
 V–1

SQL Connector Overview

SQL onnector
Overview

Printing Date: October 1, 1999

 V–2

SQL Connector Overview

© Copyright 1999 Novell, Inc. and B2Systems, Inc. All rights reserved. Printed in the USA.

The software described in this document is furnished under a license, and may be used or
copied only in accordance with the terms of that license. No part of this document may be
reproduced in any form or by any means without the written permission of Novell, Inc. and
B2Systems, Inc.

The information in this document is subject to change without notice, and should not be
construed as a commitment by Novell, Inc. or B2Systems, Inc. Every effort has been made to
ensure that the information contained herein is accurate and complete. However, Novell, Inc.
and B2Systems, Inc. assume no responsibility for any errors that may appear in this
document.

SQL Connector is a trademark of Novell, Inc. and B2Systems, Inc.

NetWare is a registered trademark of Novell, Inc. Microsoft Windows NT is a registered
trademark of Microsoft Corporation, and Microsoft SQL Server is a trademark of Microsoft
Corporation.

Other product names are trademarks or registered trademarks of their respective holders, and
are mentioned for reference only.

 V–3

SQL Connector Overview

About This Manual
Purpose of this Manual

This manual presents an overview of SQL Connector on client (first tier), data broker
(second tier) and data driver (third tier) operating systems. Examples are provided to
illustrate how SQL Connector can be used in a variety of environments.

Intended Audience

This document is intended for end users, programmers and system administrators who
will be using SQL Connector. A working knowledge of Java, ODBC, JDBC, database
systems, Windows and Netware operating systems and networking is suggested for
using SQL Connector.

Structure of this Manual

This manual consists of chapters that provide an overview of SQL Connector, a
description of its architecture and a discussion of Windows environments for using SQL
Connector.

Associated Documents

The document set contains these manuals:
• SQL Connector Overview
• SQL Connector Installation Guide
• SQL Connector Administration Guide
• SQL Connector SQL Grammar Manual
• SQL Connector ODBC Programmer’s Guide
• SQL Connector JDBC Programmer’s Guide

Operating System Conventions

When there are differences in commands, examples, or syntax between operating
systems, the following abbreviations are used:

Abbreviation Meaning
NetWare the Novell NetWare operating system
Windows the Microsoft Windows 95/98/NT operating systems

 V–4

SQL Connector Overview

Table of Contents

About This Manual . V–3

Table of Contents . V–4

 1 Introduction. V–5
1.1 Overview .V–5
1.2 Components .V–5
1.3 Architecture .V–6

1.3.1 Three Tier Application (Intranet or Internet) V–7
1.3.2 Two Tier Application (Two Data Sources).V–7
1.3.3 Architecture Diagram .V–8

 2 Architecture . V–9
2.1 Client Components .V–9

2.1.1 ODBC Driver .V–9
2.1.2 JDBC Driver .V–9

2.2 Data Broker Components .V–9
2.2.1 Data Sources .V–9
2.2.2 Data Source Administrator. V–10
2.2.3 Data Request Broker. V–10

2.3 Data Driver Components . V–12
2.3.1 Direct Connection to a Database Vendor Library. . . V–12
2.3.2 Network Connection to a Database Vendor Library . V–12

 3 Usage . V–13
3.1 Overview . V–13
3.2 Database Administration . V–13

3.2.1 Installation . V–13
3.2.2 Configuration . V–13
3.2.3 Testing . V–13

3.3 Application Development . V–14
3.3.1 Programming . V–14
3.3.2 Testing . V–14

3.4 Summary . V–14

 Introduction V–5

SQL Connector Overview

1

Introduction

1.1 Overview
SQL Connector is a Data Request Broker that supports a multiple-tier, multiple-
database enterprise environment for connecting ODBC and JDBC applications
between client computer systems and databases on Netware or Windows NT. The
Data Request Broker runs on the middle-tier (between the client systems and database
servers) and supports a methodology known as Enterprise Data Access (EDA). EDA
has the following features:
• All databases can be accessed using one middleware connection from the client system,

as opposed to one connection per database.
• All data can be accessed using a standard SQL grammar and set of datatypes, as

opposed to vendor-specific SQL and datatypes.

Applications that connect to SQL Connector are database independent. These
applications connect to the Data Broker which connects to the physical database.
Applications are thus isolated from database specific variations, such as alternate
forms of SQL grammar and alternate datatypes. ANSI-92 standard SQL statements
can be used (such as SELECT..., UPDATE..., etc.), without regard for the database
source. ANSI standard datatypes (such as CHAR, INTEGER, TIMESTAMP) can be used,
without regard for database specific datatypes.

From the client viewpoint, SQL Connector presents enterprise physical databases as
uniform standard ANSI-92 SQL Data Sources. Only one connection is required from
the client system to SQL Connector, which then connects to the physical databases.

Please see the Installation Guide for additional information about supported
databases and platforms.

1.2 Components
SQL Connector includes Client, Data Broker and Data Driver components. These
components can reside on the same or different computer systems within a network.
The Client components support the connection of SQL Connector to end-user or web-
based applications, or application development tools, that use OBDC or JDBC. The
Data Broker components support client connectivity over a network, and query
parsing, optimization and distribution. There is also a Data Broker component for
definining and managing Data Sources. The Data Driver components support
connectivity to physical databases. The components can be summarized in the
following table:

Component Name Component Functionality

Client Components

 Introduction V–6

SQL Connector Overview

1.3 Architecture
The SQL Connector architecture includes the Client, Data Broker and Data Driver
components listed in the above table. The architecture is designed for maximum
flexibility in meeting the needs of enterprise wide application development and
deployment. The components have been modularized so that they can be installed on
multiple tiers within an enterprise network. The following examples illustrate several
possible configurations. The examples show how SQL queries from a client can be
distributed by the Data Broker to multiple databases.

SQL C–ODBC Microsoft® ODBC API

SQL C–JDBC JavaSoft™ Java™ SQL classes

Data Broker Components

SQL C–DSA Data Source Administrator

SQL C–DRB Data Request Broker

Data Driver Components (local or remote to the Data Broker)

SQL C–ORA-DD Oracle® Database Connection

SQL C–ODBC-DD Microsoft ODBC™ Database Connection

Component Name Component Functionality

 Introduction V–7

SQL Connector Overview

1.3.1 Three Tier Application (Intranet or Internet)

1.3.2 Two Tier Application (Two Data Sources)

A three tier application
example is a Java applet
running on a Windows
browser (client) that uses
SQL C–JDBC to access a
NetWare Data Broker. The
Data Broker accesses an
Oracle database running on
the same system (with a
local data driver) and uses
the network to access an
MS–SQL Server database
on a Windows NT system
(using Remote Data Driver
on NT).

A two tier application
example is a Visual Basic
application running on a
Windows system that uses
SQL C–ODBC to access a
Netware Data Broker. The
Netware Data Broker can be
used to retrieve from both
Access and MS–SQL Server
(using Remote Data Drivers
on NT).

 Introduction V–8

SQL Connector Overview

1.3.3 Architecture Diagram
The complete SQL Connector component architecture is shown below:

The Client components (ODBC and JDBC drivers) can be used on both Windows
(client) and Netware (broker) systems. Uses on Windows systems would include
connecting to third party application development tools such as Microsoft Visual Basic
(OBDC) and Symantec Visual Cafe (JDBC). Uses on Netware systems would include
connecting to the Netscape Enterprise Server (ODBC) or IBM WebSphere Application
Server (JDBC).

Also, the Data Drivers can be used on the same node as the Data Broker (local) or on a
different node (remote), depending on the location of the physical database.

 Architecture V–9

SQL Connector Overview

2

Architecture

2.1 Client Components

2.1.1 ODBC Driver
ODBC (Open Database Connectivity) is an API (Application Programming Interface)
developed by Microsoft. ODBC is Microsoft’s implementation of the X/Open SQL CLI
(Call Level Interface) that defines how client/server interactions are implemented for
database applications. ODBC also supports the SQL grammar and syntax specified in
the ANSI SQL-92 standard.

ODBC was developed to provide vendor neutral access to data sources from a client
application. With ODBC, a client application is not restricted to any one vendor’s
proprietary interface, and the client application can connect to any ODBC-compliant
data source.

SQL C–ODBC is a Microsoft compliant implementation of the ODBC API (version 2.5).
As such, any client application or application development environment can connect to
SQL C–ODBC. SQL C–ODBC provides an enhanced ODBC SQL Grammar that can
access database tables from multiple networked databases.

2.1.2 JDBC Driver
JDBC (Java Database Connectivity) is a vendor neutral API developed by JavaSoft.
The interface is very similar in concept to the Microsoft ODBC API and provides Java
programmers with a uniform database interface to a wide range of relational
databases. JDBC is a standard part of Java and is included in JDK (Java
Development Kit) 1.1. Like ODBC, a Java JDBC application is not restricted to any
one vendor’s proprietary interface, and the Java application can connect to any JDBC-
compliant data source.

SQL C–JDBC is a 100% Java JDBC compliant implementation of the JDBC API (type
IV, version 1.1). Any Java application, applet, or application development
environment can connect to SQL C–JDBC. SQL C–JDBC provides a database
independent SQL grammar that can access database tables from multiple databases.

2.2 Data Broker Components

2.2.1 Data Sources
SQL Connector supports access to multiple physical databases by using Data Sources,
which are defined on the same node as the SQL Connector Data Broker. The Data
Sources have table entries that point to physical database tables or views on the same
node or other nodes elsewhere in the network. Database views are very useful when

 Architecture V–10

SQL Connector Overview

the application only needs a subset of fields in a table, or the application requires
frequent joins of multiple database tables.

A client application built using SQL Connector is only aware of the database tables
defined by a Data Source and not the physical source of the data. The physical
database source can be changed, for example, from MS Access to Oracle, or from Oracle
to MS–SQL, with no change required in the application.

SQL Connector Data Sources support client applications which are database
independent. Even though ODBC and JDBC provide vendor neutral programming
interfaces, these interfaces themselves are not database independent. For example,
some database vendors do not support ANSI SQL datatypes for decimal numbers.
Consequently, applications built with vendor supplied interfaces must be aware of
which datatypes are supported. In contrast, SQL Connector is database independent.
If an ANSI SQL datatype is not supported by the physical database, the datatype is
emulated by the Data Source and mapped to an appropriate physical database type.

2.2.2 Data Source Administrator
The SQL Connector Data Source Administrator (SQL C–DSA) is a web browser
application for creating and maintaining SQL Connector Data Sources and for
importing physical database table information. The SQL Connector Data Source
Administrator primary web page is shown below:

2.2.3 Data Request Broker
SQL Connector contains a Data Request Broker (DRB) which includes a sophisticated
SQL processor, optimizer and distributor. The SQL processor converts ANSI standard

 Architecture V–11

SQL Connector Overview

SQL into database vendor specific SQL, regardless of the database. The SQL processor
supports full read/write capability for all database connections.

Structured Query Language (SQL) is a well-defined ANSI (American National
Standards Institute) standard language for database access. Database vendors strive
to support the grammar and syntax of the SQL language, but inevitably change the
implementation to support database specific features. The SQL processor is based on
the ANSI SQL-92 standard and is database independent. Database independent SQL
eliminates the need to learn each vendor’s dialect of SQL, not all of which are SQL-92
compatible. The SQL processor also provides enhanced datatype support that may be
missing from a vendor-specific database. See the SQL Grammar Manual for
additional information.

SQL processing begins by decomposing an SQL statement (which may have embedded
subqueries) into its constituent parts:
• data query statements (read data)

• select

• data manipulation statements (write data)
• update
• insert
• delete

Data queries are processed first, since the results may be needed for a data
manipulation statement. For example, a statement like:

update emp set bday = (select bday from personnel where empno = 1234)

would require the select statement to be processed first, since the result is needed for
the update statement.

Data Query Processing

SQL C–DRB can decompose, rewrite and distribute data queries as close to the data
source as possible. SQL C–DRB also performs query pushdown and query
optimization.

Query Decomposition and Rewrite

An incoming query from a client application that is using ANSI-standard SQL
(independent of the database) must be rewritten using vendor-specific SQL before
being sent from the broker to the database. The rewrite process also analyzes the
syntax for built-in SQL functions (such as SUM, AVG, MIN, and MAX) that may or may not
be supported by the database vendor’s SQL. If the function is not supported by the
vendor, than a vendor-supported function is substituted if one is available. If there is
no vendor-equivalent function, then a rewritten query (without the function) is sent to
the database, and the function will be performed by the broker when the rows are
returned.

As example of using vendor specific functions, consider the conversion of a date string,
such as a statement like WHERE EMP_DATE > "07/08/99". If the database is Oracle,
then the broker will use the Oracle TO_DATE function when the query is rewritten. If
the database is ODBC, then the broker will use the ODBC CONVERT function.

Query Pushdown

Decomposition of a query also leads to decisions regarding how much of the query can
be pushed down into the physical database. Examples of pushdown operations are
aggregates, join clauses, where clauses and order by clauses. SQL C–DRB will
determine how much of the query can be sent directly to the database and how much

 Architecture V–12

SQL Connector Overview

must be processed by SQL C–DRB. SQL C–DRB attempts to push as much processing
down to the underlying database as possible to maximize the overall performance.

Pushdown processing reduces network traffic by reducing data flow across the
network. For example, the SUM function is pushed down into the database if the
function is supported. Only the result is returned across the network. If the
summation was not pushed down, then all of the field values would be returned across
the interface, which would result in increased network traffic.

Query Optimization

SQL C–DRB has the capability to rewrite a database query based on keys and indexes
in the physical database. SQL C–DRB bases its decisions on the cardinality and
selectivity of the tables involved in the query. This information determines the order
and sequence of interactions with the tables in the query. The primary goal of the
query optimization is to reduce the bandwidth requirements between SQL Connector
and the underlying physical databases.

2.3 Data Driver Components
The SQL Connector Data Broker connects to physical databases (local Oracle or Remote
ODBC) using the SQL Connector Data Driver components. There is a Data Driver
component for each supported database. The Database Drivers generally connect to
the physical databases in the following ways:
• SQL Connector direct connection to a vendor supplied connectivity library
• SQL Connector network connection to a vendor supplied connectivity library

2.3.1 Direct Connection to a Database Vendor Library
The most direct form of connection is to use the database vendor supplied connectivity
library running on the same Netware system as the SQL Connector Data Broker and
Data Driver components. The vendor library will then connect to the vendor database,
which is executing on a database server that is the same Netware system or another
computer system.

The following table shows the SQL Connector Data Drivers and the respective vendor
libraries:

A vendor library connects to the physical database if it runs on the same computer
system as the SQL C–DRB.

2.3.2 Network Connection to a Database Vendor Library
The Data Broker can connect across the network to a SQL Connector ODBC Data
Driver running on a remote Windows NT system. The remote ODBC Data Driver then
connects to the vendor supplied connectivity library running on the same remote
system (Microsoft Access, Microsoft SQL Server, or Oracle).

Database Component Component Name Vendor Library

SQL C–ORA-DD Data Driver for Oracle OCI

 Usage V–13

SQL Connector Overview

3

Usage

3.1 Overview
The steps required to use SQL Connector will vary from site to site and within systems
at a given site. These steps include the following:
• DBA (Database Administrator) activities

• Installation
• Configuration
• Testing

• Application Development Activities
• Programming
• Testing

3.2 Database Administration

3.2.1 Installation
SQL Connector installation should be planned around which computer systems are
client systems, which systems are application or web servers and which systems are
database servers. Use of SQL Connector may require third party software such as
ODBC driver managers, Java development kits, database vendor connectivity
software and database server software.

3.2.2 Configuration
SQL Connector is configured using the client component SQL C–DSA. The Data Source
Administrator runs on a web browser and accesses Data Sources on a Data Broker
system. The Data Sources then access data from physical databases.

SQL C–DSA is used to create the Data Sources and to import metadata information
from physical databases on database servers.

SQL statements executed by the Netscape Server "dbadmin" facility may be used to
query the Data Source tables (and hence the physical database tables) using ANSI
standard SQL statements. Thus the Data Source can be tested before a client
application is available.

3.2.3 Testing
There are sample ODBC and JDBC programs and a database that are supplied for
testing purposes. These programs can test a database connection and retrieve joined
data (between departments and employees). The Data Source and sample programs
are supplied with source code (SQL, C and Java) to provide a starting point for
programmers who will be developing SQL Connector applications.

 Usage V–14

SQL Connector Overview

3.3 Application Development

3.3.1 Programming
Once a Data Source and data access has been tested, application development can
begin. Application development typically uses one of the following environments:
• Application development tools that support ODBC, for example:

• Microsoft Access
• Microsoft Visual Basic
• Powersoft PowerBuilder
• Borland Delphi
• Netware Data Objects

• Application development tools that support JDBC, for example:
• Borland JBuilder
• Powersoft PowerJ
• Symantec Visual Cafe
• Netscape JavaScript
• IBM WebSphere

• Programming languages that call the ODBC API or Java SQL classes.
• Microsoft Visual C++
• Watcom C++
• Microsoft Visual J++

Regardless of the choice of application development environments, the use of SQL
Connector is transparent because of the ODBC and JDBC standards.

3.3.2 Testing
The application tools and programming languages have test capabilities that can be
utilitized during the development process. SQL statements can be sent to the Data
Request Broker and analyzed in isolation from an application. These SQL statements
can be tested for syntax, performance and efficiency. Database timing and database
traces can be used to look for performance bottlenecks such as joins using non-unique
indexes, sequential searches through large tables, and failure to push down SQL
statements from the application to the physical database.

3.4 Summary
SQL Connector is a data access Data Request Broker environment that provides a
multiple-tier, multiple-database enterprise environment for connecting ODBC and
JDBC compliant applications to multiple database sources.
• SQL Connector includes client components for connecting to ODBC and JDBC

environments and for maintenance and testing of SQL Connector Data Sources.
• SQL Connector includes Data Broker components for query parsing, optimizing and

distribution, even among multiple databases.
• SQL Connector includes Data Driver components for connecting to vendor

databases in the absence of a vendor connectivity library and provides additional
connectivity not supplied by database vendors.

