ODI Specification:

Hardware Specific Modules (HSMs)
(32-bit Assembly Language)

SPEC VERSION 3.31, DOC VERSION 1.12

Novell |
0 DI LAN Diriver Documentation |

Spec v3.31 - Doc v1.12

disclaimer

trademarks

Novell, Inc. makes no representations or warranties with respect to the contents
or use of this manual, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. reserves the right to revise this publication and to make changes to
its content, at any time, without obligation to notify any person or entity of such
revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any
NetWare software, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. reserves the right to make changes to any and all parts of NetWare
software, at any time, without any obligation to notify any person or entity of
such changes.

Novell and NetWare are registered trademarks of Novell, Inc. in the United
States and other countries.

The Novell Network Symbol is a trademark of Novell, Inc.
Macintosh is a registered trademark of Apple Computer, Inc.

DynaText is a registered trademark of Electronic Book Technologies, Inc.
Microsoft is a registered trademark of Microsoft Corporation.

Copyright [0 1993-1998 Novell, Inc. All rights reserved. No part of this
publication may be reproduced, photocopied, stored on a retrieval
system, or transmitted without the express written consent of the
publisher.

U.S. Patent Nos. 5,157,663; 5,349,642; and 5,455,932. U.S. and
International Patent Pending.

Novell, Inc.

122 East 1700 South
Provo, UT 84606
U.S.A.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly
Language)
March 26, 1998

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

C ontents

Preface

1 Introduction

Open Data-Link Interface
Link Support Layer
Multiple Link Interface Drivers. o

NetWare Loadable Modules oo

Driver Modules e
Novell Provided Support Modules.

Media Support Module.o oo
Topology SpecificModule,
Developer Provided Module.
Hardware Specific Module.
Loading DriverModules

Development Process. 0 i e e
ODI Supplements e
Driver Related Files

SourceFiles e
Include Files
Linker Definition File. oo
Driver Configuration File.
Installation InformationFile

2 HSM Overview

HSM Components.
HSM Procedures e
Initializationand Removal

Packet Reception and Transmission
Multi-Operating System Provisions

I/O Control Procedures
TimeoutDetection.

HSM Data Structures and Variables
HSM Design Considerations

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 2ads

Spec v3.31 - Doc v1.12

Hardware ISsues e 2-6

Network Interface Controllers. 2-6
Data TransferMode 2-6
BusType 2-7
Codinglssues e 2-8
Multi-Tasking, Non-Preemptive OS. 2-8
32-Bit Protected Modeo 2-8
Interrupt Service Routine L. 2-8
OS Callstothe Driver, 2-9
Execution Times e 2-9
CodeandDataSpace. o v i i i i 2-11
Frame DataSpace e 2-12
AdapterDataSpaceo 2-12
AdapterCode Spaceo 2-12
Reentrancyo 2-12
Recommended Support 2-13
Multicast Addressing 2-13
PromiscuousMode 2-13
Optional Support 2-14
Hub Management. 2-14
SourceRouting. 2-14
Brouter 2-14

3 HSM Data Structures and Variables

Introduction. 3-1
Global Data ACCESS o 3-1
Specification Version.o Lo 3-3
Driver ParameterBlock 3-4
Driver ParameterBlock. 3-5
Driver Configuration Table 3-13
Driver Frame Data Space e 3-13
Example Template for the Driver Configuration Table (based on the NE2000)
3-15
MLIDModeFlagsBitMap L 3-26
MLIDFlags BitMap 3-28
MLIDSharingFlags BitMap 3-30
Driver Adapter Data Space. oo 3-33
Driver Statistics Table 3-34
CounterMask BitMaps o 3-40
Media Specific Counters 3-41
Token-Ring L 3-41
Ethernet. 3-44
FDDI . . . e 3-45
il ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Driver Keywords. e
Driver Keyword Enhancements

MSM/TSM Data Structures and Variables

Introduction e e
MSM Global Variableso
MSMBitSwapTable
MSM Equates e
MSMVirtualBoardLink
MSMStatusFlags
MSMTxFreeCount. e
MSMPriorityTxFreeCount
MSMMaxFrameHeaderSize.
MSMPhysNodeAddress
Data Structures e e e e e
Receive Control Blocks
Fragmented RCB
Non-Fragmented RCB.,

Transmit Control Blocks

TCB for Ethernet, Token-Ring,and FDDI
TCBforRX-Net e

Fragment Structureo

Event Control Blocks
Receive ECBsVsSRCBs,

Transmit ECBSVS TCBS. i i it e e

HSM Procedures

Introduction L
Initialization L
Driverinit.
Register withthe MSM/TSM
Determine Hardware Options

Register Hardware Options

Initialize the Adapter. L
Registerwiththe LSL

Setup a Board Service Routine Lo

Schedule Timeout Callbacks

Driverlnit Pseudocodeo

Packet Reception

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Reception Methods. 5-13
Programmed I/O and Shared RAM. 5-13
DMAandBusMaster.o 5-15
RX-Net e 5-17

Board Service 5-19

DriverlSR. e 5-19
Receive Event e 5-19
Receive Error. e 5-20
Transmit Complete 5-20
Transmit Errors. L 5-21
Using Shared Interrupts oo 5-21
DriverlSR Pseudocode 5-24
DriverPoll 5-26

Packet Transmission. e 5-27

Transmission Methods Lo 5-27
Programmed /O, Shared RAM, and HostDMA 5-28
BusMaster 5-28

Priority Transmission Supporto 5-31

DriverSend e 5-33

Driver Priority Queue Support 5-35

Multi-Operating System Support.o 5-36

Critical Sections 5-37

DriverEnablelnterrupt.o Lo 5-38

DriverDisableInterrupt Lo 5-39

DriverDisableInterrupt2. o oo 5-40

Control Procedures e 5-41

DriverReset e 5-43

DriverShutdown 5-45

DriverMulticastChangeo 5-47
Adapter Multicast Filtering oL 5-48

DriverPromiscuousChange. 5-50

DriverStatisticsChange (optional) 5-52

DriverRxLookAheadChange (optional). 5-53

DriverManagement (optional) 5-54

Timeout Detection 5-55
DriverTxTimeout (RX-Net) 5-55
DriverAES / DriverCallBack/TimerProcedure 5-56

Removal e 5-58
DriverREMOVE e 5-59

6 TSM Procedures
Introduction. L 6-1
<TSM>BuildTransmitControlBlock 6-2
iv ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

<TSM>CancelPrioritySend 6-4

<TSM>GetConfiginfo 6-5

<TSM>GetNextSend 6-8

<TSM>GetASMHSMIFLevel 6-10
<TSM>GetRCB 6-11
<TSM>ProcessGetRCB. 6-14
<TSM>FastProcessGetRCB 6-17
<TSM>RcvComplete 6-19
<TSM>RcvCompleteStatus 6-21
<TSM>FastRcvComplete 6-23
<TSM>FastRcvCompleteStatus 6-25
<TSM>RegisterHSM 6-27
<TSM>SendComplete 6-29
<TSM>FastSendComplete 6-31
<TSM>UpdateMulticast. 6-32
RXNetTSMGetRCB 6-34
RXNetTSMRcvEvent 6-38
RXNetTSMFastRcvEvent. o 6-40

MSM Procedures and Macros

Introduction L 7-1
Netware Bus Interface L 7-2
OVerview e e 7-2
Bus Architecture. 7-3
Multiple Bus Platforms. o 7-3
MSMAlertFatal 7-5
MSMAlertWarning 7-7
MSMAIIOC e 7-9
MSMAllocateMultipleRCBs 7-10
MSMAIlocPages 7-12
MSMAllocateRCB e 7-13
MSMCancelTimer e 7-15
MSMDeRegiSterResourceo e e e 7-17
MSMDriverRemoveo e e e e 7-19
MSMEnablePolling 7-20
MSMFree e e 7-21
MSMFreePages. 7-22
MSMGetAlignment L 7-23
MSMGetBusInfo 7-25
MSMGetBusSpecificinfoo 7-27
MSMGetBusType 7-31
MSMGetCardConfiginfo 7-33
MSMGetConfiginfo 7-39
\'

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Vi

MSMGetCurrentTime (macro)
MSMGetHINFromHINName

MSMGetHINNameFromHIN
MSMGetinstanceNumber
MSMGetInstanceNumberMapping
MSMGetMicroTimer
MSMGetPhysical
MSMGetPhysList
MSMGetPollSupportLevel

MSMGetProcessorSpeedRating (macro)

MSMGetUniqueldentifier
MSMGetUniqueldentifierParameters . . .
MSMHardwareFailure
MSMinitAlloc
MSMinitFree
MSMNESLDeRegisterConsumer
MSMNESLDeRegisterProducer
MSMNESLProduceEvent
MSMNESLProduceMLIDEvent
MSMNESLRegisterConsumer
MSMNESLRegisterProducer.
MSMParseCustomKeywords
Custom Keyword Procedure
MSMParseDriverParameters
MSMPrintString
MSMPrintStringFatal
MSMPrintStringWarning
MSMRdConfigSpace8
MSMRdConfigSpacel6
MSMRdConfigSpace32
MSMReadPhysicalMemory
MSMRegisterHardwareOptions
MSMRegisterMLID
MSMRegisterResource
IOConfig Structure
MSMReRegisterHardwareOptions.
MSMResetMLID
MSMResumePolling
MSMReturnDriverResources
MSMReturnMultipleRCBs
MSMReturnNotificationECB (macro) . . .

MSMFastReturnNotificationECB (macro)

MSMReturnRCB (macro)
MSMScanBusInfo

7-42
7-43
7-44
7-45
7-47
7-49
7-51
7-52
7-54
7-55
7-56
7-58
7-61
7-62
7-64
7-65
7-66
7-67
7-70
7-73
7-76
7-79
7-80
7-85
7-91
7-93
7-95
7-96
7-98
7-100
7-102
7-104
7-106
7-107
7-109
7-110
7-112
7-113
7-114
7-116
7-117
7-117
7-119
7-120

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

MSMScheduleAESCallBack e 7-122

MSMScheduleIntTimeCallBack 7-124
MSMScheduleTimer 7-126
MSMSearchAdapter. 7-129
MSMServiceEvents (Macro)o 7-131
MSMServiceEventsAndRet (macro) o 7-133
MSMSetHardwarelnterrupt Lo 7-135
MSMShutdownMLID 7-136
MSMSuspendPolling 7-138
MSMUpdateConfigTables. 7-140
MSMWritePhysicalMemory Lo 7-142
MSMWrtConfigSpace8 7-144
MSMWrtConfigSpacel6 7-146
MSMWrtConfigSpace32 e 7-148
MSMYieldWithDelay 7-150

Appendix A Building the HSM

Development Process. e A-1
Creatingthe Source Files A-1
Assembling the Source Files Lo A-1
Linking the ObjectFiles A-2

Linker Definition File. oo A-2
Loadingthe Driver. A-5
Driver Configuration File. A-6
Load Keywords and Parameters A-6

Appendix B The NetWare Debugger

Introduction L 1
Invoking the Debugger L 2
Debug Commands 4
Help . . . o e 4
ttlommands. ... 4
Breakpoints 4
Breakpoint Conditions oo 4

B . e 5
BCnumber. 5

BCA . . e e 5

B = address [condition] oo 5

BW = address [condition] o 5

BR = address [condition]. 6

Memory 6
Caddress 6

Vi

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Caddress=number(s). 6
Caddress ="“textstring” 6
Daddressfcount]. 7
M address [L length] bytepattern. 8
Register Manipulation Lo oo 9
R e 9
register=value. 9
Fflag=value. 9
Input/Output 9
I[BW,Dlport 9
O[BW,D]port=value 10
Miscellaneous L 10
Gladdress(es)]. 10
N symbolnamevalue o L 10
P 11
Q o 11
TOrS. . e 11
Uaddressfcount]. e 11
Ve 11
ZeXPression e e e e e e e e e 11
Debug EXpressions 12
Grouping Operators 13
Conditional Evaluation 13
Symbolic Information. 14
Appendix C NESL Support
OVEIVIEW o o e C-1
Registering and Deregistering Event Producers. C-2
Registering and Deregistering Event Consumers C-2
NESL Structures e C-3
EPB (Event Parameter Block) Structure C-3
NESL_ECB Structure e C-4
Eventsand Types C-7
EventNames.o C-7
EventTypes C-8
Service Suspend Typeso e e C-8
..................................... C-9
Suspend Request.o C-9
Service Resumed Typeso o C-10
Service/Status Changed Types. C-11
NESL Return Codes o C-13
NESL EventFlags C-14
NESL OSl Layer Definitionso C-15

viii

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Revision History

Index

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Figures

Figure 1-1 The Open Data-Link Interface Model 1-1

Figure 1-2 Loadable Modules as NetWare Building Blocks. 1-3

Figure 1-3MLID Modules 1-6

Figure 1-4 The ODI Model with separate MSM, TSM and HSM Modules 1-8

Figure 2-1 Implementation of Multiple Frame/Multiple Adapter Support 2-11
Figure 3-1 Global Data ACCESS.« o 3-2

Figure 3-2 Frame and Adapter Data Space. 3-14
Figure 3-3 Frame and Adapter Data Space. 3-34
Figure 4-1 Packet Transfer in the MSM/ODI Model. 4-10
Figure 4-2 Fragmented Receive Control Block. 4-12
Figure 4-3 Non-Fragmented Receive Control Block 4-14
Figure 4-4 Packet Transfer in the MSM/ODI Model. 4-16
Figure 4-5 Ethernet, Token-Ring and FDDI Transmit Control Block 4-17
Figure 4-6 Rx-NET Transmit Control Block 4-19
Figure 4-7 TCB Fragment Structure o o o i 4-22
Figure 4-8 Packet Transfer in the MSM/ODI Model. 4-24
Figure 4-9 Event Control Block 4-25
Figure 4-10ECBSVS RCBS 4-26
Figure 4-11Transmit ECBS VS TCBsS o v i e 4-28
Figure 5-1 Format of RX-Net LookAhead Buffer 5-18
Figure 6-1 Format of the RX-Net LookAhead Buffer 6-36
Figure 7-1 Multiple Bus Platform Example 7-3

Figure 7-2 PnP ISA Bus Parameters e 7-60

Xi

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 2ads

Spec v3.31 - Doc v1.12

Xii

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.8
Table 3.9
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 6.1

Tables

Driver Parameter Block Field Descriptions ot 3-6

Configuration Table Field Descriptions 3-17
MLIDModeFlag DescCriptionst 3-26
MLIDSFlags Bit Map Fields. 3-28
MLIDSharingFlags BitMap oo 3-30
Media Specific Counters for Token Ring. 3-42
Media Specific Counters for Ethernet 3-44
Media Specific Counters for FDDI. i 3-46
Media Specific Counters for RX-Net. 3-48
Fragmented RCB Field Descriptions. 4-13
Non-Fragmented RCB Field Descriptions. i, 4-15
TCB Field DesCriptionsot e 4-18
TCB Field Descriptions (RX-Net) i 4-20
TCB Fragment SIrUCIUre oot e e e e 4-23
ECB Field DesCriptionsttt e 4-29
TSMCFG_SystemFlags e 6-7

Xiii

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 201 - TS SA n3adc

Spec v3.31 - Doc v1.12

Xiv

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Preface

This Intel assembly language document provides the information necessary to
develop the Hardware Specific Module (HSM) portion of a Novell 32-bit LAN
Driver.

Novell LAN Drivers consist of Media Support Modules (MSMs), Topology
Specific Modules (TSMs), and Hardware Specific Modules (HSMs).

The Novell LAN Driver, Software Development Toolkit (SDK) provides the
MSMs and the TSMs for the LAN Driver. The HSMs must be written by the
developer.

LAN Drivers written using the information in this document will conform to
the Novell Open Data-Link Interface (ODI) specification. The MSMs and
TSMs provided by the SDK make it as simple as possible to do this.

This document does nekplain the full ODI specification. It only explains
how to write the HSM portion of a LAN Driver, using the modules provided by
the Novell SDK.

XV

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TN 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Document Overview

Chapter 1 describes the NetWare environment and gives a brief overview of
ODI LAN Driver architecture.

Chapter 2 is an overview of the HSM.

Chapter 3 describes HSM data structures and variables.

Chapter 4 describes MSM and TSM data structures and variables.
Chapter 5 describes the HSM procedures a developer must provide.
Chapter 6 describes the TSM procedures provided by the Novell SDK.
Chapter 7 describes the MSM procedures provided by the Novell SDK.
Appendix A describes assembling, linking, and loading an ODI LAN driver.
Appendix B explains how to use the NetWare integrated debugger.

Appendix C explains how to update an HSM to the current specification.

XVi ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ODI Supplements

The following supplements also contain information necessary for driver
development.

The MLID Installation Information File

Part number 107-000056-001
The Hub Management Interface

Part number 107-000023-001
Source Routing

Part number 107-000058-001
Canonical and Noncanonical Addressing

Part number 107-000059-001
Frame Types and Protocol IDs

Part number 107-000055-001
Standard MLID Message Definitions

Part number 107-000060-001
Brouter Support

Part number 107-000049-001

XVii

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Prerequisites
Developers using this document must be experienced in the following areas:
+ Intel Assembly Language Programming
 Intel 80386/486+ Microprocessors
+ Real Mode and Protected Mode
+ Re-entrant Coding
« Event-driven Systems

« Interrupt-driven Device Drivers

XViii ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Document Conventions
This document uses the following conventions:
« All numbers in this document are decimal unless otherwise specified.

« Hexadecimal numbers are identified by a trailing ‘h’, such as:
FFh.

« In bit fields, bit O is the low- order bit.

« The following data types are defined:

byte 1 byte unsigned integer
char 1 byte ASCII character
offset 32-bit non-segmented address

Note Vvl Numeric fields composed of more than 1 byte can be in one of two formats: high-
‘ low or low-high. High-low numbers contain the most significant byte in the first
byte of the field, the next most significant byte in the second byte, and so on,
with the least significant byte appearing last. Low-high numbers are stored in
exactly the opposite order. Intel microprocessors store numbers in low-high
order.

XixX

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

XX

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

1

Introduction

Open Data-Link Interface

Novell's Open Data-Link Interface (ODI) technology was developed to allow
multiple topologies, frame types and protocols to coexist on network systems.
The ODI specification describes the set of interface and software modules used
to decouple device drivers from protocol stacks and to enable multiple protocol
stacks to share the network hardware and media transparently. Figure 1.1
illustrates the components of the ODI model.

Figure 1-1 The Open Data-Link Interface Model

NETWARE OPERATING SYSTEM SERVICES

IPX/SPX TCP/IP APPLETALK
PROTOCOL PROTOCOL PROTOCOL
STACK STACK STACK

LINK SUPPORT LAYER (LSL)

ETHERNET
MLID

TOKEN-RING FDDI RX-NET
MLID MLID MLID

ADAPTERS

Introduction 1-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Link Support Layer

At the core of the Open Data-Link Interface is the Link Support Layer or LSL.
The LSL is the interface between drivers and protocol stacks. It essentially acts
like a switchboard, directing packets between the appropriate drivers and
protocol stacks. Any LAN driver written to the ODI specifications, can
communicate with any ODI protocol stack via the Link Support Layer.

Multiple Link Interface Drivers

1-2

Multiple Link Interface Drivers (MLIDs) are LAN Drivers written to the ODI
specification. Each driver is unique due to the adapter hardware and media, but
ODI eliminates the need for separate drivers to be written for each specific
protocol stack. The Open Data-Link Interface allows LAN drivers to function
with protocol stacks independent of the frame type and protocol stack details.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

NetWare Loadable Modules

A key NetWare feature is the NetWare Loadable Module (NLM). NLMs are
software modules that are dynamically linked to the NetWare operating system
at run time. Once an NLM is loaded, it functions as an integral component of
the operating system as shown in Figure 1.2.

Different types of loadable modules have unique filename extensions that
signify the module's function. Server LAN drivers must use the “.LAN”
filename extension, disk drivers use “.DSK”, and general utility or support
modules use “.NLM".

The modules that make up a Multiple Link Interface Driver are NetWare
Loadable Modules.

Figure 1-2 Loadable Modules as NetWare Buildin g Blocks

NETWARE OPERATING SYSTEM FUNCTIONALITY

PROTOCOL STACK

HUB MANAGEMENT

MONITOR UTILITY

LAN DRIVER MODULE

DISK DRIVER

Introduction 1-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Driver Modules

This section describes the modules that make up a 32-bit Multiple Link
Interface Driver.

Novell Provided Support Modules

Novell has simplified ODI LAN driver development by

furnishing a set of support modules that provides the interface to the LSL.
These modules are a collection of procedures, macros, structures, and
variables. They are the Media Support Module (MSM), which contains general
functions common to all drivers; and the Topology Specific Modules (TSM),
whichprovide support for the standardized media types of Ethernet, Token-
Ring, RX-Net, and FDDI.

Media Support Module

The Media Support Module, MSM.NLM, standardizes and manages the
primary details of interfacing ODI Multi-Link Interface Drivers to the LSL and
OS. The MSM handles all of the generic initialization and run-time issues
common to all drivers.

Topolo gy Specific Module

The Topology Specific Module, <TSM>.NLM, manages operations that are
unique to a specific media type. Multiple frame support is implemented in the
TSM so that all frame types for a given media are supported.

Throughout this manual, topology specific functions and variables are

indicated with <TSM>. The developer must replace <TSM> with the
appropriate media type depending on which module is used. Since the driver
must be assembled with case sensitivity on, the names must be used exactly as
shown below:

ETHERTSM.NLM replace <TSM> with: EtherTSM
TOKENTSM.NLM replace <TSM> with: TokenTSM
RXNETTSM.NLM replace <TSM> with: RXNetTSM
FDDITSM.NLM replace <TSM> with: FDDITSM

14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Source code for each Topology Specific Module is provided with the
developers kit. Proprietary topology modules may be created by modifying an
existing TSM to meet the developer's requirements or by creating a new
module that provides the same functionality contained in the standard TSMs.

Note V! If atopology specific module is altered, it must NOT have the same name as the
Novell provided modules. In addition, any “exported” calls or variables within the
TSM require different names.
Important You must use the TSMs provided by Novell to pass certification. It is virtually
impossible for your driver to pass the certification test suite using modified
TSMs.

Introduction 1-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Developer Provided Module

When using the support modules, LAN driver development is reduced to
creating the Hardware Specific Module or HSM, to handle all hardware
interactions.

Hardware Specific Module

The Hardware Specific Module, <HSM>.LAN, is created by the developer for
a specific physical card. Its primary functions include: adapter initialization,
reset, shutdown, and removal, as well as packet reception and transmission.
Additional procedures may also provide support for timeout detection,
multicast addressing, and promiscuous mode reception. Sample source code
for Novell LAN drivers is included with thelovell LAN Driver Developer's
Guide Chapter 2 explains the HSM functions in greater detail.

Figure 1.3 illustrates the modules which make up an MLID.

Figure 1-3 MLID Modules

1-6

MSM

MLID — TSM

HSM

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Loading Driver Modules

The ODI Toolkit components for the specific platform being used must be
loaded before the HSM is loaded. The HSM linker definition file must list a
dependency on the appropriate TSM, using the module keyword, for the
required NLMs to load automatically.

A major advantage of separating portions of the MLID into the MSM and TSM
is that, once loaded, these support modules become available to all HSMs.

Only a single code image of each module is needed to support multiple HSMs.

Figure 1.4 below illustrates the ODI model with separate MSM, TSM, and
HSM modules.

Introduction 1-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Figure 1-4 The ODI Model with separate MSM, TSM and HSM Modules

NETWARE OPERATING SYSTEM SERVICES

IPX /SPX

PROTOCOL
STACK

TCP/IP

PROTOCOL
STACK

APPLETALK

PROTOCOL
STACK

LINK SUPPORT LAYER (LSL)

MSM
ETHERNET TOKEN-RING FDDI
TSM TSM TSM
ETHERNET ETHERNET TOKEN-RING FDDI
HSM 1 HSM 2 HSM HSM
u !
|
ADAPTERS

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Development Process

Note‘VI
\v

ODI Supplements

Driver Related Files

Source Files

Include Files

The process of creating and loading a NetWare driver involves the following
steps:

Create the driver source files.

Assemble the source files into object files.
Link the object files using the NetWare Linker.
Load the NLM as part of the NetWare OS.
Debug the driver.

o M~ D

Chapters 2 through 7 provide detailed information on writing the driver.
Appendices A, B and the supplements listed below provide a full description
of assembling, linking, installing, loading, and debugging the driver.

LAN Drivers written to this specification will also function without modification on
Novell 32-bit clients for WIN95, WindowsNT, and DOS/WIN.

The ODI supplements listed in the preface of this document also contain
information necessary for driver development.

The following section describes the files that are needed when developing a
NetWare LAN driver.

The Hardware Specific Module is the only source file that must be written by
the developer. Chapter 2 provides an overview of the Hardware Specific
Module and addresses specific hardware and coding issues that influence
driver development.

Several include files are provided with the support modules. These files contain
external variable declarations and define the equates, macros, and data
structures needed by the HSM.

Introduction 1-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Linker Definition File

The HSM must include only DRIVER.INC; the other include files are nested
from this file.

DRIVER.INC
MSM.INC
ODLINC

Each NetWare Loadable Module must have a corresponding linker definition
file with a “.DEF” extension. This file is needed by the NetWare linker. It
contains a list of object files which makeup the module, external variables and
routines the module must access, the names of the module's initialization and
exit procedures, and several other linker directives. (see Appendix A for
details)

Driver Confi guration File

The developer can list command-line parameters and custom keywords in a
driver configuration file. If used, this file must reside in the same directory as
the driver. The driver configuration file was developed to allow drivers to
maintain large number of custom keywords on the limited space of the
command-line. (see Appendix A for details)

Installation Information File

We require you to create a driver information file to simplify driver installation.
This file provides information related to the driver configuration and loading
parameters and is required if the Install utility is used. {$&eMLID
Installation Information Filesupplement for details.)

1-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

chapter

2 HSM Overview

HSM Components

This chapter provides an overview of the HSM components. Issues that
influence the development of the HSM are also addressed.

HSM Procedures

The HSM specification defines the following procedures:

Initialization and Removal
« Driverlnit (required)
« DriverRemove (required)
Reception and Transmission
+ DriverISR

+ DriverPoll
(one of the above is required)

« DriverSend (required)

DriverISR2 (optional)
Multi-Operating System provision
« DriverEnablelnterrupt (required)

« DriverDisablelnterrupt (required)

- DriverDisablelnterrupt2 (required if Driver ISR2 exists)

HSM Overview 2-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

I/O Control

« DriverReset (required)

 DriverShutdown (required)

« DriverMulticastChange (required except for RX-Net)

« DriverPromiscuousChange (recommended)

« DriverStatisticsChange (optional)

« DriverRxLookAheadChange (optional)

« DriverManagement (optional)
Timeout Detection

« DriverAESCallBack (optional)

« DriverINTCallBack (optional)

« DriverTimerProcedure (optional, ss#8sMScheduleTimer)
Every HSM must provide the required procedures in order to function properly.
The recommended procedures must be implemented if the hardware supports
that function. The optional procedures are available if the adapter or driver
requires the functionality. You may add any procedures necessary to support
the specific hardware features of your particular LAN adapter design.
Adjustments to the HSM will also be required if hub management is supported,
or Brouter enhancements are included.
Brief descriptions of these HSM procedures are provided on the following
pages. The descriptions are general and do not apply in every case, nor do they

describe every possible case. Detailed descriptions of the procedures
(including pseudocode) are provided in Chapter 5

2-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Initialization and Removal
The HSM's initialization routineDriverinit , is called by the NetWare
operating system to initialize the adapter hardware.OrfeerInit routine
uses MSM/TSM calls to perform the following tasks:
 Allocate memory for driver variables and structures
« Parse the standard LOAD command-line options
« Process custom command-line parameters and custom firmware
« Register the driver with the LSL

« Register the hardware configuration with the OS

« Setup for the board's ISR or polling procedure

Schedule callback events for timeout detection and recovery

« Handle any initialization errors
The HSM's remove procedui@riverRemove, allows the network supervisor
to unload it from the operating system. This procedure must shutdown the

physical board and return all resources allocated to the driver. The MSM
provides routines that handle the return of driver resources.

Packet Reception and Transmission
The HSM's board service routine will generally need to detect and handle the
events listed below. The driver can be notified of these events by using either
an interrupt service routin@riverlSR , or a polling procedur®riverPoll , or
a combination of both.
« Packet Reception and/or Reception Complete
« Reception Error

« Transmission Complete

« Transmission Error

HSM Overview 2-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

The HSM'sDriverSend procedure is called whenever a packet needs to be
transmitted onto the wire. Prior to calling this procedure, the TSM builds the
appropriate frame and media headers for the packet. The driver simply collects
the header and packet data fragments, then initiates the transmission.

Multi-Operatin g System Provisions

Note‘VI
v

I/O Control Procedures

Novell requires implementing tHeriverEnablelnterrupt and
DriverDisablelnterrupt procedures. These procedures allow for the
transporting of drivers to other 32-bit Intel-based OS platforms where access
to the PIC is restricted.

The ability of an adapter to disable its interrupt capability in the hardware, not
by masking the PIC, and not disabling interrupts at the CPU, is essential to run
under multiprocessor operating systems such as Windows NT.

Multi-operating system support is required for certification. You will find that
passing Novell Labs’ latest test suite for certification will go much smoother and
you will save considerable time if you adhere strictly to the specification. Refer
to Appendix A, "Building the HSMiwvhen writing or updating a driver.

The HSM must provide the control procedubrsverResetand

DriverShutdown, to handle the hardware operations involved in resetting or
shutting down the adapter. Additional control procedures may also be needed
to support multicast addressing and promiscuous mode reception. These
routines ardriverMulticastChange, andDriverPromiscuousChange

The DriverStatisticsChangeandDriverRxLookAheadChange procedures
are optional. These procedures allow drivers for intelligent adapters to update
the statistics table or the LookAhead size only as needed.

Drivers that are Brouter enhanced, or that support the Hub Management
Interface must implement thgriverManagement procedure to handle
management requests and commands.

2-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Timeout Detection

The HSM can still schedule timers used to repeatedly callback the
DriverAESCallBack or theDriverINTCallBack routines at a developer-
specified interval.

For example, the driver may need to be called regularly so that it can inspect
the adapter to determine if it has failed to complete a transmission. If a timeout
error had occurred, the procedure would discard the packet being sent, reset the
board, and begin transmitting the next packet in the send queue.

With this specification, the HSM can cMISMScheduleTimerto setup timer
callbacks. This method is now preferred over previous methods.

HSM Data Structures and Variables

In addition to the procedures described in the previous section, the Hardware
Specific Module must also contain certain data structures and variables. The
primary structures include the Driver Parameter Block, the Driver
Configuration Table, and the Driver Statistics Table.

Chapter 3 provides detailed descriptions of all the required HSM data
structures and variables.

HSM Overview 2-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

HSM Design Considerations

The following section discusses the hardware and coding issues that must be
considered when creating the HSM.

Hardware Issues

Before writing the HSM, the developer should have a thorough understanding
of the adapter. Knowing the characteristics of the hardware, the bus type, and
the data transfer mode will allow you to create a more efficient driver.

For example, HSMs that support adapters on buses with hot plug/unplug
capability (such as PC Card and PCI) must be written so that the HSM does not
attempt to access hardware that is not currently present in the system, or, at
least, does not do inappropriate things as a result of accessing hardware that is
not currently present in the system.

Network Interface Controllers

The LAN driver developer must be familiar with the Network Interface
Controller IC. Every effort should be made to obtain and use current data books
and application notes from the manufacturer. In addition, the manufacturer's
support engineers can provide developers with up-to-date information on
hardware quirks and changes.

Data Transfer Mode

2-6

The MSM and TSM provide certain support procedures that are optimized for
use with a specific data transfer mode. The development of the HSM's packet
reception and transmission routines in particular will be affected by the
adapter's transfer mode. In order to achieve the highest performance, the
developer must select support procedures geared to the data transfer mode.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Bus Type

The data transfer modes are:
+ Programmed I/O
+ Shared RAM (Memory Mapped I/O)
« Direct Memory Access (DMA)

 Bus Master

The bus type and size must also be considered in creating optimized HSM
operations. The HSM's initialization process will be affected by the bus type
when it initializes and registers the hardware configuration with the MSM and
Link Support Layer. The bus types include:

+ Industry Standard Architecture (ISA) and PnPISA

« Micro Channel Architecture

« Extended Industry Standard Architecture (EISA)

PC Card (PCMCIA)

 Peripheral Componenet Interconnect (PClI)

HSM Overview 2-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Coding Issues

NetWare LAN drivers operate as an integral part of the NetWare operating
system. Therefore, the developer must consider the following operating system
characteristics when writing the HSM code.

Multi-Taskin g, Non-Preemptive OS

32-Bit Protected Mode

The NetWare operating system is multi-tasking and non-preemptive. Non-
preemptive means the OS will not interrupt one process so that another process
can execute. Therefore, HSM routines must not dominate system resources. If
the code is optimized, normal execution will not be a problem. Care must be
taken when handling operations such as retry loops and board error conditions
so that other processes can execute in a timely manner.

NetWare runs in 32-bit protected mode. In addition, the operating system
accesses a flat code space where CS=SS=ES=DS. Consequently, all of the
support routines available in the MSM and TSM modules are near calls for the
HSM.

An assembler that supports the use of 32-bit registers is required to build the
HSM. Novell engineers currently use the Phar Lap 386ASMP protected mode
assembler (v4.0 or later).

Interrupt Service Routine

2-8

Note‘VI
\v

WhenDriverISR is called (the system ISR actually receives the interrupt), the
direction flag is cleared, interrupts are disabled, and all registers are pushed on
the stack. The driver only needs to service the interrupt and return (do not use
iret). If the driver sets the direction flag during the routine, it must clear it
before returning.

Novell requires that interrupts remain disabled during DriverISR and
DriverSend . If either routine must enable interrupts, it must disable them before
returning.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

OS Calls to the Driver

Execution Times

Portions of the NetWare operating system are written in the C programming
language. Any HSM routines that are called from a C routine must preserve the
EBX, EBP, ESI, and EDI registers. The HSM routines which this affects are
Driverlnit andDriverRemove.

Drivers can perform certain operations only at certain execution times.
The two principal execution times are:
« Process Time

 Interrupt Time

As you write your driver, you must be aware of which routines are called at
process time and which routines are called at interrupt time.

The table below shows when each driver routine can be called by the operating
system or support module.

Execution Time of Driver Routines

Process Time Interrupt Time
DriverAESCallBack DriverINTCallBack

Driverlnit DriverISR

DriverManagement DriverTimerProcedure (setup with
DriverMulticastChange MSMScheduleTimer)

DriverPoll

DriverPriorityQueueSupport
DriverPromiscuoucChange
DriverRemove

DriverReset
DriverRxLookAheadChange
DriverSend

DriverShutdown
DriverStatisticsChange

HSM Overview 2-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

The execution time restrictions for TSM and MSM support routines are
documented in Chapters 6 and 7.

Process Time
At process time the MLID is allowed to:
+ Allocate memory
« Do file I/0O tasks (with some exceptions)
There are two types of process time routines:
« Routines that suspend execution to allow other processes to execute

« Routines that do not suspend execution

Interrupt Time

When the operating system's interrupt handler calls a routine, that routine
operates at interrupt time.

At interrupt time, routines must not do the following:
+ Allocate memory
« Do file I/O tasks
« Suspend execution
« Call another routine that suspends execution
Interrupt time routines must be highly optimized and limit their execution time.

Note‘VvI When a driver routine calls another driver routine you must be aware of the
execution time restrictions for both calls. For example, DriverISR typically calls
DriverSend to transmit the next packet in the send queue after a transmit

complete interrupt. Since DriverISR executes at interrupt time, DriverSend will
also execute at interrupt time and must observe the same interrupt time
restrictions. The same applies to DriverReset .

2-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Code and Data Space

This section describes the organization of the code and data space for Novell
32-bit LAN drivers. Figure 2.1 illustrates the code and data space used for
multiple adapters with multiple frame support. The Frame Data Space, which
represents a “Logical Board”, is created by the MSM for each loaded frame
type. The Adapter Data Space is created by the MSM for each physical board.
Since HSMs are reentrant, all physical boards of the same type use a single
Adapter Code Space. (See the Reentrancy section later in this chapter.)

Figure 2-1 Implementation of Multiple Frame/Multiple Adapter Support

Physical Data and Logical
Boards Code Spaces Boards

Frame Data 1 i ;
Space 3 . 6

Frame Data 1
Space 2 ' i \ 5

Frame Data 1
Space 1] 4

L Adapter Y
— Data Space 2

Frame Data :
Space 1 A : 3

L Adapter Y
Brand Y — Data Space 1

Adapter Y
Code Space

Frame Data :
Space 2 TR i SNAP T2

Frame Data .
Space 1 TR T 8023 P

= Adapter X

Adapter X
Code Space

HSM Overview 2-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZI'IA 200 - TE'€A 2ads

Spec v3.31 - Doc v1.12

Frame Data Space

Note‘VI
\v

Adapter Data Space

Adapter Code Space

Reentrancy

The Frame Data Space contains all the information needed to support a specific
frame type as well as the hardware configuration of the corresponding board.
For each loaded frame type, there will be a separate Frame Data Space
allocated representing a Logical Board. (see Chapter 3 for details on the Frame
Data Space)

Novell requires drivers to support all frame types for a particular topology.
Because all TSMs provide full multiple frame support, drivers developed with
these modules are guaranteed to support all applicable frame types for the

topology.

The Adapter Data Space contains certain hardware and statistical information
needed to drive or manage a particular physical board. There is only one
Adapter Data Space allocated for each physical board, regardless of the number
of frame types supported by that board. (See Chapter 3 for details on the
Adapter Data Space.)

When multiple frame types are loaded for an adapter and/or when multiple
adapters of the same type are loaded, a single code image of the driver is used
for all logical boards associated with those adapters.

Reentrancy, in this case, means that the driver code must be written to work
with multiple logical boards and/or with multiple adapters of the same type.

The MSM and TSM will pass pointers to the appropriate Frame Data Space and
Adapter Data Space when calling a driver routine. References to structures and
variables must be performed using pointers and offsets rather than hard-coded
values.

The HSM linker definition file must include the keyword, “reentrant”. This
keyword allows a driver to be loaded more than once to support multiple frame
types or multiple boards of the same type. However, only a single code image
of the driver is loaded.

2-12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Recommended Support

Multicast Addressin g

Multicast addressingiust be supported if the media supports it (Ethernet,
Token-Ring and FDDI). If your adapter hardware cannot support it, but the
media does, the adapter cannot be certified. Refer to Chapter 5 in the
DriverMulticastChange section.

Promiscuous Mode

Drivers that pass all packets being received by the adapter are said to have a
promiscuous reception mode. Hub management, and other monitoring
functions, would use this mode. Novell strongly recommends the HSM support
promiscuous mode if the adapter is capable of supporting it. The HSM must
enable or disable promiscuous reception on request as described in the
DriverPromiscuousChangesection of Chapter 5.

HSM Overview 2-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Optional Support

Hub Management

The Simple Network Management Protocol (SNMP) and the HUBCON utility
can manage 10BaseT repeaters and Token-Ring concentrator hubs attached to
or integrated into the serva@rhe Hub Management Interfasapplement

describes how to support management requests from these two agents in the
HSM.

Source Routin g

Brouter

2-14

A Novell 32-bit LAN driver may include the capability to pass packets across
an IBM bridge. To do this, source routing information must be added to the
packet's MAC header. The Novell provided ROUTE.NLM and TSM modules
handle this procedure with no interaction from the HSM. Sberce Routing
supplement describes the functions of the source routing module.

A Token-Ring adapter/driver may be capable of source route bridging support.
This is a mechanism that allows the source of traffic to dynamically discover
routes and determine which one to use when sending data to a particular
destination. With the Source Route Bridge NLM loaded, a server can also
function as a router or bridge. For HSM support requirements s@&rdbter
Supportsupplement.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

chapter 3

Introduction

HSM Data Structures and Variables

This chapter describes the data structures and variables that the Hardware
Specific Module must define when a driver is written using the support
modules. All the data structures and variables listed in this chapter must be
present in the OSDATA segment in order for the HSM to function properly.

Global Data Access

When the MSM and the TSM are loaded, all public variables and procedures
are exported to the operating system and are available to any NLMs
subsequently loaded as shown in Figure 3.1. The HSM can gain access to them
by declaring thenexternand by including them in the import list in the Linker
Definition File (see Appendix A). This keyword tells the linker which external
variables and procedures the HSM must access.

HSM Data Structures and Variables 3-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Figure 3-1 Global Data Access

NetWare OS
Public List
. MS'\/l ““
Parameter Block) !
... exoort
Publics i
Externals import
TSM
-t Parameter Block
... exoort
Publics i
Externals import
HSM
- Parameter Block
... oxport
Publics i
... . "
Externals Lmpor

The modules that make up an MLID are designed to be loaded in the following
order:

1. MSM .NLM
2. <TSM>.NLM

3. <HSM>.LAN

3-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Specification Version
So that test programs can verify the ODI specification version that an HSM is
written to, developers must put the ODI specification version nhumber in the
OSDATA segment, as follows:
HSMSPEC db ‘HSM_ASPEC_VERSION: 3.31',0

Note‘vvl One space is required between the colon and the first digit.

HSM Data Structures and Variables 3-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Driver Parameter Block

3-4

Because it is loaded last, the HSM must make its public variables and
procedures available to the support modules using a structure called the
DriverParameterBlock

The DriverParameterBlocktructure contains the required HSM public
variables, as well as pointers to the driver's tables, structures, and procedures.
The fields of the DriverParameterBlock are accessed by external procedures
using offsets, therefore its format is strictly defined. (See the
DriverParameterBlock illustration belgw

In order for external procedures to gain access to the Parameter Block, the
HSM'sDriverlnit routine passes a pointer to the block in ESI when it calls
<TSM>RegisterHSM.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Driver Parameter Block

DriverParameterBlock Label Dword
DriverParameterSize dd DriverParameterBlockSize
DriverStackPointer dd 0

DriverModuleHandle dd 0

DriverBoardPointer dd 0

DriverAdapterPointer dd 0

DriverConfigTemplatePtr dd DriverConfigTemplate
Driver FirmwareSize dd 0

DriverFirmwareBuffer dd 0

DriverNumKeywords dd 0

DriverKeywordText dd 0

DriverKeywordTextLen dd 0
DriverProcessKeywordTab dd 0
DriverAdapterDataSpaceSize dd SIZE DriverAdapterDataSpace
DriverAdapterDataSpacePtr dd DriverAdapterDataSpaceTemplate
DriverStatisticsTablePtr dd DriverStatisticsTable
DriverEndofChainFlag dd 0

DriverSendWantsECBs dd 0

DriverMaxMulticast dd 20
DriverNeedsBelowl16Meg dd 0

DriverAESPtr dd 0

DriverCallBackPtr dd offset DriverCallBack
DriverISRPtr dd offset DriverISR
DriverMulticastChangePtr dd offset DriverMulticastChange
DriverPollPtr dd 0

DriverresetPtr dd offset DriverReset
DriverSendPtr dd offset DriverSend
DriverShutdownPtr dd offset DriverShutdown
DriverTxTimeoutPtr dd 0
DriverPromiscuousChangePtr dd offset DriverPromiscuousChange
DriverStatisticsChangePtr dd 0
DriverRxLookAheadChangePtr dd 0

DriverManagementPtr dd 0
DriveEnableInterruptPtr dd offset DriveEnablelnterrupt
DriverDisablelnterruptPtr dd offset DriverDisablelnterrupt
DriverlSR2Ptr dd offset DriverISR2
DriverReservedl dd 0

HSMSpecVerString dd 0
DriverPriorityQueuePtr dd 0

DriverDisablelnterrupt2Ptr dd offset DriverDisablelnterrupt2
DriverParameterBlockSize equ $-

DriverParameterBlock

HSM Data Structures and Variables 3-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Table 3.1 Driver Parameter Block Field Descriptions

Offset

00h

04h

08h

0Ch

10h

14h

3-6

Name Bytes Description

DriverParameterSize 4 Set this variable to the size of the defined
DriverParameterBlock structure before
calling <TSM>RegisterHSM . Since the
block format is strictly defined and its
size must remain constant, the MSM
uses this field to screen for invalid
parameter blocks. <TSM>RegisterHSM
will fail if this value is incorrect.

DriverStackPointer 4 When the operating system calls the
developer's Driverlnit routine, it passes
certain information on the stack needed
by the MSM. Driverlnit must set this
variable to the value of the stack pointer
(ESP) after it pushes the C registers
(EBP, EBX, ESI, EDI). During
<TSM>RegisterHSM , the MSM uses
this value to locate the parameters on
the stack.

DriverModuleHandle 4 The MSM sets this value when the
developer's Driverlnit routine calls
<TSM>RegisterHSM . This handle is
used to identify the Network Loadable
Module and is used by the operating
system support routines to access and
manage information about the NLM. The
HSM's DriverRemove routine needs
this value when it calls
MSMDriverRemove .

DriverBoardPointer 4 The MSM sets this value when the
developer's Driverlnit routine calls
<TSM>RegisterHSM . This field is
reserved for use by the MSM.

DriverAdapterPointer 4 The MSM sets this value when the
developer's Driverlnit routine calls
MSMRegisterHardwareOptions . This
field is reserved for use by the MSM.

DriverConfigTemplatePtr 4 Set this variable to point to the driver's
configuration table template before
calling <TSM>RegisterHSM . The
configuration table is described later in
this chapter.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Table 3.1 Driver Parameter Block Field Descriptions

continued

Offset

18h

1Ch

20h

24h

28h

2Ch

30h

34h

38h

3Ch

Name

DriverFirmwareSize

DriverFirmwareBuffer

DriverNumKeywords

DriverKeywordText

DriverKeywordTextLen

DriverProcessKeywordTab

DriverAdapterDataSpaceSize

DriverAdapterDataSpacePtr

DriverStatistics TablePtr

DriverEndOfChainFlag

Bytes

4

Description

(see the “Driver Firmware” section later
in this chapter)

(see the “Driver Firmware” section later
in this chapter)

(see the “Driver Keywords” section later
in this chapter)

(see the “Driver Keywords’ section later
in this chapter)

(see the “Driver Keywords” section later
in this chapter)

(see “Driver Keywords” section later in
this chapter)

Set this field to the size of the
DriverAdapterDataSpace template
(described later in this chapter) before
calling <TSM>RegisterHSM .

Set this field to point to the
DriverAdapterDataSpace template
(described later in this chapter) before
calling <TSM>RegisterHSM .

Set this variable to the offset of the
DriverStatistics Table from the top of the
DriverAdapterDataSpace template
before calling <TSM>RegisterHSM . The
statistics table and template are
described later in this chapter.

Before calling
MSMRegisterHardwareOptions , set
this field to a nonzero value if the driver
supports shared interrupts and wants to
be placed at the end of the chain. This
field is used only if bit 5 is set in the
MLIDSharingFlags field of the
configuration table.

HSM Data Structures and Variables 3-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Table 3.1 Driver Parameter Block Field Descriptions

continued

Offset

40h

44h

3-8

Name Bytes

DriverSendWantsECBs 4

DriverMaxMulticast 4

ODI Specification: Hardware Specific Modules

Description

Before calling
MSMRegisterHardwareOptions , set
this field to any nonzero value if the
DriverSend routine needs ECBs rather
than TCBs. This should be used by
intelligent bus master adapters that are
designed to be ECB aware. (see
Chapter 4)

Before calling
MSMRegisterHardwareOptions , set
this field to the maximum number of
multicast addresses that the adapter can
handle. EtherTSM, TokenTSM, and
FDDITSM can accommodate an almost
unlimited number of multicast addresses
(limited only by server memory). If an
HSM can handle unlimited multicast
addresses, setto -1. (See also bits 9 and
10 definitions in the configuration table
MLIDFlags field later in this chapter.)

(HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

Table 3.1 Driver Parameter Block Field Descriptions continued

Offset Name Bytes Description

48h DriverNeedsBelowl16Meg 4 Before calling <TSM>RegisterHSM ,
drivers for Bus Master or DMA adapters
can set this field to any nonzero value if
the adapter can only communicate with
host memory below 16 megabytes. This
will inform the MSM to only allocate
buffers, RCBs, TCBs, and ECBs below
the 16 megabyte boundary if the system
already has more than 16 megabytes at
the time the driver loads.

If the driver is loaded on a system that
initially has less than 16 megabytes of
memory but will have more memory
added later using the server's
REGISTER MEMORY command, you
must use the BELOW16 keyword (see
Appendix A) on the load command line to
force the MSM to allocate memory below
16 megabytes.

If the driver preallocates more than 8
RCBs, the number of RCBs below 16
megabytes can be adjusted above the
default of 8, by using the BUFFERS16
keyword. The MSM allocates these at
initialization (see Appendix A).

4Ch DriverAESPtr 4 Set this field to point to the HSM's
DriverAES routine before calling
MSMScheduleAESCallBack . (If AES
callback events are not used, set this
field to zero.)

50h DriverCallBackPtr 4 Set this field to point to the HSM's
DriverCallBack routine before calling
MSMSchedulelntTimeCallBack . (If
interrupt level callback events are not
used, set this field to zero.)

54h DriverISRPtr 4 Set this field to point to the HSM's
DriverISR routine before calling
MSMSetHardwarelnterrupt . (If
DriverPoll is used instead, set this field
to zero).

HSM Data Structures and Variables 3-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Table 3.1 Driver Parameter Block Field Descriptions

continued

Offset

58h

5Ch

60h

64h

68h

6Ch

70h

74h

3-10

Name

DriverMulticastChangePtr

DriverPollPtr

DriverResetPtr

DriverSendPtr

DriverShutdownPtr

DriverTxTimeoutPtr

DriverPromiscuousChangePtr

DriverStatisticsChangePtr

Bytes

4

Description

Set this field to point to the HSM's
DriverMulticastChange routine before
calling

MSMRegisterHardwareOptions . (If
multicast addressing is not supported,
set to zero.)

Set this field to point to the HSM's
DriverPoll routine before calling
MSMEnablePolling . (If this routine is
not used, set to zero.)

Set this field to point to the HSM's
DriverReset routine before calling
MSMRegisterHardwareOptions

Set this field to point to the HSM's
DriverSend routine before calling
MSMRegisterHardwareOptions

Set this field to point to the HSM's
DriverShutdown routine before calling
MSMRegisterHardwareOptions

If using the RX-Net TSM, set this field to
point to the HSM's DriverTxTimeout
routine before calling
MSMRegisterHardwareOptions . (If
the RX-Net TSM is not used, set to zero.)

Set this field to point to the HSM's
DriverPromiscuousChange routine
before calling
MSMRegisterHardwareOptions . (If
promiscuous mode is not supported, set
this field to zero.)

Set this field to point to the HSM's
DriverStatisticsChange routine before
calling

MSMRegisterHardwareOptions . (If
this optional procedure is not supported,
set this field to zero.)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

Table 3.1 Driver Parameter Block Field Descriptions continued

Offset Name Bytes Description

78h DriverRxLookAheadChangePtr 4 Set this field to point to the HSM's
DriverRxLookAheadChange routine
before calling
MSMRegisterHardwareOptions . (If
this optional procedure is not supported,
set this field to zero.)

7Ch DriverManagementPtr 4 If a driver accepts management requests
from outside NLMs (HMI, BRIDGE, or
CSL), set this field to point to the
DriverManagement routine before
calling
MSMRegisterHardwareOptions . (If
this optional procedure is not supported,
set this field to zero.)

80h DriverEnablelnterruptPtr 4 Set this field to point to the HSM's
DriverEnablelnterrupt routine before
calling

MSMRegisterHardwareOptions . (If
this procedure is not supported, set this
field to zero.)

84h DriverDisablelnterruptPtr 4 Set this field to point to the HSM's
DriverDisablelnterrupt routine before
calling

MSMRegisterHardwareOptions . (If
this procedure is not supported, set this
field to zero.)

88 DriverISR2Ptr 4 Set this field to point to the HSM’s
DriverISR2 routine before calling
MSMSetHardwarelnterrupt . If there is
no second interrupt, set this field to zero
(0).
DriverISR2Ptr, DriverDisablelnterrupt2,
and MLIDCFG_Interrupt2in the
configuration table must all be set the
same; either all of them are set or all of
them are zero.

8Ch DriverReserved 4 This field is reserved and must not be
modified by the HSM.

HSM Data Structures and Variables 3-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Table 3.1 Driver Parameter Block Field Descriptions

continued

Offset

90h

94h

98h

3-12

Name Bytes

HSMSpecVerString 4

DriverPriorityQueuePtr 4

DriverDisablelnterrupt2Ptr 4

Description

Set this field to point to a version string
that describes the version that the HSM
is written to. This string is defined by
Novell as:

"HSM_ASPEC_VERSION: 3.31".

Note: One space is required between
the colon and the first digit.

Set this field to point to the HSM’s
DriverPriorityQueueSupport routine.
This routine will be called by the TSM to
handle HSM priority packets when the
normal send path is congested. If not
used, set this field to zero (0). In either
case this field must be set before calling
MSMRegisterHardwareOptions

Set this field to point to the HSM’s
DriverDisablelnterrupt2 routine. If
unused, set this field to zero (0).

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

Driver Configuration Table

The configuration table is a structure defined by the ODI specification. It
contains information about the driver and the adapter's hardware configuration.
The HSM must provide a template for initializing the configuration table fields.
The MSM creates a copy of the template for each loaded frame type. The
configuration table is shown on the following page. A description of each field
follows the example.

The configuration table fields are used primarily during initialization to reserve
hardware resources. All fields that can be modified from the command line
when the driver is loaded, must be set to their default value before calling
MSMParseDriverParameters Any field not used must be set to 0, unless
otherwise noted. TheISMParseDriverParametersroutine collects

information entered from the command-line and/or interactively from the
operator console. Once the configuration table is filled in, the driver uses
MSMRegisterHardwareOptions to reserve the hardware resources.

Driver Frame Data Space

WhenDriverlnit calls<TSM>RegisterHSM, the MSM allocates the Frame
Data Space and copies the configuration template into this area. For each
loaded frame type, there will be a separate Frame Data Space containing a
separate configuration table. The MSM and TSM will pass a pointer to the
appropriate Frame Data Space when calling HSM procedures. The driver can
also access the configuration tables usingMiB&VirtualBoardLink

variable.

HSM Data Structures and Variables 3-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Figure 3-2 Frame and Adapter Data Space

Code and .
Data Spaces Logical
Boards
Frame Data Space _| | .- ’ 8023L
Configuration Table 1 _ A
Frame Data Space _| | .- T EII i L
Configuration Table - H
Frame Data Space S :
Configuration Table 892'2
Physical Frame DataSpace ||l 1 3
Board Configuration Table - S'.\IAP '

Adapter Data Space
Hardware Specific Vars
Statistics Table

Adapter Code Space

3-14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example Template for the Driver Confi guration Table (based on the NE2000)

DriverParameterBlock Label Dword

DriverConfigTemplatePtr dd DriverConfigTemplate

:DriverParameterBlockEnd

DriverConfigTemplate Label Dword
MLIDCFG_Signature db 'HardwareDriverMLID'
db 8 dup (")
MLIDCFG_MajorVersion db 1
MLIDCFG_MinorVersion db 14
*MLIDNodeAddress db 6 dup (OFFh)
MLIDModeFlags dw 0010010001001001b
MLIDBoardNumber dw 0000
MLIDBoardInstance dw 0000
MLIDMaximumSize dd 00000000
MLIDMaxRecvSize dd 00000000
MLIDRecvSize dd 00000000
MLIDCardName dd 00000000
MLIDShortName dd DriverNICShortName
*MLIDFrameType dd 00000000
MLIDReserved0 dw 0000
MLIDFramelD dw 0000
MLIDTransportTime dw 1
MLIDRouteHandler dd 00000000
MLIDLineSpeed dw 10
MLIDLookAheadSize dw 0000
MLIDCFG_SGCount db 00
MLIDReservedl db 00
MLIDPriority Sup dw 0000
MLIDReserved2 dd 00000000
MLIDMajorVersion db 00
MLIDMinorVersion db 00
MLIDFlags dw 0000000000000000b
*MLIDSendRetries dw 10
MLIDLink dd 00000000
MLIDSharingFlags dw 0000
*MLIDSlot dw 0000
*MLIDIOPortsAndLengths dw 0300h, 32,0, 0
*MLIDMemoryDecodeO dd 00000000
*MLIDMemoryLengthO dw 0000

HSM Data Structures and Variables 3-15

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

*MLIDMemoryDecodel dd 00000000

*MLIDMemoryLengthl dw 0000
*MLIDInterrupt db 3, OFFh
*MLIDDMAUsage db OFFh, OFFh
MLIDResourceTag dd 00000000
MLIDConfig dd 00000000
MLIDCommandString dd 00000000
MLIDLogicalName db 18 dup (0)
MLIDLinearMemoryO dd 00000000
MLIDLinearMemory1 dd 00000000
*MLIDChannelNumber dw 0000
*MLIDBusTag dd 00000000
MLIDIOCfgMajorVersion db 1
MLIDIOCfgMinorVersion db 00

* These values may be configured from the load command line.

3-16 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Table 3.2 Configuration Table Field Descriptions

Offset

00h

1Ah

1Bh

1Ch

Name

MLIDCFG_Signature

MLIDCFG_MajorVersion

MLIDCFG_MinorVersion

MLIDNodeAddress

Bytes

26

Description

This field is a mandatory remnant. In pre-MLID
LAN drivers, this field contained a string which
indicated the start of the configuration table.
The string is “HardwareDriverMLID” followed
by exactly eight spaces. It must be included in
the table.

This field must be set to the major version
number of the configuration table. The version
is controlled by Novell and is currently v1.14,
therefore, 1 is the major version number.

This field must be set to the minor version
number of the configuration table. The version
is controlled by Novell and is currently v1.14,
therefore, 14 is the minor version number.

When Driverlnit calls <TSM>RegisterHSM ,
the MSM fills these bytes with FFh then checks
the command line for a node address override.
If an override address is found, the MSM
places the physical layer format of the address
in this field.

After the driver calls
MSMRegisterHardwareOptions , it must
check this field for an override.

If these bytes are not all FFh, an override
occurred and the HSM must set the physical
board's address to the value in this field. If
there was not an override, the HSM must place
the node address read from the hardware in
this field.

HSM Data Structures and Variables 3-17

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZI'IA 200 - TE'€A 2ads

Spec v3.31 - Doc v1.12

Table 3.2 Configuration Table Field Descriptionsontinued

Offset

22h

24h

26h

28h

2Ch

3-18

Name

MLIDModeFlags

MLIDBoardNumber

MLIDBoardlInstance

MLIDMaximumsSize

MLIDMaxRecvSize

Bytes

Description

Once the driver calls MSMRegisterMLID , the
MSM places the physical layer format of the
node address in the MSMPhysNodeAddress
variable and sets the appropriate
MLIDModeFlag bits. This physical address
may be in canonical or noncanonical form.

(For more information, refer to
MLIDModeFlags, MSMPhysNodeAddress ,
and The Canonical and Noncanonical
Addressing supplement.)

See the bit map that follows this table for
MLIDModeFlags.

The MSM sets this field to the board number
assigned by the LSL when Driverlnit calls
MSMRegisterMLID . Logical board 0 is used
internally in the operating system. Drivers are
assigned logical board numbers 1 through 255.

The MSM sets this field when the Driverlnit
routine calls MSMRegisterHardwareOptions

If the HSM is driving two adapters, all logical
boards associated with the first adapter would
have a value of 1 and all logical boards
associated with the second adapter would
have the value 2.

Note: Each controller on a multichannel
adapter is treated as a separate adapter.

The MSM sets this field to the LSL's maximum
ECB buffer size during <TSM>RegisterHSM .
The HSM may lower this value prior to calling
MSMRegisterMLID . During
MSMRegisterMLID , the TSM will modify this
size if the topology requires a smaller
maximum packet size. (See the “Maximum
Packet Size” section following this table.)

The MSM and TSM coordinate to initialize this
field during MSMRegisterMLID . The HSM
must not modify this field. (See the “Maximum
Packet Size” section following this table.)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001

March 26, 1998

Table 3.2 Configuration Table Field Descriptionsontinued

Offset Name Bytes Description

30h MLIDRecvSize 4 The MSM and TSM coordinate to initialize this
field during MSMRegisterMLID . The HSM
must not modify this field. (See the “Maximum
Packet Size” section following this table.)

34h MLIDCardName 4 The HSM must either set this field to O (see
below), or point to a byte-length preceded, null-
terminated, ASCII string that is identical to the
description string in the linker definition file
(see Appendix A).

For example: 14, “ NetWare NE2000 ", O

If this field is initialized to zero, the MSM wiill
extract the description string from the NLM
header (derived from the linker definition file)
when the HSM's Driverlnit routine calls
<TSM>RegisterHSM . This way, only one
description string must be maintained.

38h MLIDShortName 4 The HSM must set this field to point to a byte-
length preceded, null-terminated, ASCII string
that describes the adapter in eight bytes or less
(for example: 6, “NE2000”, 0). The string is
usually the name of the <HSM>.LAN file.

3Ch MLIDFrameType 4 The MSM sets this field when the HSM's
Driverlnit routine calls
MSMRegisterHardwareOptions . Itcontains a
pointer to a string that describes the HSM's
frame type. (See the Frame Types and
Protocol IDs supplement.)

40h MLIDReserved0 2 This field is reserved for future use, and must
be set to 0.
42h MLIDFramelD 2 The MSM sets this field when the Driverlnit

routine calls MSMRegisterHardwareOptions
It contains the frame type ID number. (See the
Frame Types and Protocol IDs supplement.)

44h MLIDTransportTime 2 This field indicates the time (in ticks) it takes
the adapter to transmit a 576-byte packet. Most
HSMs set this field to 1. This field cannot be set
to 0.

HSM Data Structures and Variables 3-19

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Table 3.2 Configuration Table Field Descriptionsontinued

Offset

46h

4Ah

4Ch

4Eh

3-20

Name

MLIDRouteHandler

MLIDLineSpeed

MLIDLookAheadSize

MLIDCFG_SGCount

Bytes

4

Description

This field is used by the TSM and the source
routing module, ROUTE.NLM. The HSM must
set this field to 0 and then not modify it. If the
HSM is using the

Token-Ring or FDDI TSM, the field can be
modified by ROUTE.NLM, but should not be of
any concern to the HSM.

This field contains the speed of the line driver.
This value is normally specified in megabits per
second (Mbps). If the line speed is less than 1
Mbps or if it is a fractional number, the value of
this field can be defined in kilobits per second
(Kbps) by setting the most significant bit to 1.

This field is undefined if it is set to O.

For example:

If the speed of the line driver is 10 Mbps, put
10 (decimal) in this field.

If the speed is 2.5 Mbps, then the value of this
field is 2500 (decimal) logically ORed with
8000h (most significant bit is 1 for Kbps).

The TSM sets this variable. This is the amount
of data required by protocol stacks when
previewing received packets. This size may be
dynamically changed and can be up to a
maximum of 128 bytes. See also
DriverRxLookAheadChange

The variable, MSMMaxFrameHeaderSize , is
equal to this value plus the maximum media
header size.

The HSM sets this variable. This field contains
the maximum number of scatter/gather
elements the adapter is capable of handling.
This field is only valid if the
DriverSupportsPhysFrags bit in the
MLIDModeFlags field is set.

Note: The minimum value is 2. If set less than
2, the MSM will setitto 17 (16 ECB fragments
and 1 MAC header).

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001

March 26, 1998

Table 3.2 Configuration Table Field Descriptionsontinued

Offset

4Fh

50h

52h

56h

57h

58h

Name

MLIDReservedl

MLIDPrioritySup

MLIDReserved2

MLIDMajorVersion

MLIDMinorVersion

MLIDFlags

Bytes

1

Description

This field is reserved for future use and must
be set to 0.

The number of priority levels that the HSM can
handle. This field has a maximum of 7 priorities
(1-7). Zero indicates no priority packet support.
The HSM can set this field to a value from 0O to
7.

This field is reserved for future use and must
be set to 0.

This field may contain the major version
number of the LAN driver, or be set to 0 (see
below). If it contains the version number it must
match the version number specified with the
“version” keyword in the linker definition file
(see Appendix A).

A second option is to initialize this field to zero,
in which case the MSM will extract the major
version number from the NLM header (derived
from the linker definition file) when the
Driverlnit routine calls <TSM>RegisterHSM .
This way, only one version string must be
maintained.

This field contains the minor version number of
the LAN driver. The number must match the
version number specified with the “version”
keyword in the linker definition file (see
Appendix A).

If the MLIDMajorVersion field is initialized to
zero, the MSM will extract the minor version
number from the NLM header (derived from the
linker definition file) when the HSM's Driverlnit
routine calls <TSM>RegisterHSM . This way,
only one version string must be maintained.

See the MLIDFlags bit map following this table.

HSM Data Structures and Variables 3-21

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Table 3.2 Configuration Table Field Descriptionsontinued

Offset

5Ah

5Ch

60h

62h

64h

(64h)
(66h)
(68h)

3-22

Name Bytes
MLIDSendRetries 2
MLIDLink 4
MLIDSharingFlags 2
MLIDSIlot 2
MLIDIOPortsAndLengths 8

(MLIDIOPort0) 2)
(MLIDIORange0) 2)
(MLIDIOPort1) 2

Description

Set this field to a value indicating the number of
times the HSM should retry sending a packet
before aborting the transmission. This retry
count can be any value, but it might be
overwritten by a value entered on the server
console at load time.

This field is used by the OS and must not be
changed.

See the MLIDSharingFlags bit map following
this table.

For Micro Channel, EISA, PCI and other
busses which allow for identification of where
the adapter is placed, this field holds the
Hardware Instance Number (HIN). This is a
system-wide unique handle for the device
which is returned by the MSMSearchAdapter
call. This value will normally correspond to the
number silk-screened on the motherboard or
stamped on the chassis of the computer, and is
here solely to help the user identify the adapter.
In cases where there are integrated
motherboard devices, PCI BIOS v2.0 devices,
PCI BIOS v2.1 adapters with multiple devices
or functions, PnP ISA devices, or a conflict of
physical slot numbers, the instances will be
assigned a unique value. Set to minus 1 if not
used (FFFFh).

Note: In the past the unused value for this field
was 0, which was a reserved value for
MicroChannel and EISA adapters. Older
MicroChannel and EISA based adapters may
still use 0 to indicate unused, however when a
driver is being updated it must be changed to
FFFFh.

This field contains the I/O port information as
described below. (Set to zero if not used.)

Primary base 1/0O port.
Number of I/O ports starting at MLIDIOPort0.

Secondary base I/O port.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Table 3.2 Configuration Table Field Descriptionsontinued

Offset

(6Ah)
6Ch

70h

72h

76h

78h

(78h)
(79h)

Name Bytes Description
(MLIDIORangel) 2) Number of I/O ports starting at MLIDIOPort1.
MLIDMemoryDecode0 4 This field contains the absolute primary

memory address used by the adapter. If not
used, set this field to 0. (See the note in the
MLIDLinearMemory0 description at offset
9Ah.)

MLIDMemoryLengthO 2 If bit #£15 of the MLIDSharingFlags is set, this
field defines the number of pages of memory
decoded at MLIDMemoryDecodeO. If bit #15 is
clear, this field defines the number of
paragraphs (16 bytes) of memory decoded at
MLIDMemoryDecodeO. If
MLIDMemoryDecode0 is not defined, set this
field to 0.

Note: The size of a page of memory is
determined by the processor the code is
assembled on; i.e. Intel is 4k.

MLIDMemoryDecodel 4 This field contains the absolute secondary
memory address used by the adapter. If not
used, set this field to 0. (See the note in the
MLIDLinearMemory1 description at offset
9Eh.)

MLIDMemoryLengthl 2 If bit #15 of the MLIDSharingFlags is set, this
field defines the number of pages of memory
decoded at MLIDMemoryDecodel. If bit #15 is
clear, this field defines the number of
paragraphs (16 bytes) of memory decoded at
MLIDMemoryDecodel. If
MLIDMemoryDecodel is not defined, set this
field to 0.

Note: The size of a page of memory is
determined by the processor the code is
assembled on; i.e. Intel is 4k.

MLIDInterrupt 2 This field contains interrupt information as
described below. (Set to FFh if not used.)
(MLIDInterrupt0) (1) Primary interrupt vector number.
(MLIDInterruptl) (1) Secondary interrupt vector number.

HSM Data Structures and Variables 3-23

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZI'IA 200 - TE'€A 2ads

Spec v3.31 - Doc v1.12

Table 3.2 Configuration Table Field Descriptionsontinued

Offset

7Ah

(7Ah)
(7Bh)
7Ch

80h

84h

88h

9Ah

3-24

Name

MLIDDMAUsage

(MLIDDMAUsage0)
(MLIDDMAUsagel)
MLIDResourceTag

MLIDConfig

MLIDCommandString

MLIDLogicalName

MLIDLinearMemoryO

Bytes

2

)
@

18

Description

This field contains DMA channel information as
described below. (Set to FFh if not used.)

Primary DMA channel.
Secondary DMA channel.

This field is set by the MSM and contains a
pointer to the /IOResourceTag.

This field is set by the LSL and contains a
pointer to the LSL's copy of the configuration
table. This is used only by the LSL.

This field is set by the MSM to point to a
structure containing two fields. The first field is
a forward link to the next structure if there is
one. The second field is a pointer to a NULL-
terminated string containing the parameters
entered by the user on the command line.
Normally, there will be only one node in the
linked list, but if there are more, the command
line is the concatenation of all of them. Bits 9
and 10 of the MLIDSharingFlags bit are used in
conjunction with this field.

HSMs must not use this field. It contains the
logical name of the LAN driver if given one at
load time. For example:

load NE2000 NAME=" ?

The operating system fills in this field with the
linear address of MLIDMemoryDecodeO when
the HSM's Driverlnit routine calls
MSMRegisterHardwareOptions

Do NOT convert MLIDMemoryDecodeO to the
logical or physical address. If shared memory
must be accessed before the hardware options
are registered, refer to the
MSMReadPhysicalMemory and
MSMWritePhysicalMemory support routine
descriptions.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001

March 26, 1998

Table 3.2 Configuration Table Field Descriptionsontinued

Offset

9Eh

A2h

Adh

A8h

A9h

Name

MLIDLinearMemoryl

MLIDChannelNumber.

MLIDBusTag

MLIDIOCfgMajorVersion

MLIDIOCfgMinorVersion

Bytes

4

Description

The operating system fills in this field with the
linear address of MLIDMemoryDecodel when
the HSM's Driverlnit routine calls
MSMRegisterHardwareOptions

If shared memory must be accessed before the
hardware options are registered, refer to the
MSMReadPhysicalMemory and
MSMWritePhysicalMemory support routine
descriptions.

This field is used for multichannel adapters. It
holds the channel number of the NIC to use.
The channel number can be specified when a
driver is loaded using the “channel=#" keyword
(where # is any value greater than zero). Set
this field to zero if multichannel are not used.

Pointer to an architechure-dependent value,
which specifies the bus on which the adapter is
found. Set this field before calling
MSMRegisterHardwareOptions . The value
placed in this field is returned by
SearchAdapter unless the board is Legacy
ISA, in which case it is set to zero.

This field must be set to the major version
number of the 1/O configuration part of the
configuration table. The current major version
number is 1.

This field must be set to the minor version
number of the 1/O configuration part of the
configuration table. The current minor version
number is 0.

HSM Data Structures and Variables 3-25

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZI'IA 200 - TE'€A 2ads

Spec v3.31 - Doc v1.12

MLIDModeFlags Bit Map

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 0 0 0 0[0]|1

Table 3.3 MLIDModeFlag Descriptions

Bit
15,14

13
12

10

3-26

Description

The MSM controls these bits. The bits indicate whether the MLIDNodeAddress field of the
configuration table contains a canonical or noncanonical address.

Bit 15 indicates if the node address format is configurable. If this bit is set, the format is
configurable and the HSM must use the MSMPhysNodeAddress variable instead of the
configuration table MLIDNodeAddress to obtain the physical layer node address. (For OS
versions later than 3.11, the MSM always sets bit 15.)

Bit 14 indicates whether MLIDNodeAddress contains the canonical or noncanonical form
of the node address. The state of bit 14 is only defined when bit 15 is set.

The bit 15 and 14 combinations are:
00 = MLIDNodeAddress format is unspecified. The node address is assumed to be in
the physical layer's native format -- MSMPhysNodeAddress is not used.
01 = This is an illegal value and must not occur.
10 = MLIDNodeAddress is canonical -- use MSMPhysNodeAddress .
11 = MLIDNodeAddress is non-canonical -- use MSMPhysNodeAddress .

(See also MLIDNodeAddress, MSMPhysNodeAddress , and the Canonical and
Noncanonical Addressing supplement.)

The HSM must set this bit if it supports Promiscuous Mode.

This bit (DriverSupportsPhysFrags) is set by the HSM to inform the TSM, MSM and
protocol stacks that the HSM needs ECB fragment pointers physically addressed as
described in chapter 5. Public dwords PhysicalToLogical and LogicalToPhysical must no
longer be used to translate fragment addresses. Current workstation OS’s and future
NetWare server OS'’s that support these HSM’s may not be able to support these
conversion calls. Typically, bus master adapter HSM’s need physical addresses to ECB
fragment pointers and control information in memory.

The HSM must set this bit if it can handle fragmented RCBs.
(RCBs are described in Chapter 4.)

SMP Bit - The MSM sets this bit if the MSM and TSM support Symmetrical Multi-
processing.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Table 3.3 MLIDModeFlag Descriptionscontinued

Bit

Description

The TSM sets this bit to indicate raw sends are supported. Refer to the TCB section of
Chapter 4 for information on raw sends. (RX-Net does not support raw sends.)

CSL Compliant Bit - The MLID or HSM sets this bit if the supported data link protocol
requires connection management through the Call Support Layer (CSL) interface. Typical
Wide Area Network data link protocols such as Frame Relay, PPP, and X.25 are
connection oriented and rely upon network layer protocol (IPX, IP, etc.) interaction to
establish, maintain and terminate connections to remote peers. The CSL provides
extensions to the ODI allowing this connection management interaction between network
and data link layer protocols. The CSL Compliant Bit must not be set by connectionless
data link protocols, such as Ethernet, Token-Ring, etc. Refer to the “NetWare WAN ODI
Specification” for a complete description of the CSL and WAN HSM interfaces (Part No.
107-000045-001).

The TSM sets this bit if the HSM supports multicast addressing.
Formerly the DXFer (dependability bit) - This bit is no longer used and must be set to 0.

This bit has been retired and must be set to 0. It was used as the DriverUsesDma bit in
the NetWare 286 environment, but has no meaning in later environments.

This bit must be set to 1.

HSM Data Structures and Variables 3-27

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MLIDFlags Bit Map

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 |0 |O 0 0j0fo0jo0jojo0j0]O

Table 3.4 MLIDSFlags Bit Map Fields

Bit Description
12 The HSM sets this bit during initialization if the following conditions are met:

The HSM has provided a priority queue service support routine (such as
DriverPriorityQueueSupport).

The HSM has set the MLIDPrioritySup field to something other than 0.

Note: The HSM may set/clear this bit to enable /disable priority support as needed.

10,9 These bits are used to indicate different support mechanisms for multicast filtering and
multicast format. These bits are only valid if bit 3 of the MLIDModeFlags is set, indicating
that the MLID supports multicast addressing.

Set bit 10 if group addressing is supported by specialized adapter hardware (such as
hardware utilizing CAM memory). If set, DriverMulticastChange receives a pointer to the
TSM maintained multicast address table in ESI and the number of addresses in ECX (this
is the default method for the Ethernet TSM).

Note: If a driver that normally defaults to using functional addresses also supports group
addressing and sets bit 10, it will receive both functional and group addresses.

The state of bit 9 is only defined if bit 10 is set. Set bit 9 if the adapter provides 100%
filtering of group addresses and the TSM does not need to perform any checking. The
HSM can dynamically set and reset bit 9. For example, the TSM may need to filter group
addresses because of insufficient CAM memory.

Note: Bit 9 is not used by ECB aware HSMs; ECB aware HSMs must do their own filtering
of multicast addresses.

3-28 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Table 3.4 MLIDSFlags Bit Map Fields

Bit Description
The values for the bit 10 and 9 combinations are:

00 =The multicast address format defaults to that of the LAN medium.
Ethernet => Group Addressing
Token-Ring => Functional Address
FDDI => Group Addressing

01 =This is an illegal value and must not occur.

10 =Group addressing is supported by a specialized adapter, but the TSM must filter the

addresses.

11 =Group addressing is supported by a specialized adapter, and TSM checking is not

required.
8 Set to 1 if the HSM supports HUB Management
0-2 Formerly the Bus Flags, these bits are no longer used and must be set to 0. There are
several new MSM procedures listed in Chapter 7 to handle bus information, such as
MSMSearchAdapter .

HSM Data Structures and Variables 3-29

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZI'IA 200 - TE'€A 2ads

Spec v3.31 - Doc v1.12

MLIDSharingFlags Bit Map

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

0 0 0 0

Table 3.5 MLIDSharingFlags Bit Map

Bit #
15

10

w A 00O N @

3-30

Description

This bit signifies when set, that the values in the fields MLIDMemoryLengthO and
MLIDMemoryLengthl, contain the number of pages of memory used by the adapter. For
example, on Intel platforms, 4K pages allows a maximum of 256 MB of shared memory to
be used by the adapter.

When cleared, this bit signifies that the values in fields MLIDMemoryLengthO and
MLIDMemoryLengthl contain the number of paragraphs (16 bytes) of memory used by
the adapter.

Bits 10 and 9 are currently used only by the NetWare Server install program.

If bit 10 is zero and bit 9 is zero, the install program gets information from the system
IOCONFIG structure and places it in the AUTOEXEC.NCF file.

If bit 10 is zero and bit 9 is set, the install program gets the information entered by the user
on the command line and merges it with the information from the system IOCONFIG
structure and places it in the AUTOEXEC.NCF file.

If bit 10 is set, the install program ignores bit 9 and places only the information entered by
the user on the command line in the AUTOEXEC.NCF file.

Bits 10 and 9 are currently used only by the NetWare Server install program.

If bit 10 is zero and bit 9 is zero, the install program gets information from the system
IOCONFIG structure and places it in the AUTOEXEC.NCF file.

If bit 10 is zero and bit 9 is set, the install program gets the information entered by the user
on the command line and merges it with the information from the system IOCONFIG
structure and places it in the AUTOEXEC.NCF file. (The user must enter a value for every
field used by the IOCONFIG structure.) Bit 9 is set by the MSM when a valid command
line is passed to Driverlnit .

Set to 1 if the adapter can share DMA channel 1.
Set to 1 if the adapter can share DMA channel 0.
Set to 1 if the adapter can share interrupt 1.
Set to 1 if the adapter can share interrupt O.
Set to 1 if the adapter can share memory range 1.

Set to 1 if the adapter can share memory range 0.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Table 3.5 MLIDSharingFlags Bit Map

Bit #
2
1
0

Description
Set to 1 if the adapter can share I/O port 1.
Set to 1 if the adapter can share I/O port 0.

Set to 1 if the adapter is currently shut down.

HSM Data Structures and Variables 3-31

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZI'IA 200 - TE'€A 2ads

Spec v3.31 - Doc v1.12

Maximum Packet Size The M IDMaximumSizdield of the configuration table is set to the LSL's

maximum ECB buffer size duringTSM>RegisterHSM (this defaults to 4K

but can be changed in the STARTUP.NCF file to a maximum of 24K). The
HSM could lower this value prior to callifdSMRegisterMLID . During this
procedure, the TSM alters the size if the topology requires a smaller maximum
packet size. The TSM also sets MeIDMaxRecvSizandMLIDRecvSize.

After MSMRegisterMLID returns, drivers for intelligent adapters may pass
the maximum size to the hardware if required. The following table shows how
these values are determined.

Frame Type MLIDMaximumSize MLIDMaxRecvSize MLIDRecvSize
Arcnet Maximum ECB Buffer Size Maximum ECB Buffer Maximum ECB
Size Buffer Size
Ethernet 802.3 Maximum ECB Buffer Size ~ MLIDMaximumSize MLIDMaximum-
OR 1514 (whichever is less) (minus 14) Size (minus 14)
Ethernet 802.2 Maximum ECB Buffer Size ~ MLIDMaximumSize MLIDMaximum-
OR 1514 (whichever is less) (minus 17) Size (minus 18)
Ethernet Il Maximum ECB Buffer Size ~ MLIDMaximumSize MLIDMaximum-
OR 1514 (whichever is less) (minus 14) Size (minus 14)
Ethernet SNAP Maximum ECB Buffer Size ~ MLIDMaximumSize MLIDMaximum-
OR 1514 (whichever is less) (minus 22) Size (minus 22)
Token-Ring 802.2 Maximum ECB Buffer Size MLIDMaximumSize MLIDMaximum-
OR the maximum size the (minus 17) Size (minus 48)

adapter can handle
(whichever is less)

Token-Ring SNAP Maximum ECB Buffer Size ~ MLIDMaximumSize MLIDMaximum-
OR the maximum size the (minus 22) Size (minus 52)
adapter can handle
(whichever is less)

FDDI 802.2 Maximum ECB Buffer Size MLIDMaximumSize MLIDMaximum-
OR 4491 (whichever is less) (minus 16) Size (minus 47)
FDDI SNAP Maximum ECB Buffer Size MLIDMaximumsSize MLIDMaximum-
OR 4491 (whichever is less) (minus 21) Size (minus 51)

3-32 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example If the maximum ECB buffer size = 8192 bytes and the Token-
Ring adapter can handle 4096 bytes, then the Token-Ring 802.2
values are calculated as follows:

MLIDMaximumSize = 4096

MLIDMaxRecvSize

The maximum packet size minus the headers if the source
routing header is not included.

=4096 — MAC header (14) — 802.2 Type | LLC header (3)
=4079

MLIDRecvSize
The maximum packet size minus the headers if the source
routing header

(SRT)* is included.
=4096 — MAC header (14) — 802.2 Type Il LLC header (4) —
Source

Routing header (30)
=4048

* Refers to the IEEE SRT Specification.

Driver Adapter Data Space

The HSM must define and initialize a structure containing data specific to a
particular physical board. This structure is called the
DriverAdapterDataSpaceTemplaféhe developer determines what hardware-
specific fields are needed in order to drive a particular physical board; however,
the structure must contain tBeiverStatisticsTableThe statistics table is

defined by the ODI specification. The following page shows the template
format and fields.

When theDriverlnit routine callsMSMRegisterHardwareOptions, the

MSM allocates the Adapter Data Space and creates a copy of the driver's
template in this area. There will be one Adapter Data Space allocated for each
physical board, regardless of the number of frame types supported.

HSM Data Structures and Variables 3-33

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Figure 3-3 Frame and Adapter Data Space

Code and)
Data Spaces Logical
Boards

Frame Data Space _| | 802.3
Configuration Table H)

Frame Data Space _| |

Configuration Table . E_” K

Frame DataSpace | = 7777TTTC°C L

Configuration Table 80_2-2 K
Physical Frame Data Space _| | --SNAPIL
Board Configuration Table o

Adapter Data Space
Hardware Specific Vars
Statistics Table

Adapter Code Space

Driver Statistics Table

The statistics table contains various diagnostic counters. All statistics counters
shown must be present in the table, however, only those marked “mandatory”
are required to be supported. These counters can be grouped into the following
categories.

» Generic Statistics Counters
- Standard Counters
- Media Specific Counters
» Custom Statistics Counters

3-34 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Driver Adapter Data Space and Statistics Table Template

DriverAdapterDataSpace
{¥** Hardware Specific Variables ***]

DriverStétisticsTabIe

StatMajorVersion
StatMinorVersion

NumGenericCounters
CounterMaskO
11111011000011111110111111111111b

GenericBegin
TotalTxPacketCount
TotalRxPacketCount
NoECBAvailableCount
PacketTxTooBigCount
Reservedl
PacketRxOverflowCount
PacketRxTooBigCount
PacketRxTooSmallCount
TotalTxMiscCount
TotalRxMiscCount
RetryTxCount
ChecksumErrorCount
HardwareRxMismatchCount
TotalTXOKByteCountLow
TotalTXOKByteCountHigh
TotalRxOKByteCountLow
TotalRxOKByteCountHigh
TotalGroupAddrTxCount
TotalGroupAddrRxCount
AdapterResetCount
AdapterOprTimeStamp
QDepth

[*** Media Specific Statistics Counters ***]

GenericElnd
NumCustomCounters

struc

db

db
db

dd

db
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd
dd

db
dw

0 dup (?) ; (Label)

3
0

(Genericend - GenericBegin) / 4

0 dup (?) ; (Label)

; TSM (mandatory)
; TSM (mandatory)
; TSM (mandatory)
; TSM (mandatory)
; (reserved)

; HSM (optional)

; TSM (mandatory)
; TSM (optional)

; HSM (mandatory)
; HSM (mandatory)
; HSM (optional)

; HSM (optional)

; TSM (optional)

; TSM (mandatory)
; TSM (mandatory)
; TSM (mandatory)
; TSM (mandatory)
; TSM (mandatory)
; TSM (mandatory)
; HSM (mandatory)
; MSM (mandatory)
; TSM (mandatory)

[eNeoNeoNeoNelNoNoNolololoNolNolololNoNolNolNolNolNolNo

0 dup (?); (Label)
(CustomEnd - CustomBegin) / 4

HSM Data Structures and Variables 3-35

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

CustomBegin db 0 dup (?); (Label)

CustomCounterl dd 0
bustomCounterN dd 0
CustomEnd db 0 dup (?); (Label)
CustomCounterStrings dd offset CustomStrings
DriverAdapterDataSpace ends
DriverAdapterDataSpaceTemplate DriverAdapterDataSpace <>
Offset Name Bytes Description
00h StatMajorVersion 1 This field contains the major version number of

the statistics table. The version number is
controlled by Novell and is currently v3.00,
therefore 3 is the major version number

01h StatMinorVersion 1 This field contains the minor version number of
the statistics table. The version number is
controlled by Novell and is currently v3.00,
therefore 00 is the minor version number.

02h NumGenericCounters 2 This field contains the total number of generic
counters (standard and media-specific
counters) present in the statistics table but not
necessarily supported. This number must also
include any additional counter masks used
except CounterMaskO. (See the next field
description for more information on counter
masks.)

04h CounterMaskO 4 This field contains a bit mask indicating which
counters of the first 32 standard and
media-specific portions of the statistics table
are implemented in the driver. If the bit is zero
the counter is supported. (see also the bit map
definition following this table).

If there are more than 32 standard and
media-specific counters (as with Token-Ring),
a second mask (CounterMask1) is placed after
the 32nd counter at offset 88h to indicate the
status of the next set of 32 counters.

3-36 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Offset
08h

0Ch

10h

14h

18h

1Ch

20h

24h

28h

2Ch

30h

34h

Name

TotalTxPacketCount

TotalRxPacketCount

NoECBAuvailableCount

PacketTxTooBigCount

Reservedl

PacketRxOverflowCount

PacketRxTooBigCount

PacketRxTooSmallCount

TotalTxMiscCount

TotalRxMiscCount

RetryTxCount

ChecksumErrorCount

Bytes
4

Description

The TSM increments this counter whenever a
packet is successfully transmitted by the
adapter.

The TSM increments this counter whenever a

packet is successfully received by the adapter.

The TSM increments this counter if it cannot
obtain an RCB for a received packet.

The TSM increments this counter whenever a
packet is too big for the adapter to transmit.

This field is reserved for use by the MSM, but
must be initialized to zero.

The HSM may use this counter to indicate the
number of times the adapter's receive buffers
overflowed causing subsequent incoming
packets to be discarded.

The TSM increments this counter whenever a
packet is received that is too large for the
provided receive buffer(s).

Some TSMs increment this counter if a packet
is received that is too small for media
definitions. Currently only the RX-Net TSM
maintains this counter.

The HSM must increment this counter if a fatal
transmit error occurs and there is no other
appropriate standard counter to increment in
the generic portion of the statistics table. The
HSM may also increment a media specific or
custom counter for this event.

The HSM must increment this counter if a fatal
receive error occurs and there is no other
appropriate standard counter to increment in
the generic portion of the statistics table. The
HSM may also increment a media specific or
custom counter for this event.

The HSM may use this counter to indicate the
number of times packet transmissions were
retried due to failure.

The HSM may use this counter to indicate the
number of times a packet was received with
corrupt data (CRC errors...etc).

HSM Data Structures and Variables 3-37

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Offset
38h

3Ch

40h

44h

48h

4Ch

50h

54h

58h

5Ch

60h

??h

3-38

Name

HardwareRxMismatchCount

TotalTXOKByteCountLow

TotalTXOKByteCountHigh

TotalRxOKByteCountLow

TotalRxOKByteCountHigh

TotalGroupAddrTxCount

TotalGroupAddrRxCount

AdapterResetCount

AdapterOprTimeStamp

QDepth

(Media Specific Counters)

NumCustomCounters.

Bytes
4

4 each

Description

Some TSMs increment this counter when a
packet is received that does not pass length
consistency checks. Currently only the
Ethernet TSM maintains this counter.

The number of bytes including low level
headers successfully transmitted. The MSM
maintains this counter.

Upper 32-bits of the TotalTxOKByteCount
counter.

The number of bytes including low level
headers successfully received. The MSM
maintains this counter.

Upper 32-bits of the TotalRxOKByteCount
counter

The number of packets transmitted with a
Group destination address (maintained by the
MSM).

The number of packets received with a Group
destination address (maintained by the MSM).

The number of times the adapter was reset due
to internal failure or other calls to the
DriverReset routine. The HSM must maintain
this counter.

This field contains a time stamp indicating
when the adapter last changed operational
state (load, shutdown, reset...) (maintained by
the MSM).

This field reflects the number of Transmit ECBs
that are queued for the adapter. The TSM
maintains this field.

See the “Media Specific Counters” section
following this table. The HSM must maintain
these counters.

This field contains the number of custom
counters defined by the HSM. For example, a
counter could be created to keep track of the
number of fatal retransmissions. Each custom
counter must have an associated string that
can be accessed through the CustomStrings
area (defined below)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Offset

??h

??h

Name Bytes Description

CustomCounterl 4 each These fields contain custom counters that can
be configured differently for the specific needs
of the HSM or adapter.

CustomCounterStrings 4 This field contains a pointer to the
CustomStrings area. The first word of the
CustomStrings area contains the size of the
area in bytes. Each string in this area must be
null-terminated, and the table of strings is
terminated by two nulls. The string order must
correspond with the custom counters.

CustomStrings label dword
CustomStrSize dw (CustomStrEnd -
CustomStrings)
db 'Custom String 1', 0
db 'Custom String 2', 0
db 'Custom String 3', 0
db 'Custom String N,

db 0,0
CustomStrEnd db 0 dup (?)

HSM Data Structures and Variables 3-39

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZI'IA 200 - TE'€A 2ads

Spec v3.31 - Doc v1.12

CounterMask Bit Maps

The CounterMask(ield of the statistics table is a bit mask indicating which
counters in the standard and media-specific portions of the table are supported
by the driver. If there are more than 32 standard and media-specific counters
(as with Token-Ring and FDDI), a second bit ma&&&unterMaskl}is placed

after the 32nd counter at offset 88h to indicate the status of the next set of 32
counters. This will continue every 32 counters as more statistics are added to
the table in the future.

The Status field in the table below indicates which module is responsible for
maintaining the counter and whether it is optional or mandatory. Most of the
standard counters are maintained by the TSM or MSM. However, several
counters must be maintained by the HSM and several may be optionally
supported. A bit value of 0 means the counter is supported, but must be set to
1 if not supported. The MSM and TSM will clear the bits that they maintain.

CounterMask0

322 22 2222111111111 19876543210

0 9 87 6 3 2109876543210

[fefafe Jofol L[[ofofefefofafaf ol PPTPTPLT]]
Bit# Counter Status
31 TotalTxPacketCount TSM (mandatory)
30 TotalRxPacketCount TSM (mandatory)
29 NoECBAVvailableCount TSM (mandatory)
28 PacketTxTooBigCount TSM (mandatory)
27 Reservedl (reserved)
26 PacketRxOverflowCount HSM (optional)
25 PacketRxTooBigCount TSM (mandatory)
24 PacketRxTooSmallCount TSM (optional)
23 TotalTxMiscCount HSM (mandatory)
22 TotalRxMiscCount HSM (mandatory)
21 RetryTxCount HSM (optional)
20 ChecksumErrorCount HSM (optional)
19 HardwareRxMismatchCount TSM (optional)
18 TotalTXOKByteCountLow TSM (mandatory)
17 TotalTXOKByteCountHigh TSM (mandatory)
16 TotalRXxOKByteCountLow TSM (mandatory)
15 TotalRXOKByteCountHigh TSM (mandatory)
14 TotalGroupAddrTxCount TSM (mandatory)
13 TotalGroupAddrRxCount TSM (mandatory)
12 AdapterResetCount HSM (mandatory)
11 AdapterOprTimeStamp MSM (mandatory)

3-40 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

10 QDepth TSM (mandatory)
Bits 9...0 of CounterMask0 and HSM (mandatory)
continuing through CounterMask1 bits

31... (if needed) correspond to the

media-specific counters shown below.

(Any bit not used must be set to 1)

Media Specific Counters

The statistics table must contain the media specific counters defined in this
section for the topology.

Token-Ring

ACErrorCounter dd 0 ; 60h Mandatory
AbortDelimiterCounter dd 0 ; 64h Mandatory
BurstErrorCounter dd 0 ; 68h Mandatory
FrameCopiedErrorCounter dd 0 ; 6Ch Mandatory
FrequencyErrorCounter dd 0 ; 70h Mandatory
InternalErrorCounter dd 0 ; 74h Mandatory
LastRingStatus dd 0 ; 78h Mandatory
LineErrorCounter dd 0 ; 7Ch Mandatory
LostFrameCounter dd 0 ; 80h Mandatory
TokenErrorCounter dd 0 ; 84h Mandatory
CounterMask1** dd
0000111111111112121121111111111111b

UpstreamNodeHighDword dd 0 ; 8Ch Mandatory
UpstreamNodeLowWord dd 0 ; 90h Mandatory
LastRingID dd 0 ; 94h Mandatory
LastBeaconType dd 0 ; 98h Mandatory

*Important. CounterMask1 is included when calculating the
NumGenericCounters field of the statistics table.

HSM Data Structures and Variables 3-41

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Table 3.6 Media Specific Counters for Token Ring

Offset
60h

64h

68h

6Ch

70h

74h

78h

3-42

Name

ACErrorCounter

AbortDelimiterCounter

BurstErrorCounter

FrameCopiedErrorCounter

FrequencyErrorCounter

InternalErrorCounter

LastRingStatus

Bytes
4

Description

This counter is incremented when a station
receives an AMP or SMP frame with A equal to C
equal to 0, and then receives another SMP frame
with A equal to C equal to 0 without first receiving
an AMP frame.

This counter is incremented when a station
transmits an abort delimiter while transmitting.

This counter is incremented when a station
detects the absence of transitions for five half-bit
times (burst-five error). Note that only one station
detects a burst-five error because the first station
to detect it converts it to a burst-four.

This counter is incremented when a station
recognizes a frame addressed to its specific
address and detects that the FS field A bits are set
to 1 indicating a possible line hit or duplicate
address.

This counter is incremented when the frequency
of the incoming signal differs from the expected
frequency by more than that specified in Section 7
(IEEE Std 802.5-1989) .

This counter is incremented when a station
recognizes a recoverable internal error. This can
be used for detecting a station in marginal
operating condition.

This value contains the last Ring Status reported
by the adapter with the following bit defintions:

bit 15 signal loss

bit 14 hard error

bit 13 soft error

bit 12 transmit beacon
bit 11 lobe wire fault
bit 10 auto-removal error 1
bit9 reserved

bit8 remove received
bit 7 counter overflow
bit6 single station
bit5 ring recovery

bit 0-4 reserved

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001

March 26, 1998

Table 3.6 Media Specific Counters for Token Ring

Offset

7Ch

80h

84h

88h

8Ch

90h

94h
98h

Name

LineErrorCounter

LostFrameCounter

TokenErrorCounter

CounterMask1

UpstreamNodeHighDword

UpstreamNodeLowWord

LastRingID

LastBeaconType

Bytes
4

Description

This counter is incremented when a frame or
token is copied or repeated by a station, the E bit
is 0 in the frame or token, and one of the following
conditions exist:

1) There is a nondata bit (J or K) between the SD
and the ED of the frame or token.

2) There is an FCS error in the frame.

The first station detecting a line error increments
its appropriate error counter and sets E=1 in the
ED of the frame. This prevents other stations from
logging the error and isolates the source of the
disturbance to the proper error domain.

This counter is incremented when a station is
transmitting and its TRR timer expires. This
counts how often frames transmitted by a
particular station fail to return to it (thus causing
the active monitor to issue a new token).

This counter is incremented when a station acting
as the active monitor recognizes an error
condition that needs a token transmitted. This
occurs when the TVX timer expires.

This field is a bit mask indicating the status of the
next set of counters. The most significant bit
corresponds to UpstreamNodeHighDword. If a bit
is zero, the counter is supported.

This contains the high 4 bytes of the 6 byte
Upstream Neighbor Node Address.

This contains the lower 2 bytes of the 6 byte
Upstream Neighbor Node Address.

This contains the value of the local ring.

This contains the value of the last beacon type.

HSM Data Structures and Variables 3-43

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Ethernet

TxOKSingleCollisionsCount dd 0 ; 60h
Mandatory
TxOKMultipleCollisionsCount dd 0 ; 64h
Mandatory
TxOKButDeferred dd 0 ; 68h
Mandatory
TxAbortLateCollision dd 0 ; 6Ch
Mandatory
TxAbortExcessCollision dd 0 ; 70h
Mandatory
TxAbortCarrierSense dd 0 ; 74h
Mandatory
TxAbortExcessiveDeferral dd 0 ; 78h
Mandatory
RxAbortFrameAlignment dd 0 ; 7Ch
Mandatory

Table 3.7 Media Specific Counters for Ethernet

Offset Name Bytes Description

60h TxOKSingleCollisionsCount 4 The number of frames involved in a single
collision that are subsequently transmitted
successfully. Increment this counter when the
result of a transmission is reported as
transmitOK and the attempt value is 2.

64h TxOKMultipleCollisionsCount 4 The number of frames involved in more than
one collision that are subsequently transmitted
successfully. Increment this counter when the
result of a transmission is reported as
transmitOK and the attempt value is greater
than 2 and less than or equal to the
attemptLimit.

68h TxOKButDeferred 4 Increment this counter for frames whose
transmission was delayed on the first attempt
because the medium was busy.

6Ch TxAbortLateCollision 4 The number of collisions detected later than
512 bittimes into the transmitted packet. A late
collision is counted both as a collision and as a
late collision.

3-44 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Table 3.7 Media Specific Counters for Ethernet

Offset Name Bytes Description

70h TxAbortExcessCollision 4 The number of frames not transmitted
successfully due to excessive collisions.
Increment this counter when the attempts
value equals the attemptLimit during a
transmission.

74h TxAbortCarrierSense 4 The number of times the carrierSense variable
was not asserted or was deasserted during
transmission of a frame without collision.

78h TxAbortExcessiveDeferral 4 The number of frames deferred for an
excessive period of time. Increment this
counter only once per LLC transmission.

7Ch RxAbortFrameAlignment 4 The number of frames that are not an integral
number of octets in length and do not pass the
FCS check.
FDDI
FConfigurationState dd O ; 60h Mandatory
FUpstreamNodeHighDword dd 0 ; 64h Mandatory
FUpstreamNodeLowWord dd O ; 68h Mandatory
FDownstreamNodeHighDworddd 0 ; 6Ch Mandatory
FDownstreamNodeLowWord dd O ; 70h Mandatory
FFrameErrorCount dd O ; 74h Mandatory
FFramesLostCount dd O ; 78h Mandatory
FRingManagementCount dd O ; 7Ch Mandatory
FLCTFailureCoun dd O ; 80h Mandatory
FLemRejectCount dd O ; 84h Mandatory
CounterMask1 dd 0011111111111122222121111111111111b
k%
FLemCoun dd O ; 8Ch Mandatory
LConnectionState dd 0 ; 90h Mandatory

HSM Data Structures and Variables 3-45

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Table 3.8 Media Specific Counters for FDDI

Offset Name Bytes Description

60h FConfigurationState 4 (ANSI fddiSMTCFState)
The attachment configuration for the station or
concentrator.

O=lsolated = 7=wrap_ab
1=local_a 8=wrap_s
2=local_b 9=c_wrap_a
3=local_ab 10=c_wrap_b
4=local_s 1l=c_wrap_s
5=wrap_a 12=thru

6=wrap_b
64h FUpstreamNodeHighDword 8 (ANSI fddiMACUpstreamNbr)
FUpstreamNodeLowWord The MAC's upstream neighbor's long
individual MAC address (0 if unknown).
6Ch FDownstreamNodeHighDword 8 (ANSI fddiMACDownstreamNbr)
FDownstreamNodeLowWord The MAC's downstream neighbor's long
individual MAC address (0 if unknown).
74h FFrameErrorCount 4 (ANSI fddiMACETrror-Ct)

The number of frames that were detected in
error by this MAC that had not been detected
in error by another MAC.

78h FFramesLostCount 4 (ANSI fddiMACLost-Ct)

The number of instances that this MAC
detected a format error during frame reception
such that the frame was stripped.

7Ch FRingManagementState 4 (ANSI fddiIMACRMTD-State)

Indicates the current state of the Ring
Management state machine.

O=lsolated 4=Non_Op_Dup
1=Non_Op 5=Ring_Op_Dup
2=Ring_Op 6=Directed
3=Detect 7=Trace

80h FLCTFailureCount 4 (ANSI fddiPORTLem-Ct)

The count of the consecutive times the link
confidence test (LCT) has failed during
connection management.

3-46 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Table 3.8 Media Specific Counters for FDDI
Offset Name Bytes Description

84h FLemRejectCount 4 (ANSI fddiPortLem-Reject_Ct)

The link error monitor count of the times that a
link was rejected.

88h CounterMask1 4 This field is a bit mask indicating the status of
the next counters. The most significant bit
corresponds to FLemCount. If a bitis zero, the
counter is supported.

8Ch FLemCount 4 (ANSI fddiPORTLem-Ct)

The aggregate link error monitor error count
(zero only on station power up).

90h FConnectionState 4 (ANSI fddiPortPCM-State)
The state of this port's PCM state machine.

0=0ff 5=Signal
1=Break 6=Join
2=Trace 7=Verify
3=Connect 8=Active
4=Next 9=Maint

FDDI TSM and Bit Swappin g Changes

Several changes were made for FDDI with the release of version 2.20 of the
FDDI TSM. This includes bit swapping now being handled by either the
adapter or the HSM.

Please note the 3 bytes before the frame control byte in the packet header were
eliminated, and th®ILIDRecvSizevas changed. Refer to theame Types and
Protocol IDssupplement for details.

Note Vvl A bit swapping table is now provided by the MSM, which eliminates the need for
a table in the HSM; see MSM Global Variables, MSMBitSwapTable in Chapter
4.

HSM Data Structures and Variables 3-47

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

RX-Net

Note:The module responsible for maintaining each of the RX-Net specific counters is indicated in
parenthesis below.

NoResponseToFreeBufferEnquiry dd 0 ; 60h Mandatory (HSM)
NetworkReconfigurationCount dd 0 ; 64h Mandatory (HSM)
InvalidSplitFlaginPacketFrag dd 0 ; 68h Mandatory (TSM)
OrphanPacketFragmentCount dd 0 ; 6Ch Mandatory (TSM)
ReceivePacketTimeout dd 0 ; 70h Mandatory (TSM)
FreeBufferEnquiryNAKTimeout dd 0 ; 74h Mandatory (TSM)
TotalTxPacketFragmentsOK dd 0 ; 78h Mandatory (HSM)
TotalRxPacketFragmentsOK dd 0 ; 7Ch Mandatory (HSM)
Table 3.9 Media Specific Counters for RX-Net
Offset Name Bytes Description
60h NoResponseToFreeBufferEnquiry 4 The HSM increments this counter each time

there is no response from the receiving
node to FREE BUFFER ENQUIRY.

64h NetworkReconfigurationCount 4 The HSM increments this counter each time
a NETWORKRECONFIGURATION occurs.

68h InvalidSplitFlaginPacketFrag 4 The TSM maintains this counter of the
number of times the Split Flag in the packet
fragment is not the value expected. For
example, packet fragments received out of
order cause this count to increment.

6Ch OrphanPacketFragmentCount 4 The TSM increments this count each time a
packet fragment is received that is not a part
of a previously received packet and,
therefore, cannot be appended.

70h ReceivePacketTimeout 4 The TSM increments this counter each time
a received packet times out waiting for the
rest of the packet fragments to arrive.

74h FreeBufferEnquiryNAKTimeout 4 The TSM increments this count each time a
transmit packet times out waiting for an
acknowledgment to a FREE BUFFER
ENQUIRY from the receiving node.

78h TotalTxPacketFragmentsOK 4 The HSM's count of the number of packet
fragments successfully sent.

7Ch TotalRxPacketFragmentsOK 4 The HSM's count of the number of packet
fragments successfully received.

3-48 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Driver Firmware

Drivers may need to download firmware to intelligent adapters. Since most
intelligent adapters employ an onboard microprocessor such as an 80186, the
firmware code must be separately written, assembled, and linked to generate a
binary file. This section describes how that firmware binary file can be attached
to the HSM at link time and then transferred to the adapter during initialization.

To attach a firmware binary file to the HSM, the linker definition file (see
Appendix A) must include the “custom” keyword followed by the name of the
binary file. When the driver is linked, the file will then be attached to the end
of the HSM code (and become part of the NLM).

During the initialization process, the MSM allocates a buffer and copies the
contents of the attached file to that buffer. In order to gain access to the
firmware buffer, the HSM must properly initialize the DriverParameterBlock
variables described below. The MSM resolves the value of these parameters
when the HSM'®riverlnit routine call<xTSM>RegisterHSM. The HSM

can then download the contents of the firmware buffer to the adapter.

DriverFirmwareSize. If custom firmware is used, the HSM must initialize
this dword variable to any nonzero value at assembly time. The MSM replaces
the value with the actual size of the firmware buffer wbBeinerlnit calls
<TSM>RegisterHSM. If custom firmware is not used, the HSM must

initialize this variable to zero at assembly time.

DriverFirmwareBuffer . This dword value is set by the MSM to point at the
firmware buffer wherDriverlnit calls the routin&TSM>RegisterHSM.

Example
The following example shows how an HSM would define and use the custom

firmware variables. This example assumes that the firmware binary file was
attached to the driver at link time as described above.

HSM Data Structures and Variables 3-49

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

3-50

DriverParameterBlock label

DriverFirmwareSize dd -1
DriverFirmwareBuffer dd 0

;DriverParameterBlockEnd

Driverlnit
mov eax,
mov esi,
mov edi,
mov ecx,
shr ecx,

rep movsd
and eax,
mov ecx,

rep movsb

Driverlnit

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

proc

call <TSM>RegisterHSM

DriverFirmwareSize
DriverFirmwareBuffer
[ebp].AdapterFirmwareAddress
eax

2

03h
eax

endp

dword

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Driver Keywords

Note‘VI
v

Drivers can define keywords that allow custom parameters or flags to be
entered from the “load” command-line. In order to use custom keywords, you
must define the following

DriverParameterBlock fields.

DriverNumKe ywords. The number of custom keywords defined by the
HSM. If custom keywords are not used, set this field to 0.

DriverKe ywordText. Pointer to a table of pointers to strings that define the
custom keywords. The strings must be uppercase. The MSM uses these when
parsing the load command-line.

DriverKe ywordTextLen. Pointer to a table containing the length of each
custom keyword string defined DriverKeywordTextThe length fields are

also used to support the optional custom keyword enhancements described in
the next section.

DriverProcessKe ywordTab. The HSM must provide a procedure to
process each of the defined custom keywords. This is a pointer to a table
containing pointers to those procedures.

Custom keywords are processed during initialization wibewerlnit calls
MSMParseDriverParameters The MSM processes custom keywords after
the OS parses the standard command-line parameters for the configuration
table. If the MSM encounters a defined custom keyword in the command-line,
it calls the procedure corresponding to that keyword.

On entry to the custom keyword procedure, EBX normally points to the Frame
Data Space and ESI points to the position in the command-line string where the
keyword was found. The command-line string is a null-terminated ASCII
string. The driver is responsible for extracting and processing any parameters
for that keyword, therefore, the parameter format used is controlled by the
developer.

If the driver must have custom keywords processed earlier in initialization, the
Driverlnit routine can call MSMParseCustomKeywords . Refer to Chapter 7
for detailed information and examples on using this routine.

HSMs that support many custom keywords may have trouble specifying them
on the limited space of the command-line. Command-line parameters can now
be listed in a driver configuration file (see Appendix A for details). If the driver
configuration file is usediISMParseDriverParameterswill process the

HSM Data Structures and Variables 3-51

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

information from the file along with any other arguments on the command-line.
The MSM frees the buffer used for the file before returningrigerinit , so

the HSM must copy all required information when the keyword routine is
called.

The following example shows how an HSM would define and use two custom
keywords. The command-line for this example might be entered as follows:
load <driver> max_packet_size=4202 cable_type_thick

Example

DriverParameterBlock label dword
DriverNumKeywords dd 2
DriverKeywordText dd KeywordTextTable
DriverKeywordTextLen dd KeywordTextLenTable
DriverProcessKeywordTab dd KeywordProcedureTable

;DriverParameterBlockEnd

Keyword1 db 'MAX_PACKET_SIZE'
Keyword?2 db 'CABLE_TYPE_THICK'
KeywordTextTable dd Keywordl
dd Keyword2
KeywordTextLenTable dd 15 ; Keyword #1
Length
dd 16 ; Keyword #2
Length
KeywordProcedureTable dd ProcessMaxPacketSize ; Keyword #1 Proc.
dd ProcessCableTypeThick ; Keyword #2 Proc.

; ESI = Ptr to the position in the command line string where the keyword was found. The command
line string is a

; null-terminated ASCII string.

; EBX =Ptr to the Frame Data Space (Configuration Table)

; Interrupts are Disabled

; CLD is in effect

ProcessMaxPacketSize proc
add esi, 15 ; Skip over the Keyword Text

3-52 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

(parse the remainder of the string to extract the maximum packet size)

call ConvertAtol ; Convert from ASCII to Integer Form
mov MyMaxPacketSize, eax ; Set Custom Maximum Packet Size Variable
ret

ProcessMaxPacketSize endp

ProcessCableTypeThick proc

mov CableType, THICK ;Signal Thick Cable Type
ret

ProcessCableTypeThick endp

Driver Keyword Enhancements

The custom keyword table has been enhanced to support the parsing flags
described below. These enhancements were added to the existing HSM
keyword structure so that HSM's using the old structure will work without
modifications. These parsing flags can be logically ORed with the existing
keyword text length parameters.

Notce\@AYA If none of the flags are used, the parser only provides a pointer to the custom
\v
keyword in ESI as described in the previous section.

T_REQUIRED. The keyword must be entered. If it doesn't exist on the
command-line or configuration file, the user will be prompted for it. If the users
does not enter a valuBlSMParseDriverParameterswill return with an

error.

T_STRING. The keyword routine will be called with a pointer to the
beginning of the string that matched the keyword text.

Example:
load <driver> custom int=3

The keyword routine called with ESI pointing to "custom int=3"

T_NUMBER. The keyword routine will be called with the value entered on the
command-line in EAX. The user must enter a decimal number.

HSM Data Structures and Variables 3-53

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example:
load <driver> custom=100

The keyword routine called with EAX = 64h

T_HEX_NUMBER. The keyword routine will be called with the value entered
on the command-line in EAX. The user must enter a hexadecimal number.

Example:
load <driver> custom=100

The keyword routine called with EAX = 100h

T_HEX_STRING. The keyword routine will be called with ESI pointing to a
six byte value that was entered on the
command-line. The user must enter this string using hexadecimal numbers.

Example:
load <driver> custom=01020304

The keyword routine called with ESI -> 00, 00, 01, 02, 03, 04

The HSM must provide parsing information immediately after the text string if

it has set any of the flags (except when using T_STRING, no parameters are
needed). The parameters that are needed depend on the flags that are set. The
following is list of the parameters expected.

The following structure is used for keywords using T_NUMBER or
T_HEX_NUMBER:

UnsignedLongType struc
LongMinValue dd 0 ; Minimum value to be accepted.
LongMaxValue dd 0 ; Maximum value to be accepted.
UnsignedLongType ends

The following structure is used for keywords using T_NUMBER or
T_HEX_NUMBER and T_REQUIRED:

PromptUnsignedLongType struc
PLongMinValue dd 0 ; Minimum value to be accepted.
PLongMaxValue dd 0 ; Maximum value to be accepted.

3-54 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

LongDefaultString dd 0 ; Ptr to a string that contains the
default number
; or O for no default
LongValidString dd 0 ; Ptr to a string that contains valid
input characters. If set
; to zero, the MSM assumes:
; "0..9" for T_NUMBER and
; "0..9A..F" for T_HEX_NUMBER.
LongPromptString dd 0 ; Ptr to a prompt string.
PromptUnsignedLongType ends
The following structure is used for keywords using T_HEX_STRING:
SixByteType struc
SixByteMinValue db 6 dup (0) ; Minimum value to be accepted.
SixByteMaxValue db 6 dup (0) ; Maximum value to be accepted.
SixByteType ends
The following structure is used for keywords using T_HEX_STRING and
T _REQUIRED:
PromptSixByteType struc
PSixByteMinValue db 6 dup (0) ; Minimum value to be accepted.
PSixByteMaxValue db 6 dup (0) ; Maximum value to be accepted.
SixByteDefaultStr dd 0 ; Ptr to a string that contains; default
six byte number or 0
; for no default.
SixBytePromptStr dd 0 ; Ptr to a prompt string.
PromptSixByteType ends
The following is an example of an HSM keyword table that uses the various
enhancement options described in this section.
Example
DriverParameterBlock label dword
DriverNumKeywords dd 4
DriverKeywordText dd KeywordTextTable
DriverKeywordTextLen dd KeywordTextLenTable
DriverProcessKeywordTab dd KeywordProcedureTable
;DriverParameterBlockEnd
KeywordTextTable dd DIXText
dd TxBelow16Text

HSM Data Structures and Variables 3-55

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

dd TimeoutText

dd ConnectionText
KeywordTextLenTable dd DIXTextLen

dd TxBelowl6TextLen

dd TimeoutTextLen

dd ConnectionTextLen
KeywordProcedureTable dd DIXRoutine

dd TxBelowl6Routine

dd TimeoutRoutine

dd ConnectionRoutine

---------------- ; Define Keywords and related Parameters

---------------- DIXText db "DIX" ; Old style custom
keyword
DIXTextLen equ $ - DIXText
---------------- TxBelow16Text db "TB16"
TxBelowl6TextLen equ ($ - TxBelowl6Text) OR T_NUMBER OR
T_REQUIRED
dd 0 ; Min value of O
dd 2 ; Max value of 16
dd TxBelowl6Default ; Default String
dd TxBelowl6Valid ; Valid chars string
dd TxBelowl6Prompt ; Prompt string
TxBelowl6Default db "0", 0 ; Default to zero
TxBelowl6Valid db "0..2",0 ;Only 0,1 or2are
valid
TxBelowl6Prompt db "Enter the number of Tx Buffers "
db "to allocate below 16 Meg", CR, LF
db "(0 = none, 1 = 4 buffers, 2 = 8 buffers) : ", 0
TimeoutText db "TO"
TimeoutTextLen equ ($ - TimeoutText) OR T_NUMBER
dd 0 ; Min value of O
dd -1 ;Max value of 4G
---------------- Connection Text db “‘DEST”
Connection TextLen equ ($ - ConnectionText) OR T_HEX_STRING OR
T_REQUIRED
dd 0 ;No default
dd ConnectionPrompt ;Prompt string
ConnectionPrompt db “Enter address of node to connect with : “, 0

3-56 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

DIXRoutine proc
mov DIXInUse, 1
ret
DIXRoutine endp
TxBelowl6Routine proc
mov TxBelow16, eax ; Save number for later
ret
TxBelowl6Routine endp
TimeoutRoutine proc
mov TxTimeoutValue, eax ; Save number for later
ret
TimeoutRoutine endp
ConnectionRoutine proc
mov eax, [esi+0]
mov dword ptr DestinationAddress+0, eax
mov ax, [esi+4]
mov word ptr DestinationAddress+4, ax
ret
ConnectionRoutine endp

; Set DIX in use flag

; Save 6 byte address

HSM Data Structures and Variables 3-57

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

3-58

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

chapter 4 MSM/TSM Data Structures and
Variables

Introduction

This chapter describes the data structures, variables, and constants defined by
the MSM and TSM. Some of the variables and structures in this chapter are
required to control processes and must be initialized, updated, or managed by
the driver. Others are made available as optional support for the developer and
may be used accordingly.

MSM Equates
* MSMVirtualBoardLink
» MSMsStatusFlags
¢ MSMTxFreeCount
 MSMMaxFrameHeaderSize
* MSMPhysNodeAddress

Data Structures
» Receive Control Blocks (RCBs)
e Transmit Control Blocks (TCBSs)
» Event Control Blocks (ECBs)

MSM Global Variables

MSMBitSwapTable

The MSMBIitSwapTable is a 256-byte array that can be used to convert
noncanonical addresses to canonical, and vice versa. Most drivers will not need
to do this, usually just some TokenRing drivers using canonical format
addressing modes; and some older FDDI drivers whose hardware doesn’t
convert noncanonical to canonical addresses.

MSM/TSM Data Structures and Variables 4-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

This global table eliminates the need to have any other bit-swap tables, such as
in the HSM. The conversion is done one byte at a time, for example:

xor eax, eax
mov al, <byte to be swapped>
mov al, MSMBIitSwapTable [eax]

In this example, if thekyte to be swappedwas 64h, the result in registdr
would be 26h.

MSM Equates

The HSM must access several variables located in the MSM's Data Space. This
section describes the MSM defined equates which enable the HSM to access
these variables. The equates represent negative offsets which are used in
conjunction with EBP, the pointer to the Adapter Data Space.

MSMVirtualBoardLink

The MSM maintains a separate configuration table for each frame type
supported by the driveMSMVirtualBoardLink is used to access a list of
pointers to the configuration tables.

The list contains 4 pointers for Ethernet, 2 for Token-Ring, and FDDI, and 1
for RX-Net. If a particular frame has not been loaded, the pointer to the
corresponding configuration table will be zero. The lists are accessed as

follows.
Ethernet
[ebp].MSMVirtualBoardLink + 00h ;ETHERNET 802.2
[ebp].MSMVirtualBoardLink + 04h ;ETHERNET Il
[ebp].MSMVirtualBoardLink + 08h ;ETHERNET 802.3
[ebp].MSMVirtualBoardLink + 0OCh ;ETHERNET SNAP
Token-Ring
[ebp].MSMVirtualBoardLink + 00h ;TOKEN 802.2
[ebp].MSMVirtualBoardLink + 04h ;TOKEN SNAP
FDDI
[ebp].MSMVirtualBoardLink + 00h ;FDDI 802.2
[ebp].MSMVirtualBoardLink + 04h ;FDDI SNAP
RX-Net
4-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

mov
or

jz
mov

MSMStatusFlags

[ebp].MSMVirtualBoardLink + 00h ;RX-Net

Example
ebx, [ebp].MSMVirtualBoardLink+00h ; Ptr to E_802.2 config table
ebx, ebx ; Check if valid pointer?
Frame8022NotRegistered ; Jump if not
eax, [ebx].MLIDSlot ; EAX = Our slot number

The MSM maintains a dword variable which provides certain adapter status
information. This status information enables the driver to determine if the
adapter is shutdown or if the MSM has any packets waiting in its transmit
queue. The

MSMStatusFlagequate represents a negative offset which is used in
conjunction with EBP, the pointer to the Adapter Data Space, to access the
status variable. It is defined in the MSM.INC file as follows:

MSMStatusFlags equ DriverAdapterStart - (2 * 4)
SHUTDOWN equ 01h ; Bit #0 = Shutdown Status
TXQUEUED equ 02h ; Bit #1 = Tx Queue Status
POLLING_SUSPENDED equ 10h ; Bit #4 = Polling State

Note‘VI
v

MSMStatusFlags can be used by the HSM to determine whether the adapter is
partially shutdown. If bit #0 is set, the adapter is partially shutdown and must
not be serviced. Likewise, the MSM will not cBlliverSend to transmit a

packet if the adapter is partially shutdown.

test [ebp].MSMStatusFlags,SHUTDOWN
jnz DoNotServiceAdapter

The status flags can also be used by polled drivers to determine if polling has
been suspended. If bit #4 is set, polling has been suspend by a previous call to
MSMSuspendPolling

test [ebp]. MSMStatusFlags, POLLING=SUSPENDED
jz Polling has been suspended

The status flags can also be used to determine if the TSM has any send TCBs
gqueued, thus saving a call4d SM>GetNextSend If bit #1 is set, the TSM
has at least one packet queued for transmission.

RX-Net drivers cannot use this test since additional fragments of a split packet
are not detected.

MSM/TSM Data Structures and Variables 4-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

test [ebp].MSMStatusFlags, TXQUEUED

jz NoSendsQueued
Example
DriverISR proc
'll'ransmitCompIete: ; EBP=Ptr to Adapter Data Space
inc [ebp].MSMTxFreeCount ; Free adapter's transmit resource
mov [ebp]. TxInProgress, 0 ; Clear transmit in progress flag

*** Transmit Next Packet ***

test [ebp].MSMStatusFlags, TXQUEUED; Anything in send queue?

jz NoSendsQueued ; Jump if nothing to send
call <TSM>GetNextSend ; Otherwise get the next TCB from
call DriverSend ; the queue and send it

MSMServiceEventsAndReturn

DriverISR endp

MSMTxFreeCount

During initialization, the HSM must specify the number of hardware resources
available on the adapter for handling pending packet transmissions. The MSM
uses this value to determine if the adapter is ready to accept another packet for
transmission. The count is also used to determine how many TCB structures
the MSM will allocate. ThdISMTxFreeCoun¢quate represents a negative
offset which is used in conjunction with EBP, the pointer to the Adapter Data
Space, to access the count. It is defined in the MSM.INC file as follows:

MSMTxFreeCount equ DriverAdapterStart - (1*4)

For example, if the adapter has a second transmit buffer that can accept another
packet before the current transmission is complete, the driver must set
MSMTxFreeCounto a value of 2. Some adapters support hardware queuing.

In this case, the count should represent the number of transmissions that the
adapter can efficiently process. If the adapter has no additional resources

4-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

available other than those used to transmit the current packet, set
MSMTxFreeCounto 1.

The TSM decrements this count before it cBlitiverSend. The count is also
decremented during a successful cakTsM>GetNextSend The TSM

assumes that the adapter is not ready for another packet if this count reaches
zero.

The driver is responsible for incrementing the count each time one of the
adapter's transmit resources becomes available. The count must be
incremented not only when the adapter successfully completes a transmission,
but also when a transmission is aborted due to timeout errors, maximum retry

errors, ...etc.

Example
Driverlnit proc ; EBP = Ptr to Adapter Data Space

mov [ebp].MSMTxFreeCount,2 ; Adapter has 2 transmit resources
Driverlnit endp
DriverISR proc
TransmitComplete:

inc [ebp].MSMTxFreeCount ; Free adapter's transmit resource
DriverISR endp

MSM/TSM Data Structures and Variables 4-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMPriorityTxFreeCount

During initialization, the HSM must specify the number of hardware resources
available on the adapter for handling priority packet transmissions.

MSMMaxFrameHeaderSize

The<TSM>GetRCB procedure, which may be used during packet reception,
employs a LOOKAHEAD process in which the header information of a
received packet is transferred into a buffer and previewed by the TSM. This
way, the TSM can first verify that it wants the packet before the entire packet
is read from the adapter.

The TSM sets thMISMMaxFrameHeaderSiz@lue to the number of bytes the
driver must transfer to that LOOKAHEABuffer. Its value is equal to the
MLIDLookAheadSizevalue from the configuration table plus the maximum
media header size. It can be up to 128 bytes, the maximum
MLIDLookAheadSize plus the maximum media header size.

For example:

MLIDLookAheadSize = 128
Ethernet Maximum Media Header Size = 22
MSMMaxFrameHeaderSize = 128 + 22 = 150

To access the size, tiSMMaxFrameHeaderSizgjuate is used in
conjunction with EBP, the pointer to the Adapter Data Space.

mov ecx, [ebp]l.MSMMaxFrameHeaderSize

Your driver must read the size each time before cakih§M>GetRCB since

it can change dynamically. The driver may optionally implement the
DriverRxLookAheadChange routine to allow HSMs for intelligent adapters
to be informed when the size changes rather than constantly checking.

4-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example

DriverISR

ReceiveEvent:

mov
lea
rep
lea
mov
call
jnz

For more information on the LookAhead process, see the “Packet Reception
section in Chapter 5 and tk@ SM>GetRCB procedure in Chapter 6. Refer to
the DriverRxLookAheadChangePfield description of the
DriverParameterBlock in Chapter 3 for more information on implementing this
control procedure for intelligent adapters.

proc ; ebp = Ptr to Adapter Data Space

ecx, [ebp]l.MSMMaxFrameHeaderSize

edi, [ebp].LookAheadBuffer

insb

esi, [ebp].LookAheadBuffer; Ptr to LookAhead Buffer
ecx, ReceivePacketSize ; Get Packet Size
<TSM>GetRCB ; Getan RCB
PacketNotAccepted

MSM/TSM Data Structures and Variables 4-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMPhysNodeAddress

4-8

Example

DriverReset
lea
lea
movsd
movsw

DriverReset

proc
esi,[ebp].MSMPhysNodeAddress
edi,[ebp].OpenAdapterNode

The MSMPhysNodeAddressjuate is a negative offset that is used in
conjunction with EBP, the pointer to the Adapter Data Space, to access the
physical layer format of the node address. It is defined in the MSM.INC file as
follows:

MSMPhysNodeAddress equ DriverAdapterStart -(16*4)

If bit 15 of theMLIDModeFlagsis set, the driver must use
MSMPhysNodeAddressnstead of the configuration table
MLIDNodeAddresto obtain the physical layer format of the node address. The
MSM sets theViISMPhysNodeAddresslue when the driver's initialization
routine callsMSMRegisterMLID .

For additional information, refer to the configuration tatdlelDNodeAddress
andMLIDModeFlagsdescriptions in Chapter 3 and the canonical/
noncanonical format discussion in t@anonical and Noncanonical
Addressingsupplement.

; ebp = Ptr to Adapter Data Space

endp

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Data Structures

The structures used to transfer data between the layers of the ODI model are
called Event Control Blocks (ECBs). The MSM defines two specific forms of
the ECB structure.

» Receive Control Blocks (RCBs)
e Transmit Control Blocks (TCBSs)

These streamlined forms of the general ECB structure are provided by the
MSM to simplify driver development. Only the fields relevant to the specific
packet transaction in progress are visible to the driver.

The following section describes the RCB and TCB structures. TheHSM must
refer to these structures during packet reception and transmission. The
relationship of these MSM structures with the general ECB structure is also
discussed.

Specific reception and transmission methods and related MSM/TSM support
routines are described in Chapter 5.

MSM/TSM Data Structures and Variables 4-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Figure 4-1 Packet Transfer in the MSM/ODI Model

4-10

Link Support Layer

ECB

Support Modules
(MSM/TSM)

RCB TCB

Hardware Specific Modu
(HSM)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Receive Control Blocks

Receive Control Blocks are the structures used to transfer data from the HSM
to the TSM.

Usually, when the adapter receives a packet, the HSM obtains a Receive
Control Block from the TSM and copies the packet into the RCB's data
fragment buffer(s). The RCB is passed back to the TSM where it is processed
and transferred to the Link Support Layer. The Link Support Layer then directs
it to the proper protocol stack.

On a server, there will normally be only one fragment buffer into which the
received data must be copied, therefore drivers should be optimized for one
fragment receives. However, the driver's receive routine should be designed to
handle multiple fragment buffers if possible. Bit 10 of MelIDModeFlags

field in the configuration table must be set if the driver can handle fragmented
receive buffers.

The following support routines are available to obtain RCBs.
* MSMAllocateRCB
* MSMAllocateMultipleRCBs
* <TSM>GetRCB
* <TSM>ProcessGetRCB
» <TSM>FastProcessGetRCB

The<TSM>GetRCB routine provides fragmented RCBs. Drivers that cannot
handle fragmented receive buffers must M&MAllocateRCB,
<TSM>ProcessGetRCBor <TSM>FastProcessGetRCBo obtain RCBs.
Chapter 5 describes specific reception methods and illustrates the use of these
support routines.

The following section describes the RCB structures and fields. The structures
are defined in the MSM.INC file.

MSM/TSM Data Structures and Variables 4-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Fragmented RCB

Figure 42 Fragmented Receive Control Block

RCBStructure struc

RCBDriverWS *
RCBReserved
RCBFragmentCount
RCBFragmentOffsetl
RCBFragmentLengthl

RCBStructure ends

*k%

;7 RCBFragmentOffsetn
;7 RCBFragmentLengthn

RCBDriverWs *
RCBReserved
RCBFragmentCount
RCBFragmentOffsetl
RCBFragmentLengthl

RCBFragmentOffsetn
RCBFragmentLengthn

db 8 dup (0)
db 40 dup (0)
dd ?
dd ?
dd ?

dd ?
dd ?

; Driver Workspace

; Reserved for MSM use

; Number of Fragments

; Pointer to the 1st Fragment Buffer
; Length of the 1st Fragment Buffer

;¥ Addtional Fragment Descriptors

; Pointer to the nth Fragment Buffer
; Length of the nth Fragment Buffer

| | *++ (40 bytes)

(Receive Buffer #1)

* RCBDriverWS cannot be used by RX-Net drivers.

(Receive Buffer #n)

4-12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

Table 4.1 Fragmented RCB Field Descriptions

Offset Name Bytes Description

00h RCBDriverWs 8 The HSM may use this field for any purpose as long as it
controls the RCB. (RX-Net drivers cannot use this field)

08h RCBReserved 40 This field must not be modified by the HSM. It contains
status indicators, protocol information, and additional data
maintained by the MSM and Link Support Layer.

30h RCBFragmentCount 4 This field contains the number of data fragment descriptors
to follow. Each descriptor consists of a pointer to a fragment
buffer and the size of that buffer. The HSM will copy the
received packet into these buffers.

34h RCBFragmentOffsetl 4 Pointer to the 1st fragment buffer.

38h RCBFragmentLengthl 4 Length of the 1st fragment buffer.

??h RCBFragmentOffsethRCB 4 Immediately following the RCB in memory are additional
??h FragmentLengthn 4 fragment descriptors.

MSM/TSM Data Structures and Variables 4-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Non-Fragmented RCB

Figure 4-3 Non-Fragmented Receive Control Block

RCBStructure struc
RCBDriverWs * db 8 dup (0) ; Driver Workspace
RCBReserved db 40 dup (0) ; Reserved for MSM
RCBFragmentCount dd 1
RCBFragmentOffsetl dd ?
RCBFragmentLengthl dd ?

RCBStructure ends

;; RCBDataBuffer equ RCBFragmentLengthl + 4 ; Buffer for Packet

RCBDriverWs *
RCBReserved ‘ ‘ ... (40 bytes)
RCBFragmentCount
RCBFragmentOffset
RCBFragmentLengthl

=)

RCBDataBuffer

* RCBDriverWsS cannot be used by RX-Net drivers.

4-14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Table 4.2 Non-Fragmented RCB Field Descriptions

Offset

00h

08h

30h

34h

38h

3Ch

Name

RCBDriverWs

RCBReserved

RCBFragmentCount

RCBFragmentOffsetl

RCBFragmentLengthl

RCBDataBuffer

Bytes

8

40

Description

The HSM may use this field for any purpose as long as it
controls the RCB. (RX-Net drivers cannot use this field)

This field must not be modified by the HSM. It contains
status indicators, protocol information, and additional data
maintained by the MSM and Link Support Layer.

This field contains the number of data fragment descriptors
to follow. It will always be 1 for non-fragmented receives.

The HSM must NOT use this field. The TSM determines
this value afterthe HSM returns the RCB for processing. (It
will contain a pointer to the “data” portion of the received
packet in the RCBDataBuffer.)

The HSM must NOT use this field. The TSM determines
this value afterthe HSM returns the RCB for processing. (It
will contain the length of the “data” portion of the received
packet in the RCBDataBuffer.)

Immediately following the RCB in memory is a buffer for the
received packet. The HSM copies the received packet into
this buffer. For some frame types this data buffer contains
MAC layer headers. (Refer to the MSMAllocateRCB
routine for information on using a non-fragmented RCB)

MSM/TSM Data Structures and Variables 4-15

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Transmit Control Blocks

Transmit Control Blocks are the structures used to transfer data from the TSM
to the HSM.

Figure 4-4 Packet Transfer in the MSM/ODI Model

LINK SUPPORT LAYER

f

ECB

v

SUPPORT MODULES
(MSM / TSM)

T

RCB TCB

v

HARDWARE SPECIFIC MODULE
(HSM)

When sending a packet, a protocol stack assembles a list of fragment pointers
in a transmit ECB and passes it to the Link Support Layer. The ECB is then
transferred to the TSM where the information is processed and a TCB is
constructed. The TCB structure consists of the assembled packet header and
data fragment information. The TSM directs the TCB to the appropriate driver
which collects the header and packet fragments and transmits the packet.

The following section describes the TCB structures used during packet
transmission. The structures are defined in the MSM.INC file.

4-16 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

TCB for Ethernet, Token-Rin g, and FDDI

Figure 4-5 Ethernet, Token-Rin g and FDDI Transmit Control Block

TCBStructure struc

TCBDriverWs
TCBDatalLen

Header Length
TCBFragStrucPtr
Structure
TCBMediaHeaderLen

TCBStructure

;7 TCBMediaHeader

dd
dd

dd

dd

ends

3 dup (0);
?

equ TCBMediaHeaderLen + 4

TCBDriverWs

TCBDatalLen

TCBFragStrucPtr

; Driver Workspace
; Total Fragment + Media

; Pointer to Fragment

; Length of Media Header

; Media Header Buffer

TCBMediaHeaderLen

TCBMediaHeader

Fragment Structure

MSM/TSM Data Structures and Variables 4-17

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Table 4.3 TCB Field Descriptions

Offset

00h

0Ch

10h

14h

18h

Name

TCBDriverWs

TCBDatalLen

TCBFragStrucPtr

TCBMediaHeaderLen

TCBMediaHeader

Bytes Description

12 The HSM may use this field for any purpose as long as it
controls the TCB.

4 This field contains the length of the packet described by the
data fragments plus the media header. This value will never
be 0.

4 This field contains a pointer to a list of fragments defined by
the FragmentStructure (described following the TCB
section).

4 This field contains the length of the Media Header that
immediately follows the TCB in memory. This value may be
odd, even, or zero. A value of zero indicates a raw send. If
the HSM is handed a raw send, the originating protocol
stack has already included the media header in the first
data fragment.

? Immediately following the TCB in memory is a buffer con-
taining the Media Header that was assembled by the MSM.

4-18

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

TCB for RX-Net

Figure 4-6 Rx-NET Transmit Control Block

TCBStructure struc
TCBDriverWs dd 3 dup (0) ; Driver Workspace
TCBDatalLen dd ? ; Total Fragment + Media Header Length
TCBFragStrucPtr dd ? ; Pointer to Fragment Structure
TCBMediaHeaderLen dd ? ; Length of First Media Header
TCBStructure ends
;; TCBMediaHeader db 3or4 dup (?) ; First Media Header *
;; TCBSecondHeaderLen db ? ; Length of Second Media Header
;; TCBSecondHeader db 40r8 dup (?) ;Second Media Header **
TCBDriverws BEEEEEE
TCBDatalLen
TCBFragStrucPtr
TCBMediaHeaderLen
TCBMediaHeader * _

Fragment Structure

TCBSecondHeaderLen | |
TCBSecondHeader ** | | 7

* TCBMediaHeader is 3 bytes for Short Packets, and 4 bytes for Long or Exception Packets.

** TCBSecondHeader is 4 bytes for Short or Long Packets, and 8 bytes for Exception Packets.

MSM/TSM Data Structures and Variables 4-19

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Table 4.4 TCB Field Descriptions (RX-Net)

Offset

00h

0Ch

10h

14h

Name Bytes
TCBDriverWs 12
TCBDatalLen 4
TCBFragStrucPtr 4
TCBMediaHeaderLen 4

Description

This field is used by the MSM to link the TCBs

This field contains the length of the packet described by the
data fragments plus the media header. This value will never
be 0.

This field contains a pointer to a list of fragments defined by
the FragmentStructure (described following this section).

This field contains the length of the first media header.

Immediately following the TCB in memory, is a buffer containing the media header information.

18h TCBMediaHeader 3or4 This field contains the first media header. The header is 3
bytes for Short Packets and 4 bytes for Long or Exception
Packets.

? TCBSecondHeaderLen 1 This field contains the length of the second media header.

? TCBSecondHeader 4 or 8 This field contains the second media header. The header is
4 bytes for Short or Long Packets, and 8 bytes for
Exception Packets.

Note Vvl Several fields of the above table reference the different types of RX-Net
packets. The following diagram shows the three RX-Net packet formats. A full
description of each is included in the ODI Supplement: Frame Types and
Protocol IDs.

4-20 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

RX-Net Packet Format

Short Packet

Long Packet

[

Fxception Packet

Source Address
Destination Address
Byte Offset

Unused

(size varies)

Protocol Type

Split Flag

Packet Sequence Number

(2 bytes)

Data
(0 - 249 bytes)

Source Address
Destination Address
Long Packet Flag
Byte Offset

Unused

(size varies)

Protocol Type

Split Flag

Packet Sequence Number

(2 bytes)

Data
(253 - 504 bytes)

Source Address
Destination Address
Long Packet Flag
Byte Offset

Unused

(size varies)

Pad 1: Protocol Type
Pad 2: Split Flag
Pad 3: FFh

Pad 4: FFh

Protocol Type

Split Flag

Packet Sequence Number
(2 bytes)

Data
(250 - 252 bytes)

ZI'IA 200 - TE'€A 2ads

MSM/TSM Data Structures and Variables 4-21

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Spec v3.31 - Doc v1.12

Fragment Structure

The following section describes the format of the fragment structure pointed to
by theTCBFragStrucPtffield of the Transmit Control Block.

Figure 4-7 TCB Fragment Structure

FragmentCount dd ? ; Number of Fragments
FragmentOffsetl dd ? ; Pointer to the 1st Data Fragment
FragmentLengthl dd ? ; Length of the 1st Data Fragment
FragmentOffsetn dd ? ; Pointer to the nth Data Fragment
FragmentLengthn dd ? ; Length of the nth Data Fragment

FragmentCount

FragmentOffsetl

FragmentLengthl

%[Data
%[Data

FragmentOffsetn

FragmentLengthn

4-22 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Table 4.5 TCB Fragment Structure

Offset

00h

04h
08h

Name

FragmentCount

FragmentOffsetl
FragmentLengthl

FragmentOffsetn
FragmentLengthn

Bytes Description

4

This field contains the number of data fragment descriptors
to follow. Each descriptor consists of a pointer to a fragment
buffer and the size of that buffer. The HSM collects the data
from these buffers when forming the packet for
transmission.

Pointer to the buffer containing the first data fragment.

Length of the buffer pointed to by FragmentOffset1.

(These fields contain additional fragment descriptors)

MSM/TSM Data Structures and Variables 4-23

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZI'IA 200 - TE'€A 2ads

Spec v3.31 - Doc v1.12

Event Control Blocks

This section defines the general Event Control Block (ECB) structure and
illustrates its relationship to the RCB and TCB. This section does not apply to
most drivers written with the MSM / TSM interface.

Drivers written using the MSM / TSM interface typically interact with RCBs
and TCBs during packet transactions as shown in the figure below. However,
some drivers may need to bypass these MSM provided structures in order to
work directly with the underlying general ECB structure. This is typically the
case for intelligent adapters that are designed ©C& aware

An ECB awareadapter/driver will completely fill in and manage all fields of

the ECB during packet transactions. This shifts much of the overhead involved
in packet reception and transmission to the adapter giving the processor more
time to perform other tasks.

Note‘vvl This section only applies to ECB aware adapters/drivers.

Figure 4-8 Packet Transfer in the MSM/ODI Model

4-24

LINK SUPPORT LAYER

*

ECB

v

SUPPORT MODULES
(MSM / TSM)

T

RXECB TXECB

v

HARDWARE SPECIFIC MODULE
(HSM)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

The format of the ECB structure is shown below. The same structure is used for
both receiving and transmitting packets.

Figure 4-9 Event Control Block

ECBStructure struc
Link ' dd
BLink dd
Status dw
ESRAddress dd
LogicallD dw
* ProtocollD db
* BoardNumber dd
* ImmediateAddress db
* DriverWorkSpace dd
ProtocolWorkSpace db
* PacketLength dd
* FragmentCount dd
* FragmentOffsetl dd
* FragmentLengthl dd
ECBStructure ends

*%

? ; Forward Link used for Queuing
ECBs

? ; Backward Link used for Queuing
ECBs

? ; Current ECB Status

? ; Event Service Handler

? ; Protocol Logical ID

6 dup (?) ; Protocol ID **

? ; Logical Board # from Configuration
Table

6 dup (?) ; Rx...Source Addr / Tx...Destination
Addr

? ; Driver Workspace / Dest and Frame
Type *%

8 dup (?) ; Protocol Stack Workspace

? ; Length of the Packet Data

? ; Number of Fragments

? ; Pointer to the 1st Fragment Buffer

2

; Length of the 1st Fragment Buffer

; Additional Fields follow for both
; Receive and Transmit ECBs

During packet reception, these fields must be filled in by the ECB Aware Adapter/Driver before passing
the ECB to the upper layers. During packet transmission, all fields are filled in by the upper layers before

passing the ECB to the driver.

802.2 frame types require special handling of the ProtocollD and DriverWorkSpace fields in the ECB
during packet reception and transmission (refer to the ODI Supplement: Frame Types and Protocol

IDs).

MSM/TSM Data Structures and Variables 4-25

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Receive ECBs vs RCBs

The general Receive ECB and the MSM's RCB essentially form a union. That
is, both structures occupy the same memory space.

Figure 4-10 ECBs vs RCBs

ECB Fields RCBFields
Link
Blink
Status
ESRAddress ‘ ‘
LogicallD
ProtocollD ‘ ‘
BoardNumber —— RCBReserved
ImmediateAddress ‘ ‘
DriverWorkSpace
ProtocolWorkSpace ‘ ‘ ‘ ‘
PacketLength
FragmentCount]
FragmentOffsetl * | x| x| % —— RCBFragment

—— RCBDriverWs

FragmentLengthl | * | | * | * Fields
MediaHeader

Data
—— RCBDataBuffer

The ECB fields that correspondRECBReservedre normally managed by the
TSM. However, if an adapter is ECB aware, it can simply treat the structure as
an ECB and take over the management of these fields.

4-26 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Drivers written for ECB aware adapters must obtain control blocks by calling
MSMAIllocateRCB. This routine allows the driver to preallocate RCBs
without the MSM initializing the fields. When a packet is received, the adapter
copies it into theRCBDataBufferfills in the required fields (see Figure 4.9),
and returns the structure using either¢f&M>RcvCompleteStatus /
MSMServiceEventscombination or the function
<TSM>FastRcvCompleteStatus(These routines are described in Chapter 6).

Transmit ECBs vs TCBs

The general Transmit ECB and the TSM's TCB are totally separate structures.
The TCBFragStrucPtifield of the TCB, however, points to the
FragmentCounfield of the ECB. Knowing this, it is possible to work directly
with the underlying ECB by using both negative and positive offsets from this
pointer.

The MSM provides another more efficient way for ECB Aware adapters to
work directly with ECBs. By setting tHeriverSendWantsECBsvariable of

the DriverParameterBlock to any nonzero value (see Chapter 3), the HSM's
DriverSend routine will be given ECBs rather than TCBs for packet
transmission. The HSM will then be responsible for building the proper media
header depending on the board number.

MSM/TSM Data Structures and Variables 4-27

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Figure 4-11 Transmit ECBs vs TCBs

TCB Fields

TCBDriverWs ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
TCBDatalLen
TCBFragStrucPtr
TCBMediaHeaderLen
TCBMediaHeader

ECB Fields
Link
Blink
Status
ESRAddress ‘ ‘
LogicallD
ProtocollD ‘ ‘
BoardNumber
ImmediateAddress ‘ ‘

DriverWorkSpace
ProtocolWorkSpace ‘ ‘ ‘ ‘
PacketLength
FragmentCount —
FragmentOffsetl
FragmentLengthl ¢

FragmentOffsetn
FragmentLengthn $

4-28 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Table 4.6 ECB Field Descriptions

Offset

00h

04h

08h

O0Ah

OEh

10h

Name

Link

BLink

Status

ESRAddress

LogicallD

ProtocollD

Bytes

4

Description

This field contains a forward link to another ECB. The LSL
uses this field for queuing ECBs. The HSM may use this
field for any purpose as long as it controls the ECB.

This field contains a backward link to another ECB. The
LSL uses this field for queuing ECBs. The HSM may use
this field for any purpose as long as it controls the ECB.
However, if the HSM uses DriverSendWantseECBs to get
ECBs instead of TCBs, it must not modify the transmit
ECB's BLink field.

This field must not be modified by the HSM. The LSL uses
the Statusfield to indicate the current state of the ECB. (i.e.,
currently unused, queued for sending, etc.).

This field must not be modified by the HSM. In receive
ECBs, the LSL places a pointer to the target protocol
stack's receive handler in this field and then queues the
receive ECB on a hold queue. Later, the LSL polls the hold
gueue and routes the ECB to the proper protocol stack by
calling the address in this field.

This field must not be modified by the HSM. When a
protocol stack registers with the LSL, it is assigned a logical
number (0...15). This field contains that logical number or,
if the packet is a raw send, the field contains the value
FFFFh. On sends, the protocol stack places its own logical
number in this field. On receives, the LSL places the target
stack’s logical number in this field.

This field contains the protocol ID (PID) value on both
sends and receives. This value is stored in High-Low order.
For the 802.2 frame type, on sends, this field also contains
the 802.2 frame type information (Type | or Il) required to
build the media header. (See the Frame Types and Protocol
IDs supplementfor an explanation of 802.2 Type | and Type
Il use of this field). On receives, this field always contains
the DSAP value of the 802.2 header.

MSM/TSM Data Structures and Variables 4-29

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Table 4.6 ECB Field Descriptionscontinued

Offset Name Bytes Description

16h BoardNumber 4 When a driver registers with the LSL, it is given a logical
board number. The MLIDBoardNumber field of the
configuration table contains that number (see Chapter 3).
Logical board 0 is used internally in the operating system.
Drivers are assigned logical board numbers 1 through 255.
On receives, the HSM must fill in this field to indicate which
logical board received the packet. On sends, a protocol
stack fills in this field to indicate the target logical board.

1Ah ImmediateAddress 6 On receives, the immediate address represents either the
packet's source node address or the address of the last
router that passed the packet if the packet was routed from
another network. On sends, the immediate address
represents either the destination node address or the
destination router address.

The address is stored in High-Low order. If the node
address is less than six bytes, the most significant byte(s)
must be padded with 0.

The MSM fills in this field on receives. Addresses passed to
the upper layers may be in canonical or noncanonical
format depending upon whether the driver bit-swaps MSB
format addresses. The stack fills in this field on sends. All
addresses passed down to the MLID are in canonical
format if the driver is configured to be LSB. (Refer to
MSMPhysNodeAddress description.)

4-30 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Table 4.6 ECB Field Descriptionscontinued

Offset

20h

24h

2Ch

30h

Name

DriverWorkspace

ProtocolWorkspace

PacketLength

FragmentCount

Bytes

4

8

Description

The HSM can use this field for any purpose. The LSL will
not modify the field. However, before passing a completed
receive ECB to the LSL, fill in the first byte of the field (offset
20h) with the destination address type of the received
packet:

01h = Multicast

03h = Broadcast

04h = Remote Unicast
08h = Remote Multicast
10h = No Source Route
20h = Error Packet

80h = Direct Unicast

Set the second byte of this field (offset 21h) to indicate
whether the MAC header contains one or two 802.2 control
bytes:

0 = All frame types other than 802.2
1 =802.2 header has only Ctrl0 byte (Type I)
2 = 802.2 header has Ctrl0 and Ctrl1 (Type II)

See the Frame Types and Protocol IDs supplement for an
explanation of 802.2 Type | and Type II.

This field is reserved for use by the protocol stack.

This field contains the total length of the packet in bytes.
This is the length of the data portion of the packet (not
including media or SAP headers).

On receives, this value is equal to the FragmentLengthl
(length may be 0). The HSM for ECB aware adapters must
fill in this field.

On sends, this value may be zero. The protocol stack fills
in this field.

This field contains the number of data fragment descriptors
to follow. Each descriptor consists of a pointer to a fragment
buffer and the size of that buffer.

On receives, the fragment count is always between 1 and
16.

On sends, the fragment count is always between 1 and 16.

MSM/TSM Data Structures and Variables 4-31

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Table 4.6 ECB Field Descriptionscontinued

Offset Name Bytes Description
34h FragmentOffsetl 4 On receives, immediately following the ECB in memory is a
38h FragmentLengthl 4 buffer where the HSM copies the received packet. After the

packet is copied into the buffer the HSM must set the
FragmentOffset to point around any media headers to the
data portion of the packet. The HSM must also set the
FragmentLength field to the total length of the data portion
of the packet (see Figure 4.10).

On sends, the FragmentOffset field points to the first
fragment buffer containing packet data. The
FragmentLength field specifies the length of that buffer.
This value can be zero. Immediately following the ECB in
memory there may be additional fragment descriptors. The
HSM collects the data from these fragment buffers to form
the packet for transmission (see Figure 4.11).

On receives, the memory immediately following the ECB contains:

3Ch MediaHeader varies The media header of a packet is placed in this field. This
field varies in length and appears only in Receive ECBs.
This field is not used or present if the LAN media splits the
data of a packet and transmits it in more than one frame (for
example RX-Net).

??h Data varies Immediately following the MediaHeader is the data portion
of the packet.

On sends, the memory immediately following the ECB contains:

3Ch FragmentOffset2 4 These fields contain additional fragment descriptors when
40h FragmentLength2 4 the FragmentCount field is greater than 1.

4-32 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

chapter
5 HSM Procedures

Introduction

This chapter describes the routines that are the primary components of the

Hardware Specific Module (HSM).
Initialization and Removal

 Driverlnit (required)

« DriverRemove (required)
Board Service

+ DriverISR

» DriverPoll

(only one of the above is required)

 DriverlSR2 (optional)
Packet Transmission

 DriverSend (required)

« DriverPriorityQueueSupport (optional)
Multi-Operating System Support

« DriverEnablelnterrupt (required)

« DriverDisablelnterrupt (required)

- DriverDisablelnterrupt2 (required if DriverISR2 is used)

HSM Procedures 5-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Control Procedures

DriverReset (required)

DriverShutdown (required)

DriverMulticastChange (required except for RX-Net)
DriverPromiscuousChange (recommended)
DriverStatisticsChange (optional)
DriverRxLookAheadChange (optional)

DriverManagement (optional)

Timeout Detection

TimerProcedure (optional)
DriverAESCallBack (optional)
DriverINTCallBack (optional)

DriverTxTimeout (RX-Net Drivers only)

Every driver must provide the required procedures in order to function
properly. The recommended procedures must be implemented if the hardware
supports that function. The optional procedures are available if the adapter or
driver requires the functionality. The HSM indicates routines not supported by
placing a zero in the corresponding fields of EvezerParameterBlock.

All procedures described on the following pages are near calls from the MSM
and TSM. The pseudocode shown is intended to illustrate a general flow of
events and does not necessarily describe optimized code.

5-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Initialization

The HSM'sDriverlnit routine controls the complete initialization process,
although specific tasks performed during initialization are handled by MSM or
TSM routines. The initialization tasks include:

+ Allocate the Frame and Adapter Data Space

« Process custom command-line keywords and custom firmware
« Parse the standard LOAD command-line options

« Register hardware options

« Initialize the adapter hardware

+ Register the driver with the Link Support Layer

This section explains how the initialization tasks are divided between the HSM
and the support modules. Following the discussion is pseudocode for a
Driverlnit routine.

Driverlnit

When the NetWare OS receives the command to load the driver, it calls the
Driverlnit routine (specified as the “start” routine in HSM's linker definition
file). DriverInit must preserve EBP, EBX, ESI, and EDI on the stack, and set
theDriverStackPointefield of the DriverParameterBlock to the value of ESP.
The HSM then registers with the MSM and TSM interface as described in the
next section.

Register with the MSM / TSM

Driverlnit calls the<TSM>RegisterHSM routine with ESI pointing to the
DriverParameterBlock. The TSM passes the driver's parameter block pointer
along with its own to the MSM.

The MSM makes a local copy of both parameter blocks and processes the
information passed on the stack from the operating system. If the HSM has
custom firmware, the MSM loads the firmware and initializes the
DriverFirmwareSizeandDriverFirmwareBuffervariables as described in
Chapter 3.

HSM Procedures 5-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

The MSM allocates memory for the Frame Data Space and creates a copy of
the driver's configuration table template in that area. IMhé&DCardName
andMLIDMajorVersionfields of the configuration table are initialized to zero,
the MSM fills in these fields and thdLIDMinorVersionfield using

information derived from the linker definition file. If the HSM has placed
nonzero values in the card name and major version fields, these fields are not
modified.

Finally, the MSM sets thBlLIDMaximumSie field of the configuration table
to the LSL's maximum packet size and returnBiieerinit.

« Ifthe MSM was unsuccessful in its initialization tasks, it returns with EAX
pointing to an error messagderiverlnit must print the message using
MSMPrintString and return to the operating system with EAX set to a
nonzero value.

 If the MSM is successful, it returns with EAX set to zero and EBX
pointing to the driver's configuration table in the Frame Data Space. The
HSM must now gather the hardware option information needed for the
configuration table and call the MSM to parse the driver parameters

entered on the command-line. This process is described in the following
section.

Determine Hardware Options

After <TSM>RegisterHSM returns successfully, the driver must determine
the hardware configuration of the adapter, including the following parameters:

« Hardware Instance Number (HIN) for Micro Channel, PCI, PnP ISA, PC
CARD, and EISA adapters

- Base port for programmed IO adapters
« Memory decode addresses for shared RAM adapters
+ Interrupt numbers

DMA channels

In all busses, except for legacy ISA, the driver can get this information directly
from the system once the HIN has been identified.

5-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Driverlnit must perform the following steps where appropriate for the
hardware:

1. If the HSM supports multiple buses, it may call
MSMScanBuslinfo to determine the bus type, or it may call
MSMSearchAdapter once for each bus type it supports.

2. For all busses except legacy ISA, ddBMSearchAdapter to
search for the adapter ID. Any hardware instances that are found
must be recorded in tH®Slotoption list of the
AdapterOptionDefinitionStructurd his structure is described in
Chapter 7 under thdSMParseDriverParametersroutine.

Note‘vvl Step 2 must be performed every time Driverlnit is called, because hot plug
cards can change the system hardware configuration between calls to
Driverlnit .

3. The HSM callsMSMParseDriverParametersto determine the
hardware configuration options or the HIN specified on the load
command-line, and to query the operator for any required
parameters which were not specified.

MSMParseDriverParametersprocedure requires an Adapter-
OptionDefinitionStructure containing the valid options for the
hardware configuration. AleedsBitMaps also required to
indicate which specific hardware options must be obtained either
from the command-line or from the console operator. The table
below shows the correspondence between the load options and
configuration table fields. The standard load command options
are described in Appendix A. An example load command is
shown here:

load <driver> frame=ethernet_802.3 port=300 int=3

HSM Procedures 5-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Configuration Table Fields

MLIDSIlot
MLIDIOPortO
MLIDIORangeO
MLIDIOPort1
MLIDIORangel
MLIDMemoryDecode0
MLIDMemoryLengthO
MLIDMemoryDecodel
MLIDMemoryLengthl
MLIDInterruptO
MLIDInterruptl
MLIDDMAUsageO
MLIDDMAUsagel

MLIDChannelNumber

Command-Line

load <driver>
load <driver>
load <driver>
load <driver>
load <driver>
load <driver>
load <driver>
load <driver>
load <driver>
load <driver>
load <driver>
load <driver>
load <driver>

load <driver>

SLOT=4

PORT=300

PORT=300:A

PORT1=700

PORT1=700:14

MEM=CO0000

MEM=C0000:1000

MEM1=CCO000

MEM1=CC000:2000

INT=3

INT1=5

DMA=0

DMA1=3

CHANNEL=2

MSMParseDriverParametersalso processes any custom
command-line keywords defined by tBeiverKeyword
variables in the DriverParameterBlo¢kee also
MSMParseCustomKeywordg

On return fromMSMParseDriverParameters, the I/O portion
of the logical board's configuration table in the Frame Data Space
has been filled in with the parsed values.

4. For all buses except legacy ISA, the configuration table now
contains the selected adapter HIN. The HSM can now use
MSMGetCardConfig to determine the configuration.

When all needed information has been obtained for the configuration table,
Driverlnit callsMSMRegisterHardwareOptions which is described in the

next section.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Note\gAYA If the driver must access shared memory before registering the hardware
‘ options, it must use MSMReadPhysicalMemory and
MSMWritePhysicalMemory .

Register Hardware Options

The HSM callsMiSMRegisterHardwareOptions to register with the

operating system. This routine reports to the HSM whether a new adapter or a
new frame format for an existing adapter is being loaded. If a new adapter is
being registered, the MSM allocates the Adapter Data Space and copies the
driver'sAdapterDataSpaceTemplateo that area. This routine also notifies

the HSM of any conflicts with existing hardware in the system.

There are four possible conditions that the HSM must handle on return from
MSMRegisterHardwareOptions:

« IfEAX =0, a new adapter was successfully registered and the HSM must
proceed with the hardware initialization (EBP now contains a pointer to
the Adapter Data Space).

« IfEAX =1, a new frame type for an existing adapter was successfully
registered and initialization is essentially complete.

« If EAX = 2, a new channel for an existing multichannel adapter was
successfully registered. The driver (and MSM) typically treat the
registering of a new channel as a new adapter.

« If EAX > 2, the MSM was unable to register the hardware options and
EAX points to an error messaderiverinit must print the error message
usingMSMPrintString and return to the operating system with EAX set
to a nonzero value.

Initialize the Adapter

At this point the HSM initializes the adapter hardware. This consists of all
setup appropriate for the hardware and might also include RAM and other
hardware tests. THdSMResetMLID routine could be called to handle part
of this procedure.

Note Vvl It is important that Driverlnit sets up the correct number of transmit buffers (the
maximum number of simultaneous sends allowed by the hardware) by placing
Note‘vvl an appropriate value in MSMTxFreeCount. A description of this variable is in

HSM Procedures 5-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Note\gAYA Chapter 4 and information about its use is in the packet transmission section of
" this chapter.

If an error occurs during the hardware initializatibmiverlnit must print an
appropriate error message, ddiSMReturnDriverResources, and return to
the operating system with EAX set to a nonzero value. If the hardware
initializes successfully, the HSM then registers the driver with the LSL.

All HSMs written for hot plug adapters (PCI, PC Card, and others in the future)
must useMSMResetMLID for all hardware initialization. This is so that the
adapter’s hardware can be initialized after it is inserted, without having to
unload and reload the driver.

Register with the LSL

Driverlnit calls theMSMRegisterMLID routine to register the driver with

the Link Support Layer. Registration consists of the MSM passing the
addresses of the MSM's send and control handler procedures, and a pointer to
the HSM's configuration table to the LSL. The LSL assigns a logical board
number to the adapter and the MSM places it in the configuration table. The
MSM automatically registers a logical board with the LSL during
MSMRegisterHardwareOptions each time a new frame is added for an

existing adapter. If an error occurs, the MSM routine returns a pointer to an
error message in EAX.

If MSMRegisterMLID is successful, the configuration table contains a valid
board number. HSMs for intelligent bus master adapters may now pass the
board number and frame ID information to the adapter if necessary.

Setup a Board Service Routine

5-8

The HSM registers its board service routiDeiverISR or

DriverPoll, by calling eitheMSMSetHardwarelnterrupt or
MSMEnablePolling. TheDriverISR description later in this chapter provides
special instructions on setting up and handling shared interrupts.

adapter is initialized to prevent an interrupt being received before initialization is

Note‘vvl Novell requires that 32-bit HSMs call MSMSetHardwarelnterrupt after the
complete.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Schedule Timeout Callbacks

Note‘vl
\v

If the HSM is running an interrupt driven adapter, it may need to schedule a
timer event that checks to see if the board was unable to complete a send. To
establish this timer event, drivers have traditionally used
MSMSchedulelntTimeCallBack or

MSMScheduleAESCallBack These routines schedule periodic calls to the
HSM'sDriverCallBack orDriverAES routines

(RX-Net drivers normally usBriverTxTimeout , but could use these other

two routines.)

New with this specification, the driver can also 848MScheduleTimer to
schedule a timer event. This function can be called at process time or interrupt
time, and is preferred ovétSMScheduleAESCallBackor
MSMSchedulelntTimeCallBack.

If the adapter is not interrupt driven, the polling procedure can check to see if
it failed to complete a send.

It is critical that MSMRegisterMLID is called before
MSMSchedulelntTimeCallBack in order for the driver to work properly with
NetWare SMP. ALL drivers must adhere to this.

HSM Procedures 5-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Driverlnit Pseudocode

Processor States Entry State
Interrupts are enabled
Note this routine executes at a process level

Return State

EAX zero if successful; nonzero if an error occurred
Interrupts may be in any state
Pseudocode
Driverlnit proc

push ebx, ebp, esi, edi

mov DriverStackPointer, esp

lea esi, DriverParameterBlock

call <TSM>RegisterHSM

jnz DriverInitError

*** Determine Hardware Options ***
(Pseudo Code for Hardware Instance Number (HIN) aware drivers)

Loop on Call to MSMSearchAdapter while successful.
The HIN number must be stored in the Slot option field that will be passed into
MSMParseDriverParameters.

Call MSMParseDriverParameters. (The selected HIN is put in the MLIDSIot field in the
Configuration Table)

Call MSMGetIinstanceNumberMapping
Put the returned BusTag from MSMGetinstanceNumberMapping into
ConfigTable.MLIDBusTag.

Call MSMGetCardConfiginfo
Read the configuration information from the ConfigBuffer.

*** Register Hardware Options ***

call MSMRegisterHardwareOptions
If an Error occurred

jmp DriverInitError
else if a New Frame was added

jmp DriverInitExit

5-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

else a New Adapter was registered
continue with full initialization

*** |nitialize the Adapter ***

If there is not a Node Address override
Read in the Node Address from the board
Copy the Node Address to the Configuration Table

Initialize MSMTxFreeCount

Initialize the Adapter Hardware, etc...
call DriverReset to handle some tasks
If there was an error initializing the hardware
call MSMReturnDriverResources
jmp DriverlnitError

*** Register with the LSL ***

call MSMRegisterMLID
jnz DriverInitError

*** Setup a Board Service Routine ***

call MSMSetHardwarelnterrupt (or MSMEnablePolling)
jnz DriverInitError

*** Schedule Timeout Callbacks ***

If Timeout detection is required

esi = pointer to a timer structure

eax = callback interval in ticks

call MSMScheduleTimer (preferred method)

- Or -

call MSMSchedulelntTimeCallBack (to enable callbacks
to DriverCallBack)

- or -

call MSMScheduleAESCallBack (to enable callbacks to
DriverAES)

jnz DriverlnitError

DriverInitExit:
eax = zero (Initialization was successful)

pop edi, esi, ebp, ebx
return

HSM Procedures 5-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

5-12

DriverInitError:

esi = eax (Ptrto Error Message)

call MSMPrintString
eax = nonzero value (Initialization Failed)
pop edi, esi, ebp, ebx
return
Driverlnit endp

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Packet Reception

This section provides a brief overview of the commonly used reception
methods available to the developer.

When the adapter receives a packet, the HSM must copy the packet into an
RCB obtained from the TSM. The RCB is passed back to the TSM where it is
processed and transferred to the Link Support Layer. The Link Support Layer
then directs it to the proper protocol stack.

Reception Methods

The method of packet reception selected is typically dependent on the adapter's
data transfer method. The examples on the following pages are intended to
illustrate a general flow of events. Refer to the appropriate MSM and TSM
support call descriptions for detailed information.

In general, packet reception involves the following steps:

« Obtain a Receive Control Block (RCB) structure from the TSM. RCBs
may be allocated before or after a packet is received.

« Copy the packet into tHeRCBDataBuffelor RCBDataFragments

+ Return the RCB back to the TSM (RCBs will be placed in the LSL's
holding queue until the HSM issues a service events command).

« Use theMSMServiceEventsacro to allow the LSL to call the transmit
ECB's event service routine.

Programmed I/O and Shared RAM

Option 1. This is the simplest reception method. During development it may
be helpful to initially use this method, then implement Option 2 after the HSM
is functioning properly. The steps performed for this reception method are
outlined below. TheTSM>ProcessGetRCBorocedure in Chapter 6 provides

a detailed description of this process.

HSM Procedures 5-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

DriverISR

Call MSMAllocateRCB or MSMAllocateMultipleRCBs to get an RCB or multiple
RCBs (unless you already have the
RCBs you need)

Copy the received packet into the RCBDataBuffer.

Call <TSM>ProcessGetRCB

The TSM checks the header information and if valid:
fills in the remainder of the RCB fields
delivers the RCB to the LSL
returns a new RCB to the driver

Save the new RCB for next packet received
MSMServiceEvents

Option 2. This method involves using a LookAhead process, in which the
frame header information is first confirmed before the entire packet is
transferred from the adapter into an RCB. For this reason, Option 2 is
recommended over Option 1.

The adapter's data transfer mode determines how the Look-Ahead process is
handled. Programmed I/O adapters must traddfviMaxFrameHeaderSize
bytes into a LookAhead buffer allocated for this purpose. If the adapter uses a
shared RAM transfer mode, the LookAhead buffer is simply the start of the
packet in shared RAM.

The steps performed for this reception method are outlined below. The
<TSM>GetRCB procedure in Chapter 6 provides a detailed description of this
process.

DriverISR

Setup a LookAhead buffer as described above (MSMMaxFrame-HeaderSize bytes)
Call <TSM>GetRCB (with a pointer to the LookAhead buffer in ESI)

TSM checks the header information and if valid:
obtains an RCB
fills in the RCBReserved fields
returns a pointer to the RCB in ESI

Copy the remainder of the packet into the RCB fragments
Call <TSM>RcvComplete
MSMServiceEvents

5-14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

DMA and Bus Master

Option 1. This reception method is used for most bus master adapters in
which the RCBs are preallocated. The steps performed for this reception
method are outlined below. TRE SM>ProcessGetRCBprocedure in
Chapter 6 provides a detailed description of this process.

Driverlnit

Use MSMAllocateRCB or MSMAIllocateMultipleRCBs to obtain first
RCB(s)
Queue RCB(s) until a packet is received in DriverISR .

DriverISR

Copy received packet into the RCBDataBuffer.
Call <TSM>ProcessGetRCB
The TSM checks the header information and if valid:
fills in the remainder of the RCB fields
delivers the RCB to the LSL
returns a new RCB to the driver

Queue the new RCB until next packet is received MSMServiceEvents

Option 2. This method is recommended for intelligent adapters that are
designed to be ECB aware. It reduces the load on the server by off-loading code
to the adapter. In this way, the adapter's firmware handles most of the reception
process. The steps performed for this reception method are outlined below.

Driverlnit

Use MSMAllocateRCB or MSMAIllocateMultipleRCBs to obtain first
RCB(s).
Queue RCB(s) until a packet is received.

Firmware

Filters the frame header information and if valid, fills in all fields of the ECB as
described in Chapter 4.
Generates interrupt when receive is complete (ready).

DriverISR

Call <TSM>RcvCompleteStatus to return the completed RCB.

Use MSMAllocateRCB or MSMAIllocateMultipleRCBs to obtain another
RCB for the queue.

MSMServiceEvents

HSM Procedures 5-15

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

5-16

Importantv

Bus Master Receive Routine - all HSM’s:

MSMAllocateRCB, MSMAllocateMultipleRCBs,

<TSM>ProcessGetRCB and<TSM>FastProcessGetRCBuwill return a
logical pointer to the RCB in register ESI. [ESI].RPacketOffset will contain a
physical pointer to [ESI].RDataEnvelope, which is where the adapter should

begin copying the packet.

If DriverSupportsPhysFragsit is set, the following applies:

1. All HSM’s: All fragment pointers passed back from the ECB

returned by<xTSM>GetRCB will contain physical pointers to
contiguous blocks.

. DriverNeedsBelow16Mesget in DriverParameterBlock:

As with previous TSM’s,
MSMAllocateRCB,<TSM>ProcessGetRCBand
<TSM>FastProcessGetRCBwill return a contiguous RCB that
is guaranteed to be below 16 megabytes.

. DriverSendWantsECBset in DriverParameterBlock:

MSMAllocateRCB or MSMAllocateMultipleRCBs will return a
logical pointer to the ECB in register ESI, and a physical pointer
to the ECB in EDI. The ECB should be filled in as normal, except
before calling<TSM>FastRcvCompleteStatusthe adapter

should fill in [ESI].RPacketOffset with the physical address of
where the protocol header starts (which is usually all the adapter
is capable of doing anyway).

TSM's will not support HSM's that set both DriverSendWantsECB’s and
DriverNeedsBelow16Meg.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

RX-Net

Option 1. This option is used for RX-Net shared RAM adapters. The steps
performed for this reception method are outlined below. The
RXNetTSMRcvEveptocedure in Chapter 6 provides a detailed description of
this process.

DriverISR

Set ESI to point to received packet.
Call RXNetTSMRcvEvent

The TSM copies the entire packet into an RCB if the fragment is wanted with no other
interaction from the driver.

MSMServiceEvents

Option 2. This option is used for RX-Net programmed I/O adapters. The steps
performed for this reception method are outlined beldve

RXNetTSMGetRCB procedure in Chapter 6 provides a detailed description
of this process.

DriverISR

Set ESI to point to a LookAhead buffer containing the header information as shown in
Figure 5.1.
Call RXNetTSMGetRCB

The TSM checks the packet header information to see if the packet fragment is wanted
and if so, returns a pointer to an RCB.

Determine the current position in the RCB fragment buffers and copies the data into
the RCB.
Update the packet length field of the RCB.

Call RXNetTSMRcvComplete
MSMServiceEvents

HSM Procedures 5-17

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Figure 5-1 Format of RX-Net LookAhead Buffer

Short

SourceAddress

DestinationAddress

ByteOffset Total buffer
| size is equal to
MSMMaxFrameHeaderSize

ProtocolType
Split Flag
SequenceNumber

PacketData ‘ ‘ ‘ ‘ B

Long

SourceAddress

DestinationAddress__|

LongFlag L Total buffer

ByteOffset L size is equal to
MSMMaxFrameHeaderSize

ProtocolType

Split Flag

SequenceNumber]

PacketData ‘ ‘ ‘ U ‘ ‘ ‘ ‘ ‘ ‘

Exception

SourceAddress | |
DestinationAddress |
LongFlag
ByteOffset
Pad 1: ProtocolType | Total buffer

Pad 2: SplitFlag | | size is equal to

Pad 3: FEh | MSMMaxFrameHeaderSize
Pad 4: FFh
ProtocolType
Split Flag
SequenceNumber _

PacketData ‘ ‘ ‘ e ‘

5-18 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Board Service

DriverlSR

Note‘VI
\v

Receive Event

The board service routine generally needs to detect and handle both receive
events and transmit complete events. The driver can be notified of these events
by using either an interrupt service routibiverISR, a polling procedure,
DriverPoll, or a combination of both. These routines are explained next.

DriverISR is called by the MSM when a hardware interrupt is detected. The
driver needs only to service the adapter and return (do not use iret).

Novell requires that interrupts remain unaltered during DriverISR . Drivers must
allow the support modules to control the interrupt state via calls to the
DriverEnablelnterrupt and DriverDisablelnterrupt routines at the appropriate
times. If a driver procedure must alter the interrupt state, it must restore the
interrupt state before returning.

The interrupt service routine generally needs to detect and handle the following
events:

+ Receive Event

+ Receive Error

« Transmit Complete
« Transmit Error

The ISR routine must continue checking for receive and transmit events until
there are no more to be serviced.

Error detection and handling are optional in the cases where the hardware is
able to handle transmit and receive errors without driver intervention. Even if
the hardware has this capability, the driver must still be able to update or
maintain the statistics table described in Chapter 3.

The receive portion of the board service routine checks for receive errors and
jumps to an error handler if an error has occurred. Otherwise, the routine
services the packet using one of the reception methods described in the
previous section.

HSM Procedures 5-19

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Receive Error

If the HSM encounters a receive error, it must perform the following actions:

« Attempt to identify the error. While some cards provide greater diagnostic
support than others, the HSM should attempt to pinpoint the specific cause
of the error (buffer overflow, missed packet, checksum error, etc.).

 Increment diagnostic counters. The HSM should maintain the diagnostic
counters in the statistics table for every detectable error condition. This
will aid in debugging the driver as well as maintaining it in the future. The
driver should also increment the generic statistitalRxMiscCounif a
fatal receive error occurred that is not counted in any other standard
counter. Fatal receive errors may also be counted by the TSM using a
media specific counter as well.

« Pass the appropriate receive error bitsTSM>GetRCB,
<TSM>ProcessGetRCB or <TSM>FastProcessGetRCB

Transmit Complete

Each time the HSM detects a successfully completed transmit event, it must
perform the following functions:

+ Release the TCB using (if not already releasddrimerSend

call <TSM>SendComplete

« Increment the number of available transmit resources

inc [ebp] MSMTxFreeCount

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

« Transmit the next packet if one is waiting to be sent

test [ebp].MSMStatusFlags, TXQUEUED
jz NoSendsQueued

call <TSM>GetNextSend

jnz NoSendsQueued

call DriverSend

Transmit Errors
If the HSM encounters a transmit error, it should perform the following actions:

« Attempt to identif y the error . As with receive errors, the HSM should
try to pinpoint the specific cause of the error (excess collisions, cable
disconnect, FIFO underrun, etc.).

« Increment dia gnostic counters. The HSM should maintain the
diagnostic counters in the statistics table for every detectable error
condition. The HSM should also increment the generic statistic
TotalTxMiscCountf a fatal transmit error occurred that is not counted in
any other standard counter. The fatal transmit error may be counted by the
TSM using a media specific counter as well.

- Attemptto send the packeta gain. Inthe event the HSM has reached
the maximum retry limit for sending a packet, discard the packet,
incrementMSMTxFreeCountnd transmit the next packet if one is
waiting to be sent.

Using Shared Interrupts

An HSM can support shared interrupts provided that they are also supported by
the host bus and the adapters which will share the interrupt. Interrupts can be
shared if the bus is operating in level-triggered mode or if external logic exists

on the adapters sharing the interrupt.

« The Micro Channel bus always uses level-triggered interrupts and can
support shared interrupts.

« The PCI bus always uses level-triggered interrupts and can support shared
interrupts.

« The PC/AT bus normally uses edge-triggered interrupts and will not
support shared interrupts unless external logic exists on the adapters
sharing the interrupt.

HSM Procedures 5-21

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

5-22

or
ret

xor
ret

« The EISA bus normally uses edge-triggered interrupts, but each interrupt
can be individually set to level-triggered mode in order to support shared
interrupts.

A DriverISR routine which supports shared interrupts is very similar to one
which does not. If the HSM supports shared interrupts, the ISR must perform
the following operations:

« Immediately determine if the interrupt request is from its adapter. If not,
return at once to the operating system ISR with EAX equal to a nonzero
value and the zero flag cleared.

al, 01h ; Clear the zero flag
; return to operating system ISR code

« If the interrupt request is from the HSM's adapter, the interrupt service
routine should proceed. Upon completion, the ISR must return with EAX
equal to zero and with the zero flag set.

eax, eax ; zero eax & set the zero flag
; returns to operating system ISR code

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

The HSM must indicate that the adapters are sharing interrupts by setting bit 5
in theMLIDSharingFlagdield of the configuration table. The HSM must also
initialize the DriverParameterBlock variabBriverEndOfChainFlag as

described in the following table.

If the HSM:

Supports shared
interrupts

Does not support
shared interrupts

The HSM must: DriverEndofChainFlag value:

Set the Zero The shared interrupt vector is placed first on
10SharinginterruptOBit(bit5) the shared interrupt chain.

in the MLIDSharingFlags))
field of the HSM's If another interrupt vector is requested after the

configuration table. original vector is placed at the head of the chain, the
latter vector will be serviced first.)

Nonzero The shared interrupt vector is placed at
the end of the shared interrupt chain by the operating
system.

Clear the IOSharing- Not used.
InterruptOBit (bit5) in the
MLIDSharingFlags field of

the HSM's configuration

table.

HSM Procedures 5-23

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZI'IA 200 - TE'€A 2ads

Spec v3.31 - Doc v1.12

DriverISR Pseudocode
Processor States’ Entry State

EBP
Dir Flag

Interrupts

Return State
Dir Flag
Interrupts

Note

pointer to the Adapter Data Space
is cleared

are disabled (Novell recommends interrupts remain
disabled during the DriverISR)

must be cleared
must be disabled

no registers are preserved

Pseudocode

DrverlISR proc

CheckStatus:

Get the controller's interrupt status

ReceiveEvent:

(check for receive errors and handle)

*** Setup a LookAhead Buffer ***

mov ecx, [ebp]l.MSMMaxFrameHeaderSize
lea edi, [ebp].LookAheadBuffer
rep insb

*** Obtain an RCB for the Received Packet ***

lea esi, [ebp].LookAheadBuffer
mov ecx, HardwareReportedPacketSize
call <TSM>GetRCB

5-24 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

if RCB is NOT available
skip this packet
jmp CheckStatus
*** Copy data and deliver RCB ***
copy the packet data into the RCB fragment buffers
call <TSM>RcvComplete
jmp CheckStatus

TransmitEvent:

(check for transmit errors and handle/retry)

TransmitComplete:
reset retry counter to Maximum value
mov [ebp].TxInProgress, FALSE
inc [ebp].MSMTxFreeCount

*** Transmit Next Packet In the Send Queue ***

test [ebp].MSMStatusFlags, TXQUEUED
jz Exit
call <TSM>GetNextSend
jnz Exit
call DriverSend
Exit:
MSMServiceEventsAndRet
DriverISR endp

HSM Procedures 5-25

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

5-26

DriverPoll

Processor

Description

States

Note‘vl
\v

Entry State

EBP pointer to the Adapter Data Space
EBX pointer to the Frame Data Space
Interrupts are disabled

Return State

EBP must be preserved

TheDriverPoll procedure is used if the HSM requires a poll-driven board
service routine. This routine will typically perform functions similar to those
of theDriverISR procedure.

DriverPoll is normally not used by an interrupt-driven HSM, however, there may
be some cases where polling is required or where polling is used in addition to
the ISR.

To register the polling procedure, place a pointer to the procedure in the
DriverPollPtr field of the DriverParameterBlocKhe driver can then enable
polling during initialization by callindSMEnablePolling.

DriverPoll is very time-consuming, especially in a Multi-Processor
environment. Each timBriverPoll is called, the Mutex is acquired and
DriverDisablelnterrupts andDriverEnablelnterrupts are both called. This
causes the Mutex to be held a high percentage of the time and causes excessive
bus traffic.

While DriverPoll is executing, the driver is not doing any usable work and is
locked out from receiving interrupts and DriverSends, etc.

MSMSuspendPollingwill temporarily stop the driver from being polled. The
POLLSUSPENDEDIag (bit4) inMLIDStatusFlagss set by the MSM when
MSMSuspendPollingis called and is cleared by the MSM when
MSMResumePollingis called.MLIDStatusFlagsan be inspected by the
HSM to determine the current polling status.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Packet Transmission

This section provides a brief overview of the methods commonly used for
packet transmission.

When sending a packet, a protocol stack assembles a list of fragment pointers
in a transmit ECB and passes it to the LSL. The ECB is then transferred to the
TSM where the information is processed and a TCB is constructed. The TCB
structure consists of the assembled packet header and data fragment
information. The TSM directs the TCB to tBeiverSend routine which

collects the header and packet fragments and transmits the packet.

Transmission Methods

The method of packet transmission selected is typically dependent on the
adapter's data transfer method. The examples on the following pages are
intended to illustrate a general flow of events. Refer to the appropriate MSM
and TSM support call descriptions for detailed information.

In general, packet transmission involves the following steps:

 During Driverlnit , initialize MSMTxFreeCounto the number of adapter
transmit resources available.

« The TSM builds a TCB, checks to see if the driver can handle another
transmit and if so, decremetsSMTxFreeCounand callDriverSend
(otherwise the TSM queues the packet).

- DriverSend will typically copy the media header and data fragments to
the transmit buffer and start the transmission.

« The driver returns the TCB back to the TSM using
<TSM>SendComplete This can be performed before the actual
transmission is complete as long as all information has been collected from
the TCB and the TCB is no longer needed (a “lying” send). The underlying
transmit ECB will be placed in the LSL's holding queue until the HSM
issues a service events command.

» Use theMSMServiceEventsmacro to allow the LSL to call the transmit
ECB's event service routine.

HSM Procedures 5-27

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

« When the actual transmission is complete, increment
MSMTxFreeCountThis is typically performed durinBriverISR after a
transmit complete interrupt.

Programmed I/O, Shared RAM, and Host DMA

The sequence of events for transmitting a packet using programmed 1/O, shared
RAM, or host DMA adapters is described below.

HSM

1. SetsMSMTxFreeCounto the maximum number of transmit
packets that the adapter can buffer. (performddriverinit)

TSM

2. If the Ethernet TSM is used, ECX is set to the padded length of
the packet. (This is the value that the adapter will send onto the
wire, regardless of the value in th€ BDatal erfield. In fact, the
value in ECX is not equal fbBCBDatal enif the packet is
Ethernet 802.3 or Ethernet Il and was evenized or if the packet
was padded to 60 bytes.)

3. Decrement$1SMTxFreeCounand callsDriverSend with ESI
pointing to a filled in TCB structure.

HSM

4. Calls<TSM>SendCompleteor <TSM>FastSendComplete
either after the packet has been buffered onto the adapter or after
the transmission has been completed.

5. IncrementdMSMTxFreeCoungfter the adapter completes the
transmission (typically performed DriverISR).

Bus Master

Option 1. This option is identical to the method described on the previous
page for programmed 1/O, shared RAM, and host DMA adapters.

Option 2. This method is recommended if the adapter is ECB aware and has
sufficient adapter processor speed. It dramatically decreases the load on the
server by reducing the host's process time.

HSM

5-28 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

1. SetsDriverSendWantsECBs a nonzero value and sets
MSMTxFreeCounto the number of transmit packets that the
adapter can process at one time. (performe@rinerinit)

TSM.
2. DecrementdISMTxFreeCounand callsDriverSend with a
pointer to the Frame Data Space in EBX and a pointer to the ECB
in ESI.
HSM

3. Calls eithek TSM>SendCompleteor
<TSM>FastSendCompleteafter the packet has been buffered
onto the adapter or after the transmission has been completed.

4. IncrementMSMTxFreeCounafter the adapter completes the
transmission (typically performed DriverISR).

HSM Procedures 5-29

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Bus Master Send Routine

Bus master adapters generally need physical addresses to ECB fragment
pointers and control information in memory. These adapters would set the
DriverSupportsPhysFragsit. If this bit is set the following applies:

1. The TSM will be responsible for providing only physical
fragment offsets. If one of the fragments is not physically
contiguous, the TSM will either:

Modify the ECB fragment structure to break the fragment
into multiple fragments

or

Copy the fragments into a buffer and pass a single fragment
TCB to the HSM with one physical fragment offset to the
buffer.

The ECB address passed to the HSM in register ESI will be a
logical address so that the host portion of the HSM can read the
fragment structure. Also the following results will be true:
TCBDriverWs+4 will be:

0 if no double copy was performed

1 if a double copy was performed (which may be used for

statistics).

TCBDriverWs+8 will be:

The physical address of the TCBMediaHeader.

These two fields can still be used freely by the HSM.
2. DriverNeedsBelow16Mesget in DriverParameterBlock:

If the TSM finds a fragment with an address over the 16
megabyte boundary, it will double copy all ECB fragments into a
buffer guaranteed to be below 16 megabytes and pass a TCB to
the HSM with one fragment. The one fragment pointer will be a
physical address which points to the buffer.

3. DriverSendWantsECBset in DriverParameterBlock
ESI will contain the logical address of the ECB and EDI will

contain the physical address of the ECB. All fragment pointers
will contain physical addresses to contiguous buffers as described
in section 1 above.

Important TSM's will not support HSM's that set both DriverSendWantsECB'’s and
DriverNeedsBelow16Meg!

5-30 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Priority Transmission Support
The following algorithm is used for priority transmission support:

HSM
1. DuringDriverlnit the HSM sets the following parameters:

2. TheDriverPriorityQueuePtrfield of the Driver Parameter Block
is set with a pointer tDriverPriorityQueueSupport.

Bit 12 in the MLIDFlags field of the MLID Configuration
Table is set.

The MLIDPrioritySup field in the MLID Configuration
Table is set to indicate the number of levels available.

MSMPriorityTxFreeCount is set to the maximum number
of priority transmissions that the HSM can handle
simultaneously.

3. The HSM can set or reset MLIDFlags bit 12 as the HSM changes
the Priority Queue Support state from enable to disabled. This bit
is checked on a per queue packet basis.

Protocol Stack

4. The protocol stack sets the ECB LogicallD field to a value greater
than or equal to FFFOh. The following values are valid for the
LogicallD field:

FFFFh Raw send, no Priority. (Priority 0)

FFFEh Raw send, Priority 1 (Scale 1-7: 1 =
Lowest Priority)

FFFDh Raw Send, Priority 2

FFFCh Raw Send, Priority 3

FFFBh Raw Send, Priority 4

FFFAh Raw Send, Priority 5

FFF9h Raw Send, Priority 6

FFF8h Raw Send, Priority 7 (Scale 1-7: 7 =
Highest Priority)

FFF7h Raw send, no Priority. (Priority 0)

FFF6h Priority 1 (Scale 1-7: 1 = Lowest
Priority)

FFF5h Priority 2

FFF4h Priority 3

FFF3h Priority 4

FFF2h Priority 5

FFF1h Priority 6

FFFOh Priority 7 (Scale 1-7: 7 = Highest
Priority)

HSM Procedures 5-31

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

5-32

TSM

HSM

. The TSM normally gives the packet to the HSM directly, as a

TCB using theDriverSend function. However, if
MSMTxFreeCount is zero and the transmit ECB is a priority
transmit ECB, the TSM calBriverPriorityQueueSupport ,

which gives the HSM a chance to take the transmit ECB. The
DriverPriorityQueueSupport function, provided by the HSM,
gueues the ECB in the HSM for transmission as soon as possible,
or transmits the packet through a priority channel by first
building a TCB usinggTSM>BuildTransmitControlBlock , or
returns a failure code and does not accept the ECB.

. The HSM calls<TSM>BuildTransmitControlBlock to build a

TCB whenever a priority transmit resource becomes available
and a transmit ECB in the HSM’s priority queue. The HSM tracks
the number of available priority TCBs.
MSMPriorityTxFreeCount is set duringriverinit and must
provide the maximum number of priority TCBs, which must not
change without unloading and reloading the HSM. Non- priority
packets use the original number of TCBs from
MSMTxFreeCount, which is reserved exclusively for their use.
The HSM must not cak TSM>BuildTransmitControlBlock if

no priority TCBs are available.

. After the HSM has transmitted the TCB returned by

<TSM>BuildTransmitControlBlock , the HSM calls
<TSM>SendCompleteor <TSM>FastSendCompletewhich
increments the statistic counters, daMonitor, placesthe TCB
back on the TCBs free list, and returns the ECB to its original
owner.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

DriverSend

Processor

Description

States

Note‘VI
v

Note‘VI
v

Entry State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

ESI pointer to a TCB or an ECB (see note below)
EDI If the HSM has set DriverSendWantsECBs to a

nonzero value and has set the
DriverSupportsPhyFrags bit in MLIDModeFlags, this
register contains the physical address of the ECB.

ECX padded length of the packet (Ethernet only)

Interrupts are disabled. Novell recommends that system
interrupts remain disabled during DriverSend .

Return State

Interrupts must be disabled

The TSM callDriverSendto transmit a frame onto the mediubriverSend
is provided a pointer to a Transmit Control Block (TCB). Refer to Chapter 3
for information on TCBs.

The HSM can assume that the TCB is valid for its LAN medium; it must not

do consistency checking on the TCB fields. The HSM can also assume that it
has the resources necessary to handle the transmit operation; it does not need
to check to see if it has a transmit hardware resource available. The TSM
performs flow control for the HSM. The TSM determines if the HSM can
handle the packet by checking the valud&MTxFreeCount.

The DriverSend routine may request ECBs instead of TCBs by initializing the
DriverParameterBlock variable DriverSendWantsECBs to a nonzero value
(see Chapter 3). If DriverSend uses ECBs for packet transmission, it is
responsible for building the proper media header (refer to Chapter 4 for
additional information on ECB aware adapters). If the HSM uses ECBs instead
of TCBs, it must not modify the transmit ECB's BLink field.

For drivers that support physical fragments, the ESR field of the ECB with
physical fragments contains a pointer to the original ECB (with logical
fragments) handed to the MSM (refer to figure 4.11 in Chapter 4).

HSM Procedures 5-33

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

pseudocode

5-34

Copy the MediaHeader from the TCB into a transmit buffer.

Copy the fragmented data from the TCB's fragment structure into a transmit buffer.
Give the command to send the packet.

Restore ESI to point to the beginning of the TCB

IF called from DriverISR

Call <TSM>SendComplete ; (lying send)
ELSE

Call <TSM>FastSendComplete
ENDIF

Return

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Driver Priority Queue Support

Called by the TSM to allow the HSM to handle a priority packet or to allow the
TSM to queue it for normal transmission.

Processor States Entry State

EBP
EBX
ESI

Interrupts

Return State

pointer to the Adapter Data Space.
pointer to the Frame Date Space.
pointer to a transmit ECB.

are disabled. Novell recommends that system
interrupts remain disabled during
DriverPriorityQueueSupport.

EAX completion code

Interrupts are disabled
Completion Code in EAX
SUCCESSFUL The ECB was processed/queued by the HSM.
OUT_OF_RESOURCES The ECB was not processed/queued by the HSM. The TSM

will queue the ECB and initiate transmission at a later time.

Description

This function must either transmit the packet immediately or queue the ECB.
The HSM must be able to service the priority queue and handle priority level
detection issues. This function should process essential items only and return
as quickly as possible. This function may be called while the HSM is executing

critical section code.

The HSM must set DriverPriorityQueuePtr in the Driver Parameter Block to
point to this function. The HSM can set or reset the configuration table
MLIDFlags bit 12 from supporting to not supporting priority packet states.
This bit is checked by the TSM on a per packet basis.

Note‘vvl The RDriverWorkSpace field of the ECB must not be modified by the HSM.

HSM Procedures 5-35

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Multi-Operating System Support

5-36

Importantv

Driver specification v3.1 and later enables HSMs to be transported to other 32-
bit Intel-based operating system platforms without any code modification. In
order to achieve this universal 32-bit HSM, two new driver routines have been
added.

A universal 32-bit HSM must be able to control interrupts at the adapter, and
must implement th®riverEnablelnterrupt andDriverDisablelnterrupt
routines. The resulting HSM can be transported to other OS platforms where
access to the Programmable Interrupt Controller (PIC) is restricted. Also
multiprocessor platforms require interrupts to be managed outside the driver.

Drivers must allow the MSM and TSM to control the interrupt state via calls to
the DriverEnablelnterrupt andDriverDisablelnterrupt routines at the
appropriate times. Novell requires that the interrupt states remain unaltered
during driver procedures. If a driver procedure must alter the interrupt state, it
must restore it to the original state before returning.

The new specification prohibits use of the CLI and STl instructions in HSM code,
or to directly EOI the PIC.

Because the server/32-bit HSM cannot contain direct calls to the OS and still
function as a Windows NT client all OS calls have been eliminated from this
document along with all LSL calls and several MSM calls. The toolkit routines
provided by Novell (in combination with the redirector or requester) must
handle the unique features of interfacing to each OS.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Critical Sections

Starting with MSM.NLM v2.21 and the current TSM’s* the
MSMStartCriticalSection, MSMEndCriticalSection, and
MSMGetCriticalStatus macros are no longer supported and must not be used
in universal 32-bit HSM’s. This applies to the MSM and all TSM’s dated after
2-20-94.

The MSM and TSM'’s have been modified so that any call they receive from
the HSM after the driver is initialized will start a critical section. This will
allow the called routine to run to completion in cBswerSend is called

during this time. The critical section will then be cleared by the MSM or TSM
routine before it returns control to the HSM.

HSM Procedures 5-37

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

DriverEnablelnterrupt

Processor States Entry State
EBP pointer to the Adapter Data Space
Interrupts can be in any state

Return State
Interrupts preserved

EBP must be preserved

Description This procedure enables interrupts at the adapter hardware.

though DriverDisablelnterrupt may have previously been called several times
by different processes. Also it is important to keep the DriverEnablelnterrupt
procedure as short as possible.

Note‘vvl DriverEnablelnterrupt need only be called once to enable interrupts even

PseudocodeDriverEnablelnterrupt proc

Enable the adapter to generate interrupts
ret

DriverEnablelnterrupt endp

5-38 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

DriverDisablelnterrupt

Processor States Entry State

EBP pointer to the Adapter Data Space

EAX zero - does not require a return value in EAX
one - HSM must return a value in EAX as described
below

Interrupts can be in any state

Return State

EAX If EAX was one on entry:

EAX is zero if service is being requested by the
LAN adapter’s first interrupt.

EAX is one if the LAN adapter’s first interrupt is
not requesting service. In this case, the TSM calls
DriverEnablelnterrupt on return from this

routine.
Interrupts preserved
EBP must be preserved

Description This function disables interrupts on the adapter hardware. If the adapter

generates more than one interrupt, all interrupts must be disabled by this
function. However, only the request state of the first interrupt must be returned.

Note V! DriverEnablelnterrupt need only be called once to enable interrupts even
though DriverDisablelnterrupt may have previously been called several times
by different processes.

PseudocodeDriverDisablelnterrupt proc
Disable the adapter from generating interrupts
mov eax, <Appropriate Status>
ret

DriverDisablelnterrupt endp

HSM Procedures 5-39

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

DriverDisableInterrupt2

Processor States Entry State

EBP pointer to the Adapter Data Space

EAX zero - does not require a return value in EAX
one - HSM must return a value in EAX as described
below

Interrupts can be in any state

Return State

EAX If EAX was one on entry:

EAX is zero if service is being requested by the
LAN adapter’s second interrupt.

EAX is one if the LAN adapter’s second interrupt
is not requesting service. In this case, the TSM
calls DriverEnablelnterrupt on return from this

routine.
Interrupts preserved
EBP must be preserved

Description This function disables interrupts on the adapter hardware. If the adapter

generates more than one interrupt, all interrupts must be disabled by this
function. However, only the request state of the second interrupt must be
returned.

though DriverDisablelnterrupt may have previously been called several times

Note‘VvI DriverEnablelnterrupt need only be called once to enable interrupts even
by different processes.

PseudocodeDriverDisablelnterrupt2 proc
Disable the adapter from generating interrupts
mov eax, <Appropriate Status>
ret

DriverDisablelnterrupt2 endp

5-40 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Control Procedures

The ODI specification requires drivers to implement the 1/O control functions
(IOCTLs) listed in the table below. The MSM and TSM development tools
perform several of the required IOCTL functions without assistance from the
HSM, as indicated in the table. The support modules will also “front end” all
control functions and preserve any required registers. The HSM is responsible
for implementing the control functions described in this section.

DriverResetandDriverShutdown are mandatory and must be present for the
driver to function properly. The HSM must also provide the
DriverMulticastChange andDriverPromiscuousChangeprocedures when
the hardware supports these functions.

The DriverStatisticsChangeandDriverRxLookAheadChange procedures

are optional. These procedures allow drivers for intelligent adapters to update
the statistics table or the LookAhead size only as needed. Refer to the
DriverParameterBlock field descriptions in Chapter 3 for additional
information on these two control procedures.

Drivers that support the Hub Management Interface or Brouter must implement
the DriverManagement procedure to handle management requests and
commands as describedTihe Hub Management Interfasupplement or the
Brouter Supporsupplement

HSM Procedures 5-41

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Control Function

Code Path

0 Get Configuration Table MSM

1 Get Statistics Table MSM -> DriverStatisticsChange

2 Add Multicast Address MSM -> TSM -> DriverMulticastChange

3 Delete Multicast Address MSM -> TSM -> DriverMulticastChange

4 Reserved MSM

5 Shutdown Driver MSM -> TSM -> DriverShutdown
(EAX = OP_SCOPE_ADAPTER)
(ECX = PERMANENT_SHUTDOWN or

PARTIAL_SHUTDOWN)

6 Reset Driver MSM -> TSM -> DriverReset
(EAX=0OP_SCOPE_ADAPTER)

7 Reserved MSM

8 Reserved MSM

9 Setreceive LookAhead size MSM -> TSM -> DriverRxLookAheadChange

10 En/Dis Promiscuous Mode = MSM -> TSM -> DriverPromiscuousChange

11 En/Dis Receive Monitor MSM -> TSM

12 Reserved MSM

13 Reserved MSM

14 Driver Management MSM -> DriverManagement

15 Reserved MSM

16 Remove Network Interface ~ MSM->TSM->DriverShutdown
(EAX = OP_SCOPE_LOGICAL_BOARD)
(ECX = PERMANENT_SHUTDOWN)

17 Shutdown Network Interface MSM -> TSM -> DriverShutdown
(EAX=0OP_SCOPE_LOGICAL_BOARD)
(ECX = PARTIAL_SHUTDOWN)

18 Reset Network Interface MSM -> TSM -> DriverReset

(EAX=OP_SCOPE_LOGICAL_BOARD)

5-42 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

DriverReset

Processor States

Description

Entry State

EAX OP_SCOPE_ADAPTER
Reset the adapter specified by EBP.
OP_SCOPE_LOGICAL_BOARD

Reset the logical board specified by EBX.

EBP pointer to the Adapter Data Space
EBX pointer to the Frame Data Space
Interrupts are disabled but may be enabled during the call

Return State

EAX Zero if successful.
FAIL (from ODI.INC) on failure.

Interrupts are disabled

OP_SCOPE_ADAPTER

If EAX equals OP_SCOPE_ADAPTERyiverResetresets and initializes the
adapter hardware.

This routine may also test the hardware to verify that it is functional. If the
driver has been temporarily shutdown, an application may call this routine to
bring the board back into full operation.

When a reset is required, the TSM waits for transmissions in progress to
complete and callBriverReset

From within the HSMDriverReset may be called bfpriverlnit . It may also
be called byDriverCallBack or DriverISR if the adapter had problems.

If the MSM callsDriverReset, and it returns successfully, the MSM resets the
MSMTxFreeCounvariable to the initial value set by the driver during
initialization. If the MSM callDriverReset, and the adapter cannot be reset,
the MSM automatically callBriverShutdown.

HSM Procedures 5-43

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

OP_SCOPE_LOGICAL_BOARD

If EAX equals OP_SCOPE_LOGICAL BOARMDriverResetresets the

logical board specified by EBX. The meaning of this operation is adapter/
media/driver dependent. Except for re-enabling a shutdown logical board, this
operation is a NO_OP for most LAN Drivers.

Pseudocode

If OP_SCOPE_ADAPTER
Increment the reset statistics counter
Reset the hardware (includes performing any hardware testing)
Call <TSM>UpdateMulticast
Set EAX to zero if successful
ELSE
Do any necessary logical board specific action (usually a NO_OP)
ENDIF

5-44 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

DriverShutdown

Processor States Entry State

EAX OP_SCOPE_ADAPTER
Shutdown the adapter specified by EBP.
OP_SCOPE_LOGICAL_BOARD
Shutdown the logical board specified by EBX.

EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

ECX ZERO if a permanent shutdown, otherwise a patrtial
shutdown is required.

Interrupts Disabled but may be enabled during the call

Return State

EAX Zero if successful.
FAIL (from ODI.INC) on failure.

Interrupts are disabled

Description The MSM automatically callBriverShutdown when theDriverReset

routine fails to reset the hardwalMSMReturnDriverResourcesd
MSMEXitToDOSalso callDriverShutdown.

Partial Shutdown

When a partial shutdown is required, the MSM &8MStatusFlagwaits for
transmissions in progress to complete and returns the transmit ECBs. The
MSM also sets bit 0 of th8haringFlagsn the configuration table.
DriverReset must be able to bring the adapter back into full operation.

Complete Shutdown

A zero value in ECX indicates a complete shutdown. As with a partial
shutdown the MSM has set the flags, emptied the send queue, and also will
return all resources not allocated directly by the HSM. If the HSM allocated
memory usingSMAIloc, it must be returned usingSMFree before

disabling the hardware.

HSM Procedures 5-45

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

OP_SCOPE_ADAPTER

If EAX equals OP_SCOPE_ADAPTERyiverShutdown must place the
hardware into a safe, inactive state.

If the adapter is to be shut down permanently (indicated by the value in ECX),
the MSM disables the adapter's interrupt immediately after this routine returns.
As far as the HSM is concerned, the only difference between a partial and a
complete shutdown is the return of allocated memory.

OP_SCOPE_LOGICAL_BOARD
If EAX equals OP_SCOPE_LOGICAL_BOARMDriverShutdown must

release all HSM-allocated resources associated with the logical board specified
by EBX.

Pseudocodeif OP_SCOPE_ADAPTER

5-46

IF a permanent shutdown
return any memory using MSMFree
ENDIF

return any preallocated RCBs or queued TCBs
Disable Hardware
SetEAX =0
ELSE
Do any necessary logical board specific action (usually a NO_OP)
ENDIF
Return

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

DriverMulticastChange

Processor States Entry State

EBP
EBX
ESI

ECX
EDX
Interrupts
Entry State

Note

Interrupts

pointer to the Adapter Data Space
pointer to the Frame Data Space

pointer to the Multicast Table
(default for Ethernet or FDDI)

Number of valid entries in the Multicast Table
(default for Ethernet or FDDI)

32-bit functional address
(default for Token-Ring)

are disabled on entry, but may be enabled during the
routine

EBX and EBP must be preserved

must be disabled on return

Description

DriverMulticastChange updates the adapter to reflect the changes in the

TSM's multicast address table. Novwadfjuires that all HSMs support

multicast addressing if the media supports it. The following flags and variables

must be initialized properly for the adapter's multicast mode.

- Bit3 of theMLIDModeFlagsis used to indicate whether or not multicast

addressing is supported.

+ Bits 9 and 10 of th&LIDFlags must be set appropriately to reflect the

multicast mechanism or format used by the adapter/driver.

« The DriverParameterBlock variableriverMaxMulticast must be set to
reflect the maximum number of multicast addresses the adapter can

handle.

The TSM maintains an internal table of multicast addresses. The TSM modules
handle the addition and deletion of addresses in this table. Whenever the table

changes, the TSM calBriverMulticastChange to update the adapter's

multicast filtering. The adapter may maintain its own multicast address table or

use a hash table to filter incoming packets.

HSM Procedures 5-47

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Adapter Multicast Filterin g

The most common method used by adapters to filter incoming packets is
hashing. When this is the adapter's mettridserMulticastChange must
recalculate and update the adapter's hash table. Hashing does not guarantee
100% multicast filtering; therefore, the TSM looks up incoming packets in its
multicast address table to ensure that the packet's destination address is
enabled.

In the case that the adapter keeps its own list of multicast addresses, this routine
must cycle through the entries in the TSM's multicast address table and output
each entry to the physical card. The TSM verifies that all addresses it places in
its table are valid multicast addresses so the HSM does not need to validate
them.

In either case, the HSM routine must read the TSM's multicast address table.
Each entry in the table is 8 bytes long. The first 6 bytes are the address, and the
last word is a use flag maintained by the TSM. If the use flag is nonzero, the
entry contains a valid address.

MulticastEntryStruc db 6 dup (?); multicast addresses
MulticastinUse dw 0 ; Nonzero if in use

Note‘VI
\v

The default method (if bits 9 and 10 of k& IDFlags are zero) for handling
multicast operations is as follows:

ECB aware HSMs must do their own filtering of multicast addresses.
Ethernet and FDDI

On entry to this routine, ECX contains the number of valid entries in the
multicast table. All valid entries will be contiguous, so the HSM does not
necessarily need to check thielticastinUse flaglf ECX is zero, multicast
reception is disabled.

Token-Ring

The TSM passes the 32-bit functional address in EDX. In this case ECX and
ESI are normally not used.

If an adapter is capable of supporting both group and functional addresses (and
sets bits 9 and 10 in thdLIDFlagsfield of the configuration table

accordingly), theDriverMulticastChangeoutine will receive both functional
addresses and multicast table information.

5-48 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

RX-Net

DriverMulticastChange cannot be supported by RX-Net drivers.

Pseudocode
Clear the hardware registers that filter incoming packets for multicast addresses
Get current multicast addresses from TSM's multicast table
Reload hardware register with new multicast address filtering values
Return

HSM Procedures 5-49

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

DriverPromiscuousChange

Processor States Entry State

EBP pointer to the Adapter Data Space
EBX pointer to the Frame Data Space

ECX zero disables promiscuous mode

setting one or more bits enables promiscuous mode
as follows:
bit 0 (PROM_MODE_MAC) is setif MAC frames
are to be received
bit 1 (PROM_MODE_NON_MAC) is set if non-
MAC frames are to be received
bit 2 (PROM_MODE_SMT) is set if FDDI SMT
type MAC frames are to be received
bit 3 (PROM_MODE_RMC) is set if remote
multicast frames are to be received
all bits are set if all frames are to be received

Interrupts are disabled but may be enabled during the call

Return State
Note EBP and EBX must be preserved

Interrupts are disabled

Description Adapters/drivers that can pass all packets to a monitor function in the protocol

stack are said to have a promiscuous reception mode.
DriverPromiscuousChangeprovides a means for the stack monitor function
to enable or disable promiscuous reception.

Note Vvl Enabling promiscuous mode will have a detrimental impact on system
performance.
A monitoring function examines packets sent from or received by an adapter.
If promiscuous mode is supported, the monitoring function can request that the
adapter enter promiscuous mode. When promiscuous mode is enabled, the
driver should allow all packets (including bad packets if possible) to be passed

up to the monitor function. Only one monitor function at a time may be
registered with a driver.

5-50 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Note‘VI
v

Be aware that a monitor function may set the configuration table's
MLIDLookAheadSizt a value other than the 18 byte default. This will in turn
changeMSMMaxFrameHeaderSize.

The<TSM>GetRCB and<TSM>ProcessGetRCBrequire the driver to
indicate the status of the packet in EAX. EAX will always equal zero for token-
ring, RX-Net, and FDDI. For Ethernet the status options are as follows:

« EAX = zero for good packets
« EAX = non-zero for bad packets

« EAX bits are set as follows for bad packets:
Bit 0 - CRC Error
Bit 1 - CRC/Alignment Error
Bit 2 - Runt packet (set by the Ethernet TSM)
Bit 8 - Receive too big for ECB (set by the TSM)
Bit 9 - No board number registered (set by the TSM)
Bit 10 - Malformed packet (set by the TSM)
Bit 14 - Do not decompress the received packet
Bit 15 - The address iRImmediateAddreds in noncanonical format

Bit 31 - Driver shutting down (set by the TSM)

An ECB aware HSM must set all of these bits as necessary before calling
<TSM>RcvCompleteStatusor <TSM>FastRcvCompleteStatusAn RCB
aware HSM need set only Bit 0 - CRC error and Bit 1 - CRC/Alignment error
as necessary, the others are set by the TSM if needed.

If the HSM does not support promiscuous mode, bit 13 d¥tthi®ModeFlags
in the configuration table must be cleared and the
DriverPromiscuousChangePtield in the DriverParameterBlock must be
zero.

Setting the Remote Multicast Frames bit causes the HSM to activate all
multicast frame reception. For example, if an adapter utilizes a hash table for
filtering active multicast frames, the adapter sets the hash table to accept all
multicast frames. Filtering active multicast entries is disabled when this bit is set.
HSMs that can filter must also disable filtering when this bit is set. Multiple bits
may be set; each bit adds to the type of frames that are to be received.

HSM Procedures 5-51

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Pseudocode

IF requested to enable promiscuous mode
send enabling command to hardware
ELSE
send disabling command to hardware

DriverStatisticsChange (optional)

Processor States Entry State
EBP pointer to the Adapter Data Space
EBX pointer to the Frame Data Space
Interrupts are disabled but may be enabled during the routine

Return State
Interrupts are disabled

Note EBP must be preserved

Description The DriverStatisticsChangeoutine allows the MSM's control procedure

handler to notify drivers whenever an application requests IOCTL 1 (get driver
statistics). This allows HSMs for intelligent adapters that maintain statistical
information on board to update the statistics table in the Adapter Data Space
only as needed (before the MSM passes it up to the requesting application).

For additional information, refer to the
DriverStatisticsChangePfiield of the DriverParameterBlock in Chapter 3.

Pseudocode

Transfer statistics maintained by the hardware to the statistics table in the Adapter Data
Space.

5-52 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

DriverRxLookAheadChange (optional)

Processor States Entry State
EBP pointer to the Adapter Data Space
EBX pointer to the Frame Data Space
Interrupts are disabled but may be enabled during the routine

Return State
Interrupts are disabled

Note EBP must be preserved

Description The DriverRxLookAheadChangeutine allows the MSM to notify drivers

after an application invokes IOCTL 9 to set the LookAhead size. This IOCTL
changes th&SMMaxFrameHeaderSizariable and the
MLIDLookAheadSizéeld in the configuration table. Drivers can use this
routine to inform intelligent adapters only when the size changes rather than
constantly checking the value.

Refer to theDriverRxLookAheadChangePfield of the
DriverParameterBlockhe MLIDLookAheadSizén the configuration table,
the MSMMaxFrameHeaderSizariable, and the TSM>GetRCB procedure
for additional information.

Pseudocode
Inform Adapter of new MSMMaxFrameHeaderSize (or new MLIDLookAheadSize)

HSM Procedures 5-53

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

DriverManagement (optional)

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

ESI pointer to the management ECB containing the
request
(see supplements for The Hub Management
Interface or Brouter Support)

Interrupts are disabled but may be enabled during the routine

Entry State

Interrupts are disabled

EAX 00000000h = Success; command ECB relinquished
00000001h = Success; command ECB queued

FFFFFF88h = no such handle - protocolld not
supported

Description If a driver accepts management commands from outside NLMs the MSM will

call theDriverManagementoutine to process the management requests.

Refer toThe Hub Management Interfaaad theBrouter Supporsupplements
for an implementation of this procedure. See alsdttigerManagementPtr
field of theDriverParameterBlock in Chapter 3.

Pseudocode (refer toThe Hub Management Interfasapplement for an example
DriverManagementoutine)
5-54 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Timeout Detection

Note‘vl
\v

Historically, theDriverAES andDriverCallBack routines have been used to
call the HSM at periodic intervals. They have also been used to determine if a
board has failed to complete a packet transmission, as well as other timed
functions.

Which routine should be used for HSM timeout handling depends on execution
time constraints:

« WhenDriverCallBack is executing, the HSM may only call routines that
can be called at interrupt time.

« WhenDriverAES is executing, the HSM may only call routines that can
be called at process time.

New with this specification, the driver can UdS&MScheduleTimerto

achieve the same results@sverAES andDriverCallBack .
MSMScheduleTimeris more versatile than either of these two routines and is
now the preferred method for handling timer events. (See Chapter 7, “MSM
Procedures and Macros”.)

RX-Net normally uses a specific routine, DriverTxTimeout , to handle transmit
timeouts. This routine is required only when the RX-Net module is used. RX-Net
drivers may also use the other two timing event routines.

DriverTxTimeout (RX-Net)

The RX-Net TSM call®riverTxTimeout whenever a transmit has a software
timeout. Under normal conditions, the HSM issues the Disable Transmitter
command to the card. If the hardware does not require any special attention, the
HSM simply returns.

DriverTxTimeouis called at interrupt time and should be optimized to be as

efficient as possible. This procedure must be included when the HSM uses the
RX-Net support module.

HSM Procedures 5-55

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

DriverAES / DriverCallBack/TimerProcedure

Processor States Entry State
EBP pointer to the Adapter Data Space
EBX pointer to the Frame Data Space
Interrupts are enabled for DriverAES

are disabled for DriverCallBack

Return State

Note EBP must be preserved

Description DriverAESis enabled (typically during initialization) by calling
MSMScheduleAESCallBack DriverCallBack is enabled by calling the
functionMSMSchedulelntTimeCallBack. The use of these two MSM calls is
explained in Chapter 7, but briefly, the MSM routines expect EAX to contain
the desired time interval in ticks (1 tick = approx. 1/18 second).

Once enabled, the MSM invokes the routine automatically at the end of each
interval with EBX pointing to the Frame Data Space and EBP pointing to the
Adapter Data Space. Interrupts are enabled vilvererAES is called and are

disabled on calls t®riverCallBack.

New with this specification, the driver can Wid&MScheduleTimerto setup

a timer callback routineMSMScheduleTimeris more versatile than
DriverAES or DriverCallBack and is now the preferred method for handling
timer events. (See Chapter 7, “MSM Procedures and Macros”.)

The actual content of the routines is entirely up to the developer. The
pseudocode here illustrates usdverCallBack to identify a send timeout

error.

5-56 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Pseudocode

IF Transmit is in Progress

IF Elapsed Transmit Time > Maximum Time for Transmit
Increment appropriate error counter
Reset the adapter
Reset [ebp].MSMTxFreeCount

Call <TSM>GetNextSend,(check the send queue)
IF TCB was available
Call DriverSend

ENDIF
ENDIF
ENDIF
Return

HSM Procedures 5-57

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Removal

5-58

The NetWare operating system calls the driver's exit procedure,
DriverRemove, when it receives the command to unload the driver. This
procedure is described below.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

DriverRemove

Processor States Entry State

Interrupts can be in any state

Return State

Interrupts are preserved

Description The DriverRemove procedure is called whenever the HSM is unloaded. The
HSM's linker definition file must include the “exit” keyword followed by
DriverRemove. Because this routine is called by the operating system, it must
preserve the C registers EBP, EBX, ESI and EDI.
This routine must set EAX to the value of beverModuleHandlefrom the
DriverParameterBlock and cddSMDriverRemove. The MSM handles
MLID deregistration, returns all driver resources, and &tiserShutdown
before returning.
PseudocodeDriverRemove proc
push ebx, ebp, esi, edi
mov eax, DriverModuleHandle
call MSMDriverRemove
pop edi, esi, ebp, ebx
ret
DriverRemove endp

*** Setup a Board Service Routine ***

HSM Procedures 5-59

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

5-60

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

chapter

6 TSM Procedures

Introduction

This chapter describes the topology specific procedures provided as tools for
HSM developers. The Topology Specific Module, <TSM>.NLM, manages
the operations that are unique to a specific media type. Multiple frame support
is implemented in the Topology Module so that all frame types for a given
media are supported.

The topology specific functions are indicated with <TSM>. The developer
must replace <TSM> with the appropriate media type depending on which
module is used. Since the driver must be assembled with case sensitivity on,
the names must be used exactly as shown.

ETHERTSM .NLM replace <TSM >with: Ether TSM
TOKENTSM.NLM replace <TSM> with: TokenTSM
RXNETTSM.NLM replace <TSM> with: RXNetTSM
FDDITSM.NLM replace <TSM> with: FDDITSM

RX-Net drivers require special consideration to handle split packets. Several
routines are provided that are specific to the RX-Net module. These routines
are described at the conclusion of this chapter.

TSM Procedures 6-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

<TSM>BuildTransmitControlBlock

Processor States Entry State
EBP pointer to the Adapter Data Space
ESI pointer to a transmit ECB
Interrupts are disabled
Call at process time

Return State

ECX padded length of the packet (non-ECB-aware
Ethernet only)
ESI pointer to a TCB (or an ECB); otherwise, NULL
Flags set according to EAX
Interrupts are disabled
Preserved EBP, EDI
Completion Code in EAX
SUCCESSFUL TCB pointer is valid. The HSM should transmit the TCB.
OUT_OF_RESOURCES A TCB was not available. THE HSM must not call this routine

with more outstanding TCBs than is set in the
MSMPriorityTxFreeCount variable. The ECB is returned to
HSM. The HSM must either call this function again after a TCB
resource is available, or return the ECB via
<TSM>CancelPrioritySend.

PACKET_UNDELIVERABLE A TCB was available, but the ECB described a packet that was
too large for the media. The ECB was returned to the LSL and
a TCB was not allocated.

Note: ECB-aware drivers needing physical addresses for
fragments may experience this error if the frame’s scatter/
gather count is too high. In which case, the ECB is returned to
the LSL and ESI=NULL.

6-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Description

The HSM calls<TSM>BuildTransmitControlBlock when it is ready to send
a priority packet that has been queued ugnigerPriorityQueueSupport .
The HSM calls this function to convert an ECB to a TCB.

The HSM should be aware of the number of TCBs available to the MLID for
priority sends. The TSM allocates a number of TCBs based on the sum of
MSMTxFreeCount and MSMPriorityTxFreeCount. The HSM must not have
more outstanding priority TCBs than was set by the HSM using
MSMPriority TxFreeCount durindriverinit . If the HSM makes this call

when no TCBs are available, OUT_OF RESOURCES is returned.

The HSM does not need to do size checking on the resultant TCB. If the packet
generated is too large for the media, this function returns
PACKET_UNDELIVERABLE after it returns the ECB to the LSL. It does not
return a TCB to the HSM.

The HSM must not change the MSMTxFreeCount for any TCB obtained for a
priority transmit. An internal counter for priority support resources should be
maintained by the HSM.

ECB-aware drivers that need physical addresses for fragments must call
<TSM>BuildTransmitControlBlock to convertlogical fragment addresses to
physical addresses. A pointer to the new ECB with physical fragment addresses
is returned in ESI.

TSM Procedures 6-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

<TSM>CancelPrioritySend

Processor States Entry State

EBP
ESI
Interrupts

Call

Return State
Interrupts

Preserved

Description

6-4

pointer to the Adapter Data Space
pointer to a transmit ECB
are disabled

at process time

are disabled

EBP

The HSM calls this function when it is canceling an ECB that was originally
accepted to be transmitted \BaiverPriorityQueueSupport .

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

<TSM>GetConfigInfo

Allows an HSM to get the configuration information for the <TSM>, including
specification and module versions.

Processor States Entry State

EDI pointer to buffer used to receive the returned
configuration information. The caller must ensure
that the buffer is at least as long as the number of
bytes specified in ECX.

ECX requested number of bytes to be returned into the
buffer.

Interrupts can be in any state

Call at process time

Return State

ECX the actual number of bytes returned in the
configuration buffer.

Flags set according to EAX

Interrupts are disabled

Preserved EDI, EBX & EBP

Completion Code in EAX

SUCCESSFUL The configuration information was successfully returned in the
buffer.

BAD_PARAMETER The number of bytes requested was larger than the actual
configuration information available. The number of bytes
actually returned is indicated in ECX.

TSM Procedures 6-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Description

The configuration information is returned in the format defined by

TSMConfigTable.
TSMConfigTable struc
TSMCFG_TableSize dd ?
TSMCFG_TableMajorVersion db ?
TSMCFG_TableMinorVersion db ?
TSMCFG_ModuleMajorVersion db ?
TSMCFG_ModuleMinorVersion do ?
TSMCFG_ODISpecMajorVersion db ?
TSMCFG_ODISpecMinorVersion db ?
TSMCFG_Reserved dw ?
TSMCFG_MaxFrameSize dd ?
TSMCFG_SystemFlags dw O

TSMConfigTable ends
TSMCFG_TableSize
This field contains the actual size of the TSM’s configuration table in bytes.
The value of this field should not be confused with the number of bytes
requested or copied (i.e., value in ECX).

TSMCFG_TableMajorVersion

This field contains the major version of the configuration table. The current
major version is 1.

TSMCFG_TableMinorVersion

This field contains the minor version of the configuration table. The current
minor version is O.

TSMCFG_ModuleMajorVersion

This field contains the major version of the <TSM> binary (e.g.,
ETHERTSM.NLM).

TSMCFG_ModuleMinorVersion

This field contains the minor version of the <TSM> binary (i.e.,
ETHERTSM.NLM).

TSMCFG_ODISpecMajorVersion

6-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

This field contains the major version of the ODI Specification that this version
of the <TSM> is written too. For example, if the version of the ODI
specification is 3.31, the value of this field is 3.
TSMCFG_ODISpecMinorVersion

This field contains the minor version of the ODI Specification that this version
of the <TSM> is written too. For example, if the version of the ODI
specification is 3.31, the value of this field is 31.

TSMCFG_Reserved

This field is reserved and must be set to 0.

TSMCFG_MaxFrameSize

The value of this field represents the maximum frame size that the <TSM>
supports.

TSMCFG_SystemFlags

The bits in this field are defined below.

Table 6.1 TSMCFG_SystemFlags

Offset Name Bytes

Bit 31 TSM_CFG_CLIENT_BIT When set to 1 this bit indicates the TSM is
running in a client environment. Either this bit
or bit 30 will be set, but never both.

Bit 30 TSM_CFG_SERVER_BIT When set to 1 this bit indicates the TSM is
running in a server environment. Either this bit
or bit 31 will be set, but never both.

Bit 0-29 Reserved These bits are reserved.

TSM Procedures 6-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

<TSM>GetNextSend

Processor States Entry State
EBP pointer to the Adapter Data Space
Interrupts are disabled
Call at process or interrupt time

Return State

EBP pointer to the Adapter Data Space

EBX pointer to the Frame Data Space

ESI pointer to the next TCB to transmit if successful.
This routine will decrement MSMTxFreeCount.

ECX Padded packet length (Ethernet only)

Zero Flag Set if successful; otherwise there are no TCBs

gueued or the adapter is currently using all of its
transmit resources and cannot accept another
packet (MSMTxFreeCount = 0).

Interrupts are disabled

Description This function retrieves the next ECB to be sent from the MSM's transmit

waiting queue. It then builds a TCB and gives it to the HSM for transmission.
If the send queue is empty, this function clears the zero flag and returns.

Most HSMs do not need to call this function, because the MSM checks for
pending transmissions wheneved-reeCounts notequal to zero on exit from
an HSM function, and calBriverSend when necessary.

Note‘VvI The DriverSend routine may use ECBs instead of TCBs by initializing the
DriverParameterBlock variable DriverSendWantsECBS to a non-zero value
(see Chapter 3). In this case, <TSM>GetNextSend will simply retrieve the next

ECB to be sent (without building a TCB).

6-8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example DriverISR proc

TransmitComplete:; EBP = Ptr to Adapter Data Space

inc [ebp]. MSMTxFreeCount; Free adapter's transmit
resource
mov [ebp].TxInProgress, 0; Clear transmit in progress flag

*** Transmit Next Packet ***
call <TSM>GetNextSend; Get the next TCB from the
queue

jnz NoSendsQueued; Jump if nothing to send
call DriverSend; Otherwise send the packet

DriverISR endp

TSM Procedures 6-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

<TSM>GetASMHSMIFLevel

Processor States Entry State

Interrupts

Call

Return State
EAX
Interrupts

Preserved

can be in any state

at initialization time only

assembly HSM Interface Level (currently 220)
are preserved

all other registers

Description

Bus Master HSM's that are modified to support physically addressed ECB

fragment pointers QriverSupportsPhysFragsit = 1) need to call
<TSM>GetASMHSMIFLevel since the modified HSM is incompatible with
an older TSM. To be compatible with the modified HSM, the TSM level
returned must be 220 (version 2.20) or greater.

Example Driverlnit Proc

;Fill in Driver Parameter Block Fields

if BusMaster

endif

call <TSM>GetASMHSMIFLevel

cmp eax, 220

mov ecx, eax

lea eax, LevelErrorMsg

jb DriverInitResetError;Jump if wrong TSM level

Driverlnit endp

6-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

<TSM>GetRCB

Note‘vvl For RX-Net see RXNetTSMGetRCB

Processor States Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet header (LookAhead
buffer)

ECX size of the received packet, -1 if size is unknown
(such as pipelined adapters)

EAX status of received packet for the Receive Monitor, O if
unknown (such as pipelined adapters)
(see DriverPromiscuousChange in Chapter 5)

Interrupts can be in any state

Call at process or interrupt time

Return State

Zero Flag set if successful; otherwise an error occurred

ESI pointer to the fragmented RCB if this call is
successful

EDI pointer to the fragment structure
(points to the RCBFragmentCount field of the RCB)

EBX number of bytes to skip over from the beginning of
packet

ECX number of bytes remaining to read

Interrupts are disabled

Preserved EBP

Description This routine is called by the HSM to obtain a fragmented RCB for a packet that

has been received by the adapter. Drivers that cannot handle fragmented
receive buffers should obtain RCBs using eitti&WViAllocateRCB or
<TSM>ProcessGetRCB

<TSM>GetRCB uses a LookAhead process in which the packet's header
information is previewed before an RCB is given to the driver. This way the

TSM Procedures 6-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

TSM can first verify that it wants the packet, before the driver transfers the
entire packet from the adapter into an RCB.

The adapter's data transfer method governs how the LookAhead process is
handled.

« If a programmed I/O adapter is being used, the HSM must transfer the
packet's header information from the adapter into a buffer maintained for
this purpose. The number of bytes to transfer is specified by the variable
MSMMaxFrameHeaderSiziescribed in Chapter 4. The HSM must set
ESI to point the beginning of the LookAhead buffer before calling this
routine.

+ If a shared RAM (memory-mapped 1/0O) adapter is being used, the HSM
can simply point ESI to the beginning of the packet buffer in shared RAM.

On entry to this routine, ESI must point to the packet's header information (the
LookAhead buffer) and ECX must contain the size of the received packet. If
the adapter is pipelined and the packet size is unknown, fill in ECX with -1. If
the header verifies, the TSM will obtain an RCB and use the LookAhead
information to fill in theRCBReservefields before returning a pointer to the
RCB in ESI.

After obtaining the RCB, the remainder of the packet must be transferred into
the RCB fragment buffers. EBX is the offset from the beginning of the packet
to start copying from and ECX contains the number of bytes in the packet left
to read.

After the HSM has read the rest of the packet, it must return the RCB to the
LSL using either theTSM>RcvComplete / MSMServiceEvents

combination or by using

<TSM>FastRcvComplete If the adapter is pipelined and called
<TSM>GetRCB with ECX equal to -1, it should use either the
<TSM>RcvCompleteStatugM SMServiceEventscombination or use
<TSM>FastRcvCompleteStatugo return the RCB along with the actual size
of the packet and error status.

Note V! If this routine returns an error completion code, the received packet must be
discarded.

Bus Master Adapters

Bus Master devices require RCBs to be preallocated. Since this routine requires
a LookAhead Bulffer, it cannot be used to preallocate RCBs. The HSM can

6-12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example

preallocate RCBs using eithetfSMAIllocateRCB or
MSMAllocateMultipleRCBs .

mov ecx, [ebp].MSMMaxFrameHeaderSize; Build LookAhead
buffer

lea edi, [ebp].LookAheadBuffer

rep insb

lea esi, [ebp].LookAheadBuffer; Ptrto LookAhead buffer

mov ecx, PacketSize; Size of the received packet

call <TSM>GetRCB; Getan RCB

jnz PacketNotAccepted; Jump if Error

(Copy remainder of the packet into the RCB)

call <TSM>RcvComplete; Return RCB

TSM Procedures 6-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

<TSM>ProcessGetRCB

Processor

Description

Note‘vvl For RX-Net see RXNetTSMRcvEvent

States

Note‘VI
\v

Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet's RCB

ECX size of the received packet

EAX status of received packet for the Receive Monitor
(see DriverPromiscuousChange in Chapter 5)

EDI maximum packet size for the new RCB

Interrupts can be in any state

Call at process or interrupt time

Return State

Zero Flag set if a new RCB was available

ESI pointer to a new non-fragmented RCB (if the zero flag
is set)

Interrupts are disabled

Preserved EBP

The HSM calls this routine to process an RCB for a received packet and to
preallocate a new nonfragmented RCB for the next packet. The received packet
must have been copied into tREBDataBuffer.

Use this routine if the RCB was preallocated udit®MAllocateRCB or
MSMAllocateMultipleRCBs, or was obtained from a previous call to this
routine. In either case, tiRCBReservetields have not been filled in, and
therefore must be completed by the TSM.

If the adapter/driver is ECB aware and has already filled in all required ECB
fields as described in Chapter 4, the ECB should be returned for processing
using <TSM>RcvCompleteStatus /MSMServiceEvents or
<TSM>FastRcvCompleteStatus .

6-14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Note‘VI

\v

Note‘VI
\v

When this routine is called, the TSM examines the packet header information.
If the header verifies, theRCBReservefields are filled in and the RCB is
directed to the Link Support Layer's holding queue to await processing. The
TSM then obtains a new nonfragmented RCB, if one is available, and returns
it to the driver. If the packet header is invalid, the RCB will be given back to
the driver to be used again for another packet.

The HSM must eventually use the mabt8MServiceEventswhich enables
the RCB's Event Service Routine to complete the processing.

Ethernet

The HSM should start copying the packet from the 6 byte destination field of
the media header into tfRCBDataBuffefield of the RCB.

Token-Ring

The HSM should start copying the packet from the Access Control byte of the
media header into tHRCBDataBuffefield of the RCB.

FDDI

The HSM should start copying the packet from the Frame Control byte of the
media header into tHRCBDataBuffefield of the RCB.

For drivers that use DMA it may be helpful to note that RCBFragmentOffset1
points to the physical address of the RCBDataBuffer (refer to figure 4.3 in
Chapter 4).

For some busMaster implementations, you must set RProtocolWorkspace
(defined in ODI.INC) to the number of bytes necessary to skip to the beginning
of the packet. This value can be as high as 128 bytes for chips which have poor
alignment capabilities. This field is normally part of the reserved space in the
RCB definition and can only be used with this call for the purpose stated above.

TSM Procedures 6-15

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

DriverInit proc

mov esi, [ebx].MLIDMaximumSize
call MSMAllocateRCB; Preallocate first RCB & save.

Driverlnit endp

DriverISR proc

ReceiveEvent:

(Copy packet into the RCBDataBuffer field of the
preallocated RCB)

Xor eax, eax; Good packet

mov ecx, PacketSize; Size of received packet

mov edi, [ebx].MLIDMaximumSize; Maximum size for new
RCB

call <TSM>ProcessGetRCB; Return RCB & get a new
RCB

DriverISR endp

6-16 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

<TSM>FastProcessGetRCB

Note‘VI
\4

Processor States

Description

Importantv

For RX-Net see RXNetTSMFastRcvEvent

Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet's RCB

ECX size of the received packet

EAX status of received packet for the Receive Monitor
(see DriverPromiscuousChange in Chapter 5)

EDI maximum packet size for the new RCB

Interrupts can be in any state (but might be enabled during the
call)

Call at process or interrupt time

Return State

Zero Flag set if a new RCB was available

ESI pointer to a new nonfragmented RCB (if the zero flag
is set)

Interrupts are disabled

Preserved EBP

<TSM>FastProcessGetRCBs identical tocTSM>ProcessGetRCBwith the
exception that before this routine returns, the RCB's Event Service Routine is
called to complete the processirg.SM>ProcessGetRCBused in

conjunction with MSMServiceEvents will perform the same task.

During the RCB's Event Service Routine, the interrupts might be enabled and
all registers could be destroyed. The HSM must preserve any needed registers
before calling ¥SM>FastProcessGetRCBIf having the interrupts enabled

is undesirable, the driver should use tA&¥ >ProcessGetRCBprocedure

and wait until the conclusion of the receive routine before servicing events.

This routine calls the RCB's Event Service Routine during which the interrupts
might be enabled and all registers could be destroyed.

TSM Procedures 6-17

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

points to the physical address of the RCBDataBuffer (refer to figure 4.3 in

Note‘VvI For drivers that use DMA it may be helpful to note that RCBFragmentOffset1

Chapter 4).

Note‘vvl For some busMaster implementations, you must set RProtocolWorkspace
(defined in ODI.INC) to the number of bytes necessary to skip to the beginning
of the packet. This value can be as high as 128 bytes for chips which have poor

alignment capabilities. This field is normally part of the reserved space in the
RCB definition and can only be used with this call for the purpose stated above.

Example

Driverlnit
mov

call

Driverlnit

DriverISR

proc

esi, [ebx].MLIDMaximumSize
MSMAlIllocateRCB; Preallocate first RCB & save.

endp

proc

ReceiveEvent:

xor
mov
mov

call

DriverISR

(Copy packet into the RCBDataBuffer field of the
preallocated RCB)

eax, eax; Good packet

ecx, PacketSize; Size of received packet

edi, [ebx].MLIDMaximumSize; Maximum size for new
RCB

<TSM>FastProcessGetRCB; Return RCB, service
events, and get a new RCB

endp

6-18 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

<TSM>RcvComplete

Processor

Description

States

Note‘VI
v

Entry State

EBP pointer to the Adapter Data Space
ESI pointer to the received packet's RCB
Interrupts are disabled

Call at process or interrupt time

Return State
Interrupts are disabled

Preserved EBP, ESI, and EDI.

The HSM calls SM>RcvCompleteto direct a completed RCB to the Link
Support Layer's holding queue to await processing. Use this routine if the RCB
was obtained using the

<TSM>GetRCB procedure and the received packet has been copied into the
RCB receive buffer(s).

Pipelined adapter drivers that previously called <TSM>GetRCB with ECX = -1,
as well as ECB aware adapters should call <TSM>RcvCompleteStatus
instead of <TSM>RcvComplete . Drivers that call <TSM>GetRCB with ECX set
to equal the frame size should still use <TSM>RcvComplete .

When an RCB is queued using this routine, the HSM must eventually use the
macroMSMServiceEventsto call the RCB's Event Service Routine and
complete the processing.

RX-Net
If an RX-Net adapter/driver is ECB aware (see Chapter 4), it is responsible for
handling packet reconstruction and fragmentation. Once the packet is

reconstructed, the HSM must set the second byte @rikrerWorkspacédield
to one before calling this routine.

TSM Procedures 6-19

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

6-20

mov ecx, [ebp].MSMMaxFrameHeaderSize; Build the
LookAhead buffer

lea edi, [ebp].LookAheadBuffer

rep insb

lea esi, [ebp].LookAheadBuffer; Ptr to LookAhead buffer

mov ecx, PacketSize; Size of the received packet

call <TSM>GetRCB; Get an RCB

jnz PacketNotAccepted; Jump if Error

(Copy remainder of the packet into the RCB)

call <TSM>RcvComplete; Return the RCB

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

<TSM>RcvCompleteStatus

Processor States Entry State

EBP

ESI

EAX
ECX
Interrupts

Call

Return State

pointer to the Adapter Data Space

pointer to the received packet's RCB

status of received packet for Receive Monitor
size of received packet

are disabled

at process or interrupt time

Interrupts are disabled and were not enabled
Preserved EBP, ESI, and EDI.
Description The HSM calls ¥SM>RcvCompleteStatugo allow the TSM to fill in proper

packet length fields of the RCB, record the error status and direct the completed
RCB to the Link Support Layer’s holding queue to await processing. Use this
routine if the RCB was obtained by a pipelined adapter using

<TSM>GetRCB with ECX equal to -1 or by an ECB aware adapter using
MSMAllocateRCB or MSMAIllocateMultipleRCBs .

When an RCB is queued using this routine, the HSM must eventually use the
macro MSMServiceEvents to call the RCB’s Event Service Routine and
complete the processing.

TSM Procedures 6-21

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

6-22

(This example is for pipelined adapters; see
<TSM>FastRcvCompleteStatusfor ECB-aware example)

mov ecx, -1; don’t know packet size yet

xor eax, eax; don’t know error status

lea esi, [ebp].LookAheadBuffer; pass what we have so
far

call <TSM>GetRCB; get an RCB

jnz PacketNotAccepted; jump if error

. (Copy remainder of the packet into the RCB)

mov eax, [ebp].ErrorStatus; get known error status

mov ecx, [ebp].PacketSize; get known packet size
call <TSM>RcvCompleteStatus

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

<TSM>FastRcvComplete

Processor States

Description

Importantv
Note‘VI
\v

Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet's RCB

Interrupts are disabled (but might be enabled during the call)
Call at process or interrupt time

Return State
Interrupts are disabled

Preserved assume all registers are destroyed.

<TSM>FastRcvComplete is identical td SM>RcvCompletewith the

exception that before this routine returns, the RCB's Event Service Routine is
called to complete the processing. Usiig# >RcvCompletein conjunction

with MSMServiceEventswill perform the same task.

During the RCB's Event Service Routine, the interrupts might be enabled and
all registers could be destroyed. The HSM must preserve any needed registers
before calling ISM>FastRcvComplete If having the interrupts enabled is
undesirable, the driver should use thest>RcvCompleteprocedure and

wait until the conclusion of the receive routine before servicing events.

This routine calls the RCB's Event Service Routine during which the interrupts
might be enabled and all registers could be destroyed.

Pipelined adapter drivers that previously called <TSM>GetRCB with ECX =-1,
as well as ECB aware adapters should call <TSM>FastRcvCompleteStatus
instead of <TSM>FastRcvComplete . Drivers that call <TSM>GetRCB with
ECX set to equal the frame size should still use <TSM>FastRcvComplete .

TSM Procedures 6-23

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

6-24

mov

lea
rep
lea
mov
call
jnz

call

ecx, [ebp].MSMMaxFrameHeaderSize; Build the
LookAhead buffer

edi, [ebp].LookAheadBuffer

insb

esi, [ebp].LookAheadBuffer; Ptr to LookAhead buffer

ecx, PacketSize; Size of the received packet

<TSM>GetRCB; Get an RCB

PacketNotAccepted; Jump if Error

(Copy remainder of the packet into the RCB)

<TSM>FastRcvComplete ; Return RCB & service
events

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

<TSM>FastRcvCompleteStatus

Processor States

Description

Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the received packet's RCB

EAX status of received packet for Receive Monitor
(see DriverPromiscuousChange in Chapter 5)

ECX size of received packet

Interrupts are disabled

Call at process or interrupt time

Return State
Interrupts are disabled and may have been enabled

Preserved Assume all registers are destroyed

<TSM>FastRcvCompleteStatuss identical to ¥SM>RcvCompleteStatus
with the exception that before this routine returns, the RCB’s Event Service
Routine is called to complete the processing. Using
<TSM>RcvCompleteStatusin conjunction withMSMServiceEventswill
perform the same task.

During the RCB’s Event Service Routine, the interrupts might be enabled and
all registers could be destroyed. The HSM must preserve any needed registers
before calling FSM>FastRcvCompleteStatuslf having the interrupts

enabled is undesirable, the driver should use T&M>RcvCompleteStatus
procedure and wait until the conclusion of the receive routine before servicing
events.

TSM Procedures 6-25

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

6-26

(This examples is for ECB-aware adapters;<seE8M>RcvCompleteStatus
for pipelined adapters example.)

mov esi, [ebx].MLIDMaximumSize; ECB Size expected
call MSMAllocateRCB; get an RCB
jnz NoRCBsAvailable; jump if error

(Copy remainder of the packet into the RCB)

mov eax, [ebp].ErrorStatus; get packet error status

mov ecx, [ebp].PacketSize; get known packet size
call <TSM>FastRcvCompleteStatus

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

<TSM>RegisterHSM

Processor States

Entry State

ESI pointer to the DriverParameterBlock structure
Interrupts can be in any state
Call at initialization time only

Return State

EAX zero if successful; otherwise EAX points to an error
message that the driver must print using
MSMPrintString before returning to the operating
system with EAX non-zero.

EBX pointer to the Frame Data Space

Interrupts are disabled

Preserved all other registers are destroyed

Zero Flag set if successful; otherwise an error occurred
Description The HSM'sDriverlnit routine must cakTSM>RegisterHSMwith a pointer

to its DriverParameterBlock structure in ESI. Before calling this routine,
Driverlnit must save the value of the stack pointer inDhgerStackPointer
field of the DriverParameterBlock after pushing the C registers EBP, EBX,
ESI, and EDI. This routine then calls the MSM which performs the following
tasks:

copies the parameter block into local data space

processes driver firmware variables

allocates the Frame Data Space

copies the driver configuration table into the Frame Data Space
parses information derived from the linker definition file

places LSL's maximum packet size in the configuration table

initializes screen ID used fédSMPrintString procedures

TSM Procedures 6-27

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example Driverlnit proc
Cpush; macro to save “C” registers
mov DriverStackPointer, esp; Fill in stack pointer
lea esi, DriverParameterBlock; Get ptr to Parameter
Block
call <TSM>RegisterHSM; Get a Frame Data Space
jnz DriverlnitError; Jump if error

xor eax, eax; Successful return with EAX=0
Cpop ; Restore “C” registers
ret

DriverInitError:
mov esi, eax; ESI=EAX= ptr to error msg.
call MSMPrintString; Print the Message
Cpop ; Restore “C” Registers
ret ; Return (EAX is nonzero on
; errors)
Driverlnit endp

6-28 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

<TSM>SendComplete

Processor

Description

States

Note‘VI
v

Entry State

EBP pointer to the Adapter Data Space

ESI pointer to the Transmit Control Block (TCB)
Interrupts are disabled

Call at process or interrupt time

Return State
Interrupts are disabled

Preserved EBP

This procedure is called to release a TCB after a packet has been transmitted.
It can be called bfpriverISR after a transmit complete interrupt or by the
DriverSend routine before the actual transmission is complete (a lying send),
as long as all packet data has been transferred into the adapter's transmit buffer
and access to the TCB is no longer required.

This procedure returns the packet's TCB to the MSM's unused TCB queue and
directs the underlying Transmit ECB to the Link Support Layer's service
queue.

The HSM must eventually use the mabt8MServiceEventswhich calls the
ECB's Event Service Routine. Typically, if tbeiverSend routine was called

to transmit the next packet after a send complete interrupt, then the interrupt
service routine must invokdSMServiceEvents

The DriverSend routine may use ECBs instead of TCBs by initializing the
DriverParameterBlock variable DriverSendWantsECBS to a non-zero value
(see Chapter 3). In this case, <TSM>SendComplete will simply direct the ECB
to the LSL's service queue.

TSM Procedures 6-29

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

6-30

DriverSend proc
(send the packet to the NIC)
cmp InDriverISR, 0
jnz <TSM>SendComplete
jmp <TSM>FastSendComplete

DriverSend endp

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

<TSM>FastSendComplete

Processor States Entry State

Description

Example

EBP
ESI
Interrupts

Call

Return State
Interrupts

Preserved

pointer to the Adapter Data Space
pointer to the Transmit Control Block (TCB)
are disabled (but might be enabled during the call)

at process or interrupt time

are disabled

all registers are destroyed.

<TSM>FastSendCompletds identical to<TSM>SendCompleteexcept

that before this routine returns, the TCB's Event Service Routine is called to
notify the upper layers that the transmission is complete. Using the
<TSM>SendComplete/ MSMServiceEventscombination will perform the

same task.

During the TCB's Event Service Routine, the interrupts might be enabled and
all registers could be destroyed. The HSM must preserve any needed registers
before calling< TSM>FastSendComplete

DriverSend proc

cmp
jnz
jmp

(send the packet to the NIC)

InDriverISR, 0
<TSM>SendComplete
<TSM>FastSendComplete

DriverSend endp

TSM Procedures 6-31

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

6-32

<TSM>UpdateMulticast

Processor

Description

States

Note‘VI
v

Entry State

EBP pointer to the Adapter Data Space
Interrupts are disabled and remain disabled
Call at process or interrupt time

Return State
Interrupts are disabled

Preserved EBX and EBP

When<TSM>UpdateMulticast is called it passes the current multicast table
(maintained by the TSM) to the HSM's

DriverMulticastChange routine. This allows the driver to update the adapter's
multicast address registers.

This routine is called by internal TSM procedures each time the multicast
addresses are added to or deleted from the MSM's multicast table. This routine
can also be called by the driver during the HSiwerReset routine.

RX-Net does not support multicast addressing. This routine is not available if the
RXNetTSM module is used.

Refer to the sections covering the following flags and variables for more
information on multicast addressing:

- Bit 3 of theMLIDModeFlagsis used to indicate whether or not multicast
addressing is supported.

+ Bits 9 and 10 of th&LIDFlags must be set appropriately to reflect the
multicast mechanism or format used by the adapter/driver.

« The DriverParameterBlock variableriverMaxMulticast must be set to
reflect the maximum number of multicast addresses the adapter can
handle.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Example

DriverResetproc

call<TSM>UpdateMulticast

DriverResetendp

TSM Procedures 6-33

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

RXNetTSMGetRCB

Processor States

Description

Entry State

EBP pointer to the Adapter Data Space
ESI pointer to the LookAhead Buffer
Interrupts are in any state

Call at process or interrupt time

Return State

Zero flag set if successful; otherwise an error occurred
ESI pointer to the RCB if this call is successful
EDI pointer to the RCB fragment structure

(points to the RCBFragmentCount field of the RCB)

EBX contains the offset in the card's buffer from which to
start copying data

ECX number of bytes remaining to read
Interrupts are disabled
Preserved EBP

This routine is normally used for programmed /O adapters.

RXNetTSMGetRCB uses a LookAhead process in which the packet's header
information is previewed before an RCB is given to the driver. This way the
TSM can first verify that it wants the packet, before the driver transfers the
entire packet from the adapter into an RCB.

The LookAhead process requires the HSM to build a buffer containing the
packet's header information as shown in Figure 6.1 on the following page. The
number of bytes required for the buffer is specified by the variable
MSMMaxFrameHeaderSiziescribed in Chapter 4. The HSM must set ESI to
point to the beginning of the LookAhead buffer before calling this routine. If
the header verifies, this routine returns a pointer to an RCB.

At this point, the HSM must transfer the remainder of the packet into the RCB
fragment structure. Since other fragments of a split packet may have already
been copied into the RCB buffers, the HSM must perform the following
operations.

6-34 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

« The dword value at [EDI — 4] indicates the number of bytes currently in
the RCB fragment buffers. This value can be used along with the
RCBFragmentLengtfields to determine where in the RCB fragment
structure to begin copying the packet.

« Once the position is located, the HSM transfers the rest of the packet into
the RCB fragment structure. (EBX is the offset from the beginning of the
card's buffer to start copying from and ECX is the number of bytes left to
read.)

« Update the number of bytes currently in the RCB fragment buffers by
adding ECX bytes to the dword value at [EDI — 4].

After the HSM completes the above tasks, it must return the RCB using either
the<TSM>RcvComplete/ MSMServiceEventscombination or by using
<TSM>FastRcvComplete

Note‘vvl Using RXNetTSMGetRCB does not provide 100% support to a receive monitor.

TSM Procedures 6-35

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Figure 6-1 Format of the RX-Net LookAhead Buffer

Short

SourceAddress
DestinationAddEs
ByteOffset | Total buffer size

ProtocolType is equal to
SplitFlag | MSMMaxFrameHeade

SequenceNumber
PacketData \\\HHH

Long

SourceAddress
DestinationAddress
LongFlag | Total buffer size

ByteOffget is equal to
ProtocolTyE MSMMaxFrameHeade
SplitFlag |
SequenceNurnber
PacketData \ \ \ o \ \ \ \ \ \

Exception

SourceAddress
DestinationAddress
LongFlei
ByteOffget
Pad 1. ProtocoITyJe Total buffer size

Pad 2: SplltFE is equal to
Pad 3 : FFh MSMMaxFrameHeade
Pad 4 : FFh
ProtocolTyE
SplitFlag |
SequenceNumber
PacketData \\\\\\\\\

6-36 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example

(Build the LookAheadBuffer)

lea esi,[ebp].LookAheadBuffer
call RXNetTSMGetRCB ; Getan RCB

jnz NoRCB ;Jump if there is an error

(Determine the current fragment buffer position)
(Transfer the rest of the packet into the RCB)

add [edi-4], ecx
call RXNetTSMRcvComplete; Return the RCB

TSM Procedures 6-37

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

RXNetTSMRcvEvent

Note‘vvl This procedure applies to RX-Net only

Processor States Entry State
EBP pointer to the Adapter Data Space
ESI pointer to the received packet
Interrupts are in any state
Call at process or interrupt time

Return State

Zero Flag set if successful
Interrupts are disabled
Preserved EBP
Description RXNetTSMRcvEvent is only available to HSMs that use RX-Net shared

RAM cards and that use the RXNetTSM module. The only action the HSM
takes when a packet is received is to pass this routine a pointer to the packet. If
the packet is wanted, the TSM copies the entire packet into an RCB,
completing packet reception.

The HSM must eventually use the mabt8MServiceEventswhich enables
the RCB's Event Service Routine to complete the processing.

RX-Net cards that do not support shared RAM should either:

+ Use theRXNetTSMGetRCB / <TSM>RcvCompletecombination to
receive packets. This method does not provide 100% support to a receive
monitor.

« Copy the entire packet from the adapter into a buffer and call this routine
with a pointer to that buffer in ESI. This method is the only way to provide
100% support to a receive monitor.

6-38 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example

mov esi, [ebp].CurrRxPage; ESI -> Current Rx Page
xor [ebp].CurrRxPage, 0200h; Toggle to the next page
call RXNetTSMRcvEvent; Pass the packet to MSM
jmp ISREXit; Finished receiving the packet

TSM Procedures 6-39

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

RXNetTSMFastRcvEvent

Note‘vvl This procedure applies to RX-Net only.

Processor States Entry State
EBP pointer to the Adapter Data Space
ESI pointer to the received packet
Interrupts are in any state
Call at process or interrupt time

Return State

Zero Flag set if successful
Interrupts are disabled
Preserved EBP
Description RXNetTSMFastRcvEventis identical toRXNetTSMRcvEvent except that

before this routine returns, the RCB's event service routine is called to
complete the processing. USiRKNetTSMGetRCB /
RXNetTSMRcvEventin conjunction withMSMServiceEventswill perform
the same task.

During the RCB's Event Service Routine, the interrupts might be enabled and
all registers could be destroyed. The HSM must preserve any needed registers
before callingRXNetTSMFastRcvEvent If having the interrupts enabled is
undesirable, the driver should use BNetTSMRcvEvent procedure and

wait until the conclusion of the receive routine before servicing events.

Importantv This routine calls the RCB’s Event Service Routine, during which the interrupts

Example

6-40

might be enabled and all registers could be destroyed.

mov exi, [ebp].CurrRxPage; location of received packet
call RXNetTSMFastRcvEvent

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

chapter
7 MSM Procedures and Macros

Introduction

This chapter describes the MSM procedures and macros provided as tools for
HSM developers. These MSM procedures, along with the topology specific
procedures described in Chapter 6, manage the primary details of interfacing
the HSM to the Link Support Layer. The procedures and macros in this chapter
are media independent and handle generic initialization and run-time issues.
The macros included in this section are defined in the MSM.INC file.

MSM Procedures and Macros 7-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Netware Bus Interface

Overview

7-2

Importantv

Importantv

This section lists the MSM API calls that enable the NetWare Bus Interface
(NBI) as it pertains to this specification. The MSM autoloads the NetWare Bus

Interface, NBI.NLM.

The additional bus support includes PCI, ISA Plug and Play, and PC Card
(PCMCIA) support. The MSM functions described in this chapter make it

possible to access and support these new bus architectures.

PCI and any other new bus support you choose to implement in your driver
MUST be implemented by using the new MSM calls listed in this chapter. Any
other implemtations including direct calls to the NBI are not allowed.

The MSM API calls described in this chapter that pertain to NBI support are

listed below.

MSMGetAlignment
MSMGetBuslInfo
MSMGetBusSpecificlnfo
MSMGetBusType
MSMGetCardConfigInfo
MSMGetInstanceNumber
MSMGetInstanceNumberMapping
MSMGetUniqueldentifier
MSMGetUniqueldentifierParameters
MSMRdConfigSpace8
MSMRdConfigSpacel6
MSMRdConfigSpace32
MSMScanBusinfo
MSMSearchAdapter
MSMWrtConfigSpace8
MSMWrtConfigSpacel6
MSMWrtConfigSpace32

Since the MSMGetHardwareBusType call has been removed, old EISA and
MCA drivers that used this call must be updated and use MSMSearchAdapter
instead.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Bus Architecture

A bus architecture is one or more related address spaces and a set of
characteristics within those address spaces. For example, an IBM PC ISA
address space consists of the following:

» a 16-bit memory address space
» a 16-bit I/O address space

» adefined set of interrupts with their means of generation and means of
dismissal

a set of DMA channels with means of starting and completing their
operations

etc.

Multiple Bus Platforms
The following figure shows an example of a multiple bus platform.

Figure 7-1 Multiple Bus Platform Example

CPU

System Bus 1

Bus Adapter

System Bus 2 (EISA Bus)

ISA Bus LAN Adapter

MSM Procedures and Macros 7-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZI'IA 200 - TE'€A 2ads

Spec v3.31 - Doc v1.12

7-4

Because of the potentially differing bus architectures and the intervening bus
adapter, an MLID executing on the CPU cannot assume that it can directly
access and control the programmable interrupt controller or DMA controller
the same way it might on an IBM PC. In fact, these functions may be
implemented using hardware completely unlike that used in the IBM PC.

The MLID cannot even assume that it knows what memory addresses to read
or write in order to communicate with its adapter. In the above figure, for
example, the intervening bus adapter can have these addresses in the System
Bus 2 memory address space mapped to some other address in the System Bus
1 address space or can have them not mapped at all.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMAlertFatal

Processor States

Description

Example

Entry State

EBP pointer to Adapter Data Space

ECX possible argument #1

EDX possible argument #2

ESI pointer to null terminated error message

Interrupts can be in any state, but will be disabled during the call
Call at process or interrupt time

Return State
Interrupts are in the same state as when the routine was called

Preserved EBX and EBP

The HSM can calMSMAlertFatal during regular operation (run-time) to

notify the operating system of driver hardware or software problems. An error
severity level of “fatal” will be reported with the developer-provided error
message. This routine will not relinquish control to other procedures during
execution.

The possible arguments #1 and #2 above are used here the same way in which
they are used in the C-langugmentf routine. If there are no format
specifications in the string, ECX and EDX are ignored.

This routine also supports an additional string format. If the string is preceded
by a word size error number in the range of 100-999, the MSM will print the
driver name, the platform name (NW for NetWare), the decimal error number,
and the instance of the board, before printing the specified string. (See the
Standard MLID Message Definitiossipplement for a listing of standard
messages.)

ErrorMessage dw 105
db “Board did not respond to multicast update.”,0

lea ESI, ErrorMessage
call MSMAlertWarning

MSM Procedures and Macros 7-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

7-6

The example above would output the following message if the adapter is an
NE2000 and was the first NE200O registered:

NE2000-NW-105-Adapter 1:Board did not respond to multicast update.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMAIlertWarning

Processor States

Description

Example

Entry State

EBP pointer to Adapter Data Space

ECX possible argument #1

EDX possible argument #2

ESI pointer to null terminated error message

Interrupts can be in any state, but will be disabled during the call
Call at process or interrupt time

Return State
Interrupts are in the same state as when the routine was called

Preserved EBX and EBP

The HSM can calMSMAlertWarning during regular operation (run-time) to
notify the operating system of driver hardware or software problems. An error
severity level of “warning” will be reported with the developer-provided error
message. This routine will not relinquish control to other procedures during
execution.

The possible arguments #1 and #2 above are used here the same way in which
they are used in the C-langugmintf routine. If there are no format
specifications in the string, ECX and EDX are ignored.

This routine has added functionality which supports an additional string
format. If the string is preceded by a word size error number in the range of
100-999, the MSM will print the driver name, the platform name (NW for
NetWare), the decimal error number, and the instance of the board, before
printing the specified string. (See tBeandard MLID Message Definitions
supplement for a listing of standard messages.)

ErrorMessage dw 105
db “Board did not respond to multicast update.”,0

lea ESI, ErrorMessage
call MSMAlertWarning

MSM Procedures and Macros 7-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

7-8

The example above would output the following message if the adapter is an
NE2000 adapter and was the first NE200O registered:
NE2000-NW-105-Adapter 1: Board did not respond to multicast update.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMAIlloc

Processor States Entry State
EBP pointer to the Adapter Data Space
EAX number of bytes of memory to allocate
Interrupts can be in any state (but might be enabled during the
call)
Call at process time only
Return State
EAX pointer to the allocated buffer. (zero = failure)
Interrupts are in the same state as when the routine was called
Preserved EBX, EBP, ESI, and EDI

Description The HSM may use this call to allocate memory at process EtB#&lAlloc
returns a pointer to the allocated buffer in EAX. If the routine was
unsuccessful, EAX will be zero. It is the responsibility of the HSM to return
this buffer at shutdown usindSMFree.

If the DriverParameterBlockvariable DriverNeedsBelow16Megvas
initialized to any nonzero value (see chapter 3), the MSM will allocate memory
below the 16 megabyte boundary.

Example mov eax, UserBufferSize

call MSMAlloc
or eax,eax
jz ErrorAllocatingBuffer

MSM Procedures and Macros 7-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMAllocateMultipleRCBs

Processor

Description

States Entry State
ECX number or RCBs to allocate
EBP pointer to Adapter Data Space
ESI set to MLIDMaximumSize
Interrupts can be in any state
Call at process or interrupt time

Return State

ECX number of RCBs allocated

ESI logical ptr to first RCB

EDI physical ptr to first RCB

Flags zero flag is set according to EAX
Interrupts are disabled

Preserved EBX & EBP

Completion Code in EAX
SUCCESSFUL At least one RCB was allocated.
OUT_OF_RESOURCES No RCBs available.

This procedure is intended for high speed drivers that require a pool of free
RCBs available.

This procedure call is similar ddSMAllocateRCB except that more than one
RCB may be allocated at a time. The RCBs returned will be non-fragmented.
If no RCBs are available the MSM will increment NoOECBAvailableCount
statistics counter. Each RCB is linked to the next using the ECB fields Link for
a forward pointer to next RCB by logical address and BLink for a forward
pointer to next RCB by physical address. Link and BLink are located in
RCBDriverWS. See Chapter 4 Receive ECBs vs RCBs.

7-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

If fewer RCBs are available than were requested, all available RCBs will be
allocated. On return ECX will always match the actual number of RCBs
allocated.

Importantv Do not use if DriverNeedsBelow16Meg flag is set in the DriverParameterBlock.

Example

This procedure can not be used by RX-Net drivers.

;ebx = ptr to FrameDataSpace, ebp=ptr to AdapterDataSpace

mov esi, [ebx].MLIDMaximumSize ; Esc=MaxPacketSize

mov exc, NUMBER_TO_ALLOCATE ; ECX =Number of RCBs to
allocate

call MSMAllocateMultipleRCBs ; attempt to get RCBs

jnz Unable to allocate RCHGBS ; jump if unsuccessful

MSM Procedures and Macros 7-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMAllocPages

Processor States Entry State

EAX
Interrupts

Call

Return State
EAX
Interrupts

Preserved

number of bytes of memory to allocate
can be in any state

at process time only

pointer to the allocated buffer. (zero = failure)
are in the same state as when the routine was called

EBX, EBP, ESI, and EDI

Description The HSM may use this call to allocate a memory buffer on a 4K page boundary
at process timeMSMAllocPagesreturns a pointer to the allocated buffer in
EAX. If the routine was unsuccessful, EAX will be zero. The HSM must return
this buffer at shutdown usingSMFreePages
If the DriverParameterBlockariable DriverNeedsBelow16Megvas
initialized to any nonzero value (see chapter 3), the MSM will allocate memory
below the 16 megabyte boundary.
Example mov eax, UserPageBufferSize
call MSMAllocPages
or eax,eax
jz ErrorAllocatingBuffer

7-12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

MSMAIllocateRCB

Processor States

Description

Entry State

EBP pointer to the Adapter Data Space

ESI packet size including all the headers if known;
otherwise use the maximum packet size.

Interrupts can be in any state

Execute at process or interrupt time

Return State

ESI logical pointer to an RCB (non-fragmented)
EDI physical pointer to an RCB (non-fragmented)
Flags zero flag is set if routine is successful
Interrupts are disabled

Preserved all registers are preserved except EAX

The HSM use#MSMAllocateRCB to allocate an RCB for a packet it has
received or to preallocate an RCB for a packet it will be receiving. The RCB
returned will be non-fragmented (see Chapter 4) and will be large enough to
hold the received packet frame. The length passed in register ESI must also
include the length of all protocol and hardware headers. If an RCB is not
available, the MSM will increment tHéoECBAvailableCount statistics

counter and the packet must be discarded.

HSMs that support bus-mastering DMA adapters should use this routine or
MSMAllocateMultipleRCBs to preallocate RCBs. In this case, the HSM must
set ESI to the maximum packet size specified byMhEDMaximumSizédield

of the configuration table before usiMSMAIllocateRCB.

After the adapter has copied the packet intoRi@DataBuffefield of the

RCB, the HSM should use eithelTSM>ProcessGetRCBor
<TSM>FastProcessGetRCRo return the RCB to the MSM. If the adapter is
ECB aware and has previously filled in all the RCB fields according to the ODI
specification, the HSM should calTSM>RcvCompleteor
<TSM>FastRcvComplete

MSM Procedures and Macros 7-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Importantv

Example

If the DriverParameterBlock variable, DriverNeedsBelowl6Meg, was initialized
to any nonzero value (see chapter 3), the MSM will allocate the RCB in memory
below the 16 megabyte boundary.

Ethernet

The HSM should start copying the packet from the 6 byte destination field of
the media header into tfRCBDataBuffefield of the RCB.

Token-Ring

The HSM should start copying the packet from the Access Control byte of the
media header into tHRCBDataBuffeffield of the RCB.

FDDI

The HSM should start copying the packet from the Frame Control byte of the
media header into tHRCBDataBuffefield of the RCB.

; ebx = ptr to Frame Data Space

mov esi,[ebx].MLIDMaximumSize ; ESI = Max Packet size
call MSMAllocateRCB ; Getan RCB
jnz UnableToAllocateRCB ; Jump if unsuccessful

7-14 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

MSMCancelTimer

Processor States Entry State
EBP pointer to Adapter Data Space
ESI pointer to TIMER_STRUCTURE for timer to cancel
Interrupts can be in any state, but are disabled during the call
Call at process or interrupt time

Return State
Interrupts are unchanged

Preserved EBX & EBP

Completion Code in EAX

SUCCESSFUL Timer was successfully canceled.

BAD_PARAMETER A bad parameter was set in the
TIMER_STRUCTURE.

BAD_COMMAND Timer was not active.

Description

This procedure is called by the HSM to cancel a timer scheduled using
MSMScheduleTimer.

MSMScheduleTimerandMSMCancelTimer are useful for starting and
stopping one shot timers used for error detection such as transmit timeouts.
Under normal processing the timer would never expire and the driver’s timeout
procedure would never be called.

MSM Procedures and Macros 7-15

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

7-16

Driver Shutdown Proc

mov esi, TimerStructurePtr
call MSMCancelTimer

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMDeRegisterResource

Processor States Entry State

EBP
EDX

ESI

Interrupts

Call

Return State
Flags
Interrupts

Preserved

Completion Code in EAX

pointer to Adapter Data Space

pointer to an ExtraConfig structure that contains the
resource(s) to be deregistered. This pointer must be
the same pointer used to register the resources in
MSMRegisterResources .

pointer to an ECB whose ESR is called if
MSMDeRegisterResource returns
RESPONSE_DELAYED. If NULL,
BAD_PARAMETER will be returned.

can be in any state

at process or interrupt time

set according to EAX.
are unchanged.

all registers except EAX.

SUCCESSFUL The resources contained in the ExtraConfig parameter were
successfully deregistered.

BAD_PARAMETER An input parameter was invalid or NULL. The ExtraConfig
pointer was not found in the list of extra config pointers used
in calls to MSMRegisterResource .

FAIL The adapter was not in a shutdown state before the call was
made.

ITEM_NOT_PRESENT The resources to be deregistered have not previously been
registered.

RESPONSE_DELAYED The operation of deregistering resources could not be
completed at the present time. An asynchronous process will
be scheduled to complete the operation at a later time.

MSM Procedures and Macros 7-17

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Description

Note‘VI
\v

Allows a HSM to deregister resources registered with
MSMRegisterResource.

If MSMRegisterMLID has been called, the adapter must be shutdown using
MSMShutdownMLID before MSMDeRegisterResource is called.

MSMDeRegisterResourcewill deregister those resources found in
ExtraConfig’ssubstructure IOConfig. The resources must previously have
been registered throughSMRegisterResourceusing the samextraConfig
pointer.

If MSMDeRegisterResourcecannot complete the operation at the present
time, an asynchronous process will be scheduled to complete the operation
later. Once the asynchronous operation is complete, the asynchronous ECB’s
ESR routine will be called to report the final return value of the operation. The
return value will be stored in the asynchronous ECB’s ECB_ Status field.

Upon successful return froMSMDeRegisterResourceor from the
asynchronous process, the HSM is responsible for putting the adapter in a
functional state. If additional resources ofeattraConfignature are required,
the HSM must calMSMRegisterResourceto register the additional
resources.

7-18 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

MSMDriverRemove

Processor States Entry State
EAX DriverModuleHandle from the DriverParameterBlock
structure
Interrupts can be in any state
Call at process time only

Return State

EAX

Interrupts

is preserved

are unchanged

Description

This routine is called by the HSMXiverRemove procedure to deregister the

driver and return all driver resourc8SMDriverRemove will call the HSM's
DriverShutdown routine before returning.

Example DriverRemove

Cpush
mov

call
Cpop

DriverRemove

proc

; Macro to save “C” registers
eax, DriverModuleHandle ;Get Module Handle

;from Parameter Block
MSMDriverRemove ;Deregister the driver

;Restore “C” registers

endp

MSM Procedures and Macros 7-19

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMEnablePolling

Processor States Entry State
EBP pointer to the Adapter Data Space
Interrupts can be in any state
Call at process or interrupt time (usually called during
initialization)
Return State
EAX zero if successful; otherwise EAX points to an error

message that the driver must print using
MSMPrintString before returning to the operating
system with EAX non- zero.

Zero Flag set if successful; otherwise an error occurred.
Interrupts are unchanged
Preserved EBX and EBP

Description If the HSM's board service routine is poll-driven, this routine can be used

duringDriverlnit to enable the operating system to periodically call
DriverPoll. TheDriverPoll routine polls the adapter to determine if any send
or receive events have occurred.

This routine will not relinquish control to other procedures during execution.

Example Driverlnit proc
call MSMEnablePolling ; Enable DriverPoll
jnz EnablePollingError
Driverlnit endp

7-20 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMFree

Processor States Entry State
EBP pointer to the Adapter Data Space
EAX pointer to the buffer
Interrupts can be in any state
Call at process time

Return State
Interrupts are unchanged

Preserved EBX, EBP, ESI, and EDI

Description The HSM must use this routine to return any memory allocated using
MSMAlloc before the driver is permanently shutdown. If the driver is being
permanently shutdown, the HSNDsiverShutdown routine would have been
called with ECX equal to zero.

Example DriverShutdown proc

or ecx,ecx
jnz PartialShutdown
mov eax,UserBuffer
call MSMFree
DriverShutdown endp

MSM Procedures and Macros 7-21

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMFreePages

Processor States Entry State

EAX
Interrupts

Call

Return State
Interrupts

Preserved

pointer to the buffer
can be in any state

at process time only

are unchanged

EBX, EBP, ESI, and EDI

Description
shutdown.

Example DriverShutdown
or
jnz
mov
call

DriverShutdown

The HSM must use this routine to return any memory buffers allocated on 4K
page boundaries, usingSMAllocPagesbefore the driver is permanently

proc

ecx,ecx
PartialShutdown
eax,UserPageBuffer
MSMFreePages

endp

7-22 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMGetAlignment

Processor States Entry State

ECX - Type

Interrupts

Return State

EAX

Interrupts

Preserved

0 = alignment requirement
1 = best-case alignment

Other = undefined

in any state

power of 2-byte boundary data alignment
requirement

preserved

EBP

Description

This routine is called to obtain alignment requirements of the underlying

platform. If Typeis equal to OMSMGetAlignment returns the worse-case
alignment required for any data object that may be involved in I/O transfers.
This function allows you to write platform-independent DMA code.

If Typeis equal to IMSMGetAlignment returns the data alignment required
for the platform to function at its best. This is usually the bus width of the CPU.

The value returned for the type equal to 0 will always be less than or equal to
the value returned fdfypeequal to 1.

For most Intel platformslypeequal to 0 should return a 0 afigbeequal to 1
should return the bus width of the processor (4 for a 386 or 486).

MSM Procedures and Macros 7-23

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

7-24

Driverlnit proc

mov ecx, 1

call MSMGetAlignment
Driverlni t endp

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMGetBuslInfo

Processor States Entry State

ECX - BusTag Architecture-dependent value, returned by
MSMSearchAdapter, that identifies a specific bus.

Interrupt any state

Return State

EBX - the size in bits of a memory address on the bus
MemAddrSize specified by BusTag.
EDX - the size in bits of an 1/0 address on the bus specified
I0AddrSize by BusTag
Flags set according to EAX
Interrupts preserved
Preserved EBP
Completion Codes in EAX gge Description
SUCCESSFUL the operation was completed successfully

ITEM_NOT_PRESENT the specified bus does not exist or function
is not available

Description MSMGetBuslnfo returns the size of the bus addresses associateBugitag

MSM Procedures and Macros 7-25

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

7-26

Driverlnit proc
mov ecx, BusTag; tag for bus queried
call MSMGetBusinfo
jnz ErrorGettingBusinfo

Driverlnit endp

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMGetBusSpecificlnfo

Processor States Entry State

ECX - BusTag Architecture-dependent value, returned by
MSMSearchAdapter or MSMScanBusinfo , that
identifies a specific bus.

EDX - Size size of buffer pointed to in EDI, in bytes

EDI - pointer to buffer to return bus specific information
BusSpecificinfo

Interrupts can be in any state

Return State

Flags set according to EAX
Interrupts are preserved
Preserved EBX, ECX, EDX, ESI, EDI and EBP

Completion Codes in EAX ggde

SUCCESSFUL

BAD_PARAMETER

ITEM_NOT_PRESENT

Description

bus specific information returned in buffer
pointed to in EDI

Note, if the specified bus does not provide
specific information, e.g. legacy ISA, no
information will be placed in the provided
buffer and SUCCESSFUL is returned

an invalid BusTag was passed into the
routine

the bus is not present or function is not
available

MSM Procedures and Macros 7-27

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Description

MSMGetBusSpecificinfo returns bus specific information in the buffer
provided that may be of use to drivers or to installation and configuration
utilities. If the buffer provided is insufficient for the information to be provided,
the buffer is filled to its capacity and SUCCESSFUL is returned. Therefore a
buffer sufficient in size should be provided for a specific bus’s information to
be returned; 64 bytes should handle the worst case bus specific information
structure size.

The following information structure is returned for the specified bus type in the provided buffer:

PnP ISA Bus
ISAlInfoStructure struc

PnPISABIOSPresentFlag
PnPISABIOSMajorVer
PnPISABIOSMinorVer
PnPISABIOSRevision
PnPISACMPresentFlag
PnPISACMType

PnPISACMMajorVer
PnPISACMMinorVer
PnPISACMRevision
NetFRAMEFlag
NonATCompatibleFlag

HardwareLoaderID
ISAInfoReservedl
ISAInfoReserved?2
ISAInfoReserved3

ISAInfoStructure ends

7-28

dd
dw
dw

dd
dd

o
=
INIENIENIEN IENIEN

dw
dw
dd
dd

RS RS EENS B N

dd
dd
dd
dd

NN) N

;PnP ISA BIOS Info

;PnP ISA Configuration Manager Info
;0=DOS Device Driver (Intel),
;1=Win 95, 2=Win NT, 3=NLM

;1 = NetFRAME system, 0 = not
;1 = Non AT comp BIOS, 0 =

compatible

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

CardBus and PC Card (PCMCIA) Buses

PCCardInfoStructure struc
CSPresentFlag dd ? ;Card Services Info
CSType dd ? ;0=DOS Device Driver,

;1=Win 95, 2=Win NT, 3=NLM

CSVendorMajorVer dw ?
CSVendorMinorVer dw ?
CSVendorNamePtr dd ?
CSinterfaceLevelMajorVer dw ?
CSinterfacelLevelMinorVer dw ?
CSNumberOfSockets dd ?
PCCardinfoReserved0 dd ?
PCCardinfoReservedl dd ?
PCCardinfoReserved2 dd ?
PCCardinfoReserved3 dd ?

PCCardInfoStructure ends

PCI Bus

PClInfoStructure struc
PCIBIOSPresentFlag dd ? ;PCI BIOS Info
PClinterfaceLevelMajorVer dw ?
PClinterfaceLevelMinorVer dw ?
PCIHardwareMechanism dd ?
LastPCIBusInSystem dd ?
PClIinfoReserved0 dd ?
PClinfoReservedl dd ?
PClinfoReserved2 dd ?
PClIinfoReserved3 dd ?

PClInfoStructure ends

MSM Procedures and Macros 7-29

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example BusSpecBuf db 64 dup(?)

Driverlnit proc
mov ecx, BusTag
lea edi, BusSpecBuf
mov edx,64
call MSMGetBusSpecificlnfo
jnz ErrorGettingBusinfo
Driverlnit endp

See Also

MSMScanBuslinfo

7-30 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMGetBusType

Processor States Entry State

ECX - BusTag
Interrupt

Return State

EBX - BusType

Flags
Interrupts

Preserved

Completion Codes in EAX gde

SUCCESSFUL
BAD_PARAMETER

an architecture-dependent value which specifies the
bus on which the operation is to be performed

any state

A value that indicates the bus type as defined in
ODI_NBL.INC. The currently defined values are:

0 = ODI_BUSTYPE_ISA

1 = ODI_BUSTYPE_MCA

2 = ODI_BUSTYPE_EISA

3 = ODI_BUSTYPE_PCMCIA

4 = ODI_BUSTYPE_PCI

8 = ODI_BUSTYPE_CARDBUS

set according to EAX
preserved

EBP

Description
the operation was completed successfully

an invalid BusTag was passed into this
routine

ITEM_NOT_PRESENT the function is not available

Description

MSMGetBusType returns a value indicating the bus type of the specified bus.

All instances of a particular bus type return the same value. For example, all

EISA buses return a 2.

MSM Procedures and Macros 7-31

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

7-32

Driverlnit proc

mov ecx, BusTag; bus tag

call MSMGetBusType; convert to type

jnz ErrorGettingBusType

cmp ebx, ODI_BUSTYPE_PCI; is type PCI?
Driverlni t endp

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMGetCardConfigInfo

Processor States Entry State

EAX - Parml

EBX - Unique-
Identifier

ECX - BusTag

EDX - Parm2

ESI - Size

EDI - ConfigBuf

Interrupts

Return State
Flags
Interrupts

Preserved

Completion Codes in EAX cgge

SUCCESSFUL

BAD_PARAMETER

contains an architecture dependent value that further
specifies what information is to be returned,
independent of this particular platform and
independent of what adapter is described by this
information

contains an architecture-dependent value returned
by MSMGetUniqueldentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

contains an architecture dependent value that further
specifies what information is to be returned,
independent of this particular platform and
independent of what adapter is described by this
information.

This parameter specifies the number of bytes to
retrieve into the configuration buffer.

is a pointer to configuration buffer in which to retrieve
the configuration information. The caller needs to be
sure that the buffer is at least Size bytes long.

can be in any state

are set according to EAX
are preserved

EBX, ECX, EDX, ESI, EDI, EBP

Description
configuration information was received

invalid parameter was passed into the call

MSM Procedures and Macros 7-33

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

BAD_COMMAND called with BusTag for a bus type which has
no configuration information to return.

ITEM_NOT_PRESENT a unique identifier was passed in that has
no card present

BUS_SPECIFIC_ERROR a bus specific error occurred

FAIL all of the input parameters appear to be
valid, but the operation could not be
completed

Description Call MSMGetCardConfiginfo only if the bus identified bBusTaghas

configuration information for the bus on a per hardware instance basis. Itis the
caller's responsibility to know how much and what sort of information is
returned, so thafonfiginfois set to point to a sufficiently large space and the
resulting information can be interpret®&rmlandParm?2are defined on a per

bus architecture basis. In other words, their meanings must be the same on all
implementations on a particular bus, but will vary from one bus to another. One
or both of these parameters may be unused, and if unused, must be set to 0.

The parameter values for the specified bus types are as follows:

EISA Bus
Size 320
Parml EISA configuration block number.
Parm2 n/a

Configinfo Filled in with the EISA configuration information for the
unigue identifier specified.

For a definition of the information returned, refer to the EISA
Specification.

7-34 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Micro Channel Bus

Size 8
Parml n/a
Parm2 n/a

Configinfo Filled in with I/O port values from POSO - POS7 (100h -
107h) for the unique identifier specified.

For a definition of the information returned, see the Personal System/
2 Hardware Interface Technical Reference.

PCI Bus
Size 256
Parmil Function Number
Parm2 n/a

Configinfo Filled in with PCI configuration information for the
unigue identifier specified.

For a definition of the information returned, see the PCI Local Bus

Specification.
Plug and Play

Size 512

Parml n/a

Parm2 n/a

Configinfo Filled in with Plug and Play configuration information for
the unique identifier specified.

For a definition of the information returned, see the
PNPConfigStructure in ODI.INC.

MSM Procedures and Macros 7-35

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

7-36

PC Card (PCMCIA)

size The size of the buffer needed to contain the information
defined by parm2.

parml The size of the information requested from the Card
Services API, GetConfigurationinfo . The valid values
are 37 or 42.

Note: If this call returns BAD_PARAMETER, it may be
because 42 bytes were requested, but the version of
Card Services only supports 37 bytes.

parm2 The order and type of information to be returned in the
configinfo buffer. The following values are valid for
parm?2:

ODI_DEFAULT_INFO

The configinfo buffer will contain the following default
information:

» 37 or 42 bytes of information returned by the
Card Services API, GetConfigurationinfo

 Attribute memory space equal to the amount of
space remaining in the configinfo buffer

ODI_I0O_MEMORY_WINDOWS

If the size of the information returned by the Card
Services API, GetConfigurationinfo, is 42 bytes,
the configinfo buffer will contain:

» The 42 bytes of information returned by the
Card Services API, GetConfigurationinfo

If there are I/O windows or memory
windows, the window information is placed
in the configinfo buffer as 18 byte blocks
(one 18 byte block for each window). The
first thirteen bytes of information is returned
by the Card Services API, GetFirstWindow
or GetNextWindow .

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

CardBus Bus

configinfo

size

parml

parm2

For memory windows, the remaining five
bytes of information is returned by the Card
Services API, GetMemPage .

For I/O windows, the remaining five bytes are
zero.

 Attribute memory space equal to the amount of
space remaining in the configinfo buffer.

If the size of the information returned the Card
Services API, GetConfigurationinfo , is 37 bytes,
the configinfo buffer will contain:

* The 37 bytes of information returned by the
Card Services API, GetConfigurationinfo

 Attribute memory space equal to the amount of
space remaining in the configinfo buffer.

The information returned is determined by the parm2
input parameter.

The size of the buffer needed to contain the information
defined by parm1, parm2, and the desired amount of
CIS memory.

The size of the information requested from the Card
Services API, GetConfigurationinfo . The valid values
are 37 or 42.

Note: If this call returns BAD_PARAMETER, it may be
because 42 bytes were requested, but the version of
Card Services only supports 37 bytes.

The size of the PCI configuration space requested. The
maximum size available is 256 bytes.

MSM Procedures and Macros 7-37

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

configinfo The configinfo buffer will contain:

* The number of bytes specified by parm1 of
information returned by the Card Services API
GetConfigurationinfo

* The number of bytes specified by parm2 of PCI
configuration space.

* CIS memory space equal to the amount of
space remaining in the configinfo buffer.

Example
ConfigBuff db 256 dup(?)
DriverInit proc
xor eax, eax ; function # 0
mov edx,eax ;parm2=0
mov ebx, Uniqueldentifier; from
MSMSearchAdapter
mov ecx, BusTag; tag for PCI bus
mov esi, 256 ; size of config table
lea edi, ConfigBuff; ptr to buffer
call MSMGetCardConfigInfo
jnz ErrorGettingCardConfig
Driverlnit endp
See Also
MSMSearchAdapter
MSMGetUniqueldentifier
MSMRdConfigSpace8
MSMRdConfigSpacel6
MSMRdConfigSpace32
MSMWrtConfigSpace8
MSMWrtConfigSpacel6
MSMWrtConfigSpace32

7-38 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMGetConfiglnfo

Processor States Entry State

EDI

ECX

Interrupts

Call

Return State

ECX

Flags
Interrupts

Preserved

Completion Code in EAX
SUCCESSFUL

BAD_PARAMETER

pointer to buffer used to receive the returned
configuration information. The caller must ensure
that the buffer is at least as long as the number of
bytes requested in ECX.

the requested number of bytes to be returned into the
buffer.

can be in any state

at process time

the actual number of bytes returned in the
configuration buffer.

set according to EAX
are disabled

EDI, EBX & EBP

The configuration information was successfully
returned in the buffer

The size requested in ECX was larger than the actual
configuration information available. The number of
bytes actually returned is indicated in ECX.

MSM Procedures and Macros 7-39

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Description

The configuration information is returned in the format defined by the
MSMConfigTable structure.

* MSMConfigTable struc
» MSMCFG_TableSize dd?
* MSMCFG_TableMajorVersion db?
« MSMCFG_TableMinorVersion db?
* MSMCFG_ModuleMajorVersion db?
« MSMCFG_ModuleMinorVersion db?
* MSMCFG_ODISpecMajorVersion db?
* MSMCFG_ODISpecMinorVersion db?
e MSMCFG_Reserved dw

* MSMCFG_MaxNumberOfBoards dd?
* MSMCFG_SystemFlags dd?
* MSMConfigTable ends

MSMCFG_TableSize
This field contains the actual size of the MSM'’s configuration table. The value

of this field should not be confused with the number of bytes requested or
copied (i.e., value in ECX).

MSMCFG_TableMajorVersion

This field contains the major version of the configuration table. The current
major version is 1.

MSMCFG_TableMinorVersion

This field contains the minor version of the configuration table. The current
minor version is O.

MSMCFG_ModuleMa jorVersion

This field contains the major version of the MSM binary (i.e., MSM.NLM).

7-40 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMCFG_ModuleMinorVersion

This field contains the minor version of the MSM binary (i.e., MSM.NLM).

MSMCFG_ODISpecMajorVersion
This field contains the major version of the ODI Specification that this version

of the MSM is written too. For example, if the version of the ODI specification
is 3.31, the value of this field is 3.

MSMCFG_ODISpecMinorVersion

This field contains the minor version of the ODI Specification that this version
of the MSM is written too. For example, if the version of the ODI specification
is 3.31, the value of this field is 31.

MSMCFG_Reserved

This field is reserved.

MSMCFG_MaxNumberOfBoards

The value of this field represents the maximum number of logical boards the
MSM supports.

MSMCFG_SystemFlags

The bits in this field are defined below.

Bits

Bit 31

Bit 30

Bit 0-29

Name Description

MSM_CFG_CLIENT_BIT When set to 1 this bit indicates the MSM is running in a
client environment. Either this bit or bit 30 will be set, but
never both.

MSM_CFG_SERVER_BIT When set to 1 this bit indicates the MSM is running in a
server environment. Either this bit or bit 31 will be set,
but never both.

Reserved These bits are reserved.

MSM Procedures and Macros 7-41

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMGetCurrentTime (macro)

Processor States Entry State
Interrupts can be in any state
Execute at process or interrupt time

Return State

EAX current tick count
Interrupts are unchanged
Preserved all other registers are preserved

Description MSMGetCurrentTime determines the elapsed time (using the current relative

time) for some of the HSM-related activities (for exampieyeOutCheck

The value returned at the start of an operation subtracted from the current time
is the elapsed time in 1/18th second clock ticks. This timer requires more than
7 years to roll over, allowing it to be used for elapsed time comparisons.

Note V! Consecutive calls to MSMGetCurrentTime must have interrupts enabled
between. This allows the OS to update this value.

Example
mov edx, [ebp].Command ; Let board attempt to
mov al, Board_Transmit ; transmit packet again
out dx, al
MSMGetCurrentTime ; EAX = current time.
mov [ebp]. TxStartTime, eax ; Store new timeout

7-42 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMGetHINFromHINName

Processor States Entry State
ESI pointer to the NULL-terminated HIN name string,
not to exceed 128 bytes (including terminator).
Interrupts can be in any state
Call at process time or interrupt time

Return State

EBX the HIN associated with the HIN name.

Completion Code in EAX

ODI_NBI_SUCCESSFUL The HIN was successfully returned in the
HINNameMappinglInfo structure in ESI.

ODI_NBI_PARAMETER_ERROR The specified HIN name is invalid.

ODI_NBI_UNSUPPORTED _OPERATION This function is not available.

Description

The inputhinNameis compared (case insensitively) with HIN names in the

system. The corresponding Hardware Instance Number (HIN) is returned.

MSM Procedures and Macros 7-43

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMGetHINNameFromHIN

Processor States Entry State
EBX HIN to get the HIN name for.
EDI pointer to a 128 byte buffer where the HIN name
will be stored
Interrupts can be in any state
Call at process time or interrupt time

Return State

EDI pointer to the NULL-terminated HIN name string.

Completion Code in EAX

ODI_NBI_SUCCESSFUL The HIN name was successfully returned in
the HINNameMappingInfo structure in ESI.

ODI_NBI_INSTANCE_NONEXIST The specified HIN is invalid.
ODI_NBI_INSTANCENAME_AVAIL A HIN name does not exist for the given HIN.

ODI_NBI_UNSUPPORTED _OPERATION This function is not available.

Description

The inputhinis translated into its corresponding HIN name and returned to the
buffer pointed to by EDI.

7-44 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMGetinstanceNumber

Processor States Entry State

ECX - BusTag Architecture-dependent value, returned by
MSMSearchAdapter, that identifies a specific bus.

EBX - an architecture-dependent value returned by
Uniqueldentifier MSMGetUniqueldentifier or MSMSearchAdapter .
It specifies the location on the bus where the device

is located
Interrupts can be in any state
Return State
EDX - HIN Hardware Instance Number (HIN) of the device or

function. Hardware instance numbers are unique
across all buses on the system.

Flags set according to EAX
Interrupts are preserved
Preserved EBX, ECX, ESI, EDI and EBP
Completion Code in EAX Code Description
SUCCESSFUL EDX contains the hardware instance
number
BAD_PARAMETER an invalid busTag or Uniqueldentifier was

passed into the routine

Description This call retrieves the hardware instance number of the specified device or

function on the specified bus. There is a one to one correspondence between
BusTagandUniqueldentifierpairs and hardware instance number. You can

think of a hardware instance number as a logical slot number. If an adapter
contains just one function, the hardware instance number is usually equivalent
to the adapter’s physical slot number. Hardware instance numbers are unique
across all buses and devices on the system. They are generated or determined
by the NBI and are consistent across system boots.

MSM Procedures and Macros 7-45

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

Driverlnit proc
mov ebx, Uniqueldentifier
mov ecx, BusTag
call MSMGetinstanceNumber
jnz ErrorGettinglnstanceNum
mov InstanceNumber, edx
Driverlnit endp

See Also

MSMGetUniqueldentifier
MSMGetlInstanceNumberMapping
MSMSearchAdapter

7-46 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMGetinstanceNumberMapping

Processor States Entry State

EDX - HIN
Interrupts

Return State

EBX - Unique-
Identifier

ECX - BusTag

Flags
Interrupts

Preserved

Completion Codes in EAX cgge

SUCCESSFUL

BAD_PARAMETER

theHardware Instance Number (HIN) of the device or
function

can be in any state

an architecture-dependent value returned by
MSMGetUniqueldentifier or MSMSearchAdapter .
It specifies the location on the bus where the device
is located.

the architecture-dependent value used to identify the
specific bus

set according to EAX
are preserved

EDX, ESI, EDI and EBP

Description

bus specific information returned in buffer
pointed to in EDI

Note: If the specified bus does not provide
specific information, such as legacy ISA, no
information will be placed in the provided
buffer and SUCCESSFUL is returned

an invalid BusTag was passed into the
routine

MSM Procedures and Macros 7-47

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Description

See Also

Example

Retrieves th&usTagandUniqueldentifierassociated with the specified

hardware instance numb®tSMGetinstanceNumberMapping is the inverse

of MSMGetinstanceNumber. It retrieves thaBusTagandUniqueldentifier
associated with the specified hardware instance number. There is a one to one
correspondence betweBrusTagandUniqueldentifierpairs and the hardware
instance number. You can think of a hardware instance number as a logical slot
number. If an adapter contains just one function, the hardware instance number
is usually equivalent to the adapter’s physical slot number. Hardware instance
numbers are unique across all buses and devices on the system. They are
generated or determined by the NBI and are consistent across system boots.

MSMGetUniqueldentifier
MSMGetinstanceNumber

MSMSearchAdapter

Driverlnit proc
mov edx, InstanceNumber
call MSMGetInstanceNumberMapping
jnz ErrorGettingMapping
mov Uniqueldentifier, ebx
mov BusTag, ecx

Driverlnit endp

7-48 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

MSMGetMicroTimer

Note‘vvl This routine is supported in MSM v2.20 dated 9-9-93 or later.

Processor States Entry State
Interrupts can be in any state
Call at process or interrupt time

Return State

EAX contains time in microseconds
Interrupts are preserved
Preserved all other registers are preserved

Description MSMGetMicroTimer determines the elapsed time for some of the HSM

related activities. It can be used instea&M GetCurrentTime when finer
granularity (1 microsecond) is needed or for very short delays while keeping
interrupts disabled. This is the preferred this method, rather than using a loop
counter based on the value returnedMMGetProcessorSpeedRating

MSM Procedures and Macros 7-49

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

7-50

. (reset adapter)

call MSMGetMicroTimer

neg eax
mov edi, eax
DriverShutdownWait:
call MSMYieldWithDelay
call MSMGetMicroTimer
add eax, edi
cmp eax, 50
jb DriverShutdownWait

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

; get current count

; EDI = EAX negated

; let other processes run

; get current count

; EAX = microseconds expired
; 50us passed?

; jump if not

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

MSMGetPhysical

Processor States Entry State
Interrupts can be in any state
EAX Logical Memory Address

Description

Example:

Return State

EAX Physical Memory Address
Interrupts are unchanged
Preserved all other registers are preserved

HSM'’s must call this routine to convert a logical address to a physical address
instead of adding an offset to it as previously done. Since ECB fragment
pointers are set to physical addresses ifthieerSupportsPhysFragsbit is

set, this call should only have to be useBaterinit to pass control

information in memory up to the adapter.

In future versions of NetWare the driver will not be able to assume the buffer
length associated with an address is contiguous. Therefore it is recommended
the DriverSupportsPhysFrags bit be set (refer to the MLIDModeFlags in
Chapter 3).

lea eax, [ebx].MLIDNodeAddress ; Store node address
call MSMGetPhysical ; convert to physical address
out dx, eax ; send physical add. to adapter

MSM Procedures and Macros 7-51

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMGetPhysList

Processor States Entry State
ECX input fragment count
ESI pointer to the input fragment list that contains the
logical addresses of the fragments
EDI pointer to the output fragment list
EBP pointer to the adapter data space
Interrupts can be in any state
Call at process time or interrupt time

Return State

Completion Codes

EAX completion code
EDX output fragment count
EDI pointer to the output fragment list that contains the
sizes and the physical addresses of the fragments
Preserved EBX, ECX, EBP, ESI, EDI
SUCCESSFUL The operation was completed successfully.
FAIL The maximum number of output fragments

was exceeded.

Description This function generates a physical address fragment list equivalent to the

7-52

logical address fragment list passed on input.

and the output fragments due to potentially noncontiguous logical memory.
Consequently, the number of fragments and the size of the fragments in the
output list may be different from the those in the input list.

Note‘VvI There may not be a one-to-one correspondence between the input fragments

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Do not call this function with a value greater than 16 in ECX. Also, make sure
that the output fragment list buffer is large enough to accommodate 16
fragments.

MSM Procedures and Macros 7-53

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMGetPollSupportLevel

Processor States Entry State
Interrupts can be in any state
Call at initialization time only

Return State

EAX =0 Environment does NOT support polling. Polling
procedure will never be called. Adapter must use
interrupts only

EAX =1 Limited support for polling; polling procedure will be
called infrequently. Adapter must use interrupts.

EAX =2 Polling is fully supported, however interrupt backup is
still recommended due to periods where polling can
be infrequent.

EAX =3 Polling is fully supported, no interrupt backup is
required.
Interrupts are preserved
Preserved EBX, EBP, ESI and EDI
Description The HSM use#SMGetPollSupportLevel to ascertain the level of support

for adapters which favor polling mechanisms, and to determine whether the
adapter/driver should be purely interrupt driven, purely polled driven, or a
combination of the two with preference given to polling.

Example call MSMGetPollSupportLevel ; determine poll level support
cmp EAX,2
jb InterruptDriveAdapter
jz MixIntPollDriveAdapter
jmp PurePollDriveAdapter

7-54 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMGetProcessorSpeedRating (macro)

Processor States Entry State
Interrupts can be in any state
Execute at process or interrupt time

Return State

EAX contains a value representing the relative processor
speed of the machine

Interrupts are unchanged

Preserved all other registers are preserved

Description MSMGetProcessorSpeedRatingletermines the relative processor speed; the

larger the value returned, the faster the processor is operating.

Note\gAYA Although this procedure provides a means for calculating timing loop delays,
this routine should never be used unlessitis impossible to enable interrupts and
use MSMGetCurrentTime , or if it is impossible to use MSMGetMicroTimer .
Novell recommends that timing loops be avoided whenever possible.

Example MSMGetProcessorSpeedRating ; EAX = Processor Speed
xor edx, edx ; Clear high dword of dividend
mov ecx, 100 ; Divisor = 100
idiv ecx ; EAX = Speed / 100
mov ecx, 30000h ; EAX = (Speed/100) * 30000h
imul eax, ecx
mov LoopCounter, eax ; Save it

MSM Procedures and Macros 7-55

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMGetUniqueldentifier

Processor States

Completion Codes in EAX

Entry State
EBX - Slot

ECX - BusTag

EDX - Channel

ESI - Function-
Number

Interrupts

Call

Return State

EDI - Unique-
Identifier

Flags
Interrupts

Preserved

Code
SUCCESSFUL

BAD_PARAMETER

ITEM_NOT_PRESENT

specifies the physical slot to search for the presence
of the adapter

Architecture-dependent value, returned by
MSMSearchAdapter, that identifies a specific bus.

contains an adapter specific value identifying the port
of a multiport adapter; equal to zero if unused or first
port, one if second port, etc.

contains an architecture-dependent value that
specifies a function of a multifunction adapter; equal
to zero if unused or first function, one if second
function, etc. This value may be used with a multiport
multifunction adapter.

can be in any state

at process time ONLY

contains an architecture-dependent value returned
by MSMGetUniqueldentifier or
MSMSearchAdapter that specifies the location on
the bus where the device is located.

are set according to EAX
are preserved

EBX, ECX, EDX, ESI

Description

The device was found and Uniqueldentifier
was returned

The function number or the bus tag was
invalid

The bus or the adapter was not found for the
specified inputs

7-56 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Description This routine returns a value which uniquely identifies an adapter for the
specified input parameters. It will scan the specified bus and try to match the
slot, channel, and function number to an adapter (device).

All product ID's appear in memory as defined in their respective specifications.

Example Driverlnit proc
mov ebx, Slot ; EISA device slot #
mov ecx, BusTag; bus tag for EISA bus
mov edx, 0 ; no channel #
mov esi, 0 ; no function #
call MSMGetUniqueldentifier
jnz ErrorGettingID
mov Uniqueldentifier, edi; save unique ID
Driverlnit endp

MSM Procedures and Macros 7-57

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMGetUniqueldentifierParameters

Processor States

Entry State

EAX -
Parameter-
Count

EBX - Unique-
Identifier

ECX - BusTag

EDI -
Parameters

Interrupts

Return State
Flags
Interrupts

Preserved

Completion Codes in EAX cgge

7-58

The number of elements in the parameter array to be
filled in.

contains an architecture-dependent value returned
by MSMGetUniqueldentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

Architecture-dependent value, returned by
MSMSearchAdapter, that identifies a specific bus.

pointer to the parameter buffer

can be in any state

set according to EAX
are preserved

EBX, ECX, EDX, ESI, EDI and EBP

Description

SUCCESSFUL parameters returned in buffer pointed to in
EDI

BAD_PARAMETER an invalid busTag was passed into the
routine

ITEM_NOT_PRESENT the bus is not present or function is not
available

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Description

This call returns the bus-specific information about the device or the function
represented by the givémiqueldentifier This call is the inverse of
MSMGetUniqueldentifier.

The following are the returned parameter values for each bus type.

ISA Bus N/A

Micro Channel Bus

parameterCount 1

parameters [0] physical slot number
EISA Bus

parameterCount 1

parameters [0] physical slot number

PC Card (PCMCIA) Bus
parameterCount 1
parameters[0] For single function cards, the physical socket number
(1-based). For multiple function cards, the function
number (1-based) is in the least significant byte, and
the physical socket number is in the next byte.

PCI Bus
parameterCount 2
parameters [0] zero (PCl version 2.0)
physical slot number (PCI version 2.1)
parameters [1] bus/device/function number combination, equivalent
to the value returned from the PCI BIOS Find Device
function call
PnP ISA Bus
parameterCount 2
parameters [0] CSN (Card Select Number) is in least significant byte
with the Logical Device Number in the next.
parameters [1] Read Data Port
CardBus Bus
parameterCount 2
parameters[0] For single function cards, the physical socket number

(1-based). For multiple function cards, the function
number (1-based) is in the least significant byte, and
the physical socket number is in the next byte.

parameter[1] Bus/device/function number combination equivalent
to the value returned from the PCI BIOS FindDevice
function.

MSM Procedures and Macros 7-59

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Figure 7-2 PnP ISA Bus Parameters

31 16 15 8 7 0
Logical Device
0 Number CSN
31 16 15 0
0 Read Data Port
Example UniquelDBuf dd 2 dup(?)
Driverlnit proc
mov eax, 2 ; humber of parameters
mov ebx, Uniqueldentifier
mov ecx, BusTag
lea edi, UniquelDBuf
call MSMGetUniqueldentifierParameters
jnz ErrorGettingUIDParams
Driverlnit endp

7-60 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMHardwareFailure

Processor States Entry State

EBP
EAX

ESI

Interrupts

Call

Return State
EAX
Interrupts

Preserved

Description

pointer to the Adapter Data Space.

one of the following failure type values:
NOTIFY_CRITICAL
NOTIFY_FATAL
NOTIFY_DEGRADED

pointer to a NULL-terminated string describing the
failure.

can be in any state

at process time or interrupt time

setto O
are unchanged

EBX & EBP

The HSM calls this routine to report a hardware error.

NOTIFY_FATAL should be reported if the HSM was able to detect a hardware
failure from which there is no possibility of recovery.

NOTIFY_CRITICAL should be reported if the HSM has encountered an
adapter hardware problem and failed to recover using the available hardware
reset capabilities, but the system may be able to restore the hardware to a
functional state, using platform or media specific recovery procedures. For
example, on some platforms it may be possible to power cycle the adapter.

NOTIFY_DEGRADED should be reported if the hardware has experienced a
failure, but is still functional.

MSM Procedures and Macros 7-61

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMinitAlloc

Processor States Entry State

EAX number of bytes of memory to allocate
Interrupts can be in any state
Call at process time only

Return State
EAX pointer to the allocated buffer. (zero = failure)

Interrupts are in the same state as when the routine was called (but
might have been enabled during the call if
DriverNeedsBelow16Meg is nonzero)

Preserved EBX, EBP, ESI, and EDI

Description HSMs must use th@SMinitAlloc routine if they must allocate memory prior

to callingMSMRegisterHardwareOptions. If successfulMSMInitAlloc
returns a pointer to the allocated buffer in EAX. If the routine was
unsuccessful, EAX will be zero.

When the driver frees any buffer allocatedw$MinitAlloc , it must use the
MSMiInitFree routine.

MSMiInitAlloc and MSMInitFree MUST be used as a pair. Do not use
MSMFree to release resources obtained by a call to MSMInitAlloc .

If the DriverParameterBlock variable DriverNeedsBelowl6Megwas
initialized to any nonzero value (see chapter 3), the MSM will attempt to
allocate memory below the 16 megabyte boundary.

7-62 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example

Driverlnit proc

mov eax, UserBufferSize

call MSMinitAlloc
or eax, eax
jz ErrorAllocatingBuffer

mov UserBuffer, eax

ﬁlov eax, UserBuffer
call MSMiInitFree

E:all MSMRegisterHardwareOptions

MSM Procedures and Macros 7-63

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMinitFree

Processor States Entry State

EAX pointer to the buffer to free
(must have been previously allocated using
MSMinitAlloc)

Interrupts can be in any state

Call at process time only

Return State

Interrupts are preserved

Preserved EBX, EBP, ESI, and EDI

Description HSMs must use thISMInitAlloc routine during initialization, if they

allocate memory prior to callinglSMRegisterHardwareOptions. When the
driver frees any buffer allocated by MSMiInitAlloc, it must use the
MSMiInitFree routine.

Note V! MSMiInitAlloc and MSMinitFree must be used as a pair. Do not use MSMFree
to release resources obtained by a call to MSMinitAlloc .

Example DriverInit proc

mov eax, UserBufferSize

call MSMinitAlloc
or eax, eax
jz ErrorAllocatingBuffer

mov UserBuffer, eax

mov eax, UserBuffer
call MSMiInitFree

call MSMRegisterHardwareOptions

7-64 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMNESLDeRegisterConsumer

Processor States Entry State

ESI

Interrupts

Call

Return State
Flags
Interrupts

Preserved

Completion Code in EAX

NESL_OK
NESL_EVENT_NOT_REGISTERED
NESL_CONSUMER_NOT_FOUND

Description

pointer to the NESL_ECB passed to
MSMNESLRegisterConsumer

are enabled

at process time only

set according to EAX
are unchanged

ESI

De-registry succeeded.

The specified NESL_ECB is not registered.

The consumer is NULL or cannot be located.

This function de-registers a consumer of a specific event.

See Also

MSMNESLRegisterConsumer

Appendix C, "NESL Support"

MSM Procedures and Macros 7-65

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMNESLDeRegisterProducer

Processor States Entry State
ESI pointer to the NESL_ECB passed to
MSMNESLRegisterProducer
Interrupts can be in any state
Call at process time only

Return State

Flags set according to EAX
Interrupts are unchanged
Preserved ESI
Completion Code in EAX
NESL_OK De-registry succeeded.
NESL_EVENT_NOT_REGISTERED The specified NESL_ECB is not registered.
NESL_PRODUCER_NOT_FOUND The producer is NULL or cannot be located.
Description
This function de-registers a producer of a specific event. If the producer is the
last producer for that event, any remaining consumers of the event are placed
onto an orphaned consumer’s list.
See Also

MSMNESLRegisterConsumer

Appendix C, "NESL Support"

7-66 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMNESLProduceEvent

Processor States Entry State

ESI pointer to the NESL_ECB passedMiSM-
NESLRegisterProducer

EDX pointer to the Event Parameter Block

EDI points to a location to place a pointer to the consumer

NESL_ECB that consumed the event.
Interrupts are in any state
Call at process or interrupt time

Return State

EDI set according to EAX
Flags set according to EAX
Interrupts are unchanged
Preserved ESI, EDX and EDI

Completion Code in EAX
NESL_PRODUCER_NOT_FOUND
NESL_EVENT_CONSUMED

NESL_EVENT_NOT_CONSUMED

NESL_EVENT_BROADCAST

The producer is NULL.

The event is consumable and is consumed. EDI is set to the
consumer’'s NESL_ECB.

The event is consumable and is not consumed. EDI is set to
NULL.

Event has been broadcast to all consumers. EDI is not
changed.

MSM Procedures and Macros 7-67

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Description

An event producer calls this to notify registered consumers that the event has
occurred. If the event is consumable, then one of the consumers may consume
the event and the event notification will stop.

Producer routines and consumer routines running on asynchronous events
(e.g., IPX packets, interrupts), must be re-entMSMNESLProduceEvent

will not protect the consumer routine from being re-entered. For example, if the
consumer routine re-enables interrupts, another asynchronous event can be
issued from a producer and thus re-enter the consumer.

It is up to either the producer and the consumer routine to protect themselves
from re-entrancy issues. Further, they must take steps to ensure that there is on
stack overflow because of their activities.

The Event Parameter Block fields are defined as follows:

Field

Description

EPBMajorVersion

EPBMinorVersion

EPBEventName

EPBEventType

EPBmoduleName

EPBDataPtrO

EPBDataPtrl

EPBEventScope

Major version of the Event Parameter Block. The current version is 1 (for
1.00).

Minor version of the Event Parameter Block. The current version is 00 (for
1.00).

Event name or class name for the event as register with NESL (e.g., “Service
Suspend” or “Service Resume”). All valid event names must be registered
with Novell Labs.

Event subclass name for the event. An example of a subclass for “Service
Suspend” would be “APM Suspend”. All valid event subclass names must be
registered with Novell Labs.

Pointer to module name that generated the event (e.g., NE2000).

The MSM uses this field to pass a pointer to the MLID’s configuration table.

Event dependent information.

The HSM must set this field to EPB_SPECIFIC_EVENT.

7-68 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Field Description

EPBReserved Reserved by Novell.

See Also

Appendix C, “NESL Support”

MSM Procedures and Macros 7-69

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZI'IA 200 - TE'€A 2ads

Spec v3.31 - Doc v1.12

MSMNESLProduceMLIDEvent

Processor States

Completion Code in EAX

NESL_PRODUCER_NOT_FOUND
NESL_EVENT_CONSUMED

NESL_EVENT_NOT_CONSUMED

NESL_EVENT_BROADCAST

NESL_INVALID_CONTEXT_HANDLE

Entry State
ESI

EDX
EDI

EBP
Interrupts

Call

Return State
EDI

Flags
Interrupts

Preserved

pointer to the NESL_ECB passed to
MSMNESLRegisterProducer

pointer to the Event Parameter Block

points to a location to place a pointer to the consumer
NESL_ECB that consumed the event.

pointer to Adapter Data Space
are in any state

at process or interrupt time

set according to EAX
set according to EAX
are unchanged

ESI, EDX, EDI and EBP

The producer is NULL.

The event is consumable and is consumed. EDI is set to the
consumer’'s NESL_ECB.

The event is consumable and is not consumed. EDI is set to
NULL.

Event has been broadcast to all consumers. EDI is not
changed.

The logical board(s) identified by Adapter Data Space are not
valid.

7-70 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

Description

An event producer calls this to notify registered consumers that the event has
occurred. If the event is consumable, then one of the consumers may consume
the event and the event notification will stop. This call produces thefevent
each logical boardassociated with Adapter Data Space.

Producer routines and consumer routines running on asynchronous events
(e.g., IPX packets, interrupts), must be re-entMSMNESLProduceEvent

will not protect the consumer routine from being re-entered. For example, if the
consumer routine re-enables interrupts, another asynchronous event can be
issued from a producer and thus re-enter the consumer.

It is up to either the producer and the consumer routine to protect themselves
from re-entrancy issues. Further, they must take steps to ensure that there is on
stack overflow because of their activities.

The Event Parameter Block fields are defined as follows:

Field Description

EPBMajorVersion Major version of the Event Parameter Block. The current version is 1 (for
1.00).

EPBMinorVersion Minor version of the Event Parameter Block. The current version is 00 (for
1.00).

EPBEventName Event name or class name for the event as register with NESL (e.g., “Service

Suspend” or “Service Resume”). All valid event names must be registered
with Novell Labs.

EPBEventType Event subclass name for the event. An example of a subclass for “Service
Suspend” would be “APM Suspend”. All valid event subclass names must be
registered with Novell Labs.

EPBmoduleName Pointer to module name that generated the event (e.g., NE2000).
EPBDataPtrO The MSM uses this field to pass a pointer to the MLID’s configuration table.
EPBDataPtrl Event dependent information.

MSM Procedures and Macros 7-71

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Field Description
EPBEventScope The HSM must set this field to EPB_SPECIFIC_EVENT.
EPBReserved Reserved by Novell.

7-72

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMNESLRegisterConsumer

Processor States Entry State

ESI
Interrupts

Call

Return State

pointer to a NESL_ECB.
are in any state

at process time only

Flags set according to EAX
Interrupts are unchanged
Preserved ESI
Completion Code in EAX
NESL_OK Registry was successful.
NESL_DUPLICATED_NECB The NESL_ECB was previously registered in the event
table.
NESL_INVALID_NOTIFY_PROC The consumer’s notification procedure is NULL
NESL_CONSUMER_NOT_FOUND The NESL_ECB pointer is NULL.
NESL_FIRST_ALREADY_HOOKED The head of the consumer list has already been hooked.
Event has been broadcast to all consumers. EDI is not
changed.

Description

This function registers the consumer of an event. If a producer of the event is
not currently registered, the consumer is placed onto an orphaned consumer

list.

MSM Procedures and Macros 7-73

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Field

NecbNext

NecbVersion

NecbOsiLayer

NecbEventName

NecbRefData

PNecbNotifyProc

ConsumerNech

ProducerNecb

The NESL_ECB fields for this function are defined as follows:

Description

RESERVED. This field should not be modified by thecalling
routine while the NESL_ECB is registered.

This field contains the version number of the NESL_ECB
structure. This field allows the interface to be expanded in the
future while still providing full backward compatibility. The
current version is 1.

The definition NESL_HOOK_FIRST may also be used in
element NecbOsiLayer. This definition causes a consumer to
be hooked first, no matter what. If the caller sets the low byte
of NecbOsiLayer to this value, the consumer will be hooked
first in the consumer list. Normally NESL events will put lower
layer identifiers before the hooked lead element. If another
call is made specifying this definition an error will be returned
to the caller and the element will not be added to the list.

ASCIIZ name string of the event or class of events. This name
has the maximum length of NESL_MAX_NAME_LENGTH.

RESERVED.

Pointer to the event notification callback routine.
UINT32 MyNotifyProc (

NESL_ECB *ConsumerNecb,

NESL_ECB *ProducerNecb,

Void *eventData);

Points to the NESL_ECB used by consumer during
MSMNESLRegisterConsumer.

Points to the NESL_ECB used by the producer during
MSMNESLRegisterProducer.

7-74 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Field

EventData

NESL_EVENT_CONSUMED

NESL_EVENT_NOT_CONSUMED

NecbOwner

NecbWorkSpace

See Also

Description

If the producer only has one data item, it can be passed to the
consumer as an argument or as an address.

If the producer has more data than one item or if the producer
wishes to guarantee portability, then the address of an array of
data items should be passed. The structure of the eventData
must be defined by the producer and known by the consumer
if it is to be interrupted properly

Return from a consumer after an event notification callback:

Event was consumed by the consumer process.

Event was not consumed by the process.

This is only really applicable if the event is consumable, but a
consumer should always do this to be compatible with both
types of events. Called from foreground time or from interrupt
time with interrupts enabled or disabled.

Specifies the owner of the NESL_ECB. This field is platform-
specific and platform-dependent. The DOS/MS Windows
implementation REQUIRES this field to be set to the owner's
module handle information.

RESERVED. This field should not be modified by the calling
routine while the NESL_ECB is registered.

Appendix C, “NESL Support”

MSM Procedures and Macros 7-75

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMNESLRegisterProducer

Processor States Entry State
ESI pointer to a NESL_ECB.
Interrupts are in any state
Call at process time only

Return State

Flags set according to EAX
Interrupts are unchanged
Preserved ESI

Completion Code in EAX
NESL_OK
NESL_REGISTERED_UNIQUE

NESL_REGISTERED_NOT_UNIQUE

NESL_REGISTERED_CONSUMABLE

NESL_REGISTERED_BROADCAST

NESL_EVENT_TABLE_FULL
NESL_DUPLICATE_NECB
NESL_PRODUCER_NOT_FOUND

Description

Registry was successful.

A previous producer has registered the event as unique and
this producer tried to register the event as non-unique.

A previous producer has registered the event as non-unique
and this producer tried to register the event as unique.

A previous producer has registered the event as consumable
and this producer tried to register the event as broadcast.

A previous producer has registered the event as a broadcast
and this producer tried to register the event as consumable.

The event was not registered because the event table is full.
The NESL_ECB was previously registered in the event table.
The NESL_ECB is NULL.

This function registers the producer of an event and creates a consumer list
containing the consumers of this event. The event definition contains the rules
necessary concerning process and interrupt time execution during event

notification.

7-76 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

The NESL_ECB fields for this function are defined as follows:

Field

NecbNext

NecbVersion

NecbOsiLayer

NecbEventName

NecbRefData

NESL_SORT_CONSUMER_BOTTOM_U
P

NESL_CONSUME_EVENT

NESL_UNIQUE_PRODUCER

Description

RESERVED. This field should not be modified by the
calling routine while the NESL_ECB is registered.

This field contains the version number of the
NESL_ECB structure. This field allows the interface
to be expanded in the future while still providing full
backward compatibility. The current version is 1.

Reserved. The value of this field will be ignored..

ASCIIZ name string of the event or class of events.
This name has the maximum length of
NESL_MAX_NAME_LENGTH.

This is a flag field used to specify whether the event
is unique or consumable. It also indicates the sorting
order for calling registered consumers at event time.
Consumers which are on the orphan consumer list
will be sorted

Use bottom-up relative ordering on the consumer's
NecbOsiLayer field in maintaining an ordered list
ofconsumers requiring notification.

The event can be consumed by one of the registered
consumers. By default, an event is broadcast to all
registered consumers. This flag will cause a chaining
effect among the consumers which will start with the
first registered consumer and proceed to the next
until one of the consumers consumes the event or
the end of the consumer list is reached.

The producer of the event must be unique. If there is
another producer registered with the same event
string, then this call will fail. By default, there can be
multiple producers of the same event.

This flag is used to prohibit multiple producers
provided that this is the first producer registered.

MSM Procedures and Macros 7-77

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Field

PnecbNotifyProc

NecbOwner

NecbWorkSpace

See Also

Spec v3.31 - Doc v1.12

Description
RESERVED. The value of this field will be ignored..

Specifies the owner of the NESL_ECB. This field is
platform-specific and platform-dependent. The DOS/
MS Windows implementation REQUIRES this field to
be set to the owner's module handle information.

RESERVED. This field should not be modified by the
calling routine while the NESL_ECB is registered.

Appendix C, “NESL Support”

7-78 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

MSMParseCustomKeywords

Processor

Description

States

Note‘vl
\v

Entry State

ESI pointer to the DriverParameterBlock

Return State
EBX is preserved

Zero Flag is cleared if a "T_REQUIRED" custom keyword was
not entered on the command-line or by user after
being prompted.

Drivers can define keywords that allow custom parameters or flags to be
entered from the load command-line. (Refer to the "Driver Keyword" section
in Chapter 3 for a complete description of how to define custom keywords.)

Custom keywords are normally processed during initialization when
Driverlnit callsMSMParseDriverParameters. If the driver must have
custom keywords processed earlier in initialization Dhgerlinit routine can
call MSMParseCustomKeywords

MSMParseDriverParameters will still call custom keyword procedures even if
MSMParseCustomKeywords called them earlier.

The MSM parses the command-line for custom keywords and calls the

procedure corresponding to that keyword. Requirements for custom keyword
procedures are described in the next section.

MSM Procedures and Macros 7-79

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Custom Keyword Procedure

On Entry

7-80

When the MSM calls a custom keyword procedure, the values of the registers
on entry will vary depending on which keyword parsing flags (if any) were
used. The "Driver Keyword Enhancements" section of Chapter 3 describes the
parsing flags and how they are used.

EDX is nonzero if a T_REQUIRED keyword was found on the original
command-line.

EDX is zero if a T_REQUIRED keyword was not found on the original
command-line and the user had to be prompted for information

T_REQUIRED - The keyword must be entered. If it doesn't exist on the
command-line or configuration file, the user will be prompted for it. If the users
does not enter a valudSMParseCustomKeywordswill return with an error.

T_STRING - The Keyword Routine will be called with a pointer to the
beginning of the string that matched the keyword text.

Example:
load <driver> custom int=3

Routine called with ESI pointing to “custom int=3"

T_NUMBER - The Keyword Routine will be called with the value entered on
the command-line in EAX. The user must enter a decimal number.

Example:
load <driver> custom=100
Routine called with EAX = 64h

T _HEX_NUMBER - The Keyword Routine will be called with the value
entered on the command-line in EAX. The user must enter a hexadecimal
number.

Example:
load <driver> custom=100
Routine called with EAX = 1080

T_HEX_STRING - The Keyword Routine will be called with ESI pointing to
a six byte value that was entered on the command-line. The user must enter this
string using hexadecimal numbers.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Example:
load <driver> custom=01020304

Routine called with ESI -> 00, 00, 01, 02, 03, 04

The following is an example of a driver for an adapter that may require memory
below 16 megabytes depending on information read from a port. The example
will prompt the user for an 1/O port and determine whether it needs memory
below 16 megabytes or not.

Example

OSDATA segment rw public '‘DATA'

DriverParameterBlock label dword
DriverNumKeywords dd 1
DriverKeywordText dd KeywordTextTable
DriverKeywordTextLen dd KeywordTextLenTable
DriverProcessKeywordTab dd KeywordProcedureTable

DriverParameterBlockEnd

KeywordTextTable dd Portkeyword
KeywordTextLenTable dd PortKeywordLen
KeywordProcedureTable dd PortkKeywordRoutine

PortKeyword db 'PORT"
PortkKeywordLen equ ($ - Portkeyword) OR T_HEX_NUMBER OR
T_REQUIRED

dd 300 ; Min port value

dd 360 ; Max port value

dd PortDefault ; Default Port

MSM Procedures and Macros 7-81

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

dd PortValid ; Valid characters

dd PortPrompt ; Prompt string
PortDefault db “3007, 0
PortValid db "0..9A..F", 0 ; Hex digits only
Port db “Enter the Port Number: “, 0

BasePortValue dd 0
PortOnCommandLine dd 0

OSDATA ends

7-82 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Driverlnit proc

CPush

mov DriverStackPointer, esp

or KeywordTextLenTable, T_REQUIRED

lea esi, DriverParameterBlock

call MSMParseCustomKeywords

jnz DriverInitError ;keyword not entered

mov edx, BasePortValue

(read 1/0O port information into eax to determine if memory
below 16 meg is required or not)

mov DriverNeedsBelow16Meg, 0 ;assume below 16 not required
or eax, eax ;check if below 16 required?

je DriverInitRegisterHSM ;jump if not

mov DriverNeedsBelowl6Meg, -1 ;set below 16 flag

DriverInitRegisterHSM:

lea esi, DriverParameterBlock
call TSM>RegisterHSM

;* Clear T_REQUIRED bit for the custom keyword so MSMParseDriverParameters will not prompt for it
again if it
;* was not on the original command-line.

and KeywordTextLenTable, NOT T_REQUIRED
;* We need to set the NeedslOPortOBit if “PORT="is already on the command-line. Otherwise the OS will
complain

;* that it saw a standard keyword that wasn't needed.

mov eax, NeedInterruptOBit OR CAN_SET_NODE_ADDRESS

cmp PortOnCommandLine, 0
je DriverlInitParse
or eax, NeedslOPortOBit

DriverInitParse:

lea ecx,AdapterOptions

call MSMParseDriverParameters

jnz DriverlnitError

mov eax, BasePortValue ;force 10 Port to what

mov [ebx].MLIDIOPortsAndLengths, ax ;we got from custom keyword

MSM Procedures and Macros 7-83

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

call

Driverlnit

MSMRegisterHardwareOptions

endp

PortKeywordRoutine proc

mov
mov

BasePortValue, eax
PortOnCommandLine, edx

PortkKeywordRoutine endp

7-84

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMParseDriverParameters

Processor States Entry State

EAX
ECX
Interrupts

Call

Return State
Zero Flag
EAX

EBX
Interrupts

Preserved

is the DriverNeedsBitMask parameter
pointer to DriverAdapterOptions structure
can be in any state

at initialization time

set if successful; otherwise an error occurred.

zero if successful; otherwise EAX points to an error
message which the driver must print using
MSMPrintString before returning to the operating
system with EAX nonzero.

pointer to the Frame Data Space
are disabled

no registers are preserved

Description

MSMParseDriverParametersis used in conjunction with

MSMRegisterHardwareOptions to parse the command-line options.

Each standard load option corresponds to a field in the driver's configuration
table. UsingDriverNeedsBitMashks a guide, this function collects the
necessary information from the command-line and from the Adapter Options
Structure and fills out the appropriate fields of the configuration table.

The following pages describe the format of the Adapter Options structure and
the DriverNeedsBitMaslkparameter.

Note V! During this routine the HSM's custom keywords are also processed (see “Driver
Keywords” in Chapter 3)

MSM Procedures and Macros 7-85

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Adapter Options

The Adapter Options Structure is defined in the ODI.INC file and is shown
below. Each field of the structure is a pointer to a list of possible options for
that field. If an option is not supported, a zero is placed in that field. The options
correspond to fields in the driver's configuration table.

AdapterOptionDefinitionStructure struc
I0Slot dd ? ; Ptr to a list of possible slots
IOPort0 dd ? ; “ primary ports
IOLengthO dd ? ; “ number of primary ports
IOPort1 dd ? ; “ secondary ports
IOLengthl dd ? ; “ number of secondary ports
MemoryDecodeO dd ? ; “ primary memory values
MemoryLengthO dd ? ; “ primary memory sizes
MemoryDecodel dd ? ; “ secondary memory values
MemoryLengthl dd ? ; “ secondary memory sizes
InterruptO dd ? ; “ primary interrupt values
Interruptl dd ? ; “ secondary interrupt values
DMAO dd ? ; “ primary DMA values
DMA1l dd ? ; “ secondary DMA values
Channel dd ? ; “ channel # for multichannel
adapters
AdapterOptionDefinitionStructure ends

7-86

All lists pointed to must begin with a dword value indicating the number of
options in the list. For example, the lists for an adapter with options for
interrupt and port number might appear as follows.

IOPortOptions dd 4 ; humber of options
dd 300h,310h,320 h,330h; options

IntOptions dd 3 ; humber of options
dd2,3,5 ; options

DriverAdapterOptions AdapterOptionDefinitionStructure

<0,I0PortOptions,0,0,0,0,0,0,0,IntOptions,0,0,0>

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Needs Options

DriverNeedsBitMasks used to inform the parser which configuration options
the driver requires.

If there are multiple possibilities for a configuration option and a driver wants
this function to return which option to use, it must set the appropriate bit of the
mask.

If there is only one value for a configuration option, the HSM does not set its
bit in DriverNeedsBitMaskThe value can be set directly in the configuration
table.

Equates for the bit positions of each option are provided in the ODI.INC file.
These options are described in the following table.

MSM Procedures and Macros 7-87

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

DriverNeedsBitMask

3 322222222%2211111111119876 543210

10987 65 43210987 6543210

|| [o]ofo]ofofofojofofofofofofofofo] | | | | | [[/L] 11|
Bit # DriverNeedsBits
31 MUST_SET_NODE_ADDRESS (80000000h)
30 CAN_SET_NODE_ADDRESS (40000000h)
13 NeedsChannelBit (00002000h)
12 NeedsDMA1Bit (00001000h)
11 NeedsDMAOBit (00000800h)
10 NeedslInterrupt1Bit (00000400h)
9 NeedsInterruptOBit (00000200h)
8 NeedsMemoryLength1Bit (00000100h)
7 NeedsMemoryDecodelBit (00000080h)
6 NeedsMemoryLengthOBit (00000040h)
5 NeedsMemoryDecodeOBit (00000020h)
4 NeedslOLength1Bit (00000010h)
3 NeedslOPort1Bit (00000008h)
2 NeedslOLengthOBit (00000004h)
1 NeedslOPortOBit (00000002h)
0 NeedslOSlotBit (00000001 h)

7-88 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

Command-Line Examples

Option

IOSlot

IOPort0
IOLengthO
IOPort1
IOLengthl
MemoryDecodeO
MemoryLengthO
MemoryDecodel
MemoryLengthl
InterruptO
Interruptl

DMAO

DMA1

Channel

Command-Line

load <driver> SLOT=4

load <driver> PORT=300

load <driver> PORT=300:A

load <driver> PORT1=700

load <driver> PORT1=700:14
load <driver> MEM=C0000

load <driver> MEM=C0000:1000
load <driver> MEM1=CC000
load <driver> MEM1=CC000:2000
load <driver> INT=3

load <driver> INT1=5

load <driver> DMA=0

load <driver>DMA1=3

load <driver> CHANNEL=2

Description

Use slot 4

Base Port0 = 300h
LengthO = OAh

Base Portl = 700h
Lengthl = 14h

Base Memory0 = CO000h
MemLengthO = 1000h (4K)
Base Memoryl = CC000h
MemLengthl = 2000h (8K)
Interrupt0 = 3

Interruptl =5

DMAO =0

DMA1 =3

Use Channel 2

MSM Procedures and Macros 7-89

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

7-90

IOPortOptions dd 4 ; humber of options
dd 300h,310h,320h,330h; options

IntOptions dd 3 ; humber of options
dd2,3,5 ; options

DriverAdapterOptions AdapterOptionDefinitionStructure
<0,I0PortOptions,0,0,0,0,0,0,0,IntOptions,0,0,0>

Driverlnit proc

mov eax, NeedslOPortOBit OR NeedsInterruptOBit OR

CAN_SET_NODE_ADDRESS

lea ecx, DriverAdapterOptions
call MSMParseDriverParameters
jnz ParseParameterError

call MSMRegisterHardwareOptions

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMPrintString

Processor States

Description

Example

Entry State

ECX possible argument #1

EDX possible argument #2

ESI pointer to a null terminated message (cannot exceed
128 bytes)

Interrupts can be in any state but might be disabled during the
call

Call at initialization time only

Return State
Interrupts are in the same state as when this routine was called

Preserved EBX, EBP, EDI, and ESI

This function prints the message pointed to by ESI. The HSM's initialization
routine must calk TSM>RegisterHSM prior to using this print procedure.

The possible arguments #1 and #2 above are used here the same way in which
they are used in tharintf routine in C language. If there are no format
specifications in the string, ECX and EDX are ignored.

This routine has added functionality which supports an additional string
format. If the string is preceded by a word size error number in the range of
100-999, the MSM will print the driver name, the platform name (NW for
NetWare), and the decimal error number, before printing the specified string.
(See thesStandard MLID Message Definitiossipplement for a listing of
standard messages.)

ErrorMessage dw 102
db “Board failed to execute reset command.”,0

lea ESI, ErrorMessage
call MSMPrintString

MSM Procedures and Macros 7-91

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

7-92

The example above would output the following message if the adapter is an
NE2000:
NE2000-NW-102: Board failed to execute reset command.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMPrintStringFatal

Processor States Entry State

ECX
EDX
ESI

Interrupts
Call

Return State
Interrupts

Preserved

possible argument #1
possible argument #2

pointer to a null terminated error message (cannot
exceed 128 bytes)

can be in any state but might be disabled during the
call

at initialization time only

are in the same state as when this routine was called

EBX, EBP, EDI, and ESI

Description

This function prints “FATAL:” followed by the specified error message. The

HSM's initialization routine must cafiT SM>RegisterHSM prior to using this

print procedure.

The “Possible Arguments #1 and #2” above are used here the same way in
which they are used in the C-languggmtf routine. If there are no format
specifications in the string, ECX and EDX are ignored. (SeStiedard

MLID Message Definitionsupplement for a listing of standard messages.)

MSM Procedures and Macros 7-93

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

7-94

ErrorMessage db '‘Adapter %d, Error Code: %x', CR,LF,0
mov ECX, BoardNumber ; argument #1

mov EDX, ErrorNumber ; argument #2

mov ESI, offset ErrorMessage

call MSMPrintStringFatal

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMPrintStringWarning

Processor States Entry State

Description

Example

ECX
EDX
ESI

Interrupts

Call

Return State
Interrupts

Preserved

possible argument #1
possible argument #2

pointer to a null terminated error message (cannot
exceed 128 bytes)

can be in any state but might be disabled during the
call

at initialization time only

are in the same state as when this routine was called

EBX, EBP, EDI, and ESI

This function prints “WARNING:” followed by the specified error message

pointed to by ESI. The HSM's initialization routine must call
<TSM>RegisterHSM prior to using this print procedure.

The “Possible Arguments #1 and #2” above are used here the same way in
which they are used in the C-languggmtf routine. If there are no format
specifications in the string, ECX and EDX are ignored. (SeStiedard

MLID Message Definitionsupplement for a listing of standard messages.)

ErrorMessage

db ‘Adapter %d, Error Code: %x’, CR,LF,0

mov ECX, BoardNumber ; argument #1
mov EDX, ErrorNumber ; argument #2
mov ESI, offset ErrorMessage

call MSMPrintStringWarning

MSM Procedures and Macros 7-95

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMRdConfigSpace8

Processor States Entry State
EAX - Offset contains an offset into the configuration space.
EBX - Unique- contains an architecture-dependent value that
Identifier specifies the location on the bus where the device is
located

ECX - BusTag contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

Interrupts in any state

Return State

DL unsigned read value
Interrupts preserved
Preserved EAX, EBX, ECX, ESI, EDI, EBP

Description This function takes an offsetUniqueldentifierand aBusTagto identify an

offset in a specific adapter’s configuration space and performs whatever
operations are necessary to acquire and return 8 bits of configuration
information.

The function is provided only for drivers that need to interact with
configuration space. On most busg&§MGetCardConfiginfo will satisfy a
driver's need.

Note V! For most buses, this call will do nothing. It has meaning only on buses that have
a configuration address space that is separated from memory or I/O space (for
example, a PCI bus).

See Also

MSMSearchAdapter, MSMGetUniqueldentifier,
MSMRdConfigSpacel6, MSMRdConfigSpace32,
MSMGetCardConfiginfo, MSMWrtConfigSpaces8,
MSMWrtConfigSpacel6, MSMWrtConfigSpace32.

7-96 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example

Driverlnit proc

mov ebx, Uniqueldentifier; from

MSMSearchAdapter
mov ecx, BusTag; BusTag for PCI
mov eax, 13 ; PCl Header Type Offset
call MSMRdConfigSpace8
Driverlnit endp

MSM Procedures and Macros 7-97

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMRdConfigSpacel6

Processor States Entry State

EAX - Offset contains an offset into the configuration space.

EBX - Unique- contains an architecture-dependent value returned

Identifier by MSMGetUniqueldentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

ECX - BusTag contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

Interrupts in any state

Return State

DX unsigned read value
Interrupts preserved
Preserved EAX, EBX, ECX, ESI, EDI, EBP

Description This function takes an offsetUniqueldentifierand aBusTagto identify an

offset in a specific adapter’s configuration space and performs whatever
operations are necessary to acquire and return 16 bits of configuration
information.

The function is provided only for drivers that need to interact with
configuration space. On most busg&§MGetCardConfiginfo will satisfy a
driver's need.

For most buses, this call will do nothing. It has meaning only on buses that have
a configuration address space that is separated from memory or I/O space (for
example, a PCI bus).

See Also

MSMSearchAdapter, MSMGetUniqueldentifier,
MSMRdConfigSpacel6, MSMRdConfigSpace32,
MSMGetCardConfiginfo, MSMWrtConfigSpaces8,
MSMWrtConfigSpacel6, MSMWrtConfigSpace32.

7-98 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example

Driverlnit proc

mov ebx, Uniqueldentifier; from

MSMSearchAdapter
mov ecx, BusTag; BusTag for PCI
mov eax, 2 ; PCI Vendor ID Offset
call MSMRdConfigSpacel6
Driverlnit endp

MSM Procedures and Macros 7-99

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMRdConfigSpace32

Processor States Entry State

EAX - Offset contains an offset into the configuration space.

EBX - Unique- contains an architecture-dependent value returned

Identifier by MSMGetUniqueldentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

ECX - BusTag contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

Interrupts in any state

Return State

EDX unsigned read value
Interrupts preserved
Preserved EAX, EBX, ECX, ESI, EDI, EBP

Description This function takes an offsetUniqueldentifierand aBusTagto identify an

offset in a specific adapter’s configuration space and performs whatever
operations are necessary to acquire and return 32 bits of configuration
information.

The function is provided only for drivers that need to interact with
configuration space. On most busg&§MGetCardConfiginfo will satisfy a
driver's need.

Note V! For most buses, this call will do nothing. It has meaning only on buses that have
a configuration address space that is separated from memory or I/O space (for
example, a PCI bus).

See Also

MSMSearchAdapter, MSMGetUniqueldentifier,
MSMRdConfigSpacel6, MSMRdConfigSpace32,
MSMGetCardConfiginfo, MSMWrtConfigSpaces8,
MSMWrtConfigSpacel6, MSMWrtConfigSpace32.

7-100 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example

Driverlnit proc
mov ebx, Uniqueldentifier; from
MSMSearchAdapter
mov ecx, BusTag; BusTag for PCI
mov eax, 16 ; PCI Base Addr 0 Offset
call MSMRdConfigSpace32
Driverlnit endp

MSM Procedures and Macros 7-101

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMReadPhysicalMemory

Processor States Entry State

Description

See Also

7-102

ECX

ESI

EDI
Interrupts

Call

Return State

Preserved

number of bytes to read

physical source address (where to read data from)
logical destination address (where to transfer data to)
may be in any state

during Driverlnit before
MSMRegisterHardwareOptions

EBX, EBP, ESI, and EDI

If the driver attempts to access shared RAM before calling

MSMRegisterHardwareOptions, a page fault abend will occur on the server.
Accesses to the shared RAM prior to registration do not normally happen
unless the HSM must obtain additional information such as interrupt numbers
or shared RAM buffer size for the configuration table.

This routine can be used to read information from a shared RAM physical
address before hardware registration.

MSMWritePhysicalMemory

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example

mov
lea
mov
call

cmp
jne

esi, SourceAddress ; physical shared RAM address
; source

edi, [ebx].MLIDInterrupt ; logical dest. in frame data
; space

ecx, 1 ; read 1 byte

MSMReadPhysicalMemory ; transfer data
eax, 0 ; check for errors
ErrorReadingFromSharedMemory; Jump if so

MSM Procedures and Macros 7-103

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMRegisterHardwareOptions

Processor States

Description

7-104

Entry State
Interrupts can be in any state

Call at initialization time only

Return State

EAX =0 New Adapter was successfully registered

EAX =1 New Frame Type was successfully registered

EAX =2 New Channel (multichannel adapters) was
registered

pointer to an error message. (hardware registration
EAX>2 failed)

EBP pointer to the Adapter Data Space if successful
EBX pointer to the Frame Data Space if successful
Interrupts are preserved

This function must be called by the HSNDsverlnit routine to register the

hardware options.

On return fromMSMRegisterHardwareOptions:

If EAX is 0, a new adapter was registered and the driver should continue
with initializing the adapter. If a new adapter is being added, the memory
associated with the Adapter Data Space is allocated and control returns to
DriverInit with EBP pointing to that space.

If EAX is 1, a new frame type was registered for an existing adapter and
theDriverlnit routine is basically finished.

If EAX is 2, a new channel was registered for an existing multichannel
adapter. The driver (and MSM) typically treat the registering of a new
channel as a new adapter.

If EAX is > 2, the MSM was unable to register the hardware options
(typically due to conflicts with existing hardware). In this case, EAX
points to an error message which the driver should print using
MSMPrintString . Driverlnit should then return immediately to the
operating system with EAX set to any nonzero value.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Example

Driverlnit

call
call
cmp
ja

je
cmp
je

proc

MSMParseDriverParameters
MSMRegisterHardwareOptions
eax,2

DriverlnitError

NewChannel

eax,l

NewFrame

; (Initialize for NewAdapter)

DriverlnitExit:
xor
ret

DriverInitError:
mov
call
or
ret

Driverlnit

eax,eax

esi,eax
MSMPrintString
eax,-1

endp

MSM Procedures and Macros 7-105

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMRegisterMLID

Processor States Entry State
EBP pointer to the Adapter Data Space
EBX pointer to the Frame Data Space
Interrupts may be in any state
Call at process time only

Return State

EAX zero if successful; otherwise EAX points to an error
message which the driver must print using
MSMPrintString before returning to the operating
system with EAX non- zero.

Zero Flag set if successful; otherwise an error occurred.
Interrupts are unchanged
Preserved EBX and EBP

Description After Driverlnit has successfully initialized the adapter, it should call this

routine to register the MLID with the Link Support Layer.

When this routine returns, the configuration table contains a valid board number.
HSMs for intelligent bus master adapters may now pass the board number and
frame ID information to the adapter if necessary.

Example Driverlnit proc

call MSMRegisterMLID
jnz RegisterMLIDError

7-106 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMRegisterResource

Processor States Entry State

EBP
EBX

EDX

Interrupts

Call

Return State
Flags
Interrupts

Preserved

Completion Code in EAX

pointer to Adapter Data Space

pointer to a configuration table that was registered
and was returned through <TSM>RegisterHSM .

pointer to an ExtraConfig structure that contains the
resource(s) to be registered.

can be in any state

at process or interrupt time

set according to EAX.
are unchanged.

all registers except EAX.

SUCCESSFUL The resources contained in the ExtraConfig parameter were
successfully registered.

OUT_OF_RESOURCES The hardware options could not be registered. This is typically
due to conflicts with resources held by hardware devices.

Description

This routine lets an HSM register hardware resources that are not listed in the
configuration table because it is full.

This routine cannot be called unMISMRegisterHardwareOptions has
returned with &New Adapteor aNew Channel

Currently, only the two interrupts in the configuration table are supported. You
cannot usdMSMRegisterResourceto register additional interrupts.

TheExtraConfigstructure must always remain allocated, so that the MSM will
return the resource if the HSM gets unloaded.

MSM Procedures and Macros 7-107

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

7-108

ExtraConfi g Structure
This structure is defined in MSM.INC.

ExtraConfig struc
ExtraConfigNextLinkddO
EcReserved0ddO
EcReserved1ddO
EcReserved2dd0
EcReserved3 dd0
EcReserved4 dd0
EcReserved5dd0
EcReserved6 ddO
EcReserved7 dd0
EcReserved8 dd0
EcReserved9 dd0O
IOConfigPointerdd0
ExtraConfig ends

Field Descriptions:
EcReserved0...EcReserved0

These fields are reserved and must be set to 0.
IOConfigPointer

This field contains a pointer to the I0Config structure filled in by caller.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

I0OConfig Structure
This structure is defined in ODI.INC. IOConfig is basically a substructure of
the Driver Config Table, see the Config Table structure’s fielddescription in
Chapter 3 of the HSM specification.

IOConfig struc

I0_Link dd 0
IO0_SharingFlags dw O
I0_Slot dw O
IO_IOPort0 dw O
IO_IORange0 dw O
IO_IOPortl dw O
IO_IORangel dw O
IO_MemoryDecode0 dd O
IO_LengthO dw O
IO_MemoryDecodel dd O
IO_Lengthl dw O
IO_InterruptO db O
I0_Interruptl db O
I0_DMALine0 db O
I0_DMALinel db O
IO_ResourceTag dd O
I0_Config dd O
I0_CommandString dd O
IO_LogicalName db 18 dup (0)
IO_LinearMemory0 dd O
IO_LinearMemoryl dd O
I0_ChannelNumber dw O
IO_BusTag dd O
IO0_ConfigMajorVer db O
IO0_ConfigMinorVer db O

IOConfig ends

MSM Procedures and Macros 7-109

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMReRegisterHardwareOptions

Allows an HSM to deregister its current hardware options and register a new
set of hardware options.

Processor States Entry State

EBP pointer to the Adapter Data Space

EBX pointer to an I0Config structure (new) that contains
the new hardware options to be registered.

ESI pointer to an ECB whose ESR is called if
MSMReRegisterHardwareOptions returns
RESPONSE_DELAYED. If
NULL, BAD_PARAMETER will be returned.

Interrupts can be in any state.

Execute at process or interrupt time

Return State

Flags set according to EAX
Interrupts are unchanged
Preserved all registers except EAX

Completion Code in EAX
SUCCESSFUL Hardware options were successfully reregistered.

OUT_OF_RESOURCES Unable to register the hardware options due to conflicts in
resources with another device.

BAD_PARAMETER If an input parameter was invalid.

FAIL The adapter was not in a shutdown state before the call was
made.

RESPONSE_DELAYED The operation of deregistering and registering hardware

options could not be completed at the present time. An
asynchronous process will be scheduled to complete the
operation at a later time.

7-110 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Description

Note‘VI
v

If MSMRegisterMLID has been called the adapter must be shutdown using
MSMShutdownMLID before MSMReRegisterHardwareOptions is called.

MSMReRegisterHardwareOptions will deregister the current set of

hardware options held by the HSM for an adapter as registered previously
throughMSMRegisterHardwareOptions or through a previous call to
MSMReRegisterHardwareOptions All hardware options in the new

IOConfig table will then be registered for the adapter. Any hardware option in
the new 10Config table that are not to be registered must be set as not in use as
described in the Driver Configuration Table. The MLIDResourceTag from the
old Config Table will be used when registering the new hardware options. The
fields of the new I0Config table correspond to the fields in the
DriverConfigTemplate structure starting with the MLIDLink field and end

with the MLIDIOConfigMinorVer .

If all hardware options in the new I0Config table were successfully registered,
MSMReRegisterHardwareOptions will update all configuration tables of
the adapter to reflect the newly registered hardware options.

If MSMReRegisterHardwareOptions cannot complete the operation at the
present time, an asynchronous process will be scheduled to complete the
operation later. Once the asynchronous operation is complete, the
asynchronous ECB’s ESR routine will be called to report the final return value
of the operation. The return value will be stored in the asynchronous ECB’s
ECB_ Status field.

Upon successful return froMSMReRegisterHardwareOptions the HSM is

responsible for putting the adapter in a functional state. If a new interrupt was
registered, the HSM must callSMSetHardwarelnterrupt .

MSM Procedures and Macros 7-111

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMResetMLID

Processor

Description

States

Entry State

EBP pointer to Adapter Data Space
Interrupts are disabled but may be enabled during the call
Call at process time only

Return State

Flags set according to EAX.
Interrupts are disabled.
Preserved EBP, EBX

Completion Code in EAX

SUCCESSFUL Reset was successful

BAD_PARAMETER An input parameter was invalid or NULL.

FAIL

Note‘VI
\4

The operation failed

If an HSM needs to reset the driver, it must use this function to do so.
MSMResetMLID puts the driver in a safe state and then dligerReset

If the reset is successful, the SHUTDOWN flagiBMStatusFlagss cleared
by the MSM. The MSM also produces a NESL suspend evehtlftibReset.

In previous versions of this specification, and under certain circumstances,
HSMs could call their owiDriverReset routines. However, HSMs written to
this specification must nato so. HSMs written to this specification must use
MSMResetMLID .

This function does not restart polling if polling was suspended by
MSMSuspendPolling . MSMResumePolling must be called to restart polling.

MSMResetMLID cannot be called until afttdSMRegisterMLID has been
called.

7-112 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

MSMResumePolling

Processor States Entry State

EBP
Interrupts

Execute

Return State
Interrupts

Preserved

Completion Code in EAX

pointer to Adapter Data Space
can be in any state

at process or interrupt time

are unchanged

all registers

SUCCESSFUL Polling was successfully resumed.

BAD_COMMAND The call is invalid because MSMEnablePolling and/or
MSMSuspendPolling have never been called.

Description

Turns polling back on aftaSMSuspendPollinghas suspended it. This call
is only necessary MMSMSuspendPollingwas called previously. When
MSMEnablePolling is called, polling will start up active.

The POLLSUSPENDED flag in the MLIDStatusFlags (bit 4) is cleared by the
MSM when this function is called.

MSM Procedures and Macros 7-113

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMReturnDriverResources

Processor States Entry State
Interrupts are disabled
Call at process time only

Description

7-114

Return State
Interrupts remain disabled

Preserved NO registers are preserved

MSMReturnDriverResourcesmust be called to return resources ifthe HSM's
Driverlnit routine is unable to initialize the adapter. It should only be called
after <TSM> RegisterHSM has completed successfully. However if there is
an error during any of the following procedures they will call
MSMReturnDriverResources, and it must not be called a second time or an
abend or Interrupt 3 may result.

The following procedures will caMSMReturnDriverResourcesif they do
not complete successfully:

<TSM>RegisterHSM
MSMEnablePolling
MSMParseDriverParameters
MSMRegisterHardwareOptions
MSMRegisterMLID
MSMScheduleAESCallback
MSMSchedulelntTimeCallback
MSMSetHardwarelnterrupt

procedures listed above returns an error condition. It may cause the server to

Warningv— The HSM must not call MSMReturnDriverResources after one of the
abend.

Please note that tidSMDriverRemove procedure calls
MSMReturnDriverResources upon completing successfully.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example

Driverlnit proc
Cpush
call <TSM>RegisterHSM
jnz DriverlnitError

[*** Initialize the Adapter ***]
call DriverReset
jnz DriverInitResetError

DriverlInitResetError:

push eax
call MSMReturnDriverResources
pop eax

DriverInitError:
mov esi, eax

call MSMPrintString
or eax, 1
Cpop
ret
Driverlnit endp

MSM Procedures and Macros 7-115

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMReturnMultipleRCBs

Processor States Entry State

ESI
Interrupts

Execute

Return State
Interrupts

Preserved

pointer to first RCB in chain
can be in any state

at process or interrupt time

are disabled

EBX, ECX, EDX, EDI & EBP

This function returns multiple RCBs that are chained together in a linked list
through theeCBLinkfield, which is the first double word of tHRCBDriverwWs

This function is used to discard multiple RCBs. It does not process RCBs.

Description
field.

See Also
MSMAllocateMultipleRCBs
MSMAllocateRCB
MSMReturnRCB

7-116

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

MSMReturnNotificationECB (macro)

MSMFastReturnNotificationECB (macro)

Processor States]

Description

Entry State

ESI pointer to the notification ECB
Interrupts can be in any state
Execute at process or interrupt time

Return State
Interrupts are disabled

Preserved MSMReturnNotificationECB - (ESI, EDI, and EBP
are preserved)

MSMFastReturnNotificationECB - (Assume all
registers are destroyed)

Drivers that support outside management NLMs (such as HMI or CSL) use
these macros to process notification ECBs containing management alert
information.

If the hardware generates an alert, the HSM obtains a notification ECB using
MSMAIllocateRCB. This procedure requires a packet size on entry. The size
specified will depend on the amount of information that must be passed up to
the management application. The driver fills in the ECB with the notification
information according to the driver management specification, sets ESI to

point to the ECB, and returns the notification ECB using one of these macros.

MSMReturnNotificationECB places the ECB in the LSLs holding queue and
waits for the HSM to call

MSMServiceEventsbefore passing it to the management NLM.
MSMFastReturnNotificationECB passes the ECB immediately to the
management application.

MSM Procedures and Macros 7-117

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

7-118

HubResetNotification proc

mov esi, 4
call MSMAIllocateRCB ; Get notification
ECB

(Fill in all required notification information)

mov esi, ECBPtr ; Point to the ECB
MSMFastReturnNotificationECB ; Return the ECB
directly to the

. ; management
application

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

MSMReturnRCB (macro)

Processor States Entry State
ESI pointer to the unneeded RCB
EBP pointer to the adapter data space
Interrupts can be in any state
Execute at process or interrupt time

Return State

Interrupts are disabled
Preserved EBX, ECX, EDX, EBP, and EDI
Description MSMReturnRCB returns an unneeded RCB to the LSL. This routine is called

Example

to discard the RCB, not to process it. To return an RCB for processing, see
<TSM>RcvCompleteor <TSM>ProcessGetRCB

mov esi, [ebp].ReceiveQueueHead ; ESI->
First RCB

mov [ebp].ReceiveQueueHead, 0 ; Clear
pointer

or esi,esi ; Valid
RCB?

jz ShutdownAIllIRCBsReturned ; Jump if
not

ShutdownReturnRCBLoop:

mov ecx, [esi].RCBDriverWS+4 ; ECX ->
Next RCB

MSMReturnRCB ; Return
RCB

mov esi, ecx ; ESI -
>Next RC B

or esi, esi ; Valid
RCB?

jnz ShutdownReturnRCBLoop ; Jump if
SO

MSM Procedures and Macros 7-119

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMScanBuslInfo

Processor States Entry State

ESI -
ScanSequence

Interrupts

Return State

EBX -
BusName

ECX

BusType

EDX
BusTag

ESI
ScanSequence

Flags
Interrupts

Preserved

Completion Codes in EAX cqge

SUCCESSFUL

ITEM_NOT_PRESENT

BAD_PARAMETER

must be initialized to -1 for the first search and then
passed back in for subsequent call

can be in any state

pointer to a static, null-terminated, architecture-
dependent string that is determined by the platform
developer

contains a value that indicates the bus type as
defined in ODI_NBI.INC. The currently defined
values are:

0 = ODI_BUSTYPE_ISA

1 =ODI_BUSTYPE_MCA

2 = ODI_BUSTYPE_EISA

3 = ODI_BUSTYPE_PCMCIA

4 = ODI_BUSTYPE_PCI

8 = ODI_BUSTYPE_CARDBUS

contains an architecture-dependant value that
specifies the bus

contains the scan sequence value to be used for the
next search

are set according to EAX
are preserved

EBP

Description

indicates the operation completed
successfully

indicates there are no more buses or
function is not available

the ScanSequence was invalid

7-120

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Description MSMScanBuslInfo searches the system for available buses Bitsdame
string must not be modified by the caller. If the caller needs to reference the
string at a later time, a local copy of the string must be made.

Example Driverlnit proc
mov
ScanBusLoop:
call
jnz
jmp
Driverlnit endp

esi, -1 ; -1 for first time thru

MSMScanBusInfo; scan for next bus
Done_Error_ScanningBus; done/error

ScanBusLoop; scan for next bus

MSM Procedures and Macros 7-121

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMScheduleAESCallBack

Processor States Entry State
EBP pointer to the Adapter Data Space
EAX Time Interval in ticks (1 tick = 1/18 sec)
Interrupts can be in any state, but are disabled during the call
Call only at initialization time (during Driverlnit)

Return State

EAX zero if successful; otherwise EAX points to an error
message which the driver must print using
MSMPrintString before returning to the operating
system with EAX non- zero.

Zero Flag set if successful; otherwise an error occurred.
Interrupts are preserved
Preserved EBX and EBP

Description This routine can be called durifiyiverlnit to enable a periodic call back to

the HSM'DriverAESCallBack routine. Once enableBriverAESCallBack

is invoked during process time at the intervals specified by EAX. The MSM
sets up the Adapter and Frame Data Space before dativerAESCallBack

and automatically schedules a new call back on return.

Note‘vvl MSMScheduleAESCallBack is used when process-time-only routines are
called by DriverAESCallBack . MSMScheduleTimer should be used to handle
timer events instead of MSMScheduleAESCallBack when possible (see

MSMScheduleTimer).

7-122 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example

Driverlnit proc
mov eax, 18 ; Schedule call
back in 18 ticks
call MSMScheduleAESCallBack
jnz ScheduleCallBackError

MSM Procedures and Macros 7-123

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMSchedulelntTimeCallBack

Processor States

Description

7-124

Note‘vl
\4

Note‘VI
v

Entry State
EBP

EAX
Interrupts

Call

Return State

EAX

Zero Flag
Interrupts

Preserved

pointer to the Adapter Data Space
Time Interval in ticks (1 tick = 1/18 sec)
are disabled and remain disabled

only at initialization time (during Driverinit)

zero if successful; otherwise EAX points to an error
message which the driver must print using
MSMPrintString before returning to the operating
system with EAX nonzero.

set if successful; otherwise an error occurred.
are disabled

EBX and EBP

This routine can be called durilyyiverlnit to enable a periodic call back to
the HSM'sDriverINTCallBack routine. Once enableByiverINTCallBack

is invoked during the timer tick interrupt at the interval specified by EAX. The
MSM sets up the Adapter and Frame Data Space before calling
DriverINTCallBack and automatically schedules a new call back on return.

DriverINTCallBack cannot be used if calls are made to routines which can be
invoked only at process time. DriverAESCallBack should be used instead (see
MSMScheduleAESCallBack). Also it is critical that ALL drivers call
MSMRegisterMLID before MSMSchedulelntTimeCallBack in order for the
driver to work properly in SMP mode.

MSMScheduleTimer is now the preferred method for setting up timer events.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

Example

Driverlnit proc
mov eax, 18 ; Schedule call
back in 18 ticks
call MSMSchedulelntTimeCallBack
jnz ScheduleCallBackError

MSM Procedures and Macros 7-125

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMScheduleTimer

Processor States Entry State
EBP pointer to the Adapter Data Space
ESI pointer to TIMER_STRUCTURE
Interrupts can be in any state.
Execute at interrupt or process time

Return State

Flags set according to EAX
Interrupts are unchanged
Preserved EBX and EBP

Completion Code in EAX

SUCCESSFUL The operation completed successfully.
BAD_PARAMETER The TIMER_STRUCTURE was invalid.
OUT_OF_RESOURCES Resources to complete operation were not available.

Description

When this procedure is called, the HSM passes in a TIMER_STRUCTURE
pointer with the procedure to be called and the time interval to wait before
calling that procedure.

This procedure must not be called until after the HSM has called
MSMRegisterMLID .

This method of handling timers is preferred over using
MSMScheduleAESCallBackandMSMScheduleIntTimeCallBack.

Even when called duringriverlnit an error return will NOT cause the release
of the driver’s resources. The driver must determine if it should continue with
initialization or abort.

7-126 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

TIMER_STRUCTURE

TIMER_STRUCTUREStruc
TimerNextLinkdd ?
TimerProcedurePtrdd ?
TimerType dd ?
Timerinterval dd ?
TimerContext dd ?
TimerReserveddb 30 dup (?)

TIMER_STRUCTUREends

Field descriptions:
TimerNextLink
Used to link TIMER_STRUCTURES together. Reserved for use by MSM.
TimerProcedurePtr
A pointer to the procedure that is called after the specified time Interval. On
call EBP will point to the Adapter Data Space and EBX will point to the
default Frame Data Space.
TimerType
Used to specify one of the following timer types:
AES_TYPE_PRIVILEGED ONE_SHOT
Call only once at privileged time
AES_TYPE_PRIVILEGED_CONTINUOUS
Call at privileged time
AES_TYPE_PROCESS_ONE_SHOT
Call only once at process time
AES_TYPE_PROCESS_CONTINUOUS
Call at process time
Timerinterval
The time in milliseconds to wait before calling TimerProcedure.

TimerContext

Reserved for use by MSM.

MSM Procedures and Macros 7-127

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

7-128

TimerReserved
Reserved for use by MSM.

The TIMER_STRUCTURE must remain allocated until the driver is unloaded.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMSearchAdapter

Processor States

Entry State

EAX - Product-
IDLength

EBX - ProductiD

ECX - BusType

ESI -
ScanSequence

Interrupts
Return State

CX - Instance-
Number

EDX - BusTag

ESI - Scan-
Sequence

EDI - Unique-
Identifier

Flags

contains the length of the product ID

contains a pointer to a bus architecture-dependent
parameter that uniquely identifies an adapter board/
peripheral/system option. The product ID appears in
memory as defined by the specification for the
BusType. For example, on an EISA bus, the EISA
product ID in memory as defined in the EISA
Specification

A bus type as defined in ODI_NBI.INC. The currently
defined values are:

0 = ODI_BUSTYPE_ISA

1 =ODI_BUSTYPE_MCA

2 = ODI_BUSTYPE_EISA

3 = ODI_BUSTYPE_PCMCIA

4 = ODI_BUSTYPE_PCI

8 = ODI_BUSTYPE_CARDBUS

must be initialized to -1 on the first search for each
ProductID, and passed back on subsequent calls for
the same ProductiD.

can be in any state

the hardware instance number for the device. The
hardware instance number is guaranteed unique
across all devices in the system and in many cases
is the physical slot number.

an architecture-dependant value that specifies the
bus on which the device was located

the scan sequence value to be used for the next
search

contains an architecture-dependent value returned
by MSMGetUniqueldentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

are set according to EAX

MSM Procedures and Macros 7-129

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Interrupts are preserved

Preserved EBP, EBX
Completion Codes in EAX cqge Description
SUCCESSFUL requested product was found
ITEM_NOT_PRESENT requested product is not present

Description MSMSearchAdapter takes a bus type and a pointer to a product ID and
returnsa BusTagand a slot number, where the specified device is found. This
function should be used only if the driver's adapter has a unique product ID
associated with it that can be read. The product ID must be retrievable
according to some accepted standard, such as EISA, MCA or PCI.
Example ProductiD db
ProductiDLen equ
Driverlnit proc
mov esi, -1 ; for first time thru
SearchAdapterLoop:
mov eax, ProductiDLen
lea ebx, ProcudtlD
mov ecx, BusType; bus type from
; MSMScanBusiInfo or constant
; like ODI_BUSTYPE_MCA
call MSMSearchAdapter
jnz Done_Error_SearchAdapter
jmp SearchAdapterLoop; go find next NIC
Driverlnit endp

7-130 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMServiceEvents (macro)

Processor States

Description

Entry State
Interrupts can be in any state

Execute at process or interrupt time

Return State

Interrupts are disabled on completion, but might have been
enabled during execution

Preserved NO registers are preserved

If the HSM has usedTSM>SendComplete <TSM>RcvComplete or
<TSM>ProcessGetRCB it must use eithaviISMServiceEventsor
MSMServiceEventsAndRetbefore it exits back to the operating system.

If the HSM must execute any instructions after it services events, then it must
useMSMServiceEventsinstead oMSMServiceEventsAndRet

In the example below, the adapter supports shared interrupts. In this case, the
operating system requires that EAX equal 0 if the interrupt is for the HSM. The
HSM must uséMSMServiceEventsand set EAX to O before returning. If
MSMServiceEventsAndRetis used, the HSM returns before it is able to set
EAX to 0. If the HSM does not support shared interrupts, it can return
immediately after servicing events, therefore, the
MSMServiceEventsAndRetmacro should be used.

If the HSM uses <TSM>FastSendComplete , <TSM>FastRcvComplete , or
<TSM>FastProcessGetRCB exclusively, it does not need to use
MSMsServiceEvents . The “fast” routines service events before returning.

MSM Procedures and Macros 7-131

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

7-132

DriverISR proc

DriverISREXit:
MSMServiceEvents ; Service Events queue
xor eax, eax ; Inform operating system
that interrupt
; was ours
ret

DriverISR endp

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMServiceEventsAndRet (macro)

Processor States

Description

Entry State
Interrupts can be in any state

Execute at process or interrupt time

Return State

Note this macro does not return to the HSM

If the HSM has usedTSM>SendComplete

<TSM>RcvCompletg or<TSM>ProcessGetRCB it must use either
MSMServiceEventsor MSMServiceEventsAndRetbefore it exits back to
the operating system.

Since this macro automatically returtdSMServiceEventsAndRetmust be

the last executable line of code in the routine. If the HSM must execute any
instructions after servicing events, it must useMi8MServiceEventsmacro
which does not automatically return.

If the HSM uses <TSM>FastSendComplete , <TSM>FastRcvComplete , or
<TSM>FastProcessGetRCB exclusively, it does not need to use
MSMServiceEvents . The “fast” routines service events before returning.

MSM Procedures and Macros 7-133

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Example

7-134

DriverISR proc

DriverlSREXit:

MSMServiceEventsAndRet ; Service Events
and Return.

DriverISR endp

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MSMSetHardwarelnterrupt

Processor States Entry State
EBP pointer to the Adapter Data Space
EBX pointer to the Frame Data Space
Interrupts are disabled and remain disabled
Call at process time

Return State

EAX zero if successful; otherwise EAX points to an error
message which the driver must print using
MSMPrintString before returning to the operating
system with EAX nonzero.

Zero Flag set if successful; otherwise an error occurred.
Interrupts are disabled
Preserved EBX and EBP

Description The HSM'sDriverlnit routine will call this function to set up a hardware
interrupt.
Example call MSMRegisterHardwareOptions
call MSMSetHardwarelnterrupt
jnz SetHardwarelntError

MSM Procedures and Macros 7-135

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMShutdownMLID

Processor States Entry State
EBP pointer to Adapter Data Space
ECX shutdown type, set to zero if permanent shutdown,
otherwise a partial shutdown is required.
Interrupts are disabled but may be enabled during the call
Call at process time only

Return State

Flags set according to EAX.
Interrupts are disabled.
Preserved EBP, EBX

Completion Code in EAX

SUCCESSFUL Shutdown was successful.
BAD_PARAMETER An input parameter was invalid or NULL.
FAIL The operation failed.

7-136 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Description

If DriverShutdown needs to be called from within the HSM it is done by this
function. The MSM puts the driver in a safe state and then calls
DriverShutdown. If a partial shutdown was performed a call to
MSMResetMLID will bring the driver out of shutdown state

If the operation is successful the SHUTDOWN flag/iS8M StatusFlagsis set
by the MSM. The MSM also produces a NESL suspend event for MLID
Shutdown.

Note‘vvl MSMShutdownMLID can not be called until after MSMRegisterMLID has been
called.

In prior versions of this specification an HSM could call its own
DriverShutdown routine; HSMs written to this version of the specification
must useMSMShutdownMLID .

MSM Procedures and Macros 7-137

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMSuspendPolling

Processor States Entry State
EBP pointer to Adapter Data Space
Interrupts can be in any state
Execute at process or interrupt time

Return State
Interrupts are unchanged

Preserved all registers

Completion Code in EAX
SUCCESSFUL Polling was successfully suspended.

BAD_COMMAND Callis invalid because MSMEnablePolling was never called
to begin with or polling is currently suspended (redundant
suspend calls).

Description

Suspends the calling of tiizriverPoll procedure untiMSMResumePolling

is called. The polling procedure is very expensive, especially in a
Multi-Processor environment. Each tideiverPoll is called the Mutex must

be acquired and bofriverDisablelnterrupts andDriverEnablelnterrupts

must be called. This keeps the Mutex held a high percentage of the time and
causes bus traffic. Most of the time tiatverPoll is called there is no usable
work that the driver needs to do yet while in the poll procedure the driver is
locked out from receiving interruptBriverSends, etc. Use
MSMSuspendPollingto temporarily stop the driver from being polled when

it is known that there is no usable work to do.

The POLLSUSPENDED flag in MLIDStatusFlags (bit 4) is set by the MSM
whenMSMSuspendPollingis called and cleared by the MSM when
MSMResumePollingis called and can be inspected by the HSM do determine
the current polling status.

7-138 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Example

DriverPoll proc

cmp [ebp].PollStatus, BUSY
je Don’t Suspend Polling
call MSMSuspendPolling

MSM Procedures and Macros 7-139

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMUpdateConfigTables

Allows a HSM to update all copies of the configuration table for an adapter.

Processor States Entry State

EBP
EBX
Interrupts

Execute

Return State
EAX
Preserved

Interrupts

Completion Code in EAX

pointer to the Adapter Data Space
pointer to a configuration table
can be in any state

at process or interrupt time

zero if successful, none-zero otherwise
all registers except EAX

are unchanged

SUCCESSFUL All Configuration tables for the adapter were updated.
BAD_PARAMETER An input parameter was invalid.

Description

MSMUpdateConfigTables copies the following configuration table fields
from the configuration table parameter to all configuration tables of a adapter
(all other configuration table fields are ignored):

MLIDNodeAddress
MLIDModeFlags
MLIDMaximumSize
MLIDCardName
MLIDShortName
MLIDTransportTime
MLIDLineSpeed
MLIDCFG_SGCount
MLIDPrioritySup

MLIDFlags

7-140 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

MLIDSendRetries

MLIDSharingFlags (the shutdown bit IODetachedBit
(see ODLI.INC) is the only bit copied).

MLIDMaxRecvSize andMLIDRecvSize are automatically adjusted by the
TSM based oMLIDMaximumSize

A HSM can callMSMUpdateConfigTablesany time to update an adapter’s
configuration tables. All fields copied from the configuration table parameter
must be valid befor®SMUpdateConfigTablesis called.

During a driver’s initialization for an adapter,
MSMReRegisterHardwareOptions automatically updates the adapter’s
configuration tables. A call tSMUpdateConfigTablesis only necessary if
the fields copied from theonfigTableparameter are modified after the call to
MSMRegisterHardwareOptions.

MSMUpdateConfigTablesupon successful completion will produce a NESL
Service/Status Change event to inform consumers of the event that the
configuration tables for the adapter have been updated.

MSMReRegisterHardwareOptionsis used to update the I0Config table
fields of the configuration tabl&®1SMUpdateConfigTablesand
MSMReRegisterHardwareOptions are complementary and care must be
taken to use the correct one.

MSM Procedures and Macros 7-141

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMWritePhysicalMemory

Processor States Entry State

ECX
ESI
EDI

Interrupts

Call

Return State

Preserved

number of bytes to write
logical source address (where to read data from)

physical destination address (where to transfer data
to)

may be in any state

during Driverlnit before
MSMRegisterHardwareOptions

EBX, EBP, ESI, and EDI

If the driver attempts to access shared RAM before calling

MSMRegisterHardwareOptions, a page fault abend will occur on the server.

ared RAM prior to registration do not normally happen

unless the HSM must obtain additional information such as interrupt numbers
or shared RAM buffer size for the configuration table.

used to write information to a shared RAM physical address

Description
Accesses to the sh
This routine can be
before hardware registration.
See Also
MSMReadPhysicalMemory
7-142

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

Example

mov
lea

mov
call

cmp
jne

edi, DestinationAddress ; physical shared RAM address

esi, [ebx].MLIDNodeAddress ; logical source is in frame data
;space

ecx, 6 ; write 6 byte node address

MSMWritePhysicalMemory ; transfer data
eax, 0 ; check for errors
ErrorWritingToSharedMemory ; Jump if so

MSM Procedures and Macros 7-143

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMWrtConfigSpace8

Processor States Entry State

EAX - Offset contains an offset into the configuration space.

EBX - Unique- contains an architecture-dependent value returned

Identifier by MSMGetUniqueldentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

ECX - BusTag contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

EDX - WriteVal DL contains an unsigned 8-bit value to write

Interrupts in any state

Return State
Interrupts preserved

Preserved EAX, EBX, ECX, EDX, ESI, EDI, EBP

Description This function takes an offsetUniqueldentifierand aBusTagto identify an

offset in a specific adapter’s configuration space and performs whatever
operations are necessary to deliver the value to the specified location.

The function is provided only for drivers that need to interact with
configuration space.

Note V! For most buses, this call will do nothing. It has meaning only on buses that have
a configuration address space that is separated from memory or I/O space (for
example, a PCI bus).

See Also
MSMSearchAdapter, MSMGetUniqueldentifier,
MSMGetCardConfiginfo, MSMRdConfigSpace8,
MSMRdConfigSpacel6, MSMRdConfigSpace32,
MSMWrtConfigSpacel6, MSMWrtConfigSpace32
Example Driverlni t proc

7-144 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

mov eax, OffsetTableEntry

mov ebx, Uniqueldentifier

mov ecx, BusTag

mov dl, ValueToWrite

call MSMWrtConfigSpace8
Driverlnit endp

MSM Procedures and Macros 7-145

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMWrtConfigSpacel6

Processor States Entry State

EAX - Offset contains an offset into the configuration space.

EBX - Unique- contains an architecture-dependent value returned

Identifier by MSMGetUniqueldentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

ECX - BusTag contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

EDX - WriteVal DX contains an unsigned 16-bit value to write

Interrupts in any state

Return State
Interrupts preserved

Preserved EAX, EBX, ECX, EDX, ESI, EDI, EBP

Description This function takes an offsetUniqueldentifierand aBusTagto identify an

offset in a specific adapter’s configuration space and performs whatever
operations are necessary to deliver the value to the specified location.

This function is provided only for drivers that need to interact with
configuration space.

Note V! For most buses, this call will do nothing. It has meaning only on buses that have
a configuration address space that is separated from memory or I/O space (for
example, a PCI bus).

See Also
MSMSearchAdapter, MSMGetUniqueldentifier,
MSMGetCardConfiginfo, MSMRdConfigSpace8,
MSMRdConfigSpacel6, MSMRdConfigSpace32,
MSMWrtConfigSpacel6, MSMWrtConfigSpace32
Example DriverInit proc

7-146 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

mov
mov
mov
mov
call

Driverlnit endp

eax, OffsetTableEntry
ebx, Uniqueldentifier
ecx, BusTag

dx, ValueToWrite
MSMWrtConfigSpacel6

MSM Procedures and Macros 7-147

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMWrtConfigSpace32

Processor States Entry State

EAX - Offset contains an offset into the configuration space.

EBX - Unique- contains an architecture-dependent value returned

Identifier by MSMGetUniqueldentifier or
MSMSearchAdapter . It specifies the location on the
bus where the device is located

ECX - BusTag contains an architecture-dependent value returned
by MSMSearchAdapter . It specifies the bus on
which the operation is to be performed

EDX - WriteVal contains unsigned 32-bit value to write

Interrupts in any state

Return State
Interrupts preserved

Preserved EAX, EBX, ECX, EDX, ESI, EDI, EBP

Description This function takes an offsetUniqueldentifierand aBusTagto identify an

offset in a specific adapter’s configuration space and performs whatever
operations are necessary to deliver the value to the specified location.

This function is provided only for drivers that need to interact with
configuration space.

For most buses, this call will do nothing. It has meaning only on buses that have
a configuration address space that is separated from memory or I/O space (for
example, a PCI bus).

See Also

MSMSearchAdapter, MSMGetUniqueldentifier,
MSMGetCardConfiginfo, MSMRdConfigSpace8,
MSMRdConfigSpacel6, MSMRdConfigSpace32,
MSMWrtConfigSpacel6, MSMWrtConfigSpace32

Example Driverlnit proc

7-148 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

mov eax, OffsetTableEntry

mov ebx, Uniqueldentifier

mov ecx, BusTag

mov edx, ValueToWrite

call MSMWrtConfigSpace32
Driverlnit endp

MSM Procedures and Macros 7-149

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MSMYieldWithDelay

Processor States Entry State

EBX
EBP
Interrupts

Execute

Return State
Interrupts

Preserved

pointer to the Frame Data Space
pointer to the Adapter Data Space
can be in any state

at process time only

are in the same state as when the routine was called

EBX, EBP, ESI, and EDI

Description MSMYieldWithDe

lay places the task last on the list of active tasks to be

executed. This routine must be called only at process time because it suspends
the process and could change the machine state. It must be used only in the
driver initialization and driver remove procedures.

Example .
. (initialization)

call MSMGetMicroTimer ; get current count

neg eax
mov edi, eax ; EDI = EAX negated
DriverShutdownWait:

MSMYieldWithDelay ; let other processes run

call MSMGetMicroTimer ; get current count

add eax, edi ; EAX = microseconds expired

cmp eax, 50 ; 50us passed?

jb DriverShutdownWait ; jump if not

7-150 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

AppendixA

Building the HSM

Development Process

This appendix describes the process of creating, assembling, linking, and
loading a NetWare server LAN driver.

Creating the Source Files

All NetWare server drivers are written in 386 assembly code using 32-bit
register operations. Chapters 2 through 7 provide the details for writing the
driver. The TOOLS directory on theAN Driver Developer’s KiCD has

source code you may use as an example when developing your driver. An
example source file might be named Driver.386. Additional include files are
also required as described in Chapter 1.

Assembling the Source Files

Note‘VI
v

The Driver.386 source file assembles into an object fileiver.OBJ The

driver may consist of one or more object files. An assembler that supports the
use of 32-bit registers is required. Novell engineers currently use the
386ASMP (v4.1 or later) protected mode assembler by Phar Lap Software, Inc.

Drivers must be assembled with the case sensitive option.

386ASMP ne2 - fullwarn -twocase

Building the HSM A-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Linking the Object Files

Linker Definition File

The NetWare linker (NLMLINKP) convertSriver.OBJand any other object
files that make up the driver into a super object file cdlleder.LAN.
NLMLINKP requires a linker definition file to create a NetWare Loadable
Module. The linker definition file is described below. To use the linker, type:

nimlinkp Driver

(whereDriver is the name of the linker definition file).

Each NetWare loadable module must have a corresponding definition file with
a “.DEF” extension. This file is needed by the NetWare linker, NLMLINKP.
All definition file information can also be embedded inside a make file and the
make file can produce the definition file. The definition file contains
information about the loadable module including a list of NetWare variables
and routines that the loadable module must access.

The following illustration is an example definition file that can be used to
create a LAN driver. The file consists of keywords followed by data. The
keywords may be upper or lower case.

Example Definition File

Keyword Data

*TYPE 1

* DESCRIPTION “NetWare NE2000”

* VERSION 5,30,2

* QUTPUT <drivername>

* INPUT <drivername>

* START Driverlnit

*EXIT DriverRemove
MODULE ETHERTSM
REENTRANT

A-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

* IMPORT EtherTSMRegisterHSM
EtherTSMGetRCB
EtherTSMRcvComplete
EtherTSMFastRcvComplete
EtherTSMSendComplete
EtherTSMFastSendComplete
EtherTSMGetNextSend
EtherTSMUpdateMulticast
MSMAlertFatal
MSMAIloc
MSMDriverRemove
MSMFree
MSMParseDriverParameters
MSMPrintString
MSMRegisterHardwareOptions
MSMRegisterMLID
MSMReturnDriverResources
MSMSchedulelntTimeCallBack
MSMHardwarelnterrupt

* Required Keywords

TYPE Tells the linker which extension to append to the output file. The default
extension is ".NLM". A value of 1 specifies ".LAN", and a value of 2 specifies
".DSK".

DESCRIPTION Tells the linker to save the description string in the header of
the <Driver>.LAN file. This string describes the loadable module and is from
1 to 127 bytes long. The console commands: MODULES, CONFIG, and
LOAD display this description string on the file server console.

Examples of the description string are shown here:
NetWare NE2000
3Com EtherLink Plus 3C503

OUTPUT Tells the linker what to name the output file.

INPUT Tells the linker what OBJ files to include in the loadable module. It is
not necessary to use the filename extension in this list.

Building the HSM A-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

START Tells the linker the name of the loadable module's initialization
routine, in this casBriverlnit. This is the procedure the NetWare loader will
call when the module is loaded.

EXIT Tells the linker the name of the loadable module's remove routine, in this
caseDriverRemoveThe UNLOAD command uses this routine to unload the
module from file server memory.

REENTRANT Allows the driver to be loaded more than once, but only have
the driver's code copied into memory the first time.

MAP Tells the linker to create a map file.

IMPORT Tells the linker which NetWare variables and routines the loadable
module must access.

EXPORT A list of variable and procedure names resident in the loadable
module that the loadable module wants to make available to other loadable
modules.

MODULE The loadable modules that must be loaded before the loadable
module defined by this file is loaded. If the necessary loadable modules are not
already in file server memory, the loader will attempt to find and load them. If
it cannot find them, the loader will not load the current module.

CUSTOM The name of a file that contains custom firmware data. When the
linker sees this keyword it includes the specified file in the output file it is
creating.

DEBUG Tells the linker to include debug information in the output file that it
creates. This allows public labels to be accessible as symbols in NetWare's
resident debugger.

CHECK Contains the name of the loadable module's check procedure. Both
the UNLOAD and DOWN console commands call a loadable module's check
procedure if one exists. A LAN driver's check procedure might check to see if
a LAN board is currently being accessed and return a non-zero value to the
NetWare operating system if the board is busy. The NetWare OS can then
display a message warning the console operator that the board is busy.

MULTIPLE Tells the linker that more than one code image of the loadable
module may be loaded into file server memory concurrently.

A-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Loading the Driver

COPYRIGHT Tells the linker to include a copyright string in the output file.
An ASCII string 1 to 252 bytes long, in double quotes following the keyword
copyright, is displayed whenever the module is loaded. To start a new line
within the displayed string, use “\n”. If the copyright keyword is used but no
string is entered, the linker includes the Novell default copyright message.

To use the copyright keyword, you must use the NLMLINKP.EXE.

VERSION Gives the linker the version of the module that should be placed
into the NLM header version field. The format for this keyword is:
VERSION Major, Minor [, Revision]

The version must be separated by commas. The Major version number is one
digit and the Minor version number is two digits. The Revision number is
optional and is a number from 1-26 representing a-z. For example, “VERSION
3,50,2 " produces the version field 3.50b in the NLM header of the output
file.

To use the version keyword, you must use the NLMLINKP.EXE. The date is
automatically set by the linker to the date that the files are linked.

On the Netware Server, the Driver.LAN file is loaded into the server's memory
using the LOAD command. The driver can be loaded from a floppy, a directory
on a DOS partition of the server's hard disk, or the SYS:SYSTEM directory of
the NetWare partition. The NetWare Loader resolves the driver's import list
and links the driver to the OS. Once loaded, the driver functions as if it had
been hard coded into the NetWare operating system.

The MSM.NLM and <TSM>.NLM must be loaded (only once) before any HSMs
are loaded. The required NLMs may all be auto-loaded using the "module”
keyword to load the <TSM>.NLM in the linker definition file.

To load the driver, you could enter a command similar to this:

LOAD <driver> FRAME=ETHERNET_802.3, PORT=300,
NODE=2608C760361, INT=3

The parameters do not have a set order. The commas are optional.

Building the HSM A-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Driver Confi guration File

HSMs that support a large number of custom keywords may have trouble
specifying all parameters on the command line. Command line parameters can
now be listed in a driver configuration file or load “response” file.

To use a load response file, type the parameters as they would appear on the
command line into the file. The parameters can be separated by either a space
or a carriage-return/linefeed. The filename you choose must have a .cfg
extension. Then at the command-line type:

LOAD <drivername>@<response filename>

If this file exists in the same directory as the driver, the MSM will open the file,
parse it, and process it along with other parameters on the command-line.

Load Ke ywords and Parameters

This section describes the parameters for the NetWare LOAD command. The
MSMParseDriverParametersutine handles the load command parameters in
drivers written using the MSM. The load parameters and examples of their use
are described below.

PORT This is the I/O mapped address base that the user wants the board to
use. A port length can also be included as shown in the following examples.
LOAD <driver> PORT=300
LOAD <driver> PORT=300:A
LOAD <driver> PORT=300:A PORT1=700:8

MEM This is the beginning address of the shared RAM that the board can use.
The size of the shared memory buffer can also be specified.

LOAD <driver> MEM=C0000

LOAD <driver> MEM=C0000:1000

LOAD <driver> MEM=C0000:1000 MEM1=CC000

INT This is the interrupt number that the board is expected to use to awaken
the ISR routine.

LOAD <driver> INT=3
LOAD <driver> INT=3 INT1=5

DMA If the board supports DMA, this is the Direct Memory Address channel
that the NIC should use for data transfer to memory.

A-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

LOAD <driver> DMA=0
LOAD <driver> DMA=0 DMA1=3

SLOT Refer to the MLIDSIot field description in Table 3.2, "Configuration
Table Field Descriptions" on page 3-22 of this document.

RETRIES This is the number of send retries that the MLID should use in its
attempts to send packets.
RETRIES=n or RETR=n

CHANNEL This is the channel number (controller number) to use for
multichannel adapters. A multichannel adapter is a board containing more than
one network interface controller.

CHANNEL = number

BELOW16 This keyword must be specified on the load command-line if the
driver needs memory allocated below the 16 Megabyte boundary. This
keyword is required only if the driver is loaded on a system that initially has
less than 16 megabytes of memory but will have more memory added later
using the server's REGISTER MEMORY command. In addition, the driver
must also set thBriverNeedsBelow16Mefield of theDriverParameterBlock
to a non-zero value.

BELOW16

BUFFERS16 This keyword is used to override the number of RCB’s below
16 Megabytes allocated by the MSM at initialization. The HSM must set
DriverNeedsBelow16Meig the DriverParameterBlock for this keyword to be
valid. The RCB allocation routine®SMAllocateRCB, <TSM>GetRCB,
<TSM>ProcessGetRCRetc.,) use these RCB’s if the RCB allocated from the
LSL is physically over 16 Megabytes. The number of RCB’s allocated by
defaultis 8. If the HSM preallocates more than 8 RCB's at a time, the user can
override this default when loading the driver by typing the keyword:
BUFFERS16=n

The MSM will force this value to a multiple of 8, so values other than 8, 16,
32... areinvalid. No restriction is placed on the maximum value, except that the
MSM may not be able to allocate enough memory from the OS. To increase
the size of the OS memory pool of buffers below 16 Megabytes, insert the
following set command in the STARTUP.NCF file:

“set reserved buffers below 16 Meg = xxx”

Where xxx is a multiple of 8, between 8 and 200 (Default is 16).

Building the HSM A-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

A-8

FRAME This is a string specifying the frame type (seeRteme Types and
Protocol IDssupplement for a list of frame type strings).
FRAME = type

LSB/MSB ADDRESS FORMATS Token-Ring drivers may add “MSB” or
“LSB” following the frame type designation. LSB forces canonical addresses
to be passed between the MLID and the upper layers. The MSB designation
forces non-canonical addresses to be passed (this is the default for Token-Ring
media). Ethernet may not use the MSB designator.

NODE This is the node address that the board is to use; this address should
override the default address on the board if any.
NODE = nnnnnnnnnnnn

In the case of Token-Ring media, which has a non-canonical physical layer
format, the override node address on the command-line may be entered in
either canonical or non-canonical format (seeGaeonical and Non-
Canonical Addressingupplement). To indicate the format of the address, an
“L” (LSB) or an “M” (MSB) may be appended. For example, to indicate a node
address for Token-Ring media in canonical format enter:

NODE = nnnnnnnnnnnnL

No matter what the format of the node address specified on the command-line,
the format of the node address actually placed in the configuration table is
indicated by bit 14 in the

MLIDModeFlagsbyte.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Appendix

Introduction

B The NetWare Debugger

The NetWare operating system includes an internal assembly- language-
oriented debug utility. The NetWare debugger provides the commands
summarized in the following table. These commands and examples of their use
are explained in the remainder of this appendix.

NetWare Debugger Commands

A

B

BC number

BCA

B = addr [condition]
BW = addr [condition]
BR = addr [condition]
C addr

C addr=number(s

C addr="text"

.C

D addr [length]
DL[+linkoffset] addr [length]
linked list

REG=value
ECX, EDX,

F Flag=value
TF, PF, DF or

G [break addr(s)]
H

HB

HE

H

| [B;W;D] Port

displays the abend or break reason

displays all current breakpoints

clears the specified breakpoint

clears all breakpoints

sets an execution breakpoint at address

sets a write breakpoint at address

sets a read/write breakpoint at address

changes memory in interactive mode

changes memory to the specified number(s)
changes memory to the specified text ASCII values
does a diagnostic memory dump to diskette

dumps memory for optional length

dumps memory starting at address for optional length and traverses a

(default link field offset is 0)
changes the specified register to the new value, where REG is EAX, EBX,

ESI, EDI, ESP, EBP, EIP, or EFL
changes the FLAG bit to value (0 or 1) where FLAG is CFAF, ZF, SF, IF,

OF

begins execution at current EIP and set optional temporary breakpoints(s)
displays basic debugger command help screen

displays breakpoint help screen

displays expression help screen

displays the dot help screen

inputs byte, word, or dword from Port (default is byte)

The NetWare Debugger B-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

M addr [L length] pattern
rest of

M

N symbolName addr
N -symbolName

N--

O [B;W;D] Port=value
P

T
QD
o
Q

addr

AWML IT IO

U addr [count]
\%

v

Z expression
? [addr]
(default is

searches memory for pattern (L length is optional and if not specified, the

memory will be searched)

displays loaded module names and addresses
defines a new symbol name at address
removes defined symbol name

removes all defined symbols

outputs byte, word, or dword value to PORT
proceeds over the next instruction

displays all process names and addresses
displays <address> as a process control block
quits and exits back to DOS

displays registers and flags

displays the running process control block
single-steps

displays all screen names and addresses
displays <address> as a screen structure

trace (single-step)

unassembles count instructions starting at address
Views server screens

displays server version

evaluates the expression (See HE help screen)
If symbolic information has been loaded, the closest symbols to address

EIP) are displayed

Invoking the Debugger

There are four methods available to invoke the debugger.
From the server console keyboard

1. Press th&CTRL> - <ALT> - <LEFT-SHIFT> - <RIGHT-

SHIFT>-<ESC> key combination simultaneously at the server console
keyboard. This will not work if the server is hung in an infinite loop with
interrupts disabled or if the server console is secured.

. After the driver abends or GPlIs the server, enter the key combination

described in method 1 above or type 386debug. The characters do not echo
to the screen, but the debugger prompt (#) appears.

From a driver or NLM

. Include an INT 3 in the desired code segment where the break-point is to

be executed. Programs written in C using CLIB can calBtieakpoint ()

B-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

function. Programs written in C using the OS library can call the
EnterDebugger (junction.

Manually

4. Generate a non-maskable interrupt with an NMI board. This will cause the
server to Abend, after which method 2 above may be performed. This
method may be required if the software being debugged is in an infinite
loop with interrupts disabled.

When the debugger is entered, it will display the location at which the trap
occurred, the cause of the trap into the debugger, and the contents of the
general registers and flags.

Once you have entered the debugger, the address and length of the data and
code segments of all loaded modules may be found usingrit@e@mmand.
Breakpoints can then be set in the driver code using addresses in the map file
relative to the addresses dumped by the debugger.

The available debugger commands are explained on the following pages of this
appendix.

The NetWare Debugger B-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

B-4

Debug Commands

Help

The debugger's help commands are:

H display help for general commands
HB display help for breakpoints
HE display help for expressions
H display help for "." commands

" Commands
a display the Abend or break reason
.C do a diagnostic memory dump to diskette
.h display help for "." commands.
.m display loaded module names and addresses.
p display all process names and addresses.
.p addr display address as a process control block
.r display running process control block.
.S display all screen names and addresses.

.S addr display all screen names and addresses.
A display server version

Breakpoints

There are four breakpoint registers, allowing a maximum of four breakpoints

to be set at the same time. The breakpoints can be permanent breakpoints, set
using the B commands (described in this section), or temporary breakpoints set
using the G command. In addition, the P command will also set a temporary
breakpoint if the current instruction cannot be single stepped. This section
consists of descriptions and examples for setting permanent breakpoints.
Temporary breakpoints using the G and P commands are described later in this
chapter.

Breakpoint Conditions

Several breakpoint commands include an optional [condition] argument. A
breakpoint condition is any expression to be evaluated when the break occurs.
If the condition is false, execution is resumed immediately without entering the
interactive debugger.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

B

Display all breakpoints that are currently set.
#B

Breakpoint O write byte at FFF65623
Breakpoint 1 read or write byte at 000653BA
Breakpoint 2 execute at FFFO6BA3

BC number

Clear the breakpoint specified by number.
#BC 2

Breakpoint cleared

BCA

Clear all breakpoints.
BCA

All breakpoints cleared

B = address [condition]

Set an execution breakpoint at tddressspecified when the indicated
[condition] is true.
B = FFF8765A

Set as breakpoint 0

BW = address [condition]

Set a write breakpoint at tleeldressspecified when the indicat¢dondition]
is true.
BW = FFF665AB

Set as breakpoint 1

The NetWare Debugger B-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

BR = address [condition]
Set a read/write breakpoint at thédressspecified when the indicated

[condition] is true.
BR = 0065ACF3

Set as breakpoint 2

Memory

This section describes how to change or display memory contents.

C address
Interactively change the contents of memory locasiddress.

(To end interactive mode, type a period.)
C FFF6432A

FFF6432A (00)=33
FFF6432B (34)=C8
FFF6432C (5A)=.

C address = number(s)

Change the memory contents beginningdatresgto the specifiechumber(s)
C FFF534C5 = 00,00,12,5A,78

Change successfully completed

C address = “text string”

Change the memory contents beginningddresgo the specifiedext string
C FFF60DB3 = “This is a strin g.”

Change successfully completed

B-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

D address [count]

Dumps the contents of memory, startingdtiress for [count] number of
bytes. The address and count are hexadecimal numbers. If the count is not
specified, one page (100h bytes) will be display. The D command can be
repeated by pressirENTER>at the # prompt.

D FFF7765E

FFF7765E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7766E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7767E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7768E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7769E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776AE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776BE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776CE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF776DE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776EE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF776FE 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF7770E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

FFF7771E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7772E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7773E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF7774E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

#D FFF7765E 10

FFF7765E 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

The NetWare Debugger B-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

B-8

M address [L length] bytepattern

Search memory for byte patterrmatch, starting at location address and
continuing until[lL length]is reached. If a match is found, 128bytes (beginning
with the pattern) are displayed. The M command can be repeated by pressing
<ENTER>at the # prompt.

M FFF77F00 54 48 45 52

FFF77F1C 54 48 45 52 4E 45 54 5F - 49 49 00 90 00 00 00 00
THERNET _II......

FFF77F2C 00 00 00 00 00 00 90 6B - F7 FF 00 00 00 00 00 00
...... kw........

FFF77F3C 48617264 77617265-447269 7665 724D 4C
HardwareDriverML

FFF77F4C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF77F5C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF77F6C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF77F7C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00
FFF77F8C 00 00 00 00 00 00 00 00 - 00 00 00 00 00 00 00 00

#M FFF77F5C L1F 54 48

Match not found

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Register Manipulation

This section describes the debugger commands used on the microprocessor's

general and flag registers.

R

Display the EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, EIP, and Flag
Registers.
#R

EAX=99999999 EBX=00005455 ECX=78787878
EDX=00060544

ESI=00000000 EDI=80868086 EBP=00000000
ESP=FFF67876

EIP=FFF56784 FLAGS=00010002

register = value
Change the specifiegisterto the newalue.The command is effective with

EAX, EBX, ECX,EDX, ESI, EDI, ESP, EBP, and EIP.
EAX=8099ACB3

Register changed
F flag = value
Change the specifidthg to the newalue(0 or 1). The command is effective

with the CF, AF, ZF, SF, IF, TF, PF, DF, and OF flags.
#F PF=0

Flag changed

Input/Output

This section describes the debugger's I/0 commands.

|[B,W,D] port

Input a byte, word, or double word froport.
#125A

The NetWare Debugger B-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Port (25A)=F8
1B 25A

Port (25A)=F8

IW 1B3

Port (1B3)=D3FF

O[B,W,D] port = value

Output a byte, word, or double wovdlueto port.
0 25B=7D

Output completed
OW 18E=3COF

Output completed

Miscellaneous

This section consists of descriptions of the remaining debugger commands.

G [address(es)]

Begin execution (Go) from current position and set temporary breakpoint
[address(es)]
G FFF56784

Break at FFF56784 because of go breakpoint

EAX=99999999 EBX=00005455 ECX=78787878
EDX=00060544

ESI=00000000 EDI=80868086 EBP=00000000 ESP=FFF67876
EIP=FFF56784 FLAGS=00010002

FFF56784 BB30CE0500 mov ebx, 0005CE30

N symbolname value

Define a new symbol with @alue.

B-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

N thiss ym OFOF

P
Proceed over next instruction. This command is similar to the “Trace” or

“Single Step” command but it will not single step loops or calls. The P
command can be repeated by pressiBYi TER>at the # prompt.

Q

Quit and return to DOS.

TorS

Trace or Single Step through the program. The T or S commands can be
repeated by pressiiENTER> at the # prompt.

U address [count]
Unassembleountinstructions fromaddressThe U command can be repeated

by pressingckENTER>at the # prompt.
u FFF87885 2

FFF87885 0000 add [eax], al
FFF87887 0000 add [eax], al

Vv

View the screens (will step through the screens sequentially).

Z expression

Evaluate the expression (similar to calculator).
#2z7+8

Evaluates to: F

The NetWare Debugger B-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Debug Expressions

All numbers in debug expressions are entered and shown in hex format. In
addition to numbers, the following registers, flags, and operators can be used
in expressions and breakpoint conditions:

Registers: EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP, EIP
Flags: FLCF, FLAF, FLZF, FLSF, FLIF, FLTF, FLPF, FLDP, FLOF

Operators and Precedence

Symbol Description Precedence
! logical not 1
- 2's compliment 1
~ 1's compliment 1
* multiply 2
/ divide 2
% mod 2
+ addition 3
- subtraction 3
>> bit shift right 4
<< bit shift left 4
> greater than 5
< less than 5
>= greater than or equal to 5
<= less than or equal to 5
== equal to 6
I= not equal to 6
& bitwise AND 7
A bitwise XOR 8

| bitwise OR 9
&& logical AND 10
Il logical OR 11

B-12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Grouping Operators

The operators (), [], and { } have a precedence of 0. These grouping operators
can be nested in any combination.

(expression)
Causes the expression to be evaluated at a higher precedence.
[size expression]
Causes the expression to be evaluated at a higher precedence and then uses the
value of the expression as a memory address. The bracketed expression is
replaced with the byte, word, or double word at that address. “Size” is a data
size specifier of the type B, W, or D.
{size expression}
Causes the expression to be evaluated at a higher precedence and then uses the
value of the expression as a port address. The bracketed expression is replaced
with the byte, word, or double word input from the port. “Size” is a data size
specifier of the type B, W, or D.

Conditional Evaluation

expressionl ? expression2, expression3

If expressionis true, then the result is the value of
expression2otherwise, the result is the valueefpression3.

The NetWare Debugger B-13

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Symbolic Information

B-14

Note‘vl
\v

Symbolic information may be included in a driver file that can be used to
access routines or variables by name while in the NetWare 386 debugger. To
access symbolic information, the following steps must be taken:

1. Declare public all desired symbols in the driver.
2. Include the keywordebugin the driver's linker definition file.

Each of these symbol names (the debugger is case-sensitive) can now be used
in the same way the address they represent would be used. For example, at the
debug prompt it is possible to display memory beginning at the address of the
label
AdapterBdStrucby entering:

#d AdapterBdStruct

Symbols may be dynamically defined by the debugger. If it is necessary to
dynamically define more than 10 symbols the server must be loaded with the -
y option.

Debugging information must be removed before releasing the driver. Including
the debug keyword in the definition file will cause a message to be displayed on
the console when the driver is loaded, indicating that it contains debug
information

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Appendix C

Overview

Note‘VI
v

NESL Support

The NetWare Event Service Layer (NESL) handles event registration and
notification. The NESL is designed around the concept of consumers and
producers. Generally, a producer will produce events, which a consumer
consumes. The NESL provides the following services:

« Registers the event producer

- Deregisters the event producer

« Performs the event notification

« Registers the event consumer

« Deregisters the event consumer
For a given event type, there can be multiple consumers and producers
simultaneously. A client module must register as a producer of an event in
order to produce that event. Likewise, a module must register as a consumer of

an Event Type in order to consume the event.

If a consumer chooses to consume an event, it will notify the producer that the
event is consumed, and event notification will end.

When a producer or consumer is removed from the system, it must deregister
all producer/consumer events it has registered.

Tasks should be designed to run to completion. If consumer and producer
routines are running asynchronous event types (for example, IPX packet
interrupts), the routines must be resident. MSMNESLProductEvent will not
protect the consumer routine from being reentered.

The NESL maintains a list for each event class. When a producer calls the
NESL to signal that an event has occurred within a class, the NESL notifies

NESL Support C-1

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

everyone in the consumer list. The order used to call the consumers depends
on the level of the OSI model the consumer belongs to and the calling direction
defined by the event class.

The data definitions for the NESL are located in ODI_NESL.INC.

Registering and Deregistering Event Producers

Event producers uddSMRegisterProducer to register with the NESL as a
producer of an event class. Once it registers, the event producer calls
MSMNESLProduceEventor MSMNESLProduceMLIDEvent to notify
event consumers when an event takes place.

Note‘vvl Event producers can also register as event consumers.

When an event producer no longer provides events, it calls
MSMNESLDeRegisterProducerfor that event. For example, when an event
providing module is unloading, its clean-up function must first call
MSMNESLDeRegisterProducerfor each event it has added. The module
could then complete its unloading process.

Registering and Deregistering Event Consumers

Event consumers must register with the NESL in order to receive notification
when an event occurs. These modulesM&MRegisterConsumerfor each
event class they wish to be notified of.

When an event consumer no longer requires event notification, or before it
unloads, it must deregister by calliMSMNESLDeRegisterConsumerfor
each event it registered for.

C-2 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

NESL Structures

EPB (Event Parameter Block) Structure

EPB struc
EPB_MajorVersion dd *?
EPB_MinorVersion dd ?

EPB_EventName dd 2
EPB_EventType dd ?
EPB_ModuleName dd ?
EPB_DataPtr0 dd ?
EPB_DataPtrl dd ?
EPB_EventScope dd 2
EPB_Reserved dd ?
EPB ends

Field Descriptions:

EPB_MajorVersion
Major version of the Event Parameter Block. The current version is 1 (for
1.00).

EPB_MinorVersion
Minor version of the Event Parameter Block. The current version is O (for
1.00).

EPB_EventName

Event Name (class name) for the event as registered with NESL--for
example, Service Suspend or Service Resume. All valid event names must
be registered with Novell Labs.

EPB_EventType

Name for the Event Type. An example of an Event Type for Service
Suspend is APM Suspend. All valid Event Type names must be registered
with Novell Labs.

EPB_moduleName

Pointer to the module name that generated the event--for example,
NE2000.

NESL Support C-3

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

EPB_DataPtrO
Used to pass a pointer to the configuration table.

EPB_DataPtrl
Used for event dependent information.

EPB_EventScope
The CHSM must set this field to EPB_SPECIFIC_EVENT.

EPB_Reserved
Reserved by Novell.

NESL_ECB Structure
The following defines the NESL_ECB structure.

NESL_ECB struc
NESL_ECBNext
NESL_ECBVersion
NESL_ECBOsiLayer
NESL_ECBEventName
NESL_ECBRefData
NESL_ECBNotifyProc
NESL_ECBOwner
NESL_ECBWorkSpace
NESL_ECBContext

NESL_ECB ends

Field descriptions:

NESL_ECBNext
Reserved. This field should not be modified by the calling routine while
the NESL_ECB structure is registered.

NESL_ECBVersion

This field contains the version number of the NESL_ECB structure. This
field allows the interface to be expanded in the future while still providing
full backward compatibility. The current version is 2.

C-4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

NESL_ECBsiLayer
Determines the ordering of registered consumers of the same event. The
format of this field is OXLRRR, where L is the number (0-7) corresponding
to the OSl layer and RRR (0-4095) is the relative order with other modules
also registered on that layer. The relative ordering is useful when certain
events require specific consumer ordering.

The definition NESL_HOOK_FIRST can also be used in element
NESL_ECBOsiLayeiThis definition causes a consumer to be hooked
first, no matter what. If the caller sets the low bytBlBSL_ECBOsiLayer

to this value, the consumer will be hooked first in the consumer list.
Normally, NESL events will put lower layer identifiers before the hooked
lead element. If another call is made specifying this definition, an error
will be returned to the caller and the element will not be added to the list.

NESL_ECHEventName
ASCIIZ name string of the event (class). This name has the maximum
length of NESL_MAX_NAME_LENGTH.

NESL _ECRefData

This field is used by producers onfyonsumers do natse this field.
Consumers must set this field to NULL when registering.

This is a flag field used to specify whether the event is unique or
consumable. It also indicates the sorting order for calling registered
consumers at event time.

Consumers that are on the orphan consumer list will be sorted when a new
producer is registered. All consumers that are registered after a producer
is registered will be correctly sorted.

NESL_ECBIotifyProc
Pointer to the event notification callback routine.

UINT32 MyNotifyProc (
NESL_ECB *ConsumerNecb,
NESL_ECB *ProducerNecb,
Void *eventData)

ConsumerNech

Points to the NESL_ECB structure used by consumer during
MSMNESLRegisterConsumetr

NESL Support C-5

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

ProducerNecb
Points to the NESL_ECB structure used by the producer during
MSMNESLRegisterProducer.

EventData

If the producer only has one data item, it can be passed to the
consumer as an argument or as an address.

If the producer has more than one data item or if the producer wishes
to guarantee portability, the address of an array of data items should
be passed. The structureesfentDatamust be defined by the

producer and known by the consumer if it is to be interrupted

properly.
Return from a consumer after an event notification callback:
NESL _EVENT_CONSUMED

Event was consumed by the consumer process.

NESL _EVENT_NOT_CONSUMED
Event was not consumed by the process.

Note, this is only really applicable if the event is consumable, but a
consumer should always do this to be compatible with both types of
events. Called from foreground time or from interrupt time with interrupts
enabled or disabled.

NESL_ECBwner

Specifies the owner of the NESL_ECB structure. This field is platform-
specific and platform-dependent. The DOS/MS Windows implementation
requires this field to be set to the owner's module handle information.

NESL_ECB\VorkSpace
Reserved. This field should not be modified by the calling routine while
the NESL_ECB structure is registered.

NESL_ECBContext

This field is available for use by the owner of the NESL_ECB structure. It
will not be modified by anyone else in the system. It may be used by the
owner to pass context or other data to the notification procedure. If the
owner is not using this field, it must be set to NULL.

C-6 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Events and Types

Event names and specific event types are identified with ASCIIZ strings.
Novell has defined four event names along with some specific event types.
However, anyone can define event names or event types by defining unique
names (ASCIIZ strings) for them. The definition of an Event Name must also
include the direction in which the consumers of the event Event Name will be
called (that is, called from the top of the OSI model down or from the bottom
up). Event types that are added to existing event names must fit within the
definition of the event name.

Below is a list of the event names and event types defined by Novell.

Event Names

Event Name Description

Suspend Notification The Event Name contains any
event that suspends a service. This
event is called from the top of the
OSI model down.

Resume Notification This Event Name contains event
types that indicate the availability
of a new service or the restoration
of a previously available service.
This event is called from the
bottom of the OSI model up.

Service/Status Change This Event Name contains event
types that signal a change in status
or the current level of service. This
event is called from the top of the
OSI model down.

Suspend Request This Event Name contains event
types that request permission to
suspend service before the service
is actually suspended. This eventis
called from the top of the OSI
model down.

NESL Support C-7

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Event Types

Service Suspend T ypes

Type Name Description

MLID Cable Disconnect This Event Type indicates that the
cable has been disconnected from a
given NIC. A pointer to the
MLID's configuration table is
passed in the EPBDataPtr0 field of
the Event Parameter Block.

MLID Card Removal This Event Type is triggered by the
hardware and indicates that the PC
Card has been removed from a
socket. A pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block. Even though this
Event Type puts the MLID into
shutdown mode, it does not
generate a shutdown event.

MLID Hardware Failure This Event Type indicates that a
serious hardware failure has
occurred with the NIC. A pointer
to the MLID's configuration table
is passed in the EPBDataPtr0 field
of the Event Parameter Block.

MLID Not In Range This Wireless Event Type indicates
that there is no access point in
range. A pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block.

MLID Shutdown This Event Type is triggered
through the MLID control services
and indicates that an MLID was
shutdown. A pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block.

C-8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

MLID Media Access Denied

Suspend Request

This Event Type indicates that
access to the physical medium was
either denied or unsuccessful. A
pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block.

Currently no event types have been defined for this class.

NESL Support C-9

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

Service Resumed T ypes

Type Name
MLID Cable Reconnect

MLID Card Insertion Complete

MLID In Range

MLID Reset

Description

This Event Type indicates that the
cable has been reconnected to a
given NIC. A pointer to the
MLID's configuration table is
passed in the EPBDataPtr0 field of
the Event Parameter Block.

This Event Type is triggered when
a new logical board is added to the
system and LAN adapter and
driver are fully functional. A
pointer to the MLID's
configuration table is passed in the
EPBDataPtrO field of the Event
Parameter Block. This Event Type
does not trigger a reset event.

This wireless Event Type indicates
that there is an access point in
range again. A pointer to the
MLID's configuration table is
passed in the EPBDataPtr0 field of
the Event Parameter Block.

This Event Type is trigger by the
MLID control services and
indicates that an MLID was just
reset. A pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block.

C-10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

Service/Status Chan ged Types

Type Name
MLID Access Point Change

MLID Speed Change

MLID Config Table Change

Description

This Event Type indicates that a
station has moved from one access
point's range to another and that
the new access point will start
serving the station. A pointer to the
MLID's configuration table is
passed in the EPBDataPtr0 field of
the Event Parameter Block.

This Event Type indicates that
there has been a change in the
communication speed. For
example, in the wireless
environment this could be caused
by the radio link due to a change in
the quality of the signal. A pointer
to the MLID's configuration table
is passed in the EPBDataPtr0 field
of the Event Parameter Block.

This Event Type indicates that the
MLID configuration tables have
been updated by
MSMUpdateConfigTables A
pointer to the MLID's updated
configuration table is passed in the
EPBDataPtrOfield of the Event
Parameter Block. The MSM
produces this event inside
MSMUpdateConfigTables.

NESL Support C-11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

C-12

MLID DeRegister Resource
Change

MLID ReRegister Hardware
Options

This Event Type indicates that a
resource registered using
MSMRegisterResourcehas been
deregistered using
MSMDeRegisterResource A
pointer to the MLID's
configuration table is passed in the
EPBDataPtrOfield of the Event
Parameter Block. The MSM
produces this event inside
MSMDeRegisterResource

This Event Type indicates that
hardware resource(s) have been
reregistered using
MSMReRegisterHardwareOpti
ons A pointer to the MLID's
configuration table is passed in the
EPBDataPtr0 field of the Event
Parameter Block. The MSM
produces this event inside
MSMReRegisterHardwareOpti
ons

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

NESL Return Codes

NESL_OK
NESL_EVENT_CONSUMED
NESL_EVENT_NOT_CONSUMED
NESL_EVENT_BROADCAST
NESL_EVENT_NOT_REGISTERED
NESL_EVENT_TABLE_FULL
NESL_EVENT_IS_CONSUMABLE
NESL_EVENT_IS_NOT_CONSUMABLE
NESL_NO_MORE_EVENTS
NESL_PRODUCER_NOT_FOUND
NESL_CONSUMER_NOT_FOUND
NESL_INVALID_CONTEXT_HANDLE
NESL_INVALID_DESTINATION
NESL_REGISTERED_UNIQUE
NESL_REGISTERED_NOT_UNIQUE
NESL_REGISTERED_CONSUMABLE
NESL_REGISTERED_BROADCAST

NESL_REGISTERED_SORT_TOP_DOWN
NESL_REGISTERED_SORT_BOTTOM_UP

NESL_DUPLICATE_NECB
NESL_INVALID_NOTIFY_PROC

NESL_INVALID_FIRST_ALREADY_HOOKED

The NESL return codes (located in NESL.H) are as follows:

00000000h
00000000h
00000001h
00000002h
00000003h
00000004h
00000005h
00000006h
00000007h
00000008h
00000009h
0000000ah
0000000bh
0000000ch
0000000dh
0000000eh
0000000fh
00000010h
00000011h
00000012h
00000013h
00000014h

NESL Support C-13

Part Number: 107-000007-001
March 26, 1998

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ZI'IA 200 - TE'€A 2ads

Spec v3.31 - Doc v1.12

NESL Event Flags

C-14

The following are the NESL event flags:
NESL_BROADCAST_EVENT
NESL_SORT_CONSUMER_TOP_DOWN
NESL_SORT_CONSUMER_BOTTOM_UP
NESL_CONSUME_EVENT
NESL_UNIQUE_PRODUCER
NESL_NOT_UNIQUE_PRODUCER

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

00000000h
00000000h
00000001h
00000002h
00000004h
00000000h

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

NESL OSI Layer Definitions

The following are the NESL OSI layer definitions:

NESL_APPLICATION_LAYER 7000h
NESL_PRESENTATION_LAYER 6000h
NESL_SESSION_LAYER 5000h
NESL_TRANSPORT_LAYER 4000h
NESL_NETWORK_LAYER 3000h
NESL_DATALINK_LAYER 2000h
NESL_PHYSICAL_LAYER 1000h

NESL Support C-15

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZI'IA 200 - TE'€A 2ads

Spec v3.31 - Doc v1.12

C-16

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Revision History

Note\QAYA This Revision History covers all document changes from Doc Version 1.00 to
" Doc Version 1.10 and from Doc Version 1.10 to Doc Version 1.11.

Page numbers for items 1 through 13 refer to Doc Version 1.00.
Page numbers for items 14 through 17 refer to Doc Version 1.10.

Page numbers for items 18 through 21 refer to Doc Version 1.11.

1. In the following three functions,

HSMPrintString (Page 7-91),
MSMPrintStringFatal (Page 7-93),
MSMPrintStringWarning (Page 7-95),

the NULL terminated message pointed to by the ESI register, which
includes possible argument #1 and possible argument #2, cannot
exceed 128 bytes.

2. IntheDriver Parameter Block definition on page 3-5, tHeriverISR2Ptr
field occurs twice. The second occurrence of@hieerlSR2Ptrfield
(which is on the third line from the bottom of the page) is a duplicate and
should be ignored.

3. IntheDriver Configuration Table definition on page 3-15, the
MLIDCFG_MinorVersionis defined as 13. It should be 14.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

4. On page 5-35, Driver Priority Queue Support, under "Processor States:
Entry State" the ESI line should read:

ESI
Pointer to a transmit ECB.

The entire ECX line should be deleted.

5. Onpage 3-25, in theonfiguration Table Field Descriptions change the
Description forMLIDBusTag to read:

Pointer to an architecture-dependent value, which specifies the bus on
which the adapter is found. Set this field before calling
ParseDriverParameters The value placed in this field is returned by
SearchAdapterunless the board is Legacy ISA, in which case itis set
to zero.

6. On page 1-7, "Loading Driver Modules", replace the first paragraph with
the following paragraph:

The ODI Toolkit components for the specific platform being used
must be loaded before the HSM is loaded. The HSM linker definition
file must list a dependency on the appropriate TSM, using the module
keyword, for the required NLMs to load automatically.

7. In Appendix A, on page A-2, under "Linker Definition file", delete
"MSM" from the Data column for the MODULE Keyword.

8. InAppendix A, on page A-5, under "Loading the Driver", change the first
sentence of the first paragraph to read:

On the Netware Server, the Driver.LAN file is loaded... etc.

Also, change the last sentence of the second paragraph to read:
The required NLMs may all be auto-loaded using the "module”
keyword to load the <TSM>.NLM in the linker definition file.

9. In Appendix A, on page A-7, change the definition for SLOT to read:

Refer to theMLIDSlot field description in Table 3.2, "Configuration
Table Field Descriptions" on page 3-22 of this document.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

10. On page 3-25, under MLIDBusTag SMParseDriverParameters
should be replaced witdSMRegisterHardwareOptions.

11. On page 5-20, und®eceive Error, add the following text as the last
bullet:

Pass the appropriate receive error bitsT&M>GetRCB,
<TSM>ProcessGetRCB or <TSM>FastProcessGetRCB

12. On page 5-51 after the line that reads "Bit 31 - Driver shutting down (set
by TSM)", add the following text:

An ECB aware HSM must set all of these bits as necessary before
calling <TSM>RcvCompleteStatusor
<TSM>FastRcvCompleteStatus An RCB aware HSM need set

only Bit 0 - CRC error and Bit 1 - CRC/Alignment error as necessatry,
the others are set by the TSM if needed.

13. On page 6-15TSM>ProcessGetRCB and page 6-18,
<TSM>FastProcessGetRCBadd the following note to the Remarks
section of both routines:

For some busMaster implementations, you must set
RProtocolWorkspace (defined in ODI.INC) to the number of bytes
necessary to skip to the beginning of the packet. This value can be as
high as 128 bytes for chips which have poor alignment capabilities.
This field is normally part of the reserved space in the RCB definition
and can only be used with this call for the purpose stated above.

Note‘vvl The page numbers for items 14 through 17 refer to Doc Version 1.10.

14. On page 3-28, iMable 3-4, "MLIDSFlags Bit Map Fields", in the
description for bits 10, 9; add the followilNpte.

Bit 9 is not used by ECB aware HSMs; ECB aware HSMs must do
their own filtering of multicast addresses.

15. On page 5-48, und@dapter Multicast Filtering, add the following
Note:

ECB aware HSMs must do their own filtering of multicast addresses.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

16. On page C-5, und®&ESL_ECBRefDatadd the following text:

This field is used by producers only. Consumers do not use this field.
Consumers must set this field to NULL when registering.

This is a flag field used to specify whether the event is unique or
consumable. It also indicates the sorting order for calling registered
consumers at event time.

Consumers that are on the orphan consumer list will be sorted when a
new producer is registered. All consumers that are registered after a
producer is registered will be correctly sorted.

17. On page C-11, und&ervice Status Changed Typesadd the following
new Type Names:

MLID Config Table Change
MLID DeRegister Resource Change
MLID ReRegister Hardware Options

18. On page 2-4, in thdote underMulti-Operating System Provisions the
following reference:

See Appendix @or a list of issues and problem areas to check when
writing or updating a driver.

has been changed to:

Refer to Appendix A, "Building the HSMVhen writing or updating a
driver.

Spec v3.31 - Doc v1.12

19. On page 6-6, in thESMConfigTable structure, add:
TSMCFG_SystemFlags dw 0

after TSMCFG_MaxFrameSize.

4 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

20. On page 6-%TSM>BuildTransmitControlBlock , underReturn State,
change théreservedregisters from:

EBP, ECX
to
EBP, EDI
21. On page 7-12MSMScheduleTimer, underTimerType change all:
TIMER_TYPE_
to
AES_TYPE_
22. On page C-4, in the NESL_ECB Structure, add:
NESL_ECBContext
as the last item in the structure.

23. On page C-4, und®iESL_ECBVersigrchange the last sentence in the
paragraph to read:

The current version is 2.
instead of 1.
24. On page C-6, add the following text:

NESL_ECBContext
This field is available for use by the owner of the NESL_ECB
structure. It will not be modified by anyone else in the system. It
may be used by the owner to pass context or other data to the
notification procedure. If the owner is not using this field, it must
be set to NULL.

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

Index

A

Adapter
configuration information
MSMRdConfigSpacel6 7-98
location on bus 7-56
options 7-86
adapter
shut down bit 3-31
Adapter data space 3-33
Alignment
bus platform 7-23

B

Breakpoints for debugging 4
breakpoints, clearing 5
BUFFERS16, keyword A-7
Bus
configuration information 7-33
getting information 7-25
locating adapter on 7-56
scanning for available 7-120
bus
multiple platforms 7-3
writing configuration information 7-144
Bus address
size 7-25
Bus architecture 7-3
Bus master
getting RCB 6-12
TSM compatibility 6-10
Bus platform alignment 7-23

Bus slot

MLIDSlIot field 3-22
bus specific information, getting 7-27
bus support 7-2
Bus type, getting with MSMGetBusType 7-31
Bus-specific information from

MSMGetUniqueldentifierParameters 7-58

BusTag, MLID 3-25

C

Call back
MSMScheduleAESCallBack 7-122
MSMSchedulelntTimeCallBack 7-124

canonical address bit 3-26

Code and data space 2-11

Configuration file, driver A-6

Configuration information
driver

MSMRdConfigSpace8 7-96
writng 7-144

Configuration information for bus 7-33
MSMGetBusSpecificinfo 7-27

Configuration table, driver
example template 3-15
field descriptions 3-17

Configuration table,driver 3-13

configuration, /10
MLIDIOCfgMajorVersion 3-25

Control procedures
DriverManagement (optional) 5-54
DriverMulticastChange 5-47
DriverPromiscuousChange 5-50
DriverReset 5-43

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

DriverRxLookAheadChange (optional) 5-53
DriverShutdown 5-45
DriverStatisticsChange (optional) 5-52

CounterMask bit maps 3-40

CSL compliant bit 3-27

Custom keywords, examples 3-52

D

Data space and statistics table template 3-35
Data transfer mode 2-6
Debugger

commands 1

conditional evaluation 13

expressions 12

grouping operators 13

invoking 2

miscellaneous commands 10

symbolic information 14
Definition file, example A-2
delaying tasks 7-150
Design issues, hardware 2-6
Development process 1-9, A-1
DMA channel

indicator bit 3-30
Downloading firmware 3-49
Driver configuration file 1-10
Driver initialization

Determine hardware options 5-4

Driverlnit pseudocode 5-10

Initialize adapter 5-7

Register driverISR 5-8

Register hardware options 5-7

Register with LSL 5-8

Register with TSM/MSM 5-3

Timeout callbacks 5-9
Driver parameter block 3-4

field descriptions 3-6
DRIVER.INC file 1-10
DriverISR

Pseudocode 5-24

Receive 5-19

Shared interrupts 5-21

8 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Transmit 5-20
DriverNeedsBitMask 7-88
DriverPoll 5-26
DriverRemove 5-59
DriverSupportsPhysFrags bit 3-26

E

ECB aware
getting RCB 6-14
ECB, sending
GetNextSend 6-2
EISA 7-31, 7-34, 7-59, 7-120, 7-129
EPB structure C-3
Error messages
MSMAlertFatal 7-5
MSMAlertWarning 7-7
Event Control Blocks (ECB) 4-24
Event control blocks (ECB)
Receive ECBs vs RCBs 4-26
Transmit ECBs vs TCBs 4-27

F

Firmware variables, example definitions 3-49
fragmented RCB
support bit 3-26
Frame data space 3-13
frame types
packet size for different 3-32
Frame types required 2-12

G

Global Data Access 3-1
global variables, MSM 4-1

H

Hardware instance number (HIN) 7-45

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001

March 26, 1998

Hardware instance number mapping L
MSMGetinstanceNumberMapping 7-47

Hardware specific module 1-6

Hardware specific Module (HSM)
Packet reception 5-13

Hardware specific module (HSM) 5-1
Board service (DriverISR) 5-19
Control procedures 5-41
Driver initialization 5-3
Multi-operating system support 5-36
Packet transmission 5-27 M

hub management
support bit 3-29

Link support layer 1-2

Linker definition file 1-10, A-2
Linker description string A-3

Load keywords and parameters A-6
Loading the driver A-5

Lying send 6-29

MCA 7-31, 7-120, 7-129
Media specific counters 3-41
I Media support module 1-4
Memory
returning, MSMinitFree 7-64
memory
page size 3-23
pages & paragraphs 3-23
Memory address
MLIDMemoryDecodeO field 3-23
MLIDMemoryDecodel field 3-23
Memory allocation
MSMAlloc 7-9
MSMAllocPages 7-12
MSMinitAlloc 7-58
Memory contents, displaying 6
memory decoding
MLIDMemoryLengthO 3-23
Memory pages
MLIDMemoryLengthO field 3-23
memory paging
MLIDMemoryLengthO 3-30
support bit 3-30
K Memory, returning
MSMFree 7-21
MSMFreePages 7-22
Message printing
MSMPrintString 7-91
MSMPrintStringFatal 7-93
MSMPrintStringWarning 7-95
Micro Channel 7-35, 7-59

I/O commands, debugger 9
I/O configuration
version number 3-25
I/O control procedures 2-4
I/O port information
MLIDIOPortsAndLengths field 3-22
I/O port sharing
support bit 3-31
Include files 1-9
Initialization 2-3
Installation information file 1-10
Interrupt service routine, when to use 2-8
interrupt sharing
support bit 3-30
Interrupts
setting 7-135
ISA 7-31, 7-120, 7-129

Keywords 3-51
custom, parsing 7-79
enhancements 3-53
structure 3-54
table 3-55

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

ZT'TA 200 - TE €A 29ds

Spec v3.31 - Doc v1.12

MLIDCFG_SGCount field 3-20
MLIDFlags bit map 3-28
MLIDFlags field 3-21
MLIDIOPortO field 3-22
MLIDIOPort1 field 3-22
MLIDIOPortsAndLengths field 3-22
MLIDIORangeO field 3-22
MLIDIORangel field 3-23
MLIDLink field 3-22
MLIDMemoryDecodeO field 3-23
MLIDMemoryDecodel field 3-23
MLIDMemoryLengthO field 3-23
MLIDMinorVersion field 3-21
MLIDReservedl field 3-21
MLIDSharingFlags bit map 3-30
MLIDSharingFlags field 3-22
MLIDSIot field 3-22
MSM equates
MSMMaxFrameHeaderSize 4-6
MSMPhysNodeAddress 4-8
MSMStatusFlags 4-3
MSMTxFreeCount 4-4
MSMVirtualBoardLink 4-2

MSM/TSM data structures of RCB,TCB and ECB 4-9

MSMAlertFatal 7-5
MSMAlertWarning 7-7
MSMBitSwapTable 4-1
MSMRdConfigSpacel6 7-98
MSMRdConfigSpace32 7-100
MSMRdConfigSpace8 7-96
MSMScheduleTimer 7-126
MSMWrtConfigSpace8 7-144
multicast address
support bit 3-27
multicast filtering bit 3-28
Multicast, updating registers 6-32
Multichannel adapters 2-13
Multi-operating system provisions 2-4
Multi-operating system support
DriverDisablelnterrupt 5-39, 5-40
DriverEnablelnterrupt 5-38

N

NESL_ECB structure C-4
Netware Bus Interface (NBI) 7-2
NetWare loadable module 1-3
Node address, load keyword A-8
Notification information 7-117

O

Object files, linking A-2
ODI supplements xvii, 1-9
ODI, see open data link interface 1-1
Optional Support 2-14
Options
driver
DriverNeedsBitMask 7-87
Needs Options 7-87
hardware
MSMRegisterHardwareOptions 7-104
OS calls to the driver 2-9

P

Packet reception
DMA and bus master 5-15
Programmed I/O and Shared RAM 5-13
RX-Net 5-17
Packet size, maximum 3-32
Packet transmission
Bus Master 5-28
Driver send 5-33
I/0, RAM, and DMA 5-28
Parameter command-line examples 7-89
Parameters
parsing, MSMParseDriverParameters 7-85
Parameters, load A-6
Parsing
driver parameters 7-85
PCl 7-2,7-31, 7-35, 7-59, 7-96, 7-98, 7-100, 7-120,
7-129

10 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

PCMCIA 7-2, 7-31, 7-36, 7-120, 7-129 Fragmented RCB 4-12

Physical address

getting 7-51
physical addresses

fragment pointers 3-26
Physical memory

reading 7-102

writing 7-142
Pipelined adapter

receiving RCB 6-19, 6-23
Plug and Play 7-2, 7-35, 7-59
Polling

support level, setting 7-54
Polling enable 7-20
Procedures, execution time 2-9
Procedures, HSM

required 2-1
Process of developing drivers 1-9
Processor speed rating 7-55
promiscuous mode

support bit 3-26
Protected mode, 32-bit 2-8
Public variables 3-1

R

raw send support bit 3-27

RCB
Allocation 7-13
returning 7-119

RCB, getting
FastProcessGetRCB 6-17
GetRCB 6-11
ProcessGetRCB 6-14
RXNetTSMGetRCB 6-34

RCB, receiving
FastRcvComplete 6-23
FastRcvCompleteStatus 6-25
RcvComplete 6-19
RcvCompleteStatus 6-21
RXNetTSMFastRcvEvent 6-40
RXNetTSMRcvEvent 6-38

Receive control blocks (RCB) 4-9

Non-fragmented RCB 4-14
Reception, packet 2-3
Recommended support 2-13
Reentrancy 2-12
Register manipulation 9
Registering hardware options 7-104
Registering HSM, TSM 6-27
Registering the MLID 7-106
Removal, driver 2-3

MSMDriverRemove 7-19
Reserved fields

MLIDReservedl field 3-21
Resources

ing 7- N
returning 7-114 S
D
S O
<
scatter/gather count Oo
MLIDCFG_SGCount field 3-20 W
Servicing events =
MSMServiceEvents 7-131 !
MSMServiceEventsAndRet 7-133 D
SMP 3-26 (@)
Source files, creating A-1 (@)
Source routing 2-14 <
specification version string 3-4 ~
Statistics table, driver 3-34 .
structure E
EPB C-3

NESL_ECB C-4
Supplements for developing ODI drivers xvii, 1-9
Support modules provided by Novell 1-4
symmetrical multiprocessing, bit 3-26

T

TCB, releasing
FastSendComplete 6-31
SendComplete 6-29

TCB, sending
GetNextSend 6-8

11

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

Part Number: 107-000007-001
March 26, 1998

Spec v3.31 - Doc v1.12

Time, getting
MSMGetCurrentTime 7-42
MSMGetMicroTimer 7-49

Timeout detection 2-5
DriverAES/DriverCallBack 5-56
DriverTxTimeout (RX-Net) 5-55

Topology specific module 1-4

Topology Specific Module(TSM) 6-1

Topology specific module(TSM)
getting version 6-10

Transmission, packet 2-3

Transmit control blocks (TCB) 4-16
Ethernet, Token-Ring, and FDDI 4-17
RX-Net 4-19

Transmit control blocks(TCB)
Fragment structure 4-22

U

Unique identifier for an adapter 7-56

12 ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)

ODI Specification: Hardware Specific Modules (HSMs) (32-Bit Assembly Language)
Part Number: 107-000007-001
March 26, 1998

	disclaimer
	Further, Novell, Inc. makes no representations or warranties with respect to any NetWare software...
	trademarks
	Contents

	Preface
	1 Introduction
	2 HSM Overview
	3 HSM Data Structures and Variables
	4 MSM/TSM Data Structures and Variables
	5 HSM Procedures
	6 TSM Procedures
	7 MSM Procedures and Macros
	Figures
	Tables
	Preface

	Document Overview
	ODI Supplements
	Prerequisites
	Document Conventions
	1 Introduction
	Open Data-Link Interface
	Figure 1�1 The Open Data-Link Interface Model
	Link Support Layer
	Multiple Link Interface Drivers

	NetWare Loadable Modules
	Figure 1�2 Loadable Modules as NetWare Building Blocks

	Driver Modules
	Novell Provided Support Modules
	Media Support Module
	Topology Specific Module

	Developer Provided Module
	Hardware Specific Module
	Figure 1�3 MLID Modules

	Loading Driver Modules
	Figure 1�4 The ODI Model with separate MSM, TSM and HSM Modules

	Development Process
	1. Create the driver source files.
	2. Assemble the source files into object files.
	3. Link the object files using the NetWare Linker.
	4. Load the NLM as part of the NetWare OS.
	5. Debug the driver.
	ODI Supplements
	Driver Related Files
	Source Files
	Include Files
	Linker Definition File
	Driver Configuration File
	Installation Information File
	2 HSM Overview

	HSM Components
	HSM Procedures
	Initialization and Removal
	Packet Reception and Transmission
	Multi-Operating System Provisions
	I/O Control Procedures
	Timeout Detection

	HSM Data Structures and Variables

	HSM Design Considerations
	Hardware Issues
	Network Interface Controllers
	Data Transfer Mode
	Bus Type

	Coding Issues
	Multi-Tasking, Non-Preemptive OS
	32-Bit Protected Mode
	Interrupt Service Routine
	OS Calls to the Driver
	Execution Times
	Process Time
	Interrupt Time

	Code and Data Space
	Figure 2�1 Implementation of Multiple Frame/Multiple Adapter Support
	Frame Data Space
	Adapter Data Space
	Adapter Code Space
	Reentrancy

	Recommended Support
	Multicast Addressing
	Promiscuous Mode

	Optional Support
	Hub Management
	Source Routing
	Brouter
	3 HSM Data Structures and Variables

	Introduction
	Global Data Access
	Figure 3�1 Global Data Access
	1. MSM .NLM
	2. <TSM>.NLM
	3. <HSM>.LAN

	Specification Version

	Driver Parameter Block
	Driver Parameter Block
	Table 3.1 Driver Parameter Block Field Descriptions continued

	Driver Configuration Table
	Driver Frame Data Space
	Figure 3�2 Frame and Adapter Data Space
	Example Template for the Driver Configuration Table (based on the NE2000)
	Table 3.2 Configuration Table Field Descriptions continued

	MLIDModeFlags Bit Map
	Table 3.3 MLIDModeFlag Descriptions continued

	MLIDFlags Bit Map
	Table 3.4 MLIDSFlags Bit Map Fields

	MLIDSharingFlags Bit Map
	Table 3.5 MLIDSharingFlags Bit Map

	Driver Adapter Data Space
	Figure 3�3 Frame and Adapter Data Space

	Driver Statistics Table
	CounterMask Bit Maps

	Media Specific Counters
	Token-Ring
	Table 3.6 Media Specific Counters for Token Ring

	Ethernet
	Table 3.7 Media Specific Counters for Ethernet

	FDDI
	Table 3.8 Media Specific Counters for FDDI

	FDDI TSM and Bit Swapping Changes
	RX-Net
	Table 3.9 Media Specific Counters for RX-Net

	Driver Firmware
	Driver Keywords
	Driver Keyword Enhancements
	4 MSM/TSM Data Structures and Variables

	Introduction
	MSM Global Variables
	MSMBitSwapTable

	MSM Equates
	MSMVirtualBoardLink
	MSMStatusFlags
	MSMTxFreeCount
	MSMPriorityTxFreeCount
	MSMMaxFrameHeaderSize
	MSMPhysNodeAddress

	Data Structures
	Figure 4�1 Packet Transfer in the MSM/ODI Model
	Receive Control Blocks

	Fragmented RCB
	Figure 4�2 Fragmented Receive Control Block
	Table 4.1 Fragmented RCB Field Descriptions

	Non-Fragmented RCB
	Figure 4�3 Non-Fragmented Receive Control Block
	Table 4.2 Non-Fragmented RCB Field Descriptions

	Transmit Control Blocks
	Figure 4�4 Packet Transfer in the MSM/ODI Model

	TCB for Ethernet, Token-Ring, and FDDI
	Figure 4�5 Ethernet, Token-Ring and FDDI Transmit Control Block
	Table 4.3 TCB Field Descriptions

	TCB for RX-Net
	Figure 4�6 Rx-NET Transmit Control Block
	Table 4.4 TCB Field Descriptions (RX-Net)

	Fragment Structure
	Figure 4�7 TCB Fragment Structure
	Table 4.5 TCB Fragment Structure

	Event Control Blocks
	Figure 4�8 Packet Transfer in the MSM/ODI Model
	Figure 4�9 Event Control Block

	Receive ECBs vs RCBs
	Figure 4�10 ECBs vs RCBs

	Transmit ECBs vs TCBs
	Figure 4�11 Transmit ECBs vs TCBs
	Table 4.6 ECB Field Descriptions continued
	5 HSM Procedures

	Introduction
	Initialization
	DriverInit
	Register with the MSM / TSM
	Determine Hardware Options
	1. If the HSM supports multiple buses, it may call MSMScanBusInfo to determine the bus type, or i...
	2. For all busses except legacy ISA, call MSMSearchAdapter to search for the adapter ID. Any hard...
	3. The HSM calls MSMParseDriverParameters to determine the hardware configuration options or the ...
	4. For all buses except legacy ISA, the configuration table now contains the selected adapter HIN...

	Register Hardware Options
	Initialize the Adapter
	Register with the LSL
	Setup a Board Service Routine
	Schedule Timeout Callbacks
	DriverInit Pseudocode

	Packet Reception
	Reception Methods
	Programmed I/O and Shared RAM
	DMA and Bus Master
	1. All HSM’s: All fragment pointers passed back from the ECB returned by <TSM>GetRCB will contain...
	2. DriverNeedsBelow16Meg set in DriverParameterBlock: As with previous TSM’s, MSMAllocateRCB,<TSM...
	3. DriverSendWantsECBs set in DriverParameterBlock: MSMAllocateRCB or MSMAllocateMultipleRCBs wil...

	RX-Net
	Figure 5�1 Format of RX-Net LookAhead Buffer

	Board Service
	DriverISR
	Receive Event
	Receive Error
	Transmit Complete
	Transmit Errors
	Using Shared Interrupts
	DriverISR Pseudocode
	DriverPoll

	Packet Transmission
	Transmission Methods
	Programmed I/O, Shared RAM, and Host DMA
	1. Sets MSMTxFreeCount to the maximum number of transmit packets that the adapter can buffer. (pe...
	2. If the Ethernet TSM is used, ECX is set to the padded length of the packet. (This is the value...
	3. Decrements MSMTxFreeCount and calls DriverSend with ESI pointing to a filled in TCB structure.
	4. Calls <TSM>SendComplete or <TSM>FastSendComplete either after the packet has been buffered ont...
	5. Increments MSMTxFreeCount after the adapter completes the transmission (typically performed in...

	Bus Master
	1. Sets DriverSendWantsECBs to a nonzero value and sets MSMTxFreeCount to the number of transmit ...
	2. Decrements MSMTxFreeCount and calls DriverSend with a pointer to the Frame Data Space in EBX a...
	3. Calls either <TSM>SendComplete or <TSM>FastSendComplete after the packet has been buffered ont...
	4. Increments MSMTxFreeCount after the adapter completes the transmission (typically performed in...
	Bus Master Send Routine
	1. The TSM will be responsible for providing only physical fragment offsets. If one of the fragme...
	2. DriverNeedsBelow16Meg set in DriverParameterBlock:
	3. DriverSendWantsECBs set in DriverParameterBlock:

	Priority Transmission Support
	1. During DriverInit the HSM sets the following parameters:
	2. The DriverPriorityQueuePtr field of the Driver Parameter Block is set with a pointer to Driver...
	3. The HSM can set or reset MLIDFlags bit 12 as the HSM changes the Priority Queue Support state ...
	4. The protocol stack sets the ECB LogicalID field to a value greater than or equal to FFF0h. The...
	5. The TSM normally gives the packet to the HSM directly, as a TCB using the DriverSend function....
	6. The HSM calls <TSM>BuildTransmitControlBlock to build a TCB whenever a priority transmit resou...
	7. After the HSM has transmitted the TCB returned by <TSM>BuildTransmitControlBlock, the HSM call...

	DriverSend
	Driver Priority Queue Support

	Multi-Operating System Support
	Critical Sections
	DriverEnableInterrupt
	DriverDisableInterrupt
	DriverDisableInterrupt2

	Control Procedures
	DriverReset
	DriverShutdown
	DriverMulticastChange
	Adapter Multicast Filtering

	DriverPromiscuousChange
	DriverStatisticsChange (optional)
	DriverRxLookAheadChange (optional)
	DriverManagement (optional)

	Timeout Detection
	DriverTxTimeout (RX-Net)
	DriverAES / DriverCallBack/TimerProcedure

	Removal
	DriverRemove
	6 TSM Procedures

	Introduction
	<TSM>BuildTransmitControlBlock
	Description

	<TSM>CancelPrioritySend
	Description

	<TSM>GetConfigInfo
	Table 6.1 TSMCFG_SystemFlags

	<TSM>GetNextSend
	<TSM>GetASMHSMIFLevel
	<TSM>GetRCB
	Bus Master Adapters

	<TSM>ProcessGetRCB
	<TSM>FastProcessGetRCB
	<TSM>RcvComplete
	<TSM>RcvCompleteStatus
	<TSM>FastRcvComplete
	<TSM>FastRcvCompleteStatus
	Example

	<TSM>RegisterHSM
	Example

	<TSM>SendComplete
	Example

	<TSM>FastSendComplete
	<TSM>UpdateMulticast
	RXNetTSMGetRCB
	Figure 6�1 Format of the RX-Net LookAhead Buffer

	RXNetTSMRcvEvent
	Example

	RXNetTSMFastRcvEvent
	7 MSM Procedures and Macros

	Introduction
	Netware Bus Interface
	Overview
	Bus Architecture
	Multiple Bus Platforms
	Figure 7�1 Multiple Bus Platform Example

	MSMAlertFatal
	MSMAlertWarning
	MSMAlloc
	MSMAllocateMultipleRCBs
	Example

	MSMAllocPages
	MSMAllocateRCB
	MSMCancelTimer
	Example

	MSMDeRegisterResource
	MSMDriverRemove
	MSMEnablePolling
	MSMFree
	MSMFreePages
	MSMGetAlignment
	MSMGetBusInfo
	MSMGetBusSpecificInfo
	See Also

	MSMGetBusType
	MSMGetCardConfigInfo
	Example
	See Also

	MSMGetConfigInfo
	MSMCFG_TableSize
	MSMCFG_TableMajorVersion
	MSMCFG_TableMinorVersion
	MSMCFG_ModuleMajorVersion
	MSMCFG_ModuleMinorVersion
	MSMCFG_ODISpecMajorVersion
	MSMCFG_ODISpecMinorVersion
	MSMCFG_Reserved
	MSMCFG_MaxNumberOfBoards
	MSMCFG_SystemFlags

	MSMGetCurrentTime (macro)
	MSMGetHINFromHINName
	MSMGetHINNameFromHIN
	MSMGetInstanceNumber
	Example
	See Also

	MSMGetInstanceNumberMapping
	See Also

	MSMGetMicroTimer
	MSMGetPhysical
	MSMGetPhysList
	MSMGetPollSupportLevel
	MSMGetProcessorSpeedRating (macro)
	MSMGetUniqueIdentifier
	MSMGetUniqueIdentifierParameters
	Figure 7�2 PnP ISA Bus Parameters

	MSMHardwareFailure
	MSMInitAlloc
	MSMInitFree
	MSMNESLDeRegisterConsumer
	Description
	See Also

	MSMNESLDeRegisterProducer
	See Also

	MSMNESLProduceEvent
	See Also

	MSMNESLProduceMLIDEvent
	MSMNESLRegisterConsumer
	See Also

	MSMNESLRegisterProducer
	See Also

	MSMParseCustomKeywords
	Custom Keyword Procedure

	MSMParseDriverParameters
	Adapter Options
	Needs Options

	MSMPrintString
	MSMPrintStringFatal
	MSMPrintStringWarning
	MSMRdConfigSpace8
	See Also
	Example

	MSMRdConfigSpace16
	See Also
	Example

	MSMRdConfigSpace32
	See Also
	Example

	MSMReadPhysicalMemory
	See Also

	MSMRegisterHardwareOptions
	MSMRegisterMLID
	MSMRegisterResource
	ExtraConfig Structure
	Field Descriptions:
	IOConfig Structure

	MSMReRegisterHardwareOptions
	MSMResetMLID
	MSMResumePolling
	MSMReturnDriverResources
	Example

	MSMReturnMultipleRCBs
	See Also

	MSMReturnNotificationECB (macro)
	MSMFastReturnNotificationECB (macro)
	Example

	MSMReturnRCB (macro)
	MSMScanBusInfo
	MSMScheduleAESCallBack
	MSMScheduleIntTimeCallBack
	Example

	MSMScheduleTimer
	Field descriptions:
	TimerNextLink
	TimerProcedurePtr
	TimerType
	TimerInterval
	TimerContext
	TimerReserved

	MSMSearchAdapter
	MSMServiceEvents (macro)
	Example

	MSMServiceEventsAndRet (macro)
	MSMSetHardwareInterrupt
	MSMShutdownMLID
	MSMSuspendPolling
	Example

	MSMUpdateConfigTables
	MSMWritePhysicalMemory
	See Also

	MSMWrtConfigSpace8
	See Also

	MSMWrtConfigSpace16
	See Also

	MSMWrtConfigSpace32
	See Also

	MSMYieldWithDelay
	A Building the HSM
	Development Process
	Creating the Source Files
	Assembling the Source Files
	Linking the Object Files
	Linker Definition File

	Loading the Driver
	Driver Configuration File
	Load Keywords and Parameters
	B The NetWare Debugger

	Introduction
	Invoking the Debugger
	1. Press the <CTRL> - <ALT> - <LEFT-SHIFT> - <RIGHT- SHIFT> - <ESC> key combination simultaneousl...
	2. After the driver abends or GPIs the server, enter the key combination described in method 1 ab...
	3. Include an INT 3 in the desired code segment where the break-point is to be executed. Programs...
	4. Generate a non-maskable interrupt with an NMI board. This will cause the server to Abend, afte...

	Debug Commands
	Help
	"." Commands
	Breakpoints
	Breakpoint Conditions
	B
	BC number
	BCA
	B = address [condition]
	BW = address [condition]
	BR = address [condition]

	Memory
	C address
	C address = number(s)
	C address = “text string”
	D address [count]
	M address [L length] bytepattern

	Register Manipulation
	R
	register = value
	F flag = value

	Input/Output
	I[B,W,D] port
	O[B,W,D] port = value

	Miscellaneous
	G [address(es)]
	N symbolname value
	P
	Q
	T or S
	U address [count]
	V
	Z expression

	Debug Expressions
	Grouping Operators
	Conditional Evaluation

	Symbolic Information
	1. Declare public all desired symbols in the driver.
	2. Include the keyword debug in the driver's linker definition file.
	C NESL Support

	Overview
	Registering and Deregistering Event Producers
	Registering and Deregistering Event Consumers
	NESL Structures
	EPB (Event Parameter Block) Structure
	Field Descriptions:
	EPB_MajorVersion
	EPB_MinorVersion
	EPB_EventName
	EPB_EventType
	EPB_moduleName
	EPB_DataPtr0
	EPB_DataPtr1
	EPB_EventScope
	EPB_Reserved

	NESL_ECB Structure
	Field descriptions:
	NESL_ECBNext
	NESL_ECBVersion
	NESL_ECBOsiLayer
	NESL_ECBEventName
	NESL_ECBRefData
	NESL_ECBNotifyProc
	ConsumerNecb
	ProducerNecb
	EventData
	NESL_EVENT_CONSUMED
	NESL_EVENT_NOT_CONSUMED
	NESL_ECBOwner
	NESL_ECBWorkSpace
	NESL_ECBContext

	Events and Types
	Event Names
	Event Types
	Service Suspend Types
	Suspend Request
	Service Resumed Types
	Service/Status Changed Types

	NESL Return Codes
	NESL Event Flags
	NESL OSI Layer Definitions
	Revision History
	1. In the following three functions,
	2. In the Driver Parameter Block definition on page 3-5, the DriverISR2Ptr field occurs twice. Th...
	3. In the Driver Configuration Table definition on page 3-15, the MLIDCFG_MinorVersion is defined...
	4. On page 5-35, Driver Priority Queue Support, under "Processor States: Entry State" the ESI lin...
	5. On page 3-25, in the Configuration Table Field Descriptions, change the Description for MLIDBu...
	6. On page 1-7, "Loading Driver Modules", replace the first paragraph with the following paragraph:
	7. In Appendix A, on page A-2, under "Linker Definition file", delete "MSM" from the Data column ...
	8. In Appendix A, on page A-5, under "Loading the Driver", change the first sentence of the first...
	9. In Appendix A, on page A-7, change the definition for SLOT to read:
	10. On page 3-25, under MLIDBusTag, MSMParseDriverParameters should be replaced with MSMRegisterH...
	11. On page 5-20, under Receive Error, add the following text as the last bullet:
	12. On page 5-51 after the line that reads "Bit 31 - Driver shutting down (set by TSM)", add the ...
	13. On page 6-15, <TSM>ProcessGetRCB, and page 6-18, <TSM>FastProcessGetRCB, add the following no...
	14. On page 3-28, in Table 3-4, "MLIDSFlags Bit Map Fields", in the description for bits 10, 9; a...
	15. On page 5-48, under Adapter Multicast Filtering, add the following Note:
	16. On page C-5, under NESL_ECBRefData, add the following text:
	17. On page C-11, under Service Status Changed Types, add the following new Type Names:
	18. On page 2-4, in the Note under Multi-Operating System Provisions, the following reference:
	19. On page 6-6, in the TSMConfigTable structure, add:
	20. On page 6-2, <TSM>BuildTransmitControlBlock, under Return State, change the Preserved registe...
	21. On page 7-127, MSMScheduleTimer, under TimerType, change all:
	22. On page C-4, in the NESL_ECB Structure, add:
	23. On page C-4, under NESL_ECBVersion, change the last sentence in the paragraph to read:
	24. On page C-6, add the following text:

	Index

	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U

