
ODI Specification:

Hardware Specific Modules (HSMs)

(32-bit Assembly Language)
S P E C V E R S I O N 3 . 3 1 , D O C V E R S I O N 1 . 1 2

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

d i s c l a i m e r Novell, Inc. makes no representations or warranties with respect to the contents
or use of this manual, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. reserves the right to revise this publication and to make changes to
its content, at any time, without obligation to notify any person or entity of such
revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any
NetWare software, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. reserves the right to make changes to any and all parts of NetWare
software, at any time, without any obligation to notify any person or entity of
such changes.

t r a d e m a r k s Novell and NetWare are registered trademarks of Novell, Inc. in the United
States and other countries.
The Novell Network Symbol is a trademark of Novell, Inc.
Macintosh is a registered trademark of Apple Computer, Inc.

DynaText is a registered trademark of Electronic Book Technologies, Inc.

Microsoft is a registered trademark of Microsoft Corporation.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly
Language)
March 26, 1998

Copyright  1993-1998 Novell, Inc. All rights reserved. No part of this
publication may be reproduced, photocopied, stored on a retrieval
system, or transmitted without the express written consent of the
publisher.

U.S. Patent Nos. 5,157,663; 5,349,642; and 5,455,932. U.S. and
International Patent Pending.

Novell, Inc.
122 East 1700 South
Provo, UT 84606
U.S.A.

ODI Spe
Contents
S
p

e
c

 v
3

.3
1

 - D
o

c
 v

1
.1

2

Preface

1 Introduction

Open Data-Link Interface . 1-1
Link Support Layer . 1-2
Multiple Link Interface Drivers . 1-2

NetWare Loadable Modules . 1-3
Driver Modules . 1-4

Novell Provided Support Modules . 1-4
Media Support Module. . 1-4
Topology Specific Module . 1-4

Developer Provided Module . 1-6
Hardware Specific Module. . 1-6

Loading Driver Modules . 1-7
Development Process . 1-9

ODI Supplements . 1-9
Driver Related Files . 1-9

Source Files . 1-9
Include Files . 1-9
Linker Definition File . 1-10
Driver Configuration File . 1-10
Installation Information File . 1-10

2 HSM Overview

HSM Components. . 2-1
HSM Procedures . 2-1

Initialization and Removal . 2-3
Packet Reception and Transmission 2-3
Multi-Operating System Provisions 2-4
I/O Control Procedures . 2-4
Timeout Detection . 2-5

HSM Data Structures and Variables . 2-5
HSM Design Considerations . 2-6
i

cification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Hardware Issues . 2-6
Network Interface Controllers. . 2-6
Data Transfer Mode . 2-6
Bus Type . 2-7

Coding Issues . 2-8
Multi-Tasking, Non-Preemptive OS. 2-8
32-Bit Protected Mode . 2-8
Interrupt Service Routine . 2-8
OS Calls to the Driver . 2-9
Execution Times . 2-9

 Code and Data Space . 2-11
Frame Data Space . 2-12
Adapter Data Space . 2-12
Adapter Code Space . 2-12
Reentrancy . 2-12

Recommended Support . 2-13
Multicast Addressing . 2-13
Promiscuous Mode . 2-13

Optional Support . 2-14
Hub Management. . 2-14
Source Routing . 2-14
Brouter . 2-14

3 HSM Data Structures and Variables

Introduction. . 3-1
Global Data Access . 3-1

Specification Version . 3-3
Driver Parameter Block . 3-4

Driver Parameter Block . 3-5
Driver Configuration Table . 3-13
Driver Frame Data Space . 3-13

Example Template for the Driver Configuration Table (based on the NE2000)
3-15

MLIDModeFlags Bit Map . 3-26
MLIDFlags Bit Map . 3-28
MLIDSharingFlags Bit Map . 3-30

Driver Adapter Data Space . 3-33
Driver Statistics Table . 3-34

CounterMask Bit Maps . 3-40
Media Specific Counters . 3-41

Token-Ring . 3-41
Ethernet. . 3-44
FDDI . 3-45
ii ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

FDDI TSM and Bit Swapping Changes 3-47
RX-Net . 3-48

Driver Firmware . 3-49
Driver Keywords . 3-51
Driver Keyword Enhancements . 3-53

4 MSM/TSM Data Structures and Variables

Introduction . 4-1
MSM Global Variables . 4-1

MSMBitSwapTable . 4-1
MSM Equates . 4-2

MSMVirtualBoardLink . 4-2
MSMStatusFlags . 4-3
MSMTxFreeCount . 4-4
MSMPriorityTxFreeCount . 4-6
MSMMaxFrameHeaderSize . 4-6
MSMPhysNodeAddress . 4-8

Data Structures . 4-9
Receive Control Blocks . 4-11

Fragmented RCB . 4-12
Non-Fragmented RCB . 4-14

Transmit Control Blocks . 4-16
TCB for Ethernet, Token-Ring, and FDDI 4-17
TCB for RX-Net . 4-19
Fragment Structure . 4-22

Event Control Blocks . 4-24
Receive ECBs vs RCBs . 4-26
Transmit ECBs vs TCBs . 4-27

5 HSM Procedures

Introduction . 5-1
Initialization . 5-3

DriverInit . 5-3
Register with the MSM / TSM . 5-3
Determine Hardware Options . 5-4
Register Hardware Options . 5-7
Initialize the Adapter . 5-7
Register with the LSL . 5-8
Setup a Board Service Routine . 5-8
Schedule Timeout Callbacks . 5-9
DriverInit Pseudocode . 5-10

Packet Reception . 5-13
iii

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Reception Methods. . 5-13
Programmed I/O and Shared RAM 5-13
DMA and Bus Master . 5-15
RX-Net . 5-17

Board Service . 5-19
DriverISR . 5-19

Receive Event . 5-19
Receive Error . 5-20
Transmit Complete . 5-20
Transmit Errors . 5-21
Using Shared Interrupts . 5-21
DriverISR Pseudocode . 5-24
DriverPoll . 5-26

Packet Transmission . 5-27
Transmission Methods . 5-27

Programmed I/O, Shared RAM, and Host DMA 5-28
Bus Master . 5-28

Priority Transmission Support . 5-31
DriverSend . 5-33
Driver Priority Queue Support . 5-35

Multi-Operating System Support . 5-36
Critical Sections . 5-37
DriverEnableInterrupt. . 5-38
DriverDisableInterrupt . 5-39
DriverDisableInterrupt2. . 5-40

Control Procedures . 5-41
DriverReset . 5-43
DriverShutdown . 5-45
DriverMulticastChange . 5-47

Adapter Multicast Filtering . 5-48
DriverPromiscuousChange . 5-50
DriverStatisticsChange (optional) . 5-52
DriverRxLookAheadChange (optional) . 5-53
DriverManagement (optional) . 5-54

Timeout Detection . 5-55
DriverTxTimeout (RX-Net) . 5-55
DriverAES / DriverCallBack/TimerProcedure 5-56

Removal . 5-58
DriverRemove . 5-59

6 TSM Procedures

Introduction. . 6-1
<TSM>BuildTransmitControlBlock . 6-2
iv ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

<TSM>CancelPrioritySend . 6-4
<TSM>GetConfigInfo . 6-5
<TSM>GetNextSend . 6-8
<TSM>GetASMHSMIFLevel . 6-10
<TSM>GetRCB . 6-11
<TSM>ProcessGetRCB. . 6-14
<TSM>FastProcessGetRCB . 6-17
<TSM>RcvComplete . 6-19
<TSM>RcvCompleteStatus . 6-21
<TSM>FastRcvComplete . 6-23
<TSM>FastRcvCompleteStatus . 6-25
<TSM>RegisterHSM . 6-27
<TSM>SendComplete . 6-29
<TSM>FastSendComplete . 6-31
<TSM>UpdateMulticast . 6-32
RXNetTSMGetRCB . 6-34
RXNetTSMRcvEvent . 6-38
RXNetTSMFastRcvEvent . 6-40

7 MSM Procedures and Macros

Introduction . 7-1
Netware Bus Interface . 7-2

Overview . 7-2
Bus Architecture . 7-3
Multiple Bus Platforms. . 7-3

MSMAlertFatal . 7-5
MSMAlertWarning . 7-7
MSMAlloc . 7-9
MSMAllocateMultipleRCBs . 7-10
MSMAllocPages . 7-12
MSMAllocateRCB . 7-13
MSMCancelTimer . 7-15
MSMDeRegisterResource . 7-17
MSMDriverRemove . 7-19
MSMEnablePolling . 7-20
MSMFree . 7-21
MSMFreePages . 7-22
MSMGetAlignment . 7-23
MSMGetBusInfo . 7-25
MSMGetBusSpecificInfo . 7-27
MSMGetBusType . 7-31
MSMGetCardConfigInfo . 7-33
MSMGetConfigInfo . 7-39
v

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMGetCurrentTime (macro) . 7-42
MSMGetHINFromHINName . 7-43
 MSMGetHINNameFromHIN . 7-44
MSMGetInstanceNumber . 7-45
MSMGetInstanceNumberMapping . 7-47
MSMGetMicroTimer . 7-49
MSMGetPhysical . 7-51
MSMGetPhysList . 7-52
MSMGetPollSupportLevel . 7-54
MSMGetProcessorSpeedRating (macro) . 7-55
MSMGetUniqueIdentifier . 7-56
MSMGetUniqueIdentifierParameters . 7-58
MSMHardwareFailure . 7-61
MSMInitAlloc . 7-62
MSMInitFree . 7-64
MSMNESLDeRegisterConsumer . 7-65
MSMNESLDeRegisterProducer . 7-66
MSMNESLProduceEvent . 7-67
MSMNESLProduceMLIDEvent . 7-70
MSMNESLRegisterConsumer . 7-73
MSMNESLRegisterProducer. . 7-76
MSMParseCustomKeywords . 7-79

Custom Keyword Procedure . 7-80
MSMParseDriverParameters . 7-85
MSMPrintString . 7-91
MSMPrintStringFatal . 7-93
MSMPrintStringWarning . 7-95
MSMRdConfigSpace8 . 7-96
MSMRdConfigSpace16 . 7-98
MSMRdConfigSpace32 . 7-100
MSMReadPhysicalMemory . 7-102
MSMRegisterHardwareOptions . 7-104
MSMRegisterMLID . 7-106
MSMRegisterResource . 7-107

IOConfig Structure . 7-109
MSMReRegisterHardwareOptions . 7-110
MSMResetMLID . 7-112
MSMResumePolling . 7-113
MSMReturnDriverResources . 7-114
MSMReturnMultipleRCBs . 7-116
MSMReturnNotificationECB (macro) . 7-117
MSMFastReturnNotificationECB (macro) . 7-117
MSMReturnRCB (macro) . 7-119
MSMScanBusInfo . 7-120
vi ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

MSMScheduleAESCallBack . 7-122
MSMScheduleIntTimeCallBack . 7-124
MSMScheduleTimer . 7-126
MSMSearchAdapter. . 7-129
MSMServiceEvents (macro) . 7-131
MSMServiceEventsAndRet (macro) . 7-133
MSMSetHardwareInterrupt . 7-135
MSMShutdownMLID . 7-136
MSMSuspendPolling . 7-138
MSMUpdateConfigTables. . 7-140
MSMWritePhysicalMemory . 7-142
MSMWrtConfigSpace8 . 7-144
MSMWrtConfigSpace16 . 7-146
MSMWrtConfigSpace32 . 7-148
MSMYieldWithDelay . 7-150

Appendix A Building the HSM

Development Process . A-1
Creating the Source Files . A-1
Assembling the Source Files . A-1
Linking the Object Files . A-2

Linker Definition File . A-2
Loading the Driver . A-5

Driver Configuration File . A-6
Load Keywords and Parameters . A-6

Appendix B The NetWare Debugger

Introduction . 1
Invoking the Debugger . 2
Debug Commands . 4

Help . 4
"." Commands . 4
Breakpoints . 4

Breakpoint Conditions . 4
B . 5
BC number. . 5
BCA . 5
B = address [condition] . 5
BW = address [condition] . 5
BR = address [condition]. . 6

Memory . 6
C address . 6
vii

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

C address = number(s) . 6
C address = “text string” . 6
D address [count] . 7
M address [L length] bytepattern. 8

Register Manipulation . 9
R . 9
register = value . 9
F flag = value . 9

Input/Output . 9
I[B,W,D] port . 9
O[B,W,D] port = value . 10

Miscellaneous . 10
G [address(es)] . 10
N symbolname value . 10
P . 11
Q . 11
T or S . 11
U address [count] . 11
V . 11
Z expression . 11

Debug Expressions . 12
Grouping Operators . 13
Conditional Evaluation . 13

Symbolic Information . 14

Appendix C NESL Support

Overview . C-1
Registering and Deregistering Event Producers C-2
Registering and Deregistering Event Consumers C-2
NESL Structures . C-3

EPB (Event Parameter Block) Structure C-3
NESL_ECB Structure . C-4

Events and Types . C-7
Event Names . C-7
Event Types . C-8

Service Suspend Types . C-8
 . C-9
Suspend Request. . C-9
Service Resumed Types . C-10
Service/Status Changed Types. . C-11

NESL Return Codes . C-13
NESL Event Flags . C-14
NESL OSI Layer Definitions . C-15
viii ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Revision History

Index
ix

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

x ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ODI Spe
Figures
S
p

e
c

 v
3

.3
1

 - D
o

c
 v

1
.1

2

Figure 1-1 The Open Data-Link Interface Model . 1-1
Figure 1-2 Loadable Modules as NetWare Building Blocks. 1-3
Figure 1-3 MLID Modules . 1-6
Figure 1-4 The ODI Model with separate MSM, TSM and HSM Modules 1-8
Figure 2-1 Implementation of Multiple Frame/Multiple Adapter Support 2-11
Figure 3-1 Global Data Access. . 3-2
Figure 3-2 Frame and Adapter Data Space. . 3-14
Figure 3-3 Frame and Adapter Data Space. . 3-34
Figure 4-1 Packet Transfer in the MSM/ODI Model. . 4-10
Figure 4-2 Fragmented Receive Control Block. . 4-12
Figure 4-3 Non-Fragmented Receive Control Block . 4-14
Figure 4-4 Packet Transfer in the MSM/ODI Model. . 4-16
Figure 4-5 Ethernet, Token-Ring and FDDI Transmit Control Block 4-17
Figure 4-6 Rx-NET Transmit Control Block . 4-19
Figure 4-7 TCB Fragment Structure . 4-22
Figure 4-8 Packet Transfer in the MSM/ODI Model. . 4-24
Figure 4-9 Event Control Block . 4-25
Figure 4-10ECBs vs RCBs . 4-26
Figure 4-11Transmit ECBs vs TCBs . 4-28
Figure 5-1 Format of RX-Net LookAhead Buffer . 5-18
Figure 6-1 Format of the RX-Net LookAhead Buffer . 6-36
Figure 7-1 Multiple Bus Platform Example . 7-3
Figure 7-2 PnP ISA Bus Parameters . 7-60
xi

cification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

xii ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ODI Spe
Tables
S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Table 3.1 Driver Parameter Block Field Descriptions .3-6
Table 3.2 Configuration Table Field Descriptions .3-17
Table 3.3 MLIDModeFlag Descriptions .3-26
Table 3.4 MLIDSFlags Bit Map Fields. .3-28
Table 3.5 MLIDSharingFlags Bit Map .3-30
Table 3.6 Media Specific Counters for Token Ring. .3-42
Table 3.7 Media Specific Counters for Ethernet .3-44
Table 3.8 Media Specific Counters for FDDI. .3-46
Table 3.9 Media Specific Counters for RX-Net .3-48
Table 4.1 Fragmented RCB Field Descriptions. .4-13
Table 4.2 Non-Fragmented RCB Field Descriptions .4-15
Table 4.3 TCB Field Descriptions .4-18
Table 4.4 TCB Field Descriptions (RX-Net) .4-20
Table 4.5 TCB Fragment Structure .4-23
Table 4.6 ECB Field Descriptions .4-29
Table 6.1 TSMCFG_SystemFlags .6-7
xiii

cification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

xiv ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

OD
Preface
S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ry to
N

e

by
This Intel assembly language document provides the information necessa
develop the Hardware Specific Module (HSM) portion of a Novell 32-bit LA
Driver.

Novell LAN Drivers consist of Media Support Modules (MSMs), Topology
Specific Modules (TSMs), and Hardware Specific Modules (HSMs).

The Novell LAN Driver, Software Development Toolkit (SDK) provides the
MSMs and the TSMs for the LAN Driver. The HSMs must be written by th
developer.

LAN Drivers written using the information in this document will conform to
the Novell Open Data-Link Interface (ODI) specification. The MSMs and
TSMs provided by the SDK make it as simple as possible to do this.

This document does not explain the full ODI specification. It only explains
how to write the HSM portion of a LAN Driver, using the modules provided
the Novell SDK.
xv

I Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

 of

r.
Document Overview

Chapter 1 describes the NetWare environment and gives a brief overview
ODI LAN Driver architecture.

Chapter 2 is an overview of the HSM.

Chapter 3 describes HSM data structures and variables.

Chapter 4 describes MSM and TSM data structures and variables.

Chapter 5 describes the HSM procedures a developer must provide.

Chapter 6 describes the TSM procedures provided by the Novell SDK.

Chapter 7 describes the MSM procedures provided by the Novell SDK.

Appendix A describes assembling, linking, and loading an ODI LAN drive

Appendix B explains how to use the NetWare integrated debugger.

Appendix C explains how to update an HSM to the current specification.
xvi ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ODI Supplements

The following supplements also contain information necessary for driver
development.

The MLID Installation Information File

Part number 107-000056-001

The Hub Management Interface

Part number 107-000023-001

Source Routing

Part number 107-000058-001

Canonical and Noncanonical Addressing

Part number 107-000059-001

Frame Types and Protocol IDs

Part number 107-000055-001

Standard MLID Message Definitions

Part number 107-000060-001

Brouter Support

Part number 107-000049-001
xvii

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

as:
Prerequisites

Developers using this document must be experienced in the following are

• Intel Assembly Language Programming

• Intel 80386/486+ Microprocessors

• Real Mode and Protected Mode

• Re-entrant Coding

• Event-driven Systems

• Interrupt-driven Device Drivers
xviii ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Document Conventions

This document uses the following conventions:

• All numbers in this document are decimal unless otherwise specified.

• Hexadecimal numbers are identified by a trailing ‘h’, such as:

FFh.

• In bit fields, bit 0 is the low- order bit.

• The following data types are defined:

byte 1 byte unsigned integer

char 1 byte ASCII character

offset 32-bit non-segmented address

Numeric fields composed of more than 1 byte can be in one of two formats: high-
low or low-high. High-low numbers contain the most significant byte in the first
byte of the field, the next most significant byte in the second byte, and so on,
with the least significant byte appearing last. Low-high numbers are stored in
exactly the opposite order. Intel microprocessors store numbers in low-high
order.
xix

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

xx ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

w
ms.
used
ocol

1 Introduction

Open Data-Link Interface

Novell's Open Data-Link Interface (ODI) technology was developed to allo
multiple topologies, frame types and protocols to coexist on network syste
The ODI specification describes the set of interface and software modules
to decouple device drivers from protocol stacks and to enable multiple prot
stacks to share the network hardware and media transparently. Figure 1.1
illustrates the components of the ODI model.

Figure 1-1 The Open Data-Link Interface Model

NETWARE OPERATING SYSTEM SERVICES

IPX / SPX

PROTOCOL
STACK

PROTOCOL
STACK

PROTOCOL
STACK

TCP / IP APPLETALK

LINK SUPPORT LAYER (LSL)

ETHERNET

MLID

TOKEN-RING

MLID

FDDI

MLID

RX-NET

MLID

ADAPTERS
Introduction 1-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

L.
 acts

, but

ic
on
ails.
Link Support Layer

At the core of the Open Data-Link Interface is the Link Support Layer or LS
The LSL is the interface between drivers and protocol stacks. It essentially
like a switchboard, directing packets between the appropriate drivers and
protocol stacks. Any LAN driver written to the ODI specifications, can
communicate with any ODI protocol stack via the Link Support Layer.

Multiple Link Interface Drivers

Multiple Link Interface Drivers (MLIDs) are LAN Drivers written to the ODI
specification. Each driver is unique due to the adapter hardware and media
ODI eliminates the need for separate drivers to be written for each specif
protocol stack. The Open Data-Link Interface allows LAN drivers to functi
with protocol stacks independent of the frame type and protocol stack det
1-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

re
tem
t of

t

NetWare Loadable Modules

 A key NetWare feature is the NetWare Loadable Module (NLM). NLMs a
software modules that are dynamically linked to the NetWare operating sys
at run time. Once an NLM is loaded, it functions as an integral componen
the operating system as shown in Figure 1.2.

Different types of loadable modules have unique filename extensions tha
signify the module's function. Server LAN drivers must use the “.LAN”
filename extension, disk drivers use “.DSK”, and general utility or support
modules use “.NLM”.

The modules that make up a Multiple Link Interface Driver are NetWare
Loadable Modules.

Figure 1-2 Loadable Modules as NetWare Buildin g Blocks

.

NETWARE OPERATING SYSTEM FUNCTIONALITY

PROTOCOL STACK

HUB MANAGEMENT

MONITOR UTILITY

DISK DRIVER

LAN DRIVER MODULE
Introduction 1-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ral
),
-

d

e
the

iver
tly as
Driver Modules

This section describes the modules that make up a 32-bit Multiple Link
Interface Driver.

Novell Provided Support Modules

Novell has simplified ODI LAN driver development by
furnishing a set of support modules that provides the interface to the LSL.
These modules are a collection of procedures, macros, structures, and
variables. They are the Media Support Module (MSM), which contains gene
functions common to all drivers; and the Topology Specific Modules (TSM
whichprovide support for the standardized media types of Ethernet, Token
Ring, RX-Net, and FDDI.

Media Support Module

The Media Support Module, MSM.NLM, standardizes and manages the
primary details of interfacing ODI Multi-Link Interface Drivers to the LSL an
OS. The MSM handles all of the generic initialization and run-time issues
common to all drivers.

Topolo gy Specific Module

The Topology Specific Module, <TSM>.NLM, manages operations that ar
unique to a specific media type. Multiple frame support is implemented in
TSM so that all frame types for a given media are supported.

Throughout this manual, topology specific functions and variables are
indicated with <TSM>. The developer must replace <TSM> with the
appropriate media type depending on which module is used. Since the dr
must be assembled with case sensitivity on, the names must be used exac
shown below:

ETHERTSM.NLM replace <TSM> with: EtherTSM
TOKENTSM.NLM replace <TSM> with: TokenTSM
RXNETTSM.NLM replace <TSM> with: RXNetTSM
FDDITSM.NLM replace <TSM> with: FDDITSM
1-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 an

Ms.
Source code for each Topology Specific Module is provided with the
developers kit. Proprietary topology modules may be created by modifying
existing TSM to meet the developer's requirements or by creating a new
module that provides the same functionality contained in the standard TS

If a topology specific module is altered, it must NOT have the same name as the
Novell provided modules. In addition, any “exported” calls or variables within the
TSM require different names.

You must use the TSMs provided by Novell to pass certification. It is virtually
impossible for your driver to pass the certification test suite using modified
TSMs.
Introduction 1-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

for
,

ion.

ode
Developer Provided Module

When using the support modules, LAN driver development is reduced to
creating the Hardware Specific Module or HSM, to handle all hardware
interactions.

Hardware Specific Module

The Hardware Specific Module, <HSM>.LAN, is created by the developer
a specific physical card. Its primary functions include: adapter initialization
reset, shutdown, and removal, as well as packet reception and transmiss
Additional procedures may also provide support for timeout detection,
multicast addressing, and promiscuous mode reception. Sample source c
for Novell LAN drivers is included with the Novell LAN Driver Developer's
Guide. Chapter 2 explains the HSM functions in greater detail.

Figure 1.3 illustrates the modules which make up an MLID.

Figure 1-3 MLID Modules

MLID

MSM

TSM

HSM
1-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

M
s.
Ms.

Loading Driver Modules

The ODI Toolkit components for the specific platform being used must be
loaded before the HSM is loaded. The HSM linker definition file must list a
dependency on the appropriate TSM, using the module keyword, for the
required NLMs to load automatically.

A major advantage of separating portions of the MLID into the MSM and TS
is that, once loaded, these support modules become available to all HSM
Only a single code image of each module is needed to support multiple HS

Figure 1.4 below illustrates the ODI model with separate MSM, TSM, and
HSM modules.
Introduction 1-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Figure 1-4 The ODI Model with separate MSM, TSM and HSM Modules

NETWARE OPERATING SYSTEM SERVICES

IPX / SPX

PROTOCOL
STACK

PROTOCOL
STACK

PROTOCOL
STACK

TCP / IP APPLETALK

LINK SUPPORT LAYER (LSL)

ETHERNET TOKEN-RING FDDI

ADAPTERS

MSM

TSM TSM TSM

ETHERNET ETHERNET TOKEN-RING FDDI
HSM 1 HSM 2 HSM HSM
1-8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ng

ion

 a

 by

tain
Development Process

The process of creating and loading a NetWare driver involves the followi
steps:

1. Create the driver source files.

2. Assemble the source files into object files.

3. Link the object files using the NetWare Linker.

4. Load the NLM as part of the NetWare OS.

5. Debug the driver.

Chapters 2 through 7 provide detailed information on writing the driver.
Appendices A, B and the supplements listed below provide a full descript
of assembling, linking, installing, loading, and debugging the driver.

LAN Drivers written to this specification will also function without modification on
Novell 32-bit clients for WIN95, WindowsNT, and DOS/WIN.

ODI Supplements

The ODI supplements listed in the preface of this document also contain
information necessary for driver development.

Driver Related Files

The following section describes the files that are needed when developing
NetWare LAN driver.

Source Files

The Hardware Specific Module is the only source file that must be written
the developer. Chapter 2 provides an overview of the Hardware Specific
Module and addresses specific hardware and coding issues that influence
driver development.

Include Files

Several include files are provided with the support modules. These files con
external variable declarations and define the equates, macros, and data
structures needed by the HSM.
Introduction 1-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ed

ion

and
 and

 a
 as

n.
g
The HSM must include only DRIVER.INC; the other include files are nest
from this file.

DRIVER.INC
MSM.INC
ODI.INC

Linker Definition File

Each NetWare Loadable Module must have a corresponding linker definit
file with a “.DEF” extension. This file is needed by the NetWare linker. It
contains a list of object files which makeup the module, external variables
routines the module must access, the names of the module's initialization
exit procedures, and several other linker directives. (see Appendix A for
details)

Driver Confi guration File

The developer can list command-line parameters and custom keywords in
driver configuration file. If used, this file must reside in the same directory
the driver. The driver configuration file was developed to allow drivers to
maintain large number of custom keywords on the limited space of the
command-line. (see Appendix A for details)

Installation Information File

We require you to create a driver information file to simplify driver installatio
This file provides information related to the driver configuration and loadin
parameters and is required if the Install utility is used. (See The MLID
Installation Information File supplement for details.)
1-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

c h a p t e r 2 HSM Overview
S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

HSM Components

This chapter provides an overview of the HSM components. Issues that
influence the development of the HSM are also addressed.

HSM Procedures

The HSM specification defines the following procedures:

Initialization and Removal

• DriverInit (required)

• DriverRemove (required)

Reception and Transmission

• DriverISR

• DriverPoll

(one of the above is required)

• DriverSend (required)

• DriverISR2 (optional)

Multi-Operating System provision

• DriverEnableInterrupt (required)

• DriverDisableInterrupt (required)

• DriverDisableInterrupt2 (required if Driver ISR2 exists)
HSM Overview 2-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

rly.
ports
r
ort

ted,

 they
I/O Control

• DriverReset (required)

• DriverShutdown (required)

• DriverMulticastChange (required except for RX-Net)

• DriverPromiscuousChange (recommended)

• DriverStatisticsChange (optional)

• DriverRxLookAheadChange (optional)

• DriverManagement (optional)

Timeout Detection

• DriverAESCallBack (optional)

• DriverINTCallBack (optional)

• DriverTimerProcedure (optional, see MSMScheduleTimer)

Every HSM must provide the required procedures in order to function prope
The recommended procedures must be implemented if the hardware sup
that function. The optional procedures are available if the adapter or drive
requires the functionality. You may add any procedures necessary to supp
the specific hardware features of your particular LAN adapter design.
Adjustments to the HSM will also be required if hub management is suppor
or Brouter enhancements are included.

Brief descriptions of these HSM procedures are provided on the following
pages. The descriptions are general and do not apply in every case, nor do
describe every possible case. Detailed descriptions of the procedures
(including pseudocode) are provided in Chapter 5
2-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 the
ther
Initialization and Removal

The HSM's initialization routine, DriverInit , is called by the NetWare
operating system to initialize the adapter hardware. The DriverInit routine
uses MSM/TSM calls to perform the following tasks:

• Allocate memory for driver variables and structures

• Parse the standard LOAD command-line options

• Process custom command-line parameters and custom firmware

• Register the driver with the LSL

• Register the hardware configuration with the OS

• Setup for the board's ISR or polling procedure

• Schedule callback events for timeout detection and recovery

• Handle any initialization errors

The HSM's remove procedure, DriverRemove, allows the network supervisor
to unload it from the operating system. This procedure must shutdown the
physical board and return all resources allocated to the driver. The MSM
provides routines that handle the return of driver resources.

Packet Reception and Transmission

The HSM's board service routine will generally need to detect and handle
events listed below. The driver can be notified of these events by using ei
an interrupt service routine, DriverISR , or a polling procedure, DriverPoll , or
a combination of both.

• Packet Reception and/or Reception Complete

• Reception Error

• Transmission Complete

• Transmission Error
HSM Overview 2-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

he
lects

ess

not
 run

or
ded

ate
The HSM's DriverSend procedure is called whenever a packet needs to be
transmitted onto the wire. Prior to calling this procedure, the TSM builds t
appropriate frame and media headers for the packet. The driver simply col
the header and packet data fragments, then initiates the transmission.

Multi-Operatin g System Provisions

Novell requires implementing the DriverEnableInterrupt and
DriverDisableInterrupt procedures. These procedures allow for the
transporting of drivers to other 32-bit Intel-based OS platforms where acc
to the PIC is restricted.

The ability of an adapter to disable its interrupt capability in the hardware,
by masking the PIC, and not disabling interrupts at the CPU, is essential to
under multiprocessor operating systems such as Windows NT.

Multi-operating system support is required for certification. You will find that
passing Novell Labs’ latest test suite for certification will go much smoother and
you will save considerable time if you adhere strictly to the specification. Refer
to Appendix A, "Building the HSM" when writing or updating a driver.

I/O Control Procedures

The HSM must provide the control procedures DriverReset and
DriverShutdown, to handle the hardware operations involved in resetting
shutting down the adapter. Additional control procedures may also be nee
to support multicast addressing and promiscuous mode reception. These
routines are DriverMulticastChange, and DriverPromiscuousChange.

The DriverStatisticsChange and DriverRxLookAheadChange procedures
are optional. These procedures allow drivers for intelligent adapters to upd
the statistics table or the LookAhead size only as needed.

Drivers that are Brouter enhanced, or that support the Hub Management
Interface must implement the DriverManagement procedure to handle
management requests and commands.
2-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ect
eout
et the

are
he
Timeout Detection

The HSM can still schedule timers used to repeatedly callback the
DriverAESCallBack or the DriverINTCallBack routines at a developer-
specified interval.

For example, the driver may need to be called regularly so that it can insp
the adapter to determine if it has failed to complete a transmission. If a tim
error had occurred, the procedure would discard the packet being sent, res
board, and begin transmitting the next packet in the send queue.

With this specification, the HSM can call MSMScheduleTimer to setup timer
callbacks. This method is now preferred over previous methods.

HSM Data Structures and Variables

In addition to the procedures described in the previous section, the Hardw
Specific Module must also contain certain data structures and variables. T
primary structures include the Driver Parameter Block, the Driver
Configuration Table, and the Driver Statistics Table.

Chapter 3 provides detailed descriptions of all the required HSM data
structures and variables.
HSM Overview 2-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

t be

ing
 and

s not
, at
hat is

oks
r's

 for
cket

de.
HSM Design Considerations

The following section discusses the hardware and coding issues that mus
considered when creating the HSM.

Hardware Issues

Before writing the HSM, the developer should have a thorough understand
of the adapter. Knowing the characteristics of the hardware, the bus type,
the data transfer mode will allow you to create a more efficient driver.

For example, HSMs that support adapters on buses with hot plug/unplug
capability (such as PC Card and PCI) must be written so that the HSM doe
attempt to access hardware that is not currently present in the system, or
least, does not do inappropriate things as a result of accessing hardware t
not currently present in the system.

Network Interface Controllers

The LAN driver developer must be familiar with the Network Interface
Controller IC. Every effort should be made to obtain and use current data bo
and application notes from the manufacturer. In addition, the manufacture
support engineers can provide developers with up-to-date information on
hardware quirks and changes.

Data Transfer Mode

The MSM and TSM provide certain support procedures that are optimized
use with a specific data transfer mode. The development of the HSM's pa
reception and transmission routines in particular will be affected by the
adapter's transfer mode. In order to achieve the highest performance, the
developer must select support procedures geared to the data transfer mo
2-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

pe
nd
The data transfer modes are:

• Programmed I/O

• Shared RAM (Memory Mapped I/O)

• Direct Memory Access (DMA)

• Bus Master

Bus Type

The bus type and size must also be considered in creating optimized HSM
operations. The HSM's initialization process will be affected by the bus ty
when it initializes and registers the hardware configuration with the MSM a
Link Support Layer. The bus types include:

• Industry Standard Architecture (ISA) and PnPISA

• Micro Channel Architecture

• Extended Industry Standard Architecture (EISA)

• PC Card (PCMCIA)

• Peripheral Componenet Interconnect (PCI)
HSM Overview 2-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

tem

-
cess

es. If
 be
tions

he
 the

 the
ode

he
d on
 use
Coding Issues

NetWare LAN drivers operate as an integral part of the NetWare operating
system. Therefore, the developer must consider the following operating sys
characteristics when writing the HSM code.

Multi-Taskin g, Non-Preemptive OS

The NetWare operating system is multi-tasking and non-preemptive. Non
preemptive means the OS will not interrupt one process so that another pro
can execute. Therefore, HSM routines must not dominate system resourc
the code is optimized, normal execution will not be a problem. Care must
taken when handling operations such as retry loops and board error condi
so that other processes can execute in a timely manner.

32-Bit Protected Mode

NetWare runs in 32-bit protected mode. In addition, the operating system
accesses a flat code space where CS=SS=ES=DS. Consequently, all of t
support routines available in the MSM and TSM modules are near calls for
HSM.

An assembler that supports the use of 32-bit registers is required to build
HSM. Novell engineers currently use the Phar Lap 386ASMP protected m
assembler (v4.0 or later).

Interrupt Service Routine

When DriverISR is called (the system ISR actually receives the interrupt), t
direction flag is cleared, interrupts are disabled, and all registers are pushe
the stack. The driver only needs to service the interrupt and return (do not
iret). If the driver sets the direction flag during the routine, it must clear it
before returning.

Novell requires that interrupts remain disabled during DriverISR and
DriverSend . If either routine must enable interrupts, it must disable them before
returning.
2-8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ng
 the

re

at

ating
OS Calls to the Driver

Portions of the NetWare operating system are written in the C programmi
language. Any HSM routines that are called from a C routine must preserve
EBX, EBP, ESI, and EDI registers. The HSM routines which this affects a
DriverInit and DriverRemove.

Execution Times

Drivers can perform certain operations only at certain execution times.

The two principal execution times are:

• Process Time

• Interrupt Time

As you write your driver, you must be aware of which routines are called
process time and which routines are called at interrupt time.

The table below shows when each driver routine can be called by the oper
system or support module.

Execution Time of Driver Routines

Process Time Interrupt Time

DriverAESCallBack

DriverInit

DriverManagement

DriverMulticastChange

DriverPoll

DriverPriorityQueueSupport

DriverPromiscuoucChange

DriverRemove

DriverReset

DriverRxLookAheadChange

DriverSend

DriverShutdown

DriverStatisticsChange

DriverINTCallBack

DriverISR

DriverTimerProcedure (setup with
MSMScheduleTimer)
HSM Overview 2-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

e.
The execution time restrictions for TSM and MSM support routines are
documented in Chapters 6 and 7.

Process Time

At process time the MLID is allowed to:

• Allocate memory

• Do file I/O tasks (with some exceptions)

There are two types of process time routines:

• Routines that suspend execution to allow other processes to execute

• Routines that do not suspend execution

Interrupt Time

When the operating system's interrupt handler calls a routine, that routine
operates at interrupt time.

At interrupt time, routines must not do the following:

• Allocate memory

• Do file I/O tasks

• Suspend execution

• Call another routine that suspends execution

Interrupt time routines must be highly optimized and limit their execution tim

When a driver routine calls another driver routine you must be aware of the
execution time restrictions for both calls. For example, DriverISR typically calls
DriverSend to transmit the next packet in the send queue after a transmit
complete interrupt. Since DriverISR executes at interrupt time, DriverSend will
also execute at interrupt time and must observe the same interrupt time
restrictions. The same applies to DriverReset .
2-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

vell
r
ich
e
ard.

gle
 Code and Data Space

This section describes the organization of the code and data space for No
32-bit LAN drivers. Figure 2.1 illustrates the code and data space used fo
multiple adapters with multiple frame support. The Frame Data Space, wh
represents a “Logical Board”, is created by the MSM for each loaded fram
type. The Adapter Data Space is created by the MSM for each physical bo
Since HSMs are reentrant, all physical boards of the same type use a sin
Adapter Code Space. (See the Reentrancy section later in this chapter.)

Figure 2-1 Implementation of Multiple Frame/Multiple Adapter Support

Adapter Y
Data Space 2

Frame Data
Space 1

Frame Data
Space 2

Frame Data
Space 3

Frame Data
Space 1

Adapter Y
Data Space 1

Adapter Y
Code Space

Frame Data
Space 2

Frame Data
Space 1

Adapter X
Data Space

Adapter X
Code Space

Physical
Boards

Logical
Boards

Data and
Code Spaces

Brand Y

802.2

SNAP

EII

802.2

SNAP

802.3

Brand Y

Brand X

1

2

3

4

5

6

HSM Overview 2-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ecific
ard.

rame

tion

mber

e
 used

ork
.

 and
 and

oded

me
age
Frame Data Space

The Frame Data Space contains all the information needed to support a sp
frame type as well as the hardware configuration of the corresponding bo
For each loaded frame type, there will be a separate Frame Data Space
allocated representing a Logical Board. (see Chapter 3 for details on the F
Data Space)

Novell requires drivers to support all frame types for a particular topology.
Because all TSMs provide full multiple frame support, drivers developed with
these modules are guaranteed to support all applicable frame types for the
topology.

Adapter Data Space

The Adapter Data Space contains certain hardware and statistical informa
needed to drive or manage a particular physical board. There is only one
Adapter Data Space allocated for each physical board, regardless of the nu
of frame types supported by that board. (See Chapter 3 for details on the
Adapter Data Space.)

Adapter Code Space

When multiple frame types are loaded for an adapter and/or when multipl
adapters of the same type are loaded, a single code image of the driver is
for all logical boards associated with those adapters.

Reentranc y

Reentrancy, in this case, means that the driver code must be written to w
with multiple logical boards and/or with multiple adapters of the same type

The MSM and TSM will pass pointers to the appropriate Frame Data Space
Adapter Data Space when calling a driver routine. References to structures
variables must be performed using pointers and offsets rather than hard-c
values.

The HSM linker definition file must include the keyword, “reentrant”. This
keyword allows a driver to be loaded more than once to support multiple fra
types or multiple boards of the same type. However, only a single code im
of the driver is loaded.
2-12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

e

ve a

port
st
Recommended Support

Multicast Addressin g

Multicast addressing must be supported if the media supports it (Ethernet,
Token-Ring and FDDI). If your adapter hardware cannot support it, but th
media does, the adapter cannot be certified. Refer to Chapter 5 in the
DriverMulticastChange section.

Promiscuous Mode

Drivers that pass all packets being received by the adapter are said to ha
promiscuous reception mode. Hub management, and other monitoring
functions, would use this mode. Novell strongly recommends the HSM sup
promiscuous mode if the adapter is capable of supporting it. The HSM mu
enable or disable promiscuous reception on request as described in the
DriverPromiscuousChange section of Chapter 5.
HSM Overview 2-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ity
hed to

 the

ss
e
es

ort.
ver

Optional Support

Hub Mana gement

The Simple Network Management Protocol (SNMP) and the HUBCON util
can manage 10BaseT repeaters and Token-Ring concentrator hubs attac
or integrated into the server. The Hub Management Interface supplement
describes how to support management requests from these two agents in
HSM.

Source Routin g

A Novell 32-bit LAN driver may include the capability to pass packets acro
an IBM bridge. To do this, source routing information must be added to th
packet's MAC header. The Novell provided ROUTE.NLM and TSM modul
handle this procedure with no interaction from the HSM. The Source Routing
supplement describes the functions of the source routing module.

Brouter

A Token-Ring adapter/driver may be capable of source route bridging supp
This is a mechanism that allows the source of traffic to dynamically disco
routes and determine which one to use when sending data to a particular
destination. With the Source Route Bridge NLM loaded, a server can also
function as a router or bridge. For HSM support requirements see the Brouter
Support supplement.
2-14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

c h a p t e r 3 HSM Data Structures and Variables
S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

re

e
.

res

 them
r
al
Introduction

This chapter describes the data structures and variables that the Hardwa
Specific Module must define when a driver is written using the support
modules. All the data structures and variables listed in this chapter must b
present in the OSDATA segment in order for the HSM to function properly

Global Data Access

When the MSM and the TSM are loaded, all public variables and procedu
are exported to the operating system and are available to any NLMs
subsequently loaded as shown in Figure 3.1. The HSM can gain access to
by declaring them extern and by including them in the import list in the Linke
Definition File (see Appendix A). This keyword tells the linker which extern
variables and procedures the HSM must access.
HSM Data Structures and Variables 3-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ing
Figure 3-1 Global Data Access

The modules that make up an MLID are designed to be loaded in the follow
order:

1. MSM .NLM

2. <TSM>.NLM

3. <HSM>.LAN

Parameter Block

MSM

Externals

Publics

Parameter Block

TSM

Externals

Publics

Parameter Block

HSM

Externals

Publics

export

import

export

import

export

import

NetWare OS
Public List
3-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 is
e
Specification Version

So that test programs can verify the ODI specification version that an HSM
written to, developers must put the ODI specification version number in th
OSDATA segment, as follows:

HSMSPEC db ‘HSM_ASPEC_VERSION: 3.31’,0

One space is required between the colon and the first digit.
HSM Data Structures and Variables 3-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ures.
res

e
Driver Parameter Block

Because it is loaded last, the HSM must make its public variables and
procedures available to the support modules using a structure called the
DriverParameterBlock.

The DriverParameterBlock structure contains the required HSM public
variables, as well as pointers to the driver's tables, structures, and proced
The fields of the DriverParameterBlock are accessed by external procedu
using offsets, therefore its format is strictly defined. (See the
DriverParameterBlock illustration below.)

In order for external procedures to gain access to the Parameter Block, th
HSM's DriverInit routine passes a pointer to the block in ESI when it calls
<TSM>RegisterHSM.
3-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Driver Parameter Block

DriverParameterBlock Label Dword

DriverParameterSize dd DriverParameterBlockSize
DriverStackPointer dd 0
DriverModuleHandle dd 0
DriverBoardPointer dd 0
DriverAdapterPointer dd 0
DriverConfigTemplatePtr dd DriverConfigTemplate
Driver FirmwareSize dd 0
DriverFirmwareBuffer dd 0
DriverNumKeywords dd 0
DriverKeywordText dd 0
DriverKeywordTextLen dd 0
DriverProcessKeywordTab dd 0
DriverAdapterDataSpaceSize dd SIZE DriverAdapterDataSpace
DriverAdapterDataSpacePtr dd DriverAdapterDataSpaceTemplate
DriverStatisticsTablePtr dd DriverStatisticsTable
DriverEndofChainFlag dd 0
DriverSendWantsECBs dd 0
DriverMaxMulticast dd 20
DriverNeedsBelow16Meg dd 0
DriverAESPtr dd 0
DriverCallBackPtr dd offset DriverCallBack
DriverISRPtr dd offset DriverISR
DriverMulticastChangePtr dd offset DriverMulticastChange
DriverPollPtr dd 0
DriverresetPtr dd offset DriverReset
DriverSendPtr dd offset DriverSend
DriverShutdownPtr dd offset DriverShutdown
DriverTxTimeoutPtr dd 0
DriverPromiscuousChangePtr dd offset DriverPromiscuousChange
DriverStatisticsChangePtr dd 0
DriverRxLookAheadChangePtr dd 0
DriverManagementPtr dd 0
DriveEnableInterruptPtr dd offset DriveEnableInterrupt
DriverDisableInterruptPtr dd offset DriverDisableInterrupt
DriverISR2Ptr dd offset DriverISR2
DriverReserved1 dd 0
HSMSpecVerString dd 0
DriverPriorityQueuePtr dd 0
DriverDisableInterrupt2Ptr dd offset DriverDisableInterrupt2
DriverParameterBlockSize equ $ -
DriverParameterBlock
HSM Data Structures and Variables 3-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Table 3.1 Driver Parameter Block Field Descriptions

Offset Name Bytes Description

00h DriverParameterSize 4 Set this variable to the size of the defined
DriverParameterBlock structure before
calling <TSM>RegisterHSM . Since the
block format is strictly defined and its
size must remain constant, the MSM
uses this field to screen for invalid
parameter blocks. <TSM>RegisterHSM
will fail if this value is incorrect.

04h DriverStackPointer 4 When the operating system calls the
developer's DriverInit routine, it passes
certain information on the stack needed
by the MSM. DriverInit must set this
variable to the value of the stack pointer
(ESP) after it pushes the C registers
(EBP, EBX, ESI, EDI). During
<TSM>RegisterHSM , the MSM uses
this value to locate the parameters on
the stack.

08h DriverModuleHandle 4 The MSM sets this value when the
developer's DriverInit routine calls
<TSM>RegisterHSM . This handle is
used to identify the Network Loadable
Module and is used by the operating
system support routines to access and
manage information about the NLM. The
HSM's DriverRemove routine needs
this value when it calls
MSMDriverRemove .

0Ch DriverBoardPointer 4 The MSM sets this value when the
developer's DriverInit routine calls
<TSM>RegisterHSM . This field is
reserved for use by the MSM.

10h DriverAdapterPointer 4 The MSM sets this value when the
developer's DriverInit routine calls
MSMRegisterHardwareOptions . This
field is reserved for use by the MSM.

14h DriverConfigTemplatePtr 4 Set this variable to point to the driver's
configuration table template before
calling <TSM>RegisterHSM . The
configuration table is described later in
this chapter.
3-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

18h DriverFirmwareSize 4 (see the “Driver Firmware” section later
in this chapter)

1Ch DriverFirmwareBuffer 4 (see the “Driver Firmware” section later
in this chapter)

20h DriverNumKeywords 4 (see the “Driver Keywords” section later
in this chapter)

24h DriverKeywordText 4 (see the “Driver Keywords’ section later
in this chapter)

28h DriverKeywordTextLen 4 (see the “Driver Keywords” section later
in this chapter)

2Ch DriverProcessKeywordTab 4 (see “Driver Keywords” section later in
this chapter)

30h DriverAdapterDataSpaceSize 4 Set this field to the size of the
DriverAdapterDataSpace template
(described later in this chapter) before
calling <TSM>RegisterHSM .

34h DriverAdapterDataSpacePtr 4 Set this field to point to the
DriverAdapterDataSpace template
(described later in this chapter) before
calling <TSM>RegisterHSM .

38h DriverStatisticsTablePtr 4 Set this variable to the offset of the
DriverStatisticsTable from the top of the
DriverAdapterDataSpace template
before calling <TSM>RegisterHSM . The
statistics table and template are
described later in this chapter.

3Ch DriverEndOfChainFlag 4 Before calling
MSMRegisterHardwareOptions , set
this field to a nonzero value if the driver
supports shared interrupts and wants to
be placed at the end of the chain. This
field is used only if bit 5 is set in the
MLIDSharingFlags field of the
configuration table.

Table 3.1 Driver Parameter Block Field Descriptions continued

Offset Name Bytes Description
HSM Data Structures and Variables 3-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

40h DriverSendWantsECBs 4 Before calling
MSMRegisterHardwareOptions , set
this field to any nonzero value if the
DriverSend routine needs ECBs rather
than TCBs. This should be used by
intelligent bus master adapters that are
designed to be ECB aware. (see
Chapter 4)

44h DriverMaxMulticast 4 Before calling
MSMRegisterHardwareOptions , set
this field to the maximum number of
multicast addresses that the adapter can
handle. EtherTSM, TokenTSM, and
FDDITSM can accommodate an almost
unlimited number of multicast addresses
(limited only by server memory). If an
HSM can handle unlimited multicast
addresses, set to -1. (See also bits 9 and
10 definitions in the configuration table
MLIDFlags field later in this chapter.)

Table 3.1 Driver Parameter Block Field Descriptions continued

Offset Name Bytes Description
3-8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

48h DriverNeedsBelow16Meg 4 Before calling <TSM>RegisterHSM ,
drivers for Bus Master or DMA adapters
can set this field to any nonzero value if
the adapter can only communicate with
host memory below 16 megabytes. This
will inform the MSM to only allocate
buffers, RCBs, TCBs, and ECBs below
the 16 megabyte boundary if the system
already has more than 16 megabytes at
the time the driver loads.

If the driver is loaded on a system that
initially has less than 16 megabytes of
memory but will have more memory
added later using the server's
REGISTER MEMORY command, you
must use the BELOW16 keyword (see
Appendix A) on the load command line to
force the MSM to allocate memory below
16 megabytes.

If the driver preallocates more than 8
RCBs, the number of RCBs below 16
megabytes can be adjusted above the
default of 8, by using the BUFFERS16
keyword. The MSM allocates these at
initialization (see Appendix A).

4Ch DriverAESPtr 4 Set this field to point to the HSM's
DriverAES routine before calling
MSMScheduleAESCallBack . (If AES
callback events are not used, set this
field to zero.)

50h DriverCallBackPtr 4 Set this field to point to the HSM's
DriverCallBack routine before calling
MSMScheduleIntTimeCallBack . (If
interrupt level callback events are not
used, set this field to zero.)

54h DriverISRPtr 4 Set this field to point to the HSM's
DriverISR routine before calling
MSMSetHardwareInterrupt . (If
DriverPoll is used instead, set this field
to zero).

Table 3.1 Driver Parameter Block Field Descriptions continued

Offset Name Bytes Description
HSM Data Structures and Variables 3-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

58h DriverMulticastChangePtr 4 Set this field to point to the HSM's
DriverMulticastChange routine before
calling
MSMRegisterHardwareOptions . (If
multicast addressing is not supported,
set to zero.)

5Ch DriverPollPtr 4 Set this field to point to the HSM's
DriverPoll routine before calling
MSMEnablePolling . (If this routine is
not used, set to zero.)

60h DriverResetPtr 4 Set this field to point to the HSM's
DriverReset routine before calling
MSMRegisterHardwareOptions .

64h DriverSendPtr 4 Set this field to point to the HSM's
DriverSend routine before calling
MSMRegisterHardwareOptions .

68h DriverShutdownPtr 4 Set this field to point to the HSM's
DriverShutdown routine before calling
MSMRegisterHardwareOptions .

6Ch DriverTxTimeoutPtr 4 If using the RX-Net TSM, set this field to
point to the HSM's DriverTxTimeout
routine before calling
MSMRegisterHardwareOptions . (If
the RX-Net TSM is not used, set to zero.)

70h DriverPromiscuousChangePtr 4 Set this field to point to the HSM's
DriverPromiscuousChange routine
before calling
MSMRegisterHardwareOptions . (If
promiscuous mode is not supported, set
this field to zero.)

74h DriverStatisticsChangePtr 4 Set this field to point to the HSM's
DriverStatisticsChange routine before
calling
MSMRegisterHardwareOptions . (If
this optional procedure is not supported,
set this field to zero.)

Table 3.1 Driver Parameter Block Field Descriptions continued

Offset Name Bytes Description
3-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

78h DriverRxLookAheadChangePtr 4 Set this field to point to the HSM's
DriverRxLookAheadChange routine
before calling
MSMRegisterHardwareOptions . (If
this optional procedure is not supported,
set this field to zero.)

7Ch DriverManagementPtr 4 If a driver accepts management requests
from outside NLMs (HMI, BRIDGE, or
CSL), set this field to point to the
DriverManagement routine before
calling
MSMRegisterHardwareOptions . (If
this optional procedure is not supported,
set this field to zero.)

80h DriverEnableInterruptPtr 4 Set this field to point to the HSM's
DriverEnableInterrupt routine before
calling
MSMRegisterHardwareOptions . (If
this procedure is not supported, set this
field to zero.)

84h DriverDisableInterruptPtr 4 Set this field to point to the HSM's
DriverDisableInterrupt routine before
calling
MSMRegisterHardwareOptions . (If
this procedure is not supported, set this
field to zero.)

88 DriverISR2Ptr 4 Set this field to point to the HSM’s
DriverISR2 routine before calling
MSMSetHardwareInterrupt . If there is
no second interrupt, set this field to zero
(0).

DriverISR2Ptr, DriverDisableInterrupt2,
and MLIDCFG_Interrupt2 in the
configuration table must all be set the
same; either all of them are set or all of
them are zero.

8Ch DriverReserved 4 This field is reserved and must not be
modified by the HSM.

Table 3.1 Driver Parameter Block Field Descriptions continued

Offset Name Bytes Description
HSM Data Structures and Variables 3-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

90h HSMSpecVerString 4 Set this field to point to a version string
that describes the version that the HSM
is written to. This string is defined by
Novell as:

”HSM_ASPEC_VERSION: 3.31”.

Note: One space is required between
the colon and the first digit.

94h DriverPriorityQueuePtr 4 Set this field to point to the HSM’s
DriverPriorityQueueSupport routine.
This routine will be called by the TSM to
handle HSM priority packets when the
normal send path is congested. If not
used, set this field to zero (0). In either
case this field must be set before calling
MSMRegisterHardwareOptions .

98h DriverDisableInterrupt2Ptr 4 Set this field to point to the HSM’s
DriverDisableInterrupt2 routine. If
unused, set this field to zero (0).

Table 3.1 Driver Parameter Block Field Descriptions continued

Offset Name Bytes Description
3-12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

tion.
s.

eld

rve
e

 a

 can
Driver Configuration Table

The configuration table is a structure defined by the ODI specification. It
contains information about the driver and the adapter's hardware configura
The HSM must provide a template for initializing the configuration table field
The MSM creates a copy of the template for each loaded frame type. The
configuration table is shown on the following page. A description of each fi
follows the example.

The configuration table fields are used primarily during initialization to rese
hardware resources. All fields that can be modified from the command lin
when the driver is loaded, must be set to their default value before calling
MSMParseDriverParameters. Any field not used must be set to 0, unless
otherwise noted. The MSMParseDriverParameters routine collects
information entered from the command-line and/or interactively from the
operator console. Once the configuration table is filled in, the driver uses
MSMRegisterHardwareOptions to reserve the hardware resources.

Driver Frame Data Space

When DriverInit calls <TSM>RegisterHSM, the MSM allocates the Frame
Data Space and copies the configuration template into this area. For each
loaded frame type, there will be a separate Frame Data Space containing
separate configuration table. The MSM and TSM will pass a pointer to the
appropriate Frame Data Space when calling HSM procedures. The driver
also access the configuration tables using the MSMVirtualBoardLink
variable.
HSM Data Structures and Variables 3-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Figure 3-2 Frame and Adapter Data Space

Adapter Code Space

Frame Data Space

Frame Data Space

Physical
Board

Logical
Boards

Code and
Data Spaces

Frame Data Space

Frame Data Space

Adapter Data Space

802.3

EII

802.2

SNAP

Configuration Table

Configuration Table

Configuration Table

Configuration Table

Hardware Specific Vars
Statistics Table
3-14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example Template for the Driver Confi guration Table (based on the NE2000)

DriverParameterBlock Label Dword
.
.
.

DriverConfigTemplatePtr dd DriverConfigTemplate
.
.
.

;DriverParameterBlockEnd

DriverConfigTemplate Label Dword

MLIDCFG_Signature db 'HardwareDriverMLID'
db 8 dup (' ')

MLIDCFG_MajorVersion db 1
MLIDCFG_MinorVersion db 14
*MLIDNodeAddress db 6 dup (0FFh)
MLIDModeFlags dw 0010010001001001b
MLIDBoardNumber dw 0000
MLIDBoardInstance dw 0000
MLIDMaximumSize dd 00000000
MLIDMaxRecvSize dd 00000000
MLIDRecvSize dd 00000000
MLIDCardName dd 00000000
MLIDShortName dd DriverNICShortName
*MLIDFrameType dd 00000000
MLIDReserved0 dw 0000
MLIDFrameID dw 0000
MLIDTransportTime dw 1
MLIDRouteHandler dd 00000000
MLIDLineSpeed dw 10
MLIDLookAheadSize dw 0000
MLIDCFG_SGCount db 00
MLIDReserved1 db 00
MLIDPriority Sup dw 0000
MLIDReserved2 dd 00000000
MLIDMajorVersion db 00
MLIDMinorVersion db 00
MLIDFlags dw 0000000000000000b
*MLIDSendRetries dw 10
MLIDLink dd 00000000
MLIDSharingFlags dw 0000
*MLIDSlot dw 0000
*MLIDIOPortsAndLengths dw 0300h, 32, 0, 0
*MLIDMemoryDecode0 dd 00000000
*MLIDMemoryLength0 dw 0000
HSM Data Structures and Variables 3-15

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

*MLIDMemoryDecode1 dd 00000000
*MLIDMemoryLength1 dw 0000
*MLIDInterrupt db 3, 0FFh
*MLIDDMAUsage db 0FFh, 0FFh
MLIDResourceTag dd 00000000
MLIDConfig dd 00000000
MLIDCommandString dd 00000000
MLIDLogicalName db 18 dup (0)
MLIDLinearMemory0 dd 00000000
MLIDLinearMemory1 dd 00000000
*MLIDChannelNumber dw 0000
*MLIDBusTag dd 00000000
MLIDIOCfgMajorVersion db 1
MLIDIOCfgMinorVersion db 00

* These values may be configured from the load command line.
3-16 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Table 3.2 Configuration Table Field Descriptions

Offset Name Bytes Description

00h MLIDCFG_Signature 26 This field is a mandatory remnant. In pre-MLID
LAN drivers, this field contained a string which
indicated the start of the configuration table.
The string is “HardwareDriverMLID” followed
by exactly eight spaces. It must be included in
the table.

1Ah MLIDCFG_MajorVersion 1 This field must be set to the major version
number of the configuration table. The version
is controlled by Novell and is currently v1.14,
therefore, 1 is the major version number.

1Bh MLIDCFG_MinorVersion 1 This field must be set to the minor version
number of the configuration table. The version
is controlled by Novell and is currently v1.14,
therefore, 14 is the minor version number.

1Ch MLIDNodeAddress 6 When DriverInit calls <TSM>RegisterHSM ,
the MSM fills these bytes with FFh then checks
the command line for a node address override.
If an override address is found, the MSM
places the physical layer format of the address
in this field.

After the driver calls
MSMRegisterHardwareOptions , it must
check this field for an override.

If these bytes are not all FFh, an override
occurred and the HSM must set the physical
board's address to the value in this field. If
there was not an override, the HSM must place
the node address read from the hardware in
this field.
HSM Data Structures and Variables 3-17

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Once the driver calls MSMRegisterMLID , the
MSM places the physical layer format of the
node address in the MSMPhysNodeAddress
variable and sets the appropriate
MLIDModeFlag bits. This physical address
may be in canonical or noncanonical form.

(For more information, refer to
MLIDModeFlags, MSMPhysNodeAddress ,
and The Canonical and Noncanonical
Addressing supplement.)

22h MLIDModeFlags 2 See the bit map that follows this table for
MLIDModeFlags.

24h MLIDBoardNumber 2 The MSM sets this field to the board number
assigned by the LSL when DriverInit calls
MSMRegisterMLID . Logical board 0 is used
internally in the operating system. Drivers are
assigned logical board numbers 1 through 255.

26h MLIDBoardInstance 2 The MSM sets this field when the DriverInit
routine calls MSMRegisterHardwareOptions .
If the HSM is driving two adapters, all logical
boards associated with the first adapter would
have a value of 1 and all logical boards
associated with the second adapter would
have the value 2.
Note: Each controller on a multichannel
adapter is treated as a separate adapter.

28h MLIDMaximumSize 4 The MSM sets this field to the LSL's maximum
ECB buffer size during <TSM>RegisterHSM .
The HSM may lower this value prior to calling
MSMRegisterMLID . During
MSMRegisterMLID , the TSM will modify this
size if the topology requires a smaller
maximum packet size. (See the “Maximum
Packet Size” section following this table.)

2Ch MLIDMaxRecvSize 4 The MSM and TSM coordinate to initialize this
field during MSMRegisterMLID . The HSM
must not modify this field. (See the “Maximum
Packet Size” section following this table.)

Table 3.2 Configuration Table Field Descriptions continued

Offset Name Bytes Description
3-18 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

30h MLIDRecvSize 4 The MSM and TSM coordinate to initialize this
field during MSMRegisterMLID . The HSM
must not modify this field. (See the “Maximum
Packet Size” section following this table.)

34h MLIDCardName 4 The HSM must either set this field to 0 (see
below), or point to a byte-length preceded, null-
terminated, ASCII string that is identical to the
description string in the linker definition file
(see Appendix A).

 For example: 14, “ NetWare NE2000 ”, 0

If this field is initialized to zero, the MSM will
extract the description string from the NLM
header (derived from the linker definition file)
when the HSM's DriverInit routine calls
<TSM>RegisterHSM . This way, only one
description string must be maintained.

38h MLIDShortName 4 The HSM must set this field to point to a byte-
length preceded, null-terminated, ASCII string
that describes the adapter in eight bytes or less
(for example: 6, “NE2000”, 0). The string is
usually the name of the <HSM>.LAN file.

3Ch MLIDFrameType 4 The MSM sets this field when the HSM's
DriverInit routine calls
MSMRegisterHardwareOptions . It contains a
pointer to a string that describes the HSM's
frame type. (See the Frame Types and
Protocol IDs supplement.)

40h MLIDReserved0 2 This field is reserved for future use, and must
be set to 0.

42h MLIDFrameID 2 The MSM sets this field when the DriverInit
routine calls MSMRegisterHardwareOptions .
It contains the frame type ID number. (See the
Frame Types and Protocol IDs supplement.)

44h MLIDTransportTime 2 This field indicates the time (in ticks) it takes
the adapter to transmit a 576-byte packet. Most
HSMs set this field to 1. This field cannot be set
to 0.

Table 3.2 Configuration Table Field Descriptions continued

Offset Name Bytes Description
HSM Data Structures and Variables 3-19

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

46h MLIDRouteHandler 4 This field is used by the TSM and the source
routing module, ROUTE.NLM. The HSM must
set this field to 0 and then not modify it. If the
HSM is using the
Token-Ring or FDDI TSM, the field can be
modified by ROUTE.NLM, but should not be of
any concern to the HSM.

4Ah MLIDLineSpeed 2 This field contains the speed of the line driver.
This value is normally specified in megabits per
second (Mbps). If the line speed is less than 1
Mbps or if it is a fractional number, the value of
this field can be defined in kilobits per second
(Kbps) by setting the most significant bit to 1.
This field is undefined if it is set to 0.

For example:

 If the speed of the line driver is 10 Mbps, put
10 (decimal) in this field.

 If the speed is 2.5 Mbps, then the value of this
field is 2500 (decimal) logically ORed with
8000h (most significant bit is 1 for Kbps).

4Ch MLIDLookAheadSize 2 The TSM sets this variable. This is the amount
of data required by protocol stacks when
previewing received packets. This size may be
dynamically changed and can be up to a
maximum of 128 bytes. See also
DriverRxLookAheadChange .

The variable, MSMMaxFrameHeaderSize , is
equal to this value plus the maximum media
header size.

4Eh MLIDCFG_SGCount 1 The HSM sets this variable. This field contains
the maximum number of scatter/gather
elements the adapter is capable of handling.
This field is only valid if the
DriverSupportsPhysFrags bit in the
MLIDModeFlags field is set.

Note : The minimum value is 2. If set less than
2, the MSM will set it to 17 (16 ECB fragments
and 1 MAC header).

Table 3.2 Configuration Table Field Descriptions continued

Offset Name Bytes Description
3-20 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

4Fh MLIDReserved1 1 This field is reserved for future use and must
be set to 0.

50h MLIDPrioritySup 2 The number of priority levels that the HSM can
handle. This field has a maximum of 7 priorities
(1-7). Zero indicates no priority packet support.
The HSM can set this field to a value from 0 to
7.

52h MLIDReserved2 4 This field is reserved for future use and must
be set to 0.

56h MLIDMajorVersion 1 This field may contain the major version
number of the LAN driver, or be set to 0 (see
below). If it contains the version number it must
match the version number specified with the
“version” keyword in the linker definition file
(see Appendix A).

A second option is to initialize this field to zero,
in which case the MSM will extract the major
version number from the NLM header (derived
from the linker definition file) when the
DriverInit routine calls <TSM>RegisterHSM .
This way, only one version string must be
maintained.

57h MLIDMinorVersion 1 This field contains the minor version number of
the LAN driver. The number must match the
version number specified with the “version”
keyword in the linker definition file (see
Appendix A).

If the MLIDMajorVersion field is initialized to
zero, the MSM will extract the minor version
number from the NLM header (derived from the
linker definition file) when the HSM's DriverInit
routine calls <TSM>RegisterHSM . This way,
only one version string must be maintained.

58h MLIDFlags 2 See the MLIDFlags bit map following this table.

Table 3.2 Configuration Table Field Descriptions continued

Offset Name Bytes Description
HSM Data Structures and Variables 3-21

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

5Ah MLIDSendRetries 2 Set this field to a value indicating the number of
times the HSM should retry sending a packet
before aborting the transmission. This retry
count can be any value, but it might be
overwritten by a value entered on the server
console at load time.

5Ch MLIDLink 4 This field is used by the OS and must not be
changed.

60h MLIDSharingFlags 2 See the MLIDSharingFlags bit map following
this table.

62h MLIDSlot 2 For Micro Channel, EISA, PCI and other
busses which allow for identification of where
the adapter is placed, this field holds the
Hardware Instance Number (HIN). This is a
system-wide unique handle for the device
which is returned by the MSMSearchAdapter
call. This value will normally correspond to the
number silk-screened on the motherboard or
stamped on the chassis of the computer, and is
here solely to help the user identify the adapter.
In cases where there are integrated
motherboard devices, PCI BIOS v2.0 devices,
PCI BIOS v2.1 adapters with multiple devices
or functions, PnP ISA devices, or a conflict of
physical slot numbers, the instances will be
assigned a unique value. Set to minus 1 if not
used (FFFFh).

Note: In the past the unused value for this field
was 0, which was a reserved value for
MicroChannel and EISA adapters. Older
MicroChannel and EISA based adapters may
still use 0 to indicate unused, however when a
driver is being updated it must be changed to
FFFFh.

64h MLIDIOPortsAndLengths 8 This field contains the I/O port information as
described below. (Set to zero if not used.)

(64h) (MLIDIOPort0) (2) Primary base I/O port.

(66h) (MLIDIORange0) (2) Number of I/O ports starting at MLIDIOPort0.

(68h) (MLIDIOPort1) (2) Secondary base I/O port.

Table 3.2 Configuration Table Field Descriptions continued

Offset Name Bytes Description
3-22 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

(6Ah) (MLIDIORange1) (2) Number of I/O ports starting at MLIDIOPort1.

6Ch MLIDMemoryDecode0 4 This field contains the absolute primary
memory address used by the adapter. If not
used, set this field to 0. (See the note in the
MLIDLinearMemory0 description at offset
9Ah.)

70h MLIDMemoryLength0 2 If bit #15 of the MLIDSharingFlags is set, this
field defines the number of pages of memory
decoded at MLIDMemoryDecode0. If bit #15 is
clear, this field defines the number of
paragraphs (16 bytes) of memory decoded at
MLIDMemoryDecode0. If
MLIDMemoryDecode0 is not defined, set this
field to 0.

Note: The size of a page of memory is
determined by the processor the code is
assembled on; i.e. Intel is 4k.

72h MLIDMemoryDecode1 4 This field contains the absolute secondary
memory address used by the adapter. If not
used, set this field to 0. (See the note in the
MLIDLinearMemory1 description at offset
9Eh.)

76h MLIDMemoryLength1 2 If bit #15 of the MLIDSharingFlags is set, this
field defines the number of pages of memory
decoded at MLIDMemoryDecode1. If bit #15 is
clear, this field defines the number of
paragraphs (16 bytes) of memory decoded at
MLIDMemoryDecode1. If
MLIDMemoryDecode1 is not defined, set this
field to 0.

Note: The size of a page of memory is
determined by the processor the code is
assembled on; i.e. Intel is 4k.

78h MLIDInterrupt 2 This field contains interrupt information as
described below. (Set to FFh if not used.)

(78h) (MLIDInterrupt0) (1) Primary interrupt vector number.

(79h) (MLIDInterrupt1) (1) Secondary interrupt vector number.

Table 3.2 Configuration Table Field Descriptions continued

Offset Name Bytes Description
HSM Data Structures and Variables 3-23

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

7Ah MLIDDMAUsage 2 This field contains DMA channel information as
described below. (Set to FFh if not used.)

(7Ah) (MLIDDMAUsage0) (1) Primary DMA channel.

(7Bh) (MLIDDMAUsage1) (1) Secondary DMA channel.

7Ch MLIDResourceTag 4 This field is set by the MSM and contains a
pointer to the IOResourceTag.

80h MLIDConfig 4 This field is set by the LSL and contains a
pointer to the LSL's copy of the configuration
table. This is used only by the LSL.

84h MLIDCommandString 4 This field is set by the MSM to point to a
structure containing two fields. The first field is
a forward link to the next structure if there is
one. The second field is a pointer to a NULL-
terminated string containing the parameters
entered by the user on the command line.
Normally, there will be only one node in the
linked list, but if there are more, the command
line is the concatenation of all of them. Bits 9
and 10 of the MLIDSharingFlags bit are used in
conjunction with this field.

88h MLIDLogicalName 18 HSMs must not use this field. It contains the
logical name of the LAN driver if given one at
load time. For example:

 load NE2000 NAME=“___________”

9Ah MLIDLinearMemory0 4 The operating system fills in this field with the
linear address of MLIDMemoryDecode0 when
the HSM's DriverInit routine calls
MSMRegisterHardwareOptions .

Do NOT convert MLIDMemoryDecode0 to the
logical or physical address. If shared memory
must be accessed before the hardware options
are registered, refer to the
MSMReadPhysicalMemory and
MSMWritePhysicalMemory support routine
descriptions.

Table 3.2 Configuration Table Field Descriptions continued

Offset Name Bytes Description
3-24 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

9Eh MLIDLinearMemory1 4 The operating system fills in this field with the
linear address of MLIDMemoryDecode1 when
the HSM's DriverInit routine calls
MSMRegisterHardwareOptions .

If shared memory must be accessed before the
hardware options are registered, refer to the
MSMReadPhysicalMemory and
MSMWritePhysicalMemory support routine
descriptions.

A2h MLIDChannelNumber. 2 This field is used for multichannel adapters. It
holds the channel number of the NIC to use.
The channel number can be specified when a
driver is loaded using the “channel=#” keyword
(where # is any value greater than zero). Set
this field to zero if multichannel are not used.

A4h MLIDBusTag 4 Pointer to an architechure-dependent value,
which specifies the bus on which the adapter is
found. Set this field before calling
MSMRegisterHardwareOptions . The value
placed in this field is returned by
SearchAdapter unless the board is Legacy
ISA, in which case it is set to zero.

A8h MLIDIOCfgMajorVersion 1 This field must be set to the major version
number of the I/O configuration part of the
configuration table. The current major version
number is 1.

A9h MLIDIOCfgMinorVersion 1 This field must be set to the minor version
number of the I/O configuration part of the
configuration table. The current minor version
number is 0.

Table 3.2 Configuration Table Field Descriptions continued

Offset Name Bytes Description
HSM Data Structures and Variables 3-25

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MLIDModeFlags Bit Map

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1

Table 3.3 MLIDModeFlag Descriptions

Bit Description

15, 14 The MSM controls these bits. The bits indicate whether the MLIDNodeAddress field of the
configuration table contains a canonical or noncanonical address.

Bit 15 indicates if the node address format is configurable. If this bit is set, the format is
configurable and the HSM must use the MSMPhysNodeAddress variable instead of the
configuration table MLIDNodeAddress to obtain the physical layer node address. (For OS
versions later than 3.11, the MSM always sets bit 15.)

Bit 14 indicates whether MLIDNodeAddress contains the canonical or noncanonical form
of the node address. The state of bit 14 is only defined when bit 15 is set.

The bit 15 and 14 combinations are:

 00 = MLIDNodeAddress format is unspecified. The node address is assumed to be in

 the physical layer's native format -- MSMPhysNodeAddress is not used.

 01 = This is an illegal value and must not occur.

 10 = MLIDNodeAddress is canonical -- use MSMPhysNodeAddress .

 11 = MLIDNodeAddress is non-canonical -- use MSMPhysNodeAddress .

(See also MLIDNodeAddress, MSMPhysNodeAddress , and the Canonical and
Noncanonical Addressing supplement.)

13 The HSM must set this bit if it supports Promiscuous Mode.

12 This bit (DriverSupportsPhysFrags) is set by the HSM to inform the TSM, MSM and
protocol stacks that the HSM needs ECB fragment pointers physically addressed as
described in chapter 5. Public dwords PhysicalToLogical and LogicalToPhysical must no
longer be used to translate fragment addresses. Current workstation OS’s and future
NetWare server OS’s that support these HSM’s may not be able to support these
conversion calls. Typically, bus master adapter HSM’s need physical addresses to ECB
fragment pointers and control information in memory.

10 The HSM must set this bit if it can handle fragmented RCBs.

(RCBs are described in Chapter 4.)

8 SMP Bit - The MSM sets this bit if the MSM and TSM support Symmetrical Multi-
processing.
3-26 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

6 The TSM sets this bit to indicate raw sends are supported. Refer to the TCB section of
Chapter 4 for information on raw sends. (RX-Net does not support raw sends.)

4 CSL Compliant Bit - The MLID or HSM sets this bit if the supported data link protocol
requires connection management through the Call Support Layer (CSL) interface. Typical
Wide Area Network data link protocols such as Frame Relay, PPP, and X.25 are
connection oriented and rely upon network layer protocol (IPX, IP, etc.) interaction to
establish, maintain and terminate connections to remote peers. The CSL provides
extensions to the ODI allowing this connection management interaction between network
and data link layer protocols. The CSL Compliant Bit must not be set by connectionless
data link protocols, such as Ethernet, Token-Ring, etc. Refer to the “NetWare WAN ODI
Specification” for a complete description of the CSL and WAN HSM interfaces (Part No.
107-000045-001).

3 The TSM sets this bit if the HSM supports multicast addressing.

2 Formerly the DXFer (dependability bit) - This bit is no longer used and must be set to 0.

1 This bit has been retired and must be set to 0. It was used as the DriverUsesDma bit in
the NetWare 286 environment, but has no meaning in later environments.

0 This bit must be set to 1.

Table 3.3 MLIDModeFlag Descriptions continued

Bit Description
HSM Data Structures and Variables 3-27

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MLIDFlags Bit Map

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0

Table 3.4 MLIDSFlags Bit Map Fields
Bit Description

12 The HSM sets this bit during initialization if the following conditions are met:

The HSM has provided a priority queue service support routine (such as
DriverPriorityQueueSupport).

The HSM has set the MLIDPrioritySup field to something other than 0.

Note: The HSM may set/clear this bit to enable /disable priority support as needed.

10, 9 These bits are used to indicate different support mechanisms for multicast filtering and
multicast format. These bits are only valid if bit 3 of the MLIDModeFlags is set, indicating
that the MLID supports multicast addressing.

Set bit 10 if group addressing is supported by specialized adapter hardware (such as
hardware utilizing CAM memory). If set, DriverMulticastChange receives a pointer to the
TSM maintained multicast address table in ESI and the number of addresses in ECX (this
is the default method for the Ethernet TSM).

Note: If a driver that normally defaults to using functional addresses also supports group
addressing and sets bit 10, it will receive both functional and group addresses.

The state of bit 9 is only defined if bit 10 is set. Set bit 9 if the adapter provides 100%
filtering of group addresses and the TSM does not need to perform any checking. The
HSM can dynamically set and reset bit 9. For example, the TSM may need to filter group
addresses because of insufficient CAM memory.

Note: Bit 9 is not used by ECB aware HSMs; ECB aware HSMs must do their own filtering
of multicast addresses.
3-28 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

The values for the bit 10 and 9 combinations are:

 00 =The multicast address format defaults to that of the LAN medium.

 Ethernet => Group Addressing

 Token-Ring => Functional Address

 FDDI => Group Addressing

 01 =This is an illegal value and must not occur.

 10 =Group addressing is supported by a specialized adapter, but the TSM must filter the

 addresses.

 11 =Group addressing is supported by a specialized adapter, and TSM checking is not

 required.

8 Set to 1 if the HSM supports HUB Management

0-2 Formerly the Bus Flags, these bits are no longer used and must be set to 0. There are
several new MSM procedures listed in Chapter 7 to handle bus information, such as
MSMSearchAdapter .

Table 3.4 MLIDSFlags Bit Map Fields
Bit Description
HSM Data Structures and Variables 3-29

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MLIDSharingFlags Bit Map

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0

Table 3.5 MLIDSharingFlags Bit Map
Bit # Description

15 This bit signifies when set, that the values in the fields MLIDMemoryLength0 and
MLIDMemoryLength1, contain the number of pages of memory used by the adapter. For
example, on Intel platforms, 4K pages allows a maximum of 256 MB of shared memory to
be used by the adapter.

When cleared, this bit signifies that the values in fields MLIDMemoryLength0 and
MLIDMemoryLength1 contain the number of paragraphs (16 bytes) of memory used by
the adapter.

10 Bits 10 and 9 are currently used only by the NetWare Server install program.

If bit 10 is zero and bit 9 is zero, the install program gets information from the system
IOCONFIG structure and places it in the AUTOEXEC.NCF file.

If bit 10 is zero and bit 9 is set, the install program gets the information entered by the user
on the command line and merges it with the information from the system IOCONFIG
structure and places it in the AUTOEXEC.NCF file.

If bit 10 is set, the install program ignores bit 9 and places only the information entered by
the user on the command line in the AUTOEXEC.NCF file.

9 Bits 10 and 9 are currently used only by the NetWare Server install program.

If bit 10 is zero and bit 9 is zero, the install program gets information from the system
IOCONFIG structure and places it in the AUTOEXEC.NCF file.

If bit 10 is zero and bit 9 is set, the install program gets the information entered by the user
on the command line and merges it with the information from the system IOCONFIG
structure and places it in the AUTOEXEC.NCF file. (The user must enter a value for every
field used by the IOCONFIG structure.) Bit 9 is set by the MSM when a valid command
line is passed to DriverInit .

8 Set to 1 if the adapter can share DMA channel 1.

7 Set to 1 if the adapter can share DMA channel 0.

6 Set to 1 if the adapter can share interrupt 1.

5 Set to 1 if the adapter can share interrupt 0.

4 Set to 1 if the adapter can share memory range 1.

3 Set to 1 if the adapter can share memory range 0.
3-30 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

2 Set to 1 if the adapter can share I/O port 1.

1 Set to 1 if the adapter can share I/O port 0.

0 Set to 1 if the adapter is currently shut down.

Table 3.5 MLIDSharingFlags Bit Map
Bit # Description
HSM Data Structures and Variables 3-31

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

um

s
ow
Maximum Packet Size The MLIDMaximumSize field of the configuration table is set to the LSL's
maximum ECB buffer size during <TSM>RegisterHSM (this defaults to 4K
but can be changed in the STARTUP.NCF file to a maximum of 24K). The
HSM could lower this value prior to calling MSMRegisterMLID . During this
procedure, the TSM alters the size if the topology requires a smaller maxim
packet size. The TSM also sets the MLIDMaxRecvSize and MLIDRecvSize.
After MSMRegisterMLID returns, drivers for intelligent adapters may pas
the maximum size to the hardware if required. The following table shows h
these values are determined.

.

Frame Type MLIDMaximumSize MLIDMaxRecvSize MLIDRecvSize

Arcnet Maximum ECB Buffer Size Maximum ECB Buffer
Size

Maximum ECB
Buffer Size

Ethernet 802.3 Maximum ECB Buffer Size
OR 1514 (whichever is less)

MLIDMaximumSize
(minus 14)

MLIDMaximum-
Size (minus 14)

Ethernet 802.2 Maximum ECB Buffer Size
OR 1514 (whichever is less)

MLIDMaximumSize
(minus 17)

MLIDMaximum-
Size (minus 18)

Ethernet II Maximum ECB Buffer Size
OR 1514 (whichever is less)

MLIDMaximumSize
(minus 14)

MLIDMaximum-
Size (minus 14)

Ethernet SNAP Maximum ECB Buffer Size
OR 1514 (whichever is less)

MLIDMaximumSize
(minus 22)

MLIDMaximum-
Size (minus 22)

Token-Ring 802.2 Maximum ECB Buffer Size
OR the maximum size the
adapter can handle
(whichever is less)

MLIDMaximumSize
(minus 17)

MLIDMaximum-
Size (minus 48)

Token-Ring SNAP Maximum ECB Buffer Size
OR the maximum size the
adapter can handle
(whichever is less)

MLIDMaximumSize
(minus 22)

MLIDMaximum-
Size (minus 52)

FDDI 802.2 Maximum ECB Buffer Size
OR 4491 (whichever is less)

MLIDMaximumSize
(minus 16)

MLIDMaximum-
Size (minus 47)

FDDI SNAP Maximum ECB Buffer Size
OR 4491 (whichever is less)

MLIDMaximumSize
(minus 21)

MLIDMaximum-
Size (minus 51)
3-32 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 a

e-
ver,

each
Example If the maximum ECB buffer size = 8192 bytes and the Token-
Ring adapter can handle 4096 bytes, then the Token-Ring 802.2
values are calculated as follows:

MLIDMaximumSize = 4096
MLIDMaxRecvSize
The maximum packet size minus the headers if the source
routing header is not included.

= 4096 – MAC header (14) – 802.2 Type I LLC header (3)
= 4079

MLIDRecvSize
The maximum packet size minus the headers if the source
routing header

 (SRT)* is included.
= 4096 – MAC header (14) – 802.2 Type II LLC header (4) –
Source

Routing header (30)
 = 4048

* Refers to the IEEE SRT Specification.

Driver Adapter Data Space

The HSM must define and initialize a structure containing data specific to
particular physical board. This structure is called the
DriverAdapterDataSpaceTemplate. The developer determines what hardwar
specific fields are needed in order to drive a particular physical board; howe
the structure must contain the DriverStatisticsTable. The statistics table is
defined by the ODI specification. The following page shows the template
format and fields.

When the DriverInit routine calls MSMRegisterHardwareOptions, the
MSM allocates the Adapter Data Space and creates a copy of the driver's
template in this area. There will be one Adapter Data Space allocated for
physical board, regardless of the number of frame types supported.
HSM Data Structures and Variables 3-33

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ters
ory”
wing
Figure 3-3 Frame and Adapter Data Space

Driver Statistics Table

The statistics table contains various diagnostic counters. All statistics coun
shown must be present in the table, however, only those marked “mandat
are required to be supported. These counters can be grouped into the follo
categories.

• Generic Statistics Counters

 - Standard Counters

 - Media Specific Counters

• Custom Statistics Counters

Adapter Code Space

Frame Data Space

Frame Data Space

Physical
Board

Logical
Boards

Code and
Data Spaces

Frame Data Space

Frame Data Space

Adapter Data Space

802.3

EII

802.2

SNAP

Configuration Table

Configuration Table

Configuration Table

Configuration Table

Hardware Specific Vars
Statistics Table
3-34 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Driver Adapter Data Space and Statistics Table Template

DriverAdapterDataSpace struc
.
.
.

{*** Hardware Specific Variables ***]
.
.
.

DriverStatisticsTable db 0 dup (?) ; (Label)

StatMajorVersion db 3
StatMinorVersion db 0

NumGenericCounters dw (GenericEnd - GenericBegin) / 4
CounterMask0 dd

11111011000011111110111111111111b

GenericBegin db 0 dup (?) ; (Label)
TotalTxPacketCount dd 0 ; TSM (mandatory)
TotalRxPacketCount dd 0 ; TSM (mandatory)
NoECBAvailableCount dd 0 ; TSM (mandatory)
PacketTxTooBigCount dd 0 ; TSM (mandatory)
Reserved1 dd 0 ; (reserved)
PacketRxOverflowCount dd 0 ; HSM (optional)
PacketRxTooBigCount dd 0 ; TSM (mandatory)
PacketRxTooSmallCount dd 0 ; TSM (optional)
TotalTxMiscCount dd 0 ; HSM (mandatory)
TotalRxMiscCount dd 0 ; HSM (mandatory)
RetryTxCount dd 0 ; HSM (optional)
ChecksumErrorCount dd 0 ; HSM (optional)
HardwareRxMismatchCount dd 0 ; TSM (optional)
TotalTxOKByteCountLow dd 0 ; TSM (mandatory)
TotalTxOKByteCountHigh dd 0 ; TSM (mandatory)
TotalRxOKByteCountLow dd 0 ; TSM (mandatory)
TotalRxOKByteCountHigh dd 0 ; TSM (mandatory)
TotalGroupAddrTxCount dd 0 ; TSM (mandatory)
TotalGroupAddrRxCount dd 0 ; TSM (mandatory)
AdapterResetCount dd 0 ; HSM (mandatory)
AdapterOprTimeStamp dd 0 ; MSM (mandatory)
QDepth dd 0 ; TSM (mandatory)
.
.
.

[*** Media Specific Statistics Counters ***]
.
.
.

GenericEnd db 0 dup (?); (Label)
NumCustomCounters dw (CustomEnd - CustomBegin) / 4
HSM Data Structures and Variables 3-35

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

CustomBegin db 0 dup (?); (Label)
CustomCounter1 dd 0
.
.
.
CustomCounterN dd 0

CustomEnd db 0 dup (?); (Label)
CustomCounterStrings dd offset CustomStrings

 DriverAdapterDataSpace ends

 DriverAdapterDataSpaceTemplate DriverAdapterDataSpace <>

Offset Name Bytes Description

00h StatMajorVersion 1 This field contains the major version number of
the statistics table. The version number is
controlled by Novell and is currently v3.00,
therefore 3 is the major version number

01h StatMinorVersion 1 This field contains the minor version number of
the statistics table. The version number is
controlled by Novell and is currently v3.00,
therefore 00 is the minor version number.

02h NumGenericCounters 2 This field contains the total number of generic
counters (standard and media-specific
counters) present in the statistics table but not
necessarily supported. This number must also
include any additional counter masks used
except CounterMask0. (See the next field
description for more information on counter
masks.)

04h CounterMask0 4 This field contains a bit mask indicating which
counters of the first 32 standard and
media-specific portions of the statistics table
are implemented in the driver. If the bit is zero
the counter is supported. (see also the bit map
definition following this table).

If there are more than 32 standard and
media-specific counters (as with Token-Ring),
a second mask (CounterMask1) is placed after
the 32nd counter at offset 88h to indicate the
status of the next set of 32 counters.
3-36 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

08h TotalTxPacketCount 4 The TSM increments this counter whenever a
packet is successfully transmitted by the
adapter.

0Ch TotalRxPacketCount 4 The TSM increments this counter whenever a
packet is successfully received by the adapter.

10h NoECBAvailableCount 4 The TSM increments this counter if it cannot
obtain an RCB for a received packet.

14h PacketTxTooBigCount 4 The TSM increments this counter whenever a
packet is too big for the adapter to transmit.

18h Reserved1 4 This field is reserved for use by the MSM, but
must be initialized to zero.

1Ch PacketRxOverflowCount 4 The HSM may use this counter to indicate the
number of times the adapter's receive buffers
overflowed causing subsequent incoming
packets to be discarded.

20h PacketRxTooBigCount 4 The TSM increments this counter whenever a
packet is received that is too large for the
provided receive buffer(s).

24h PacketRxTooSmallCount 4 Some TSMs increment this counter if a packet
is received that is too small for media
definitions. Currently only the RX-Net TSM
maintains this counter.

28h TotalTxMiscCount 4 The HSM must increment this counter if a fatal
transmit error occurs and there is no other
appropriate standard counter to increment in
the generic portion of the statistics table. The
HSM may also increment a media specific or
custom counter for this event.

2Ch TotalRxMiscCount 4 The HSM must increment this counter if a fatal
receive error occurs and there is no other
appropriate standard counter to increment in
the generic portion of the statistics table. The
HSM may also increment a media specific or
custom counter for this event.

30h RetryTxCount 4 The HSM may use this counter to indicate the
number of times packet transmissions were
retried due to failure.

34h ChecksumErrorCount 4 The HSM may use this counter to indicate the
number of times a packet was received with
corrupt data (CRC errors...etc).

Offset Name Bytes Description
HSM Data Structures and Variables 3-37

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

38h HardwareRxMismatchCount 4 Some TSMs increment this counter when a
packet is received that does not pass length
consistency checks. Currently only the
Ethernet TSM maintains this counter.

3Ch TotalTxOKByteCountLow 4 The number of bytes including low level
headers successfully transmitted. The MSM
maintains this counter.

40h TotalTxOKByteCountHigh 4 Upper 32-bits of the TotalTxOKByteCount
counter.

44h TotalRxOKByteCountLow 4 The number of bytes including low level
headers successfully received. The MSM
maintains this counter.

48h TotalRxOKByteCountHigh 4 Upper 32-bits of the TotalRxOKByteCount
counter

4Ch TotalGroupAddrTxCount 4 The number of packets transmitted with a
Group destination address (maintained by the
MSM).

50h TotalGroupAddrRxCount 4 The number of packets received with a Group
destination address (maintained by the MSM).

54h AdapterResetCount 4 The number of times the adapter was reset due
to internal failure or other calls to the
DriverReset routine. The HSM must maintain
this counter.

58h AdapterOprTimeStamp 4 This field contains a time stamp indicating
when the adapter last changed operational
state (load, shutdown, reset...) (maintained by
the MSM).

5Ch QDepth 4 This field reflects the number of Transmit ECBs
that are queued for the adapter. The TSM
maintains this field.

60h (Media Specific Counters) 4 each See the “Media Specific Counters” section
following this table. The HSM must maintain
these counters.

??h NumCustomCounters. 2 This field contains the number of custom
counters defined by the HSM. For example, a
counter could be created to keep track of the
number of fatal retransmissions. Each custom
counter must have an associated string that
can be accessed through the CustomStrings
area (defined below)

Offset Name Bytes Description
3-38 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

??h CustomCounter1 4 each These fields contain custom counters that can
be configured differently for the specific needs
of the HSM or adapter.

??h CustomCounterStrings 4 This field contains a pointer to the
CustomStrings area. The first word of the
CustomStrings area contains the size of the
area in bytes. Each string in this area must be
null-terminated, and the table of strings is
terminated by two nulls. The string order must
correspond with the custom counters.

CustomStrings label dword
CustomStrSize dw (CustomStrEnd -
 CustomStrings)
 db 'Custom String 1', 0
 db 'Custom String 2', 0
 db 'Custom String 3', 0
 db 'Custom String N',
0
 db 0, 0
 CustomStrEnd db 0 dup (?)

Offset Name Bytes Description
HSM Data Structures and Variables 3-39

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

orted
ters

f 32
d to

for
he

et to
n.
CounterMask Bit Maps

The CounterMask0 field of the statistics table is a bit mask indicating which
counters in the standard and media-specific portions of the table are supp
by the driver. If there are more than 32 standard and media-specific coun
(as with Token-Ring and FDDI), a second bit mask (CounterMask1) is placed
after the 32nd counter at offset 88h to indicate the status of the next set o
counters. This will continue every 32 counters as more statistics are adde
the table in the future.

The Status field in the table below indicates which module is responsible
maintaining the counter and whether it is optional or mandatory. Most of t
standard counters are maintained by the TSM or MSM. However, several
counters must be maintained by the HSM and several may be optionally
supported. A bit value of 0 means the counter is supported, but must be s
1 if not supported. The MSM and TSM will clear the bits that they maintai

CounterMask0

Bit# Counter Status

31 TotalTxPacketCount TSM (mandatory)
30 TotalRxPacketCount TSM (mandatory)
29 NoECBAvailableCount TSM (mandatory)
28 PacketTxTooBigCount TSM (mandatory)
27 Reserved1 (reserved)
26 PacketRxOverflowCount HSM (optional)
25 PacketRxTooBigCount TSM (mandatory)
24 PacketRxTooSmallCount TSM (optional)
23 TotalTxMiscCount HSM (mandatory)
22 TotalRxMiscCount HSM (mandatory)
21 RetryTxCount HSM (optional)
20 ChecksumErrorCount HSM (optional)
19 HardwareRxMismatchCount TSM (optional)
18 TotalTxOKByteCountLow TSM (mandatory)
17 TotalTxOKByteCountHigh TSM (mandatory)
16 TotalRxOKByteCountLow TSM (mandatory)
15 TotalRxOKByteCountHigh TSM (mandatory)
14 TotalGroupAddrTxCount TSM (mandatory)
13 TotalGroupAddrRxCount TSM (mandatory)
12 AdapterResetCount HSM (mandatory)
11 AdapterOprTimeStamp MSM (mandatory)

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3-40 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

is
10 QDepth TSM (mandatory)

Bits 9...0 of CounterMask0 and HSM (mandatory)
continuing through CounterMask1 bits
 31... (if needed) correspond to the
media-specific counters shown below.

(Any bit not used must be set to 1)

Media Specific Counters

The statistics table must contain the media specific counters defined in th
section for the topology.

Token-Ring

ACErrorCounter dd 0 ; 60h Mandatory
AbortDelimiterCounter dd 0 ; 64h Mandatory
BurstErrorCounter dd 0 ; 68h Mandatory
FrameCopiedErrorCounter dd 0 ; 6Ch Mandatory
FrequencyErrorCounter dd 0 ; 70h Mandatory
InternalErrorCounter dd 0 ; 74h Mandatory
LastRingStatus dd 0 ; 78h Mandatory
LineErrorCounter dd 0 ; 7Ch Mandatory
LostFrameCounter dd 0 ; 80h Mandatory
TokenErrorCounter dd 0 ; 84h Mandatory

CounterMask1** dd
00001111111111111111111111111111b
UpstreamNodeHighDword dd 0 ; 8Ch Mandatory
UpstreamNodeLowWord dd 0 ; 90h Mandatory
LastRingID dd 0 ; 94h Mandatory
LastBeaconType dd 0 ; 98h Mandatory

**Important: CounterMask1 is included when calculating the
 NumGenericCounters field of the statistics table.
HSM Data Structures and Variables 3-41

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Table 3.6 Media Specific Counters for Token Ring
Offset Name Bytes Description

60h ACErrorCounter 4 This counter is incremented when a station
receives an AMP or SMP frame with A equal to C
equal to 0, and then receives another SMP frame
with A equal to C equal to 0 without first receiving
an AMP frame.

64h AbortDelimiterCounter 4 This counter is incremented when a station
transmits an abort delimiter while transmitting.

68h BurstErrorCounter 4 This counter is incremented when a station
detects the absence of transitions for five half-bit
times (burst-five error). Note that only one station
detects a burst-five error because the first station
to detect it converts it to a burst-four.

6Ch FrameCopiedErrorCounter 4 This counter is incremented when a station
recognizes a frame addressed to its specific
address and detects that the FS field A bits are set
to 1 indicating a possible line hit or duplicate
address.

70h FrequencyErrorCounter 4 This counter is incremented when the frequency
of the incoming signal differs from the expected
frequency by more than that specified in Section 7
(IEEE Std 802.5-1989) .

74h InternalErrorCounter 4 This counter is incremented when a station
recognizes a recoverable internal error. This can
be used for detecting a station in marginal
operating condition.

78h LastRingStatus 4 This value contains the last Ring Status reported
by the adapter with the following bit defintions:

 bit 15 signal loss
 bit 14 hard error
 bit 13 soft error
 bit 12 transmit beacon
 bit 11 lobe wire fault
 bit 10 auto-removal error 1
 bit 9 reserved
 bit 8 remove received
 bit 7 counter overflow
 bit 6 single station
 bit 5 ring recovery
 bit 0-4 reserved
3-42 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Offset Name Bytes Description

7Ch LineErrorCounter 4 This counter is incremented when a frame or
token is copied or repeated by a station, the E bit
is 0 in the frame or token, and one of the following
conditions exist:

 1) There is a nondata bit (J or K) between the SD
and the ED of the frame or token.

 2) There is an FCS error in the frame.

The first station detecting a line error increments
its appropriate error counter and sets E=1 in the
ED of the frame. This prevents other stations from
logging the error and isolates the source of the
disturbance to the proper error domain.

80h LostFrameCounter 4 This counter is incremented when a station is
transmitting and its TRR timer expires. This
counts how often frames transmitted by a
particular station fail to return to it (thus causing
the active monitor to issue a new token).

84h TokenErrorCounter 4 This counter is incremented when a station acting
as the active monitor recognizes an error
condition that needs a token transmitted. This
occurs when the TVX timer expires.

88h CounterMask1 4 This field is a bit mask indicating the status of the
next set of counters. The most significant bit
corresponds to UpstreamNodeHighDword. If a bit
is zero, the counter is supported.

8Ch UpstreamNodeHighDword 4 This contains the high 4 bytes of the 6 byte
Upstream Neighbor Node Address.

90h UpstreamNodeLowWord 4 This contains the lower 2 bytes of the 6 byte
Upstream Neighbor Node Address.

94h LastRingID 4 This contains the value of the local ring.

98h LastBeaconType 4 This contains the value of the last beacon type.

Table 3.6 Media Specific Counters for Token Ring
HSM Data Structures and Variables 3-43

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Ethernet

TxOKSingleCollisionsCount dd 0 ; 60h
Mandatory
TxOKMultipleCollisionsCount dd 0 ; 64h
Mandatory
TxOKButDeferred dd 0 ; 68h
Mandatory
TxAbortLateCollision dd 0 ; 6Ch
Mandatory
TxAbortExcessCollision dd 0 ; 70h
Mandatory
TxAbortCarrierSense dd 0 ; 74h
Mandatory
TxAbortExcessiveDeferral dd 0 ; 78h
Mandatory
RxAbortFrameAlignment dd 0 ; 7Ch
Mandatory

Table 3.7 Media Specific Counters for Ethernet
Offset Name Bytes Description

60h TxOKSingleCollisionsCount 4 The number of frames involved in a single
collision that are subsequently transmitted
successfully. Increment this counter when the
result of a transmission is reported as
transmitOK and the attempt value is 2.

64h TxOKMultipleCollisionsCount 4 The number of frames involved in more than
one collision that are subsequently transmitted
successfully. Increment this counter when the
result of a transmission is reported as
transmitOK and the attempt value is greater
than 2 and less than or equal to the
attemptLimit.

68h TxOKButDeferred 4 Increment this counter for frames whose
transmission was delayed on the first attempt
because the medium was busy.

6Ch TxAbortLateCollision 4 The number of collisions detected later than
512 bit times into the transmitted packet. A late
collision is counted both as a collision and as a
late collision.
3-44 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

FDDI

FConfigurationState dd 0 ; 60h Mandatory
FUpstreamNodeHighDword dd 0 ; 64h Mandatory
FUpstreamNodeLowWord dd 0 ; 68h Mandatory
FDownstreamNodeHighDworddd 0 ; 6Ch Mandatory
FDownstreamNodeLowWord dd 0 ; 70h Mandatory
FFrameErrorCount dd 0 ; 74h Mandatory
FFramesLostCount dd 0 ; 78h Mandatory
FRingManagementCount dd 0 ; 7Ch Mandatory
FLCTFailureCoun dd 0 ; 80h Mandatory
FLemRejectCount dd 0 ; 84h Mandatory
CounterMask1 dd 00111111111111111111111111111111b

;**
FLemCoun dd 0 ; 8Ch Mandatory
LConnectionState dd 0 ; 90h Mandatory

70h TxAbortExcessCollision 4 The number of frames not transmitted
successfully due to excessive collisions.
Increment this counter when the attempts
value equals the attemptLimit during a
transmission.

74h TxAbortCarrierSense 4 The number of times the carrierSense variable
was not asserted or was deasserted during
transmission of a frame without collision.

78h TxAbortExcessiveDeferral 4 The number of frames deferred for an
excessive period of time. Increment this
counter only once per LLC transmission.

7Ch RxAbortFrameAlignment 4 The number of frames that are not an integral
number of octets in length and do not pass the
FCS check.

Table 3.7 Media Specific Counters for Ethernet
Offset Name Bytes Description
HSM Data Structures and Variables 3-45

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Table 3.8 Media Specific Counters for FDDI
Offset Name Bytes Description

60h FConfigurationState 4 (ANSI fddiSMTCFState)

The attachment configuration for the station or
concentrator.

 0=Isolated 7=wrap_ab
 1=local_a 8=wrap_s
 2=local_b 9=c_wrap_a
 3=local_ab 10=c_wrap_b
 4=local_s 11=c_wrap_s
 5=wrap_a 12=thru
 6=wrap_b

64h FUpstreamNodeHighDword

FUpstreamNodeLowWord

8 (ANSI fddiMACUpstreamNbr)

The MAC's upstream neighbor's long
individual MAC address (0 if unknown).

6Ch FDownstreamNodeHighDword

FDownstreamNodeLowWord

8 (ANSI fddiMACDownstreamNbr)

The MAC's downstream neighbor's long
individual MAC address (0 if unknown).

74h FFrameErrorCount 4 (ANSI fddiMACError-Ct)

The number of frames that were detected in
error by this MAC that had not been detected
in error by another MAC.

78h FFramesLostCount 4 (ANSI fddiMACLost-Ct)

The number of instances that this MAC
detected a format error during frame reception
such that the frame was stripped.

7Ch FRingManagementState 4 (ANSI fddiMACRMTD-State)

Indicates the current state of the Ring
Management state machine.

 0=Isolated 4=Non_Op_Dup
 1=Non_Op 5=Ring_Op_Dup
 2=Ring_Op 6=Directed
 3=Detect 7=Trace

80h FLCTFailureCount 4 (ANSI fddiPORTLem-Ct)

The count of the consecutive times the link
confidence test (LCT) has failed during
connection management.
3-46 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

the

 were
FDDI TSM and Bit Swappin g Changes

Several changes were made for FDDI with the release of version 2.20 of
FDDI TSM. This includes bit swapping now being handled by either the
adapter or the HSM.

Please note the 3 bytes before the frame control byte in the packet header
eliminated, and the MLIDRecvSize was changed. Refer to the Frame Types and
Protocol IDs supplement for details.

A bit swapping table is now provided by the MSM, which eliminates the need for
a table in the HSM; see MSM Global Variables, MSMBitSwapTable in Chapter
4.

84h FLemRejectCount 4 (ANSI fddiPortLem-Reject_Ct)

The link error monitor count of the times that a
link was rejected.

88h CounterMask1 4 This field is a bit mask indicating the status of
the next counters. The most significant bit
corresponds to FLemCount. If a bit is zero, the
counter is supported.

8Ch FLemCount 4 (ANSI fddiPORTLem-Ct)

The aggregate link error monitor error count
(zero only on station power up).

90h FConnectionState 4 (ANSI fddiPortPCM-State)

The state of this port's PCM state machine.

 0=Off 5=Signal
 1=Break 6=Join
 2=Trace 7=Verify
 3=Connect 8=Active
 4=Next 9=Maint

Table 3.8 Media Specific Counters for FDDI
Offset Name Bytes Description
HSM Data Structures and Variables 3-47

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

RX-Net

Note:The module responsible for maintaining each of the RX-Net specific counters is indicated in
parenthesis below.

NoResponseToFreeBufferEnquiry dd 0 ; 60h Mandatory (HSM)
NetworkReconfigurationCount dd 0 ; 64h Mandatory (HSM)
InvalidSplitFlagInPacketFrag dd 0 ; 68h Mandatory (TSM)
OrphanPacketFragmentCount dd 0 ; 6Ch Mandatory (TSM)
ReceivePacketTimeout dd 0 ; 70h Mandatory (TSM)
FreeBufferEnquiryNAKTimeout dd 0 ; 74h Mandatory (TSM)
TotalTxPacketFragmentsOK dd 0 ; 78h Mandatory (HSM)
TotalRxPacketFragmentsOK dd 0 ; 7Ch Mandatory (HSM)

Table 3.9 Media Specific Counters for RX-Net

Offset Name Bytes Description

60h NoResponseToFreeBufferEnquiry 4 The HSM increments this counter each time
there is no response from the receiving
node to FREE BUFFER ENQUIRY.

64h NetworkReconfigurationCount 4 The HSM increments this counter each time
a NETWORKRECONFIGURATION occurs.

68h InvalidSplitFlagInPacketFrag 4 The TSM maintains this counter of the
number of times the Split Flag in the packet
fragment is not the value expected. For
example, packet fragments received out of
order cause this count to increment.

6Ch OrphanPacketFragmentCount 4 The TSM increments this count each time a
packet fragment is received that is not a part
of a previously received packet and,
therefore, cannot be appended.

70h ReceivePacketTimeout 4 The TSM increments this counter each time
a received packet times out waiting for the
rest of the packet fragments to arrive.

74h FreeBufferEnquiryNAKTimeout 4 The TSM increments this count each time a
transmit packet times out waiting for an
acknowledgment to a FREE BUFFER
ENQUIRY from the receiving node.

78h TotalTxPacketFragmentsOK 4 The HSM's count of the number of packet
fragments successfully sent.

7Ch TotalRxPacketFragmentsOK 4 The HSM's count of the number of packet
fragments successfully received.
3-48 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

t
, the
ate a
hed
ion.

he
nd

e

k
ters

ces

e

tom
as
Driver Firmware

Drivers may need to download firmware to intelligent adapters. Since mos
intelligent adapters employ an onboard microprocessor such as an 80186
firmware code must be separately written, assembled, and linked to gener
binary file. This section describes how that firmware binary file can be attac
to the HSM at link time and then transferred to the adapter during initializat

To attach a firmware binary file to the HSM, the linker definition file (see
Appendix A) must include the “custom” keyword followed by the name of t
binary file. When the driver is linked, the file will then be attached to the e
of the HSM code (and become part of the NLM).

During the initialization process, the MSM allocates a buffer and copies th
contents of the attached file to that buffer. In order to gain access to the
firmware buffer, the HSM must properly initialize the DriverParameterBloc
variables described below. The MSM resolves the value of these parame
when the HSM's DriverInit routine calls <TSM>RegisterHSM. The HSM
can then download the contents of the firmware buffer to the adapter.

DriverFirmwareSize. If custom firmware is used, the HSM must initialize
this dword variable to any nonzero value at assembly time. The MSM repla
the value with the actual size of the firmware buffer when DriverInit calls
<TSM>RegisterHSM. If custom firmware is not used, the HSM must
initialize this variable to zero at assembly time.

DriverFirmwareBuffer . This dword value is set by the MSM to point at th
firmware buffer when DriverInit calls the routine <TSM>RegisterHSM.

Example

The following example shows how an HSM would define and use the cus
firmware variables. This example assumes that the firmware binary file w
attached to the driver at link time as described above.
HSM Data Structures and Variables 3-49

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

DriverParameterBlock label dword
 .

.

.
DriverFirmwareSize dd -1
DriverFirmwareBuffer dd 0

.

.

.
;DriverParameterBlockEnd

DriverInit proc
 .
 .
 .

 call <TSM>RegisterHSM
 .
 .
 .

mov eax, DriverFirmwareSize
mov esi, DriverFirmwareBuffer
mov edi, [ebp].AdapterFirmwareAddress
mov ecx, eax
shr ecx, 2

rep movsd
and eax, 03h
mov ecx, eax

rep movsb
.
.
.

DriverInit endp
3-50 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

you

e
when

ed in

r
n

ine,

me
 the

ters

em
 now
er
Driver Keywords

Drivers can define keywords that allow custom parameters or flags to be
entered from the “load” command-line. In order to use custom keywords,
must define the following
DriverParameterBlock fields.

DriverNumKe ywords. The number of custom keywords defined by the
HSM. If custom keywords are not used, set this field to 0.

DriverKe ywordText. Pointer to a table of pointers to strings that define th
custom keywords. The strings must be uppercase. The MSM uses these
parsing the load command-line.

DriverKe ywordTextLen. Pointer to a table containing the length of each
custom keyword string defined in DriverKeywordText. The length fields are
also used to support the optional custom keyword enhancements describ
the next section.

DriverProcessKe ywordTab. The HSM must provide a procedure to
process each of the defined custom keywords. This is a pointer to a table
containing pointers to those procedures.

Custom keywords are processed during initialization when DriverInit calls
MSMParseDriverParameters. The MSM processes custom keywords afte
the OS parses the standard command-line parameters for the configuratio
table. If the MSM encounters a defined custom keyword in the command-l
it calls the procedure corresponding to that keyword.

On entry to the custom keyword procedure, EBX normally points to the Fra
Data Space and ESI points to the position in the command-line string where
keyword was found. The command-line string is a null-terminated ASCII
string. The driver is responsible for extracting and processing any parame
for that keyword, therefore, the parameter format used is controlled by the
developer.

If the driver must have custom keywords processed earlier in initialization, the
DriverInit routine can call MSMParseCustomKeywords . Refer to Chapter 7
for detailed information and examples on using this routine.

HSMs that support many custom keywords may have trouble specifying th
on the limited space of the command-line. Command-line parameters can
be listed in a driver configuration file (see Appendix A for details). If the driv
configuration file is used, MSMParseDriverParameters will process the
HSM Data Structures and Variables 3-51

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ne.

om
s:
information from the file along with any other arguments on the command-li
The MSM frees the buffer used for the file before returning to DriverInit , so
the HSM must copy all required information when the keyword routine is
called.

The following example shows how an HSM would define and use two cust
keywords. The command-line for this example might be entered as follow

load <driver> max_packet_size=4202 cable_type_thick

Example

DriverParameterBlock label dword
 ...

DriverNumKeywords dd 2
DriverKeywordText dd KeywordTextTable
DriverKeywordTextLen dd KeywordTextLenTable
DriverProcessKeywordTab dd KeywordProcedureTable

 ...
;DriverParameterBlockEnd

Keyword1 db 'MAX_PACKET_SIZE'
Keyword2 db 'CABLE_TYPE_THICK'

KeywordTextTable dd Keyword1
dd Keyword2

KeywordTextLenTable dd 15 ; Keyword #1
Length

dd 16 ; Keyword #2
Length

KeywordProcedureTable dd ProcessMaxPacketSize ; Keyword #1 Proc.
dd ProcessCableTypeThick ; Keyword #2 Proc.

; ESI = Ptr to the position in the command line string where the keyword was found. The command
line string is a
; null-terminated ASCII string.
; EBX =Ptr to the Frame Data Space (Configuration Table)
; Interrupts are Disabled
; CLD is in effect

ProcessMaxPacketSize proc
add esi, 15 ; Skip over the Keyword Text
.
.

3-52 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

s

ers

he
.
(parse the remainder of the string to extract the maximum packet size)
.
.
.
call ConvertAtoI ; Convert from ASCII to Integer Form
mov MyMaxPacketSize, eax ; Set Custom Maximum Packet Size Variable
ret

ProcessMaxPacketSize endp

ProcessCableTypeThick proc

mov CableType,THICK ;Signal Thick Cable Type
ret

ProcessCableTypeThick endp

Driver Keyword Enhancements

The custom keyword table has been enhanced to support the parsing flag
described below. These enhancements were added to the existing HSM
keyword structure so that HSM's using the old structure will work without
modifications. These parsing flags can be logically ORed with the existing
keyword text length parameters.

If none of the flags are used, the parser only provides a pointer to the custom
keyword in ESI as described in the previous section.

T_REQUIRED. The keyword must be entered. If it doesn't exist on the
command-line or configuration file, the user will be prompted for it. If the us
does not enter a value, MSMParseDriverParameters will return with an
error.

T_STRING. The keyword routine will be called with a pointer to the
beginning of the string that matched the keyword text.

Example:
 load <driver> custom int=3

The keyword routine called with ESI pointing to "custom int=3"

T_NUMBER. The keyword routine will be called with the value entered on t
command-line in EAX. The user must enter a decimal number.
HSM Data Structures and Variables 3-53

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

d
r.

rs.

 if
 are
t. The
Example:
 load <driver> custom=100

The keyword routine called with EAX = 64h

T_HEX_NUMBER. The keyword routine will be called with the value entere
on the command-line in EAX. The user must enter a hexadecimal numbe

Example:
 load <driver> custom=100

The keyword routine called with EAX = 100h

T_HEX_STRING. The keyword routine will be called with ESI pointing to a
six byte value that was entered on the
command-line. The user must enter this string using hexadecimal numbe

Example:
 load <driver> custom=01020304

The keyword routine called with ESI -> 00, 00, 01, 02, 03, 04

The HSM must provide parsing information immediately after the text string
it has set any of the flags (except when using T_STRING, no parameters
needed). The parameters that are needed depend on the flags that are se
following is list of the parameters expected.

The following structure is used for keywords using T_NUMBER or
T_HEX_NUMBER:

UnsignedLongType struc
LongMinValue dd 0 ; Minimum value to be accepted.
LongMaxValue dd 0 ; Maximum value to be accepted.
UnsignedLongType ends

The following structure is used for keywords using T_NUMBER or
T_HEX_NUMBER and T_REQUIRED:

PromptUnsignedLongType struc
PLongMinValue dd 0 ; Minimum value to be accepted.
PLongMaxValue dd 0 ; Maximum value to be accepted.
3-54 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

us
LongDefaultString dd 0 ; Ptr to a string that contains the
default number

; or 0 for no default
LongValidString dd 0 ; Ptr to a string that contains valid
input characters. If set

; to zero, the MSM assumes:
; "0..9" for T_NUMBER and
; "0..9A..F" for T_HEX_NUMBER.

LongPromptString dd 0 ; Ptr to a prompt string.
PromptUnsignedLongType ends

The following structure is used for keywords using T_HEX_STRING:

SixByteType struc
SixByteMinValue db 6 dup (0) ; Minimum value to be accepted.
SixByteMaxValue db 6 dup (0) ; Maximum value to be accepted.
SixByteType ends

The following structure is used for keywords using T_HEX_STRING and
T_REQUIRED:

PromptSixByteType struc
PSixByteMinValue db 6 dup (0) ; Minimum value to be accepted.
PSixByteMaxValue db 6 dup (0) ; Maximum value to be accepted.
SixByteDefaultStr dd 0 ; Ptr to a string that contains; default
six byte number or 0

; for no default.
SixBytePromptStr dd 0 ; Ptr to a prompt string.
PromptSixByteType ends

The following is an example of an HSM keyword table that uses the vario
enhancement options described in this section.

Example

DriverParameterBlock label dword
 ...
 DriverNumKeywords dd 4
 DriverKeywordText dd KeywordTextTable
 DriverKeywordTextLen dd KeywordTextLenTable
 DriverProcessKeywordTab dd KeywordProcedureTable
 ...
;DriverParameterBlockEnd

KeywordTextTable dd DIXText
dd TxBelow16Text
HSM Data Structures and Variables 3-55

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

dd TimeoutText
dd ConnectionText

KeywordTextLenTable dd DIXTextLen
dd TxBelow16TextLen
dd TimeoutTextLen
dd ConnectionTextLen

KeywordProcedureTable dd DIXRoutine
dd TxBelow16Routine
dd TimeoutRoutine
dd ConnectionRoutine

;---
----------------; Define Keywords and related Parameters
;---
----------------DIXText db "DIX" ; Old style custom
keyword
DIXTextLen equ $ - DIXText
;---
----------------TxBelow16Text db "TB16"
TxBelow16TextLen equ ($ - TxBelow16Text) OR T_NUMBER OR

T_REQUIRED
dd 0 ; Min value of 0
dd 2 ; Max value of 16
dd TxBelow16Default ; Default String
dd TxBelow16Valid ; Valid chars string
dd TxBelow16Prompt ; Prompt string

TxBelow16Default db "0", 0 ; Default to zero
TxBelow16Valid db "0..2", 0 ; Only 0, 1 or 2 are

valid
TxBelow16Prompt db "Enter the number of Tx Buffers "

db "to allocate below 16 Meg", CR, LF
db "(0 = none, 1 = 4 buffers, 2 = 8 buffers) : ", 0

;---

TimeoutText db "TO"
TimeoutTextLen equ ($ - TimeoutText) OR T_NUMBER

dd 0 ; Min value of 0
dd -1 ;Max value of 4G

;---
----------------Connection Text db “DEST”
Connection TextLen equ ($ - ConnectionText) OR T_HEX_STRING OR
T_REQUIRED

dd 0 ;No default
dd ConnectionPrompt ;Prompt string

ConnectionPrompt db “Enter address of node to connect with : “, 0
;---

3-56 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

DIXRoutine proc

mov DIXInUse, 1 ; Set DIX in use flag
ret

DIXRoutine endp

TxBelow16Routine proc

mov TxBelow16, eax ; Save number for later
ret

TxBelow16Routine endp

TimeoutRoutine proc

mov TxTimeoutValue, eax ; Save number for later
ret

TimeoutRoutine endp

ConnectionRoutine proc

mov eax, [esi+0] ; Save 6 byte address
mov dword ptr DestinationAddress+0, eax
mov ax, [esi+4]
mov word ptr DestinationAddress+4, ax
ret

ConnectionRoutine endp
HSM Data Structures and Variables 3-57

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

3-58 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

c h a p t e r 4 MSM/TSM Data Structures and
Variables
S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ed by
re
d by

r and

need

t
Introduction

This chapter describes the data structures, variables, and constants defin
the MSM and TSM. Some of the variables and structures in this chapter a
required to control processes and must be initialized, updated, or manage
the driver. Others are made available as optional support for the develope
may be used accordingly.

MSM Equates

• MSMVirtualBoardLink

• MSMStatusFlags

• MSMTxFreeCount

• MSMMaxFrameHeaderSize

• MSMPhysNodeAddress

Data Structures

• Receive Control Blocks (RCBs)

• Transmit Control Blocks (TCBs)

• Event Control Blocks (ECBs)

MSM Global Variables

MSMBitSwapTable

The MSMBitSwapTable is a 256-byte array that can be used to convert
noncanonical addresses to canonical, and vice versa. Most drivers will not
to do this, usually just some TokenRing drivers using canonical format
addressing modes; and some older FDDI drivers whose hardware doesn’
convert noncanonical to canonical addresses.
MSM/TSM Data Structures and Variables 4-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ch as

. This
ess

d 1
This global table eliminates the need to have any other bit-swap tables, su
in the HSM. The conversion is done one byte at a time, for example:

xor eax, eax
mov al, <byte to be swapped>
mov al, MSMBitSwapTable [eax]

In this example, if the <byte to be swapped> was 64h, the result in register al
would be 26h.

MSM Equates

The HSM must access several variables located in the MSM's Data Space
section describes the MSM defined equates which enable the HSM to acc
these variables. The equates represent negative offsets which are used in
conjunction with EBP, the pointer to the Adapter Data Space.

MSMVirtualBoardLink

The MSM maintains a separate configuration table for each frame type
supported by the driver. MSMVirtualBoardLink is used to access a list of
pointers to the configuration tables.

The list contains 4 pointers for Ethernet, 2 for Token-Ring, and FDDI, an
for RX-Net. If a particular frame has not been loaded, the pointer to the
corresponding configuration table will be zero. The lists are accessed as
follows.

Ethernet
[ebp].MSMVirtualBoardLink + 00h ;ETHERNET 802.2
[ebp].MSMVirtualBoardLink + 04h ;ETHERNET II
[ebp].MSMVirtualBoardLink + 08h ;ETHERNET 802.3
[ebp].MSMVirtualBoardLink + 0Ch ;ETHERNET SNAP

Token-Ring
[ebp].MSMVirtualBoardLink + 00h ;TOKEN 802.2
[ebp].MSMVirtualBoardLink + 04h ;TOKEN SNAP

FDDI
[ebp].MSMVirtualBoardLink + 00h ;FDDI 802.2
[ebp].MSMVirtualBoardLink + 04h ;FDDI SNAP

RX-Net
4-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

us

e

ter is
ust

 has
all to

CBs
[ebp].MSMVirtualBoardLink + 00h ;RX-Net

Example

mov ebx, [ebp].MSMVirtualBoardLink+00h ; Ptr to E_802.2 config table
or ebx, ebx ; Check if valid pointer?
jz Frame8022NotRegistered ; Jump if not
mov eax, [ebx].MLIDSlot ; EAX = Our slot number

MSMStatusFlags

The MSM maintains a dword variable which provides certain adapter stat
information. This status information enables the driver to determine if the
adapter is shutdown or if the MSM has any packets waiting in its transmit
queue. The
MSMStatusFlags equate represents a negative offset which is used in
conjunction with EBP, the pointer to the Adapter Data Space, to access th
status variable. It is defined in the MSM.INC file as follows:

MSMStatusFlags equ DriverAdapterStart - (2 * 4)
SHUTDOWN equ 01h ; Bit #0 = Shutdown Status
TXQUEUED equ 02h ; Bit #1 = Tx Queue Status
POLLING_SUSPENDED equ 10h ; Bit #4 = Polling State

MSMStatusFlags can be used by the HSM to determine whether the adap
partially shutdown. If bit #0 is set, the adapter is partially shutdown and m
not be serviced. Likewise, the MSM will not call DriverSend to transmit a
packet if the adapter is partially shutdown.

test [ebp].MSMStatusFlags,SHUTDOWN
jnz DoNotServiceAdapter

The status flags can also be used by polled drivers to determine if polling
been suspended. If bit #4 is set, polling has been suspend by a previous c
MSMSuspendPolling.

test [ebp]. MSMStatusFlags, POLLING=SUSPENDED
jz Polling has been suspended

The status flags can also be used to determine if the TSM has any send T
queued, thus saving a call to <TSM>GetNextSend. If bit #1 is set, the TSM
has at least one packet queued for transmission.

RX-Net drivers cannot use this test since additional fragments of a split packet
are not detected.
MSM/TSM Data Structures and Variables 4-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ces
SM
et for
res

ata

other

g.
 the

test [ebp].MSMStatusFlags,TXQUEUED
jz NoSendsQueued

Example

DriverISR proc
.
.
.
TransmitComplete: ; EBP=Ptr to Adapter Data Space

inc [ebp].MSMTxFreeCount ; Free adapter's transmit resource
mov [ebp].TxInProgress, 0 ; Clear transmit in progress flag

;*** Transmit Next Packet ***

test [ebp].MSMStatusFlags,TXQUEUED; Anything in send queue?
jz NoSendsQueued ; Jump if nothing to send
call <TSM>GetNextSend ; Otherwise get the next TCB from
call DriverSend ; the queue and send it
 .
 .
 .
MSMServiceEventsAndReturn

DriverISR endp

MSMTxFreeCount

During initialization, the HSM must specify the number of hardware resour
available on the adapter for handling pending packet transmissions. The M
uses this value to determine if the adapter is ready to accept another pack
transmission. The count is also used to determine how many TCB structu
the MSM will allocate. The MSMTxFreeCount equate represents a negative
offset which is used in conjunction with EBP, the pointer to the Adapter D
Space, to access the count. It is defined in the MSM.INC file as follows:

MSMTxFreeCount equ DriverAdapterStart - (1*4)

For example, if the adapter has a second transmit buffer that can accept an
packet before the current transmission is complete, the driver must set
MSMTxFreeCount to a value of 2. Some adapters support hardware queuin
In this case, the count should represent the number of transmissions that
adapter can efficiently process. If the adapter has no additional resources
4-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

hes

sion,
retry
available other than those used to transmit the current packet, set
MSMTxFreeCount to 1.

The TSM decrements this count before it calls DriverSend. The count is also
decremented during a successful call to <TSM>GetNextSend. The TSM
assumes that the adapter is not ready for another packet if this count reac
zero.

The driver is responsible for incrementing the count each time one of the
adapter's transmit resources becomes available. The count must be
incremented not only when the adapter successfully completes a transmis
but also when a transmission is aborted due to timeout errors, maximum
errors, ...etc.

Example

DriverInit proc ; EBP = Ptr to Adapter Data Space
.
.
.
mov [ebp].MSMTxFreeCount,2 ; Adapter has 2 transmit resources
.
.
.

DriverInit endp

DriverISR proc
.
.
.

TransmitComplete:
inc [ebp].MSMTxFreeCount ; Free adapter's transmit resource
.
.
.

DriverISR endp
MSM/TSM Data Structures and Variables 4-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ces

n,

is
ket

MSMPriorityTxFreeCount

During initialization, the HSM must specify the number of hardware resour
available on the adapter for handling priority packet transmissions.

MSMMaxFrameHeaderSize

The <TSM>GetRCB procedure, which may be used during packet receptio
employs a LOOKAHEAD process in which the header information of a
received packet is transferred into a buffer and previewed by the TSM. Th
way, the TSM can first verify that it wants the packet before the entire pac
is read from the adapter.

The TSM sets the MSMMaxFrameHeaderSize value to the number of bytes the
driver must transfer to that LOOKAHEAD buffer. Its value is equal to the
MLIDLookAheadSize value from the configuration table plus the maximum
media header size. It can be up to 128 bytes, the maximum
MLIDLookAheadSize, plus the maximum media header size.

For example:

MLIDLookAheadSize = 128
Ethernet Maximum Media Header Size = 22
MSMMaxFrameHeaderSize = 128 + 22 = 150

To access the size, the MSMMaxFrameHeaderSize equate is used in
conjunction with EBP, the pointer to the Adapter Data Space.

mov ecx, [ebp].MSMMaxFrameHeaderSize

Your driver must read the size each time before calling <TSM>GetRCB since
it can change dynamically. The driver may optionally implement the
DriverRxLookAheadChange routine to allow HSMs for intelligent adapters
to be informed when the size changes rather than constantly checking.
4-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ion”

his
For more information on the LookAhead process, see the “Packet Recept
section in Chapter 5 and the <TSM>GetRCB procedure in Chapter 6. Refer to
the DriverRxLookAheadChangePtr field description of the
DriverParameterBlock in Chapter 3 for more information on implementing t
control procedure for intelligent adapters.

Example

DriverISR proc ; ebp = Ptr to Adapter Data Space
.
.
.

ReceiveEvent:
mov ecx, [ebp].MSMMaxFrameHeaderSize
lea edi, [ebp].LookAheadBuffer
rep insb
lea esi, [ebp].LookAheadBuffer; Ptr to LookAhead Buffer
mov ecx, ReceivePacketSize ; Get Packet Size
call <TSM>GetRCB ; Get an RCB
jnz PacketNotAccepted
.
.
.

MSM/TSM Data Structures and Variables 4-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

e
 as

he
MSMPhysNodeAddress

The MSMPhysNodeAddress equate is a negative offset that is used in
conjunction with EBP, the pointer to the Adapter Data Space, to access th
physical layer format of the node address. It is defined in the MSM.INC file
follows:

MSMPhysNodeAddress equ DriverAdapterStart -(16*4)

If bit 15 of the MLIDModeFlags is set, the driver must use
MSMPhysNodeAddress instead of the configuration table
MLIDNodeAddress to obtain the physical layer format of the node address. T
MSM sets the MSMPhysNodeAddress value when the driver's initialization
routine calls MSMRegisterMLID .

For additional information, refer to the configuration table MLIDNodeAddress
and MLIDModeFlags descriptions in Chapter 3 and the canonical/
noncanonical format discussion in the Canonical and Noncanonical
Addressing supplement.

Example

DriverReset proc ; ebp = Ptr to Adapter Data Space
lea esi,[ebp].MSMPhysNodeAddress
lea edi,[ebp].OpenAdapterNode
movsd
movsw
.
.
.

DriverReset endp
4-8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 are
 of

e
ic

ust

o

ort
Data Structures

The structures used to transfer data between the layers of the ODI model
called Event Control Blocks (ECBs). The MSM defines two specific forms
the ECB structure.

• Receive Control Blocks (RCBs)

• Transmit Control Blocks (TCBs)

These streamlined forms of the general ECB structure are provided by th
MSM to simplify driver development. Only the fields relevant to the specif
packet transaction in progress are visible to the driver.

The following section describes the RCB and TCB structures. TheHSM m
refer to these structures during packet reception and transmission. The
relationship of these MSM structures with the general ECB structure is als
discussed.

Specific reception and transmission methods and related MSM/TSM supp
routines are described in Chapter 5.
MSM/TSM Data Structures and Variables 4-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Figure 4-1 Packet Transfer in the MSM/ODI Model

Link Support Layer

Support Modules

Hardware Specific Modul

RCB TCB

ECB

(MSM/TSM)

(HSM)
4-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

SM

ssed
cts

ne
ed to

ted

ot

these

ures
Receive Control Blocks

Receive Control Blocks are the structures used to transfer data from the H
to the TSM.

Usually, when the adapter receives a packet, the HSM obtains a Receive
Control Block from the TSM and copies the packet into the RCB's data
fragment buffer(s). The RCB is passed back to the TSM where it is proce
and transferred to the Link Support Layer. The Link Support Layer then dire
it to the proper protocol stack.

On a server, there will normally be only one fragment buffer into which the
received data must be copied, therefore drivers should be optimized for o
fragment receives. However, the driver's receive routine should be design
handle multiple fragment buffers if possible. Bit 10 of the MLIDModeFlags
field in the configuration table must be set if the driver can handle fragmen
receive buffers.

The following support routines are available to obtain RCBs.

• MSMAllocateRCB

• MSMAllocateMultipleRCBs

• <TSM>GetRCB

• <TSM>ProcessGetRCB

• <TSM>FastProcessGetRCB

The<TSM>GetRCB routine provides fragmented RCBs. Drivers that cann
handle fragmented receive buffers must use MSMAllocateRCB,
<TSM>ProcessGetRCB, or <TSM>FastProcessGetRCB to obtain RCBs.
Chapter 5 describes specific reception methods and illustrates the use of
support routines.

The following section describes the RCB structures and fields. The struct
are defined in the MSM.INC file.
MSM/TSM Data Structures and Variables 4-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Fragmented RCB

Figure 4-2 Fragmented Receive Control Block

RCBStructure struc

 RCBDriverWS * db 8 dup (0) ; Driver Workspace
RCBReserved db 40 dup (0) ; Reserved for MSM use
RCBFragmentCount dd ? ; Number of Fragments
RCBFragmentOffset1 dd ? ; Pointer to the 1st Fragment Buffer
RCBFragmentLength1 dd ? ; Length of the 1st Fragment Buffer

RCBStructure ends ;*** Addtional Fragment Descriptors

.

.

.
 ;; RCBFragmentOffsetn dd ? ; Pointer to the nth Fragment Buffer
 ;; RCBFragmentLengthn dd ? ; Length of the nth Fragment Buffer

RCBReserved

RCBFragmentOffset1

RCBDriverWS *

RCBFragmentCount

RCBFragmentLength1

RCBFragmentOffsetn

RCBFragmentLengthn

(40 bytes)

* RCBDriverWS cannot be used by RX-Net drivers.

(Receive Buffer #1)

(Receive Buffer #n)
4-12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Table 4.1 Fragmented RCB Field Descriptions

Offset Name Bytes Description

00h RCBDriverWS 8 The HSM may use this field for any purpose as long as it
controls the RCB. (RX-Net drivers cannot use this field)

08h RCBReserved 40 This field must not be modified by the HSM. It contains
status indicators, protocol information, and additional data
maintained by the MSM and Link Support Layer.

30h RCBFragmentCount 4 This field contains the number of data fragment descriptors
to follow. Each descriptor consists of a pointer to a fragment
buffer and the size of that buffer. The HSM will copy the
received packet into these buffers.

34h

38h

 .

 .

 .

??h
??h

RCBFragmentOffset1

RCBFragmentLength1

 .

 .

 .

RCBFragmentOffsetnRCB
FragmentLengthn

4

4

.

.

.

4
4

Pointer to the 1st fragment buffer.

Length of the 1st fragment buffer.

Immediately following the RCB in memory are additional
fragment descriptors.
MSM/TSM Data Structures and Variables 4-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Non-Fra gmented RCB

Figure 4-3 Non-Fra gmented Receive Control Block

RCBStructure struc

RCBDriverWS * db 8 dup (0) ; Driver Workspace
RCBReserved db 40 dup (0) ; Reserved for MSM
RCBFragmentCount dd 1
RCBFragmentOffset1 dd ?
RCBFragmentLength1 dd ?

RCBStructure ends

;; RCBDataBuffer equ RCBFragmentLength1 + 4 ; Buffer for Packet

RCBReserved

RCBFragmentOffset1

RCBDriverWS *

RCBFragmentCount

RCBFragmentLength1

RCBDataBuffer

(40 bytes)

* RCBDriverWS cannot be used by RX-Net drivers.
4-14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Table 4.2 Non-Fragmented RCB Field Descriptions

Offset Name Bytes Description

00h RCBDriverWS 8 The HSM may use this field for any purpose as long as it
controls the RCB. (RX-Net drivers cannot use this field)

08h RCBReserved 40 This field must not be modified by the HSM. It contains
status indicators, protocol information, and additional data
maintained by the MSM and Link Support Layer.

30h RCBFragmentCount 4 This field contains the number of data fragment descriptors
to follow. It will always be 1 for non-fragmented receives.

34h RCBFragmentOffset1 4 The HSM must NOT use this field. The TSM determines
this value after the HSM returns the RCB for processing. (It
will contain a pointer to the “data” portion of the received
packet in the RCBDataBuffer.)

38h RCBFragmentLength1 4 The HSM must NOT use this field. The TSM determines
this value after the HSM returns the RCB for processing. (It
will contain the length of the “data” portion of the received
packet in the RCBDataBuffer.)

3Ch RCBDataBuffer ? Immediately following the RCB in memory is a buffer for the
received packet. The HSM copies the received packet into
this buffer. For some frame types this data buffer contains
MAC layer headers. (Refer to the MSMAllocateRCB
routine for information on using a non-fragmented RCB)
MSM/TSM Data Structures and Variables 4-15

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

SM

nters
n

 and
ver
.

Transmit Control Blocks

Transmit Control Blocks are the structures used to transfer data from the T
to the HSM.

Figure 4-4 Packet Transfer in the MSM/ODI Model

When sending a packet, a protocol stack assembles a list of fragment poi
in a transmit ECB and passes it to the Link Support Layer. The ECB is the
transferred to the TSM where the information is processed and a TCB is
constructed. The TCB structure consists of the assembled packet header
data fragment information. The TSM directs the TCB to the appropriate dri
which collects the header and packet fragments and transmits the packet

The following section describes the TCB structures used during packet
transmission. The structures are defined in the MSM.INC file.

(MSM / TSM)

(HSM)

ECB

LINK SUPPORT LAYER

SUPPORT MODULES

HARDWARE SPECIFIC MODULE

TCBRCB
4-16 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

TCB for Ethernet, Token-Rin g, and FDDI

Figure 4-5 Ethernet, Token-Rin g and FDDI Transmit Control Block

TCBStructure struc

TCBDriverWS dd 3 dup (0); ; Driver Workspace
TCBDataLen dd ? ; Total Fragment + Media
Header Length
TCBFragStrucPtr dd ? ; Pointer to Fragment
Structure
TCBMediaHeaderLen dd ? ; Length of Media Header

TCBStructure ends

;; TCBMediaHeader equ TCBMediaHeaderLen + 4 ; Media Header Buffer

TCBDataLen

TCBMediaHeaderLen

TCBDriverWS

TCBFragStrucPtr

TCBMediaHeader

Fragment Structure
MSM/TSM Data Structures and Variables 4-17

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Table 4.3 TCB Field Descriptions

Offset Name Bytes Description

00h TCBDriverWS 12 The HSM may use this field for any purpose as long as it
controls the TCB.

0Ch TCBDataLen 4 This field contains the length of the packet described by the
data fragments plus the media header. This value will never
be 0.

10h TCBFragStrucPtr 4 This field contains a pointer to a list of fragments defined by
the FragmentStructure (described following the TCB
section).

14h TCBMediaHeaderLen 4 This field contains the length of the Media Header that
immediately follows the TCB in memory. This value may be
odd, even, or zero. A value of zero indicates a raw send. If
the HSM is handed a raw send, the originating protocol
stack has already included the media header in the first
data fragment.

18h TCBMediaHeader ? Immediately following the TCB in memory is a buffer con-
taining the Media Header that was assembled by the MSM.
4-18 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

TCB for RX-Net

Figure 4-6 Rx-NET Transmit Control Block

TCBStructure struc

TCBDriverWS dd 3 dup (0) ; Driver Workspace
TCBDataLen dd ? ; Total Fragment + Media Header Length
TCBFragStrucPtr dd ? ; Pointer to Fragment Structure
TCBMediaHeaderLen dd ? ; Length of First Media Header

TCBStructure ends

;; TCBMediaHeader db 3 or 4 dup (?) ; First Media Header *
;; TCBSecondHeaderLen db ? ; Length of Second Media Header
;; TCBSecondHeader db 4 or 8 dup (?) ; Second Media Header **

TCBDataLen

TCBMediaHeaderLen

TCBDriverWS

TCBFragStrucPtr

TCBMediaHeader *

TCBSecondHeaderLen
TCBSecondHeader **

Fragment Structure

* TCBMediaHeader is 3 bytes for Short Packets, and 4 bytes for Long or Exception Packets.

** TCBSecondHeader is 4 bytes for Short or Long Packets, and 8 bytes for Exception Packets.
MSM/TSM Data Structures and Variables 4-19

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Several fields of the above table reference the different types of RX-Net
packets. The following diagram shows the three RX-Net packet formats. A full
description of each is included in the ODI Supplement: Frame Types and
Protocol IDs.

Table 4.4 TCB Field Descriptions (RX-Net)

Offset Name Bytes Description

00h TCBDriverWS 12 This field is used by the MSM to link the TCBs

0Ch TCBDataLen 4 This field contains the length of the packet described by the
data fragments plus the media header. This value will never
be 0.

10h TCBFragStrucPtr 4 This field contains a pointer to a list of fragments defined by
the FragmentStructure (described following this section).

14h TCBMediaHeaderLen 4 This field contains the length of the first media header.

Immediately following the TCB in memory, is a buffer containing the media header information.

18h TCBMediaHeader 3 or 4 This field contains the first media header. The header is 3
bytes for Short Packets and 4 bytes for Long or Exception
Packets.

? TCBSecondHeaderLen 1 This field contains the length of the second media header.

? TCBSecondHeader 4 or 8 This field contains the second media header. The header is
4 bytes for Short or Long Packets, and 8 bytes for
Exception Packets.
4-20 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

RX-Net Packet Format

Short Packet Long Packet Exception Packet

Source Address Source Address Source Address

Destination Address Destination Address Destination Address

Byte Offset Long Packet Flag Long Packet Flag

Unused

(size varies)

Byte Offset Byte Offset

Unused

(size varies)

Unused

(size varies)Protocol Type

Split Flag Protocol Type Pad 1: Protocol Type

Packet Sequence Number

(2 bytes)

Split Flag Pad 2: Split Flag

Packet Sequence Number

(2 bytes)

Pad 3: FFh

Data

(0 - 249 bytes)

Pad 4: FFh

Data

(253 - 504 bytes)

Protocol Type

Split Flag

Packet Sequence Number

(2 bytes)

Data

(250 - 252 bytes)
MSM/TSM Data Structures and Variables 4-21

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

d to
Fragment Structure

The following section describes the format of the fragment structure pointe
by the TCBFragStrucPtr field of the Transmit Control Block.

Figure 4-7 TCB Fragment Structure

FragmentCount dd ? ; Number of Fragments
FragmentOffset1 dd ? ; Pointer to the 1st Data Fragment
FragmentLength1 dd ? ; Length of the 1st Data Fragment

FragmentOffsetn dd ? ; Pointer to the nth Data Fragment
FragmentLengthn dd ? ; Length of the nth Data Fragment

FragmentCount

FragmentOffsetn

FragmentLengthn

Data

Data

FragmentOffset1
FragmentLength1
4-22 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Table 4.5 TCB Fragment Structure

Offset Name Bytes Description

00h FragmentCount 4 This field contains the number of data fragment descriptors
to follow. Each descriptor consists of a pointer to a fragment
buffer and the size of that buffer. The HSM collects the data
from these buffers when forming the packet for
transmission.

04h

08h

.

.

.

FragmentOffset1

FragmentLength1

 .

 .

 .

FragmentOffsetn

FragmentLengthn

4

4

.

.

.

Pointer to the buffer containing the first data fragment.

Length of the buffer pointed to by FragmentOffset1.

(These fields contain additional fragment descriptors)
MSM/TSM Data Structures and Variables 4-23

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

y to

s
ver,
r to
e

lved
more
Event Control Blocks

This section defines the general Event Control Block (ECB) structure and
illustrates its relationship to the RCB and TCB. This section does not appl
most drivers written with the MSM / TSM interface.

Drivers written using the MSM / TSM interface typically interact with RCB
and TCBs during packet transactions as shown in the figure below. Howe
some drivers may need to bypass these MSM provided structures in orde
work directly with the underlying general ECB structure. This is typically th
case for intelligent adapters that are designed to be ECB aware.

An ECB aware adapter/driver will completely fill in and manage all fields of
the ECB during packet transactions. This shifts much of the overhead invo
in packet reception and transmission to the adapter giving the processor
time to perform other tasks.

This section only applies to ECB aware adapters/drivers.

Figure 4-8 Packet Transfer in the MSM/ODI Model

(MSM / TSM)

(HSM)

LINK SUPPORT LAYER

SUPPORT MODULES

HARDWARE SPECIFIC MODULE

TxECBRxECB

ECB
4-24 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

d for
The format of the ECB structure is shown below. The same structure is use
both receiving and transmitting packets.

Figure 4-9 Event Control Block

ECBStructure struc

Link ‘ dd ? ; Forward Link used for Queuing
ECBs

BLink dd ? ; Backward Link used for Queuing
ECBs

Status dw ? ; Current ECB Status
ESRAddress dd ? ; Event Service Handler
LogicalID dw ? ; Protocol Logical ID

 * ProtocolID db 6 dup (?) ; Protocol ID **
 * BoardNumber dd ? ; Logical Board # from Configuration

Table
 * ImmediateAddress db 6 dup (?) ; Rx...Source Addr / Tx...Destination

Addr
 * DriverWorkSpace dd ? ; Driver Workspace / Dest and Frame

Type **
ProtocolWorkSpace db 8 dup (?) ; Protocol Stack Workspace

 * PacketLength dd ? ; Length of the Packet Data
 * FragmentCount dd ? ; Number of Fragments
 * FragmentOffset1 dd ? ; Pointer to the 1st Fragment Buffer
 * FragmentLength1 dd ? ; Length of the 1st Fragment Buffer

ECBStructure ends
. ; Additional Fields follow for both
. ; Receive and Transmit ECBs
.

 * During packet reception, these fields must be filled in by the ECB Aware Adapter/Driver before passing
the ECB to the upper layers. During packet transmission, all fields are filled in by the upper layers before
passing the ECB to the driver.

 ** 802.2 frame types require special handling of the ProtocolID and DriverWorkSpace fields in the ECB
during packet reception and transmission (refer to the ODI Supplement: Frame Types and Protocol
IDs).
MSM/TSM Data Structures and Variables 4-25

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

hat

e as
Receive ECBs vs RCBs

The general Receive ECB and the MSM's RCB essentially form a union. T
is, both structures occupy the same memory space.

Figure 4-10 ECBs vs RCBs

The ECB fields that correspond to RCBReserved are normally managed by the
TSM. However, if an adapter is ECB aware, it can simply treat the structur
an ECB and take over the management of these fields.

Blink

ESRAddress

Link

Status

* * * *

* * * *

LogicalID

ProtocolID

BoardNumber

DriverWorkSpace

PacketLength

FragmentCount
FragmentOffset1

FragmentLength1

MediaHeader

ImmediateAddress

RCBDriverWS

RCBReserved

RCBFragment
Fields

RCBDataBuffer

Data

ECB Fields RCBFields

ProtocolWorkSpace
4-26 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ing

ter

6).

res.

his

's

dia
Drivers written for ECB aware adapters must obtain control blocks by call
MSMAllocateRCB. This routine allows the driver to preallocate RCBs
without the MSM initializing the fields. When a packet is received, the adap
copies it into the RCBDataBuffer, fills in the required fields (see Figure 4.9),
and returns the structure using either the <TSM>RcvCompleteStatus /
MSMServiceEvents combination or the function
<TSM>FastRcvCompleteStatus. (These routines are described in Chapter

Transmit ECBs vs TCBs

The general Transmit ECB and the TSM's TCB are totally separate structu
The TCBFragStrucPtr field of the TCB, however, points to the
FragmentCount field of the ECB. Knowing this, it is possible to work directly
with the underlying ECB by using both negative and positive offsets from t
pointer.

The MSM provides another more efficient way for ECB Aware adapters to
work directly with ECBs. By setting the DriverSendWantsECBs variable of
the DriverParameterBlock to any nonzero value (see Chapter 3), the HSM
DriverSend routine will be given ECBs rather than TCBs for packet
transmission. The HSM will then be responsible for building the proper me
header depending on the board number.
MSM/TSM Data Structures and Variables 4-27

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Figure 4-11 Transmit ECBs vs TCBs

Blink

ESRAddress

Link

Status

LogicalID

ProtocolID

BoardNumber

ProtocolWorkSpace

PacketLength

FragmentCount
FragmentOffset1

ImmediateAddress

ECB Fields

TCB Fields

DriverWorkSpace

FragmentLength1

FragmentOffsetn
FragmentLengthn

TCBDriverWS

TCBDataLen

TCBFragStrucPtr

TCBMediaHeaderLen

TCBMediaHeader
4-28 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Table 4.6 ECB Field Descriptions

Offset Name Bytes Description

00h Link 4 This field contains a forward link to another ECB. The LSL
uses this field for queuing ECBs. The HSM may use this
field for any purpose as long as it controls the ECB.

04h BLink 4 This field contains a backward link to another ECB. The
LSL uses this field for queuing ECBs. The HSM may use
this field for any purpose as long as it controls the ECB.
However, if the HSM uses DriverSendWantsECBs to get
ECBs instead of TCBs, it must not modify the transmit
ECB's BLink field.

08h Status 2 This field must not be modified by the HSM. The LSL uses
the Status field to indicate the current state of the ECB. (i.e.,
currently unused, queued for sending, etc.).

0Ah ESRAddress 4 This field must not be modified by the HSM. In receive
ECBs, the LSL places a pointer to the target protocol
stack's receive handler in this field and then queues the
receive ECB on a hold queue. Later, the LSL polls the hold
queue and routes the ECB to the proper protocol stack by
calling the address in this field.

0Eh LogicalID 2 This field must not be modified by the HSM. When a
protocol stack registers with the LSL, it is assigned a logical
number (0...15). This field contains that logical number or,
if the packet is a raw send, the field contains the value
FFFFh. On sends, the protocol stack places its own logical
number in this field. On receives, the LSL places the target
stack's logical number in this field.

10h ProtocolID 6 This field contains the protocol ID (PID) value on both
sends and receives. This value is stored in High-Low order.
For the 802.2 frame type, on sends, this field also contains
the 802.2 frame type information (Type I or II) required to
build the media header. (See the Frame Types and Protocol
IDs supplement for an explanation of 802.2 Type I and Type
II use of this field). On receives, this field always contains
the DSAP value of the 802.2 header.
MSM/TSM Data Structures and Variables 4-29

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

16h BoardNumber 4 When a driver registers with the LSL, it is given a logical
board number. The MLIDBoardNumber field of the
configuration table contains that number (see Chapter 3).
Logical board 0 is used internally in the operating system.
Drivers are assigned logical board numbers 1 through 255.
On receives, the HSM must fill in this field to indicate which
logical board received the packet. On sends, a protocol
stack fills in this field to indicate the target logical board.

1Ah ImmediateAddress 6 On receives, the immediate address represents either the
packet's source node address or the address of the last
router that passed the packet if the packet was routed from
another network. On sends, the immediate address
represents either the destination node address or the
destination router address.

The address is stored in High-Low order. If the node
address is less than six bytes, the most significant byte(s)
must be padded with 0.

The MSM fills in this field on receives. Addresses passed to
the upper layers may be in canonical or noncanonical
format depending upon whether the driver bit-swaps MSB
format addresses. The stack fills in this field on sends. All
addresses passed down to the MLID are in canonical
format if the driver is configured to be LSB. (Refer to
MSMPhysNodeAddress description.)

Table 4.6 ECB Field Descriptions continued

Offset Name Bytes Description
4-30 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

20h DriverWorkspace 4 The HSM can use this field for any purpose. The LSL will
not modify the field. However, before passing a completed
receive ECB to the LSL, fill in the first byte of the field (offset
20h) with the destination address type of the received
packet:

01h = Multicast
03h = Broadcast
04h = Remote Unicast
08h = Remote Multicast
10h = No Source Route
20h = Error Packet
80h = Direct Unicast

Set the second byte of this field (offset 21h) to indicate
whether the MAC header contains one or two 802.2 control
bytes:

0 = All frame types other than 802.2

1 = 802.2 header has only Ctrl0 byte (Type I)

2 = 802.2 header has Ctrl0 and Ctrl1 (Type II)

See the Frame Types and Protocol IDs supplement for an
explanation of 802.2 Type I and Type II.

24h ProtocolWorkspace 8 This field is reserved for use by the protocol stack.

2Ch PacketLength 4 This field contains the total length of the packet in bytes.
This is the length of the data portion of the packet (not
including media or SAP headers).

On receives, this value is equal to the FragmentLength1
(length may be 0). The HSM for ECB aware adapters must
fill in this field.

On sends, this value may be zero. The protocol stack fills
in this field.

30h FragmentCount 4 This field contains the number of data fragment descriptors
to follow. Each descriptor consists of a pointer to a fragment
buffer and the size of that buffer.

On receives, the fragment count is always between 1 and
16.

On sends, the fragment count is always between 1 and 16.

Table 4.6 ECB Field Descriptions continued

Offset Name Bytes Description
MSM/TSM Data Structures and Variables 4-31

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

34h

38h

FragmentOffset1

FragmentLength1

4

4

On receives, immediately following the ECB in memory is a
buffer where the HSM copies the received packet. After the
packet is copied into the buffer the HSM must set the
FragmentOffset to point around any media headers to the
data portion of the packet. The HSM must also set the
FragmentLength field to the total length of the data portion
of the packet (see Figure 4.10).

On sends, the FragmentOffset field points to the first
fragment buffer containing packet data. The
FragmentLength field specifies the length of that buffer.
This value can be zero. Immediately following the ECB in
memory there may be additional fragment descriptors. The
HSM collects the data from these fragment buffers to form
the packet for transmission (see Figure 4.11).

On receives, the memory immediately following the ECB contains:

3Ch MediaHeader varies The media header of a packet is placed in this field. This
field varies in length and appears only in Receive ECBs.
This field is not used or present if the LAN media splits the
data of a packet and transmits it in more than one frame (for
example RX-Net).

??h Data varies Immediately following the MediaHeader is the data portion
of the packet.

On sends, the memory immediately following the ECB contains:

3Ch

40h

 .

 .

 .

FragmentOffset2

FragmentLength2

 .

 .

 .

4

4

.

.

.

These fields contain additional fragment descriptors when
the FragmentCount field is greater than 1.

Table 4.6 ECB Field Descriptions continued

Offset Name Bytes Description
4-32 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

c h a p t e r 5 HSM Procedures
S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

e
Introduction

This chapter describes the routines that are the primary components of th
Hardware Specific Module (HSM).

Initialization and Removal

• DriverInit (required)

• DriverRemove (required)

 Board Service

• DriverISR

• DriverPoll

(only one of the above is required)

• DriverISR2 (optional)

Packet Transmission

• DriverSend (required)

• DriverPriorityQueueSupport (optional)

Multi-Operating System Support

• DriverEnableInterrupt (required)

• DriverDisableInterrupt (required)

• DriverDisableInterrupt2 (required if DriverISR2 is used)
HSM Procedures 5-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

are
r or
 by

SM
of
Control Procedures

• DriverReset (required)

• DriverShutdown (required)

• DriverMulticastChange (required except for RX-Net)

• DriverPromiscuousChange (recommended)

• DriverStatisticsChange (optional)

• DriverRxLookAheadChange (optional)

• DriverManagement (optional)

Timeout Detection

• TimerProcedure (optional)

• DriverAESCallBack (optional)

• DriverINTCallBack (optional)

• DriverTxTimeout (RX-Net Drivers only)

Every driver must provide the required procedures in order to function
properly. The recommended procedures must be implemented if the hardw
supports that function. The optional procedures are available if the adapte
driver requires the functionality. The HSM indicates routines not supported
placing a zero in the corresponding fields of the DriverParameterBlock.

All procedures described on the following pages are near calls from the M
and TSM. The pseudocode shown is intended to illustrate a general flow
events and does not necessarily describe optimized code.
5-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 or

SM

e
n
set
.

 the

ter

e
s
Initialization

The HSM's DriverInit routine controls the complete initialization process,
although specific tasks performed during initialization are handled by MSM
TSM routines. The initialization tasks include:

• Allocate the Frame and Adapter Data Space

• Process custom command-line keywords and custom firmware

• Parse the standard LOAD command-line options

• Register hardware options

• Initialize the adapter hardware

• Register the driver with the Link Support Layer

This section explains how the initialization tasks are divided between the H
and the support modules. Following the discussion is pseudocode for a
DriverInit routine.

DriverInit

When the NetWare OS receives the command to load the driver, it calls th
DriverInit routine (specified as the “start” routine in HSM's linker definitio
file). DriverInit must preserve EBP, EBX, ESI, and EDI on the stack, and
the DriverStackPointer field of the DriverParameterBlock to the value of ESP
The HSM then registers with the MSM and TSM interface as described in
next section.

Register with the MSM / TSM

DriverInit calls the <TSM>RegisterHSM routine with ESI pointing to the
DriverParameterBlock. The TSM passes the driver's parameter block poin
along with its own to the MSM.

The MSM makes a local copy of both parameter blocks and processes th
information passed on the stack from the operating system. If the HSM ha
custom firmware, the MSM loads the firmware and initializes the
DriverFirmwareSize and DriverFirmwareBuffer variables as described in
Chapter 3.
HSM Procedures 5-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

y of

,

 not

X

he
e

ing

ers:

C

ctly
The MSM allocates memory for the Frame Data Space and creates a cop
the driver's configuration table template in that area. If the MLIDCardName
and MLIDMajorVersion fields of the configuration table are initialized to zero
the MSM fills in these fields and the MLIDMinorVersion field using
information derived from the linker definition file. If the HSM has placed
nonzero values in the card name and major version fields, these fields are
modified.

Finally, the MSM sets the MLIDMaximumSize field of the configuration table
to the LSL's maximum packet size and returns to DriverInit.

• If the MSM was unsuccessful in its initialization tasks, it returns with EA
pointing to an error message. DriverInit must print the message using
MSMPrintString and return to the operating system with EAX set to a
nonzero value.

• If the MSM is successful, it returns with EAX set to zero and EBX
pointing to the driver's configuration table in the Frame Data Space. T
HSM must now gather the hardware option information needed for th
configuration table and call the MSM to parse the driver parameters
entered on the command-line. This process is described in the follow
section.

Determine Hardware Options

After <TSM>RegisterHSM returns successfully, the driver must determine
the hardware configuration of the adapter, including the following paramet

• Hardware Instance Number (HIN) for Micro Channel, PCI, PnP ISA, P
CARD, and EISA adapters

• Base port for programmed IO adapters

• Memory decode addresses for shared RAM adapters

• Interrupt numbers

• DMA channels

In all busses, except for legacy ISA, the driver can get this information dire
from the system once the HIN has been identified.
5-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

und

ad

-

er
le
nd
s
DriverInit must perform the following steps where appropriate for the
hardware:

1. If the HSM supports multiple buses, it may call
MSMScanBusInfo to determine the bus type, or it may call
MSMSearchAdapter once for each bus type it supports.

2. For all busses except legacy ISA, call MSMSearchAdapter to
search for the adapter ID. Any hardware instances that are fo
must be recorded in the IOSlot option list of the
AdapterOptionDefinitionStructure. This structure is described in
Chapter 7 under the MSMParseDriverParameters routine.

Step 2 must be performed every time DriverInit is called, because hot plug
cards can change the system hardware configuration between calls to
DriverInit .

3. The HSM calls MSMParseDriverParameters to determine the
hardware configuration options or the HIN specified on the lo
command-line, and to query the operator for any required
parameters which were not specified.

 MSMParseDriverParameters procedure requires an Adapter
OptionDefinitionStructure containing the valid options for the
hardware configuration. A NeedsBitMap is also required to
indicate which specific hardware options must be obtained eith
from the command-line or from the console operator. The tab
below shows the correspondence between the load options a
configuration table fields. The standard load command option
are described in Appendix A. An example load command is
shown here:

load <driver> frame=ethernet_802.3 port=300 int=3
HSM Procedures 5-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ce

e,
MSMParseDriverParameters also processes any custom
command-line keywords defined by the DriverKeyword
variables in the DriverParameterBlock. (see also
MSMParseCustomKeywords)

On return from MSMParseDriverParameters, the I/O portion
of the logical board's configuration table in the Frame Data Spa
has been filled in with the parsed values.

4. For all buses except legacy ISA, the configuration table now
contains the selected adapter HIN. The HSM can now use
MSMGetCardConfig to determine the configuration.

When all needed information has been obtained for the configuration tabl
DriverInit calls MSMRegisterHardwareOptions which is described in the
next section.

Configuration Table Fields Command-Line

MLIDSlot

MLIDIOPort0

MLIDIORange0

MLIDIOPort1

MLIDIORange1

MLIDMemoryDecode0

MLIDMemoryLength0

MLIDMemoryDecode1

MLIDMemoryLength1

MLIDInterrupt0

MLIDInterrupt1

MLIDDMAUsage0

MLIDDMAUsage1

MLIDChannelNumber

load <driver> SLOT=4

load <driver> PORT=300

load <driver> PORT=300:A

load <driver> PORT1=700

load <driver> PORT1=700:14

load <driver> MEM=C0000

load <driver> MEM=C0000:1000

load <driver> MEM1=CC000

load <driver> MEM1=CC000:2000

load <driver> INT=3

load <driver> INT1=5

load <driver> DMA=0

load <driver> DMA1=3

load <driver> CHANNEL=2
5-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 or a
r is
the

m

ust
to

t

r

If the driver must access shared memory before registering the hardware
options, it must use MSMReadPhysicalMemory and
MSMWritePhysicalMemory .

Register Hardware Options

The HSM calls MSMRegisterHardwareOptions to register with the
operating system. This routine reports to the HSM whether a new adapter
new frame format for an existing adapter is being loaded. If a new adapte
being registered, the MSM allocates the Adapter Data Space and copies
driver's AdapterDataSpaceTemplate to that area. This routine also notifies
the HSM of any conflicts with existing hardware in the system.

There are four possible conditions that the HSM must handle on return fro
MSMRegisterHardwareOptions:

• If EAX = 0, a new adapter was successfully registered and the HSM m
proceed with the hardware initialization (EBP now contains a pointer
the Adapter Data Space).

• If EAX = 1, a new frame type for an existing adapter was successfully
registered and initialization is essentially complete.

• If EAX = 2, a new channel for an existing multichannel adapter was
successfully registered. The driver (and MSM) typically treat the
registering of a new channel as a new adapter.

• If EAX > 2, the MSM was unable to register the hardware options and
EAX points to an error message. DriverInit must print the error message
using MSMPrintString and return to the operating system with EAX se
to a nonzero value.

Initialize the Adapter

At this point the HSM initializes the adapter hardware. This consists of all
setup appropriate for the hardware and might also include RAM and othe
hardware tests. The MSMResetMLID routine could be called to handle part
of this procedure.

It is important that DriverInit sets up the correct number of transmit buffers (the
maximum number of simultaneous sends allowed by the hardware) by placing
an appropriate value in MSMTxFreeCount. A description of this variable is in
HSM Procedures 5-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

re)

ter to

he

n

id
e

Chapter 4 and information about its use is in the packet transmission section of
this chapter.

If an error occurs during the hardware initialization, DriverInit must print an
appropriate error message, call MSMReturnDriverResources, and return to
the operating system with EAX set to a nonzero value. If the hardware
initializes successfully, the HSM then registers the driver with the LSL.

All HSMs written for hot plug adapters (PCI, PC Card, and others in the futu
must use MSMResetMLID for all hardware initialization. This is so that the
adapter’s hardware can be initialized after it is inserted, without having to
unload and reload the driver.

Register with the LSL

DriverInit calls the MSMRegisterMLID routine to register the driver with
the Link Support Layer. Registration consists of the MSM passing the
addresses of the MSM's send and control handler procedures, and a poin
the HSM's configuration table to the LSL. The LSL assigns a logical board
number to the adapter and the MSM places it in the configuration table. T
MSM automatically registers a logical board with the LSL during
MSMRegisterHardwareOptions each time a new frame is added for an
existing adapter. If an error occurs, the MSM routine returns a pointer to a
error message in EAX.

If MSMRegisterMLID is successful, the configuration table contains a val
board number. HSMs for intelligent bus master adapters may now pass th
board number and frame ID information to the adapter if necessary.

Setup a Board Service Routine

The HSM registers its board service routine, DriverISR or
DriverPoll , by calling either MSMSetHardwareInterrupt or
MSMEnablePolling. The DriverISR description later in this chapter provides
special instructions on setting up and handling shared interrupts.

Novell requires that 32-bit HSMs call MSMSetHardwareInterrupt after the
adapter is initialized to prevent an interrupt being received before initialization is
complete.
5-8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 a
. To

rrupt

e if
Schedule Timeout Callbacks

If the HSM is running an interrupt driven adapter, it may need to schedule
timer event that checks to see if the board was unable to complete a send
establish this timer event, drivers have traditionally used
MSMScheduleIntTimeCallBack or
MSMScheduleAESCallBack. These routines schedule periodic calls to the
HSM's DriverCallBack or DriverAES routines.
(RX-Net drivers normally use DriverTxTimeout , but could use these other
two routines.)

New with this specification, the driver can also call MSMScheduleTimer to
schedule a timer event. This function can be called at process time or inte
time, and is preferred over MSMScheduleAESCallBack or
MSMScheduleIntTimeCallBack.

If the adapter is not interrupt driven, the polling procedure can check to se
it failed to complete a send.

It is critical that MSMRegisterMLID is called before
MSMScheduleIntTimeCallBack in order for the driver to work properly with
NetWare SMP. ALL drivers must adhere to this.
HSM Procedures 5-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

DriverInit Pseudocode

Pseudocode
DriverInit proc

push ebx, ebp, esi, edi
 mov DriverStackPointer, esp
 lea esi, DriverParameterBlock
 call <TSM>RegisterHSM

jnz DriverInitError

*** Determine Hardware Options ***
(Pseudo Code for Hardware Instance Number (HIN) aware drivers)

Loop on Call to MSMSearchAdapter while successful.
The HIN number must be stored in the Slot option field that will be passed into

MSMParseDriverParameters.

Call MSMParseDriverParameters. (The selected HIN is put in the MLIDSlot field in the
Configuration Table)

Call MSMGetInstanceNumberMapping
Put the returned BusTag from MSMGetInstanceNumberMapping into

ConfigTable.MLIDBusTag.

Call MSMGetCardConfigInfo
Read the configuration information from the ConfigBuffer.

*** Register Hardware Options ***

call MSMRegisterHardwareOptions
If an Error occurred

jmp DriverInitError
else if a New Frame was added

jmp DriverInitExit

Processor States Entry State

Interrupts are enabled

Note this routine executes at a process level

Return State

EAX zero if successful; nonzero if an error occurred

Interrupts may be in any state
5-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

else a New Adapter was registered
continue with full initialization

*** Initialize the Adapter ***

If there is not a Node Address override
Read in the Node Address from the board
Copy the Node Address to the Configuration Table

Initialize MSMTxFreeCount

Initialize the Adapter Hardware, etc...
 call DriverReset to handle some tasks
If there was an error initializing the hardware

call MSMReturnDriverResources
jmp DriverInitError

*** Register with the LSL ***

call MSMRegisterMLID
jnz DriverInitError

*** Setup a Board Service Routine ***

call MSMSetHardwareInterrupt (or MSMEnablePolling)
jnz DriverInitError

*** Schedule Timeout Callbacks ***

If Timeout detection is required
esi = pointer to a timer structure
eax = callback interval in ticks
call MSMScheduleTimer (preferred method)
- or -
call MSMScheduleIntTimeCallBack (to enable callbacks

 to DriverCallBack)
 - or -

call MSMScheduleAESCallBack (to enable callbacks to
 DriverAES)

jnz DriverInitError

DriverInitExit:

eax = zero (Initialization was successful)
pop edi, esi, ebp, ebx
return
HSM Procedures 5-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

DriverInitError:

esi = eax (Ptr to Error Message)
call MSMPrintString
eax = nonzero value (Initialization Failed)
pop edi, esi, ebp, ebx
return

DriverInit endp
5-12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

an
it is
yer

pter's
to

ay
M

Packet Reception

This section provides a brief overview of the commonly used reception
methods available to the developer.

When the adapter receives a packet, the HSM must copy the packet into
RCB obtained from the TSM. The RCB is passed back to the TSM where
processed and transferred to the Link Support Layer. The Link Support La
then directs it to the proper protocol stack.

Reception Methods

The method of packet reception selected is typically dependent on the ada
data transfer method. The examples on the following pages are intended
illustrate a general flow of events. Refer to the appropriate MSM and TSM
support call descriptions for detailed information.

In general, packet reception involves the following steps:

• Obtain a Receive Control Block (RCB) structure from the TSM. RCBs
may be allocated before or after a packet is received.

• Copy the packet into the RCBDataBuffer or RCBDataFragments.

• Return the RCB back to the TSM (RCBs will be placed in the LSL's
holding queue until the HSM issues a service events command).

• Use the MSMServiceEvents macro to allow the LSL to call the transmit
ECB's event service routine.

Programmed I/O and Shared RAM

Option 1. This is the simplest reception method. During development it m
be helpful to initially use this method, then implement Option 2 after the HS
is functioning properly. The steps performed for this reception method are
outlined below. The <TSM>ProcessGetRCB procedure in Chapter 6 provides
a detailed description of this process.
HSM Procedures 5-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ss is

es a
e

his
DriverISR

Call MSMAllocateRCB or MSMAllocateMultipleRCBs to get an RCB or multiple
RCBs (unless you already have the
RCBs you need)

Copy the received packet into the RCBDataBuffer.
Call <TSM>ProcessGetRCB

The TSM checks the header information and if valid:
fills in the remainder of the RCB fields
delivers the RCB to the LSL
returns a new RCB to the driver

Save the new RCB for next packet received
MSMServiceEvents

Option 2. This method involves using a LookAhead process, in which the
frame header information is first confirmed before the entire packet is
transferred from the adapter into an RCB. For this reason, Option 2 is
recommended over Option 1.

The adapter's data transfer mode determines how the Look-Ahead proce
handled. Programmed I/O adapters must transfer MSMMaxFrameHeaderSize
bytes into a LookAhead buffer allocated for this purpose. If the adapter us
shared RAM transfer mode, the LookAhead buffer is simply the start of th
packet in shared RAM.

The steps performed for this reception method are outlined below. The
<TSM>GetRCB procedure in Chapter 6 provides a detailed description of t
process.

DriverISR

Setup a LookAhead buffer as described above (MSMMaxFrame-HeaderSize bytes)
Call <TSM>GetRCB (with a pointer to the LookAhead buffer in ESI)

TSM checks the header information and if valid:
obtains an RCB
fills in the RCBReserved fields
returns a pointer to the RCB in ESI

Copy the remainder of the packet into the RCB fragments
Call <TSM>RcvComplete
MSMServiceEvents
5-14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 code
ption
w.
DMA and Bus Master

Option 1. This reception method is used for most bus master adapters in
which the RCBs are preallocated. The steps performed for this reception
method are outlined below. The <TSM>ProcessGetRCB procedure in
Chapter 6 provides a detailed description of this process.

DriverInit

Use MSMAllocateRCB or MSMAllocateMultipleRCBs to obtain first
RCB(s)

Queue RCB(s) until a packet is received in DriverISR .

DriverISR

Copy received packet into the RCBDataBuffer.
Call <TSM>ProcessGetRCB

The TSM checks the header information and if valid:
fills in the remainder of the RCB fields
delivers the RCB to the LSL
returns a new RCB to the driver

Queue the new RCB until next packet is received MSMServiceEvents

Option 2. This method is recommended for intelligent adapters that are
designed to be ECB aware. It reduces the load on the server by off-loading
to the adapter. In this way, the adapter's firmware handles most of the rece
process. The steps performed for this reception method are outlined belo

DriverInit

Use MSMAllocateRCB or MSMAllocateMultipleRCBs to obtain first
RCB(s).

Queue RCB(s) until a packet is received.

Firmware

Filters the frame header information and if valid, fills in all fields of the ECB as
described in Chapter 4.

Generates interrupt when receive is complete (ready).

DriverISR

Call <TSM>RcvCompleteStatus to return the completed RCB.
Use MSMAllocateRCB or MSMAllocateMultipleRCBs to obtain another

RCB for the queue.
MSMServiceEvents
HSM Procedures 5-15

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

 a
ld

er
pt

ter
Bus Master Receive Routine - all HSM’s:

MSMAllocateRCB, MSMAllocateMultipleRCBs ,
<TSM>ProcessGetRCB, and <TSM>FastProcessGetRCB will return a
logical pointer to the RCB in register ESI. [ESI].RPacketOffset will contain
physical pointer to [ESI].RDataEnvelope, which is where the adapter shou
begin copying the packet.

If DriverSupportsPhysFrags bit is set, the following applies:

1. All HSM’s: All fragment pointers passed back from the ECB
returned by <TSM>GetRCB will contain physical pointers to
contiguous blocks.

2. DriverNeedsBelow16Meg set in DriverParameterBlock:
As with previous TSM’s,
MSMAllocateRCB,<TSM>ProcessGetRCB and
<TSM>FastProcessGetRCB will return a contiguous RCB that
is guaranteed to be below 16 megabytes.

3. DriverSendWantsECBs set in DriverParameterBlock:
MSMAllocateRCB or MSMAllocateMultipleRCBs will return a
logical pointer to the ECB in register ESI, and a physical point
to the ECB in EDI. The ECB should be filled in as normal, exce
before calling <TSM>FastRcvCompleteStatus, the adapter
should fill in [ESI].RPacketOffset with the physical address of
where the protocol header starts (which is usually all the adap
is capable of doing anyway).

TSM’s will not support HSM’s that set both DriverSendWantsECB’s and
DriverNeedsBelow16Meg.
5-16 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

s

 of

eps

n
RX-Net

Option 1. This option is used for RX-Net shared RAM adapters. The step
performed for this reception method are outlined below. The
RXNetTSMRcvEvent procedure in Chapter 6 provides a detailed description
this process.

DriverISR

Set ESI to point to received packet.
Call RXNetTSMRcvEvent

The TSM copies the entire packet into an RCB if the fragment is wanted with no other
interaction from the driver.

MSMServiceEvents

Option 2. This option is used for RX-Net programmed I/O adapters. The st
performed for this reception method are outlined below. The
RXNetTSMGetRCB procedure in Chapter 6 provides a detailed descriptio
of this process.

DriverISR

Set ESI to point to a LookAhead buffer containing the header information as shown in
Figure 5.1.

Call RXNetTSMGetRCB

The TSM checks the packet header information to see if the packet fragment is wanted
and if so, returns a pointer to an RCB.

Determine the current position in the RCB fragment buffers and copies the data into
the RCB.

Update the packet length field of the RCB.

Call RXNetTSMRcvComplete
MSMServiceEvents
HSM Procedures 5-17

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Figure 5-1 Format of RX-Net LookAhead Buffer

Long

Short

SourceAddress

DestinationAddress

ByteOffset

ProtocolType

Split Flag

SequenceNumber

PacketData

Total buffer
size is equal to
MSMMaxFrameHeaderSize

Total buffer
size is equal to
MSMMaxFrameHeaderSize

Total buffer
size is equal to
MSMMaxFrameHeaderSize

SourceAddress

DestinationAddress

ByteOffset

ProtocolType

Split Flag

SequenceNumber

PacketData

LongFlag

SourceAddress

DestinationAddress

ByteOffset

Pad 1: ProtocolType

Pad 2: Split Flag

SequenceNumber

PacketData

LongFlag

ProtocolType

Split Flag

Pad 3: FFh

Pad 4: FFh

Exception
5-18 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ive
vents

he

wing

ntil

e is
n if

 and
Board Service

The board service routine generally needs to detect and handle both rece
events and transmit complete events. The driver can be notified of these e
by using either an interrupt service routine, DriverISR , a polling procedure,
DriverPoll , or a combination of both. These routines are explained next.

DriverISR

DriverISR is called by the MSM when a hardware interrupt is detected. T
driver needs only to service the adapter and return (do not use iret).

Novell requires that interrupts remain unaltered during DriverISR . Drivers must
allow the support modules to control the interrupt state via calls to the
DriverEnableInterrupt and DriverDisableInterrupt routines at the appropriate
times. If a driver procedure must alter the interrupt state, it must restore the
interrupt state before returning.

The interrupt service routine generally needs to detect and handle the follo
events:

• Receive Event

• Receive Error

• Transmit Complete

• Transmit Error

The ISR routine must continue checking for receive and transmit events u
there are no more to be serviced.

Error detection and handling are optional in the cases where the hardwar
able to handle transmit and receive errors without driver intervention. Eve
the hardware has this capability, the driver must still be able to update or
maintain the statistics table described in Chapter 3.

Receive Event

The receive portion of the board service routine checks for receive errors
jumps to an error handler if an error has occurred. Otherwise, the routine
services the packet using one of the reception methods described in the
previous section.
HSM Procedures 5-19

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

s:

tic
use

stic
is
he

ust
Receive Error

If the HSM encounters a receive error, it must perform the following action

• Attempt to identify the error. While some cards provide greater diagnos
support than others, the HSM should attempt to pinpoint the specific ca
of the error (buffer overflow, missed packet, checksum error, etc.).

• Increment diagnostic counters. The HSM should maintain the diagno
counters in the statistics table for every detectable error condition. Th
will aid in debugging the driver as well as maintaining it in the future. T
driver should also increment the generic statistic TotalRxMiscCount if a
fatal receive error occurred that is not counted in any other standard
counter. Fatal receive errors may also be counted by the TSM using a
media specific counter as well.

• Pass the appropriate receive error bits to <TSM>GetRCB,
<TSM>ProcessGetRCB, or <TSM>FastProcessGetRCB.

Transmit Complete

Each time the HSM detects a successfully completed transmit event, it m
perform the following functions:

• Release the TCB using (if not already released in DriverSend)

call <TSM>SendComplete

• Increment the number of available transmit resources

inc [ebp].MSMTxFreeCount
5-20 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ns:

n
y the

d

d by
n be
ists

n

ared

• Transmit the next packet if one is waiting to be sent

test [ebp].MSMStatusFlags,TXQUEUED
jz NoSendsQueued
call <TSM>GetNextSend
jnz NoSendsQueued
call DriverSend

Transmit Errors

If the HSM encounters a transmit error, it should perform the following actio

• Attempt to identif y the error . As with receive errors, the HSM should
try to pinpoint the specific cause of the error (excess collisions, cable
disconnect, FIFO underrun, etc.).

• Increment dia gnostic counters. The HSM should maintain the
diagnostic counters in the statistics table for every detectable error
condition. The HSM should also increment the generic statistic
TotalTxMiscCount if a fatal transmit error occurred that is not counted i
any other standard counter. The fatal transmit error may be counted b
TSM using a media specific counter as well.

• Attempt to send the packet a gain. In the event the HSM has reache
the maximum retry limit for sending a packet, discard the packet,
increment MSMTxFreeCount, and transmit the next packet if one is
waiting to be sent.

Usin g Shared Interrupts

An HSM can support shared interrupts provided that they are also supporte
the host bus and the adapters which will share the interrupt. Interrupts ca
shared if the bus is operating in level-triggered mode or if external logic ex
on the adapters sharing the interrupt.

• The Micro Channel bus always uses level-triggered interrupts and ca
support shared interrupts.

• The PCI bus always uses level-triggered interrupts and can support sh
interrupts.

• The PC/AT bus normally uses edge-triggered interrupts and will not
support shared interrupts unless external logic exists on the adapters
sharing the interrupt.
HSM Procedures 5-21

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

rupt
red

e
orm

t,
ro

X
• The EISA bus normally uses edge-triggered interrupts, but each inter
can be individually set to level-triggered mode in order to support sha
interrupts.

A DriverISR routine which supports shared interrupts is very similar to on
which does not. If the HSM supports shared interrupts, the ISR must perf
the following operations:

• Immediately determine if the interrupt request is from its adapter. If no
return at once to the operating system ISR with EAX equal to a nonze
value and the zero flag cleared.

or al, 01h ; clear the zero flag
ret ; return to operating system ISR code

• If the interrupt request is from the HSM's adapter, the interrupt service
routine should proceed. Upon completion, the ISR must return with EA
equal to zero and with the zero flag set.

xor eax, eax ; zero eax & set the zero flag
ret ; returns to operating system ISR code
5-22 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

bit 5
o
The HSM must indicate that the adapters are sharing interrupts by setting
in the MLIDSharingFlags field of the configuration table. The HSM must als
initialize the DriverParameterBlock variable, DriverEndOfChainFlag, as
described in the following table.

If the HSM: The HSM must: DriverEndofChainFlag value:

Supports shared
interrupts

Set the
IOSharingInterrupt0Bit (bit5)
in the MLIDSharingFlags
field of the HSM's
configuration table.

Zero The shared interrupt vector is placed first on
the shared interrupt chain.

If another interrupt vector is requested after the
original vector is placed at the head of the chain, the
latter vector will be serviced first.)

Nonzero The shared interrupt vector is placed at
the end of the shared interrupt chain by the operating
system.

Does not support
shared interrupts

Clear the IOSharing-
Interrupt0Bit (bit5) in the
MLIDSharingFlags field of
the HSM's configuration
table.

Not used.
HSM Procedures 5-23

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

DriverISR Pseudocode

Pseudocode

DrverISR proc

CheckStatus:

Get the controller's interrupt status

ReceiveEvent:
.
.
.
(check for receive errors and handle)
.
.
.

*** Setup a LookAhead Buffer ***

mov ecx, [ebp].MSMMaxFrameHeaderSize
lea edi, [ebp].LookAheadBuffer
rep insb

*** Obtain an RCB for the Received Packet ***

lea esi, [ebp].LookAheadBuffer
mov ecx, HardwareReportedPacketSize
call <TSM>GetRCB

Processor States’ Entry State

EBP pointer to the Adapter Data Space

Dir Flag is cleared

Interrupts are disabled (Novell recommends interrupts remain
disabled during the DriverISR)

Return State

Dir Flag must be cleared

Interrupts must be disabled

Note no registers are preserved
5-24 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

if RCB is NOT available
skip this packet
jmp CheckStatus

 *** Copy data and deliver RCB ***

copy the packet data into the RCB fragment buffers
call <TSM>RcvComplete
jmp CheckStatus

TransmitEvent:
.
.
.
(check for transmit errors and handle/retry)
.
.
.

TransmitComplete:

reset retry counter to Maximum value
mov [ebp].TxInProgress, FALSE
inc [ebp].MSMTxFreeCount

 *** Transmit Next Packet In the Send Queue ***

test [ebp].MSMStatusFlags,TXQUEUED
jz Exit
call <TSM>GetNextSend
jnz Exit
call DriverSend

Exit:
MSMServiceEventsAndRet

DriverISR endp
HSM Procedures 5-25

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

e

essive

 is

DriverPoll

Description The DriverPoll procedure is used if the HSM requires a poll-driven board
service routine. This routine will typically perform functions similar to thos
of the DriverISR procedure.

DriverPoll is normally not used by an interrupt-driven HSM, however, there may
be some cases where polling is required or where polling is used in addition to
the ISR.

To register the polling procedure, place a pointer to the procedure in the
DriverPollPtr field of the DriverParameterBlock. The driver can then enable
polling during initialization by calling MSMEnablePolling.

DriverPoll is very time-consuming, especially in a Multi-Processor
environment. Each time DriverPoll is called, the Mutex is acquired and
DriverDisableInterrupts and DriverEnableInterrupts are both called. This
causes the Mutex to be held a high percentage of the time and causes exc
bus traffic.

While DriverPoll is executing, the driver is not doing any usable work and
locked out from receiving interrupts and DriverSends, etc.

MSMSuspendPolling will temporarily stop the driver from being polled. The
POLLSUSPENDED flag (bit4) in MLIDStatusFlags is set by the MSM when
MSMSuspendPolling is called and is cleared by the MSM when
MSMResumePolling is called. MLIDStatusFlags can be inspected by the
HSM to determine the current polling status.

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

Interrupts are disabled

Return State

EBP must be preserved
5-26 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

nters
 the
CB

M

r

o

from
ing

Packet Transmission

This section provides a brief overview of the methods commonly used for
packet transmission.

When sending a packet, a protocol stack assembles a list of fragment poi
in a transmit ECB and passes it to the LSL. The ECB is then transferred to
TSM where the information is processed and a TCB is constructed. The T
structure consists of the assembled packet header and data fragment
information. The TSM directs the TCB to the DriverSend routine which
collects the header and packet fragments and transmits the packet.

Transmission Methods

The method of packet transmission selected is typically dependent on the
adapter's data transfer method. The examples on the following pages are
intended to illustrate a general flow of events. Refer to the appropriate MS
and TSM support call descriptions for detailed information.

In general, packet transmission involves the following steps:

• During DriverInit , initialize MSMTxFreeCount to the number of adapter
transmit resources available.

• The TSM builds a TCB, checks to see if the driver can handle anothe
transmit and if so, decrements MSMTxFreeCount and calls DriverSend
(otherwise the TSM queues the packet).

• DriverSend will typically copy the media header and data fragments t
the transmit buffer and start the transmission.

• The driver returns the TCB back to the TSM using
<TSM>SendComplete. This can be performed before the actual
transmission is complete as long as all information has been collected
the TCB and the TCB is no longer needed (a “lying” send). The underly
transmit ECB will be placed in the LSL's holding queue until the HSM
issues a service events command.

• Use the MSMServiceEvents macro to allow the LSL to call the transmit
ECB's event service routine.
HSM Procedures 5-27

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ared

 of
he

et

fter

has
the
• When the actual transmission is complete, increment
MSMTxFreeCount. This is typically performed during DriverISR after a
transmit complete interrupt.

Programmed I/O, Shared RAM, and Host DMA

The sequence of events for transmitting a packet using programmed I/O, sh
RAM, or host DMA adapters is described below.

HSM

1. Sets MSMTxFreeCount to the maximum number of transmit
packets that the adapter can buffer. (performed in DriverInit)

TSM

2. If the Ethernet TSM is used, ECX is set to the padded length
the packet. (This is the value that the adapter will send onto t
wire, regardless of the value in the TCBDataLen field. In fact, the
value in ECX is not equal to TCBDataLen if the packet is
Ethernet 802.3 or Ethernet II and was evenized or if the pack
was padded to 60 bytes.)

3. Decrements MSMTxFreeCount and calls DriverSend with ESI
pointing to a filled in TCB structure.

HSM

4. Calls <TSM>SendComplete or <TSM>FastSendComplete
either after the packet has been buffered onto the adapter or a
the transmission has been completed.

5. Increments MSMTxFreeCount after the adapter completes the
transmission (typically performed in DriverISR).

Bus Master

Option 1. This option is identical to the method described on the previous
page for programmed I/O, shared RAM, and host DMA adapters.

Option 2. This method is recommended if the adapter is ECB aware and
sufficient adapter processor speed. It dramatically decreases the load on
server by reducing the host's process time.

HSM
5-28 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

CB

d.
1. Sets DriverSendWantsECBs to a nonzero value and sets
MSMTxFreeCount to the number of transmit packets that the
adapter can process at one time. (performed in DriverInit)

TSM.

2. Decrements MSMTxFreeCount and calls DriverSend with a
pointer to the Frame Data Space in EBX and a pointer to the E
in ESI.

HSM

3. Calls either <TSM>SendComplete or
<TSM>FastSendComplete after the packet has been buffered
onto the adapter or after the transmission has been complete

4. Increments MSMTxFreeCount after the adapter completes the
transmission (typically performed in DriverISR).
HSM Procedures 5-29

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

t

the

 a
 to

 a

s
bed
Bus Master Send Routine

Bus master adapters generally need physical addresses to ECB fragmen
pointers and control information in memory. These adapters would set the
DriverSupportsPhysFrags bit. If this bit is set the following applies:

1. The TSM will be responsible for providing only physical
fragment offsets. If one of the fragments is not physically
contiguous, the TSM will either:

Modify the ECB fragment structure to break the fragment
into multiple fragments

or
Copy the fragments into a buffer and pass a single fragment
TCB to the HSM with one physical fragment offset to the
buffer.

The ECB address passed to the HSM in register ESI will be a
logical address so that the host portion of the HSM can read
fragment structure. Also the following results will be true:
TCBDriverWS+4 will be:

0 if no double copy was performed
1 if a double copy was performed (which may be used for

statistics).
TCBDriverWS+8 will be:

The physical address of the TCBMediaHeader.

 These two fields can still be used freely by the HSM.

2. DriverNeedsBelow16Meg set in DriverParameterBlock:

If the TSM finds a fragment with an address over the 16
megabyte boundary, it will double copy all ECB fragments into
buffer guaranteed to be below 16 megabytes and pass a TCB
the HSM with one fragment. The one fragment pointer will be
physical address which points to the buffer.

3. DriverSendWantsECBs set in DriverParameterBlock:

ESI will contain the logical address of the ECB and EDI will
contain the physical address of the ECB. All fragment pointer
will contain physical addresses to contiguous buffers as descri
in section 1 above.

TSM’s will not support HSM’s that set both DriverSendWantsECB’s and
DriverNeedsBelow16Meg!
5-30 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

es
 bit

ter

Priority Transmission Support

The following algorithm is used for priority transmission support:

HSM

1. During DriverInit the HSM sets the following parameters:

2. The DriverPriorityQueuePtr field of the Driver Parameter Block
is set with a pointer to DriverPriorityQueueSupport.

Bit 12 in the MLIDFlags field of the MLID Configuration
Table is set.

The MLIDPrioritySup field in the MLID Configuration
Table is set to indicate the number of levels available.

MSMPriorityTxFreeCount is set to the maximum number
of priority transmissions that the HSM can handle
simultaneously.

3. The HSM can set or reset MLIDFlags bit 12 as the HSM chang
the Priority Queue Support state from enable to disabled. This
is checked on a per queue packet basis.

Protocol Stack

4. The protocol stack sets the ECB LogicalID field to a value grea
than or equal to FFF0h. The following values are valid for the
LogicalID field:

FFFFh Raw send, no Priority. (Priority 0)
FFFEh Raw send, Priority 1 (Scale 1-7: 1 =

Lowest Priority)
FFFDh Raw Send, Priority 2
FFFCh Raw Send, Priority 3
FFFBh Raw Send, Priority 4
FFFAh Raw Send, Priority 5
FFF9h Raw Send, Priority 6
FFF8h Raw Send, Priority 7 (Scale 1-7: 7 =

Highest Priority)
FFF7h Raw send, no Priority. (Priority 0)
FFF6h Priority 1 (Scale 1-7: 1 = Lowest

Priority)
FFF5h Priority 2
FFF4h Priority 3
FFF3h Priority 4
FFF2h Priority 5
FFF1h Priority 6
FFF0h Priority 7 (Scale 1-7: 7 = Highest

Priority)
HSM Procedures 5-31

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ible,

ks

t
ty

.

l
TSM

5. The TSM normally gives the packet to the HSM directly, as a
TCB using the DriverSend function. However, if
MSMTxFreeCount is zero and the transmit ECB is a priority
transmit ECB, the TSM calls DriverPriorityQueueSupport ,
which gives the HSM a chance to take the transmit ECB. The
DriverPriorityQueueSupport function, provided by the HSM,
queues the ECB in the HSM for transmission as soon as poss
or transmits the packet through a priority channel by first
building a TCB using <TSM>BuildTransmitControlBlock , or
returns a failure code and does not accept the ECB.

HSM

6. The HSM calls <TSM>BuildTransmitControlBlock to build a
TCB whenever a priority transmit resource becomes available
and a transmit ECB in the HSM’s priority queue. The HSM trac
the number of available priority TCBs.
MSMPriorityTxFreeCount is set during DriverInit and must
provide the maximum number of priority TCBs, which must no
change without unloading and reloading the HSM. Non- priori
packets use the original number of TCBs from
MSMTxFreeCount, which is reserved exclusively for their use
The HSM must not call <TSM>BuildTransmitControlBlock if
no priority TCBs are available.

7. After the HSM has transmitted the TCB returned by
<TSM>BuildTransmitControlBlock , the HSM calls
<TSM>SendComplete or <TSM>FastSendComplete, which
increments the statistic counters, call TxMonitor, places the TCB
back on the TCBs free list, and returns the ECB to its origina
owner.
5-32 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 3

ot
at it
 need

DriverSend

Description The TSM calls DriverSend to transmit a frame onto the medium. DriverSend
is provided a pointer to a Transmit Control Block (TCB). Refer to Chapter
for information on TCBs.

The HSM can assume that the TCB is valid for its LAN medium; it must n
do consistency checking on the TCB fields. The HSM can also assume th
has the resources necessary to handle the transmit operation; it does not
to check to see if it has a transmit hardware resource available. The TSM
performs flow control for the HSM. The TSM determines if the HSM can
handle the packet by checking the value of MSMTxFreeCount.

The DriverSend routine may request ECBs instead of TCBs by initializing the
DriverParameterBlock variable DriverSendWantsECBs to a nonzero value
(see Chapter 3). If DriverSend uses ECBs for packet transmission, it is
responsible for building the proper media header (refer to Chapter 4 for
additional information on ECB aware adapters). If the HSM uses ECBs instead
of TCBs, it must not modify the transmit ECB's BLink field.

For drivers that support physical fragments, the ESR field of the ECB with
physical fragments contains a pointer to the original ECB (with logical
fragments) handed to the MSM (refer to figure 4.11 in Chapter 4).

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

ESI pointer to a TCB or an ECB (see note below)

EDI If the HSM has set DriverSendWantsECBs to a
nonzero value and has set the
DriverSupportsPhyFrags bit in MLIDModeFlags, this
register contains the physical address of the ECB.

ECX padded length of the packet (Ethernet only)

Interrupts are disabled. Novell recommends that system
interrupts remain disabled during DriverSend .

Return State

Interrupts must be disabled
HSM Procedures 5-33

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

pseudocode

Copy the MediaHeader from the TCB into a transmit buffer.
Copy the fragmented data from the TCB's fragment structure into a transmit buffer.
Give the command to send the packet.
Restore ESI to point to the beginning of the TCB

IF called from DriverISR
Call <TSM>SendComplete ; (lying send)

ELSE
Call <TSM>FastSendComplete

ENDIF

Return
5-34 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

he

B.
vel
turn
ting

to

Driver Priority Queue Support

Called by the TSM to allow the HSM to handle a priority packet or to allow t
TSM to queue it for normal transmission.

Description

This function must either transmit the packet immediately or queue the EC
The HSM must be able to service the priority queue and handle priority le
detection issues. This function should process essential items only and re
as quickly as possible. This function may be called while the HSM is execu
critical section code.

The HSM must set DriverPriorityQueuePtr in the Driver Parameter Block
point to this function. The HSM can set or reset the configuration table
MLIDFlags bit 12 from supporting to not supporting priority packet states.
This bit is checked by the TSM on a per packet basis.

The RDriverWorkSpace field of the ECB must not be modified by the HSM.

Processor States Entry State

EBP pointer to the Adapter Data Space.

EBX pointer to the Frame Date Space.

ESI pointer to a transmit ECB.

Interrupts are disabled. Novell recommends that system
interrupts remain disabled during
DriverPriorityQueueSupport.

Return State

EAX completion code

Interrupts are disabled

Completion Code in EAX

SUCCESSFUL The ECB was processed/queued by the HSM.

OUT_OF_RESOURCES The ECB was not processed/queued by the HSM. The TSM
will queue the ECB and initiate transmission at a later time.
HSM Procedures 5-35

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

r 32-
 In
een

nd

ere

ver.

 to

d
e, it

still
is
es
Multi-Operating System Support

Driver specification v3.1 and later enables HSMs to be transported to othe
bit Intel-based operating system platforms without any code modification.
order to achieve this universal 32-bit HSM, two new driver routines have b
added.

A universal 32-bit HSM must be able to control interrupts at the adapter, a
must implement the DriverEnableInterrupt and DriverDisableInterrupt
routines. The resulting HSM can be transported to other OS platforms wh
access to the Programmable Interrupt Controller (PIC) is restricted. Also
multiprocessor platforms require interrupts to be managed outside the dri

Drivers must allow the MSM and TSM to control the interrupt state via calls
the DriverEnableInterrupt and DriverDisableInterrupt routines at the
appropriate times. Novell requires that the interrupt states remain unaltere
during driver procedures. If a driver procedure must alter the interrupt stat
must restore it to the original state before returning.

The new specification prohibits use of the CLI and STI instructions in HSM code,
or to directly EOI the PIC.

Because the server/32-bit HSM cannot contain direct calls to the OS and
function as a Windows NT client all OS calls have been eliminated from th
document along with all LSL calls and several MSM calls. The toolkit routin
provided by Novell (in combination with the redirector or requester) must
handle the unique features of interfacing to each OS.
5-36 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

sed
ter

m

M
Critical Sections

Starting with MSM.NLM v2.21 and the current TSM’s* the
MSMStartCriticalSection , MSMEndCriticalSection , and
MSMGetCriticalStatus macros are no longer supported and must not be u
in universal 32-bit HSM’s. This applies to the MSM and all TSM’s dated af
2-20-94.

The MSM and TSM’s have been modified so that any call they receive fro
the HSM after the driver is initialized will start a critical section. This will
allow the called routine to run to completion in case DriverSend is called
during this time. The critical section will then be cleared by the MSM or TS
routine before it returns control to the HSM.
HSM Procedures 5-37

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

DriverEnableInterrupt

Description This procedure enables interrupts at the adapter hardware.

DriverEnableInterrupt need only be called once to enable interrupts even
though DriverDisableInterrupt may have previously been called several times
by different processes. Also it is important to keep the DriverEnableInterrupt
procedure as short as possible.

PseudocodeDriverEnableInterrupt proc

Enable the adapter to generate interrupts
ret

DriverEnableInterrupt endp

Processor States Entry State

EBP pointer to the Adapter Data Space

Interrupts can be in any state

Return State

Interrupts preserved

EBP must be preserved
5-38 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ned.
DriverDisableInterrupt

Description This function disables interrupts on the adapter hardware. If the adapter
generates more than one interrupt, all interrupts must be disabled by this
function. However, only the request state of the first interrupt must be retur

DriverEnableInterrupt need only be called once to enable interrupts even
though DriverDisableInterrupt may have previously been called several times
by different processes.

PseudocodeDriverDisableInterrupt proc

Disable the adapter from generating interrupts
mov eax, <Appropriate Status>
ret

DriverDisableInterrupt endp

Processor States Entry State

EBP pointer to the Adapter Data Space

EAX zero - does not require a return value in EAX

one - HSM must return a value in EAX as described
below

Interrupts can be in any state

Return State

EAX If EAX was one on entry:

EAX is zero if service is being requested by the
LAN adapter’s first interrupt.

EAX is one if the LAN adapter’s first interrupt is
not requesting service. In this case, the TSM calls
DriverEnableInterrupt on return from this
routine.

Interrupts preserved

EBP must be preserved
HSM Procedures 5-39

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

DriverDisableInterrupt2

Description This function disables interrupts on the adapter hardware. If the adapter
generates more than one interrupt, all interrupts must be disabled by this
function. However, only the request state of the second interrupt must be
returned.

DriverEnableInterrupt need only be called once to enable interrupts even
though DriverDisableInterrupt may have previously been called several times
by different processes.

PseudocodeDriverDisableInterrupt2 proc

Disable the adapter from generating interrupts
mov eax, <Appropriate Status>
ret

DriverDisableInterrupt2 endp

Processor States Entry State

EBP pointer to the Adapter Data Space

EAX zero - does not require a return value in EAX

one - HSM must return a value in EAX as described
below

Interrupts can be in any state

Return State

EAX If EAX was one on entry:

EAX is zero if service is being requested by the
LAN adapter’s second interrupt.

EAX is one if the LAN adapter’s second interrupt
is not requesting service. In this case, the TSM
calls DriverEnableInterrupt on return from this
routine.

Interrupts preserved

EBP must be preserved
5-40 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ns

the
all
sible

e

date

ent
Control Procedures

The ODI specification requires drivers to implement the I/O control functio
(IOCTLs) listed in the table below. The MSM and TSM development tools
perform several of the required IOCTL functions without assistance from
HSM, as indicated in the table. The support modules will also “front end”
control functions and preserve any required registers. The HSM is respon
for implementing the control functions described in this section.

DriverReset and DriverShutdown are mandatory and must be present for th
driver to function properly. The HSM must also provide the
DriverMulticastChange and DriverPromiscuousChange procedures when
the hardware supports these functions.

The DriverStatisticsChange and DriverRxLookAheadChange procedures
are optional. These procedures allow drivers for intelligent adapters to up
the statistics table or the LookAhead size only as needed. Refer to the
DriverParameterBlock field descriptions in Chapter 3 for additional
information on these two control procedures.

Drivers that support the Hub Management Interface or Brouter must implem
the DriverManagement procedure to handle management requests and
commands as described in The Hub Management Interface supplement or the
Brouter Support supplement
HSM Procedures 5-41

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

.

Control Function Code Path

0 Get Configuration Table MSM

1 Get Statistics Table MSM -> DriverStatisticsChange

2 Add Multicast Address MSM -> TSM -> DriverMulticastChange

3 Delete Multicast Address MSM -> TSM -> DriverMulticastChange

4 Reserved MSM

5 Shutdown Driver MSM -> TSM -> DriverShutdown
(EAX = OP_SCOPE_ADAPTER)
(ECX = PERMANENT_SHUTDOWN or

 PARTIAL_SHUTDOWN)

6 Reset Driver MSM -> TSM -> DriverReset
(EAX=OP_SCOPE_ADAPTER)

7 Reserved MSM

8 Reserved MSM

9 Set receive LookAhead size MSM -> TSM -> DriverRxLookAheadChange

10 En/Dis Promiscuous Mode MSM -> TSM -> DriverPromiscuousChange

11 En/Dis Receive Monitor MSM -> TSM

12 Reserved MSM

13 Reserved MSM

14 Driver Management MSM -> DriverManagement

15 Reserved MSM

16 Remove Network Interface MSM->TSM->DriverShutdown
(EAX = OP_SCOPE_LOGICAL_BOARD)
(ECX = PERMANENT_SHUTDOWN)

17 Shutdown Network Interface MSM -> TSM -> DriverShutdown
(EAX=OP_SCOPE_LOGICAL_BOARD)
(ECX = PARTIAL_SHUTDOWN)

18 Reset Network Interface MSM -> TSM -> DriverReset
(EAX=OP_SCOPE_LOGICAL_BOARD)
5-42 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 to

e

t,
DriverReset

Description OP_SCOPE_ADAPTER

If EAX equals OP_SCOPE_ADAPTER, DriverReset resets and initializes the
adapter hardware.

This routine may also test the hardware to verify that it is functional. If the
driver has been temporarily shutdown, an application may call this routine
bring the board back into full operation.

When a reset is required, the TSM waits for transmissions in progress to
complete and calls DriverReset.

From within the HSM, DriverReset may be called by DriverInit . It may also
be called by DriverCallBack or DriverISR if the adapter had problems.

If the MSM calls DriverReset, and it returns successfully, the MSM resets th
MSMTxFreeCount variable to the initial value set by the driver during
initialization. If the MSM calls DriverReset, and the adapter cannot be rese
the MSM automatically calls DriverShutdown.

Processor States Entry State

EAX OP_SCOPE_ADAPTER

Reset the adapter specified by EBP.

OP_SCOPE_LOGICAL_BOARD

Reset the logical board specified by EBX.

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

Interrupts are disabled but may be enabled during the call

Return State

EAX Zero if successful.
FAIL (from ODI.INC) on failure.

Interrupts are disabled
HSM Procedures 5-43

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

 this
OP_SCOPE_LOGICAL_BOARD

If EAX equals OP_SCOPE_LOGICAL_BOARD, DriverReset resets the
logical board specified by EBX. The meaning of this operation is adapter/
media/driver dependent. Except for re-enabling a shutdown logical board,
operation is a NO_OP for most LAN Drivers.

Pseudocode

If OP_SCOPE_ADAPTER
Increment the reset statistics counter
Reset the hardware (includes performing any hardware testing)
Call <TSM>UpdateMulticast
Set EAX to zero if successful

ELSE
Do any necessary logical board specific action (usually a NO_OP)

ENDIF
5-44 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

e

ill
d
DriverShutdown

Description The MSM automatically calls DriverShutdown when the DriverReset
routine fails to reset the hardware. MSMReturnDriverResources and
MSMExitToDOS also call DriverShutdown.

Partial Shutdown

When a partial shutdown is required, the MSM sets MSMStatusFlag, waits for
transmissions in progress to complete and returns the transmit ECBs. Th
MSM also sets bit 0 of the SharingFlags in the configuration table.
DriverReset must be able to bring the adapter back into full operation.

Complete Shutdown

A zero value in ECX indicates a complete shutdown. As with a partial
shutdown the MSM has set the flags, emptied the send queue, and also w
return all resources not allocated directly by the HSM. If the HSM allocate
memory using MSMAlloc , it must be returned using MSMFree before
disabling the hardware.

Processor States Entry State

EAX OP_SCOPE_ADAPTER

Shutdown the adapter specified by EBP.

OP_SCOPE_LOGICAL_BOARD

Shutdown the logical board specified by EBX.

EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

ECX ZERO if a permanent shutdown, otherwise a partial
shutdown is required.

Interrupts Disabled but may be enabled during the call

Return State

EAX Zero if successful.
FAIL (from ODI.INC) on failure.

Interrupts are disabled
HSM Procedures 5-45

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

X),
rns.
 a

ified
OP_SCOPE_ADAPTER

If EAX equals OP_SCOPE_ADAPTER, DriverShutdown must place the
hardware into a safe, inactive state.

If the adapter is to be shut down permanently (indicated by the value in EC
the MSM disables the adapter's interrupt immediately after this routine retu
As far as the HSM is concerned, the only difference between a partial and
complete shutdown is the return of allocated memory.

OP_SCOPE_LOGICAL_BOARD

If EAX equals OP_SCOPE_LOGICAL_BOARD, DriverShutdown must
release all HSM-allocated resources associated with the logical board spec
by EBX.

PseudocodeIf OP_SCOPE_ADAPTER
IF a permanent shutdown
return any memory using MSMFree
ENDIF

return any preallocated RCBs or queued TCBs
Disable Hardware
Set EAX = 0
ELSE

Do any necessary logical board specific action (usually a NO_OP)
ENDIF
Return
5-46 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

les

t

ules
table

e or
DriverMulticastChange

Description DriverMulticastChange updates the adapter to reflect the changes in the
TSM's multicast address table. Novell requires that all HSMs support
multicast addressing if the media supports it. The following flags and variab
must be initialized properly for the adapter's multicast mode.

• Bit3 of the MLIDModeFlags is used to indicate whether or not multicas
addressing is supported.

• Bits 9 and 10 of the MLIDFlags must be set appropriately to reflect the
multicast mechanism or format used by the adapter/driver.

• The DriverParameterBlock variable, DriverMaxMulticast, must be set to
reflect the maximum number of multicast addresses the adapter can
handle.

The TSM maintains an internal table of multicast addresses. The TSM mod
handle the addition and deletion of addresses in this table. Whenever the
changes, the TSM calls DriverMulticastChange to update the adapter's
multicast filtering. The adapter may maintain its own multicast address tabl
use a hash table to filter incoming packets.

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

ESI pointer to the Multicast Table
(default for Ethernet or FDDI)

ECX Number of valid entries in the Multicast Table
(default for Ethernet or FDDI)

EDX 32-bit functional address
(default for Token-Ring)

Interrupts are disabled on entry, but may be enabled during the
routine

Entry State

Note EBX and EBP must be preserved

Interrupts must be disabled on return
HSM Procedures 5-47

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ntee
 its

utine
tput

es in
ate

ble.
d the

the

nd

 (and
Adapter Multicast Filterin g

The most common method used by adapters to filter incoming packets is
hashing. When this is the adapter's method, DriverMulticastChange must
recalculate and update the adapter's hash table. Hashing does not guara
100% multicast filtering; therefore, the TSM looks up incoming packets in
multicast address table to ensure that the packet's destination address is
enabled.

In the case that the adapter keeps its own list of multicast addresses, this ro
must cycle through the entries in the TSM's multicast address table and ou
each entry to the physical card. The TSM verifies that all addresses it plac
its table are valid multicast addresses so the HSM does not need to valid
them.

In either case, the HSM routine must read the TSM's multicast address ta
Each entry in the table is 8 bytes long. The first 6 bytes are the address, an
last word is a use flag maintained by the TSM. If the use flag is nonzero,
entry contains a valid address.

MulticastEntryStruc db 6 dup (?); multicast addresses
MulticastInUse dw 0 ; Nonzero if in use

The default method (if bits 9 and 10 of the MLIDFlags are zero) for handling
multicast operations is as follows:

 ECB aware HSMs must do their own filtering of multicast addresses.

Ethernet and FDDI

On entry to this routine, ECX contains the number of valid entries in the
multicast table. All valid entries will be contiguous, so the HSM does not
necessarily need to check the MulticastInUse flag. If ECX is zero, multicast
reception is disabled.

Token-Ring

The TSM passes the 32-bit functional address in EDX. In this case ECX a
ESI are normally not used.

If an adapter is capable of supporting both group and functional addresses
sets bits 9 and 10 in the MLIDFlags field of the configuration table
accordingly), the DriverMulticastChange routine will receive both functional
addresses and multicast table information.
5-48 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

RX-Net

DriverMulticastChange cannot be supported by RX-Net drivers.

Pseudocode
Clear the hardware registers that filter incoming packets for multicast addresses
Get current multicast addresses from TSM's multicast table
Reload hardware register with new multicast address filtering values
Return
HSM Procedures 5-49

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ocol

n

ter.
t the
he
sed
DriverPromiscuousChange

Description Adapters/drivers that can pass all packets to a monitor function in the prot
stack are said to have a promiscuous reception mode.
DriverPromiscuousChange provides a means for the stack monitor functio
to enable or disable promiscuous reception.

Enabling promiscuous mode will have a detrimental impact on system
performance.

A monitoring function examines packets sent from or received by an adap
If promiscuous mode is supported, the monitoring function can request tha
adapter enter promiscuous mode. When promiscuous mode is enabled, t
driver should allow all packets (including bad packets if possible) to be pas
up to the monitor function. Only one monitor function at a time may be
registered with a driver.

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

ECX zero disables promiscuous mode

setting one or more bits enables promiscuous mode
as follows:

bit 0 (PROM_MODE_MAC) is set if MAC frames
are to be received

bit 1 (PROM_MODE_NON_MAC) is set if non-
MAC frames are to be received

bit 2 (PROM_MODE_SMT) is set if FDDI SMT
type MAC frames are to be received

bit 3 (PROM_MODE_RMC) is set if remote
multicast frames are to be received

all bits are set if all frames are to be received

Interrupts are disabled but may be enabled during the call

Return State

Note EBP and EBX must be preserved

Interrupts are disabled
5-50 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

n

en-

ror
Be aware that a monitor function may set the configuration table's
MLIDLookAheadSize to a value other than the 18 byte default. This will in tur
change MSMMaxFrameHeaderSize.

The <TSM>GetRCB and <TSM>ProcessGetRCB require the driver to
indicate the status of the packet in EAX. EAX will always equal zero for tok
ring, RX-Net, and FDDI. For Ethernet the status options are as follows:

• EAX = zero for good packets

• EAX = non-zero for bad packets

• EAX bits are set as follows for bad packets:

Bit 0 - CRC Error

Bit 1 - CRC/Alignment Error

Bit 2 - Runt packet (set by the Ethernet TSM)

Bit 8 - Receive too big for ECB (set by the TSM)

Bit 9 - No board number registered (set by the TSM)

Bit 10 - Malformed packet (set by the TSM)

Bit 14 - Do not decompress the received packet

Bit 15 - The address in RImmediateAddress is in noncanonical format

Bit 31 - Driver shutting down (set by the TSM)

An ECB aware HSM must set all of these bits as necessary before calling
<TSM>RcvCompleteStatus or <TSM>FastRcvCompleteStatus. An RCB
aware HSM need set only Bit 0 - CRC error and Bit 1 - CRC/Alignment er
as necessary, the others are set by the TSM if needed.

If the HSM does not support promiscuous mode, bit 13 of the MLIDModeFlags
in the configuration table must be cleared and the
DriverPromiscuousChangePtr field in the DriverParameterBlock must be
zero.

Setting the Remote Multicast Frames bit causes the HSM to activate all
multicast frame reception. For example, if an adapter utilizes a hash table for
filtering active multicast frames, the adapter sets the hash table to accept all
multicast frames. Filtering active multicast entries is disabled when this bit is set.
HSMs that can filter must also disable filtering when this bit is set. Multiple bits
may be set; each bit adds to the type of frames that are to be received.
HSM Procedures 5-51

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

iver
al
ace
n).
Pseudocode

IF requested to enable promiscuous mode
send enabling command to hardware

ELSE
send disabling command to hardware

DriverStatisticsChange (optional)

Description The DriverStatisticsChange routine allows the MSM's control procedure
handler to notify drivers whenever an application requests IOCTL 1 (get dr
statistics). This allows HSMs for intelligent adapters that maintain statistic
information on board to update the statistics table in the Adapter Data Sp
only as needed (before the MSM passes it up to the requesting applicatio

For additional information, refer to the
DriverStatisticsChangePtr field of the DriverParameterBlock in Chapter 3.

Pseudocode

Transfer statistics maintained by the hardware to the statistics table in the Adapter Data
Space.

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

Interrupts are disabled but may be enabled during the routine

Return State

Interrupts are disabled

Note EBP must be preserved
5-52 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

TL

an
DriverRxLookAheadChange (optional)

Description The DriverRxLookAheadChange routine allows the MSM to notify drivers
after an application invokes IOCTL 9 to set the LookAhead size. This IOC
changes the MSMMaxFrameHeaderSize variable and the
MLIDLookAheadSize field in the configuration table. Drivers can use this
routine to inform intelligent adapters only when the size changes rather th
constantly checking the value.

Refer to the DriverRxLookAheadChangePtr field of the
DriverParameterBlock, the MLIDLookAheadSize in the configuration table,
the MSMMaxFrameHeaderSize variable, and the <TSM>GetRCB procedure
for additional information.

Pseudocode
Inform Adapter of new MSMMaxFrameHeaderSize (or new MLIDLookAheadSize)

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

Interrupts are disabled but may be enabled during the routine

Return State

Interrupts are disabled

Note EBP must be preserved
HSM Procedures 5-53

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

will
DriverManagement (optional)

Description If a driver accepts management commands from outside NLMs the MSM
call the DriverManagement routine to process the management requests.

Refer to The Hub Management Interface and the Brouter Support supplements
for an implementation of this procedure. See also the DriverManagementPtr
field of theDriverParameterBlock in Chapter 3.

Pseudocode (refer to The Hub Management Interface supplement for an example
DriverManagement routine)

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

ESI pointer to the management ECB containing the
request

(see supplements for The Hub Management
Interface or Brouter Support)

Interrupts are disabled but may be enabled during the routine

Entry State

Interrupts are disabled

EAX 00000000h = Success; command ECB relinquished

00000001h = Success; command ECB queued

FFFFFF88h = no such handle - protocolId not
supported
5-54 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 if a

d

tion

t

n

 is
M

e
r

n, the

s
s the
Timeout Detection

Historically, the DriverAES and DriverCallBack routines have been used to
call the HSM at periodic intervals. They have also been used to determine
board has failed to complete a packet transmission, as well as other time
functions.

Which routine should be used for HSM timeout handling depends on execu
time constraints:

• When DriverCallBack is executing, the HSM may only call routines tha
can be called at interrupt time.

• When DriverAES is executing, the HSM may only call routines that ca
be called at process time.

New with this specification, the driver can use MSMScheduleTimer to
achieve the same results as DriverAES and DriverCallBack .
MSMScheduleTimer is more versatile than either of these two routines and
now the preferred method for handling timer events. (See Chapter 7, “MS
Procedures and Macros”.)

RX-Net normally uses a specific routine, DriverTxTimeout , to handle transmit
timeouts. This routine is required only when the RX-Net module is used. RX-Net
drivers may also use the other two timing event routines.

DriverTxTimeout (RX-Net)

The RX-Net TSM calls DriverTxTimeout whenever a transmit has a softwar
timeout. Under normal conditions, the HSM issues the Disable Transmitte
command to the card. If the hardware does not require any special attentio
HSM simply returns.

DriverTxTimeout is called at interrupt time and should be optimized to be a
efficient as possible. This procedure must be included when the HSM use
RX-Net support module.
HSM Procedures 5-55

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

in

ach
the

g
DriverAES / DriverCallBack/TimerProcedure

Description DriverAES is enabled (typically during initialization) by calling
MSMScheduleAESCallBack. DriverCallBack is enabled by calling the
function MSMScheduleIntTimeCallBack. The use of these two MSM calls is
explained in Chapter 7, but briefly, the MSM routines expect EAX to conta
the desired time interval in ticks (1 tick = approx. 1/18 second).

Once enabled, the MSM invokes the routine automatically at the end of e
interval with EBX pointing to the Frame Data Space and EBP pointing to
Adapter Data Space. Interrupts are enabled when DriverAES is called and are
disabled on calls to DriverCallBack .

New with this specification, the driver can use MSMScheduleTimer to setup
a timer callback routine. MSMScheduleTimer is more versatile than
DriverAES or DriverCallBack and is now the preferred method for handlin
timer events. (See Chapter 7, “MSM Procedures and Macros”.)

The actual content of the routines is entirely up to the developer. The
pseudocode here illustrates using DriverCallBack to identify a send timeout
error.

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

Interrupts are enabled for DriverAES

are disabled for DriverCallBack

Return State

Note EBP must be preserved
5-56 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Pseudocode

IF Transmit is in Progress

IF Elapsed Transmit Time > Maximum Time for Transmit
Increment appropriate error counter
Reset the adapter
Reset [ebp].MSMTxFreeCount

Call <TSM>GetNextSend;(check the send queue)
IF TCB was available

Call DriverSend
ENDIF

ENDIF
ENDIF
Return
HSM Procedures 5-57

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Removal

The NetWare operating system calls the driver's exit procedure,
DriverRemove, when it receives the command to unload the driver. This
procedure is described below.
5-58 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

e

ust
DriverRemove

Description The DriverRemove procedure is called whenever the HSM is unloaded. Th
HSM's linker definition file must include the “exit” keyword followed by
DriverRemove. Because this routine is called by the operating system, it m
preserve the C registers EBP, EBX, ESI and EDI.

This routine must set EAX to the value of the DriverModuleHandle from the
DriverParameterBlock and call MSMDriverRemove. The MSM handles
MLID deregistration, returns all driver resources, and calls DriverShutdown
before returning.

PseudocodeDriverRemove proc

push ebx, ebp, esi, edi
mov eax, DriverModuleHandle
call MSMDriverRemove
pop edi, esi, ebp, ebx
ret

DriverRemove endp

*** Setup a Board Service Routine ***

Processor States Entry State

Interrupts can be in any state

Return State

Interrupts are preserved
HSM Procedures 5-59

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

5-60 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

c h a p t e r 6 TSM Procedures
S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 for
s
port

 on,

ral
es
Introduction

This chapter describes the topology specific procedures provided as tools
HSM developers. The Topology Specific Module, <TSM>.NLM, manage
the operations that are unique to a specific media type. Multiple frame sup
is implemented in the Topology Module so that all frame types for a given
media are supported.

The topology specific functions are indicated with <TSM>. The developer
must replace <TSM> with the appropriate media type depending on which
module is used. Since the driver must be assembled with case sensitivity
the names must be used exactly as shown.

ETHERTSM .NLM replace <TSM >with: Ether TSM
TOKENTSM.NLM replace <TSM> with: TokenTSM
RXNETTSM.NLM replace <TSM> with: RXNetTSM
FDDITSM.NLM replace <TSM> with: FDDITSM

RX-Net drivers require special consideration to handle split packets. Seve
routines are provided that are specific to the RX-Net module. These routin
are described at the conclusion of this chapter.
TSM Procedures 6-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

<TSM>BuildTransmitControlBlock

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to a transmit ECB

Interrupts are disabled

Call at process time

Return State

ECX padded length of the packet (non-ECB-aware
Ethernet only)

ESI pointer to a TCB (or an ECB); otherwise, NULL

Flags set according to EAX

Interrupts are disabled

Preserved EBP, EDI

Completion Code in EAX

SUCCESSFUL TCB pointer is valid. The HSM should transmit the TCB.

OUT_OF_RESOURCES A TCB was not available. THE HSM must not call this routine
with more outstanding TCBs than is set in the
MSMPriorityTxFreeCount variable. The ECB is returned to
HSM. The HSM must either call this function again after a TCB
resource is available, or return the ECB via
<TSM>CancelPrioritySend.

PACKET_UNDELIVERABLE A TCB was available, but the ECB described a packet that was
too large for the media. The ECB was returned to the LSL and
a TCB was not allocated.

Note : ECB-aware drivers needing physical addresses for
fragments may experience this error if the frame’s scatter/
gather count is too high. In which case, the ECB is returned to
the LSL and ESI=NULL.
6-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

or
f
e

cket

t

r a
be

o
sses
Description

The HSM calls <TSM>BuildTransmitControlBlock when it is ready to send
a priority packet that has been queued using DriverPriorityQueueSupport .
The HSM calls this function to convert an ECB to a TCB.

The HSM should be aware of the number of TCBs available to the MLID f
priority sends. The TSM allocates a number of TCBs based on the sum o
MSMTxFreeCount and MSMPriorityTxFreeCount. The HSM must not hav
more outstanding priority TCBs than was set by the HSM using
MSMPriorityTxFreeCount during DriverInit . If the HSM makes this call
when no TCBs are available, OUT_OF_RESOURCES is returned.

The HSM does not need to do size checking on the resultant TCB. If the pa
generated is too large for the media, this function returns
PACKET_UNDELIVERABLE after it returns the ECB to the LSL. It does no
return a TCB to the HSM.

The HSM must not change the MSMTxFreeCount for any TCB obtained fo
priority transmit. An internal counter for priority support resources should
maintained by the HSM.

ECB-aware drivers that need physical addresses for fragments must call
<TSM>BuildTransmitControlBlock to convert logical fragment addresses t
physical addresses. A pointer to the new ECB with physical fragment addre
is returned in ESI.
TSM Procedures 6-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ly
<TSM>CancelPrioritySend

Description

The HSM calls this function when it is canceling an ECB that was original
accepted to be transmitted via DriverPriorityQueueSupport .

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to a transmit ECB

Interrupts are disabled

Call at process time

Return State

Interrupts are disabled

Preserved EBP
6-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

g
<TSM>GetConfigInfo

Allows an HSM to get the configuration information for the <TSM>, includin
specification and module versions.

Processor States Entry State

EDI pointer to buffer used to receive the returned
configuration information. The caller must ensure
that the buffer is at least as long as the number of
bytes specified in ECX.

ECX requested number of bytes to be returned into the
buffer.

Interrupts can be in any state

Call at process time

Return State

ECX the actual number of bytes returned in the
configuration buffer.

Flags set according to EAX

Interrupts are disabled

Preserved EDI, EBX & EBP

Completion Code in EAX

SUCCESSFUL The configuration information was successfully returned in the
buffer.

BAD_PARAMETER The number of bytes requested was larger than the actual
configuration information available. The number of bytes
actually returned is indicated in ECX.
TSM Procedures 6-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

s.

nt

nt
Description

The configuration information is returned in the format defined by
TSMConfigTable.

TSMConfigTable struc
TSMCFG_TableSize dd ?
TSMCFG_TableMajorVersion db ?
TSMCFG_TableMinorVersion db ?
TSMCFG_ModuleMajorVersion db ?
TSMCFG_ModuleMinorVersion db ?
TSMCFG_ODISpecMajorVersion db ?
TSMCFG_ODISpecMinorVersion db ?
TSMCFG_Reserved dw ?
TSMCFG_MaxFrameSize dd ?
TSMCFG_SystemFlags dw 0

TSMConfigTable ends

TSMCFG_TableSize

This field contains the actual size of the TSM’s configuration table in byte
The value of this field should not be confused with the number of bytes
requested or copied (i.e., value in ECX).

TSMCFG_TableMajorVersion

This field contains the major version of the configuration table. The curre
major version is 1.

TSMCFG_TableMinorVersion

This field contains the minor version of the configuration table. The curre
minor version is 0.

TSMCFG_ModuleMajorVersion

This field contains the major version of the <TSM> binary (e.g.,
ETHERTSM.NLM).

TSMCFG_ModuleMinorVersion

This field contains the minor version of the <TSM> binary (i.e.,
ETHERTSM.NLM).

TSMCFG_ODISpecMajorVersion
6-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ion

ion

>
This field contains the major version of the ODI Specification that this vers
of the <TSM> is written too. For example, if the version of the ODI
specification is 3.31, the value of this field is 3.

TSMCFG_ODISpecMinorVersion

This field contains the minor version of the ODI Specification that this vers
of the <TSM> is written too. For example, if the version of the ODI
specification is 3.31, the value of this field is 31.

TSMCFG_Reserved

This field is reserved and must be set to 0.

TSMCFG_MaxFrameSize

The value of this field represents the maximum frame size that the <TSM
supports.

TSMCFG_SystemFlags

The bits in this field are defined below.

Table 6.1 TSMCFG_SystemFlags

Offset Name Bytes

Bit 31 TSM_CFG_CLIENT_BIT When set to 1 this bit indicates the TSM is
running in a client environment. Either this bit
or bit 30 will be set, but never both.

Bit 30 TSM_CFG_SERVER_BIT When set to 1 this bit indicates the TSM is
running in a server environment. Either this bit
or bit 31 will be set, but never both.

Bit 0-29 Reserved These bits are reserved.
TSM Procedures 6-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

on.

r
<TSM>GetNextSend

Description This function retrieves the next ECB to be sent from the MSM's transmit
waiting queue. It then builds a TCB and gives it to the HSM for transmissi
If the send queue is empty, this function clears the zero flag and returns.

Most HSMs do not need to call this function, because the MSM checks fo
pending transmissions whenever TxFreeCount is not equal to zero on exit from
an HSM function, and calls DriverSend when necessary.

The DriverSend routine may use ECBs instead of TCBs by initializing the
DriverParameterBlock variable DriverSendWantsECBs to a non-zero value
(see Chapter 3). In this case, <TSM>GetNextSend will simply retrieve the next
ECB to be sent (without building a TCB).

Processor States Entry State

EBP pointer to the Adapter Data Space

Interrupts are disabled

Call at process or interrupt time

Return State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

ESI pointer to the next TCB to transmit if successful.
This routine will decrement MSMTxFreeCount.

ECX Padded packet length (Ethernet only)

Zero Flag Set if successful; otherwise there are no TCBs
queued or the adapter is currently using all of its
transmit resources and cannot accept another
packet (MSMTxFreeCount = 0).

Interrupts are disabled
6-8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example DriverISR proc
.
.
.

TransmitComplete:; EBP = Ptr to Adapter Data Space

inc [ebp].MSMTxFreeCount; Free adapter's transmit
resource

mov [ebp].TxInProgress, 0; Clear transmit in progress flag

;*** Transmit Next Packet ***

call <TSM>GetNextSend; Get the next TCB from the
queue

jnz NoSendsQueued; Jump if nothing to send
call DriverSend; Otherwise send the packet
 .
 .
 .

DriverISR endp
TSM Procedures 6-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

<TSM>GetASMHSMIFLevel

Description Bus Master HSM’s that are modified to support physically addressed ECB
fragment pointers, (DriverSupportsPhysFrags bit = 1) need to call
<TSM>GetASMHSMIFLevel since the modified HSM is incompatible with
an older TSM. To be compatible with the modified HSM, the TSM level
returned must be 220 (version 2.20) or greater.

Example DriverInit Proc
.
.
.

;Fill in Driver Parameter Block Fields
.
.
.

if BusMaster
call <TSM>GetASMHSMIFLevel
cmp eax, 220
mov ecx, eax
lea eax, LevelErrorMsg
jb DriverInitResetError;Jump if wrong TSM level

endif
 .
 .
 .
DriverInit endp

Processor States Entry State

Interrupts can be in any state

Call at initialization time only

Return State

EAX assembly HSM Interface Level (currently 220)

Interrupts are preserved

Preserved all other registers
6-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

that

e
<TSM>GetRCB

For RX-Net see RXNetTSMGetRCB

Description This routine is called by the HSM to obtain a fragmented RCB for a packet
has been received by the adapter. Drivers that cannot handle fragmented
receive buffers should obtain RCBs using either MSMAllocateRCB or
<TSM>ProcessGetRCB.

<TSM>GetRCB uses a LookAhead process in which the packet's header
information is previewed before an RCB is given to the driver. This way th

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet header (LookAhead
buffer)

ECX size of the received packet, -1 if size is unknown
(such as pipelined adapters)

EAX status of received packet for the Receive Monitor, 0 if
unknown (such as pipelined adapters)
(see DriverPromiscuousChange in Chapter 5)

Interrupts can be in any state

Call at process or interrupt time

Return State

Zero Flag set if successful; otherwise an error occurred

ESI pointer to the fragmented RCB if this call is
successful

EDI pointer to the fragment structure
(points to the RCBFragmentCount field of the RCB)

EBX number of bytes to skip over from the beginning of
packet

ECX number of bytes remaining to read

Interrupts are disabled

Preserved EBP
TSM Procedures 6-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

e

 is

e
 for
ble

M
M.

(the
. If
. If

into
ket
 left

he

e

uires
n
TSM can first verify that it wants the packet, before the driver transfers th
entire packet from the adapter into an RCB.

The adapter's data transfer method governs how the LookAhead process
handled.

• If a programmed I/O adapter is being used, the HSM must transfer th
packet's header information from the adapter into a buffer maintained
this purpose. The number of bytes to transfer is specified by the varia
MSMMaxFrameHeaderSize described in Chapter 4. The HSM must set
ESI to point the beginning of the LookAhead buffer before calling this
routine.

• If a shared RAM (memory-mapped I/O) adapter is being used, the HS
can simply point ESI to the beginning of the packet buffer in shared RA

On entry to this routine, ESI must point to the packet's header information
LookAhead buffer) and ECX must contain the size of the received packet
the adapter is pipelined and the packet size is unknown, fill in ECX with -1
the header verifies, the TSM will obtain an RCB and use the LookAhead
information to fill in the RCBReserved fields before returning a pointer to the
RCB in ESI.

After obtaining the RCB, the remainder of the packet must be transferred
the RCB fragment buffers. EBX is the offset from the beginning of the pac
to start copying from and ECX contains the number of bytes in the packet
to read.

After the HSM has read the rest of the packet, it must return the RCB to t
LSL using either the <TSM>RcvComplete / MSMServiceEvents
combination or by using
<TSM>FastRcvComplete. If the adapter is pipelined and called
<TSM>GetRCB with ECX equal to -1, it should use either the
<TSM>RcvCompleteStatus/MSMServiceEvents combination or use
<TSM>FastRcvCompleteStatus to return the RCB along with the actual siz
of the packet and error status.

If this routine returns an error completion code, the received packet must be
discarded.

Bus Master Adapters

Bus Master devices require RCBs to be preallocated. Since this routine req
a LookAhead Buffer, it cannot be used to preallocate RCBs. The HSM ca
6-12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

preallocate RCBs using either MSMAllocateRCB or
MSMAllocateMultipleRCBs .

Example

mov ecx, [ebp].MSMMaxFrameHeaderSize; Build LookAhead
buffer

lea edi, [ebp].LookAheadBuffer
rep insb
lea esi, [ebp].LookAheadBuffer; Ptr to LookAhead buffer
mov ecx, PacketSize; Size of the received packet
call <TSM>GetRCB; Get an RCB
jnz PacketNotAccepted; Jump if Error
.
. (Copy remainder of the packet into the RCB)
.
call <TSM>RcvComplete; Return RCB
TSM Procedures 6-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

o
cket
<TSM>ProcessGetRCB

For RX-Net see RXNetTSMRcvEvent

Description The HSM calls this routine to process an RCB for a received packet and t
preallocate a new nonfragmented RCB for the next packet. The received pa
must have been copied into the RCBDataBuffer.

Use this routine if the RCB was preallocated using MSMAllocateRCB or
MSMAllocateMultipleRCBs , or was obtained from a previous call to this
routine. In either case, the RCBReserved fields have not been filled in, and
therefore must be completed by the TSM.

If the adapter/driver is ECB aware and has already filled in all required ECB
fields as described in Chapter 4, the ECB should be returned for processing
using <TSM>RcvCompleteStatus /MSMServiceEvents or
<TSM>FastRcvCompleteStatus .

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet's RCB

ECX size of the received packet

EAX status of received packet for the Receive Monitor
(see DriverPromiscuousChange in Chapter 5)

EDI maximum packet size for the new RCB

Interrupts can be in any state

Call at process or interrupt time

Return State

Zero Flag set if a new RCB was available

ESI pointer to a new non-fragmented RCB (if the zero flag
is set)

Interrupts are disabled

Preserved EBP
6-14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

tion.

he
rns

to

 of

 the

 the
When this routine is called, the TSM examines the packet header informa
If the header verifies, the RCBReserved fields are filled in and the RCB is
directed to the Link Support Layer's holding queue to await processing. T
TSM then obtains a new nonfragmented RCB, if one is available, and retu
it to the driver. If the packet header is invalid, the RCB will be given back
the driver to be used again for another packet.

The HSM must eventually use the macro MSMServiceEvents which enables
the RCB's Event Service Routine to complete the processing.

Ethernet

The HSM should start copying the packet from the 6 byte destination field
the media header into the RCBDataBuffer field of the RCB.

Token-Ring

The HSM should start copying the packet from the Access Control byte of
media header into the RCBDataBuffer field of the RCB.

FDDI

The HSM should start copying the packet from the Frame Control byte of
media header into the RCBDataBuffer field of the RCB.

For drivers that use DMA it may be helpful to note that RCBFragmentOffset1
points to the physical address of the RCBDataBuffer (refer to figure 4.3 in
Chapter 4).

For some busMaster implementations, you must set RProtocolWorkspace
(defined in ODI.INC) to the number of bytes necessary to skip to the beginning
of the packet. This value can be as high as 128 bytes for chips which have poor
alignment capabilities. This field is normally part of the reserved space in the
RCB definition and can only be used with this call for the purpose stated above.
TSM Procedures 6-15

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example

DriverInit proc
.
.
.
mov esi, [ebx].MLIDMaximumSize
call MSMAllocateRCB; Preallocate first RCB & save.
.
.
.

DriverInit endp

DriverISR proc
.
.
.

ReceiveEvent:
.
. (Copy packet into the RCBDataBuffer field of the

preallocated RCB)
.
xor eax, eax; Good packet
mov ecx, PacketSize; Size of received packet
mov edi, [ebx].MLIDMaximumSize; Maximum size for new

RCB
call <TSM>ProcessGetRCB; Return RCB & get a new

RCB
.
.
.

DriverISR endp
6-16 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

e is

 and
isters

.

<TSM>FastProcessGetRCB

For RX-Net see RXNetTSMFastRcvEvent

Description <TSM>FastProcessGetRCB is identical to <TSM>ProcessGetRCB with the
exception that before this routine returns, the RCB's Event Service Routin
called to complete the processing. <TSM>ProcessGetRCB used in
conjunction with MSMServiceEvents will perform the same task.

During the RCB's Event Service Routine, the interrupts might be enabled
all registers could be destroyed. The HSM must preserve any needed reg
before calling <TSM>FastProcessGetRCB. If having the interrupts enabled
is undesirable, the driver should use the <TSM>ProcessGetRCB procedure
and wait until the conclusion of the receive routine before servicing events

This routine calls the RCB's Event Service Routine during which the interrupts
might be enabled and all registers could be destroyed.

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet's RCB

ECX size of the received packet

EAX status of received packet for the Receive Monitor
(see DriverPromiscuousChange in Chapter 5)

EDI maximum packet size for the new RCB

Interrupts can be in any state (but might be enabled during the
call)

Call at process or interrupt time

Return State

Zero Flag set if a new RCB was available

ESI pointer to a new nonfragmented RCB (if the zero flag
is set)

Interrupts are disabled

Preserved EBP
TSM Procedures 6-17

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

For drivers that use DMA it may be helpful to note that RCBFragmentOffset1
points to the physical address of the RCBDataBuffer (refer to figure 4.3 in
Chapter 4).

For some busMaster implementations, you must set RProtocolWorkspace
(defined in ODI.INC) to the number of bytes necessary to skip to the beginning
of the packet. This value can be as high as 128 bytes for chips which have poor
alignment capabilities. This field is normally part of the reserved space in the
RCB definition and can only be used with this call for the purpose stated above.

Example

DriverInit proc
.
.
.
mov esi, [ebx].MLIDMaximumSize
call MSMAllocateRCB; Preallocate first RCB & save.
.
.
.

DriverInit endp

DriverISR proc
.
.
.

ReceiveEvent:
.
. (Copy packet into the RCBDataBuffer field of the

preallocated RCB)
.
xor eax, eax; Good packet
mov ecx, PacketSize; Size of received packet
mov edi, [ebx].MLIDMaximumSize; Maximum size for new

RCB
call <TSM>FastProcessGetRCB; Return RCB, service

events, and get a new RCB
.
.

DriverISR endp
6-18 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

CB

 the

 the

 for
<TSM>RcvComplete

Description The HSM calls <TSM>RcvComplete to direct a completed RCB to the Link
Support Layer's holding queue to await processing. Use this routine if the R
was obtained using the
<TSM>GetRCB procedure and the received packet has been copied into
RCB receive buffer(s).

Pipelined adapter drivers that previously called <TSM>GetRCB with ECX = -1,
as well as ECB aware adapters should call <TSM>RcvCompleteStatus
instead of <TSM>RcvComplete . Drivers that call <TSM>GetRCB with ECX set
to equal the frame size should still use <TSM>RcvComplete .

When an RCB is queued using this routine, the HSM must eventually use
macro MSMServiceEvents to call the RCB's Event Service Routine and
complete the processing.

RX-Net

If an RX-Net adapter/driver is ECB aware (see Chapter 4), it is responsible
handling packet reconstruction and fragmentation. Once the packet is
reconstructed, the HSM must set the second byte of the DriverWorkspace field
to one before calling this routine.

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet's RCB

Interrupts are disabled

Call at process or interrupt time

Return State

Interrupts are disabled

Preserved EBP, ESI, and EDI.
TSM Procedures 6-19

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

 Example
mov ecx, [ebp].MSMMaxFrameHeaderSize; Build the

LookAhead buffer
lea edi, [ebp].LookAheadBuffer
rep insb

lea esi, [ebp].LookAheadBuffer; Ptr to LookAhead buffer
mov ecx, PacketSize; Size of the received packet
call <TSM>GetRCB; Get an RCB
jnz PacketNotAccepted; Jump if Error
.
. (Copy remainder of the packet into the RCB)
.
call <TSM>RcvComplete; Return the RCB
6-20 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

leted
this

 the
<TSM>RcvCompleteStatus

Description The HSM calls <TSM>RcvCompleteStatus to allow the TSM to fill in proper
packet length fields of the RCB, record the error status and direct the comp
RCB to the Link Support Layer’s holding queue to await processing. Use
routine if the RCB was obtained by a pipelined adapter using
<TSM>GetRCB with ECX equal to -1 or by an ECB aware adapter using
MSMAllocateRCB or MSMAllocateMultipleRCBs .

When an RCB is queued using this routine, the HSM must eventually use
macro MSMServiceEvents to call the RCB’s Event Service Routine and
complete the processing.

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet's RCB

EAX status of received packet for Receive Monitor

ECX size of received packet

Interrupts are disabled

Call at process or interrupt time

Return State

Interrupts are disabled and were not enabled

Preserved EBP, ESI, and EDI.
TSM Procedures 6-21

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example (This example is for pipelined adapters; see
<TSM>FastRcvCompleteStatus for ECB-aware example)

mov ecx, -1; don’t know packet size yet
xor eax, eax; don’t know error status
lea esi, [ebp].LookAheadBuffer; pass what we have so

far
call <TSM>GetRCB ; get an RCB
jnz PacketNotAccepted; jump if error
.
. (Copy remainder of the packet into the RCB)
.
mov eax, [ebp].ErrorStatus; get known error status
mov ecx, [ebp].PacketSize; get known packet size
call <TSM>RcvCompleteStatus
6-22 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

e is

 and
isters
<TSM>FastRcvComplete

Description <TSM>FastRcvComplete is identical to <TSM>RcvComplete with the
exception that before this routine returns, the RCB's Event Service Routin
called to complete the processing. Using <TSM>RcvComplete in conjunction
with MSMServiceEvents will perform the same task.

During the RCB's Event Service Routine, the interrupts might be enabled
all registers could be destroyed. The HSM must preserve any needed reg
before calling <TSM>FastRcvComplete. If having the interrupts enabled is
undesirable, the driver should use the <TSM>RcvComplete procedure and
wait until the conclusion of the receive routine before servicing events.

This routine calls the RCB's Event Service Routine during which the interrupts
might be enabled and all registers could be destroyed.

Pipelined adapter drivers that previously called <TSM>GetRCB with ECX = -1,
as well as ECB aware adapters should call <TSM>FastRcvCompleteStatus
instead of <TSM>FastRcvComplete . Drivers that call <TSM>GetRCB with
ECX set to equal the frame size should still use <TSM>FastRcvComplete .

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet's RCB

Interrupts are disabled (but might be enabled during the call)

Call at process or interrupt time

Return State

Interrupts are disabled

Preserved assume all registers are destroyed.
TSM Procedures 6-23

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example mov ecx, [ebp].MSMMaxFrameHeaderSize; Build the
LookAhead buffer

lea edi, [ebp].LookAheadBuffer
rep insb
lea esi, [ebp].LookAheadBuffer; Ptr to LookAhead buffer
mov ecx, PacketSize; Size of the received packet
call <TSM>GetRCB ; Get an RCB
jnz PacketNotAccepted; Jump if Error
.
. (Copy remainder of the packet into the RCB)
.
call <TSM>FastRcvComplete ; Return RCB & service

events
6-24 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

e

and
isters

ing
<TSM>FastRcvCompleteStatus

Description <TSM>FastRcvCompleteStatus is identical to <TSM>RcvCompleteStatus
with the exception that before this routine returns, the RCB’s Event Servic
Routine is called to complete the processing. Using
<TSM>RcvCompleteStatus in conjunction with MSMServiceEvents will
perform the same task.

During the RCB’s Event Service Routine, the interrupts might be enabled
all registers could be destroyed. The HSM must preserve any needed reg
before calling <TSM>FastRcvCompleteStatus. If having the interrupts
enabled is undesirable, the driver should use the <TSM>RcvCompleteStatus
procedure and wait until the conclusion of the receive routine before servic
events.

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet's RCB

EAX status of received packet for Receive Monitor
(see DriverPromiscuousChange in Chapter 5)

ECX size of received packet

Interrupts are disabled

Call at process or interrupt time

Return State

Interrupts are disabled and may have been enabled

Preserved Assume all registers are destroyed
TSM Procedures 6-25

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example (This examples is for ECB-aware adapters; see <TSM>RcvCompleteStatus
for pipelined adapters example.)

mov esi, [ebx].MLIDMaximumSize; ECB Size expected
call MSMAllocateRCB; get an RCB
jnz NoRCBsAvailable; jump if error
.
. (Copy remainder of the packet into the RCB)
.
mov eax, [ebp].ErrorStatus; get packet error status
mov ecx, [ebp].PacketSize; get known packet size
call <TSM>FastRcvCompleteStatus
6-26 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

,
g
<TSM>RegisterHSM

Description The HSM's DriverInit routine must call <TSM>RegisterHSM with a pointer
to its DriverParameterBlock structure in ESI. Before calling this routine,
DriverInit must save the value of the stack pointer in the DriverStackPointer
field of the DriverParameterBlock after pushing the C registers EBP, EBX
ESI, and EDI. This routine then calls the MSM which performs the followin
tasks:

• copies the parameter block into local data space

• processes driver firmware variables

• allocates the Frame Data Space

• copies the driver configuration table into the Frame Data Space

• parses information derived from the linker definition file

• places LSL's maximum packet size in the configuration table

• initializes screen ID used for MSMPrintString procedures

Processor States Entry State

ESI pointer to the DriverParameterBlock structure

Interrupts can be in any state

Call at initialization time only

Return State

EAX zero if successful; otherwise EAX points to an error
message that the driver must print using
MSMPrintString before returning to the operating
system with EAX non-zero.

EBX pointer to the Frame Data Space

Interrupts are disabled

Preserved all other registers are destroyed

Zero Flag set if successful; otherwise an error occurred
TSM Procedures 6-27

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example DriverInit proc
Cpush; macro to save “C” registers
mov DriverStackPointer, esp; Fill in stack pointer
lea esi, DriverParameterBlock; Get ptr to Parameter

Block
call <TSM>RegisterHSM; Get a Frame Data Space
jnz DriverInitError; Jump if error
.
.
.
xor eax, eax; Successful return with EAX=0
Cpop ; Restore “C” registers
ret

DriverInitError:
mov esi, eax; ESI=EAX= ptr to error msg.
call MSMPrintString; Print the Message
Cpop ; Restore “C” Registers
ret ; Return (EAX is nonzero on

; errors)
DriverInit endp
6-28 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

itted.

d),
buffer

 and

upt
<TSM>SendComplete

Description This procedure is called to release a TCB after a packet has been transm
It can be called by DriverISR after a transmit complete interrupt or by the
DriverSend routine before the actual transmission is complete (a lying sen
as long as all packet data has been transferred into the adapter's transmit
and access to the TCB is no longer required.

This procedure returns the packet's TCB to the MSM's unused TCB queue
directs the underlying Transmit ECB to the Link Support Layer's service
queue.

The HSM must eventually use the macro MSMServiceEvents which calls the
ECB's Event Service Routine. Typically, if the DriverSend routine was called
to transmit the next packet after a send complete interrupt, then the interr
service routine must invoke MSMServiceEvents.

The DriverSend routine may use ECBs instead of TCBs by initializing the
DriverParameterBlock variable DriverSendWantsECBs to a non-zero value
(see Chapter 3). In this case, <TSM>SendComplete will simply direct the ECB
to the LSL's service queue.

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the Transmit Control Block (TCB)

Interrupts are disabled

Call at process or interrupt time

Return State

Interrupts are disabled

Preserved EBP
TSM Procedures 6-29

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example

DriverSend proc
.
. (send the packet to the NIC)
.
cmp InDriverISR, 0
jnz <TSM>SendComplete
jmp <TSM>FastSendComplete

DriverSend endp
6-30 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 to

and
isters
<TSM>FastSendComplete

Description <TSM>FastSendComplete is identical to <TSM>SendComplete except
that before this routine returns, the TCB's Event Service Routine is called
notify the upper layers that the transmission is complete. Using the
<TSM>SendComplete / MSMServiceEvents combination will perform the
same task.

During the TCB's Event Service Routine, the interrupts might be enabled
all registers could be destroyed. The HSM must preserve any needed reg
before calling <TSM>FastSendComplete.

Example DriverSend proc
.
. (send the packet to the NIC)
.
cmp InDriverISR, 0
jnz <TSM>SendComplete
jmp <TSM>FastSendComplete

DriverSend endp

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the Transmit Control Block (TCB)

Interrupts are disabled (but might be enabled during the call)

Call at process or interrupt time

Return State

Interrupts are disabled

Preserved all registers are destroyed.
TSM Procedures 6-31

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

le

r's

utine

t
<TSM>UpdateMulticast

Description When <TSM>UpdateMulticast is called it passes the current multicast tab
(maintained by the TSM) to the HSM's
DriverMulticastChange routine. This allows the driver to update the adapte
multicast address registers.

This routine is called by internal TSM procedures each time the multicast
addresses are added to or deleted from the MSM's multicast table. This ro
can also be called by the driver during the HSM's DriverReset routine.

RX-Net does not support multicast addressing. This routine is not available if the
RXNetTSM module is used.

Refer to the sections covering the following flags and variables for more
information on multicast addressing:

• Bit 3 of the MLIDModeFlags is used to indicate whether or not multicas
addressing is supported.

• Bits 9 and 10 of the MLIDFlags must be set appropriately to reflect the
multicast mechanism or format used by the adapter/driver.

• The DriverParameterBlock variable, DriverMaxMulticast, must be set to
reflect the maximum number of multicast addresses the adapter can
handle.

Processor States Entry State

EBP pointer to the Adapter Data Space

Interrupts are disabled and remain disabled

Call at process or interrupt time

Return State

Interrupts are disabled

Preserved EBX and EBP
6-32 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example DriverResetproc
.
.
.
call<TSM>UpdateMulticast
.
.
.

DriverResetendp
TSM Procedures 6-33

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

der
e

e

 The

to
 If

CB
ady
RXNetTSMGetRCB

Description This routine is normally used for programmed I/O adapters.

RXNetTSMGetRCB uses a LookAhead process in which the packet's hea
information is previewed before an RCB is given to the driver. This way th
TSM can first verify that it wants the packet, before the driver transfers th
entire packet from the adapter into an RCB.

The LookAhead process requires the HSM to build a buffer containing the
packet's header information as shown in Figure 6.1 on the following page.
number of bytes required for the buffer is specified by the variable
MSMMaxFrameHeaderSize described in Chapter 4. The HSM must set ESI
point to the beginning of the LookAhead buffer before calling this routine.
the header verifies, this routine returns a pointer to an RCB.

At this point, the HSM must transfer the remainder of the packet into the R
fragment structure. Since other fragments of a split packet may have alre
been copied into the RCB buffers, the HSM must perform the following
operations.

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the LookAhead Buffer

Interrupts are in any state

Call at process or interrupt time

Return State

Zero flag set if successful; otherwise an error occurred

ESI pointer to the RCB if this call is successful

EDI pointer to the RCB fragment structure
(points to the RCBFragmentCount field of the RCB)

EBX contains the offset in the card's buffer from which to
start copying data

ECX number of bytes remaining to read

Interrupts are disabled

Preserved EBP
6-34 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

in

 into
he
t to

ther
• The dword value at [EDI – 4] indicates the number of bytes currently
the RCB fragment buffers. This value can be used along with the
RCBFragmentLength fields to determine where in the RCB fragment
structure to begin copying the packet.

• Once the position is located, the HSM transfers the rest of the packet
the RCB fragment structure. (EBX is the offset from the beginning of t
card's buffer to start copying from and ECX is the number of bytes lef
read.)

• Update the number of bytes currently in the RCB fragment buffers by
adding ECX bytes to the dword value at [EDI – 4].

After the HSM completes the above tasks, it must return the RCB using ei
the <TSM>RcvComplete / MSMServiceEvents combination or by using
<TSM>FastRcvComplete.

Using RXNetTSMGetRCB does not provide 100% support to a receive monitor.
TSM Procedures 6-35

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Figure 6-1 Format of the RX-Net LookAhead Buffer

Short

SourceAddress

ByteOffset
ProtocolType

SplitFlag
SequenceNumber

PacketData

Total buffer size
is equal to
MSMMaxFrameHeade

DestinationAddress

Long

SourceAddress

ByteOffset
ProtocolType

SplitFlag
SequenceNumber

PacketData

Total buffer size
is equal to
MSMMaxFrameHeade

DestinationAddress
LongFlag

Exception

SourceAddress

ByteOffset

ProtocolType
SplitFlag

SequenceNumber
PacketData

Total buffer size
is equal to
MSMMaxFrameHeade

DestinationAddress
LongFlag

Pad 1: ProtocolType

Pad 4 : FFh

Pad 2 : SplitFlag
Pad 3 : FFh
6-36 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example

 .
 . (Build the LookAheadBuffer)
 .
lea esi,[ebp].LookAheadBuffer
call RXNetTSMGetRCB ; Get an RCB
jnz NoRCB ;Jump if there is an error
 .
 . (Determine the current fragment buffer position)
 . (Transfer the rest of the packet into the RCB)
 .
add [edi-4], ecx
call RXNetTSMRcvComplete; Return the RCB
TSM Procedures 6-37

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

et. If

eive

tine
de
RXNetTSMRcvEvent

This procedure applies to RX-Net only

Description RXNetTSMRcvEvent is only available to HSMs that use RX-Net shared
RAM cards and that use the RXNetTSM module. The only action the HSM
takes when a packet is received is to pass this routine a pointer to the pack
the packet is wanted, the TSM copies the entire packet into an RCB,
completing packet reception.

The HSM must eventually use the macro MSMServiceEvents which enables
the RCB's Event Service Routine to complete the processing.

RX-Net cards that do not support shared RAM should either:

• Use the RXNetTSMGetRCB / <TSM>RcvComplete combination to
receive packets. This method does not provide 100% support to a rec
monitor.

• Copy the entire packet from the adapter into a buffer and call this rou
with a pointer to that buffer in ESI. This method is the only way to provi
100% support to a receive monitor.

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet

Interrupts are in any state

Call at process or interrupt time

Return State

Zero Flag set if successful

Interrupts are disabled

Preserved EBP
6-38 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example

mov esi, [ebp].CurrRxPage; ESI -> Current Rx Page
xor [ebp].CurrRxPage, 0200h; Toggle to the next page
call RXNetTSMRcvEvent; Pass the packet to MSM
jmp ISRExit; Finished receiving the packet
TSM Procedures 6-39

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

 and
isters

RXNetTSMFastRcvEvent

This procedure applies to RX-Net only.

Description RXNetTSMFastRcvEvent is identical to RXNetTSMRcvEvent except that
before this routine returns, the RCB's event service routine is called to
complete the processing. Using RXNetTSMGetRCB /
RXNetTSMRcvEvent in conjunction with MSMServiceEvents will perform
the same task.

During the RCB's Event Service Routine, the interrupts might be enabled
all registers could be destroyed. The HSM must preserve any needed reg
before calling RXNetTSMFastRcvEvent. If having the interrupts enabled is
undesirable, the driver should use the RXNetTSMRcvEvent procedure and
wait until the conclusion of the receive routine before servicing events.

This routine calls the RCB’s Event Service Routine, during which the interrupts
might be enabled and all registers could be destroyed.

Example

mov exi, [ebp].CurrRxPage; location of received packet
call RXNetTSMFastRcvEvent

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet

Interrupts are in any state

Call at process or interrupt time

Return State

Zero Flag set if successful

Interrupts are disabled

Preserved EBP
6-40 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

c h a p t e r 7 MSM Procedures and Macros
S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ls for
ic
cing
pter
es.
Introduction

This chapter describes the MSM procedures and macros provided as too
HSM developers. These MSM procedures, along with the topology specif
procedures described in Chapter 6, manage the primary details of interfa
the HSM to the Link Support Layer. The procedures and macros in this cha
are media independent and handle generic initialization and run-time issu
The macros included in this section are defined in the MSM.INC file.
MSM Procedures and Macros 7-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

e
us

re
Netware Bus Interface

Overview

This section lists the MSM API calls that enable the NetWare Bus Interfac
(NBI) as it pertains to this specification. The MSM autoloads the NetWare B
Interface, NBI.NLM.

The additional bus support includes PCI, ISA Plug and Play, and PC Card
(PCMCIA) support. The MSM functions described in this chapter make it
possible to access and support these new bus architectures.

PCI and any other new bus support you choose to implement in your driver
MUST be implemented by using the new MSM calls listed in this chapter. Any
other implemtations including direct calls to the NBI are not allowed.

The MSM API calls described in this chapter that pertain to NBI support a
listed below.

MSMGetAlignment
MSMGetBusInfo
MSMGetBusSpecificInfo
MSMGetBusType
MSMGetCardConfigInfo
MSMGetInstanceNumber
MSMGetInstanceNumberMapping
MSMGetUniqueIdentifier
MSMGetUniqueIdentifierParameters
MSMRdConfigSpace8
MSMRdConfigSpace16
MSMRdConfigSpace32
MSMScanBusInfo
MSMSearchAdapter
MSMWrtConfigSpace8
MSMWrtConfigSpace16
MSMWrtConfigSpace32

Since the MSMGetHardwareBusType call has been removed, old EISA and
MCA drivers that used this call must be updated and use MSMSearchAdapter
instead.
7-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

of
Bus Architecture

A bus architecture is one or more related address spaces and a set of
characteristics within those address spaces. For example, an IBM PC ISA
address space consists of the following:

• a 16-bit memory address space

• a 16-bit I/O address space

• a defined set of interrupts with their means of generation and means
dismissal

• a set of DMA channels with means of starting and completing their
operations

• etc.

Multiple Bus Platforms

The following figure shows an example of a multiple bus platform.

Figure 7-1 Multiple Bus Platform Example

Bus Adapter

ISA Bus LAN Adapter

CPU

System Bus 1

System Bus 2 (EISA Bus)
MSM Procedures and Macros 7-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

bus
y
er

read

stem
m Bus
Because of the potentially differing bus architectures and the intervening
adapter, an MLID executing on the CPU cannot assume that it can directl
access and control the programmable interrupt controller or DMA controll
the same way it might on an IBM PC. In fact, these functions may be
implemented using hardware completely unlike that used in the IBM PC.

The MLID cannot even assume that it knows what memory addresses to
or write in order to communicate with its adapter. In the above figure, for
example, the intervening bus adapter can have these addresses in the Sy
Bus 2 memory address space mapped to some other address in the Syste
1 address space or can have them not mapped at all.
7-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

rror

g

which

ded
e
er,

e
MSMAlertFatal

Description The HSM can call MSMAlertFatal during regular operation (run-time) to
notify the operating system of driver hardware or software problems. An e
severity level of “fatal” will be reported with the developer-provided error
message. This routine will not relinquish control to other procedures durin
execution.

The possible arguments #1 and #2 above are used here the same way in
they are used in the C-language printf routine. If there are no format
specifications in the string, ECX and EDX are ignored.

This routine also supports an additional string format. If the string is prece
by a word size error number in the range of 100-999, the MSM will print th
driver name, the platform name (NW for NetWare), the decimal error numb
and the instance of the board, before printing the specified string. (See th
Standard MLID Message Definitions supplement for a listing of standard
messages.)

Example ErrorMessage dw 105
db “Board did not respond to multicast update.”,0

.

.

.
lea ESI, ErrorMessage
call MSMAlertWarning

Processor States Entry State

EBP pointer to Adapter Data Space

ECX possible argument #1

EDX possible argument #2

ESI pointer to null terminated error message

Interrupts can be in any state, but will be disabled during the call

Call at process or interrupt time

Return State

Interrupts are in the same state as when the routine was called

Preserved EBX and EBP
MSM Procedures and Macros 7-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

an
The example above would output the following message if the adapter is
NE2000 and was the first NE2000 registered:

NE2000-NW-105-Adapter 1:Board did not respond to multicast update.
7-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

rror
or
g

which

of

e
MSMAlertWarning

Description The HSM can call MSMAlertWarning during regular operation (run-time) to
notify the operating system of driver hardware or software problems. An e
severity level of “warning” will be reported with the developer-provided err
message. This routine will not relinquish control to other procedures durin
execution.

The possible arguments #1 and #2 above are used here the same way in
they are used in the C-language printf routine. If there are no format
specifications in the string, ECX and EDX are ignored.

This routine has added functionality which supports an additional string
format. If the string is preceded by a word size error number in the range
100-999, the MSM will print the driver name, the platform name (NW for
NetWare), the decimal error number, and the instance of the board, befor
printing the specified string. (See the Standard MLID Message Definitions
supplement for a listing of standard messages.)

Example ErrorMessage dw 105
db “Board did not respond to multicast update.”,0

.

.

.
lea ESI, ErrorMessage
call MSMAlertWarning

Processor States Entry State

EBP pointer to Adapter Data Space

ECX possible argument #1

EDX possible argument #2

ESI pointer to null terminated error message

Interrupts can be in any state, but will be disabled during the call

Call at process or interrupt time

Return State

Interrupts are in the same state as when the routine was called

Preserved EBX and EBP
MSM Procedures and Macros 7-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

an
The example above would output the following message if the adapter is
NE2000 adapter and was the first NE2000 registered:

NE2000-NW-105-Adapter 1: Board did not respond to multicast update.
7-8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

n

ory
MSMAlloc

Description The HSM may use this call to allocate memory at process time. MSMAlloc
returns a pointer to the allocated buffer in EAX. If the routine was
unsuccessful, EAX will be zero. It is the responsibility of the HSM to retur
this buffer at shutdown using MSMFree.

If the DriverParameterBlock variable, DriverNeedsBelow16Meg, was
initialized to any nonzero value (see chapter 3), the MSM will allocate mem
below the 16 megabyte boundary.

Example mov eax, UserBufferSize
call MSMAlloc
or eax,eax
jz ErrorAllocatingBuffer

Processor States Entry State

EBP pointer to the Adapter Data Space

EAX number of bytes of memory to allocate

Interrupts can be in any state (but might be enabled during the
call)

Call at process time only

Return State

EAX pointer to the allocated buffer. (zero = failure)

Interrupts are in the same state as when the routine was called

Preserved EBX, EBP, ESI, and EDI
MSM Procedures and Macros 7-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

e

ted.

 for
MSMAllocateMultipleRCBs

Description

This procedure is intended for high speed drivers that require a pool of fre
RCBs available.

This procedure call is similar to MSMAllocateRCB except that more than one
RCB may be allocated at a time. The RCBs returned will be non-fragmen
If no RCBs are available the MSM will increment NoECBAvailableCount
statistics counter. Each RCB is linked to the next using the ECB fields Link
a forward pointer to next RCB by logical address and BLink for a forward
pointer to next RCB by physical address. Link and BLink are located in
RCBDriverWS. See Chapter 4 Receive ECBs vs RCBs.

Processor States Entry State

ECX number or RCBs to allocate

EBP pointer to Adapter Data Space

ESI set to MLIDMaximumSize

Interrupts can be in any state

Call at process or interrupt time

Return State

ECX number of RCBs allocated

ESI logical ptr to first RCB

EDI physical ptr to first RCB

Flags zero flag is set according to EAX

Interrupts are disabled

Preserved EBX & EBP

Completion Code in EAX

SUCCESSFUL At least one RCB was allocated.

OUT_OF_RESOURCES No RCBs available.
7-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

be
If fewer RCBs are available than were requested, all available RCBs will
allocated. On return ECX will always match the actual number of RCBs
allocated.

Do not use if DriverNeedsBelow16Meg flag is set in the DriverParameterBlock.

This procedure can not be used by RX-Net drivers.

Example

;ebx = ptr to FrameDataSpace, ebp=ptr to AdapterDataSpace

mov esi, [ebx].MLIDMaximumSize ; Esc=MaxPacketSize
mov exc, NUMBER_TO_ALLOCATE ; ECX =Number of RCBs to

allocate
call MSMAllocateMultipleRCBs ; attempt to get RCBs
jnz Unable to allocate RCHGBS ; jump if unsuccessful
MSM Procedures and Macros 7-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

dary

rn

ory
MSMAllocPages

Description The HSM may use this call to allocate a memory buffer on a 4K page boun
at process time. MSMAllocPages returns a pointer to the allocated buffer in
EAX. If the routine was unsuccessful, EAX will be zero. The HSM must retu
this buffer at shutdown using MSMFreePages.

If the DriverParameterBlock variable, DriverNeedsBelow16Meg, was
initialized to any nonzero value (see chapter 3), the MSM will allocate mem
below the 16 megabyte boundary.

Example mov eax, UserPageBufferSize
call MSMAllocPages
or eax,eax
jz ErrorAllocatingBuffer

Processor States Entry State

EAX number of bytes of memory to allocate

Interrupts can be in any state

Call at process time only

Return State

EAX pointer to the allocated buffer. (zero = failure)

Interrupts are in the same state as when the routine was called

Preserved EBX, EBP, ESI, and EDI
7-12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

B
 to
lso

r
st

s
DI
MSMAllocateRCB

Description The HSM uses MSMAllocateRCB to allocate an RCB for a packet it has
received or to preallocate an RCB for a packet it will be receiving. The RC
returned will be non-fragmented (see Chapter 4) and will be large enough
hold the received packet frame. The length passed in register ESI must a
include the length of all protocol and hardware headers. If an RCB is not
available, the MSM will increment the NoECBAvailableCount statistics
counter and the packet must be discarded.

HSMs that support bus-mastering DMA adapters should use this routine o
MSMAllocateMultipleRCBs to preallocate RCBs. In this case, the HSM mu
set ESI to the maximum packet size specified by the MLIDMaximumSize field
of the configuration table before using MSMAllocateRCB.

After the adapter has copied the packet into the RCBDataBuffer field of the
RCB, the HSM should use either <TSM>ProcessGetRCB or
<TSM>FastProcessGetRCB to return the RCB to the MSM. If the adapter i
ECB aware and has previously filled in all the RCB fields according to the O
specification, the HSM should call <TSM>RcvComplete or
<TSM>FastRcvComplete.

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI packet size including all the headers if known;
otherwise use the maximum packet size.

Interrupts can be in any state

Execute at process or interrupt time

Return State

ESI logical pointer to an RCB (non-fragmented)

EDI physical pointer to an RCB (non-fragmented)

Flags zero flag is set if routine is successful

Interrupts are disabled

Preserved all registers are preserved except EAX
MSM Procedures and Macros 7-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

 of

 the

 the
If the DriverParameterBlock variable, DriverNeedsBelow16Meg, was initialized
to any nonzero value (see chapter 3), the MSM will allocate the RCB in memory
below the 16 megabyte boundary.

Ethernet

The HSM should start copying the packet from the 6 byte destination field
the media header into the RCBDataBuffer field of the RCB.

Token-Ring

The HSM should start copying the packet from the Access Control byte of
media header into the RCBDataBuffer field of the RCB.

FDDI

The HSM should start copying the packet from the Frame Control byte of
media header into the RCBDataBuffer field of the RCB.

Example ; ebx = ptr to Frame Data Space

mov esi,[ebx].MLIDMaximumSize ; ESI = Max Packet size
call MSMAllocateRCB ; Get an RCB
jnz UnableToAllocateRCB ; Jump if unsuccessful
7-14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ts.
out
MSMCancelTimer

Description

This procedure is called by the HSM to cancel a timer scheduled using
MSMScheduleTimer.

MSMScheduleTimer and MSMCancelTimer are useful for starting and
stopping one shot timers used for error detection such as transmit timeou
Under normal processing the timer would never expire and the driver’s time
procedure would never be called.

Processor States Entry State

EBP pointer to Adapter Data Space

ESI pointer to TIMER_STRUCTURE for timer to cancel

Interrupts can be in any state, but are disabled during the call

Call at process or interrupt time

Return State

Interrupts are unchanged

Preserved EBX & EBP

Completion Code in EAX

SUCCESSFUL Timer was successfully canceled.

BAD_PARAMETER A bad parameter was set in the
TIMER_STRUCTURE.

BAD_COMMAND Timer was not active.
MSM Procedures and Macros 7-15

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example

Driver Shutdown Proc
.
.
.
mov esi, TimerStructurePtr
call MSMCancelTimer
.
.
.

7-16 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

MSMDeRegisterResource

Processor States Entry State

EBP pointer to Adapter Data Space

EDX pointer to an ExtraConfig structure that contains the
resource(s) to be deregistered. This pointer must be
the same pointer used to register the resources in
MSMRegisterResources .

ESI pointer to an ECB whose ESR is called if
MSMDeRegisterResource returns
RESPONSE_DELAYED. If NULL,
BAD_PARAMETER will be returned.

Interrupts can be in any state

Call at process or interrupt time

Return State

Flags set according to EAX.

Interrupts are unchanged.

Preserved all registers except EAX.

Completion Code in EAX

SUCCESSFUL The resources contained in the ExtraConfig parameter were
successfully deregistered.

BAD_PARAMETER An input parameter was invalid or NULL. The ExtraConfig
pointer was not found in the list of extra config pointers used
in calls to MSMRegisterResource .

FAIL The adapter was not in a shutdown state before the call was
made.

ITEM_NOT_PRESENT The resources to be deregistered have not previously been
registered.

RESPONSE_DELAYED The operation of deregistering resources could not be
completed at the present time. An asynchronous process will
be scheduled to complete the operation at a later time.
MSM Procedures and Macros 7-17

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ion
CB’s
he

 a
Description

Allows a HSM to deregister resources registered with
MSMRegisterResource.

If MSMRegisterMLID has been called, the adapter must be shutdown using
MSMShutdownMLID before MSMDeRegisterResource is called.

MSMDeRegisterResource will deregister those resources found in
ExtraConfig’s substructure IOConfig. The resources must previously have
been registered through MSMRegisterResource using the same ExtraConfig
pointer.

If MSMDeRegisterResource cannot complete the operation at the present
time, an asynchronous process will be scheduled to complete the operat
later. Once the asynchronous operation is complete, the asynchronous E
ESR routine will be called to report the final return value of the operation. T
return value will be stored in the asynchronous ECB’s ECB_Status field.

Upon successful return from MSMDeRegisterResource or from the
asynchronous process, the HSM is responsible for putting the adapter in
functional state. If additional resources of an ExtraConfig nature are required,
the HSM must call MSMRegisterResource to register the additional
resources.
7-18 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

MSMDriverRemove

Description This routine is called by the HSM's DriverRemove procedure to deregister the
driver and return all driver resources. MSMDriverRemove will call the HSM's
DriverShutdown routine before returning.

Example DriverRemove proc

Cpush ; Macro to save “C” registers
mov eax, DriverModuleHandle ;Get Module Handle

;from Parameter Block
call MSMDriverRemove ;Deregister the driver
Cpop ;Restore “C” registers

DriverRemove endp

Processor States Entry State

EAX DriverModuleHandle from the DriverParameterBlock
structure

Interrupts can be in any state

Call at process time only

Return State

EAX is preserved

Interrupts are unchanged
MSM Procedures and Macros 7-19

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

d

n.
MSMEnablePolling

Description If the HSM's board service routine is poll-driven, this routine can be used
during DriverInit to enable the operating system to periodically call
DriverPoll . The DriverPoll routine polls the adapter to determine if any sen
or receive events have occurred.

This routine will not relinquish control to other procedures during executio

Example DriverInit proc
.

 .
 .

call MSMEnablePolling ; Enable DriverPoll
jnz EnablePollingError
.

 .
 .
DriverInit endp

Processor States Entry State

EBP pointer to the Adapter Data Space

Interrupts can be in any state

Call at process or interrupt time (usually called during
initialization)

Return State

EAX zero if successful; otherwise EAX points to an error
message that the driver must print using
MSMPrintString before returning to the operating
system with EAX non- zero.

Zero Flag set if successful; otherwise an error occurred.

Interrupts are unchanged

Preserved EBX and EBP
7-20 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

g
MSMFree

Description The HSM must use this routine to return any memory allocated using
MSMAlloc before the driver is permanently shutdown. If the driver is bein
permanently shutdown, the HSM's DriverShutdown routine would have been
called with ECX equal to zero.

Example DriverShutdown proc
.
.
.
or ecx,ecx
jnz PartialShutdown
mov eax,UserBuffer
call MSMFree
.
.
.

DriverShutdown endp

Processor States Entry State

EBP pointer to the Adapter Data Space

EAX pointer to the buffer

Interrupts can be in any state

Call at process time

Return State

Interrupts are unchanged

Preserved EBX, EBP, ESI, and EDI
MSM Procedures and Macros 7-21

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

 4K
MSMFreePages

Description The HSM must use this routine to return any memory buffers allocated on
page boundaries, using MSMAllocPages before the driver is permanently
shutdown.

Example DriverShutdown proc
.
.
.
or ecx,ecx
jnz PartialShutdown
mov eax,UserPageBuffer
call MSMFreePages

DriverShutdown endp

Processor States Entry State

EAX pointer to the buffer

Interrupts can be in any state

Call at process time only

Return State

Interrupts are unchanged

Preserved EBX, EBP, ESI, and EDI
7-22 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

rs.

PU.

l to
MSMGetAlignment

Description This routine is called to obtain alignment requirements of the underlying
platform. If Type is equal to 0, MSMGetAlignment returns the worse-case
alignment required for any data object that may be involved in I/O transfe
This function allows you to write platform-independent DMA code.

If Type is equal to 1, MSMGetAlignment returns the data alignment required
for the platform to function at its best. This is usually the bus width of the C

The value returned for the type equal to 0 will always be less than or equa
the value returned for Type equal to 1.

For most Intel platforms, Type equal to 0 should return a 0 and Type equal to 1
should return the bus width of the processor (4 for a 386 or 486).

Processor States Entry State

ECX - Type 0 = alignment requirement

1 = best-case alignment

Other = undefined

Interrupts in any state

Return State

EAX power of 2-byte boundary data alignment
requirement

Interrupts preserved

Preserved EBP
MSM Procedures and Macros 7-23

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example DriverInit proc
.
.
.
mov ecx, 1
call MSMGetAlignment
.
.
.

DriverIni t endp
7-24 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

MSMGetBusInfo

Description MSMGetBusInfo returns the size of the bus addresses associated with BusTag.

Processor States Entry State

ECX - BusTag Architecture-dependent value, returned by
MSMSearchAdapter, that identifies a specific bus.

Interrupt any state

Return State

EBX -
MemAddrSize

the size in bits of a memory address on the bus
specified by BusTag.

EDX -
IOAddrSize

the size in bits of an I/O address on the bus specified
by BusTag

Flags set according to EAX

Interrupts preserved

Preserved EBP

Completion Codes in EAX Code Description

SUCCESSFUL the operation was completed successfully

ITEM_NOT_PRESENT the specified bus does not exist or function
is not available
MSM Procedures and Macros 7-25

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example DriverInit proc
.
.
.
mov ecx, BusTag; tag for bus queried
call MSMGetBusInfo
jnz ErrorGettingBusInfo
.
.
.

DriverInit endp
7-26 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

MSMGetBusSpecificInfo

Processor States Entry State

ECX - BusTag Architecture-dependent value, returned by
MSMSearchAdapter or MSMScanBusInfo , that
identifies a specific bus.

EDX - Size size of buffer pointed to in EDI, in bytes

EDI -
BusSpecificInfo

pointer to buffer to return bus specific information

Interrupts can be in any state

Return State

Flags set according to EAX

Interrupts are preserved

Preserved EBX, ECX, EDX, ESI, EDI and EBP

Completion Codes in EAX Code Description

SUCCESSFUL bus specific information returned in buffer
pointed to in EDI

Note, if the specified bus does not provide
specific information, e.g. legacy ISA, no
information will be placed in the provided
buffer and SUCCESSFUL is returned

BAD_PARAMETER an invalid BusTag was passed into the
routine

ITEM_NOT_PRESENT the bus is not present or function is not
available
MSM Procedures and Macros 7-27

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

d,
 a

 to
on

ffer:
Description

MSMGetBusSpecificInfo returns bus specific information in the buffer
provided that may be of use to drivers or to installation and configuration
utilities. If the buffer provided is insufficient for the information to be provide
the buffer is filled to its capacity and SUCCESSFUL is returned. Therefore
buffer sufficient in size should be provided for a specific bus’s information
be returned; 64 bytes should handle the worst case bus specific informati
structure size.

The following information structure is returned for the specified bus type in the provided bu

PnP ISA Bus
ISAInfoStructure struc

PnPISABIOSPresentFlag dd ? ;PnP ISA BIOS Info
PnPISABIOSMajorVer dw ?
PnPISABIOSMinorVer dw ?
PnPISABIOSRevision dw ?
PnPISACMPresentFlag dd ? ;PnP ISA Configuration Manager Info
PnPISACMType dd ? ;0=DOS Device Driver (Intel),

;1=Win 95, 2=Win NT, 3=NLM
PnPISACMMajorVer dw ?
PnPISACMMinorVer dw ?
PnPISACMRevision dw ?
NetFRAMEFlag dd ? ;1 = NetFRAME system, 0 = not
NonATCompatibleFlag dd ? ;1 = Non AT comp BIOS, 0 =

compatible
HardwareLoaderID dd ?
ISAInfoReserved1 dd ?
ISAInfoReserved2 dd ?
ISAInfoReserved3 dd ?

ISAInfoStructure ends
7-28 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

CardBus and PC Card (PCMCIA) Buses
PCCardInfoStructure struc

CSPresentFlag dd ? ;Card Services Info
CSType dd ? ;0=DOS Device Driver,

;1=Win 95, 2=Win NT, 3=NLM
CSVendorMajorVer dw ?
CSVendorMinorVer dw ?
CSVendorNamePtr dd ?
CSInterfaceLevelMajorVer dw ?
CSInterfaceLevelMinorVer dw ?
CSNumberOfSockets dd ?
PCCardInfoReserved0 dd ?
PCCardInfoReserved1 dd ?
PCCardInfoReserved2 dd ?
PCCardInfoReserved3 dd ?

PCCardInfoStructure ends

PCI Bus
PCIInfoStructure struc

PCIBIOSPresentFlag dd ? ;PCI BIOS Info
PCIInterfaceLevelMajorVer dw ?
PCIInterfaceLevelMinorVer dw ?
PCIHardwareMechanism dd ?
LastPCIBusInSystem dd ?
PCIInfoReserved0 dd ?
PCIInfoReserved1 dd ?
PCIInfoReserved2 dd ?
PCIInfoReserved3 dd ?

PCIInfoStructure ends
MSM Procedures and Macros 7-29

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example BusSpecBuf db 64 dup(?)

DriverInit proc
.
.
.
mov ecx, BusTag
lea edi, BusSpecBuf
mov edx,64
call MSMGetBusSpecificInfo
jnz ErrorGettingBusInfo
.
.
.

DriverInit endp

See Also

MSMScanBusInfo
7-30 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

us.
 all
MSMGetBusType

Description MSMGetBusType returns a value indicating the bus type of the specified b
All instances of a particular bus type return the same value. For example,
EISA buses return a 2.

Processor States Entry State

ECX - BusTag an architecture-dependent value which specifies the
bus on which the operation is to be performed

Interrupt any state

Return State

EBX - BusType A value that indicates the bus type as defined in
ODI_NBI.INC. The currently defined values are:

0 = ODI_BUSTYPE_ISA
1 = ODI_BUSTYPE_MCA
2 = ODI_BUSTYPE_EISA
3 = ODI_BUSTYPE_PCMCIA
4 = ODI_BUSTYPE_PCI
8 = ODI_BUSTYPE_CARDBUS

Flags set according to EAX

Interrupts preserved

Preserved EBP

Completion Codes in EAX Code Description

SUCCESSFUL the operation was completed successfully

BAD_PARAMETER an invalid BusTag was passed into this
routine

ITEM_NOT_PRESENT the function is not available
MSM Procedures and Macros 7-31

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example DriverInit proc
.
.
.
mov ecx, BusTag; bus tag
call MSMGetBusType; convert to type
jnz ErrorGettingBusType
cmp ebx, ODI_BUSTYPE_PCI; is type PCI?
.
.
.

DriverIni t endp
7-32 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

MSMGetCardConfigInfo

Processor States Entry State

EAX - Parm1 contains an architecture dependent value that further
specifies what information is to be returned,
independent of this particular platform and
independent of what adapter is described by this
information

EBX - Unique-
Identifier

contains an architecture-dependent value returned
by MSMGetUniqueIdentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

ECX - BusTag contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

EDX - Parm2 contains an architecture dependent value that further
specifies what information is to be returned,
independent of this particular platform and
independent of what adapter is described by this
information.

ESI - Size This parameter specifies the number of bytes to
retrieve into the configuration buffer.

EDI - ConfigBuf is a pointer to configuration buffer in which to retrieve
the configuration information. The caller needs to be
sure that the buffer is at least Size bytes long.

Interrupts can be in any state

Return State

Flags are set according to EAX

Interrupts are preserved

Preserved EBX, ECX, EDX, ESI, EDI, EBP

Completion Codes in EAX Code Description

SUCCESSFUL configuration information was received

BAD_PARAMETER invalid parameter was passed into the call
MSM Procedures and Macros 7-33

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

 the

e

on all
ne
 0.
Description Call MSMGetCardConfigInfo only if the bus identified by BusTag has
configuration information for the bus on a per hardware instance basis. It is
caller's responsibility to know how much and what sort of information is
returned, so that ConfigInfo is set to point to a sufficiently large space and th
resulting information can be interpreted. Parm1 and Parm2 are defined on a per
bus architecture basis. In other words, their meanings must be the same
implementations on a particular bus, but will vary from one bus to another. O
or both of these parameters may be unused, and if unused, must be set to

The parameter values for the specified bus types are as follows:

EISA Bus

BAD_COMMAND called with BusTag for a bus type which has
no configuration information to return.

ITEM_NOT_PRESENT a unique identifier was passed in that has
no card present

BUS_SPECIFIC_ERROR a bus specific error occurred

FAIL all of the input parameters appear to be
valid, but the operation could not be
completed

Size 320

Parm1 EISA configuration block number.

Parm2 n/a

ConfigInfo Filled in with the EISA configuration information for the
unique identifier specified.

For a definition of the information returned, refer to the EISA
Specification.
7-34 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Micro Channel Bus

PCI Bus

Plug and Play

Size 8

Parm1 n/a

Parm2 n/a

ConfigInfo Filled in with I/O port values from POS0 - POS7 (100h -
107h) for the unique identifier specified.

For a definition of the information returned, see the Personal System/
2 Hardware Interface Technical Reference.

Size 256

Parm1 Function Number

Parm2 n/a

ConfigInfo Filled in with PCI configuration information for the
unique identifier specified.

For a definition of the information returned, see the PCI Local Bus
Specification.

Size 512

Parm1 n/a

Parm2 n/a

ConfigInfo Filled in with Plug and Play configuration information for
the unique identifier specified.

For a definition of the information returned, see the
PNPConfigStructure in ODI.INC.
MSM Procedures and Macros 7-35

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

PC Card (PCMCIA)

size The size of the buffer needed to contain the information
defined by parm2.

parm1 The size of the information requested from the Card
Services API, GetConfigurationInfo . The valid values
are 37 or 42.

Note: If this call returns BAD_PARAMETER, it may be
because 42 bytes were requested, but the version of
Card Services only supports 37 bytes.

parm2 The order and type of information to be returned in the
configInfo buffer. The following values are valid for
parm2:

ODI_DEFAULT_INFO

The configInfo buffer will contain the following default
information:

• 37 or 42 bytes of information returned by the
Card Services API, GetConfigurationInfo .

• Attribute memory space equal to the amount of
space remaining in the configInfo buffer

ODI_IO_MEMORY_WINDOWS

If the size of the information returned by the Card
Services API, GetConfigurationInfo, is 42 bytes,
the configInfo buffer will contain:

• The 42 bytes of information returned by the
Card Services API, GetConfigurationInfo .

If there are I/O windows or memory
windows, the window information is placed
in the configInfo buffer as 18 byte blocks
(one 18 byte block for each window). The
first thirteen bytes of information is returned
by the Card Services API, GetFirstWindow
or GetNextWindow .
7-36 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

CardBus Bus

For memory windows, the remaining five
bytes of information is returned by the Card
Services API, GetMemPage .

For I/O windows, the remaining five bytes are
zero.

• Attribute memory space equal to the amount of
space remaining in the configInfo buffer.

If the size of the information returned the Card
Services API, GetConfigurationInfo , is 37 bytes,
the configInfo buffer will contain:

• The 37 bytes of information returned by the
Card Services API, GetConfigurationInfo .

• Attribute memory space equal to the amount of
space remaining in the configInfo buffer.

configInfo The information returned is determined by the parm2
input parameter.

size The size of the buffer needed to contain the information
defined by parm1, parm2, and the desired amount of
CIS memory.

parm1 The size of the information requested from the Card
Services API, GetConfigurationInfo . The valid values
are 37 or 42.

Note: If this call returns BAD_PARAMETER, it may be
because 42 bytes were requested, but the version of
Card Services only supports 37 bytes.

parm2 The size of the PCI configuration space requested. The
maximum size available is 256 bytes.
MSM Procedures and Macros 7-37

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example

ConfigBuff db 256 dup(?)

DriverInit proc
.
.
.
xor eax, eax ; function # 0
mov edx, eax ; parm2 = 0
mov ebx, UniqueIdentifier; from

MSMSearchAdapter
mov ecx, BusTag; tag for PCI bus
mov esi, 256 ; size of config table
lea edi, ConfigBuff; ptr to buffer
call MSMGetCardConfigInfo
jnz ErrorGettingCardConfig
.
.
.

DriverInit endp

See Also

MSMSearchAdapter

MSMGetUniqueIdentifier

MSMRdConfigSpace8

MSMRdConfigSpace16

MSMRdConfigSpace32

MSMWrtConfigSpace8

MSMWrtConfigSpace16

MSMWrtConfigSpace32

configInfo The configInfo buffer will contain:

• The number of bytes specified by parm1 of
information returned by the Card Services API
GetConfigurationInfo .

• The number of bytes specified by parm2 of PCI
configuration space.

• CIS memory space equal to the amount of
space remaining in the configInfo buffer.
7-38 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

MSMGetConfigInfo

Processor States Entry State

EDI pointer to buffer used to receive the returned
configuration information. The caller must ensure
that the buffer is at least as long as the number of
bytes requested in ECX.

ECX the requested number of bytes to be returned into the
buffer.

Interrupts can be in any state

Call at process time

Return State

ECX the actual number of bytes returned in the
configuration buffer.

Flags set according to EAX

Interrupts are disabled

Preserved EDI, EBX & EBP

Completion Code in EAX

SUCCESSFUL The configuration information was successfully
returned in the buffer

BAD_PARAMETER The size requested in ECX was larger than the actual
configuration information available. The number of
bytes actually returned is indicated in ECX.
MSM Procedures and Macros 7-39

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

lue

nt

nt
Description

The configuration information is returned in the format defined by the
MSMConfigTable structure.

• MSMConfigTable struc

• MSMCFG_TableSize dd?

• MSMCFG_TableMajorVersion db?

• MSMCFG_TableMinorVersion db?

• MSMCFG_ModuleMajorVersion db?

• MSMCFG_ModuleMinorVersion db?

• MSMCFG_ODISpecMajorVersion db?

• MSMCFG_ODISpecMinorVersion db?

• MSMCFG_Reserved dw

• MSMCFG_MaxNumberOfBoards dd?

• MSMCFG_SystemFlags dd?

• MSMConfigTable ends

MSMCFG_TableSize

This field contains the actual size of the MSM’s configuration table. The va
of this field should not be confused with the number of bytes requested or
copied (i.e., value in ECX).

MSMCFG_TableMa jorVersion

This field contains the major version of the configuration table. The curre
major version is 1.

MSMCFG_TableMinorVersion

This field contains the minor version of the configuration table. The curre
minor version is 0.

MSMCFG_ModuleMa jorVersion

This field contains the major version of the MSM binary (i.e., MSM.NLM).
7-40 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ion
on

ion
on

the
MSMCFG_ModuleMinorVersion

This field contains the minor version of the MSM binary (i.e., MSM.NLM).

MSMCFG_ODISpecMajorVersion

This field contains the major version of the ODI Specification that this vers
of the MSM is written too. For example, if the version of the ODI specificati
is 3.31, the value of this field is 3.

MSMCFG_ODISpecMinorVersion

This field contains the minor version of the ODI Specification that this vers
of the MSM is written too. For example, if the version of the ODI specificati
is 3.31, the value of this field is 31.

MSMCFG_Reserved

This field is reserved.

MSMCFG_MaxNumberOfBoards

The value of this field represents the maximum number of logical boards
MSM supports.

MSMCFG_SystemFla gs

The bits in this field are defined below.

Bits Name Description

Bit 31 MSM_CFG_CLIENT_BIT When set to 1 this bit indicates the MSM is running in a
client environment. Either this bit or bit 30 will be set, but
never both.

Bit 30 MSM_CFG_SERVER_BIT When set to 1 this bit indicates the MSM is running in a
server environment. Either this bit or bit 31 will be set,
but never both.

Bit 0-29 Reserved These bits are reserved.
MSM Procedures and Macros 7-41

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ive

 time
than
MSMGetCurrentTime (macro)

Description MSMGetCurrentTime determines the elapsed time (using the current relat
time) for some of the HSM-related activities (for example, TimeOutCheck).
The value returned at the start of an operation subtracted from the current
is the elapsed time in 1/18th second clock ticks. This timer requires more
7 years to roll over, allowing it to be used for elapsed time comparisons.

Consecutive calls to MSMGetCurrentTime must have interrupts enabled
between. This allows the OS to update this value.

Example
mov edx, [ebp].Command ; Let board attempt to
mov al, Board_Transmit ; transmit packet again
out dx, al
MSMGetCurrentTime ; EAX = current time.
mov [ebp].TxStartTime, eax ; Store new timeout

Processor States Entry State

Interrupts can be in any state

Execute at process or interrupt time

Return State

EAX current tick count

Interrupts are unchanged

Preserved all other registers are preserved
7-42 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

.

MSMGetHINFromHINName

Completion Code in EAX

Description

The input hinName is compared (case insensitively) with HIN names in the
system. The corresponding Hardware Instance Number (HIN) is returned

Processor States Entry State

ESI pointer to the NULL-terminated HIN name string,
not to exceed 128 bytes (including terminator).

Interrupts can be in any state

Call at process time or interrupt time

Return State

EBX the HIN associated with the HIN name.

ODI_NBI_SUCCESSFUL The HIN was successfully returned in the
HINNameMappingInfo structure in ESI.

ODI_NBI_PARAMETER_ERROR The specified HIN name is invalid.

ODI_NBI_UNSUPPORTED _OPERATION This function is not available.
MSM Procedures and Macros 7-43

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

the
 MSMGetHINNameFromHIN

Completion Code in EAX

Description

The input hin is translated into its corresponding HIN name and returned to
buffer pointed to by EDI.

Processor States Entry State

EBX HIN to get the HIN name for.

EDI pointer to a 128 byte buffer where the HIN name
will be stored

Interrupts can be in any state

Call at process time or interrupt time

Return State

EDI pointer to the NULL-terminated HIN name string.

ODI_NBI_SUCCESSFUL The HIN name was successfully returned in
the HINNameMappingInfo structure in ESI.

ODI_NBI_INSTANCE_NONEXIST The specified HIN is invalid.

ODI_NBI_INSTANCENAME_AVAIL A HIN name does not exist for the given HIN.

ODI_NBI_UNSUPPORTED _OPERATION This function is not available.
7-44 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

r
een

er
lent
ique

mined
MSMGetInstanceNumber

Description This call retrieves the hardware instance number of the specified device o
function on the specified bus. There is a one to one correspondence betw
BusTag and UniqueIdentifier pairs and hardware instance number. You can
think of a hardware instance number as a logical slot number. If an adapt
contains just one function, the hardware instance number is usually equiva
to the adapter’s physical slot number. Hardware instance numbers are un
across all buses and devices on the system. They are generated or deter
by the NBI and are consistent across system boots.

Processor States Entry State

ECX - BusTag Architecture-dependent value, returned by
MSMSearchAdapter, that identifies a specific bus.

EBX -
UniqueIdentifier

an architecture-dependent value returned by
MSMGetUniqueIdentifier or MSMSearchAdapter .
It specifies the location on the bus where the device
is located

Interrupts can be in any state

Return State

EDX - HIN Hardware Instance Number (HIN) of the device or
function. Hardware instance numbers are unique
across all buses on the system.

Flags set according to EAX

Interrupts are preserved

Preserved EBX, ECX, ESI, EDI and EBP

Completion Code in EAX Code Description

SUCCESSFUL EDX contains the hardware instance
number

BAD_PARAMETER an invalid busTag or UniqueIdentifier was
passed into the routine
MSM Procedures and Macros 7-45

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example

DriverInit proc
.
.
.
mov ebx, UniqueIdentifier
mov ecx, BusTag
call MSMGetInstanceNumber
jnz ErrorGettingInstanceNum
mov InstanceNumber, edx
.
.
.

DriverInit endp

See Also

MSMGetUniqueIdentifier

MSMGetInstanceNumberMapping

MSMSearchAdapter
7-46 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

MSMGetInstanceNumberMapping

Processor States Entry State

EDX - HIN the Hardware Instance Number (HIN) of the device or
function

Interrupts can be in any state

Return State

EBX - Unique-
Identifier

an architecture-dependent value returned by
MSMGetUniqueIdentifier or MSMSearchAdapter .
It specifies the location on the bus where the device
is located.

ECX - BusTag the architecture-dependent value used to identify the
specific bus

Flags set according to EAX

Interrupts are preserved

Preserved EDX, ESI, EDI and EBP

Completion Codes in EAX Code Description

SUCCESSFUL bus specific information returned in buffer
pointed to in EDI

Note : If the specified bus does not provide
specific information, such as legacy ISA, no
information will be placed in the provided
buffer and SUCCESSFUL is returned

BAD_PARAMETER an invalid BusTag was passed into the
routine
MSM Procedures and Macros 7-47

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

o one

l slot
mber
nce
e
ots.
Description Retrieves the BusTag and UniqueIdentifier associated with the specified
hardware instance number. MSMGetInstanceNumberMapping is the inverse
of MSMGetInstanceNumber. It retrieves the BusTag and UniqueIdentifier
associated with the specified hardware instance number. There is a one t
correspondence between BusTag and UniqueIdentifier pairs and the hardware
instance number. You can think of a hardware instance number as a logica
number. If an adapter contains just one function, the hardware instance nu
is usually equivalent to the adapter’s physical slot number. Hardware insta
numbers are unique across all buses and devices on the system. They ar
generated or determined by the NBI and are consistent across system bo

See Also

MSMGetUniqueIdentifier

MSMGetInstanceNumber

MSMSearchAdapter

Example

DriverInit proc
.
.
.
mov edx, InstanceNumber
call MSMGetInstanceNumberMapping
jnz ErrorGettingMapping
mov UniqueIdentifier, ebx
mov BusTag, ecx
.
.
.

DriverInit endp
7-48 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ing
loop
MSMGetMicroTimer

This routine is supported in MSM v2.20 dated 9-9-93 or later.

Description MSMGetMicroTimer determines the elapsed time for some of the HSM
related activities. It can be used instead of MSMGetCurrentTime when finer
granularity (1 microsecond) is needed or for very short delays while keep
interrupts disabled. This is the preferred this method, rather than using a
counter based on the value returned by MSMGetProcessorSpeedRating.

Processor States Entry State

Interrupts can be in any state

Call at process or interrupt time

Return State

EAX contains time in microseconds

Interrupts are preserved

Preserved all other registers are preserved
MSM Procedures and Macros 7-49

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example .
. (reset adapter)
.
call MSMGetMicroTimer ; get current count
neg eax
mov edi, eax ; EDI = EAX negated

DriverShutdownWait:
call MSMYieldWithDelay ; let other processes run
call MSMGetMicroTimer ; get current count
add eax, edi ; EAX = microseconds expired
cmp eax, 50 ; 50us passed?
jb DriverShutdownWait ; jump if not
7-50 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ress
MSMGetPhysical

Description HSM’s must call this routine to convert a logical address to a physical add
instead of adding an offset to it as previously done. Since ECB fragment
pointers are set to physical addresses if the DriverSupportsPhysFrags bit is
set, this call should only have to be used at DriverInit to pass control
information in memory up to the adapter.

In future versions of NetWare the driver will not be able to assume the buffer
length associated with an address is contiguous. Therefore it is recommended
the DriverSupportsPhysFrags bit be set (refer to the MLIDModeFlags in
Chapter 3).

Example: lea eax, [ebx].MLIDNodeAddress ; Store node address
call MSMGetPhysical ; convert to physical address
out dx, eax ; send physical add. to adapter

Processor States Entry State

Interrupts can be in any state

EAX Logical Memory Address

Return State

EAX Physical Memory Address

Interrupts are unchanged

Preserved all other registers are preserved
MSM Procedures and Macros 7-51

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMGetPhysList

Completion Codes

Description This function generates a physical address fragment list equivalent to the
logical address fragment list passed on input.

There may not be a one-to-one correspondence between the input fragments
and the output fragments due to potentially noncontiguous logical memory.
Consequently, the number of fragments and the size of the fragments in the
output list may be different from the those in the input list.

Processor States Entry State

ECX input fragment count

ESI pointer to the input fragment list that contains the
logical addresses of the fragments

EDI pointer to the output fragment list

EBP pointer to the adapter data space

Interrupts can be in any state

Call at process time or interrupt time

Return State

EAX completion code

EDX output fragment count

EDI pointer to the output fragment list that contains the
sizes and the physical addresses of the fragments

Preserved EBX, ECX, EBP, ESI, EDI

SUCCESSFUL The operation was completed successfully.

FAIL The maximum number of output fragments
was exceeded.
7-52 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ure
Do not call this function with a value greater than 16 in ECX. Also, make s
that the output fragment list buffer is large enough to accommodate 16
fragments.
MSM Procedures and Macros 7-53

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

he

MSMGetPollSupportLevel

Description The HSM uses MSMGetPollSupportLevel to ascertain the level of support
for adapters which favor polling mechanisms, and to determine whether t
adapter/driver should be purely interrupt driven, purely polled driven, or a
combination of the two with preference given to polling.

Example call MSMGetPollSupportLevel ; determine poll level support
cmp EAX,2
jb InterruptDriveAdapter
jz MixIntPollDriveAdapter
jmp PurePollDriveAdapter

Processor States Entry State

Interrupts can be in any state

Call at initialization time only

Return State

EAX = 0 Environment does NOT support polling. Polling
procedure will never be called. Adapter must use
interrupts only

EAX = 1 Limited support for polling; polling procedure will be
called infrequently. Adapter must use interrupts.

EAX = 2 Polling is fully supported, however interrupt backup is
still recommended due to periods where polling can
be infrequent.

EAX = 3 Polling is fully supported, no interrupt backup is
required.

Interrupts are preserved

Preserved EBX, EBP, ESI and EDI
7-54 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

he
MSMGetProcessorSpeedRating (macro)

Description MSMGetProcessorSpeedRating determines the relative processor speed; t
larger the value returned, the faster the processor is operating.

Although this procedure provides a means for calculating timing loop delays,
this routine should never be used unless it is impossible to enable interrupts and
use MSMGetCurrentTime , or if it is impossible to use MSMGetMicroTimer .
Novell recommends that timing loops be avoided whenever possible.

Example MSMGetProcessorSpeedRating ; EAX = Processor Speed
xor edx, edx ; Clear high dword of dividend
mov ecx, 100 ; Divisor = 100
idiv ecx ; EAX = Speed / 100
mov ecx, 30000h ; EAX = (Speed/100) * 30000h
imul eax, ecx
mov LoopCounter, eax ; Save it

Processor States Entry State

Interrupts can be in any state

Execute at process or interrupt time

Return State

EAX contains a value representing the relative processor
speed of the machine

Interrupts are unchanged

Preserved all other registers are preserved
MSM Procedures and Macros 7-55

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMGetUniqueIdentifier

Processor States Entry State

EBX - Slot specifies the physical slot to search for the presence
of the adapter

ECX - BusTag Architecture-dependent value, returned by
MSMSearchAdapter, that identifies a specific bus.

EDX - Channel contains an adapter specific value identifying the port
of a multiport adapter; equal to zero if unused or first
port, one if second port, etc.

ESI - Function-
Number

contains an architecture-dependent value that
specifies a function of a multifunction adapter; equal
to zero if unused or first function, one if second
function, etc. This value may be used with a multiport
multifunction adapter.

Interrupts can be in any state

Call at process time ONLY

Return State

EDI - Unique-
Identifier

contains an architecture-dependent value returned
by MSMGetUniqueIdentifier or
MSMSearchAdapter that specifies the location on
the bus where the device is located.

Flags are set according to EAX

Interrupts are preserved

Preserved EBX, ECX, EDX, ESI

Completion Codes in EAX Code Description

SUCCESSFUL The device was found and UniqueIdentifier
was returned

BAD_PARAMETER The function number or the bus tag was
invalid

ITEM_NOT_PRESENT The bus or the adapter was not found for the
specified inputs
7-56 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

the

ons.
Description This routine returns a value which uniquely identifies an adapter for the
specified input parameters. It will scan the specified bus and try to match
slot, channel, and function number to an adapter (device).

All product ID's appear in memory as defined in their respective specificati

Example DriverInit proc
.
.
.
mov ebx, Slot ; EISA device slot #
mov ecx, BusTag; bus tag for EISA bus
mov edx, 0 ; no channel #
mov esi, 0 ; no function #
call MSMGetUniqueIdentifier
jnz ErrorGettingID
mov UniqueIdentifier, edi; save unique ID
.
.
.

DriverInit endp
MSM Procedures and Macros 7-57

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMGetUniqueIdentifierParameters

Processor States Entry State

EAX -
Parameter-
Count

The number of elements in the parameter array to be
filled in.

EBX - Unique-
Identifier

contains an architecture-dependent value returned
by MSMGetUniqueIdentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

ECX - BusTag Architecture-dependent value, returned by
MSMSearchAdapter, that identifies a specific bus.

EDI -
Parameters

pointer to the parameter buffer

Interrupts can be in any state

Return State

Flags set according to EAX

Interrupts are preserved

Preserved EBX, ECX, EDX, ESI, EDI and EBP

Completion Codes in EAX Code Description

SUCCESSFUL parameters returned in buffer pointed to in
EDI

BAD_PARAMETER an invalid busTag was passed into the
routine

ITEM_NOT_PRESENT the bus is not present or function is not
available
7-58 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ion
Description This call returns the bus-specific information about the device or the funct
represented by the given UniqueIdentifier. This call is the inverse of
MSMGetUniqueIdentifier .

The following are the returned parameter values for each bus type.

ISA Bus N/A

Micro Channel Bus
parameterCount 1
parameters [0] physical slot number

EISA Bus
parameterCount 1
parameters [0] physical slot number

PC Card (PCMCIA) Bus
parameterCount 1
parameters[0] For single function cards, the physical socket number

(1-based). For multiple function cards, the function
number (1-based) is in the least significant byte, and
the physical socket number is in the next byte.

PCI Bus
parameterCount 2
parameters [0] zero (PCI version 2.0)

physical slot number (PCI version 2.1)
parameters [1] bus/device/function number combination, equivalent

to the value returned from the PCI BIOS Find Device
function call

PnP ISA Bus
parameterCount 2
parameters [0] CSN (Card Select Number) is in least significant byte

with the Logical Device Number in the next.
parameters [1] Read Data Port

CardBus Bus
parameterCount 2
parameters[0] For single function cards, the physical socket number

(1-based). For multiple function cards, the function
number (1-based) is in the least significant byte, and
the physical socket number is in the next byte.

parameter[1] Bus/device/function number combination equivalent
to the value returned from the PCI BIOS FindDevice
function.
MSM Procedures and Macros 7-59

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Figure 7-2 PnP ISA Bus Parameters

Example UniqueIDBuf dd 2 dup(?)

DriverInit proc
.
.
.
mov eax, 2 ; number of parameters
mov ebx, UniqueIdentifier
mov ecx, BusTag
lea edi, UniqueIDBuf
call MSMGetUniqueIdentifierParameters
jnz ErrorGettingUIDParams
.
.
.

DriverInit endp

31 16 15 8 7 0

Read Data Port

CSNLogical Device
 Number0

0
31 16 15 0
7-60 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

are

are
a
r
r.

d a
MSMHardwareFailure

Description

The HSM calls this routine to report a hardware error.

NOTIFY_FATAL should be reported if the HSM was able to detect a hardw
failure from which there is no possibility of recovery.

NOTIFY_CRITICAL should be reported if the HSM has encountered an
adapter hardware problem and failed to recover using the available hardw
reset capabilities, but the system may be able to restore the hardware to
functional state, using platform or media specific recovery procedures. Fo
example, on some platforms it may be possible to power cycle the adapte

NOTIFY_DEGRADED should be reported if the hardware has experience
failure, but is still functional.

Processor States Entry State

EBP pointer to the Adapter Data Space.

EAX one of the following failure type values:
NOTIFY_CRITICAL
NOTIFY_FATAL
NOTIFY_DEGRADED

ESI pointer to a NULL-terminated string describing the
failure.

Interrupts can be in any state

Call at process time or interrupt time

Return State

EAX set to 0

Interrupts are unchanged

Preserved EBX & EBP
MSM Procedures and Macros 7-61

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMInitAlloc

Description HSMs must use the MSMInitAlloc routine if they must allocate memory prior
to calling MSMRegisterHardwareOptions. If successful, MSMInitAlloc
returns a pointer to the allocated buffer in EAX. If the routine was
unsuccessful, EAX will be zero.

When the driver frees any buffer allocated by MSMInitAlloc , it must use the
MSMInitFree routine.

MSMInitAlloc and MSMInitFree MUST be used as a pair. Do not use
MSMFree to release resources obtained by a call to MSMInitAlloc .

If the DriverParameterBlock variable, DriverNeedsBelow16Meg, was
initialized to any nonzero value (see chapter 3), the MSM will attempt to
allocate memory below the 16 megabyte boundary.

Processor States Entry State

EAX number of bytes of memory to allocate

Interrupts can be in any state

Call at process time only

Return State

EAX pointer to the allocated buffer. (zero = failure)

Interrupts are in the same state as when the routine was called (but
might have been enabled during the call if
DriverNeedsBelow16Meg is nonzero)

Preserved EBX, EBP, ESI, and EDI
7-62 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example DriverInit proc
.
.
.
mov eax, UserBufferSize
call MSMInitAlloc
or eax, eax
jz ErrorAllocatingBuffer
mov UserBuffer, eax
.
.
.
mov eax, UserBuffer
call MSMInitFree
.
.
.
call MSMRegisterHardwareOptions
MSM Procedures and Macros 7-63

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMInitFree

Description HSMs must use the MSMInitAlloc routine during initialization, if they
allocate memory prior to calling MSMRegisterHardwareOptions. When the
driver frees any buffer allocated by MSMInitAlloc, it must use the
MSMInitFree routine.

MSMInitAlloc and MSMInitFree must be used as a pair. Do not use MSMFree
to release resources obtained by a call to MSMInitAlloc .

Example DriverInit proc
.
.
.
mov eax, UserBufferSize
call MSMInitAlloc
or eax, eax
jz ErrorAllocatingBuffer
mov UserBuffer, eax
.
.
.
mov eax, UserBuffer
call MSMInitFree
.
.
.
call MSMRegisterHardwareOptions

Processor States Entry State

EAX pointer to the buffer to free

(must have been previously allocated using
MSMInitAlloc)

Interrupts can be in any state

Call at process time only

Return State

Interrupts are preserved

Preserved EBX, EBP, ESI, and EDI
7-64 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

MSMNESLDeRegisterConsumer

Description

This function de-registers a consumer of a specific event.

See Also

MSMNESLRegisterConsumer

Appendix C, "NESL Support"

Processor States Entry State

ESI pointer to the NESL_ECB passed to
MSMNESLRegisterConsumer

Interrupts are enabled

Call at process time only

Return State

Flags set according to EAX

Interrupts are unchanged

Preserved ESI

Completion Code in EAX

NESL_OK De-registry succeeded.

NESL_EVENT_NOT_REGISTERED The specified NESL_ECB is not registered.

NESL_CONSUMER_NOT_FOUND The consumer is NULL or cannot be located.
MSM Procedures and Macros 7-65

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

 the
aced
MSMNESLDeRegisterProducer

Description

This function de-registers a producer of a specific event. If the producer is
last producer for that event, any remaining consumers of the event are pl
onto an orphaned consumer’s list.

See Also

MSMNESLRegisterConsumer

Appendix C, "NESL Support"

Processor States Entry State

ESI pointer to the NESL_ECB passed to
MSMNESLRegisterProducer

Interrupts can be in any state

Call at process time only

Return State

Flags set according to EAX

Interrupts are unchanged

Preserved ESI

Completion Code in EAX

NESL_OK De-registry succeeded.

NESL_EVENT_NOT_REGISTERED The specified NESL_ECB is not registered.

NESL_PRODUCER_NOT_FOUND The producer is NULL or cannot be located.
7-66 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

MSMNESLProduceEvent

Processor States Entry State

ESI pointer to the NESL_ECB passed to MSM-
NESLRegisterProducer

EDX pointer to the Event Parameter Block

EDI points to a location to place a pointer to the consumer
NESL_ECB that consumed the event.

Interrupts are in any state

Call at process or interrupt time

Return State

EDI set according to EAX

Flags set according to EAX

Interrupts are unchanged

Preserved ESI, EDX and EDI

Completion Code in EAX

NESL_PRODUCER_NOT_FOUND The producer is NULL.

NESL_EVENT_CONSUMED The event is consumable and is consumed. EDI is set to the
consumer’s NESL_ECB.

NESL_EVENT_NOT_CONSUMED The event is consumable and is not consumed. EDI is set to
NULL.

NESL_EVENT_BROADCAST Event has been broadcast to all consumers. EDI is not
changed.
MSM Procedures and Macros 7-67

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

 has
sume

ts

 the
 be

lves
 is on
Description

An event producer calls this to notify registered consumers that the event
occurred. If the event is consumable, then one of the consumers may con
the event and the event notification will stop.

Producer routines and consumer routines running on asynchronous even
(e.g., IPX packets, interrupts), must be re-entrant. MSMNESLProduceEvent
will not protect the consumer routine from being re-entered. For example, if
consumer routine re-enables interrupts, another asynchronous event can
issued from a producer and thus re-enter the consumer.

It is up to either the producer and the consumer routine to protect themse
from re-entrancy issues. Further, they must take steps to ensure that there
stack overflow because of their activities.

The Event Parameter Block fields are defined as follows:

Field Description

EPBMajorVersion Major version of the Event Parameter Block. The current version is 1 (for
1.00).

EPBMinorVersion Minor version of the Event Parameter Block. The current version is 00 (for
1.00).

EPBEventName Event name or class name for the event as register with NESL (e.g., “Service
Suspend” or “Service Resume”). All valid event names must be registered
with Novell Labs.

EPBEventType Event subclass name for the event. An example of a subclass for “Service
Suspend” would be “APM Suspend”. All valid event subclass names must be
registered with Novell Labs.

EPBmoduleName Pointer to module name that generated the event (e.g., NE2000).

EPBDataPtr0 The MSM uses this field to pass a pointer to the MLID’s configuration table.

EPBDataPtr1 Event dependent information.

EPBEventScope The HSM must set this field to EPB_SPECIFIC_EVENT.
7-68 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

See Also

Appendix C, “NESL Support”

EPBReserved Reserved by Novell.

Field Description
MSM Procedures and Macros 7-69

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMNESLProduceMLIDEvent

Processor States Entry State

ESI pointer to the NESL_ECB passed to
MSMNESLRegisterProducer

EDX pointer to the Event Parameter Block

EDI points to a location to place a pointer to the consumer
NESL_ECB that consumed the event.

EBP pointer to Adapter Data Space

Interrupts are in any state

Call at process or interrupt time

Return State

EDI set according to EAX

Flags set according to EAX

Interrupts are unchanged

Preserved ESI, EDX, EDI and EBP

Completion Code in EAX

NESL_PRODUCER_NOT_FOUND The producer is NULL.

NESL_EVENT_CONSUMED The event is consumable and is consumed. EDI is set to the
consumer’s NESL_ECB.

NESL_EVENT_NOT_CONSUMED The event is consumable and is not consumed. EDI is set to
NULL.

NESL_EVENT_BROADCAST Event has been broadcast to all consumers. EDI is not
changed.

NESL_INVALID_CONTEXT_HANDLE The logical board(s) identified by Adapter Data Space are not
valid.
7-70 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 has
sume

ts

 the
 be

lves
 is on
Description

An event producer calls this to notify registered consumers that the event
occurred. If the event is consumable, then one of the consumers may con
the event and the event notification will stop. This call produces the eventfor
each logical board associated with Adapter Data Space.

Producer routines and consumer routines running on asynchronous even
(e.g., IPX packets, interrupts), must be re-entrant. MSMNESLProduceEvent
will not protect the consumer routine from being re-entered. For example, if
consumer routine re-enables interrupts, another asynchronous event can
issued from a producer and thus re-enter the consumer.

It is up to either the producer and the consumer routine to protect themse
from re-entrancy issues. Further, they must take steps to ensure that there
stack overflow because of their activities.

The Event Parameter Block fields are defined as follows:

Field Description

EPBMajorVersion Major version of the Event Parameter Block. The current version is 1 (for
1.00).

EPBMinorVersion Minor version of the Event Parameter Block. The current version is 00 (for
1.00).

EPBEventName Event name or class name for the event as register with NESL (e.g., “Service
Suspend” or “Service Resume”). All valid event names must be registered
with Novell Labs.

EPBEventType Event subclass name for the event. An example of a subclass for “Service
Suspend” would be “APM Suspend”. All valid event subclass names must be
registered with Novell Labs.

EPBmoduleName Pointer to module name that generated the event (e.g., NE2000).

EPBDataPtr0 The MSM uses this field to pass a pointer to the MLID’s configuration table.

EPBDataPtr1 Event dependent information.
MSM Procedures and Macros 7-71

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

EPBEventScope The HSM must set this field to EPB_SPECIFIC_EVENT.

EPBReserved Reserved by Novell.

Field Description
7-72 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

nt is
er
MSMNESLRegisterConsumer

Description

This function registers the consumer of an event. If a producer of the eve
not currently registered, the consumer is placed onto an orphaned consum
list.

Processor States Entry State

ESI pointer to a NESL_ECB.

Interrupts are in any state

Call at process time only

Return State

Flags set according to EAX

Interrupts are unchanged

Preserved ESI

Completion Code in EAX

NESL_OK Registry was successful.

NESL_DUPLICATED_NECB The NESL_ECB was previously registered in the event
table.

NESL_INVALID_NOTIFY_PROC The consumer’s notification procedure is NULL

NESL_CONSUMER_NOT_FOUND The NESL_ECB pointer is NULL.

NESL_FIRST_ALREADY_HOOKED The head of the consumer list has already been hooked.
Event has been broadcast to all consumers. EDI is not
changed.
MSM Procedures and Macros 7-73

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

The NESL_ECB fields for this function are defined as follows:

Field Description

NecbNext RESERVED. This field should not be modified by thecalling
routine while the NESL_ECB is registered.

NecbVersion This field contains the version number of the NESL_ECB
structure. This field allows the interface to be expanded in the
future while still providing full backward compatibility. The
current version is 1.

NecbOsiLayer The definition NESL_HOOK_FIRST may also be used in
element NecbOsiLayer. This definition causes a consumer to
be hooked first, no matter what. If the caller sets the low byte
of NecbOsiLayer to this value, the consumer will be hooked
first in the consumer list. Normally NESL events will put lower
layer identifiers before the hooked lead element. If another
call is made specifying this definition an error will be returned
to the caller and the element will not be added to the list.

NecbEventName ASCIIZ name string of the event or class of events. This name
has the maximum length of NESL_MAX_NAME_LENGTH.

NecbRefData RESERVED.

PNecbNotifyProc Pointer to the event notification callback routine.

UINT32 MyNotifyProc (

NESL_ECB *ConsumerNecb,

NESL_ECB *ProducerNecb,

Void *eventData);

ConsumerNecb Points to the NESL_ECB used by consumer during
MSMNESLRegisterConsumer.

ProducerNecb Points to the NESL_ECB used by the producer during
MSMNESLRegisterProducer.
7-74 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

See Also

Appendix C, “NESL Support”

EventData If the producer only has one data item, it can be passed to the
consumer as an argument or as an address.

If the producer has more data than one item or if the producer
wishes to guarantee portability, then the address of an array of
data items should be passed. The structure of the eventData
must be defined by the producer and known by the consumer
if it is to be interrupted properly

Return from a consumer after an event notification callback:

NESL_EVENT_CONSUMED Event was consumed by the consumer process.

NESL_EVENT_NOT_CONSUMED Event was not consumed by the process.

This is only really applicable if the event is consumable, but a
consumer should always do this to be compatible with both
types of events. Called from foreground time or from interrupt
time with interrupts enabled or disabled.

NecbOwner Specifies the owner of the NESL_ECB. This field is platform-
specific and platform-dependent. The DOS/MS Windows
implementation REQUIRES this field to be set to the owner's
module handle information.

NecbWorkSpace RESERVED. This field should not be modified by the calling
routine while the NESL_ECB is registered.

Field Description
MSM Procedures and Macros 7-75

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

list
ules
MSMNESLRegisterProducer

Description

This function registers the producer of an event and creates a consumer
containing the consumers of this event. The event definition contains the r
necessary concerning process and interrupt time execution during event
notification.

Processor States Entry State

ESI pointer to a NESL_ECB.

Interrupts are in any state

Call at process time only

Return State

Flags set according to EAX

Interrupts are unchanged

Preserved ESI

Completion Code in EAX

NESL_OK Registry was successful.

NESL_REGISTERED_UNIQUE A previous producer has registered the event as unique and
this producer tried to register the event as non-unique.

NESL_REGISTERED_NOT_UNIQUE A previous producer has registered the event as non-unique
and this producer tried to register the event as unique.

NESL_REGISTERED_CONSUMABLE A previous producer has registered the event as consumable
and this producer tried to register the event as broadcast.

NESL_REGISTERED_BROADCAST A previous producer has registered the event as a broadcast
and this producer tried to register the event as consumable.

NESL_EVENT_TABLE_FULL The event was not registered because the event table is full.

NESL_DUPLICATE_NECB The NESL_ECB was previously registered in the event table.

NESL_PRODUCER_NOT_FOUND The NESL_ECB is NULL.
7-76 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

The NESL_ECB fields for this function are defined as follows:

Field Description

NecbNext RESERVED. This field should not be modified by the
calling routine while the NESL_ECB is registered.

NecbVersion This field contains the version number of the
NESL_ECB structure. This field allows the interface
to be expanded in the future while still providing full
backward compatibility. The current version is 1.

NecbOsiLayer Reserved. The value of this field will be ignored..

NecbEventName ASCIIZ name string of the event or class of events.
This name has the maximum length of
NESL_MAX_NAME_LENGTH.

NecbRefData This is a flag field used to specify whether the event
is unique or consumable. It also indicates the sorting
order for calling registered consumers at event time.
Consumers which are on the orphan consumer list
will be sorted

NESL_SORT_CONSUMER_BOTTOM_U
P

Use bottom-up relative ordering on the consumer's
NecbOsiLayer field in maintaining an ordered list
ofconsumers requiring notification.

NESL_CONSUME_EVENT The event can be consumed by one of the registered
consumers. By default, an event is broadcast to all
registered consumers. This flag will cause a chaining
effect among the consumers which will start with the
first registered consumer and proceed to the next
until one of the consumers consumes the event or
the end of the consumer list is reached.

NESL_UNIQUE_PRODUCER The producer of the event must be unique. If there is
another producer registered with the same event
string, then this call will fail. By default, there can be
multiple producers of the same event.

This flag is used to prohibit multiple producers
provided that this is the first producer registered.
MSM Procedures and Macros 7-77

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2
 See Also

Appendix C, “NESL Support”

PnecbNotifyProc RESERVED. The value of this field will be ignored..

NecbOwner Specifies the owner of the NESL_ECB. This field is
platform-specific and platform-dependent. The DOS/
MS Windows implementation REQUIRES this field to
be set to the owner's module handle information.

NecbWorkSpace RESERVED. This field should not be modified by the
calling routine while the NESL_ECB is registered.

Field Description
7-78 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

on
.)

ord
MSMParseCustomKeywords

Description Drivers can define keywords that allow custom parameters or flags to be
entered from the load command-line. (Refer to the "Driver Keyword" secti
in Chapter 3 for a complete description of how to define custom keywords

Custom keywords are normally processed during initialization when
DriverInit calls MSMParseDriverParameters. If the driver must have
custom keywords processed earlier in initialization, the DriverInit routine can
call MSMParseCustomKeywords.

MSMParseDriverParameters will still call custom keyword procedures even if
MSMParseCustomKeywords called them earlier.

The MSM parses the command-line for custom keywords and calls the
procedure corresponding to that keyword. Requirements for custom keyw
procedures are described in the next section.

Processor States Entry State

ESI pointer to the DriverParameterBlock

Return State

EBX is preserved

Zero Flag is cleared if a "T_REQUIRED" custom keyword was
not entered on the command-line or by user after
being prompted.
MSM Procedures and Macros 7-79

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ters

s the

ers

n

l

r this
Custom Keyword Procedure

When the MSM calls a custom keyword procedure, the values of the regis
on entry will vary depending on which keyword parsing flags (if any) were
used. The "Driver Keyword Enhancements" section of Chapter 3 describe
parsing flags and how they are used.

On Entr y EDX is nonzero if a T_REQUIRED keyword was found on the original
command-line.

EDX is zero if a T_REQUIRED keyword was not found on the original
command-line and the user had to be prompted for information

T_REQUIRED - The keyword must be entered. If it doesn't exist on the
command-line or configuration file, the user will be prompted for it. If the us
does not enter a value, MSMParseCustomKeywords will return with an error.

T_STRING - The Keyword Routine will be called with a pointer to the
beginning of the string that matched the keyword text.

Example:
load <driver> custom int=3

Routine called with ESI pointing to “custom int=3”

T_NUMBER - The Keyword Routine will be called with the value entered o
the command-line in EAX. The user must enter a decimal number.

Example:
load <driver> custom=100
Routine called with EAX = 64h

T_HEX_NUMBER - The Keyword Routine will be called with the value
entered on the command-line in EAX. The user must enter a hexadecima
number.

Example:
load <driver> custom=100
Routine called with EAX = 1080

T_HEX_STRING - The Keyword Routine will be called with ESI pointing to
a six byte value that was entered on the command-line. The user must ente
string using hexadecimal numbers.
7-80 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ory
ple

ry
Example:
load <driver> custom=01020304

Routine called with ESI -> 00, 00, 01, 02, 03, 04

The following is an example of a driver for an adapter that may require mem
below 16 megabytes depending on information read from a port. The exam
will prompt the user for an I/O port and determine whether it needs memo
below 16 megabytes or not.

Example

OSDATA segment rw public 'DATA'

DriverParameterBlock label dword
.
.
.
 DriverNumKeywords dd 1
 DriverKeywordText dd KeywordTextTable
 DriverKeywordTextLen dd KeywordTextLenTable
 DriverProcessKeywordTab dd KeywordProcedureTable
.
.
.

DriverParameterBlockEnd

KeywordTextTable dd PortKeyword

KeywordTextLenTable dd PortKeywordLen

KeywordProcedureTable dd PortKeywordRoutine

;---

; Define Keywords and related Parameters
;---

PortKeyword db 'PORT'
PortKeywordLen equ ($ - PortKeyword) OR T_HEX_NUMBER OR
T_REQUIRED

dd 300 ; Min port value
dd 360 ; Max port value
dd PortDefault ; Default Port
MSM Procedures and Macros 7-81

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

dd PortValid ; Valid characters
dd PortPrompt ; Prompt string

PortDefault db “300”, 0
PortValid db "0..9A..F", 0 ; Hex digits only
Port db “Enter the Port Number: “, 0

;---

; Define some variables used by custom keyword routine
;---

BasePortValue dd 0
PortOnCommandLine dd 0

.

.

.

OSDATA ends
7-82 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

DriverInit proc

CPush
mov DriverStackPointer, esp
or KeywordTextLenTable, T_REQUIRED
lea esi, DriverParameterBlock
call MSMParseCustomKeywords
jnz DriverInitError ;keyword not entered

mov edx, BasePortValue

(read I/O port information into eax to determine if memory
 below 16 meg is required or not)

mov DriverNeedsBelow16Meg, 0 ;assume below 16 not required
or eax, eax ;check if below 16 required?
je DriverInitRegisterHSM ;jump if not
mov DriverNeedsBelow16Meg, -1 ;set below 16 flag

DriverInitRegisterHSM:

lea esi, DriverParameterBlock
call TSM>RegisterHSM

;* Clear T_REQUIRED bit for the custom keyword so MSMParseDriverParameters will not prompt for it
again if it
;* was not on the original command-line.

and KeywordTextLenTable, NOT T_REQUIRED

;* We need to set the NeedsIOPort0Bit if “PORT=” is already on the command-line. Otherwise the OS will
complain
;* that it saw a standard keyword that wasn't needed.

mov eax, NeedInterrupt0Bit OR CAN_SET_NODE_ADDRESS
cmp PortOnCommandLine, 0
je DriverInitParse
or eax, NeedsIOPort0Bit

DriverInitParse:

lea ecx,AdapterOptions
call MSMParseDriverParameters
jnz DriverInitError

mov eax, BasePortValue ;force IO Port to what
mov [ebx].MLIDIOPortsAndLengths, ax ;we got from custom keyword
MSM Procedures and Macros 7-83

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

call MSMRegisterHardwareOptions
.
.
.

DriverInit endp

PortKeywordRoutine proc
mov BasePortValue, eax
mov PortOnCommandLine, edx

PortKeywordRoutine endp
7-84 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ion

ns

 and
MSMParseDriverParameters

Description MSMParseDriverParameters is used in conjunction with
MSMRegisterHardwareOptions to parse the command-line options.

Each standard load option corresponds to a field in the driver's configurat
table. Using DriverNeedsBitMask as a guide, this function collects the
necessary information from the command-line and from the Adapter Optio
Structure and fills out the appropriate fields of the configuration table.

The following pages describe the format of the Adapter Options structure
the DriverNeedsBitMask parameter.

During this routine the HSM's custom keywords are also processed (see “Driver
Keywords” in Chapter 3)

Processor States Entry State

EAX is the DriverNeedsBitMask parameter

ECX pointer to DriverAdapterOptions structure

Interrupts can be in any state

Call at initialization time

Return State

Zero Flag set if successful; otherwise an error occurred.

EAX zero if successful; otherwise EAX points to an error
message which the driver must print using
MSMPrintString before returning to the operating
system with EAX nonzero.

EBX pointer to the Frame Data Space

Interrupts are disabled

Preserved no registers are preserved
MSM Procedures and Macros 7-85

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

or
ons

f
Adapter Options

The Adapter Options Structure is defined in the ODI.INC file and is shown
below. Each field of the structure is a pointer to a list of possible options f
that field. If an option is not supported, a zero is placed in that field. The opti
correspond to fields in the driver's configuration table.

AdapterOptionDefinitionStructure struc

IOSlot dd ? ; Ptr to a list of possible slots
IOPort0 dd ? ; “ primary ports
IOLength0 dd ? ; “ number of primary ports
IOPort1 dd ? ; “ secondary ports
IOLength1 dd ? ; “ number of secondary ports
MemoryDecode0 dd ? ; “ primary memory values
MemoryLength0 dd ? ; “ primary memory sizes
MemoryDecode1 dd ? ; “ secondary memory values
MemoryLength1 dd ? ; “ secondary memory sizes
Interrupt0 dd ? ; “ primary interrupt values
Interrupt1 dd ? ; “ secondary interrupt values
DMA0 dd ? ; “ primary DMA values
DMA1 dd ? ; “ secondary DMA values
Channel dd ? ; “ channel # for multichannel

adapters

AdapterOptionDefinitionStructure ends

All lists pointed to must begin with a dword value indicating the number o
options in the list. For example, the lists for an adapter with options for
interrupt and port number might appear as follows.

IOPortOptions dd 4 ; number of options
dd 300h,310h,320 h,330h; options

IntOptions dd 3 ; number of options
dd 2, 3, 5 ; options

DriverAdapterOptions AdapterOptionDefinitionStructure
<0,IOPortOptions,0,0,0,0,0,0,0,IntOptions,0,0,0>
7-86 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

s

nts
 the

 its
n

le.
Needs Options

DriverNeedsBitMask is used to inform the parser which configuration option
the driver requires.

If there are multiple possibilities for a configuration option and a driver wa
this function to return which option to use, it must set the appropriate bit of
mask.

If there is only one value for a configuration option, the HSM does not set
bit in DriverNeedsBitMask. The value can be set directly in the configuratio
table.

Equates for the bit positions of each option are provided in the ODI.INC fi
These options are described in the following table.
MSM Procedures and Macros 7-87

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

DriverNeedsBitMask

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit # DriverNeedsBits

31 MUST_SET_NODE_ADDRESS (80000000h)

30 CAN_SET_NODE_ADDRESS (40000000h)

13 NeedsChannelBit (00002000h)

12 NeedsDMA1Bit (00001000h)

11 NeedsDMA0Bit (00000800h)

10 NeedsInterrupt1Bit (00000400h)

9 NeedsInterrupt0Bit (00000200h)

8 NeedsMemoryLength1Bit (00000100h)

7 NeedsMemoryDecode1Bit (00000080h)

6 NeedsMemoryLength0Bit (00000040h)

5 NeedsMemoryDecode0Bit (00000020h)

4 NeedsIOLength1Bit (00000010h)

3 NeedsIOPort1Bit (00000008h)

2 NeedsIOLength0Bit (00000004h)

1 NeedsIOPort0Bit (00000002h)

0 NeedsIOSlotBit (00000001h)
7-88 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Command-Line Examples

Option Command-Line Description

IOSlot

IOPort0

IOLength0

IOPort1

IOLength1

MemoryDecode0

MemoryLength0

MemoryDecode1

MemoryLength1

Interrupt0

Interrupt1

DMA0

DMA1

Channel

load <driver> SLOT=4

load <driver> PORT=300

load <driver> PORT=300:A

load <driver> PORT1=700

load <driver> PORT1=700:14

load <driver> MEM=C0000

load <driver> MEM=C0000:1000

load <driver> MEM1=CC000

load <driver> MEM1=CC000:2000

load <driver> INT=3

load <driver> INT1=5

load <driver> DMA=0

load <driver>DMA1=3

load <driver> CHANNEL=2

Use slot 4

Base Port0 = 300h

Length0 = 0Ah

Base Port1 = 700h

Length1 = 14h

Base Memory0 = C0000h

MemLength0 = 1000h (4K)

Base Memory1 = CC000h

MemLength1 = 2000h (8K)

Interrupt0 = 3

Interrupt1 = 5

DMA0 = 0

DMA1 = 3

Use Channel 2
MSM Procedures and Macros 7-89

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example
IOPortOptions dd 4 ; number of options

dd 300h,310h,320h,330h; options
IntOptions dd 3 ; number of options

dd 2, 3, 5 ; options

DriverAdapterOptions AdapterOptionDefinitionStructure
<0,IOPortOptions,0,0,0,0,0,0,0,IntOptions,0,0,0>

DriverInit proc
.
.
.

mov eax, NeedsIOPort0Bit OR NeedsInterrupt0Bit OR

CAN_SET_NODE_ADDRESS
lea ecx, DriverAdapterOptions
call MSMParseDriverParameters
jnz ParseParameterError
call MSMRegisterHardwareOptions
.
.
.

7-90 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

n

which

of

ng.
MSMPrintString

Description This function prints the message pointed to by ESI. The HSM's initializatio
routine must call <TSM>RegisterHSM prior to using this print procedure.

The possible arguments #1 and #2 above are used here the same way in
they are used in the printf routine in C language. If there are no format
specifications in the string, ECX and EDX are ignored.

This routine has added functionality which supports an additional string
format. If the string is preceded by a word size error number in the range
100-999, the MSM will print the driver name, the platform name (NW for
NetWare), and the decimal error number, before printing the specified stri
(See the Standard MLID Message Definitions supplement for a listing of
standard messages.)

Example ErrorMessage dw 102
db “Board failed to execute reset command.”,0

.

.

.
lea ESI, ErrorMessage
call MSMPrintString

Processor States Entry State

ECX possible argument #1

EDX possible argument #2

ESI pointer to a null terminated message (cannot exceed
128 bytes)

Interrupts can be in any state but might be disabled during the
call

Call at initialization time only

Return State

Interrupts are in the same state as when this routine was called

Preserved EBX, EBP, EDI, and ESI
MSM Procedures and Macros 7-91

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

an
The example above would output the following message if the adapter is
NE2000:

NE2000-NW-102: Board failed to execute reset command.
7-92 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

in
MSMPrintStringFatal

Description This function prints “FATAL:” followed by the specified error message. The
HSM's initialization routine must call <TSM>RegisterHSM prior to using this
print procedure.

The “Possible Arguments #1 and #2” above are used here the same way
which they are used in the C-language printf routine. If there are no format
specifications in the string, ECX and EDX are ignored. (See the Standard
MLID Message Definitions supplement for a listing of standard messages.)

Processor States Entry State

ECX possible argument #1

EDX possible argument #2

ESI pointer to a null terminated error message (cannot
exceed 128 bytes)

Interrupts can be in any state but might be disabled during the
call

Call at initialization time only

Return State

Interrupts are in the same state as when this routine was called

Preserved EBX, EBP, EDI, and ESI
MSM Procedures and Macros 7-93

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example ErrorMessage db 'Adapter %d, Error Code: %x', CR,LF,0
.
.
.

mov ECX, BoardNumber ; argument #1
mov EDX, ErrorNumber ; argument #2
mov ESI, offset ErrorMessage
call MSMPrintStringFatal
7-94 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 in
MSMPrintStringWarning

Description This function prints “WARNING:” followed by the specified error message
pointed to by ESI. The HSM's initialization routine must call
<TSM>RegisterHSM prior to using this print procedure.

The “Possible Arguments #1 and #2” above are used here the same way
which they are used in the C-language printf routine. If there are no format
specifications in the string, ECX and EDX are ignored. (See the Standard
MLID Message Definitions supplement for a listing of standard messages.)

Example ErrorMessage db 'Adapter %d, Error Code: %x', CR,LF,0
.
.
.

mov ECX, BoardNumber ; argument #1
mov EDX, ErrorNumber ; argument #2
mov ESI, offset ErrorMessage
call MSMPrintStringWarning

Processor States Entry State

ECX possible argument #1

EDX possible argument #2

ESI pointer to a null terminated error message (cannot
exceed 128 bytes)

Interrupts can be in any state but might be disabled during the
call

Call at initialization time only

Return State

Interrupts are in the same state as when this routine was called

Preserved EBX, EBP, EDI, and ESI
MSM Procedures and Macros 7-95

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMRdConfigSpace8

Description This function takes an offset, a UniqueIdentifier and a BusTag to identify an
offset in a specific adapter’s configuration space and performs whatever
operations are necessary to acquire and return 8 bits of configuration
information.

The function is provided only for drivers that need to interact with
configuration space. On most buses, MSMGetCardConfigInfo will satisfy a
driver's need.

For most buses, this call will do nothing. It has meaning only on buses that have
a configuration address space that is separated from memory or I/O space (for
example, a PCI bus).

See Also

MSMSearchAdapter, MSMGetUniqueIdentifier,
MSMRdConfigSpace16, MSMRdConfigSpace32,
MSMGetCardConfigInfo, MSMWrtConfigSpace8,
MSMWrtConfigSpace16, MSMWrtConfigSpace32.

Processor States Entry State

EAX - Offset contains an offset into the configuration space.

EBX - Unique-
Identifier

contains an architecture-dependent value that
specifies the location on the bus where the device is
located

ECX - BusTag contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

Interrupts in any state

Return State

DL unsigned read value

Interrupts preserved

Preserved EAX, EBX, ECX, ESI, EDI, EBP
7-96 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example
DriverInit proc

.

.

.
mov ebx, UniqueIdentifier; from

MSMSearchAdapter
mov ecx, BusTag; BusTag for PCI
mov eax, 13 ; PCI Header Type Offset
call MSMRdConfigSpace8
.
.
.

DriverInit endp
MSM Procedures and Macros 7-97

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMRdConfigSpace16

 Description This function takes an offset, a UniqueIdentifier and a BusTag to identify an
offset in a specific adapter’s configuration space and performs whatever
operations are necessary to acquire and return 16 bits of configuration
information.

The function is provided only for drivers that need to interact with
configuration space. On most buses, MSMGetCardConfigInfo will satisfy a
driver's need.

For most buses, this call will do nothing. It has meaning only on buses that have
a configuration address space that is separated from memory or I/O space (for
example, a PCI bus).

See Also

MSMSearchAdapter, MSMGetUniqueIdentifier,
MSMRdConfigSpace16, MSMRdConfigSpace32,
MSMGetCardConfigInfo, MSMWrtConfigSpace8,
MSMWrtConfigSpace16, MSMWrtConfigSpace32.

Processor States Entry State

EAX - Offset contains an offset into the configuration space.

EBX - Unique-
Identifier

contains an architecture-dependent value returned
by MSMGetUniqueIdentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

ECX - BusTag contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

Interrupts in any state

Return State

DX unsigned read value

Interrupts preserved

Preserved EAX, EBX, ECX, ESI, EDI, EBP
7-98 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example
DriverInit proc

.

.

.
mov ebx, UniqueIdentifier; from

MSMSearchAdapter
mov ecx, BusTag; BusTag for PCI
mov eax, 2 ; PCI Vendor ID Offset
call MSMRdConfigSpace16
.
.
.

DriverInit endp
MSM Procedures and Macros 7-99

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMRdConfigSpace32

Description This function takes an offset, a UniqueIdentifier and a BusTag to identify an
offset in a specific adapter’s configuration space and performs whatever
operations are necessary to acquire and return 32 bits of configuration
information.

The function is provided only for drivers that need to interact with
configuration space. On most buses, MSMGetCardConfigInfo will satisfy a
driver's need.

For most buses, this call will do nothing. It has meaning only on buses that have
a configuration address space that is separated from memory or I/O space (for
example, a PCI bus).

See Also

MSMSearchAdapter, MSMGetUniqueIdentifier,
MSMRdConfigSpace16, MSMRdConfigSpace32,
MSMGetCardConfigInfo, MSMWrtConfigSpace8,
MSMWrtConfigSpace16, MSMWrtConfigSpace32.

Processor States Entry State

EAX - Offset contains an offset into the configuration space.

EBX - Unique-
Identifier

contains an architecture-dependent value returned
by MSMGetUniqueIdentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

ECX - BusTag contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

Interrupts in any state

Return State

EDX unsigned read value

Interrupts preserved

Preserved EAX, EBX, ECX, ESI, EDI, EBP
7-100 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example

DriverInit proc
.
.
.
mov ebx, UniqueIdentifier; from

MSMSearchAdapter
mov ecx, BusTag; BusTag for PCI
mov eax, 16 ; PCI Base Addr 0 Offset
call MSMRdConfigSpace32
.
.
.

DriverInit endp
MSM Procedures and Macros 7-101

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

r.

ers

l
MSMReadPhysicalMemory

Description If the driver attempts to access shared RAM before calling
MSMRegisterHardwareOptions, a page fault abend will occur on the serve
Accesses to the shared RAM prior to registration do not normally happen
unless the HSM must obtain additional information such as interrupt numb
or shared RAM buffer size for the configuration table.

This routine can be used to read information from a shared RAM physica
address before hardware registration.

See Also

MSMWritePhysicalMemory

Processor States Entry State

ECX number of bytes to read

ESI physical source address (where to read data from)

EDI logical destination address (where to transfer data to)

Interrupts may be in any state

Call during DriverInit before
MSMRegisterHardwareOptions

Return State

Preserved EBX, EBP, ESI, and EDI
7-102 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example mov esi, SourceAddress ; physical shared RAM address
; source

lea edi, [ebx].MLIDInterrupt ; logical dest. in frame data
; space

mov ecx, 1 ; read 1 byte

call MSMReadPhysicalMemory ; transfer data
cmp eax, 0 ; check for errors
jne ErrorReadingFromSharedMemory; Jump if so
MSM Procedures and Macros 7-103

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ue
ory
ns to

nd

l

MSMRegisterHardwareOptions

Description This function must be called by the HSM's DriverInit routine to register the
hardware options.

On return from MSMRegisterHardwareOptions:

• If EAX is 0, a new adapter was registered and the driver should contin
with initializing the adapter. If a new adapter is being added, the mem
associated with the Adapter Data Space is allocated and control retur
DriverInit with EBP pointing to that space.

• If EAX is 1, a new frame type was registered for an existing adapter a
the DriverInit routine is basically finished.

• If EAX is 2, a new channel was registered for an existing multichanne
adapter. The driver (and MSM) typically treat the registering of a new
channel as a new adapter.

• If EAX is > 2, the MSM was unable to register the hardware options
(typically due to conflicts with existing hardware). In this case, EAX
points to an error message which the driver should print using
MSMPrintString . DriverInit should then return immediately to the
operating system with EAX set to any nonzero value.

Processor States Entry State

Interrupts can be in any state

Call at initialization time only

Return State

EAX = 0
EAX = 1
EAX = 2

EAX > 2

New Adapter was successfully registered
New Frame Type was successfully registered
New Channel (multichannel adapters) was
registered

pointer to an error message. (hardware registration
failed)

EBP pointer to the Adapter Data Space if successful

EBX pointer to the Frame Data Space if successful

Interrupts are preserved
7-104 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example DriverInit proc
.
.
.

call MSMParseDriverParameters
call MSMRegisterHardwareOptions
cmp eax,2
ja DriverInitError
je NewChannel
cmp eax,1
je NewFrame
; (Initialize for NewAdapter)

.

.

.

DriverInitExit:
xor eax,eax
ret

DriverInitError:
mov esi,eax
call MSMPrintString
or eax,-1
ret

DriverInit endp
MSM Procedures and Macros 7-105

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMRegisterMLID

Description After DriverInit has successfully initialized the adapter, it should call this
routine to register the MLID with the Link Support Layer.

When this routine returns, the configuration table contains a valid board number.
HSMs for intelligent bus master adapters may now pass the board number and
frame ID information to the adapter if necessary.

Example DriverInit proc
 .
 .
 .
call MSMRegisterMLID
jnz RegisterMLIDError
.
.
.

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

Interrupts may be in any state

Call at process time only

Return State

EAX zero if successful; otherwise EAX points to an error
message which the driver must print using
MSMPrintString before returning to the operating
system with EAX non- zero.

Zero Flag set if successful; otherwise an error occurred.

Interrupts are unchanged

Preserved EBX and EBP
7-106 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 the

ou

ill
MSMRegisterResource

Description

This routine lets an HSM register hardware resources that are not listed in
configuration table because it is full.

This routine cannot be called until MSMRegisterHardwareOptions has
returned with a New Adapter or a New Channel.

Currently, only the two interrupts in the configuration table are supported. Y
cannot use MSMRegisterResource to register additional interrupts.

The ExtraConfig structure must always remain allocated, so that the MSM w
return the resource if the HSM gets unloaded.

Processor States Entry State

EBP pointer to Adapter Data Space

EBX pointer to a configuration table that was registered
and was returned through <TSM>RegisterHSM .

EDX pointer to an ExtraConfig structure that contains the
resource(s) to be registered.

Interrupts can be in any state

Call at process or interrupt time

Return State

Flags set according to EAX.

Interrupts are unchanged.

Preserved all registers except EAX.

Completion Code in EAX

SUCCESSFUL The resources contained in the ExtraConfig parameter were
successfully registered.

OUT_OF_RESOURCES The hardware options could not be registered. This is typically
due to conflicts with resources held by hardware devices.
MSM Procedures and Macros 7-107

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ExtraConfi g Structure

This structure is defined in MSM.INC.

ExtraConfig struc
ExtraConfigNextLinkdd0
EcReserved0dd0
EcReserved1dd0
EcReserved2dd0
EcReserved3 dd0
EcReserved4 dd0
EcReserved5dd0
EcReserved6 dd0
EcReserved7 dd0
EcReserved8 dd0
EcReserved9 dd0
IOConfigPointerdd0
ExtraConfig ends

Field Descriptions:

EcReserved0...EcReserved0

These fields are reserved and must be set to 0.

IOConfigPointer

This field contains a pointer to the IOConfig structure filled in by caller.
7-108 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

of
 in
IOConfi g Structure

This structure is defined in ODI.INC. IOConfig is basically a substructure
the Driver Config Table, see the Config Table structure’s fielddescription
Chapter 3 of the HSM specification.

IOConfig struc
IO_Link dd 0
IO_SharingFlags dw 0
IO_Slot dw 0
IO_IOPort0 dw 0
IO_IORange0 dw 0
IO_IOPort1 dw 0
IO_IORange1 dw 0
IO_MemoryDecode0 dd 0
IO_Length0 dw 0
IO_MemoryDecode1 dd 0
IO_Length1 dw 0
IO_Interrupt0 db 0
IO_Interrupt1 db 0
IO_DMALine0 db 0
IO_DMALine1 db 0
IO_ResourceTag dd 0
IO_Config dd 0
IO_CommandString dd 0
IO_LogicalName db 18 dup (0)
IO_LinearMemory0 dd 0
IO_LinearMemory1 dd 0
IO_ChannelNumber dw 0
IO_BusTag dd 0
IO_ConfigMajorVer db 0
IO_ConfigMinorVer db 0

IOConfig ends
MSM Procedures and Macros 7-109

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ew
MSMReRegisterHardwareOptions

Allows an HSM to deregister its current hardware options and register a n
set of hardware options.

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to an IOConfig structure (new) that contains
the new hardware options to be registered.

ESI pointer to an ECB whose ESR is called if
MSMReRegisterHardwareOptions returns
RESPONSE_DELAYED. If
NULL,_BAD_PARAMETER will be returned.

Interrupts can be in any state.

Execute at process or interrupt time

Return State

Flags set according to EAX

Interrupts are unchanged

Preserved all registers except EAX

Completion Code in EAX

SUCCESSFUL Hardware options were successfully reregistered.

OUT_OF_RESOURCES Unable to register the hardware options due to conflicts in
resources with another device.

BAD_PARAMETER If an input parameter was invalid.

FAIL The adapter was not in a shutdown state before the call was
made.

RESPONSE_DELAYED The operation of deregistering and registering hardware
options could not be completed at the present time. An
asynchronous process will be scheduled to complete the
operation at a later time.
7-110 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

y

 in
se as

the
The

red,

e

lue
’s

was
Description

If MSMRegisterMLID has been called the adapter must be shutdown using
MSMShutdownMLID before MSMReRegisterHardwareOptions is called.

MSMReRegisterHardwareOptions will deregister the current set of
hardware options held by the HSM for an adapter as registered previousl
through MSMRegisterHardwareOptions or through a previous call to
MSMReRegisterHardwareOptions. All hardware options in the new
IOConfig table will then be registered for the adapter. Any hardware option
the new IOConfig table that are not to be registered must be set as not in u
described in the Driver Configuration Table. The MLIDResourceTag from
old Config Table will be used when registering the new hardware options.
fields of the new IOConfig table correspond to the fields in the
DriverConfigTemplate structure starting with the MLIDLink field and end
with the MLIDIOConfigMinorVer .

If all hardware options in the new IOConfig table were successfully registe
MSMReRegisterHardwareOptions will update all configuration tables of
the adapter to reflect the newly registered hardware options.

If MSMReRegisterHardwareOptions cannot complete the operation at the
present time, an asynchronous process will be scheduled to complete th
operation later. Once the asynchronous operation is complete, the
asynchronous ECB’s ESR routine will be called to report the final return va
of the operation. The return value will be stored in the asynchronous ECB
ECB_Status field.

Upon successful return from MSMReRegisterHardwareOptions, the HSM is
responsible for putting the adapter in a functional state. If a new interrupt
registered, the HSM must call MSMSetHardwareInterrupt .
MSM Procedures and Macros 7-111

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

,

e
MSMResetMLID

Description

If an HSM needs to reset the driver, it must use this function to do so.
MSMResetMLID puts the driver in a safe state and then calls DriverReset.

If the reset is successful, the SHUTDOWN flag in MSMStatusFlags is cleared
by the MSM. The MSM also produces a NESL suspend event for MLIDReset.

In previous versions of this specification, and under certain circumstances
HSMs could call their own DriverReset routines. However, HSMs written to
this specification must not do so. HSMs written to this specification must us
MSMResetMLID .

This function does not restart polling if polling was suspended by
MSMSuspendPolling . MSMResumePolling must be called to restart polling.

MSMResetMLID cannot be called until after MSMRegisterMLID has been
called.

Processor States Entry State

EBP pointer to Adapter Data Space

Interrupts are disabled but may be enabled during the call

Call at process time only

Return State

Flags set according to EAX.

Interrupts are disabled.

Preserved EBP, EBX

Completion Code in EAX

SUCCESSFUL Reset was successful

BAD_PARAMETER An input parameter was invalid or NULL.

FAIL The operation failed
7-112 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

he
MSMResumePolling

Description

Turns polling back on after MSMSuspendPolling has suspended it. This call
is only necessary if MSMSuspendPolling was called previously. When
MSMEnablePolling is called, polling will start up active.

The POLLSUSPENDED flag in the MLIDStatusFlags (bit 4) is cleared by t
MSM when this function is called.

Processor States Entry State

EBP pointer to Adapter Data Space

Interrupts can be in any state

Execute at process or interrupt time

Return State

Interrupts are unchanged

Preserved all registers

Completion Code in EAX

SUCCESSFUL Polling was successfully resumed.

BAD_COMMAND The call is invalid because MSMEnablePolling and/or
MSMSuspendPolling have never been called.
MSM Procedures and Macros 7-113

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2 's

d
is

n
MSMReturnDriverResources

Description MSMReturnDriverResources must be called to return resources if the HSM
DriverInit routine is unable to initialize the adapter. It should only be calle
after <TSM>RegisterHSM has completed successfully. However if there
an error during any of the following procedures they will call
MSMReturnDriverResources, and it must not be called a second time or a
abend or Interrupt 3 may result.

The following procedures will call MSMReturnDriverResources if they do
not complete successfully:

<TSM>RegisterHSM
MSMEnablePolling
MSMParseDriverParameters
MSMRegisterHardwareOptions
MSMRegisterMLID
MSMScheduleAESCallback
MSMScheduleIntTimeCallback
MSMSetHardwareInterrupt

The HSM must not call MSMReturnDriverResources after one of the
procedures listed above returns an error condition. It may cause the server to
abend.

Please note that the MSMDriverRemove procedure calls
MSMReturnDriverResources upon completing successfully.

Processor States Entry State

Interrupts are disabled

Call at process time only

Return State

Interrupts remain disabled

Preserved NO registers are preserved
7-114 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example

DriverInit proc

Cpush
 .
 .
 .
call <TSM>RegisterHSM
jnz DriverInitError
 .
 .
 .
[*** Initialize the Adapter ***]
call DriverReset
jnz DriverInitResetError
 .
 .
 .

DriverInitResetError:
push eax
call MSMReturnDriverResources
pop eax

DriverInitError:
mov esi, eax
call MSMPrintString
or eax, 1
Cpop
ret

DriverInit endp
MSM Procedures and Macros 7-115

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ist

.

MSMReturnMultipleRCBs

Description

This function returns multiple RCBs that are chained together in a linked l
through the ECBLink field, which is the first double word of the RCBDriverWS
field.

This function is used to discard multiple RCBs. It does not process RCBs

See Also

MSMAllocateMultipleRCBs

MSMAllocateRCB

MSMReturnRCB

Processor States Entry State

ESI pointer to first RCB in chain

Interrupts can be in any state

Execute at process or interrupt time

Return State

Interrupts are disabled

Preserved EBX, ECX, EDX, EDI & EBP
7-116 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

e

ing
ize
p to
n

ros.

d
MSMReturnNotificationECB (macro)

MSMFastReturnNotificationECB (macro)

Description Drivers that support outside management NLMs (such as HMI or CSL) us
these macros to process notification ECBs containing management alert
information.

If the hardware generates an alert, the HSM obtains a notification ECB us
MSMAllocateRCB. This procedure requires a packet size on entry. The s
specified will depend on the amount of information that must be passed u
the management application. The driver fills in the ECB with the notificatio
information according to the driver management specification, sets ESI to
point to the ECB, and returns the notification ECB using one of these mac

MSMReturnNotificationECB places the ECB in the LSLs holding queue an
waits for the HSM to call
MSMServiceEvents before passing it to the management NLM.
MSMFastReturnNotificationECB passes the ECB immediately to the
management application.

Processor States] Entry State

ESI pointer to the notification ECB

Interrupts can be in any state

Execute at process or interrupt time

Return State

Interrupts are disabled

Preserved MSMReturnNotificationECB - (ESI, EDI, and EBP
are preserved)

MSMFastReturnNotificationECB - (Assume all
registers are destroyed)
MSM Procedures and Macros 7-117

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example

HubResetNotification proc
.
.
.

mov esi, 4
call MSMAllocateRCB ; Get notification
ECB

.

. (Fill in all required notification information)

.
mov esi, ECBPtr ; Point to the ECB
MSMFastReturnNotificationECB ; Return the ECB
directly to the

. ; management
application

.

.

7-118 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ed
e
MSMReturnRCB (macro)

Description MSMReturnRCB returns an unneeded RCB to the LSL. This routine is call
to discard the RCB, not to process it. To return an RCB for processing, se
<TSM>RcvComplete or <TSM>ProcessGetRCB.

Example mov esi, [ebp].ReceiveQueueHead ; ESI ->
First RCB
mov [ebp].ReceiveQueueHead, 0 ; Clear
pointer
or esi,esi ; Valid
RCB?
jz ShutdownAllRCBsReturned ; Jump if
not

ShutdownReturnRCBLoop:

mov ecx, [esi].RCBDriverWS+4 ; ECX ->
Next RCB
MSMReturnRCB ; Return
RCB
mov esi, ecx ; ESI -
>Next RC B
or esi, esi ; Valid
RCB?
jnz ShutdownReturnRCBLoop ; Jump if
so

Processor States Entry State

ESI pointer to the unneeded RCB

EBP pointer to the adapter data space

Interrupts can be in any state

Execute at process or interrupt time

Return State

Interrupts are disabled

Preserved EBX, ECX, EDX, EBP, and EDI
MSM Procedures and Macros 7-119

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMScanBusInfo

Processor States Entry State

ESI -
ScanSequence

must be initialized to -1 for the first search and then
passed back in for subsequent call

Interrupts can be in any state

Return State

EBX -
BusName

pointer to a static, null-terminated, architecture-
dependent string that is determined by the platform
developer

ECX

BusType

contains a value that indicates the bus type as
defined in ODI_NBI.INC. The currently defined
values are:

0 = ODI_BUSTYPE_ISA
1 = ODI_BUSTYPE_MCA
2 = ODI_BUSTYPE_EISA
3 = ODI_BUSTYPE_PCMCIA
4 = ODI_BUSTYPE_PCI
8 = ODI_BUSTYPE_CARDBUS

EDX
 BusTag

contains an architecture-dependant value that
specifies the bus

ESI
ScanSequence

contains the scan sequence value to be used for the
next search

Flags are set according to EAX

Interrupts are preserved

Preserved EBP

Completion Codes in EAX Code Description

SUCCESSFUL indicates the operation completed
successfully

ITEM_NOT_PRESENT indicates there are no more buses or
function is not available

BAD_PARAMETER the ScanSequence was invalid
7-120 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

the
Description MSMScanBusInfo searches the system for available buses. The BusName
string must not be modified by the caller. If the caller needs to reference
string at a later time, a local copy of the string must be made.

Example DriverInit proc
.
.
.
mov esi, -1 ; -1 for first time thru

ScanBusLoop:
call MSMScanBusInfo; scan for next bus
jnz Done_Error_ScanningBus; done/error
.
.
.
jmp ScanBusLoop; scan for next bus
.
.
.

DriverInit endp
MSM Procedures and Macros 7-121

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMScheduleAESCallBack

Description This routine can be called during DriverInit to enable a periodic call back to
the HSM's DriverAESCallBack routine. Once enabled, DriverAESCallBack
is invoked during process time at the intervals specified by EAX. The MSM
sets up the Adapter and Frame Data Space before calling DriverAESCallBack
and automatically schedules a new call back on return.

MSMScheduleAESCallBack is used when process-time-only routines are
called by DriverAESCallBack . MSMScheduleTimer should be used to handle
timer events instead of MSMScheduleAESCallBack when possible (see
MSMScheduleTimer).

Processor States Entry State

EBP pointer to the Adapter Data Space

EAX Time Interval in ticks (1 tick = 1/18 sec)

Interrupts can be in any state, but are disabled during the call

Call only at initialization time (during DriverInit)

Return State

EAX zero if successful; otherwise EAX points to an error
message which the driver must print using
MSMPrintString before returning to the operating
system with EAX non- zero.

Zero Flag set if successful; otherwise an error occurred.

Interrupts are preserved

Preserved EBX and EBP
7-122 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example DriverInit proc
.
.
.
mov eax, 18 ; Schedule call
back in 18 ticks
call MSMScheduleAESCallBack
jnz ScheduleCallBackError
.
.
.

MSM Procedures and Macros 7-123

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

he

n.
MSMScheduleIntTimeCallBack

Description This routine can be called during DriverInit to enable a periodic call back to
the HSM's DriverINTCallBack routine. Once enabled, DriverINTCallBack
is invoked during the timer tick interrupt at the interval specified by EAX. T
MSM sets up the Adapter and Frame Data Space before calling
DriverINTCallBack and automatically schedules a new call back on retur

DriverINTCallBack cannot be used if calls are made to routines which can be
invoked only at process time. DriverAESCallBack should be used instead (see
MSMScheduleAESCallBack). Also it is critical that ALL drivers call
MSMRegisterMLID before MSMScheduleIntTimeCallBack in order for the
driver to work properly in SMP mode.

MSMScheduleTimer is now the preferred method for setting up timer events.

Processor States Entry State

EBP pointer to the Adapter Data Space

EAX Time Interval in ticks (1 tick = 1/18 sec)

Interrupts are disabled and remain disabled

Call only at initialization time (during DriverInit)

Return State

EAX zero if successful; otherwise EAX points to an error
message which the driver must print using
MSMPrintString before returning to the operating
system with EAX nonzero.

Zero Flag set if successful; otherwise an error occurred.

Interrupts are disabled

Preserved EBX and EBP
7-124 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example

DriverInit proc
 .
 .
 .
mov eax, 18 ; Schedule call
back in 18 ticks
call MSMScheduleIntTimeCallBack
jnz ScheduleCallBackError

MSM Procedures and Macros 7-125

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

E

e
ith
MSMScheduleTimer

Description

When this procedure is called, the HSM passes in a TIMER_STRUCTUR
pointer with the procedure to be called and the time interval to wait before
calling that procedure.

This procedure must not be called until after the HSM has called
MSMRegisterMLID .

This method of handling timers is preferred over using
MSMScheduleAESCallBack and MSMScheduleIntTimeCallBack.

Even when called during DriverInit an error return will NOT cause the releas
of the driver’s resources. The driver must determine if it should continue w
initialization or abort.

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to TIMER_STRUCTURE

Interrupts can be in any state.

Execute at interrupt or process time

Return State

Flags set according to EAX

Interrupts are unchanged

Preserved EBX and EBP

Completion Code in EAX

SUCCESSFUL The operation completed successfully.

BAD_PARAMETER The TIMER_STRUCTURE was invalid.

OUT_OF_RESOURCES Resources to complete operation were not available.
7-126 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

M.

 On

TIMER_STRUCTURE

TIMER_STRUCTUREstruc
TimerNextLinkdd ?
TimerProcedurePtrdd ?
TimerType dd ?
TimerInterval dd ?
TimerContext dd ?
TimerReserveddb 30 dup (?)

TIMER_STRUCTUREends

Field descriptions:

TimerNextLink

Used to link TIMER_STRUCTUREs together. Reserved for use by MS

TimerProcedurePtr

A pointer to the procedure that is called after the specified time Interval.
call EBP will point to the Adapter Data Space and EBX will point to the
default Frame Data Space.

TimerType

Used to specify one of the following timer types:

AES_TYPE_PRIVILEGED_ONE_SHOT
Call only once at privileged time

AES_TYPE_PRIVILEGED_CONTINUOUS
Call at privileged time

AES_TYPE_PROCESS_ONE_SHOT
Call only once at process time

AES_TYPE_PROCESS_CONTINUOUS
Call at process time

TimerInterval

The time in milliseconds to wait before calling TimerProcedure.

TimerContext

Reserved for use by MSM.
MSM Procedures and Macros 7-127

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ed.
TimerReserved

Reserved for use by MSM.

The TIMER_STRUCTURE must remain allocated until the driver is unload
7-128 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

MSMSearchAdapter

Processor States Entry State

EAX - Product-
IDLength

contains the length of the product ID

EBX - ProductID contains a pointer to a bus architecture-dependent
parameter that uniquely identifies an adapter board/
peripheral/system option. The product ID appears in
memory as defined by the specification for the
BusType. For example, on an EISA bus, the EISA
product ID in memory as defined in the EISA
Specification

ECX - BusType A bus type as defined in ODI_NBI.INC. The currently
defined values are:

0 = ODI_BUSTYPE_ISA
1 = ODI_BUSTYPE_MCA
2 = ODI_BUSTYPE_EISA
3 = ODI_BUSTYPE_PCMCIA
4 = ODI_BUSTYPE_PCI
8 = ODI_BUSTYPE_CARDBUS

ESI -
ScanSequence

must be initialized to -1 on the first search for each
ProductID, and passed back on subsequent calls for
the same ProductID.

Interrupts can be in any state

Return State

CX - Instance-
Number

the hardware instance number for the device. The
hardware instance number is guaranteed unique
across all devices in the system and in many cases
is the physical slot number.

EDX - BusTag an architecture-dependant value that specifies the
bus on which the device was located

ESI - Scan-
Sequence

the scan sequence value to be used for the next
search

EDI - Unique-
Identifier

contains an architecture-dependent value returned
by MSMGetUniqueIdentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

Flags are set according to EAX
MSM Procedures and Macros 7-129

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2 his

D

Description MSMSearchAdapter takes a bus type and a pointer to a product ID and
returns a BusTag and a slot number, where the specified device is found. T
function should be used only if the driver's adapter has a unique product I
associated with it that can be read. The product ID must be retrievable
according to some accepted standard, such as EISA, MCA or PCI.

Example ProductID db ...
ProductIDLen equ ...

DriverInit proc
.
.
.
mov esi, -1 ; for first time thru

SearchAdapterLoop:
mov eax, ProductIDLen
lea ebx, ProcudtID
mov ecx, BusType; bus type from

; MSMScanBusInfo or constant
; like ODI_BUSTYPE_MCA

call MSMSearchAdapter
jnz Done_Error_SearchAdapter
.
.
.
jmp SearchAdapterLoop; go find next NIC
.
.
.

DriverInit endp

Interrupts are preserved

Preserved EBP, EBX

Completion Codes in EAX Code Description

SUCCESSFUL requested product was found

ITEM_NOT_PRESENT requested product is not present
7-130 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ust

, the
he

t
MSMServiceEvents (macro)

Description If the HSM has used <TSM>SendComplete, <TSM>RcvComplete or
<TSM>ProcessGetRCB, it must use either MSMServiceEvents or
MSMServiceEventsAndRet before it exits back to the operating system.

If the HSM must execute any instructions after it services events, then it m
use MSMServiceEvents instead of MSMServiceEventsAndRet.

In the example below, the adapter supports shared interrupts. In this case
operating system requires that EAX equal 0 if the interrupt is for the HSM. T
HSM must use MSMServiceEvents and set EAX to 0 before returning. If
MSMServiceEventsAndRet is used, the HSM returns before it is able to se
EAX to 0. If the HSM does not support shared interrupts, it can return
immediately after servicing events, therefore, the
MSMServiceEventsAndRet macro should be used.

If the HSM uses <TSM>FastSendComplete , <TSM>FastRcvComplete , or
<TSM>FastProcessGetRCB exclusively, it does not need to use
MSMServiceEvents . The “fast” routines service events before returning.

Processor States Entry State

Interrupts can be in any state

Execute at process or interrupt time

Return State

Interrupts are disabled on completion, but might have been
enabled during execution

Preserved NO registers are preserved
MSM Procedures and Macros 7-131

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example

DriverISR proc
.
.
.

DriverISRExit:
MSMServiceEvents ; Service Events queue
xor eax, eax ; Inform operating system
that interrupt

; was ours
ret

DriverISR endp
7-132 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

y
MSMServiceEventsAndRet (macro)

Description If the HSM has used <TSM>SendComplete,
<TSM>RcvComplete, or <TSM>ProcessGetRCB, it must use either
MSMServiceEvents or MSMServiceEventsAndRet before it exits back to
the operating system.

Since this macro automatically returns, MSMServiceEventsAndRet must be
the last executable line of code in the routine. If the HSM must execute an
instructions after servicing events, it must use the MSMServiceEvents macro
which does not automatically return.

If the HSM uses <TSM>FastSendComplete , <TSM>FastRcvComplete , or
<TSM>FastProcessGetRCB exclusively, it does not need to use
MSMServiceEvents . The “fast” routines service events before returning.

Processor States Entry State

Interrupts can be in any state

Execute at process or interrupt time

Return State

Note this macro does not return to the HSM
MSM Procedures and Macros 7-133

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Example DriverISR proc
 .
 .
 .

DriverISRExit:

 MSMServiceEventsAndRet ; Service Events
and Return.

DriverISR endp
7-134 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

MSMSetHardwareInterrupt

Description The HSM's DriverInit routine will call this function to set up a hardware
interrupt.

Example call MSMRegisterHardwareOptions
call MSMSetHardwareInterrupt
jnz SetHardwareIntError

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

Interrupts are disabled and remain disabled

Call at process time

Return State

EAX zero if successful; otherwise EAX points to an error
message which the driver must print using
MSMPrintString before returning to the operating
system with EAX nonzero.

Zero Flag set if successful; otherwise an error occurred.

Interrupts are disabled

Preserved EBX and EBP
MSM Procedures and Macros 7-135

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMShutdownMLID

Processor States Entry State

EBP pointer to Adapter Data Space

ECX shutdown type, set to zero if permanent shutdown,
otherwise a partial shutdown is required.

Interrupts are disabled but may be enabled during the call

Call at process time only

Return State

Flags set according to EAX.

Interrupts are disabled.

Preserved EBP, EBX

Completion Code in EAX

SUCCESSFUL Shutdown was successful.

BAD_PARAMETER An input parameter was invalid or NULL.

FAIL The operation failed.
7-136 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

is
Description

If DriverShutdown needs to be called from within the HSM it is done by th
function. The MSM puts the driver in a safe state and then calls
DriverShutdown. If a partial shutdown was performed a call to
MSMResetMLID will bring the driver out of shutdown state

If the operation is successful the SHUTDOWN flag in MSMStatusFlags is set
by the MSM. The MSM also produces a NESL suspend event for MLID
Shutdown.

MSMShutdownMLID can not be called until after MSMRegisterMLID has been
called.

In prior versions of this specification an HSM could call its own
DriverShutdown routine; HSMs written to this version of the specification
must use MSMShutdownMLID .
MSM Procedures and Macros 7-137

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

and

is

ine
MSMSuspendPolling

Description

Suspends the calling of the DriverPoll procedure until MSMResumePolling
is called. The polling procedure is very expensive, especially in a
Multi-Processor environment. Each time DriverPoll is called the Mutex must
be acquired and both DriverDisableInterrupts and DriverEnableInterrupts
must be called. This keeps the Mutex held a high percentage of the time
causes bus traffic. Most of the time that DriverPoll is called there is no usable
work that the driver needs to do yet while in the poll procedure the driver
locked out from receiving interrupts, DriverSends, etc. Use
MSMSuspendPolling to temporarily stop the driver from being polled when
it is known that there is no usable work to do.

The POLLSUSPENDED flag in MLIDStatusFlags (bit 4) is set by the MSM
when MSMSuspendPolling is called and cleared by the MSM when
MSMResumePolling is called and can be inspected by the HSM do determ
the current polling status.

Processor States Entry State

EBP pointer to Adapter Data Space

Interrupts can be in any state

Execute at process or interrupt time

Return State

Interrupts are unchanged

Preserved all registers

Completion Code in EAX

SUCCESSFUL Polling was successfully suspended.

BAD_COMMAND Call is invalid because MSMEnablePolling was never called
to begin with or polling is currently suspended (redundant
suspend calls).
7-138 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example

DriverPoll proc
.
.
.
cmp [ebp].PollStatus, BUSY
je Don’t Suspend Polling
call MSMSuspendPolling
.
.
.
.

MSM Procedures and Macros 7-139

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

er.

pter
MSMUpdateConfigTables

Allows a HSM to update all copies of the configuration table for an adapt

Description

MSMUpdateConfigTables copies the following configuration table fields
from the configuration table parameter to all configuration tables of a ada
(all other configuration table fields are ignored):

MLIDNodeAddress

MLIDModeFlags

MLIDMaximumSize

MLIDCardName

MLIDShortName

MLIDTransportTime

MLIDLineSpeed

MLIDCFG_SGCount

MLIDPrioritySup

MLIDFlags

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to a configuration table

Interrupts can be in any state

Execute at process or interrupt time

Return State

EAX zero if successful, none-zero otherwise

Preserved all registers except EAX

Interrupts are unchanged

Completion Code in EAX

SUCCESSFUL All Configuration tables for the adapter were updated.

BAD_PARAMETER An input parameter was invalid.
7-140 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ter

L
MLIDSendRetries

MLIDSharingFlags (the shutdown bit IODetachedBit
(see ODI.INC) is the only bit copied).

MLIDMaxRecvSize and MLIDRecvSize are automatically adjusted by the
TSM based on MLIDMaximumSize.

A HSM can call MSMUpdateConfigTables any time to update an adapter’s
configuration tables. All fields copied from the configuration table parame
must be valid before MSMUpdateConfigTables is called.

During a driver’s initialization for an adapter,
MSMReRegisterHardwareOptions automatically updates the adapter’s
configuration tables. A call to MSMUpdateConfigTables is only necessary if
the fields copied from the configTable parameter are modified after the call to
MSMRegisterHardwareOptions.

MSMUpdateConfigTables upon successful completion will produce a NES
Service/Status Change event to inform consumers of the event that the
configuration tables for the adapter have been updated.

MSMReRegisterHardwareOptions is used to update the IOConfig table
fields of the configuration table. MSMUpdateConfigTables and
MSMReRegisterHardwareOptions are complementary and care must be
taken to use the correct one.
MSM Procedures and Macros 7-141

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

r.

ers

ress
MSMWritePhysicalMemory

Description If the driver attempts to access shared RAM before calling
MSMRegisterHardwareOptions, a page fault abend will occur on the serve
Accesses to the shared RAM prior to registration do not normally happen
unless the HSM must obtain additional information such as interrupt numb
or shared RAM buffer size for the configuration table.

This routine can be used to write information to a shared RAM physical add
before hardware registration.

See Also

MSMReadPhysicalMemory

Processor States Entry State

ECX number of bytes to write

ESI logical source address (where to read data from)

EDI physical destination address (where to transfer data
to)

Interrupts may be in any state

Call during DriverInit before
MSMRegisterHardwareOptions

Return State

Preserved EBX, EBP, ESI, and EDI
7-142 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Example mov edi, DestinationAddress ; physical shared RAM address
lea esi, [ebx].MLIDNodeAddress ; logical source is in frame data

;space
mov ecx, 6 ; write 6 byte node address

call MSMWritePhysicalMemory ; transfer data
cmp eax, 0 ; check for errors
jne ErrorWritingToSharedMemory ; Jump if so
MSM Procedures and Macros 7-143

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMWrtConfigSpace8

Description This function takes an offset, a UniqueIdentifier and a BusTag to identify an
offset in a specific adapter’s configuration space and performs whatever
operations are necessary to deliver the value to the specified location.

The function is provided only for drivers that need to interact with
configuration space.

For most buses, this call will do nothing. It has meaning only on buses that have
a configuration address space that is separated from memory or I/O space (for
example, a PCI bus).

See Also

MSMSearchAdapter, MSMGetUniqueIdentifier,
MSMGetCardConfigInfo, MSMRdConfigSpace8,
MSMRdConfigSpace16, MSMRdConfigSpace32,
MSMWrtConfigSpace16, MSMWrtConfigSpace32

Example DriverIni t proc

Processor States Entry State

EAX - Offset contains an offset into the configuration space.

EBX - Unique-
Identifier

contains an architecture-dependent value returned
by MSMGetUniqueIdentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

ECX - BusTag contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

EDX - WriteVal DL contains an unsigned 8-bit value to write

Interrupts in any state

Return State

Interrupts preserved

Preserved EAX, EBX, ECX, EDX, ESI, EDI, EBP
7-144 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

.

.

.
mov eax, OffsetTableEntry
mov ebx, UniqueIdentifier
mov ecx, BusTag
mov dl, ValueToWrite
call MSMWrtConfigSpace8
.
.
.

DriverInit endp
MSM Procedures and Macros 7-145

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMWrtConfigSpace16

Description This function takes an offset, a UniqueIdentifier and a BusTag to identify an
offset in a specific adapter’s configuration space and performs whatever
operations are necessary to deliver the value to the specified location.

This function is provided only for drivers that need to interact with
configuration space.

For most buses, this call will do nothing. It has meaning only on buses that have
a configuration address space that is separated from memory or I/O space (for
example, a PCI bus).

See Also

MSMSearchAdapter, MSMGetUniqueIdentifier,
MSMGetCardConfigInfo, MSMRdConfigSpace8,
MSMRdConfigSpace16, MSMRdConfigSpace32,
MSMWrtConfigSpace16, MSMWrtConfigSpace32

Example DriverInit proc
.
.

Processor States Entry State

EAX - Offset contains an offset into the configuration space.

EBX - Unique-
Identifier

contains an architecture-dependent value returned
by MSMGetUniqueIdentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

ECX - BusTag contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

EDX - WriteVal DX contains an unsigned 16-bit value to write

Interrupts in any state

Return State

Interrupts preserved

Preserved EAX, EBX, ECX, EDX, ESI, EDI, EBP
7-146 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

.
mov eax, OffsetTableEntry
mov ebx, UniqueIdentifier
mov ecx, BusTag
mov dx, ValueToWrite
call MSMWrtConfigSpace16
.
.
.

DriverInit endp
MSM Procedures and Macros 7-147

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MSMWrtConfigSpace32

Description This function takes an offset, a UniqueIdentifier and a BusTag to identify an
offset in a specific adapter’s configuration space and performs whatever
operations are necessary to deliver the value to the specified location.

This function is provided only for drivers that need to interact with
configuration space.

For most buses, this call will do nothing. It has meaning only on buses that have
a configuration address space that is separated from memory or I/O space (for
example, a PCI bus).

See Also

MSMSearchAdapter, MSMGetUniqueIdentifier,
MSMGetCardConfigInfo, MSMRdConfigSpace8,
MSMRdConfigSpace16, MSMRdConfigSpace32,
MSMWrtConfigSpace16, MSMWrtConfigSpace32

Example DriverInit proc

Processor States Entry State

EAX - Offset contains an offset into the configuration space.

EBX - Unique-
Identifier

contains an architecture-dependent value returned
by MSMGetUniqueIdentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

ECX - BusTag contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

EDX - WriteVal contains unsigned 32-bit value to write

Interrupts in any state

Return State

Interrupts preserved

Preserved EAX, EBX, ECX, EDX, ESI, EDI, EBP
7-148 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

.

.

.
mov eax, OffsetTableEntry
mov ebx, UniqueIdentifier
mov ecx, BusTag
mov edx, ValueToWrite
call MSMWrtConfigSpace32
.
.
.

DriverInit endp
MSM Procedures and Macros 7-149

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ends
the
MSMYieldWithDelay

Description MSMYieldWithDelay places the task last on the list of active tasks to be
executed. This routine must be called only at process time because it susp
the process and could change the machine state. It must be used only in
driver initialization and driver remove procedures.

Example .
. (initialization)
.
call MSMGetMicroTimer ; get current count
neg eax
mov edi, eax ; EDI = EAX negated

DriverShutdownWait:
MSMYieldWithDelay ; let other processes run
call MSMGetMicroTimer ; get current count
add eax, edi ; EAX = microseconds expired
cmp eax, 50 ; 50us passed?
jb DriverShutdownWait ; jump if not

Processor States Entry State

EBX pointer to the Frame Data Space

EBP pointer to the Adapter Data Space

Interrupts can be in any state

Execute at process time only

Return State

Interrupts are in the same state as when the routine was called

Preserved EBX, EBP, ESI, and EDI
7-150 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

A p p e n d i x A Building the HSM
S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

e

n
re

 the

 Inc.
Development Process

This appendix describes the process of creating, assembling, linking, and
loading a NetWare server LAN driver.

Creating the Source Files

All NetWare server drivers are written in 386 assembly code using 32-bit
register operations. Chapters 2 through 7 provide the details for writing th
driver. The TOOLS directory on the LAN Driver Developer’s Kit CD has
source code you may use as an example when developing your driver. A
example source file might be named Driver.386. Additional include files a
also required as described in Chapter 1.

Assembling the Source Files

The Driver.386 source file assembles into an object file, Driver.OBJ. The
driver may consist of one or more object files. An assembler that supports
use of 32-bit registers is required. Novell engineers currently use the
386ASMP (v4.1 or later) protected mode assembler by Phar Lap Software,

Drivers must be assembled with the case sensitive option.

386ASMP ne2 - fullwarn -twocase
Building the HSM A-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

e:

ith
.
the

es
Linking the Object Files

The NetWare linker (NLMLINKP) converts Driver.OBJ and any other object
files that make up the driver into a super object file called Driver.LAN.
NLMLINKP requires a linker definition file to create a NetWare Loadable
Module. The linker definition file is described below. To use the linker, typ

nlmlinkp Driver

(where Driver is the name of the linker definition file).

Linker Definition File

Each NetWare loadable module must have a corresponding definition file w
a “.DEF” extension. This file is needed by the NetWare linker, NLMLINKP
All definition file information can also be embedded inside a make file and
make file can produce the definition file. The definition file contains
information about the loadable module including a list of NetWare variabl
and routines that the loadable module must access.

The following illustration is an example definition file that can be used to
create a LAN driver. The file consists of keywords followed by data. The
keywords may be upper or lower case.

Example Definition File

Keyword Data

 * TYPE 1

 * DESCRIPTION “NetWare NE2000”

 * VERSION 5,30,2

 * OUTPUT <drivername>

 * INPUT <drivername>

 * START DriverInit

 * EXIT DriverRemove

 MODULE ETHERTSM

 REENTRANT
A-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ult
es

 of
om

 is
TYPE Tells the linker which extension to append to the output file. The defa
extension is ".NLM". A value of 1 specifies ".LAN", and a value of 2 specifi
".DSK".

DESCRIPTION Tells the linker to save the description string in the header
the <Driver>.LAN file. This string describes the loadable module and is fr
1 to 127 bytes long. The console commands: MODULES, CONFIG, and
LOAD display this description string on the file server console.

Examples of the description string are shown here:
NetWare NE2000
3Com EtherLink Plus 3C503

OUTPUT Tells the linker what to name the output file.

INPUT Tells the linker what OBJ files to include in the loadable module. It
not necessary to use the filename extension in this list.

 * IMPORT EtherTSMRegisterHSM
EtherTSMGetRCB
EtherTSMRcvComplete
EtherTSMFastRcvComplete
EtherTSMSendComplete
EtherTSMFastSendComplete
EtherTSMGetNextSend
EtherTSMUpdateMulticast
MSMAlertFatal
MSMAlloc
MSMDriverRemove
MSMFree
MSMParseDriverParameters
MSMPrintString
MSMRegisterHardwareOptions
MSMRegisterMLID
MSMReturnDriverResources
MSMScheduleIntTimeCallBack
MSMHardwareInterrupt

 * Required Keywords
Building the HSM A-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ll

this
e

ve

le

le

 not

. If

he

 it
's

oth
eck
e if
he
n

START Tells the linker the name of the loadable module's initialization
routine, in this case DriverInit. This is the procedure the NetWare loader wi
call when the module is loaded.

EXIT Tells the linker the name of the loadable module's remove routine, in
case DriverRemove. The UNLOAD command uses this routine to unload th
module from file server memory.

REENTRANT Allows the driver to be loaded more than once, but only ha
the driver's code copied into memory the first time.

MAP Tells the linker to create a map file.

IMPORT Tells the linker which NetWare variables and routines the loadab
module must access.

EXPORT A list of variable and procedure names resident in the loadable
module that the loadable module wants to make available to other loadab
modules.

MODULE The loadable modules that must be loaded before the loadable
module defined by this file is loaded. If the necessary loadable modules are
already in file server memory, the loader will attempt to find and load them
it cannot find them, the loader will not load the current module.

CUSTOM The name of a file that contains custom firmware data. When t
linker sees this keyword it includes the specified file in the output file it is
creating.

DEBUG Tells the linker to include debug information in the output file that
creates. This allows public labels to be accessible as symbols in NetWare
resident debugger.

CHECK Contains the name of the loadable module's check procedure. B
the UNLOAD and DOWN console commands call a loadable module's ch
procedure if one exists. A LAN driver's check procedure might check to se
a LAN board is currently being accessed and return a non-zero value to t
NetWare operating system if the board is busy. The NetWare OS can the
display a message warning the console operator that the board is busy.

MULTIPLE Tells the linker that more than one code image of the loadable
module may be loaded into file server memory concurrently.
A-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

.
rd
e
o
.

ed

 one

ON
t

ory
ory
 of

st
d
COPYRIGHT Tells the linker to include a copyright string in the output file
An ASCII string 1 to 252 bytes long, in double quotes following the keywo
copyright, is displayed whenever the module is loaded. To start a new lin
within the displayed string, use “\n”. If the copyright keyword is used but n
string is entered, the linker includes the Novell default copyright message

To use the copyright keyword, you must use the NLMLINKP.EXE.

VERSION Gives the linker the version of the module that should be plac
into the NLM header version field. The format for this keyword is:

VERSION Major, Minor [, Revision]

The version must be separated by commas. The Major version number is
digit and the Minor version number is two digits. The Revision number is
optional and is a number from 1-26 representing a-z. For example, “VERSI
3,50,2 ” produces the version field 3.50b in the NLM header of the outpu
file.

To use the version keyword, you must use the NLMLINKP.EXE. The date is
automatically set by the linker to the date that the files are linked.

Loading the Driver

On the Netware Server, the Driver.LAN file is loaded into the server's mem
using the LOAD command. The driver can be loaded from a floppy, a direct
on a DOS partition of the server's hard disk, or the SYS:SYSTEM directory
the NetWare partition. The NetWare Loader resolves the driver's import li
and links the driver to the OS. Once loaded, the driver functions as if it ha
been hard coded into the NetWare operating system.

The MSM.NLM and <TSM>.NLM must be loaded (only once) before any HSMs
are loaded. The required NLMs may all be auto-loaded using the "module"
keyword to load the <TSM>.NLM in the linker definition file.

To load the driver, you could enter a command similar to this:

LOAD <driver> FRAME=ETHERNET_802.3, PORT=300,
NODE=2608C760361, INT=3

The parameters do not have a set order. The commas are optional.
Building the HSM A-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

 can

 the
pace

le,
.

 The
 in
 use

d to
es.

 use.

ken

el
Driver Confi guration File

HSMs that support a large number of custom keywords may have trouble
specifying all parameters on the command line. Command line parameters
now be listed in a driver configuration file or load “response” file.

To use a load response file, type the parameters as they would appear on
command line into the file. The parameters can be separated by either a s
or a carriage-return/linefeed. The filename you choose must have a .cfg
extension. Then at the command-line type:

LOAD <drivername>@<response filename>

If this file exists in the same directory as the driver, the MSM will open the fi
parse it, and process it along with other parameters on the command-line

Load Ke ywords and Parameters

This section describes the parameters for the NetWare LOAD command.
MSMParseDriverParameters routine handles the load command parameters
drivers written using the MSM. The load parameters and examples of their
are described below.

PORT This is the I/O mapped address base that the user wants the boar
use. A port length can also be included as shown in the following exampl

LOAD <driver> PORT=300
LOAD <driver> PORT=300:A
LOAD <driver> PORT=300:A PORT1=700:8

MEM This is the beginning address of the shared RAM that the board can
The size of the shared memory buffer can also be specified.

LOAD <driver> MEM=C0000
LOAD <driver> MEM=C0000:1000
LOAD <driver> MEM=C0000:1000 MEM1=CC000

INT This is the interrupt number that the board is expected to use to awa
the ISR routine.

LOAD <driver> INT=3
LOAD <driver> INT=3 INT1=5

DMA If the board supports DMA, this is the Direct Memory Address chann
that the NIC should use for data transfer to memory.
A-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 its

 than

he

s
er
r

w

e

e

 can

6,
t the
se

LOAD <driver> DMA=0
LOAD <driver> DMA=0 DMA1=3

SLOT Refer to the MLIDSlot field description in Table 3.2, "Configuration
Table Field Descriptions" on page 3-22 of this document.

RETRIES This is the number of send retries that the MLID should use in
attempts to send packets.

RETRIES = n or RETR = n

CHANNEL This is the channel number (controller number) to use for
multichannel adapters. A multichannel adapter is a board containing more
one network interface controller.

CHANNEL = number

BELOW16 This keyword must be specified on the load command-line if t
driver needs memory allocated below the 16 Megabyte boundary. This
keyword is required only if the driver is loaded on a system that initially ha
less than 16 megabytes of memory but will have more memory added lat
using the server's REGISTER MEMORY command. In addition, the drive
must also set the DriverNeedsBelow16Meg field of the DriverParameterBlock
to a non-zero value.

BELOW16

BUFFERS16 This keyword is used to override the number of RCB’s belo
16 Megabytes allocated by the MSM at initialization. The HSM must set
DriverNeedsBelow16Meg in the DriverParameterBlock for this keyword to b
valid. The RCB allocation routines (MSMAllocateRCB, <TSM>GetRCB,
<TSM>ProcessGetRCB, etc.,) use these RCB’s if the RCB allocated from th
LSL is physically over 16 Megabytes. The number of RCB’s allocated by
default is 8. If the HSM preallocates more than 8 RCB’s at a time, the user
override this default when loading the driver by typing the keyword:

BUFFERS16=n

The MSM will force this value to a multiple of 8, so values other than 8, 1
32... are invalid. No restriction is placed on the maximum value, except tha
MSM may not be able to allocate enough memory from the OS. To increa
the size of the OS memory pool of buffers below 16 Megabytes, insert the
following set command in the STARTUP.NCF file:

“set reserved buffers below 16 Meg = xxx”

Where xxx is a multiple of 8, between 8 and 200 (Default is 16).
Building the HSM A-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

es
ion
-Ring

uld

er
in

n
de

line,
s
FRAME This is a string specifying the frame type (see the Frame Types and
Protocol IDs supplement for a list of frame type strings).

FRAME = type

LSB/MSB ADDRESS FORMATS Token-Ring drivers may add “MSB” or
“LSB” following the frame type designation. LSB forces canonical address
to be passed between the MLID and the upper layers. The MSB designat
forces non-canonical addresses to be passed (this is the default for Token
media). Ethernet may not use the MSB designator.

NODE This is the node address that the board is to use; this address sho
override the default address on the board if any.

NODE = nnnnnnnnnnnn

In the case of Token-Ring media, which has a non-canonical physical lay
format, the override node address on the command-line may be entered
either canonical or non-canonical format (see the Canonical and Non-
Canonical Addressing supplement). To indicate the format of the address, a
“L” (LSB) or an “M” (MSB) may be appended. For example, to indicate a no
address for Token-Ring media in canonical format enter:

NODE = nnnnnnnnnnnnL

No matter what the format of the node address specified on the command-
the format of the node address actually placed in the configuration table i
indicated by bit 14 in the
MLIDModeFlags byte.
A-8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

A p p e n d i x B The NetWare Debugger
S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

r use
Introduction

The NetWare operating system includes an internal assembly- language-
oriented debug utility. The NetWare debugger provides the commands
summarized in the following table. These commands and examples of thei
are explained in the remainder of this appendix.

NetWare Debugger Commands

.A displays the abend or break reason
 B displays all current breakpoints
 BC number clears the specified breakpoint
 BCA clears all breakpoints
 B = addr [condition] sets an execution breakpoint at address
 BW = addr [condition] sets a write breakpoint at address
 BR = addr [condition] sets a read/write breakpoint at address
 C addr changes memory in interactive mode
 C addr=number(s changes memory to the specified number(s)
 C addr="text" changes memory to the specified text ASCII values
.C does a diagnostic memory dump to diskette
 D addr [length] dumps memory for optional length
 DL[+linkoffset] addr [length] dumps memory starting at address for optional length and traverses a
linked list

(default link field offset is 0)
 REG=value changes the specified register to the new value, where REG is EAX, EBX,
ECX, EDX,

ESI, EDI, ESP, EBP, EIP, or EFL
 F Flag=value changes the FLAG bit to value (0 or 1) where FLAG is CF,AF, ZF, SF, IF,
TF, PF, DF or

OF
 G [break addr(s)] begins execution at current EIP and set optional temporary breakpoints(s)
 H displays basic debugger command help screen
 HB displays breakpoint help screen
 HE displays expression help screen
.H displays the dot help screen
 I [B;W;D] Port inputs byte, word, or dword from Port (default is byte)
The NetWare Debugger B-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

le
h

 echo

is to
 M addr [L length] pattern searches memory for pattern (L length is optional and if not specified, the
rest of

memory will be searched)
.M displays loaded module names and addresses
 N symbolName addr defines a new symbol name at address
 N -symbolName removes defined symbol name
 N-- removes all defined symbols
 O [B;W;D] Port=value outputs byte, word, or dword value to PORT
 P proceeds over the next instruction
.P displays all process names and addresses
.P addr displays <address> as a process control block
 Q quits and exits back to DOS
 R displays registers and flags
.R displays the running process control block
 S single-steps
.S displays all screen names and addresses
.S addr displays <address> as a screen structure
 T trace (single-step)
 U addr [count] unassembles count instructions starting at address
 V views server screens
.V displays server version
 Z expression evaluates the expression (See HE help screen)
 ? [addr] If symbolic information has been loaded, the closest symbols to address
(default is

EIP) are displayed

Invoking the Debugger

There are four methods available to invoke the debugger.

From the server console keyboard

1. Press the <CTRL> - <ALT> - <LEFT-SHIFT> - <RIGHT-
SHIFT> - <ESC> key combination simultaneously at the server conso
keyboard. This will not work if the server is hung in an infinite loop wit
interrupts disabled or if the server console is secured.

2. After the driver abends or GPIs the server, enter the key combination
described in method 1 above or type 386debug. The characters do not
to the screen, but the debugger prompt (#) appears.

From a driver or NLM

3. Include an INT 3 in the desired code segment where the break-point
be executed. Programs written in C using CLIB can call the Breakpoint ()
B-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

 the

ite

 and

p file

f this
function. Programs written in C using the OS library can call the
EnterDebugger () function.

 Manually

4. Generate a non-maskable interrupt with an NMI board. This will cause
server to Abend, after which method 2 above may be performed. This
method may be required if the software being debugged is in an infin
loop with interrupts disabled.

When the debugger is entered, it will display the location at which the trap
occurred, the cause of the trap into the debugger, and the contents of the
general registers and flags.

Once you have entered the debugger, the address and length of the data
code segments of all loaded modules may be found using the .m command.
Breakpoints can then be set in the driver code using addresses in the ma
relative to the addresses dumped by the debugger.

The available debugger commands are explained on the following pages o
appendix.
The NetWare Debugger B-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

nts
ts, set
s set
ary
n

n this

curs.
 the
Debug Commands

Help

The debugger's help commands are:
H display help for general commands
HB display help for breakpoints
HE display help for expressions
.H display help for "." commands

"." Commands
.a display the Abend or break reason
.c do a diagnostic memory dump to diskette
.h display help for "." commands.
.m display loaded module names and addresses.
.p display all process names and addresses.
.p addr display address as a process control block
.r display running process control block.
.s display all screen names and addresses.
.s addr display all screen names and addresses.
.v display server version

Breakpoints

There are four breakpoint registers, allowing a maximum of four breakpoi
to be set at the same time. The breakpoints can be permanent breakpoin
using the B commands (described in this section), or temporary breakpoint
using the G command. In addition, the P command will also set a tempor
breakpoint if the current instruction cannot be single stepped. This sectio
consists of descriptions and examples for setting permanent breakpoints.
Temporary breakpoints using the G and P commands are described later i
chapter.

Breakpoint Conditions

Several breakpoint commands include an optional [condition] argument. A
breakpoint condition is any expression to be evaluated when the break oc
If the condition is false, execution is resumed immediately without entering
interactive debugger.
B-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

B

Display all breakpoints that are currently set.
B

Breakpoint 0 write byte at FFF65623
Breakpoint 1 read or write byte at 000653BA
Breakpoint 2 execute at FFF06BA3

BC number

Clear the breakpoint specified by number.
BC 2

Breakpoint cleared

BCA

Clear all breakpoints.
BCA

All breakpoints cleared

B = address [condition]

Set an execution breakpoint at the address specified when the indicated
[condition] is true.

B = FFF8765A

Set as breakpoint 0

BW = address [condition]

Set a write breakpoint at the address specified when the indicated [condition]
is true.

BW = FFF665AB

Set as breakpoint 1
The NetWare Debugger B-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

BR = address [condition]

Set a read/write breakpoint at the address specified when the indicated
[condition] is true.

BR = 0065ACF3

Set as breakpoint 2

Memory

This section describes how to change or display memory contents.

C address

Interactively change the contents of memory location address.

(To end interactive mode, type a period.)
C FFF6432A

FFF6432A (00)=33
FFF6432B (34)=C8
FFF6432C (5A)=.

C address = number(s)

Change the memory contents beginning at address to the specified number(s).
C FFF534C5 = 00,00,12,5A,78

Change successfully completed

C address = “text string”

Change the memory contents beginning at address to the specified text string.
C FFF60DB3 = “This is a strin g.”

Change successfully completed
B-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ot

D address [count]

Dumps the contents of memory, starting at address, for [count] number of
bytes. The address and count are hexadecimal numbers. If the count is n
specified, one page (100h bytes) will be display. The D command can be
repeated by pressing <ENTER> at the # prompt.

D FFF7765E

FFF7765E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF7766E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF7767E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF7768E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF7769E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF776AE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF776BE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF776CE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF776DE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF776EE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF776FE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF7770E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF7771E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF7772E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF7773E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF7774E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................

D FFF7765E 10

FFF7765E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
The NetWare Debugger B-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

g
sing
M address [L length] bytepattern

Search memory for a byte pattern match, starting at location address and
continuing until [L length] is reached. If a match is found, 128bytes (beginnin
with the pattern) are displayed. The M command can be repeated by pres
<ENTER> at the # prompt.

M FFF77F00 54 48 45 52

FFF77F1C 54 48 45 52 4E 45 54 5F - 49 49 00 90 00 00 00 00
THERNET_II......
FFF77F2C 00 00 00 00 00 00 90 6B - F7 FF 00 00 00 00 00 00
......kw........
FFF77F3C 48 61 72 64 77 61 72 65 - 44 72 69 76 65 72 4D 4C
HardwareDriverML
FFF77F4C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF77F5C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF77F6C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF77F7C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................
FFF77F8C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
................

M FFF77F5C L1F 54 48

Match not found
B-8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

sor's

Register Manipulation

This section describes the debugger commands used on the microproces
general and flag registers.

R

Display the EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, EIP, and Flag
Registers.

R

EAX=99999999 EBX=00005455 ECX=78787878
EDX=00060544
ESI=00000000 EDI=80868086 EBP=00000000
ESP=FFF67876
EIP=FFF56784 FLAGS=00010002

register = value

Change the specified register to the new value. The command is effective with
EAX, EBX, ECX,EDX, ESI, EDI, ESP, EBP, and EIP.

EAX=8099ACB3

Register changed

F flag = value

Change the specified flag to the new value (0 or 1). The command is effective
with the CF, AF, ZF, SF, IF, TF, PF, DF, and OF flags.

F PF=0

Flag changed

Input/Output

This section describes the debugger's I/O commands.

I[B,W,D] port

Input a byte, word, or double word from port.
I 25A
The NetWare Debugger B-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

s.

Port (25A)=F8

IB 25A

Port (25A)=F8

IW 1B3

Port (1B3)=D3FF

O[B,W,D] port = value

Output a byte, word, or double word value to port.
O 25B=7D

Output completed

OW 18E=3C0F

Output completed

Miscellaneous

This section consists of descriptions of the remaining debugger command

G [address(es)]

Begin execution (Go) from current position and set temporary breakpoint
[address(es)]

G FFF56784

Break at FFF56784 because of go breakpoint
EAX=99999999 EBX=00005455 ECX=78787878
EDX=00060544
ESI=00000000 EDI=80868086 EBP=00000000 ESP=FFF67876
EIP=FFF56784 FLAGS=00010002

FFF56784 BB30CE0500 mov ebx, 0005CE30

N symbolname value

Define a new symbol with a value.
B-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

d
N thiss ym 0F0F

P

Proceed over next instruction. This command is similar to the “Trace” or
“Single Step” command but it will not single step loops or calls. The P
command can be repeated by pressing <ENTER> at the # prompt.

Q

Quit and return to DOS.

T or S

Trace or Single Step through the program. The T or S commands can be
repeated by pressing <ENTER> at the # prompt.

U address [count]

Unassemble count instructions from address. The U command can be repeate
by pressing <ENTER> at the # prompt.

u FFF87885 2

FFF87885 0000 add [eax], al
FFF87887 0000 add [eax], al

V

View the screens (will step through the screens sequentially).

Z expression

Evaluate the expression (similar to calculator).
z 7+8

Evaluates to: F
The NetWare Debugger B-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

In
sed
Debug Expressions

All numbers in debug expressions are entered and shown in hex format.
addition to numbers, the following registers, flags, and operators can be u
in expressions and breakpoint conditions:

Registers: EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, EIP
Flags: FLCF, FLAF, FLZF, FLSF, FLIF, FLTF, FLPF, FLDP, FLOF

Operators and Precedence

Symbol Description Precedence

!
-
~
*
/
%
+
-
>>
<<
>
<
>=
<=
==
!=
&
^
|
&&
||

logical not
2's compliment
1's compliment
multiply
divide
mod
addition
subtraction
bit shift right
bit shift left
greater than
less than
greater than or equal to
less than or equal to
equal to
not equal to
bitwise AND
bitwise XOR
bitwise OR
logical AND
logical OR

1
1
1
2
2
2
3
3
4
4
5
5
5
5
6
6
7
8
9
10
11
B-12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

tors

ses the
 is
data

ses the
laced

ize
Grouping Operators

The operators (), [], and { } have a precedence of 0. These grouping opera
can be nested in any combination.

(expression)

Causes the expression to be evaluated at a higher precedence.

[size expression]

Causes the expression to be evaluated at a higher precedence and then u
value of the expression as a memory address. The bracketed expression
replaced with the byte, word, or double word at that address. “Size” is a
size specifier of the type B, W, or D.

{size expression}

Causes the expression to be evaluated at a higher precedence and then u
value of the expression as a port address. The bracketed expression is rep
with the byte, word, or double word input from the port. “Size” is a data s
specifier of the type B, W, or D.

Conditional Evaluation

expression1 ? expression2 , expression3

If expression1 is true, then the result is the value of
expression2; otherwise, the result is the value of expression3.
The NetWare Debugger B-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

. To

 used
 at the
f the

o
the -
Symbolic Information

Symbolic information may be included in a driver file that can be used to
access routines or variables by name while in the NetWare 386 debugger
access symbolic information, the following steps must be taken:

1. Declare public all desired symbols in the driver.

2. Include the keyword debug in the driver's linker definition file.

Each of these symbol names (the debugger is case-sensitive) can now be
in the same way the address they represent would be used. For example,
debug prompt it is possible to display memory beginning at the address o
label
AdapterBdStruct by entering:

#d AdapterBdStruct

Symbols may be dynamically defined by the debugger. If it is necessary t
dynamically define more than 10 symbols the server must be loaded with
y option.

Debugging information must be removed before releasing the driver. Including
the debug keyword in the definition file will cause a message to be displayed on
the console when the driver is loaded, indicating that it contains debug
information
B-14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

A p p e n d i x C NESL Support
S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

n
er of

t the

ister

e
es
Overview

The NetWare Event Service Layer (NESL) handles event registration and
notification. The NESL is designed around the concept of consumers and
producers. Generally, a producer will produce events, which a consumer
consumes. The NESL provides the following services:

• Registers the event producer

• Deregisters the event producer

• Performs the event notification

• Registers the event consumer

• Deregisters the event consumer

For a given event type, there can be multiple consumers and producers
simultaneously. A client module must register as a producer of an event i
order to produce that event. Likewise, a module must register as a consum
an Event Type in order to consume the event.

If a consumer chooses to consume an event, it will notify the producer tha
event is consumed, and event notification will end.

When a producer or consumer is removed from the system, it must dereg
all producer/consumer events it has registered.

Tasks should be designed to run to completion. If consumer and producer
routines are running asynchronous event types (for example, IPX packet
interrupts), the routines must be resident. MSMNESLProductEvent will not
protect the consumer routine from being reentered.

The NESL maintains a list for each event class. When a producer calls th
NESL to signal that an event has occurred within a class, the NESL notifi
NESL Support C-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

nds
tion

t

ion

 it
everyone in the consumer list. The order used to call the consumers depe
on the level of the OSI model the consumer belongs to and the calling direc
defined by the event class.

The data definitions for the NESL are located in ODI_NESL.INC.

Registering and Deregistering Event Producers

Event producers use MSMRegisterProducer to register with the NESL as a
producer of an event class. Once it registers, the event producer calls
MSMNESLProduceEvent or MSMNESLProduceMLIDEvent to notify
event consumers when an event takes place.

Event producers can also register as event consumers.

When an event producer no longer provides events, it calls
MSMNESLDeRegisterProducer for that event. For example, when an even
providing module is unloading, its clean-up function must first call
MSMNESLDeRegisterProducer for each event it has added. The module
could then complete its unloading process.

Registering and Deregistering Event Consumers

Event consumers must register with the NESL in order to receive notificat
when an event occurs. These modules call MSMRegisterConsumer for each
event class they wish to be notified of.

When an event consumer no longer requires event notification, or before
unloads, it must deregister by calling MSMNESLDeRegisterConsumer for
each event it registered for.
C-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

for

for

must

red
NESL Structures

EPB (Event Parameter Block) Structure

EPB struc

EPB_MajorVersion dd ?

EPB_MinorVersion dd ?

EPB_EventName dd ?

EPB_EventType dd ?

EPB_ModuleName dd ?

EPB_DataPtr0 dd ?

EPB_DataPtr1 dd ?

EPB_EventScope dd ?

EPB_Reserved dd ?

EPB ends

Field Descriptions:

EPB_MajorVersion

Major version of the Event Parameter Block. The current version is 1 (
1.00).

EPB_MinorVersion

Minor version of the Event Parameter Block. The current version is 0 (
1.00).

EPB_EventName

Event Name (class name) for the event as registered with NESL--for
example, Service Suspend or Service Resume. All valid event names
be registered with Novell Labs.

EPB_EventType

Name for the Event Type. An example of an Event Type for Service
Suspend is APM Suspend. All valid Event Type names must be registe
with Novell Labs.

EPB_moduleName

Pointer to the module name that generated the event--for example,
NE2000.
NESL Support C-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

le

his
ng
EPB_DataPtr0

Used to pass a pointer to the configuration table.

EPB_DataPtr1

Used for event dependent information.

EPB_EventScope

The CHSM must set this field to EPB_SPECIFIC_EVENT.

EPB_Reserved

Reserved by Novell.

NESL_ECB Structure

The following defines the NESL_ECB structure.

NESL_ECB struc

NESL_ECBNext

NESL_ECBVersion

NESL_ECBOsiLayer

NESL_ECBEventName

NESL_ECBRefData

NESL_ECBNotifyProc

NESL_ECBOwner

NESL_ECBWorkSpace

NESL_ECBContext

NESL_ECB ends

Field descriptions:

NESL_ECBNext

Reserved. This field should not be modified by the calling routine whi
the NESL_ECB structure is registered.

NESL_ECBVersion

This field contains the version number of the NESL_ECB structure. T
field allows the interface to be expanded in the future while still providi
full backward compatibility. The current version is 2.
C-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

The
ng
les
ain

d
r
list.

 new
cer
NESL_ECBOsiLayer

Determines the ordering of registered consumers of the same event.
format of this field is 0xLRRR, where L is the number (0-7) correspondi
to the OSI layer and RRR (0-4095) is the relative order with other modu
also registered on that layer. The relative ordering is useful when cert
events require specific consumer ordering.

The definition NESL_HOOK_FIRST can also be used in element
NESL_ECBOsiLayer. This definition causes a consumer to be hooked
first, no matter what. If the caller sets the low byte of NESL_ECBOsiLayer
to this value, the consumer will be hooked first in the consumer list.
Normally, NESL events will put lower layer identifiers before the hooke
lead element. If another call is made specifying this definition, an erro
will be returned to the caller and the element will not be added to the

NESL_ECBEventName

ASCIIZ name string of the event (class). This name has the maximum
length of NESL_MAX_NAME_LENGTH.

NESL_ECBRefData

This field is used by producers only. Consumers do not use this field.
Consumers must set this field to NULL when registering.

This is a flag field used to specify whether the event is unique or
consumable. It also indicates the sorting order for calling registered
consumers at event time.

Consumers that are on the orphan consumer list will be sorted when a
producer is registered. All consumers that are registered after a produ
is registered will be correctly sorted.

NESL_ECBNotifyProc

Pointer to the event notification callback routine.

 UINT32 MyNotifyProc (

 NESL_ECB *ConsumerNecb,

 NESL_ECB *ProducerNecb,

 Void *eventData)

ConsumerNecb

Points to the NESL_ECB structure used by consumer during
MSMNESLRegisterConsumer.
NESL Support C-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

hes
uld

ts

-
ion

le

. It
the
e
ProducerNecb

Points to the NESL_ECB structure used by the producer during
MSMNESLRegisterProducer.

EventData

If the producer only has one data item, it can be passed to the
consumer as an argument or as an address.

If the producer has more than one data item or if the producer wis
to guarantee portability, the address of an array of data items sho
be passed. The structure of eventData must be defined by the
producer and known by the consumer if it is to be interrupted
properly.

Return from a consumer after an event notification callback:

NESL_EVENT_CONSUMED

Event was consumed by the consumer process.

NESL_EVENT_NOT_CONSUMED

Event was not consumed by the process.

Note, this is only really applicable if the event is consumable, but a
consumer should always do this to be compatible with both types of
events. Called from foreground time or from interrupt time with interrup
enabled or disabled.

NESL_ECBOwner

Specifies the owner of the NESL_ECB structure. This field is platform
specific and platform-dependent. The DOS/MS Windows implementat
requires this field to be set to the owner's module handle information.

NESL_ECBWorkSpace

Reserved. This field should not be modified by the calling routine whi
the NESL_ECB structure is registered.

NESL_ECBContext

This field is available for use by the owner of the NESL_ECB structure
will not be modified by anyone else in the system. It may be used by
owner to pass context or other data to the notification procedure. If th
owner is not using this field, it must be set to NULL.
C-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

s.
ue
lso
l be
om
e
Events and Types

Event names and specific event types are identified with ASCIIZ strings.
Novell has defined four event names along with some specific event type
However, anyone can define event names or event types by defining uniq
names (ASCIIZ strings) for them. The definition of an Event Name must a
include the direction in which the consumers of the event Event Name wil
called (that is, called from the top of the OSI model down or from the bott
up). Event types that are added to existing event names must fit within th
definition of the event name.

Below is a list of the event names and event types defined by Novell.

Event Names

Event Name Description

 Suspend Notification The Event Name contains any
event that suspends a service. This
event is called from the top of the
OSI model down.

Resume Notification This Event Name contains event
types that indicate the availability
of a new service or the restoration
of a previously available service.
This event is called from the
bottom of the OSI model up.

Service/Status Change This Event Name contains event
types that signal a change in status
or the current level of service. This
event is called from the top of the
OSI model down.

 Suspend Request This Event Name contains event
types that request permission to
suspend service before the service
is actually suspended. This event is
called from the top of the OSI
model down.
NESL Support C-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Event Types

Service Suspend T ypes

Type Name Description

MLID Cable Disconnect This Event Type indicates that the
cable has been disconnected from a
given NIC. A pointer to the
MLID's configuration table is
passed in the EPBDataPtr0 field of
the Event Parameter Block.

MLID Card Removal This Event Type is triggered by the
hardware and indicates that the PC
Card has been removed from a
socket. A pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block. Even though this
Event Type puts the MLID into
shutdown mode, it does not
generate a shutdown event.

MLID Hardware Failure This Event Type indicates that a
serious hardware failure has
occurred with the NIC. A pointer
to the MLID's configuration table
is passed in the EPBDataPtr0 field
of the Event Parameter Block.

MLID Not In Range This Wireless Event Type indicates
that there is no access point in
range. A pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block.

MLID Shutdown This Event Type is triggered
through the MLID control services
and indicates that an MLID was
shutdown. A pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block.
C-8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Suspend Request

Currently no event types have been defined for this class.

MLID Media Access Denied This Event Type indicates that
access to the physical medium was
either denied or unsuccessful. A
pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block.
NESL Support C-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Service Resumed T ypes

Type Name Description

MLID Cable Reconnect This Event Type indicates that the
cable has been reconnected to a
given NIC. A pointer to the
MLID's configuration table is
passed in the EPBDataPtr0 field of
the Event Parameter Block.

MLID Card Insertion Complete This Event Type is triggered when
a new logical board is added to the
system and LAN adapter and
driver are fully functional. A
pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block. This Event Type
does not trigger a reset event.

MLID In Range This wireless Event Type indicates
that there is an access point in
range again. A pointer to the
MLID's configuration table is
passed in the EPBDataPtr0 field of
the Event Parameter Block.

MLID Reset This Event Type is trigger by the
MLID control services and
indicates that an MLID was just
reset. A pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block.
C-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Service/Status Chan ged Types

Type Name Description

MLID Access Point Change This Event Type indicates that a
station has moved from one access
point's range to another and that
the new access point will start
serving the station. A pointer to the
MLID's configuration table is
passed in the EPBDataPtr0 field of
the Event Parameter Block.

MLID Speed Change This Event Type indicates that
there has been a change in the
communication speed. For
example, in the wireless
environment this could be caused
by the radio link due to a change in
the quality of the signal. A pointer
to the MLID's configuration table
is passed in the EPBDataPtr0 field
of the Event Parameter Block.

MLID Config Table Change This Event Type indicates that the
MLID configuration tables have
been updated by
MSMUpdateConfigTables. A
pointer to the MLID's updated
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block. The MSM
produces this event inside
MSMUpdateConfigTables.
NESL Support C-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MLID DeRegister Resource
Change

This Event Type indicates that a
resource registered using
MSMRegisterResource has been
deregistered using
MSMDeRegisterResource. A
pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block. The MSM
produces this event inside
MSMDeRegisterResource.

MLID ReRegister Hardware
Options

This Event Type indicates that
hardware resource(s) have been
reregistered using
MSMReRegisterHardwareOpti
ons. A pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block. The MSM
produces this event inside
MSMReRegisterHardwareOpti
ons.
C-12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

NESL Return Codes

The NESL return codes (located in NESL.H) are as follows:

NESL_OK 00000000h

NESL_EVENT_CONSUMED 00000000h

NESL_EVENT_NOT_CONSUMED 00000001h

NESL_EVENT_BROADCAST 00000002h

NESL_EVENT_NOT_REGISTERED 00000003h

NESL_EVENT_TABLE_FULL 00000004h

NESL_EVENT_IS_CONSUMABLE 00000005h

NESL_EVENT_IS_NOT_CONSUMABLE 00000006h

NESL_NO_MORE_EVENTS 00000007h

NESL_PRODUCER_NOT_FOUND 00000008h

NESL_CONSUMER_NOT_FOUND 00000009h

NESL_INVALID_CONTEXT_HANDLE 0000000ah

NESL_INVALID_DESTINATION 0000000bh

NESL_REGISTERED_UNIQUE 0000000ch

NESL_REGISTERED_NOT_UNIQUE 0000000dh

NESL_REGISTERED_CONSUMABLE 0000000eh

NESL_REGISTERED_BROADCAST 0000000fh

NESL_REGISTERED_SORT_TOP_DOWN 00000010h

NESL_REGISTERED_SORT_BOTTOM_UP 00000011h

NESL_DUPLICATE_NECB 00000012h

NESL_INVALID_NOTIFY_PROC 00000013h

NESL_INVALID_FIRST_ALREADY_HOOKED 00000014h
NESL Support C-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

NESL Event Flags

The following are the NESL event flags:

NESL_BROADCAST_EVENT 00000000h

NESL_SORT_CONSUMER_TOP_DOWN 00000000h

NESL_SORT_CONSUMER_BOTTOM_UP 00000001h

NESL_CONSUME_EVENT 00000002h

NESL_UNIQUE_PRODUCER 00000004h

NESL_NOT_UNIQUE_PRODUCER 00000000h
C-14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

NESL OSI Layer Definitions

The following are the NESL OSI layer definitions:

NESL_APPLICATION_LAYER 7000h

NESL_PRESENTATION_LAYER 6000h

NESL_SESSION_LAYER 5000h

NESL_TRANSPORT_LAYER 4000h

NESL_NETWORK_LAYER 3000h

NESL_DATALINK_LAYER 2000h

NESL_PHYSICAL_LAYER 1000h
NESL Support C-15

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

C-16 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

Revision History
S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

ch

nd
This Revision History covers all document changes from Doc Version 1.00 to
Doc Version 1.10 and from Doc Version 1.10 to Doc Version 1.11.

Page numbers for items 1 through 13 refer to Doc Version 1.00.

Page numbers for items 14 through 17 refer to Doc Version 1.10.

Page numbers for items 18 through 21 refer to Doc Version 1.11.

1. In the following three functions,

HSMPrintString (Page 7-91),
MSMPrintStringFatal (Page 7-93),
MSMPrintStringWarning (Page 7-95),

the NULL terminated message pointed to by the ESI register, whi
includes possible argument #1 and possible argument #2, cannot
exceed 128 bytes.

2. In the Driver Parameter Block definition on page 3-5, the DriverISR2Ptr
field occurs twice. The second occurrence of the DriverISR2Ptr field
(which is on the third line from the bottom of the page) is a duplicate a
should be ignored.

3. In the Driver Configuration Table definition on page 3-15, the
MLIDCFG_MinorVersion is defined as 13. It should be 14.
1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

s:

s on

et

ith

on
ule

rst
4. On page 5-35, Driver Priority Queue Support, under "Processor State
Entry State" the ESI line should read:

ESI
Pointer to a transmit ECB.

The entire ECX line should be deleted.

5. On page 3-25, in the Configuration Table Field Descriptions, change the
Description for MLIDBusTag to read:

Pointer to an architecture-dependent value, which specifies the bu
which the adapter is found. Set this field before calling
ParseDriverParameters. The value placed in this field is returned by
SearchAdapter unless the board is Legacy ISA, in which case it is s
to zero.

6. On page 1-7, "Loading Driver Modules", replace the first paragraph w
the following paragraph:

The ODI Toolkit components for the specific platform being used
must be loaded before the HSM is loaded. The HSM linker definiti
file must list a dependency on the appropriate TSM, using the mod
keyword, for the required NLMs to load automatically.

7. In Appendix A, on page A-2, under "Linker Definition file", delete
"MSM" from the Data column for the MODULE Keyword.

8. In Appendix A, on page A-5, under "Loading the Driver", change the fi
sentence of the first paragraph to read:

On the Netware Server, the Driver.LAN file is loaded... etc.

Also, change the last sentence of the second paragraph to read:

The required NLMs may all be auto-loaded using the "module"
keyword to load the <TSM>.NLM in the linker definition file.

9. In Appendix A, on page A-7, change the definition for SLOT to read:

Refer to the MLIDSlot field description in Table 3.2, "Configuration
Table Field Descriptions" on page 3-22 of this document.
2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

set

e

ry,

e as
s.
on

o

es.
10. On page 3-25, under MLIDBusTag, MSMParseDriverParameters
should be replaced with MSMRegisterHardwareOptions.

11. On page 5-20, under Receive Error, add the following text as the last
bullet:

Pass the appropriate receive error bits to <TSM>GetRCB,
<TSM>ProcessGetRCB, or <TSM>FastProcessGetRCB.

12. On page 5-51 after the line that reads "Bit 31 - Driver shutting down (
by TSM)", add the following text:

An ECB aware HSM must set all of these bits as necessary befor
calling <TSM>RcvCompleteStatus or
<TSM>FastRcvCompleteStatus. An RCB aware HSM need set
only Bit 0 - CRC error and Bit 1 - CRC/Alignment error as necessa
the others are set by the TSM if needed.

13. On page 6-15, <TSM>ProcessGetRCB, and page 6-18,
<TSM>FastProcessGetRCB, add the following note to the Remarks
section of both routines:

For some busMaster implementations, you must set
RProtocolWorkspace (defined in ODI.INC) to the number of bytes
necessary to skip to the beginning of the packet. This value can b
high as 128 bytes for chips which have poor alignment capabilitie
This field is normally part of the reserved space in the RCB definiti
and can only be used with this call for the purpose stated above.

The page numbers for items 14 through 17 refer to Doc Version 1.10.

14. On page 3-28, in Table 3-4, "MLIDSFlags Bit Map Fields", in the
description for bits 10, 9; add the following Note.

Bit 9 is not used by ECB aware HSMs; ECB aware HSMs must d
their own filtering of multicast addresses.

15. On page 5-48, under Adapter Multicast Filtering, add the following
Note:

ECB aware HSMs must do their own filtering of multicast address
3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

ld.

ed

en a
r a
16. On page C-5, under NESL_ECBRefData, add the following text:

This field is used by producers only. Consumers do not use this fie
Consumers must set this field to NULL when registering.

This is a flag field used to specify whether the event is unique or
consumable. It also indicates the sorting order for calling register
consumers at event time.

Consumers that are on the orphan consumer list will be sorted wh
new producer is registered. All consumers that are registered afte
producer is registered will be correctly sorted.

17. On page C-11, under Service Status Changed Types, add the following
new Type Names:

MLID Config Table Change
MLID DeRegister Resource Change
MLID ReRegister Hardware Options

18. On page 2-4, in the Note under Multi-Operating System Provisions, the
following reference:

See Appendix C for a list of issues and problem areas to check when
writing or updating a driver.

has been changed to:

Refer to Appendix A, "Building the HSM" when writing or updating a
driver.

19. On page 6-6, in the TSMConfigTable structure, add:

TSMCFG_SystemFlags dw 0

after TSMCFG_MaxFrameSize.
4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

It

st
20. On page 6-2, <TSM>BuildTransmitControlBlock , under Return State,
change the Preserved registers from:

 EBP, ECX

to

 EBP, EDI

21. On page 7-127, MSMScheduleTimer, under TimerType, change all:

TIMER_TYPE_

to

AES_TYPE_

22. On page C-4, in the NESL_ECB Structure, add:

NESL_ECBContext

as the last item in the structure.

23. On page C-4, under NESL_ECBVersion, change the last sentence in the
paragraph to read:

The current version is 2.

instead of 1.

24. On page C-6, add the following text:

NESL_ECBContext
This field is available for use by the owner of the NESL_ECB
structure. It will not be modified by anyone else in the system.
may be used by the owner to pass context or other data to the
notification procedure. If the owner is not using this field, it mu
be set to NULL.
5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ODI S
Index
S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

A
Adapter

configuration information
MSMRdConfigSpace16 7-98

location on bus 7-56
options 7-86

adapter
shut down bit 3-31

Adapter data space 3-33
Alignment

bus platform 7-23

B
Breakpoints for debugging 4
breakpoints, clearing 5
BUFFERS16, keyword A-7
Bus

configuration information 7-33
getting information 7-25
locating adapter on 7-56
scanning for available 7-120

bus
multiple platforms 7-3
writing configuration information 7-144

Bus address
size 7-25

Bus architecture 7-3
Bus master

getting RCB 6-12
TSM compatibility 6-10

Bus platform alignment 7-23

Bus slot
MLIDSlot field 3-22

bus specific information, getting 7-27
bus support 7-2
Bus type, getting with MSMGetBusType 7-31
Bus-specific information from

MSMGetUniqueIdentifierParameters 7-58
BusTag, MLID 3-25

C
Call back

MSMScheduleAESCallBack 7-122
MSMScheduleIntTimeCallBack 7-124

canonical address bit 3-26
Code and data space 2-11
Configuration file, driver A-6
Configuration information

driver
MSMRdConfigSpace8 7-96

writng 7-144
Configuration information for bus 7-33

MSMGetBusSpecificInfo 7-27
Configuration table, driver

example template 3-15
field descriptions 3-17

Configuration table,driver 3-13
configuration, I/O

MLIDIOCfgMajorVersion 3-25
Control procedures

DriverManagement (optional) 5-54
DriverMulticastChange 5-47
DriverPromiscuousChange 5-50
DriverReset 5-43
 7

pecification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

DriverRxLookAheadChange (optional) 5-53
DriverShutdown 5-45
DriverStatisticsChange (optional) 5-52

CounterMask bit maps 3-40
CSL compliant bit 3-27
Custom keywords, examples 3-52

D
Data space and statistics table template 3-35
Data transfer mode 2-6
Debugger

commands 1
conditional evaluation 13
expressions 12
grouping operators 13
invoking 2
miscellaneous commands 10
symbolic information 14

Definition file, example A-2
delaying tasks 7-150
Design issues, hardware 2-6
Development process 1-9, A-1
DMA channel

indicator bit 3-30
Downloading firmware 3-49
Driver configuration file 1-10
Driver initialization

Determine hardware options 5-4
DriverInit pseudocode 5-10
Initialize adapter 5-7
Register driverISR 5-8
Register hardware options 5-7
Register with LSL 5-8
Register with TSM/MSM 5-3
Timeout callbacks 5-9

Driver parameter block 3-4
field descriptions 3-6

DRIVER.INC file 1-10
DriverISR

Pseudocode 5-24
Receive 5-19
Shared interrupts 5-21

Transmit 5-20
DriverNeedsBitMask 7-88
DriverPoll 5-26
DriverRemove 5-59
DriverSupportsPhysFrags bit 3-26

E
ECB aware

getting RCB 6-14
ECB, sending

GetNextSend 6-2
EISA 7-31, 7-34, 7-59, 7-120, 7-129
EPB structure C-3
Error messages

MSMAlertFatal 7-5
MSMAlertWarning 7-7

Event Control Blocks (ECB) 4-24
Event control blocks (ECB)

Receive ECBs vs RCBs 4-26
Transmit ECBs vs TCBs 4-27

F
Firmware variables, example definitions 3-49
fragmented RCB

support bit 3-26
Frame data space 3-13
frame types

packet size for different 3-32
Frame types required 2-12

G
Global Data Access 3-1
global variables, MSM 4-1

H
Hardware instance number (HIN) 7-45
8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

Hardware instance number mapping
MSMGetInstanceNumberMapping 7-47

Hardware specific module 1-6
Hardware specific Module (HSM)

Packet reception 5-13
Hardware specific module (HSM) 5-1

Board service (DriverISR) 5-19
Control procedures 5-41
Driver initialization 5-3
Multi-operating system support 5-36
Packet transmission 5-27

hub management
support bit 3-29

I
I/O commands, debugger 9
I/O configuration

version number 3-25
I/O control procedures 2-4
I/O port information

MLIDIOPortsAndLengths field 3-22
I/O port sharing

support bit 3-31
Include files 1-9
Initialization 2-3
Installation information file 1-10
Interrupt service routine, when to use 2-8
interrupt sharing

support bit 3-30
Interrupts

setting 7-135
ISA 7-31, 7-120, 7-129

K
Keywords 3-51

custom, parsing 7-79
enhancements 3-53
structure 3-54
table 3-55

L
Link support layer 1-2
Linker definition file 1-10, A-2
Linker description string A-3
Load keywords and parameters A-6
Loading the driver A-5
Lying send 6-29

M
MCA 7-31, 7-120, 7-129
Media specific counters 3-41
Media support module 1-4
Memory

returning, MSMInitFree 7-64
memory

page size 3-23
pages & paragraphs 3-23

Memory address
MLIDMemoryDecode0 field 3-23
MLIDMemoryDecode1 field 3-23

Memory allocation
MSMAlloc 7-9
MSMAllocPages 7-12
MSMInitAlloc 7-58

Memory contents, displaying 6
memory decoding

MLIDMemoryLength0 3-23
Memory pages

MLIDMemoryLength0 field 3-23
memory paging

MLIDMemoryLength0 3-30
support bit 3-30

Memory, returning
MSMFree 7-21
MSMFreePages 7-22

Message printing
MSMPrintString 7-91
MSMPrintStringFatal 7-93
MSMPrintStringWarning 7-95

Micro Channel 7-35, 7-59
9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

MLIDCFG_SGCount field 3-20
MLIDFlags bit map 3-28
MLIDFlags field 3-21
MLIDIOPort0 field 3-22
MLIDIOPort1 field 3-22
MLIDIOPortsAndLengths field 3-22
MLIDIORange0 field 3-22
MLIDIORange1 field 3-23
MLIDLink field 3-22
MLIDMemoryDecode0 field 3-23
MLIDMemoryDecode1 field 3-23
MLIDMemoryLength0 field 3-23
MLIDMinorVersion field 3-21
MLIDReserved1 field 3-21
MLIDSharingFlags bit map 3-30
MLIDSharingFlags field 3-22
MLIDSlot field 3-22
MSM equates

MSMMaxFrameHeaderSize 4-6
MSMPhysNodeAddress 4-8
MSMStatusFlags 4-3
MSMTxFreeCount 4-4
MSMVirtualBoardLink 4-2

MSM/TSM data structures of RCB,TCB and ECB 4-9
MSMAlertFatal 7-5
MSMAlertWarning 7-7
MSMBitSwapTable 4-1
MSMRdConfigSpace16 7-98
MSMRdConfigSpace32 7-100
MSMRdConfigSpace8 7-96
MSMScheduleTimer 7-126
MSMWrtConfigSpace8 7-144
multicast address

support bit 3-27
multicast filtering bit 3-28
Multicast, updating registers 6-32
Multichannel adapters 2-13
Multi-operating system provisions 2-4
Multi-operating system support

DriverDisableInterrupt 5-39, 5-40
DriverEnableInterrupt 5-38

N
NESL_ECB structure C-4
Netware Bus Interface (NBI) 7-2
NetWare loadable module 1-3
Node address, load keyword A-8
Notification information 7-117

O
Object files, linking A-2
ODI supplements xvii, 1-9
ODI, see open data link interface 1-1
Optional Support 2-14
Options

driver
DriverNeedsBitMask 7-87
Needs Options 7-87

hardware
MSMRegisterHardwareOptions 7-104

OS calls to the driver 2-9

P
Packet reception

DMA and bus master 5-15
Programmed I/O and Shared RAM 5-13
RX-Net 5-17

Packet size, maximum 3-32
Packet transmission

Bus Master 5-28
Driver send 5-33
I/O, RAM, and DMA 5-28

Parameter command-line examples 7-89
Parameters

parsing, MSMParseDriverParameters 7-85
Parameters, load A-6
Parsing

driver parameters 7-85
PCI 7-2, 7-31, 7-35, 7-59, 7-96, 7-98, 7-100, 7-120,

7-129
10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 - D
o

c
 v1

.1
2

PCMCIA 7-2, 7-31, 7-36, 7-120, 7-129
Physical address

getting 7-51
physical addresses

fragment pointers 3-26
Physical memory

reading 7-102
writing 7-142

Pipelined adapter
receiving RCB 6-19, 6-23

Plug and Play 7-2, 7-35, 7-59
Polling

support level, setting 7-54
Polling enable 7-20
Procedures, execution time 2-9
Procedures, HSM

required 2-1
Process of developing drivers 1-9
Processor speed rating 7-55
promiscuous mode

support bit 3-26
Protected mode, 32-bit 2-8
Public variables 3-1

R
raw send support bit 3-27
RCB

Allocation 7-13
returning 7-119

RCB, getting
FastProcessGetRCB 6-17
GetRCB 6-11
ProcessGetRCB 6-14
RXNetTSMGetRCB 6-34

RCB, receiving
FastRcvComplete 6-23
FastRcvCompleteStatus 6-25
RcvComplete 6-19
RcvCompleteStatus 6-21
RXNetTSMFastRcvEvent 6-40
RXNetTSMRcvEvent 6-38

Receive control blocks (RCB) 4-9

Fragmented RCB 4-12
Non-fragmented RCB 4-14

Reception, packet 2-3
Recommended support 2-13
Reentrancy 2-12
Register manipulation 9
Registering hardware options 7-104
Registering HSM, TSM 6-27
Registering the MLID 7-106
Removal, driver 2-3

MSMDriverRemove 7-19
Reserved fields

MLIDReserved1 field 3-21
Resources

returning 7-114

S
scatter/gather count

MLIDCFG_SGCount field 3-20
Servicing events

MSMServiceEvents 7-131
MSMServiceEventsAndRet 7-133

SMP 3-26
Source files, creating A-1
Source routing 2-14
specification version string 3-4
Statistics table, driver 3-34
structure

EPB C-3
NESL_ECB C-4

Supplements for developing ODI drivers xvii, 1-9
Support modules provided by Novell 1-4
symmetrical multiprocessing, bit 3-26

T
TCB, releasing

FastSendComplete 6-31
SendComplete 6-29

TCB, sending
GetNextSend 6-8
11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

S
p

e
c

 v
3

.3
1

 -
 D

o
c

 v
1

.1
2

Time, getting
MSMGetCurrentTime 7-42
MSMGetMicroTimer 7-49

Timeout detection 2-5
DriverAES/DriverCallBack 5-56
DriverTxTimeout (RX-Net) 5-55

Topology specific module 1-4
Topology Specific Module(TSM) 6-1
Topology specific module(TSM)

getting version 6-10
Transmission, packet 2-3
Transmit control blocks (TCB) 4-16

Ethernet, Token-Ring, and FDDI 4-17
RX-Net 4-19

Transmit control blocks(TCB)
Fragment structure 4-22

U
Unique identifier for an adapter 7-56
12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

	disclaimer
	Further, Novell, Inc. makes no representations or warranties with respect to any NetWare software...
	trademarks
	Contents

	Preface
	1 Introduction
	2 HSM Overview
	3 HSM Data Structures and Variables
	4 MSM/TSM Data Structures and Variables
	5 HSM Procedures
	6 TSM Procedures
	7 MSM Procedures and Macros
	Figures
	Tables
	Preface

	Document Overview
	ODI Supplements
	Prerequisites
	Document Conventions
	1 Introduction
	Open Data-Link Interface
	Figure 1�1 The Open Data-Link Interface Model
	Link Support Layer
	Multiple Link Interface Drivers

	NetWare Loadable Modules
	Figure 1�2 Loadable Modules as NetWare Building Blocks

	Driver Modules
	Novell Provided Support Modules
	Media Support Module
	Topology Specific Module

	Developer Provided Module
	Hardware Specific Module
	Figure 1�3 MLID Modules

	Loading Driver Modules
	Figure 1�4 The ODI Model with separate MSM, TSM and HSM Modules

	Development Process
	1. Create the driver source files.
	2. Assemble the source files into object files.
	3. Link the object files using the NetWare Linker.
	4. Load the NLM as part of the NetWare OS.
	5. Debug the driver.
	ODI Supplements
	Driver Related Files
	Source Files
	Include Files
	Linker Definition File
	Driver Configuration File
	Installation Information File
	2 HSM Overview

	HSM Components
	HSM Procedures
	Initialization and Removal
	Packet Reception and Transmission
	Multi-Operating System Provisions
	I/O Control Procedures
	Timeout Detection

	HSM Data Structures and Variables

	HSM Design Considerations
	Hardware Issues
	Network Interface Controllers
	Data Transfer Mode
	Bus Type

	Coding Issues
	Multi-Tasking, Non-Preemptive OS
	32-Bit Protected Mode
	Interrupt Service Routine
	OS Calls to the Driver
	Execution Times
	Process Time
	Interrupt Time

	Code and Data Space
	Figure 2�1 Implementation of Multiple Frame/Multiple Adapter Support
	Frame Data Space
	Adapter Data Space
	Adapter Code Space
	Reentrancy

	Recommended Support
	Multicast Addressing
	Promiscuous Mode

	Optional Support
	Hub Management
	Source Routing
	Brouter
	3 HSM Data Structures and Variables

	Introduction
	Global Data Access
	Figure 3�1 Global Data Access
	1. MSM .NLM
	2. <TSM>.NLM
	3. <HSM>.LAN

	Specification Version

	Driver Parameter Block
	Driver Parameter Block
	Table 3.1 Driver Parameter Block Field Descriptions continued

	Driver Configuration Table
	Driver Frame Data Space
	Figure 3�2 Frame and Adapter Data Space
	Example Template for the Driver Configuration Table (based on the NE2000)
	Table 3.2 Configuration Table Field Descriptions continued

	MLIDModeFlags Bit Map
	Table 3.3 MLIDModeFlag Descriptions continued

	MLIDFlags Bit Map
	Table 3.4 MLIDSFlags Bit Map Fields

	MLIDSharingFlags Bit Map
	Table 3.5 MLIDSharingFlags Bit Map

	Driver Adapter Data Space
	Figure 3�3 Frame and Adapter Data Space

	Driver Statistics Table
	CounterMask Bit Maps

	Media Specific Counters
	Token-Ring
	Table 3.6 Media Specific Counters for Token Ring

	Ethernet
	Table 3.7 Media Specific Counters for Ethernet

	FDDI
	Table 3.8 Media Specific Counters for FDDI

	FDDI TSM and Bit Swapping Changes
	RX-Net
	Table 3.9 Media Specific Counters for RX-Net

	Driver Firmware
	Driver Keywords
	Driver Keyword Enhancements
	4 MSM/TSM Data Structures and Variables

	Introduction
	MSM Global Variables
	MSMBitSwapTable

	MSM Equates
	MSMVirtualBoardLink
	MSMStatusFlags
	MSMTxFreeCount
	MSMPriorityTxFreeCount
	MSMMaxFrameHeaderSize
	MSMPhysNodeAddress

	Data Structures
	Figure 4�1 Packet Transfer in the MSM/ODI Model
	Receive Control Blocks

	Fragmented RCB
	Figure 4�2 Fragmented Receive Control Block
	Table 4.1 Fragmented RCB Field Descriptions

	Non-Fragmented RCB
	Figure 4�3 Non-Fragmented Receive Control Block
	Table 4.2 Non-Fragmented RCB Field Descriptions

	Transmit Control Blocks
	Figure 4�4 Packet Transfer in the MSM/ODI Model

	TCB for Ethernet, Token-Ring, and FDDI
	Figure 4�5 Ethernet, Token-Ring and FDDI Transmit Control Block
	Table 4.3 TCB Field Descriptions

	TCB for RX-Net
	Figure 4�6 Rx-NET Transmit Control Block
	Table 4.4 TCB Field Descriptions (RX-Net)

	Fragment Structure
	Figure 4�7 TCB Fragment Structure
	Table 4.5 TCB Fragment Structure

	Event Control Blocks
	Figure 4�8 Packet Transfer in the MSM/ODI Model
	Figure 4�9 Event Control Block

	Receive ECBs vs RCBs
	Figure 4�10 ECBs vs RCBs

	Transmit ECBs vs TCBs
	Figure 4�11 Transmit ECBs vs TCBs
	Table 4.6 ECB Field Descriptions continued
	5 HSM Procedures

	Introduction
	Initialization
	DriverInit
	Register with the MSM / TSM
	Determine Hardware Options
	1. If the HSM supports multiple buses, it may call MSMScanBusInfo to determine the bus type, or i...
	2. For all busses except legacy ISA, call MSMSearchAdapter to search for the adapter ID. Any hard...
	3. The HSM calls MSMParseDriverParameters to determine the hardware configuration options or the ...
	4. For all buses except legacy ISA, the configuration table now contains the selected adapter HIN...

	Register Hardware Options
	Initialize the Adapter
	Register with the LSL
	Setup a Board Service Routine
	Schedule Timeout Callbacks
	DriverInit Pseudocode

	Packet Reception
	Reception Methods
	Programmed I/O and Shared RAM
	DMA and Bus Master
	1. All HSM’s: All fragment pointers passed back from the ECB returned by <TSM>GetRCB will contain...
	2. DriverNeedsBelow16Meg set in DriverParameterBlock: As with previous TSM’s, MSMAllocateRCB,<TSM...
	3. DriverSendWantsECBs set in DriverParameterBlock: MSMAllocateRCB or MSMAllocateMultipleRCBs wil...

	RX-Net
	Figure 5�1 Format of RX-Net LookAhead Buffer

	Board Service
	DriverISR
	Receive Event
	Receive Error
	Transmit Complete
	Transmit Errors
	Using Shared Interrupts
	DriverISR Pseudocode
	DriverPoll

	Packet Transmission
	Transmission Methods
	Programmed I/O, Shared RAM, and Host DMA
	1. Sets MSMTxFreeCount to the maximum number of transmit packets that the adapter can buffer. (pe...
	2. If the Ethernet TSM is used, ECX is set to the padded length of the packet. (This is the value...
	3. Decrements MSMTxFreeCount and calls DriverSend with ESI pointing to a filled in TCB structure.
	4. Calls <TSM>SendComplete or <TSM>FastSendComplete either after the packet has been buffered ont...
	5. Increments MSMTxFreeCount after the adapter completes the transmission (typically performed in...

	Bus Master
	1. Sets DriverSendWantsECBs to a nonzero value and sets MSMTxFreeCount to the number of transmit ...
	2. Decrements MSMTxFreeCount and calls DriverSend with a pointer to the Frame Data Space in EBX a...
	3. Calls either <TSM>SendComplete or <TSM>FastSendComplete after the packet has been buffered ont...
	4. Increments MSMTxFreeCount after the adapter completes the transmission (typically performed in...
	Bus Master Send Routine
	1. The TSM will be responsible for providing only physical fragment offsets. If one of the fragme...
	2. DriverNeedsBelow16Meg set in DriverParameterBlock:
	3. DriverSendWantsECBs set in DriverParameterBlock:

	Priority Transmission Support
	1. During DriverInit the HSM sets the following parameters:
	2. The DriverPriorityQueuePtr field of the Driver Parameter Block is set with a pointer to Driver...
	3. The HSM can set or reset MLIDFlags bit 12 as the HSM changes the Priority Queue Support state ...
	4. The protocol stack sets the ECB LogicalID field to a value greater than or equal to FFF0h. The...
	5. The TSM normally gives the packet to the HSM directly, as a TCB using the DriverSend function....
	6. The HSM calls <TSM>BuildTransmitControlBlock to build a TCB whenever a priority transmit resou...
	7. After the HSM has transmitted the TCB returned by <TSM>BuildTransmitControlBlock, the HSM call...

	DriverSend
	Driver Priority Queue Support

	Multi-Operating System Support
	Critical Sections
	DriverEnableInterrupt
	DriverDisableInterrupt
	DriverDisableInterrupt2

	Control Procedures
	DriverReset
	DriverShutdown
	DriverMulticastChange
	Adapter Multicast Filtering

	DriverPromiscuousChange
	DriverStatisticsChange (optional)
	DriverRxLookAheadChange (optional)
	DriverManagement (optional)

	Timeout Detection
	DriverTxTimeout (RX-Net)
	DriverAES / DriverCallBack/TimerProcedure

	Removal
	DriverRemove
	6 TSM Procedures

	Introduction
	<TSM>BuildTransmitControlBlock
	Description

	<TSM>CancelPrioritySend
	Description

	<TSM>GetConfigInfo
	Table 6.1 TSMCFG_SystemFlags

	<TSM>GetNextSend
	<TSM>GetASMHSMIFLevel
	<TSM>GetRCB
	Bus Master Adapters

	<TSM>ProcessGetRCB
	<TSM>FastProcessGetRCB
	<TSM>RcvComplete
	<TSM>RcvCompleteStatus
	<TSM>FastRcvComplete
	<TSM>FastRcvCompleteStatus
	Example

	<TSM>RegisterHSM
	Example

	<TSM>SendComplete
	Example

	<TSM>FastSendComplete
	<TSM>UpdateMulticast
	RXNetTSMGetRCB
	Figure 6�1 Format of the RX-Net LookAhead Buffer

	RXNetTSMRcvEvent
	Example

	RXNetTSMFastRcvEvent
	7 MSM Procedures and Macros

	Introduction
	Netware Bus Interface
	Overview
	Bus Architecture
	Multiple Bus Platforms
	Figure 7�1 Multiple Bus Platform Example

	MSMAlertFatal
	MSMAlertWarning
	MSMAlloc
	MSMAllocateMultipleRCBs
	Example

	MSMAllocPages
	MSMAllocateRCB
	MSMCancelTimer
	Example

	MSMDeRegisterResource
	MSMDriverRemove
	MSMEnablePolling
	MSMFree
	MSMFreePages
	MSMGetAlignment
	MSMGetBusInfo
	MSMGetBusSpecificInfo
	See Also

	MSMGetBusType
	MSMGetCardConfigInfo
	Example
	See Also

	MSMGetConfigInfo
	MSMCFG_TableSize
	MSMCFG_TableMajorVersion
	MSMCFG_TableMinorVersion
	MSMCFG_ModuleMajorVersion
	MSMCFG_ModuleMinorVersion
	MSMCFG_ODISpecMajorVersion
	MSMCFG_ODISpecMinorVersion
	MSMCFG_Reserved
	MSMCFG_MaxNumberOfBoards
	MSMCFG_SystemFlags

	MSMGetCurrentTime (macro)
	MSMGetHINFromHINName
	MSMGetHINNameFromHIN
	MSMGetInstanceNumber
	Example
	See Also

	MSMGetInstanceNumberMapping
	See Also

	MSMGetMicroTimer
	MSMGetPhysical
	MSMGetPhysList
	MSMGetPollSupportLevel
	MSMGetProcessorSpeedRating (macro)
	MSMGetUniqueIdentifier
	MSMGetUniqueIdentifierParameters
	Figure 7�2 PnP ISA Bus Parameters

	MSMHardwareFailure
	MSMInitAlloc
	MSMInitFree
	MSMNESLDeRegisterConsumer
	Description
	See Also

	MSMNESLDeRegisterProducer
	See Also

	MSMNESLProduceEvent
	See Also

	MSMNESLProduceMLIDEvent
	MSMNESLRegisterConsumer
	See Also

	MSMNESLRegisterProducer
	See Also

	MSMParseCustomKeywords
	Custom Keyword Procedure

	MSMParseDriverParameters
	Adapter Options
	Needs Options

	MSMPrintString
	MSMPrintStringFatal
	MSMPrintStringWarning
	MSMRdConfigSpace8
	See Also
	Example

	MSMRdConfigSpace16
	See Also
	Example

	MSMRdConfigSpace32
	See Also
	Example

	MSMReadPhysicalMemory
	See Also

	MSMRegisterHardwareOptions
	MSMRegisterMLID
	MSMRegisterResource
	ExtraConfig Structure
	Field Descriptions:
	IOConfig Structure

	MSMReRegisterHardwareOptions
	MSMResetMLID
	MSMResumePolling
	MSMReturnDriverResources
	Example

	MSMReturnMultipleRCBs
	See Also

	MSMReturnNotificationECB (macro)
	MSMFastReturnNotificationECB (macro)
	Example

	MSMReturnRCB (macro)
	MSMScanBusInfo
	MSMScheduleAESCallBack
	MSMScheduleIntTimeCallBack
	Example

	MSMScheduleTimer
	Field descriptions:
	TimerNextLink
	TimerProcedurePtr
	TimerType
	TimerInterval
	TimerContext
	TimerReserved

	MSMSearchAdapter
	MSMServiceEvents (macro)
	Example

	MSMServiceEventsAndRet (macro)
	MSMSetHardwareInterrupt
	MSMShutdownMLID
	MSMSuspendPolling
	Example

	MSMUpdateConfigTables
	MSMWritePhysicalMemory
	See Also

	MSMWrtConfigSpace8
	See Also

	MSMWrtConfigSpace16
	See Also

	MSMWrtConfigSpace32
	See Also

	MSMYieldWithDelay
	A Building the HSM
	Development Process
	Creating the Source Files
	Assembling the Source Files
	Linking the Object Files
	Linker Definition File

	Loading the Driver
	Driver Configuration File
	Load Keywords and Parameters
	B The NetWare Debugger

	Introduction
	Invoking the Debugger
	1. Press the <CTRL> - <ALT> - <LEFT-SHIFT> - <RIGHT- SHIFT> - <ESC> key combination simultaneousl...
	2. After the driver abends or GPIs the server, enter the key combination described in method 1 ab...
	3. Include an INT 3 in the desired code segment where the break-point is to be executed. Programs...
	4. Generate a non-maskable interrupt with an NMI board. This will cause the server to Abend, afte...

	Debug Commands
	Help
	"." Commands
	Breakpoints
	Breakpoint Conditions
	B
	BC number
	BCA
	B = address [condition]
	BW = address [condition]
	BR = address [condition]

	Memory
	C address
	C address = number(s)
	C address = “text string”
	D address [count]
	M address [L length] bytepattern

	Register Manipulation
	R
	register = value
	F flag = value

	Input/Output
	I[B,W,D] port
	O[B,W,D] port = value

	Miscellaneous
	G [address(es)]
	N symbolname value
	P
	Q
	T or S
	U address [count]
	V
	Z expression

	Debug Expressions
	Grouping Operators
	Conditional Evaluation

	Symbolic Information
	1. Declare public all desired symbols in the driver.
	2. Include the keyword debug in the driver's linker definition file.
	C NESL Support

	Overview
	Registering and Deregistering Event Producers
	Registering and Deregistering Event Consumers
	NESL Structures
	EPB (Event Parameter Block) Structure
	Field Descriptions:
	EPB_MajorVersion
	EPB_MinorVersion
	EPB_EventName
	EPB_EventType
	EPB_moduleName
	EPB_DataPtr0
	EPB_DataPtr1
	EPB_EventScope
	EPB_Reserved

	NESL_ECB Structure
	Field descriptions:
	NESL_ECBNext
	NESL_ECBVersion
	NESL_ECBOsiLayer
	NESL_ECBEventName
	NESL_ECBRefData
	NESL_ECBNotifyProc
	ConsumerNecb
	ProducerNecb
	EventData
	NESL_EVENT_CONSUMED
	NESL_EVENT_NOT_CONSUMED
	NESL_ECBOwner
	NESL_ECBWorkSpace
	NESL_ECBContext

	Events and Types
	Event Names
	Event Types
	Service Suspend Types
	Suspend Request
	Service Resumed Types
	Service/Status Changed Types

	NESL Return Codes
	NESL Event Flags
	NESL OSI Layer Definitions
	Revision History
	1. In the following three functions,
	2. In the Driver Parameter Block definition on page 3-5, the DriverISR2Ptr field occurs twice. Th...
	3. In the Driver Configuration Table definition on page 3-15, the MLIDCFG_MinorVersion is defined...
	4. On page 5-35, Driver Priority Queue Support, under "Processor States: Entry State" the ESI lin...
	5. On page 3-25, in the Configuration Table Field Descriptions, change the Description for MLIDBu...
	6. On page 1-7, "Loading Driver Modules", replace the first paragraph with the following paragraph:
	7. In Appendix A, on page A-2, under "Linker Definition file", delete "MSM" from the Data column ...
	8. In Appendix A, on page A-5, under "Loading the Driver", change the first sentence of the first...
	9. In Appendix A, on page A-7, change the definition for SLOT to read:
	10. On page 3-25, under MLIDBusTag, MSMParseDriverParameters should be replaced with MSMRegisterH...
	11. On page 5-20, under Receive Error, add the following text as the last bullet:
	12. On page 5-51 after the line that reads "Bit 31 - Driver shutting down (set by TSM)", add the ...
	13. On page 6-15, <TSM>ProcessGetRCB, and page 6-18, <TSM>FastProcessGetRCB, add the following no...
	14. On page 3-28, in Table 3-4, "MLIDSFlags Bit Map Fields", in the description for bits 10, 9; a...
	15. On page 5-48, under Adapter Multicast Filtering, add the following Note:
	16. On page C-5, under NESL_ECBRefData, add the following text:
	17. On page C-11, under Service Status Changed Types, add the following new Type Names:
	18. On page 2-4, in the Note under Multi-Operating System Provisions, the following reference:
	19. On page 6-6, in the TSMConfigTable structure, add:
	20. On page 6-2, <TSM>BuildTransmitControlBlock, under Return State, change the Preserved registe...
	21. On page 7-127, MSMScheduleTimer, under TimerType, change all:
	22. On page C-4, in the NESL_ECB Structure, add:
	23. On page C-4, under NESL_ECBVersion, change the last sentence in the paragraph to read:
	24. On page C-6, add the following text:

	Index

	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U

