
growing downwards.

push:

move the stack pointer down

by one to create space for

a value to be pushed onto

the stack.

subui $sp, $sp, 1

store the contents of $2 onto

the new space on the stack

sw $2, 0($sp)

$sp

before

$sp
$2

after

(a) WRAMP code (b) Stack Diagrams

Figure 2.1: Push

To place new items onto and remove existing items from the stack you need a way to know the current
address of the top of the stack. To enable this a register is set aside to store this address. This register is
referred to as the “top of stack” pointer, or more often just the “stack pointer”. By convention the stack
pointer is stored in register number 14 in the WRAMP architecture and is referred to as $sp in WRAMP
assembly code. Figure 2.1(a) shows example WRAMP code to “push” a new value onto the stack and
(b) shows the stack before and after the push operation. Figure 2.2 shows the WRAMP code and stack

17

18 CHAPTER 2. STACK GUIDE

diagrams for a pop operation.

pop:

pop into register 3 the value

stored on the top of the

stack

lw $3, 0($sp)

Move the stack pointer up

by one to remove item

addui $sp, $sp, 1

0x53
$sp

before

$sp

after

(a) WRAMP code (b) Stack Diagrams

Figure 2.2: Pop

2.2 WRAMP Stack Conventions

On the WRAMP architecture the stack is used to:

• store local variables that are not stored in registers

• temporarily store the contents of registers so that a subroutine can use them while making sure the
previous contents are preserved.

• pass parameters to a subroutine

parent:

addi $3, $0, 5

loop:

beqz $3, endloop

...

jal child

...

subi $3, $3, 1

j loop

endloop:

j exit

child:

...

add $3, $4, $5

...

jr $ra

Figure 2.3: Incorrect Function

2.3 Saving Registers

When a program contains a number of subroutines that can call each other, a set of conventions is
required to ensure that a subroutine does not use a register to modify values that a parent subroutine

2.4. PARAMETER PASSING 19

is also using. For example consider the code sequence in Figure 2.3. Notice that the section of code
labelled parent is using $3 as a loop counter that decrements each time through the loop. Inside this
loop is a call to the subroutine child that uses $3 to store an intermediate result. This would overwrite
the loop counter value stored in that register by the subroutine parent. While it would be possible in
this simple sequence to rearrange the code to fix the problem, it will not always be possible to do so. To
ensure problems like this do not occur in code there needs to be a set of conventions controlling the way
registers are used.

The convention used in the WRAMP architecture is that all subroutines must save the contents of a
register to the stack before it can use it. The value must then be restored from the stack before the
subroutine exits. It should be noted that it is up to the programmer to ensure these conventions are
followed and the processor does not enforce them in any way. For code generated by a C compiler the
compiler must ensure that these same conventions are followed. Figure 2.4 shows the corrected program
that follows the conventions.

When a subroutine is called using the jal instruction, the return address for the subroutine is placed in
register 15 ($ra). If this subroutine then uses jal to call another subroutine it will overwrite its own
return address. Because of this, any subroutine that is going to call another subroutine needs to save $ra
onto the stack before calling the routine and restore it before it returns. Figure 2.5 gives an example of
this.

parent:

addi $3, $0, 5

loop:

beqz $3, endloop

...

jal child

...

subi $3, $3, 1

j loop

endloop:

j exit

child:

...

save register 3 before we overwrite

the contents of it

subui $sp, $sp, 1

sw $3, 0($sp)

add $3, $4, $5

...

restore the old contents of register

3 before we return

lw $3, 0($sp)

addui $sp, $sp, 1

jr $ra

Figure 2.4: Correct Function

There is one exception to the rule that all registers must be saved. For reasons discussed in the next
section, register 1 ($1) never needs to be saved or restored.

2.4 Parameter Passing

In Chapter 1, parameters were passed to subroutines using regsiters. While this works in this simple
case consider what would happen if a subroutine required a large number of parameters or called other

20 CHAPTER 2. STACK GUIDE

subroutines. It is not difficult to see that with a large program it would not take long to exhaust the
registers available to the programmer on the WRAMP processor.

child:

save the return address before we

call our subroutine

subui $sp, $sp, 1

sw $ra, 0($sp)

jal my_child

...

get our return address back off of the

stack so we can return there.

lw $ra, 0($sp)

addui $sp, $sp, 1

jr $ra

Figure 2.5: Calling a Function

A convention needs to be defined so that a subroutine knows how to find the parameters it has been
passed, and knows how to pass parameters to subroutines it calls.

On the WRAMP processor the convention is to pass all parameters to a subroutine using the stack.
Before a subroutine is called all of the parameters that are going to be passed to it must first be pushed
onto the stack. Parameters appear on the very top of the stack when a subroutine is entered. If code is
being generated for a C function call, then the convention is to push the parameters onto the stack in
the reverse order so that the first C parameter ends up on the top of the stack just before the function
is called. Figure 2.6(a) shows a C function call, (b) WRAMP code to implement it and (c) a diagram of
the stack at the time of the function call.

cat(first, second, third);

push the third parameter on

subui $sp, $sp, 1

sw $3, 0($sp)

push the second parameter on

subui $sp, $sp, 1

sw $4, 0($sp)

push the first parameter on

subui $sp, $sp, 1

sw $5, 0($sp)

jal cat

remove all three parameters

addui $sp, $sp, 3

$sp
$5(1st)

$3(3rd)

$4(2nd)

(a) C code (b) WRAMP code (c) Stack before call

Figure 2.6: Passing Parameters to a Function

As you will notice in the previous example a significant proportion of the WRAMP code is associated with
manipulating the stack pointer. An alternative and more efficient approach is to calculate the maximum
size that a stack will grow to in a function and pre-allocate this space as the function is entered. Just
before this ”parent” function calls another function it copies the parameters to the appropriate place in
the pre-allocated space. If the function accepts one parameter, that parameter must be placed at the top
of the stack. If a function accepts two parameters the first parameter must be placed at the top of the
stack and the second placed beneath it. If you think of the parameters as a list numbered from zero, the

2.5. LOCAL VARIABLES 21

position of any parameter can be calculated as follows:

Address = $sp + ParameterNumber

For example if a function cat(first, second, third) is going to be called then first will be placed
at $sp + 0, second at $sp + 1 and third at $sp + 2. Figure 2.7(a) shows an example C code sequence
containing two function calls (one with a single parameter and one with three parameters) and Figure
2.7(b) shows the WRAMP assembler code for this sequence.

Once a subroutine has been called it then has to retrieve these parameters off of the stack so that it
can use them. This requires a number of loads from the current stack. The important part to notice is
that these are not pop operations, as they do not reduce the size of the stack. The function simply is
looking into the stack of the function that called it to discover the parameters it has been called with. A
function must never return with the stack pointer pointing to a different location to when the function
was called.

A function also needs to be able to return a value to its parent. Traditional languages only ever allow a
function to return a single value, therefore the use of the stack to return a value is probably over complex.
On the WRAMP architecture, values are returned to the parent in register 1 ($1). Because of this fact
$1 is the only exception to the rule that all registers must be returned with their original contents when
a function returns. A function is actually allowed to change the contents of $1 even if it doesn’t return
any value to its parent. Figure 2.8 shows a simple maximum function that is passed two parameters and
returns the larger of the two. As this function is a leaf function (i.e. calls no other functions) it need not
save the contents of it’s return address.

...

dog(last);

...

cat(first, second, third);

...

allocate the amount of space on the stack

to allow for the call with the largest number

or parameters. (in this case 3)

subui $sp, $sp, 3

...

The parameter ’last’ must be placed on the stack

and is currently being stored in $6.

sw $6, 0($sp)

Call the function

jal dog

...

Put the parameters for cat onto the stack

sw $5, 0($sp) # ’first’

sw $4, 1($sp) # ’second’

sw $3, 2(sp) # ’third’

Call the function

jal cat

...

remove the space from the stack.

addui $sp, $sp, 3

(a) C code (b) WRAMP code

Figure 2.7: Calling multiple functions

2.5 Local Variables

So far we have kept all local variables, such as temporary storage, loop counters etc. in registers. As
there are a small number of registers it would be a major limit to a language to enforce that it could have

22 CHAPTER 2. STACK GUIDE

parent:
addi $3, $0, 5

loop:
beqz $3 endloop
...
jal child
...
subi $3, $3, 1
j loop

endloop:
j exit

child:
...
save register 3 before we overwrite
the contents of it
subui $sp, $sp, 1
sw $3, 0($sp)

add $3, $4, $5
...
restore the old contents of register
3 before we return
lw $3, 0($sp)
addui $sp, $sp, 1

jr $ra

Figure 2.8: Example

no more local variables than the architecture has registers. To overcome this limit, the stack is set up so
that local variables can be stored on the stack and only be loaded into registers temporarily as required.
A code segment is shown in Figure 2.10(a). Figure 2.10(b) provides an example of how the WRAMP
code would look if the local variables are kept on the stack. As you can see, even in this small piece of
code there is a large proportion of the code dealing with fetching and storing the variables to and from
the stack. If you are writing C code it is the job of a compiler to optimise these areas of the assembly
code and reduce to a minimum the number of these load and stores.

2.6 The Stack Frame

All of the discussion so far has been treating the uses of the stack as separate concepts. In reality all of
these are used by C functions to create a concept called the stack frame. The stack frame is an area on
the top of the stack that has a standard format. Inside this block is space for local variables, register save
and parameter passing for the current function. We precalculate the size of the stack frame by summing
the sizes of each of the areas. We need space for one item on the stack for every local variable, one item
for each register we save, and one item for each parameter of the function with the largest number of
parameters that we call.

For example if we need to setup a stack frame for a function that needs to store three local variables and
save two registers and calls no other function we will need a stack frame of size 5.

If we have a non-leaf function that needs 3 local variables, save 4 registers and the return address, and
calls two functions, one of which takes 2 parameters and the other takes 4 parameters, we will need a
stack frame of size 12.

The layout for a complete stack frame is shown in Figure 2.9

Figure 2.11 shows a non-leaf function that calls two subroutines. The function has zero local variables
stored on the stack, but is a fully compliant function. It sets up a stack frame on entry and tears it
down on exit. It is strongly suggested that you walk through this code and draw a diagram of the stack

2.6. THE STACK FRAME 23

Arguments we pass

to our children

Register Save

Local Variables

were called with
Arguments we

by our parent

during function$sp

on entry$sp

Figure 2.9: The Stack Frame

frame that this function creates. Any functions you write that needs to be compliant should contain very
similar entry and exit code to this function.

The function is a successive addition multiplication system. It uses a function called add to add the
two numbers. At the end of the function it displays the result to the seven segment display using the
writessd function.

24 CHAPTER 2. STACK GUIDE

int i;
int a = 2;
int b = 3;
int result = 0;

for(i = 0; i < a; i++){

result = result + b;

}

...

func:
Allocate space for 4 locals
subui $sp, $sp, 4

Initialise a = 2
addi $2, $0, 2
sw $2, 1($sp)

Initialise b = 3
addi $2, $0, 3
sw $2, 2($sp)

Initialise result = 0
sw $0, 3($sp)

Initialise i = 0
sw $0, 0($sp)

loop:
Do the for loop test
lw $2, 0($sp) # get i
lw $3, 1($sp) # get a
slt $4, $2, $3
beqz $4, end

perform the loop
lw $2, 3($sp) # get result
lw $3, 2($sp) # get b
add $2, $2, $3
sw $2, 3($sp) # put result

increment i
lw $2, 0($sp) # get i
addi $2, $2, 1
sw $2, 0($sp) # put i

j loop

end:
...

$sp i

a

b

result

(a) C code (b) WRAMP code (c) Stack

Figure 2.10: Using Variables

2.6. THE STACK FRAME 25

multiply:

Setup a stack frame (2 parameters, 5 registers to be saved)

subui $sp, $sp, 7

Save some registers for us to use

sw $6, 2($sp)

sw $7, 3($sp)

sw $8, 4($sp)

sw $9, 5($sp)

This is a non-leaf function so we must save the return address

sw $ra, 6($sp)

Initialise the ’result’ variable to zero

addu $7, $0, $0

Initialise our loop counter

addu $6, $0, $0

Get our first parameter into $8

lw $8, 7($sp)

Get our second parameter into $9

lw $9, 8($sp)

loop:

Use our 1st parameter to control how many times we add our

second parameter to itself

slt $1, $6, $8

beqz $1, exit_loop

The first parameter to add is the existing ’result’

sw $7, 0($sp)

The second parameter we pass is the same as our 2nd parameter

sw $9, 1($sp)

jal add

Save the return value from add back into our ’result’ variable

addu $7, $0, $1

Increment our loop counter

addui $6, $6, 1

j loop

exit_loop:

Write the result to the seven segment display

sw $7, 0($sp)

jal writessd

Return our result to our parent

addu $1, $0, $7

Restore all the registers we used

lw $6, 2($sp)

lw $7, 3($sp)

lw $8, 4($sp)

lw $9, 5($sp)

Get our return address back

lw $ra, 6($sp)

Destroy our stack frame

addui $sp, $sp, 7

Return

jr $ra

Figure 2.11: Example

26 CHAPTER 2. STACK GUIDE

Chapter 3

REX I/O Devices

3.1 Introduction

The REX board provides a number of I/O devices. This document describes the devices and the way in
which WRAMP code can interact with them. There are three major I/O devices, a dual serial port, a
parallel port and a programmable timer.

All REX I/O devices are memory mapped. This means that to access a device, WRAMP code simply
reads or writes to special memory locations using the standard load word (lw), and store word (sw)
instructions.

The base memory addresses of all of the devices are provided in Table 3.1. The details of how to use each
of the devices forms the body of this document.

Device Base Address
First Serial Port 0x70000
Second Serial Port 0x71000
Timer Base 0x72000
Parallel Port 0x73000

Table 3.1: I/O Device Base Addresses

3.2 Serial Devices

The REX board provides two independent RS232 serial interfaces.

For the Computer Systems course each of these ports are attached to separate display devices. The first
serial port is attached to the Linux machine. This port is used by the monitor software on the REX
board to communicate with the user and to allow software to be uploaded to the REX board. The second
serial port is attached to a Digital VT320 dumb serial terminal.

The programmers view of a serial interface consists of five registers. The names of these registers and
their addresses, expressed as offsets from the base address, are provided in Table 3.2. The base address
for the first serial port is 0x70000 and the base address for the second serial port is 0x71000.

The serial ports provided on the REX board can operate in either polled or interrupt driven I/O modes.
Interrupt I/O will be disabled by default.

27

28 CHAPTER 3. REX I/O DEVICES

Register name Offset
Serial Transmit Data Register 0
Serial Receive Data Register 1
Serial Control Register 2
Serial Status Register 3
Serial Interrupt Acknowledge Register 4

Table 3.2: Serial Port Register Offsets

3.2.1 Serial Transmit Data Register

The Transmit Data Register (TDR) is a write-only register. A character will be transmitted by writing
the value into this register. The serial port status register indicates if a value is permitted to be written
to this register. If a character is written to this register without first checking the status register it will
be possible to lose characters. If transmit data sent interrupts are enabled, an interrupt will be triggered
when this register becomes empty indicating that another character can now be sent. Some example
WRAMP code to transmit a single character is given in Figure 3.1.

. . .

Put the character we want to send in $9

addi $9, $0, ’A’

check:

Get the first serial port status

lw $11, 0x70003($0)

Check if the TDS bit is set

andi $11, $11, 0x2

If not, loop and try again

beqz $11, check

Serial port is now ready so

transmit character

sw $9, 0x70000($0)

. . .

Figure 3.1: Simple Transmit Code

3.2.2 Serial Receive Data Register

The Receive Data Register (RDR) is a read-only register. When a character is received from the serial
line, it appears in this register. When a character arrives the status register will reflect this change. If
receive data ready interrupts are enabled, an interrupt will be triggered when data arrives in this register.
An example of a simple polled receive routine is shown in Figure 3.2.

3.2. SERIAL DEVICES 29

. . .

check:

Get the first serial port status

lw $11, 0x70003($0)

Check if the RDR bit is set

andi $11, $11, 0x1

If not, loop and try again

beqz $11, check

Serial port now has a character.

Get it into $9

lw $9, 0x70001($0)

. . .

Figure 3.2: Simple Receive Code

3.2.3 Serial Control Register

This register allows line parameters such as serial bit rate to be set. The serial ports are configured
appropriately by the monitor for the device setup used by the Computer Systems course. Unless you
know that you specifically need to change something in this register you should leave it as default.

The control register also controls when the serial port will cause an interrupt. The serial port can
selectively cause an interrupt when a character is received into the receive data register, the transmit
data register becomes empty or on an error condition. Any combination of these can be enabled or
disabled at one time. To enable interrupts to be used by the serial port under specific circumstances a
‘1’ should be written to the appropriate location. If an interrupt has occurred it must be acknowledged
by writing into the serial interrupt acknowledge register.

The REX board monitor will initialise the serial port so that no interrupts are enabled

The control register is a read/write register. Writes to this register have an immediate effect on the line
settings.

00 − 5 Data Bits

01 − 6 Data Bits

10 − 7 Data Bits

11 − 8 Data Bits

0x − No Parity

10 − Even Parity

11 − Odd Parity

000 − 300bps

001 − 600bps

010 − 1200bps

011 − 2400bps

100 − 4800bps

101 − 9600bps

110 − 19200bps

111 − 38400bps

Parity:

Data Bits:

0 − 1 Stop Bit

1 − 2 Stop BitsStop Bits:

Line Speed:

02331 567 4

Undefined

8910

Receive Data Ready Interrupt Enable

Transmit Data Sent Interrupt Enable

Error Interrupt Enable

Figure 3.3: The Serial Control Register

eg. To configure a serial interface to operate with no interrupts enabled, at 9600 bits per second, with 8
data bits, no parity and 1 stop bit, the value ‘00011000101’ would be written to the control register.

30 CHAPTER 3. REX I/O DEVICES

3.2.4 Serial Status Register

The status register is a read-only register, which gives error and status information about the serial
interface. It allows the programmer to see if data has been received, sent, or if an error condition is
present.

The Transmit Data Sent (TDS) bit will be set to ‘1’ as soon as the transmit data register is empty.
Checking that this bit is set allows WRAMP code to ensure that it will not overwrite any data by placing
another character into the transmit data register. This bit will automatically be cleared if the transmit
data register becomes full.

Similarly the Receive Data Ready bit will be set to ‘1’ as soon as there is new valid data in the receive
data register. A read from the receive data register automatically clears this bit.

Parity Error
Framing Error
Overrun Error

Transmit Data Sent
Receive Data Ready

02331 5 4 1

Undefined

Figure 3.4: The Serial Status Register

eg. If the value ‘00001’ was read from the status register then we could determine that a character has
been received without error, and is available in the receive data register.

3.2.5 Serial Interrupt Acknowledge Register

The interrupt acknowledge register is a read/write register. When the serial interface has generated an
interrupt this register allows the program to determine the reason for the interrupt as well as acknowledge
interrupts that have been dealt with.

To acknowledge an interrupt a zero (‘0’) should be written over the current status field for the type of
interrupt being acknowledged. Most often it will be the desire of the programmer to acknowledge all of
the possible serial port interrupts in one instruction. This can be achieved by storing register $0 to the
interrupt acknowledge register.

02331 1

Undefined

Error Interrupt Status
Transmit Data Sent Interrupt Status
Receive Data Ready Interrupt Status

Figure 3.5: The Serial Interrupt Acknowledge Register

eg. If the value ‘010’ was read from the interrupt acknowledge register we could determine that the cause
of the interrupt was the transmit data register becoming empty. If the value ‘000’ was written to the
interrupt acknowledge register all outstanding serial port interrupts would be acknowledged.

3.3. PARALLEL INTERFACE 31

3.3 Parallel Interface

The parallel interface on the REX board provides an input interface from a bank of 8 on-off switches
and two momentary push-buttons, as well as an output interface to two LED Seven Segment Displays
(SSDs). Parallel interrupts, if enabled, will be generated on any switch or push-button state change.

The programmers view of the parallel interface consists of six registers. The names of these registers and
their addresses, expressed as offsets from the base address, are provided in Table 3.3. The base address
for the parallel port is 0x73000.

Register name Offset
Parallel Switch Register 0
Parallel Push Button Register 1
Parallel Left SSD Register 2
Parallel Right SSD Register 3
Parallel Control Register 4
Parallel Interrupt Acknowledge Register 5

Table 3.3: Parallel Port Register Offsets

3.3.1 Parallel Switch Register

The switch register is a read-only register. A read from this register returns a bit pattern with bits set
corresponding to the switches that are on.

Switch 7
Switch 6
 ...
Switch 1
Switch 0

031

0 (zero)

78 6 5 3 2 14

Figure 3.6: The Switch Register

3.3.2 Parallel Push Button Register

The push button register is a read-only register. A read from this register returns a bit pattern in the
low order 2 bits corresponding to the push buttons that are currently being depressed.

Push Button 1
Push Button 0

031 2 1

0 (zero)

Figure 3.7: The Push Button Register

32 CHAPTER 3. REX I/O DEVICES

3.3.3 Parallel Left and Right SSD Registers

The Left and Right SSD Registers are read/write registers. These registers contain the value to be
displayed on their respective Seven Segment Display.

If the hexadecimal to seven-segment decode bit is enabled in the parallel control register, four bits of
input will be decoded into a single hexadecimal digit and displayed on the seven-segment display.

If the hexadecimal to seven-segment decode bit is turned off, then each segment can be individually
controlled by a single bit of the input. The displays are made up of seven segments and a decimal point.
The first eight bits of input turn on the segments as shown in Figure 3.8.

3

6

0

4 2

5 1

7

Figure 3.8: Seven-segment display bit encoding

3.3.4 Parallel Control Register

The Parallel Control Register is a read/write register, which allows for control over the parallel interface.

0231 1

Undefined

Hex−SSD Decode Enable

Interrupt Enable

Figure 3.9: The Parallel Control Register

eg. To enable interrupts on switch changes and force hex-SSD decoding on the displays, a value of ‘11’
would be written to the parallel control register.

3.3.5 Parallel Interrupt Acknowledge Register

The Interrupt Acknowledge Register is a read/write register. This register allows a program to determine
the parallel port interrupt status as well as acknowledge interrupts that have been dealt with.

031

Undefined

Interrupt Acknowledge

1

Figure 3.10: The Parallel Interrupt Acknowledge Register

eg. To acknowledge an outstanding parallel port interrupt ‘0’ would be written to the parallel interrupt
acknowledge register.

3.4. PROGRAMMABLE TIMER 33

3.4 Programmable Timer

The Programmable Timer on the REX board provides for generation of interrupts at time intervals from
about 1ms to 30s, with a resolution of around 0.5ms.

The timer has an internal 16 bit register. This register is decremented at a constant rate of 2400Hz.
Once this register reaches 0x0000 an interrupt is triggered. The starting value for the timer is controlled
by altering the value in the timer load register.

The timer can be configured to automatically reload the starting count value and continue counting
immediately after it expires.

The programmers view of the timer consists of four registers. The names of these registers and their
addresses, expressed as offsets from the base address, are provided in Table 3.4. The base address for the
timer is 0x72000.

Register name Offset
Timer Control Register 0
Timer Load Register 1
Timer Count Register 2
Timer Interrupt Acknowledge Register 3

Table 3.4: Timer Register Offsets

3.4.1 Timer Control Register

The Timer Control Register is a read/write register, that allows the user to enable and control aspects of
the timer operation. The timer has two primary modes of operation, automatic restart and single-shot
mode. If the timer is set to automatic restart, as soon as the timer expires, an interrupt is triggered and
the timer immediately starts counting down again. In single-shot mode the timer will copy the value
from the timer load register only once when the timer is enabled and will count down to zero. Once the
timer reaches zero an interrupt will be triggered and the timer will be disabled.

Automatic Restart
Timer Enable

0231 1

Undefined

Figure 3.11: The Timer Control Register

3.4.2 Timer Load Register

The Timer Load Register is a read/write register. This register allows the user to specify the starting
count value. The starting count value is a 16 bit value with the upper 16 bits being ignored.

3.4.3 Timer Count Register

The Timer Count Register is a read-only register. Reading from this register returns the current value
in the 16 bit internal count register.

34 CHAPTER 3. REX I/O DEVICES

3.4.4 Timer Interrupt Acknowledge Register

The Interrupt Acknowledge Register is a read/write register. This register allows a program to detect a
timer overrun as as well as acknowledge interrupts that have been dealt with.

The overrun detected bit will be set if the timer is set to automatic restart and the timer expired again
before the previous interrupt was acknowledged. This allows a program to detect if it is unable to service
the timer interrupt fast enough.

The overrun bit must be manually reset by writing a ‘0’ to it’s location.

Overrun Detected
Interrupt Acknowledge

0231 1

Undefined

Figure 3.12: The Timer Interrupt Acknowledge Register

eg. If the value ‘11’ was read from the interrupt acknowledge register we could determine that the
timer has overrun since we last acknowledged an interrupt. If ‘00’ was written to the timer interrupt
acknowledge register we will acknowledge any outstanding interrupts and ensure the overrun bit is reset
to zero.

3.4.5 Timer Example

To configure the timer to interrupt at a specific period the first step is to calculate the timer load value.
This value can be calculated simply by multiplying the timer frequency by the required time between
interrupts. For example, if we want the timer to generate an interrupt once every ten seconds we would
calculate it as follows:

Timer Load = 2400Hz * 10s = 24000 = 0x5dc0

Some simple code to initialise the timer to automatically restart and to interrupt once every ten seconds
is given in Figure 3.13.

. . .

Make sure there are no old interrupts

still hanging around

sw $0, 0x72003($0)

Put our auto load value in

addi $11, $0, 0x5dc0

sw $11, 0x72001($0)

Enable the timer and autorestart

addi $11, $0, 0x3

sw $11, 0x72000($0)

. . .

Figure 3.13: Simple Timer Initialisation

Chapter 4

Exceptions

4.1 Introduction

Modern processors can execute millions of instructions each second. This means that when a processor
is polling an I/O device for data or status information which may only change very infrequently, it is
wasting a lot of time where it could be doing some worthwhile processing. It would be more efficient for
a device to signal the CPU when something happens (eg. a character is received at the serial port, the
user flicks a switch, or a certain time has elapsed).

Also consider what should happen if something goes wrong when a program is executing. What should
happen if an attempt is made to divide by zero? What should happen if you add two numbers and the
result will not fit in 32 bits?

This is why almost all modern processors provide support for exceptions. Exceptions provide a mechanism
which allows the processor to be executing code, and when a certain condition occurs, to deal with that
condition, and then return to what it was doing initially.

The terms ‘exception’ and ‘interrupt’ are often used interchangeably. There are varying opinions on the
exact definitions of these terms, however the term ‘interrupt’ generally refers only to the exceptions which
are caused by something outside the processor (eg. the serial port, or the timer).

The WRAMP processor allows for four internal exceptions. These are:

• Arithmetic Exception (ie. Divide-by-zero, or Overflow)

• Breakpoint Exception (a ’break’ instruction has been executed)

• System Call Exception (a ’syscall’ instruction has been executed)

• General Protection Fault Exception (eg. an illegal instruction is encountered)

WRAMP provides eight external interrupts. The external interrupts are simply wires coming into the
processor, and so can be connected to any devices. These are called IRQ0 (for Interrupt ReQuest) to
IRQ7. On the REX board these are connected as follows:

IRQ # Description IRQ # Description
0 Unconnected 4 Serial Port 1 Interrupt
1 User Interrupt Button 5 Serial Port 2 Interrupt
2 Timer Interrupt 6 Unconnected
3 Parallel Interrupt 7 Unconnected

35

36 CHAPTER 4. EXCEPTIONS

Exceptions can be thought of as similar to subroutine calls. The processor is executing a block of code,
when an exception occurs, causing the processor to jump to a location called the ‘exception vector’.
The processor then executes the code at this location (known as the ‘exception handler’ or ‘exception
routine’), and returns to the point at which it was executing when the exception occurred.

For this mechanism to work, we will need registers to store things like the exception vector (the address
of the exception handler), and the address of the instruction to return to after the exception has been
handled. The general purpose registers are not suitable for this, because a program may be using them,
and if an exception occurs, then there may be unpredictable results. For this reason the WRAMP
processor provides a special set of registers that are used for advanced processor features like exceptions.

Like the general purpose registers ($0 - $ra), there are 16 special purpose registers. Because each has a
specific use, they are called by their names rather than their numbers. The special registers concerned
with exceptions are:

• $cctrl - CPU Control Register

• $estat - Exception Status Register

• $evec - Exception Vector Register

• $ear - Exception Address Register

• $ers - Exception Register Save

These special purpose registers cannot be operated on directly like the general purpose registers. Rather,
two instructions are provided to allow register contents to be copied from a general purpose register to
a special purpose register, or vice-versa. These instructions are movsg (move special register to general
register), and movgs (move general register to special register). Details on these instructions can be found
in the WRAMP instruction reference in Appendix A.

The next sections will describe the format of each of these special purpose registers. Contained in these
descriptions will often be introductions to new concepts and ideas. As such this chapter is best read once
end-to-end to ensure that all concepts are introduced fully.

4.2 CPU Exception Control Registers

4.2.1 $cctrl - CPU Control Register

K
U

O
K
U

I
E

O
I
E

Interrupt MaskUndefined

01234111231

Figure 4.1: $cctrl - CPU Control Register

The CPU control register controls almost all of the functionality related to the WRAMP exception
mechanism. There are three main sections of this register:

• Interrupt Enable (IE)

• Kernel/User Mode (KU)

• Interrupt Mask

4.2. CPU EXCEPTION CONTROL REGISTERS 37

Interrupt Enable

This flag provides a global interrupt enable. If this location is set to ‘0’ then no interrupts can be triggered.
This flag only affects external interrupts. There is no way on the WRAMP processor to disable internal
exceptions.

Interrupts that occur while the global interrupt enable is turned off will be held back. As soon as
interrupts are again enabled by writing a ‘1’ into this location the interrupt mask will be consulted to
discover if that specific interrupt is enabled. See Section 4.2.1 for more information about the interrupt
mask.

The CPU will automatically set the IE bit to ‘0’ whenever an exception of any type occurs. This prevents
the exception handler from being interrupted by another interrupt.

Interrupt Mask

This provides a way to selectively turn on and off individual external interrupts. This field has a bit
corresponding to each of the eight possible external interrupts (IRQ0 - IRQ7). Bit 4 of the CPU control
register corresponds to IRQ0, bit 5 to IRQ1 and so on.

The interrupt mask field is only consulted if the global interrupt enable (IE) flag is set. If an interrupt
occurs and the global interrupt flag is set but the individual interrupt mask is disabled then the interrupt
will be held back. As soon as both the global interrupt enable and the specific interrupt mask bits are
set then the interrupt will occur.

Kernel User Mode

The WRAMP CPU has two modes of operation, kernel and user mode. If there is a ‘1’ in the KU bit
the CPU is in kernel mode. If the KU bit is set to ‘0’ then the CPU is in user mode.

If the CPU is running in kernel mode it will execute all instructions and allow access to all areas of
memory. If the CPU is running in user mode programs are not allowed to use any of the three instructions
which deal with the special register file (movsg, movgs, rfe) and may not be able to access all memory
locations. If a program running in user mode attempts to use one of these instructions, or to access
protected memory the CPU will cause a General Protection Fault exception.

The CPU will automatically set the KU bit to ‘1’ whenever an exception of any type occurs. This allows
the exception handler to operate in kernel mode, allowing it full access to all instructions and memory
locations.

4.2.2 $estat - Exception Status Register

034111231 1516

Undefined HW Ints UndefSW Exc

Figure 4.2: $estat - Exception Status Register

The exception status register provides the exception handler with the ability to discover which exceptions
caused it to be invoked. The exception status register has a single bit flag for each external IRQ line. Bit
4 of the status register corresponds to IRQ0, bit 5 to IRQ 1 and so on. These locations are exactly the
same as the locations of the interrupt mask fields in the CPU control register as described in Section 4.2.1.
In addition to the eight external interrupt sources the status register also provides the status for the four
CPU internal exception sources.

38 CHAPTER 4. EXCEPTIONS

The full list of all exception sources and their related status register bit is given in Table 4.1.

Most exception handlers will wish to check which exception caused them to be called. Provided in
Figure 4.3 is code that checks if a specific interrupt caused the handler to be called. If any other
interrupt or exception is currently high then the code will call an old handler to deal with the exception.
The code to save the address of an old handler is given in Figure 4.4 and discussed in Section 4.2.3.

Exception source Bit location
IRQ0 4
IRQ1 - User Interrupt Button 5
IRQ2 - Timer Interrupt 6
IRQ3 - Parallel Interrupt 7
IRQ4 - Serial Port 1 Interrupt 8
IRQ5 - Serial Port 2 Interrupt 9
IRQ6 10
IRQ7 11
General Protection Fault Exception 12
System Call Exception 13
Breakpoint Exception 14
Arithmetic Exception 15

Table 4.1: Exception Status Register Fields

4.2.3 $evec - Exception Vector Register

When an exception occurs the CPU needs to jump to the exception handler. The CPU must therefore
know what address the exception handler starts at.

The address of the exception handler is stored in the exception vector register. The CPU jumps to this
location whenever an exception occurs.

If a program is replacing an existing exception handler, but will still need to call the old handler for
certain exceptions, the code must be careful to save the address of the old exception handler. This allows
the new handler to decide if it will deal with this exception, and if not, call the old handler.

A section of WRAMP code to save the address of an old exception handler, load the address of the new
handler and save this to the exception vector is given in Figure 4.4.

4.2.4 $ear - Exception Address Register

An exception routine must be able to return to the point in program code at which the exception occurred.
To allow this, when an exception occurs the WRAMP pocessor automatically saves the address of the
next instruction that would have been executed into $ear - the Exception Address Register.

When the exception routine has completed its processing, it executes a Return From Exception, or rfe

instruction. Amongst other things, this instruction causes a jump to the address contained in $ear.

In some circumstances an exception routine may wish to know the address at which the exception was
invoked, or may wish to alter the address to which the rfe will return. This can be achieved by inspecting
and/or modifying the contents of the $ear.

4.2.5 $ers - Exception Save Register

It is vital that an exception routine does not change the contents of the general purpose registers when
it returns to the main program, as changes may cause the main program to behave in an unpredictable

4.3. USER INTERRUPT BUTTON 39

. . .

handler:

Get the status register

movsg $13, $estat

Inspect only the bits we are interested in. We want

to check that no bits from the sw exceptions or

hardware exceptions, other than the one we were

expecting, are enabled.

#

This code is looking for an IRQ4 interrupt.

andi $13, $13, 0xfef0

If the result of this is zero then no other

exceptions are enabled so it must be our interrupt

that caused us to be called.

beqz $13, handle_interrupt

Otherwise there was another exception that has

occurred, so call the old handler

lw $13, old_vector($0)

jr $13

handle_interrupt:

This is where we deal with the interrupt.

. . .

Figure 4.3: Checking the Status Register

fashion.

However, for the exception handler to determine the cause of the exception, it requires a general purpose
register into which it can copy $estat. The WRAMP processor makes general purpose register $13

available for this by automatically copying it to the Exception Save Register ($ers) when an exception
occurs. The opposite of this happens when an rfe instruction is executed - $ers is copied into $13.

This means that exception handler code must only change $13. If it needs other registers it must save
their contents before using them. They must then be restored before returning to the main program.

4.3 User Interrupt Button

The REX board provides a simple method for creating an interrupt. There is a button located on the
front of the case, next to the reset button labeled “INTR”. When this button is pressed IRQ1, the “User
Interrupt Button”, interrupt will be triggered. If this interrupt is unmasked and the global interrupt
enable is turned on in $cctrl an exception will occur.

This button provides a simple way to test an exception handler as it avoids problems that could be caused
by mis-configuration of the I/O device that is being used to provide the exception.

Like all other REX interrupt sources the user interrupt button needs to be acknowledged each time an
exception occurs. To acknowledge a “User Interrupt” you store zero to the address 0x7f000. Unlike the
other I/O devices on the REX board you do not need to enable or disable the user interrupt button. If
IRQ1 is unmasked in $cctrl and interrupts are enabled the button will cause an exception when pressed.

40 CHAPTER 4. EXCEPTIONS

. . .

Get the old exception vector

movsg $4, $evec

And save it

sw $4, old_vector($0)

Get the address of our handler

la $4, handler

And put it in the exception vector register

movgs $evec, $4

. . .

handler:

The exception handler goes here

. . .

old_vector:

.word 0

Figure 4.4: Saving and Initialising the Exception Vector

4.4 Using Exceptions

Writing a program that uses exceptions is best done as a step by step process. If you attempt to write
an entire program that uses exceptions from start to finish in one hit, then there is a good chance you
will never debug any problems that may arise.

The first thing that you will need when writing your first handler is a simple program that will run as the
main loop of your code. You use this to ensure that the exception routine is returning to your original
code correctly. A program which reads the value on the switches and writes this to the seven segment
display is ideal. Obviously you should do this in a polled fashion.

Next you should write a very simple piece of code that will constitute your exception handler. A suggested
program is one which writes a single character to a serial port. As this code will eventually be run from
inside your exception handler it must transmit this character using polled I/O.

Test that both of these pieces of code work in a normal environment with no exceptions. Also ensure
that the code which will act as your exception handler makes use only of $13.

The next step is to actually enable an interrupt and get the handler you just wrote to be run. As
suggested above the best source for your first interrupt is the user interrupt button, IRQ1. The things
that you need to do to get this working are:

• Save the old exception handler address

• Put the address of your new handler into $evec

• Make sure that there are no old interrupts hanging around by storing $0 to the acknowledge register
of the device you will be using. For IRQ1 the acknowledge register is at address 0x7f000.

• Configure the CPU control register to enable interrupts. This takes a number of smaller steps:

– Get the current value of $cctrl

– Disable all interrupts.

– Enable the interrupt you wish to use (IRQ1) and set the global interrupt enable to ‘1’. Be
careful that you do not alter any other locations in this register besides the ones specified.

4.5. EXCEPTION PROCEDURE 41

– Store this value back into $cctrl.

You will need to add some code to the simple exception handler that you just wrote to make it a complete
exception handler. Your exception handler must start with code to detect if the interrupt is one that
you wish to deal with. Some example code for this is given in Figure 4.3. Beware that you will need to
alter this code so that it checks for the correct interrupt. If you are using the user interrupt button you
should make sure the code checks that only IRQ1 is high.

Next you must remember to acknowledge the interrupt. If you do not acknowledge the interrupt then as
soon as your exception routine exits it will be instantly called again. This means you code will be stuck
in an infinite loop, probably printing character after character to the serial port.

The very final instruction of you exception handler must be an rfe. Only use an rfe instruction in code
that you are sure will only be called as part of an exception handler. If you use the rfe instruction when
you are not inside an exception handler you may find your code will get stuck in an infinite loop or crash.

If this code is now working, then you should have a character appearing each time you push the user
interrupt button as well as the value on the switches constantly being displayed on the seven segment
display. If so, try altering your code so that you use one of the other I/O devices to cause exceptions.

4.5 Exception Procedure

What actually happens when an exception occurs? The CPU performs a number of operations when an
exception occurs but they are all pretty simple. The CPU does the following:

• Copy the IE bit into the OIE bit

• Set IE to zero

• Copy the KU bit into the OKU bit

• Set KU to one

• Set the $estat register to reflect the cause of the exception

• Copy $13 into $ers

• Save the program counter into $ear

• Set the program counter to the contents of $evec

At this point the next instruction is fetched. This instruction is the first instruction of the exception
handler and therefore the handler is now running.

Once the exception handler has finished the final instruction it will call will be an rfe. The CPU takes
the following steps to execute an rfe instruction:

• Set the IE bit to OIE

• Set the KU bit to OKU

• Copy $ers into $13

• Set the program counter to the contents of $ear

This means that the next instruction fetched will normally be the next instruction of the original code.
The IE and KU bits will also normally be restored to the value they had when the exception occurred.

42 CHAPTER 4. EXCEPTIONS

4.6 Compliant Exception Routine

The exception proceedure above provides a mechanism whereby an exception routine can run when an
exception occurs and restore control to the main program without affecting its operation. In this way
an exception routine can be general purpose to be used during the operation of any program. Such a
routine should:

• Only use$13 freely

• Save the contents of any other register before using it.

• Restore the saved contents of any other register before finishing

• Ensure that the contents of the OIE bit, the OKU bit, $ers and $ear are not modified

• Finish with an rfe instruction.

In addition any new exception routine that is installed must:

• Save the address of the system exception handler

• Check the exception type

• Pass any exceptions it cannot handle to the system exception handler

An exception routine that meets all these requirements is termed compliant with the WRAMP conven-
tions.

Appendix A

Instruction Set

WRAMP General Purpose Registers

The WRAMP general purpose register file consists of 16 registers, each being 32 bits wide. The hardware imposes

special uses on only two of these. Certain software register use conventions have been applied to some of the

remaining registers, but in essence they remain true general purpose registers, as the hardware does not restrict

their use.

Register Description
$0 Hardwired zero
$1 - $13 General purpose registers
$sp Stack pointer
$ra Return address register

Figure A.1: The WRAMP General Purpose Registers

Register zero (denoted $0) always contains the value zero. Any writes to this register have the value discarded.
This provides a constant source of zero that can be used for comparing and initialising registers.

The fourteenth register is denoted $sp. This register is defined by the conventions to be the stack pointer. While
the hardware imposes no special conditions on this register, failure to follow this convention may affect the ability
of code to interoperate with other software.

The fifteenth register is denoted $ra. It is defined to be the subroutine return address register. When a jump

and link instruction is executed this register is loaded with the address of the next instruction after the jump and

link. A return from subroutine is performed by executing a jump to register $ra, ie. jr $ra.

WRAMP Instruction Set Architecture

This section contains the details of the WRAMP instruction set. All machine instructions are listed, with their
encoding and a brief description of their function. The instructions are grouped into arithmetic instructions,
bitwise instructions, test instructions, branch instructions, memory instructions, and special instructions.

Each CPU instruction is a word (32 bits) in length. An instruction is encoded in one of the three formats shown

in figure A.2.

43

44 APPENDIX A. INSTRUCTION SET

I-Type instruction

4 bits 4 bits 4 bits 4 bits 16 bits
OPcode Rd Rs Func Immediate

R-Type instruction

4 bits 4 bits 4 bits 4 bits 12 bits 4 bits
OPcode Rd Rs Func 0000 0000 0000 Rt

J-Type instruction

4 bits 4 bits 4 bits 20 bits
OPcode Rd Rs Address / Offset

OPCode 4 bit operation code
Rd 4 bit destination register specifier
Rs 4 bit source register specifier
Rt 4 bit source register specifier
Func 4 bit function specifier
Immediate 16 bit immediate field
Address / Offset 20 bit absolute or relative address field

Figure A.2: WRAMP Instruction encoding formats

Arithmetic Instructions

Addition
add Rd, Rs, Rt

0000 Rd Rs 0000 0000 0000 0000 Rt
4 4 4 4 12 4

Put the sum of register Rs and register Rt into register Rd. Generate an overflow exception on signed
overflow.

Addition, immediate
addi Rd, Rs, Immediate

0001 Rd Rs 0000 Immediate

4 4 4 4 16

Put the sum of register Rs and the sign-extended immediate into register Rd. Generate an overflow
exception on signed overflow.

Addition, unsigned
addu Rd, Rs, Rt

0000 Rd Rs 0001 0000 0000 0000 Rt
4 4 4 4 12 4

Put the sum of register Rs and register Rt into register Rd. Generate an overflow exception on unsigned
overflow.

WRAMP INSTRUCTION SET ARCHITECTURE 45

Addition, unsigned, immediate
addui Rd, Rs, Immediate

0001 Rd Rs 0001 Immediate

4 4 4 4 16

Put the sum of register Rs and the zero-extended immediate into register Rd. Generate an overflow
exception on unsigned overflow.

Subtraction
sub Rd, Rs, Rt

0000 Rd Rs 0010 0000 0000 0000 Rt
4 4 4 4 12 4

Put the difference of register Rs and register Rt into register Rd. Generate an overflow exception on
signed overflow.

Subtraction, immediate
subi Rd, Rs, Immediate

0001 Rd Rs 0010 Immediate

4 4 4 4 16

Put the difference of register Rs and the sign-extended immediate into register Rd. Generate an overflow
exception on signed overflow.

Subtraction, unsigned
subu Rd, Rs, Rt

0000 Rd Rs 0011 0000 0000 0000 Rt
4 4 4 4 12 4

Put the difference of register Rs and register Rt into register Rd. Generate an overflow exception on
unsigned overflow.

Subtraction, unsigned, immediate
subui Rd, Rs, Immediate

0001 Rd Rs 0011 Immediate

4 4 4 4 16

Put the difference of register Rs and the zero-extended immediate into register Rd. Generate an overflow
exception on unsigned overflow.

Multiplication
mult Rd, Rs, Rt

0000 Rd Rs 0100 0000 0000 0000 Rt
4 4 4 4 12 4

Put the product of the signed multiplication of register Rs and register Rt into register Rd. Generate an
overflow exception on signed overflow.

46 APPENDIX A. INSTRUCTION SET

Multiplication, immediate
multi Rd, Rs, Immediate

0001 Rd Rs 0100 Immediate

4 4 4 4 16

Put the product of the signed multiplication of register Rs and the sign-extended immediate into register
Rd. Generate an overflow exception on signed overflow.

Multiplication, unsigned
multu Rd, Rs, Rt

0000 Rd Rs 0101 0000 0000 0000 Rt
4 4 4 4 12 4

Put the product of the unsigned multiplication of register Rs and register Rt into register Rd. Generate
an overflow exception on unsigned overflow.

Multiplication, unsigned, immediate
multui Rd, Rs, Immediate

0001 Rd Rs 0101 Immediate

4 4 4 4 16

Put the product of the unsigned multiplication of register Rs and the zero-extended immediate into
register Rd. Generate an overflow exception on unsigned overflow.

Division
div Rd, Rs, Rt

0000 Rd Rs 0110 0000 0000 0000 Rt
4 4 4 4 12 4

Put the result of the signed integer division of register Rs by register Rt into register Rd. Generate a
divide-by-zero exception if the contents of Rt is zero.

Division, immediate
divi Rd, Rs, Immediate

0001 Rd Rs 0110 Immediate

4 4 4 4 16

Put the result of the signed integer division of register Rs by the sign-extended immediate into register
Rd. Generate a divide-by-zero exception if the immediate value is zero.

Division, unsigned
divu Rd, Rs, Rt

0000 Rd Rs 0111 0000 0000 0000 Rt
4 4 4 4 12 4

Put the result of the unsigned division of register Rs by register Rt into register Rd. Generate a divide-
by-zero exception if the contents of Rt is zero.

WRAMP INSTRUCTION SET ARCHITECTURE 47

Division, unsigned, immediate
divui Rd, Rs, Immediate

0001 Rd Rs 0111 Immediate

4 4 4 4 16

Put the result of the unsigned division of register Rs by the zero-extended immediate into register Rd.
Generate a divide-by-zero exception if the immediate value is zero.

Remainder
rem Rd, Rs, Rt

0000 Rd Rs 1000 0000 0000 0000 Rt
4 4 4 4 12 4

Put the remainder of the signed division of register Rs by register Rt into register Rd. Generate a
divide-by-zero exception if the contents of Rt is zero.

Remainder, immediate
remi Rd, Rs, Immediate

0001 Rd Rs 1000 Immediate

4 4 4 4 16

Put the remainder of the signed division of register Rs by the sign-extended immediate into register Rd.
Generate a divide-by-zero exception if the immediate value is zero.

Remainder, unsigned
remu Rd, Rs, Rt

0000 Rd Rs 1001 0000 0000 0000 Rt
4 4 4 4 12 4

Put the remainder of the unsigned division of register Rs by the register Rt into register Rd. Generate a
divide-by-zero exception if the contents of Rt is zero.

Remainder, unsigned, immediate
remui Rd, Rs, Immediate

0001 Rd Rs 1001 Immediate

4 4 4 4 16

Put the remainder of the unsigned division of register Rs by the zero-extended immediate into register
Rd. Generate a divide-by-zero exception if the immediate value is zero.

Load high immediate
lhi Rd, Immediate

0011 Rd 0000 1110 Immediate

4 4 4 4 16

Put the 16 bit immediate into the upper 16 bits of register Rd, and set the lower 16 bits to zero.

48 APPENDIX A. INSTRUCTION SET

Load address
la Rd, Address

1100 Rd 0000 Address

4 4 4 20

Put the zero-extended 20 bit address into register Rd.

Bitwise instructions

And
and Rd, Rs, Rt

0000 Rd Rs 1011 0000 0000 0000 Rt
4 4 4 4 12 4

Put the result of the logical AND of registers Rs and Rt into register Rd.

And, immediate
andi Rd, Rs, Immediate

0001 Rd Rs 1011 Immediate

4 4 4 4 16

Put the result of the logical AND of register Rs and the zero-extended immediate into register Rd.

Or
or Rd, Rs, Rt

0000 Rd Rs 1101 0000 0000 0000 Rt
4 4 4 4 12 4

Put the result of the logical OR of registers Rs and Rt into register Rd.

Or, immediate
ori Rd, Rs, Immediate

0001 Rd Rs 1101 Immediate

4 4 4 4 16

Put the result of the logical OR of register Rs and the zero-extended immediate into register Rd.

Xor
xor Rd, Rs, Rt

0000 Rd Rs 1111 0000 0000 0000 Rt
4 4 4 4 12 4

Put the result of the logical exclusive-OR of registers Rs and Rt into register Rd.

WRAMP INSTRUCTION SET ARCHITECTURE 49

Xor, immediate
xori Rd, Rs, Immediate

0001 Rd Rs 1111 Immediate

4 4 4 4 16

Put the result of the logical exclusive-OR of register Rs and the zero-extended immediate into register
Rd.

Shift left logical
sll Rd, Rs, Rt

0000 Rd Rs 1010 0000 0000 0000 Rt
4 4 4 4 12 4

Shift the value in register Rs left by the unsigned value given by the least significant 5 bits of register Rt,
and put the result in register Rd, inserting zeros into the low order bits.

Shift left logical, immediate
slli Rd, Rs, Immediate

0001 Rd Rs 1010 Immediate

4 4 4 4 16

Shift the value in register Rs left by the unsigned value given by the least significant 5 bits of the
immediate, and put the result in register Rd, inserting zeros into the low order bits.

Shift right logical
srl Rd, Rs, Rt

0000 Rd Rs 1100 0000 0000 0000 Rt
4 4 4 4 12 4

Shift the value in register Rs right by the unsigned value given by the least significant 5 bits of register
Rt, and place the result in register Rd, inserting zeros into the high order bits.

Shift right logical, immediate
srli Rd, Rs, Immediate

0001 Rd Rs 1100 Immediate

4 4 4 4 16

Shift the value in register Rs right by the unsigned value given by the least significant 5 bits of the
immediate, and place the result in register Rd, inserting zeros into the high order bits.

Shift right arithmetic
sra Rd, Rs, Rt

0000 Rd Rs 1110 0000 0000 0000 Rt
4 4 4 4 12 4

Shift the value in register Rs right by the unsigned value given by the least significant 5 bits of register
Rt, and place the result in register Rd, sign-extending the high order bits.

50 APPENDIX A. INSTRUCTION SET

Shift right arithmetic, immediate
srai Rd, Rs, Immediate

0001 Rd Rs 1110 Immediate

4 4 4 4 16

Shift the value in register Rs right by the unsigned value given by the least significant 5 bits of the
immediate, and place the result in register Rd, sign-extending the high order bits.

Test instructions

Set on less than
slt Rd, Rs, Rt

0010 Rd Rs 0000 0000 0000 0000 Rt
4 4 4 4 12 4

Set register Rd to 1 if register Rs is less than register Rt according to a signed comparison, and 0 otherwise.

Set on less than immediate
slti Rd, Rs, Immediate

0011 Rd Rs 0000 Immediate

4 4 4 4 16

Set register Rd to 1 if register Rs is less than the sign-extended immediate according to a signed com-
parison, and 0 otherwise.

Set on less than, unsigned
sltu Rd, Rs, Rt

0010 Rd Rs 0001 0000 0000 0000 Rt
4 4 4 4 12 4

Set register Rd to 1 if register Rs is less than register Rt according to an unsigned comparison, and 0
otherwise.

Set on less than, unsigned, immediate
sltui Rd, Rs, Immediate

0011 Rd Rs 0001 Immediate

4 4 4 4 16

Set register Rd to 1 if register Rs is less than the zero-extended immediate according to an unsigned
comparison, and 0 otherwise.

WRAMP INSTRUCTION SET ARCHITECTURE 51

Set on greater than
sgt Rd, Rs, Rt

0010 Rd Rs 0010 0000 0000 0000 Rt
4 4 4 4 12 4

Set register Rd to 1 if register Rs is greater than register Rt according to a signed comparison, and 0
otherwise.

Set on greater than, immediate
sgti Rd, Rs, Immediate

0011 Rd Rs 0010 Immediate

4 4 4 4 16

Set register Rd to 1 if register Rs is greater than the sign-extended immediate according to a signed
comparison, and 0 otherwise.

Set on greater than, unsigned
sgtu Rd, Rs, Rt

0010 Rd Rs 0011 0000 0000 0000 Rt
4 4 4 4 12 4

Set register Rd to 1 if register Rs is greater than register Rt according to an unsigned comparison, and 0
otherwise.

Set on greater than, unsigned, immediate
sgtui Rd, Rs, Immediate

0011 Rd Rs 0011 Immediate

4 4 4 4 16

Set register Rd to 1 if register Rs is greater than the zero-extended immediate according to an unsigned
comparison, and 0 otherwise.

Set on less than or equal to
sle Rd, Rs, Rt

0010 Rd Rs 0100 0000 0000 0000 Rt
4 4 4 4 12 4

Set register Rd to 1 if register Rs is less than or equal to register Rt according to a signed comparison,
and 0 otherwise.

Set on less than or equal to, immediate
slei Rd, Rs, Immediate

0011 Rd Rs 0100 Immediate

4 4 4 4 16

Set register Rd to 1 if register Rs is less than or equal to the sign-extended immediate according to a
signed comparison, and 0 otherwise.

52 APPENDIX A. INSTRUCTION SET

Set on less than or equal to, unsigned
sleu Rd, Rs, Rt

0010 Rd Rs 0101 0000 0000 0000 Rt
4 4 4 4 12 4

Set register Rd to 1 if register Rs is less than or equal to register Rt according to an unsigned comparison,
and 0 otherwise.

Set on less than or equal to, unsigned, immediate
sleui Rd, Rs, Immediate

0011 Rd Rs 0101 Immediate

4 4 4 4 16

Set register Rd to 1 if register Rs is less than or equal to the zero-extended immediate according to an
unsigned comparison, and 0 otherwise.

Set on greater than or equal to
sge Rd, Rs, Rt

0010 Rd Rs 0110 0000 0000 0000 Rt
4 4 4 4 12 4

Set register Rd to 1 if register Rs is greater than or equal to register Rt according to a signed comparison,
and 0 otherwise.

Set on greater than or equal to immediate
sgei Rd, Rs, Immediate

0011 Rd Rs 0110 Immediate

4 4 4 4 16

Set register Rd to 1 if register Rs is greater than or equal to the sign-extended immediate according to a
signed comparison, and 0 otherwise.

Set on greater than or equal to, unsigned
sgeu Rd, Rs, Rt

0010 Rd Rs 0111 0000 0000 0000 Rt
4 4 4 4 12 4

Set register Rd to 1 if register Rs is greater than or equal to register Rt according to an unsigned
comparison, and 0 otherwise.

Set on greater than or equal to, unsigned, immediate
sgeui Rd, Rs, Immediate

0011 Rd Rs 0111 Immediate

4 4 4 4 16

Set register Rd to 1 if register Rs is greater than or equal to the zero-extended immediate according to
an unsigned comparison, and 0 otherwise.

WRAMP INSTRUCTION SET ARCHITECTURE 53

Set on equal to
seq Rd, Rs, Rt

0010 Rd Rs 1000 0000 0000 0000 Rt
4 4 4 4 12 4

Set register Rd to 1 if register Rs is equal to register Rt according to a signed comparison, and 0 otherwise.

Set on equal to immediate
seqi Rd, Rs, Immediate

0011 Rd Rs 1000 Immediate

4 4 4 4 16

Set register Rd to 1 if register Rs is equal to the sign-extended immediate according to a signed comparison,
and 0 otherwise.

Set on equal to, unsigned
sequ Rd, Rs, Rt

0010 Rd Rs 1001 0000 0000 0000 Rt
4 4 4 4 12 4

Set register Rd to 1 if register Rs is equal to register Rt according to an unsigned comparison, and 0
otherwise.

Set on equal to, unsigned, immediate
sequi Rd, Rs, Immediate

0011 Rd Rs 1001 Immediate

4 4 4 4 16

Set register Rd to 1 if register Rs is equal to the zero-extended immediate according to an unsigned
comparison, and 0 otherwise.

Set on not equal to
sne Rd, Rs, Rt

0010 Rd Rs 1010 0000 0000 0000 Rt
4 4 4 4 12 4

Set register Rd to 1 if register Rs is not equal to register Rt according to a signed comparison, and 0
otherwise.

Set on not equal to immediate
snei Rd, Rs, Immediate

0011 Rd Rs 1010 Immediate

4 4 4 4 16

Set register Rd to 1 if register Rs is not equal to the sign-extended immediate according to a signed
comparison, and 0 otherwise.

54 APPENDIX A. INSTRUCTION SET

Set on not equal to, unsigned
sneu Rd, Rs, Rt

0010 Rd Rs 1011 0000 0000 0000 Rt
4 4 4 4 12 4

Set register Rd to 1 if register Rs is not equal to register Rt according to an unsigned comparison, and 0
otherwise.

Set on not equal to, unsigned, immediate
sneui Rd, Rs, Immediate

0011 Rd Rs 1011 Immediate

4 4 4 4 16

Set register Rd to 1 if register Rs is not equal to the zero-extended immediate according to an unsigned
comparison, and 0 otherwise.

Branch instructions

Jump
j Address

0100 0000 0000 Address

4 4 4 20

Unconditionally jump to the instruction whose address is given by the address field.

Jump to register
jr Rs

0101 0000 Rs 0000 0000 0000 0000 0000

4 4 4 20

Unconditionally jump to the instruction whose address is in the least significant 20 bits of register Rs.

Jump and link
jal Address

0110 0000 0000 Address

4 4 4 20

Unconditionally jump to the instruction whose address is given by the address field. Save the address of
the next instruction in register $ra.

WRAMP INSTRUCTION SET ARCHITECTURE 55

Jump and link register
jalr Rs

0111 0000 Rs 0000 0000 0000 0000 0000

4 4 4 20

Unconditionally jump to the instruction whose address is in the least significant 20 bits of register Rs.
Save the address of the next instruction in register $ra.

Branch on equal to zero
beqz Rs, Offset

1010 0000 Rs Offset

4 4 4 20

Conditionally branch the number of instructions specified by the sign-extended offset if register Rs is
equal to 0.

Branch on not equal to zero
bnez Rs, Offset

1011 0000 Rs Offset

4 4 4 20

Conditionally branch the number of instructions specified by the sign-extended offset if register Rs is not
equal to 0.

Memory instructions

Load word
lw Rd, Offset(Rs)

1000 Rd Rs Offset

4 4 4 20

Add the contents of register Rs and the sign-extended offset to give an effective address. Load the contents
of the memory location specified by this effective address into register Rd.

Store word
sw Rd, Offset(Rs)

1001 Rd Rs Offset

4 4 4 20

Add the contents of register Rs and the sign-extended offset to give an effective address. Store the
contents of register Rd into the memory location specified by this effective address.

56 APPENDIX A. INSTRUCTION SET

Special instructions

Move general register to special register
movgs Rd, Rs

0011 Rd Rs 1100 0000 0000 0000 0000

4 4 4 4 16

Copy the contents of general purpose register Rs into special purpose register Rd.

Move special register to general register
movsg Rd, Rs

0011 Rd Rs 1101 0000 0000 0000 0000

4 4 4 4 16

Copy the contents of special purpose register Rs into general purpose register Rd.

Break
break

0010 0000 0000 1100 0000 0000 0000 0000

4 4 4 4 16

Generate a breakpoint exception, transferring control to the exception handler.

System call
syscall

0010 0000 0000 1101 0000 0000 0000 0000

4 4 4 4 16

Generate a system call exception, transferring control to the exception handler.

Return from exception
rfe

0010 0000 0000 1110 0000 0000 0000 0000

4 4 4 4 16

Restore the saved interrupt enable and kernel/user mode bits and jump to the instruction at the address
specified in the special register $ear.

Appendix B

Small Instruction Set

WRAMP Instruction Set Summary

Assembler Machine code Function Description
add Rd, Rs, Rt 0000 dddd ssss 0000 0000 0000 0000 tttt Rd← Rs + Rt Add

addi Rd, Rs, immed 0001 dddd ssss 0000 iiii iiii iiii iiii Rd← Rs +
∫

(immed) Add Immediate

addu Rd, Rs, Rt 0000 dddd ssss 0001 0000 0000 0000 tttt Rd← Rs + Rt Add Unsigned

addui Rd, Rs, immed 0001 dddd ssss 0001 iiii iiii iiii iiii Rd← Rs + immed Add Unsigned Immediate

sub Rd, Rs, Rt 0000 dddd ssss 0010 0000 0000 0000 tttt Rd← Rs− Rt Subtract

subi Rd, Rs, immed 0001 dddd ssss 0010 iiii iiii iiii iiii Rd← Rs−
∫

(immed) Subtract Immediate

subu Rd, Rs, Rt 0000 dddd ssss 0011 0000 0000 0000 tttt Rd← Rs− Rt Subtract Unsigned

subui Rd, Rs, immed 0001 dddd ssss 0011 iiii iiii iiii iiii Rd← Rs− immed Subtract Unsigned Immediate

mult Rd, Rs, Rt 0000 dddd ssss 0100 0000 0000 0000 tttt Rd← Rs× Rt Multiply

multi Rd, Rs, immed 0001 dddd ssss 0100 iiii iiii iiii iiii Rd← Rs×
∫

(immed) Multiply Immediate

multu Rd, Rs, Rt 0000 dddd ssss 0101 0000 0000 0000 tttt Rd← Rs× Rt Multiply Unsigned

multui Rd, Rs, immed 0001 dddd ssss 0101 iiii iiii iiii iiii Rd← Rs× immed Multiply Unsigned Immediate

div Rd, Rs, Rt 0000 dddd ssss 0110 0000 0000 0000 tttt Rd← Rs÷ Rt Divide

divi Rd, Rs, immed 0001 dddd ssss 0110 iiii iiii iiii iiii Rd← Rs÷
∫

(immed) Divide Immediate

divu Rd, Rs, Rt 0000 dddd ssss 0111 0000 0000 0000 tttt Rd← Rs÷ Rt Divide Unsigned

divui Rd, Rs, immed 0001 dddd ssss 0111 iiii iiii iiii iiii Rd← Rs÷ immed Divide Unsigned Immediate

rem Rd, Rs, Rt 0000 dddd ssss 1000 0000 0000 0000 tttt Rd← Rs % Rt Remainder

remi Rd, Rs, immed 0001 dddd ssss 1000 iiii iiii iiii iiii Rd← Rs %
∫

(immed) Remainder Immediate

remu Rd, Rs, Rt 0000 dddd ssss 1001 0000 0000 0000 tttt Rd← Rs % Rt Remainder Unsigned

remui Rd, Rs, immed 0001 dddd ssss 1001 iiii iiii iiii iiii Rd← Rs % immed Remainder Unsigned Immediate

lhi Rd, immed 0011 dddd ssss 1110 iiii iiii iiii iiii Rd← immed� 16 Load High Immediate

la Rd, address 1100 dddd 0000 aaaa aaaa aaaa aaaa aaaa Rd← address Load Address

Table B.1: Arithmetic Instructions

57

58 APPENDIX B. SMALL INSTRUCTION SET

and Rd, Rs, Rt 0000 dddd ssss 1011 0000 0000 0000 tttt Rd← Rs AND Rt Bitwise AND

andi Rd, Rs, immed 0001 dddd ssss 1011 iiii iiii iiii iiii Rd← Rs AND immed Bitwise AND Immediate

or Rd, Rs, Rt 0000 dddd ssss 1101 0000 0000 0000 tttt Rd← Rs OR Rt Bitwise OR

ori Rd, Rs, immed 0001 dddd ssss 1101 iiii iiii iiii iiii Rd← Rs OR immed Bitwise OR Immediate

xor Rd, Rs, Rt 0000 dddd ssss 1111 0000 0000 0000 tttt Rd← Rs XOR Rt Bitwise XOR

xori Rd, Rs, immed 0001 dddd ssss 1111 iiii iiii iiii iiii Rd← Rs XOR immed Bitwise XOR Immediate

sll Rd, Rs, Rt 0000 dddd ssss 1010 0000 0000 0000 tttt Rd← Rs � Rt Shift Left Logical

slli Rd, Rs, immed 0001 dddd ssss 1010 iiii iiii iiii iiii Rd← Rs � immed Shift Left Logical Immediate

srl Rd, Rs, Rt 0000 dddd ssss 1100 0000 0000 0000 tttt Rd← Rs � Rt Shift Right Logical

srli Rd, Rs, immed 0001 dddd ssss 1100 iiii iiii iiii iiii Rd← Rs � immed Shift Right Logical Immediate

sra Rd, Rs, Rt 0000 dddd ssss 1110 0000 0000 0000 tttt Rd←
∫

(Rs � Rt) Shift Right Arithmetic

srai Rd, Rs, immed 0001 dddd ssss 1110 iiii iiii iiii iiii Rd←
∫

(Rs � immed) Shift Right Arithmetic Immediate

Table B.2: Bitwise Instructions

slt Rd, Rs, Rt 0010 dddd ssss 0000 0000 0000 0000 tttt Rd← Rs < Rt Set on Less than

slti Rd, Rs, immed 0011 dddd ssss 0000 iiii iiii iiii iiii Rd← Rs <
∫

(immed) Set on Less than Immediate

sltu Rd, Rs, Rt 0010 dddd ssss 0001 0000 0000 0000 tttt Rd← Rs < Rt Set on Less than Unsigned

sltui Rd, Rs, immed 0011 dddd ssss 0001 iiii iiii iiii iiii Rd← Rs < immed Set on Less than Unsigned Immediate

sgt Rd, Rs, Rt 0010 dddd ssss 0010 0000 0000 0000 tttt Rd← Rs > Rt Set on Greater than

sgti Rd, Rs, immed 0011 dddd ssss 0010 iiii iiii iiii iiii Rd← Rs >
∫

(immed) Set on Greater than Immediate

sgtu Rd, Rs, Rt 0010 dddd ssss 0011 0000 0000 0000 tttt Rd← Rs > Rt Set on Greater than Unsigned

sgtui Rd, Rs, immed 0011 dddd ssss 0011 iiii iiii iiii iiii Rd← Rs > immed Set on Greater than Unsigned Immediate

sle Rd, Rs, Rt 0010 dddd ssss 0100 0000 0000 0000 tttt Rd← Rs ≤ Rt Set on Less than or Equal

slei Rd, Rs, immed 0011 dddd ssss 0100 iiii iiii iiii iiii Rd← Rs ≤
∫

(immed) Set on Less or Equal Immediate

sleu Rd, Rs, Rt 0010 dddd ssss 0101 0000 0000 0000 tttt Rd← Rs ≤ Rt Set on Less or Equal Unsigned

sleui Rd, Rs, immed 0011 dddd ssss 0101 iiii iiii iiii iiii Rd← Rs ≤ immed Set on Less or Equal Unsigned Imm

sge Rd, Rs, Rt 0010 dddd ssss 0110 0000 0000 0000 tttt Rd← Rs ≥ Rt Set on Greater than or Equal

sgei Rd, Rs, immed 0011 dddd ssss 0110 iiii iiii iiii iiii Rd← Rs ≥
∫

(immed) Set on Greater or Equal Immediate

sgeu Rd, Rs, Rt 0010 dddd ssss 0111 0000 0000 0000 tttt Rd← Rs ≥ Rt Set on Greater or Equal Unsigned

sgeui Rd, Rs, immed 0011 dddd ssss 0111 iiii iiii iiii iiii Rd← Rs ≥ immed Set on Greater or Equal Unsigned Imm

seq Rd, Rs, Rt 0010 dddd ssss 1000 0000 0000 0000 tttt Rd← Rs = Rt Set on Equal

seqi Rd, Rs, immed 0011 dddd ssss 1000 iiii iiii iiii iiii Rd← Rs =
∫

(immed) Set on Equal Immediate

sequ Rd, Rs, Rt 0010 dddd ssss 1001 0000 0000 0000 tttt Rd← Rs = Rt Set on Equal Unsigned

sequi Rd, Rs, immed 0011 dddd ssss 1001 iiii iiii iiii iiii Rd← Rs = immed Set on Equal Unsigned Immediate

sne Rd, Rs, Rt 0010 dddd ssss 1010 0000 0000 0000 tttt Rd← Rs 6= Rt Set on Not Equal

snei Rd, Rs, immed 0011 dddd ssss 1010 iiii iiii iiii iiii Rd← Rs 6=
∫

(immed) Set on Not Equal Immediate

sneu Rd, Rs, Rt 0010 dddd ssss 1011 0000 0000 0000 tttt Rd← Rs 6= Rt Set on Not Equal Unsigned

sneui Rd, Rs, immed 0011 dddd ssss 1011 iiii iiii iiii iiii Rd← Rs 6= immed Set on Not Equal Unsigned Immediate

Table B.3: Test Instructions

WRAMP INSTRUCTION SET SUMMARY 59

Branch Instructions

j address 0100 0000 0000 aaaa aaaa aaaa aaaa aaaa PC ← Address Jump

jr Rs 0101 0000 ssss 0000 0000 0000 0000 0000 PC ← Rs Jump to Register

jal address 0110 0000 0000 aaaa aaaa aaaa aaaa aaaa $ra← PC, PC ← Address Jump and Link

jalr Rs 0111 0000 ssss 0000 0000 0000 0000 0000 $ra← PC, PC ← Rs Jump and Link Register

beqz Rs, offset 1010 0000 ssss oooo oooo oooo oooo oooo if(Rs = 0) PC ← PC + offset Branch on equal to 0

bnez Rs, offset 1011 0000 ssss oooo oooo oooo oooo oooo if(Rs 6= 0) PC ← PC + offset Branch on not equal to 0

Memory Instructions

lw Rd, offset(Rs) 1000 dddd ssss oooo oooo oooo oooo oooo Rd ← MEM [Rs + offset] Load word

sw Rd, offset(Rs) 1001 dddd ssss oooo oooo oooo oooo oooo MEM [Rs + offset] ← Rd Store word

Special Instructions

movgs Rd, Rs 0011 0000 0000 1100 0000 0000 0000 0000 Rd← Rs Move General to Special Register

movsg Rd, Rs 0011 0000 0000 1101 0000 0000 0000 0000 Rd← Rs Move Special to General Register

break 0010 0000 0000 1100 0000 0000 0000 0000 Generate Break Point Exception

syscall 0010 0000 0000 1101 0000 0000 0000 0000 Generate Syscall Exception

rfe 0010 0000 0000 1110 0000 0000 0000 0000 PC ← $ear Return from Exception

Table B.4: Other Instructions

60 APPENDIX B. SMALL INSTRUCTION SET

Appendix C

WRAMPmon Commands

load Load an S-Record into RAM
go [address] Begin executing a program
dis [start_address [end_address]] Disassemble instructions from memory
vm [start_address [end_address]] View memory contents
sm <address> <value> Set the value of a memory location
vr [reg] View register contents
sr <reg> <value> Set register contents
sb <address> Set a breakpoint
vb View current breakpoints
rb <address> Remove a breakpoint
cont Continue executing a program
s Step
so Step over
about Display information about this system
help or ? Show this help screen

61

