
O
D

I
Sp

ec
if

ic
at

io
n

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S P E C V E R S I O N 1 . 1 1

Protocol Stacks and MLIDs

(C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

d i s c l a i m e r Novell, Inc. makes no representations or warranties with respect to the contents
or use of this manual, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. reserves the right to revise this publication and to make changes to
its content, at any time, without obligation to notify any person or entity of such
revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any
NetWare software, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. reserves the right to make changes to any and all parts of NetWare
software, at any time, without any obligation to notify any person or entity of
such changes.

t r a d e m a r k s Novell and NetWare are registered trademarks of Novell, Inc. in the United
States and other countries.
The Novell Network Symbol is a trademark of Novell, Inc.
Macintosh is a registered trademark of Apple Computer, Inc.

DynaText is a registered trademark of Electronic Book Technologies, Inc.

Microsoft is a registered trademark of Microsoft Corporation.

ODI Specification: Protocol Stacks and MLIDs (C Language)
January 6, 1998
100-004006-001

Copyright  1993-1997 Novell, Inc. All rights reserved. No part of this
publication may be reproduced, photocopied, stored on a retrieval
system, or transmitted without the express written consent of the
publisher.

U.S. Patent Nos. 5,157,663; 5,349,642; and 5,455,932. U.S. and
International Patent Pending.

Novell, Inc.
122 East 1700 South
Provo, UT 84606
U.S.A.

Contents
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

AEvent Control Blocks (ECBs) viii
BPortability Issues viii
CPlatform Specific Information viii
DODI HEADER FILE ix

Preface

Document Organization . xviii
Referenced Documents . xix
Execution Times . xx

Process Time . xx
Privileged Time . xx

Portability Requirements . xxi
Typedef Definitions . xxii

Standard Definitions . xxii
Definitions for Standard Types . xxiv

PROT_ID Structure . xxiv
NODE_ADDR Structure . xxiv
ODISTAT Enumeration . xxiv
SFTIII_STAT Enumeration . xxv
CHNPOS Enumeration . xxvi

Definition for Statistics Table Entries . xxvii
STAT_TABLE_ENTRY Structure . xxvii

Definition for API Function Array Passing xxviii
INFO_BLOCK Structure . xxviii

Definitions for LSL . xxviii
LOG_BRD_STAT_TABLE_ENTRY Structure xxviii
LSL_CONFIG_TABLE Structure . xxviii
LSL_STATS_TABLE Structure . xxx

Definitions for Lookahead and Event Control Blocks xxxi
FRAGMENT_STRUCT Structure . xxxi
ECB Structure . xxxi
AES_ECB Structure . xxxii
LOOKAHEAD Structure . xxxii
i

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Definitions for Protocol Stack. . xxxiii
PS_CONFIG_TABLE Structure . xxxiii
PS_STATS_TABLE Structure . xxxiii

Definitions for MLID and Misc. Structures xxxiv
MLID_CONFIG_TABLE Structure xxxiv
MLID_STATS_TABLE Structure . xxxv
MLID_REG Structure . xxxvi
PS_BOUND_NODE Structure . xxxvi
PS_CHAINED_RX_NODE Structure xxxvi
PS_CHAINED_TX_NODE Structure xxxvii
SFTIII_EXCHANGE_NODE Structure xxxvii

1 Introduction to ODI

Chapter Overview . 1-1
Open Data-Link Interface (ODI) . 1-1

 Protocol Stacks . 1-2
Link Support Layer (LSL). . 1-4
Multiple Link Interface Drivers (MLIDs). 1-5

Data Flow . 1-6
Send Data Flow . 1-6
Receive Data Flow . 1-8

1 Overview of Protocol Stacks

Chapter Overview . 2-1
Protocol Stack . 2-1

Protocol Stack Multiplexing. . 2-1
Packet Flow with Multiple Protocol Stacks . 2-5

Routing a Packet to the Correct Protocol Stack 2-5
Routing a Packet to the Correct Logical Board. 2-8

Packet Reception with Multiple Protocol Stacks 2-9

2 Protocol Stack Data Structures

Chapter Overview . 3-1
Protocol Stack Configuration Table . 3-1

Protocol Stack Configuration Table Structure Sample Code. 3-1
Protocol Stack Configuration Table Field Descriptions. 3-2

Protocol Stack Statistics Table . 3-4
Protocol Stack Statistics Table Structure Sample Code 3-4
Protocol Stack Statistics Table Field Descriptions 3-5
STAT_TABLE_ENTRY Structure Sample Code 3-6
STAT_TABLE_ENTRY Field Descriptions 3-7
ii ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

3 Protocol Stack Initialization

Chapter Overview . 4-1
Protocol Stack Initialization Steps. . 4-1
Locating the LSL . 4-2
Registering Protocol Stacks with the LSL . 4-2
Determining Which Logical Board(s) to Service. 4-3

Explicit Method . 4-3
Dynamic Method . 4-3
Adding Protocol IDs . 4-4
Multiple Board Support . 4-5

Obtaining Protocol ID Values . 4-5
Customizing the Protocol Stack . 4-5

Line Speed . 4-6
Measuring Effective Network Performance 4-6
Maximum Packet Size. . 4-6
Multicast Support . 4-7
Receive Lookahead . 4-8

Binding to Logical Boards . 4-8
Chaining Prescan and Default Protocol Stacks 4-9
Final Initialization . 4-12

4 Protocol Stack Packet Reception

Chapter Overview . 5-1
Protocol Stack Packet Receive Operation . 5-1
Receive Routine Events. . 5-2
Protocol Stack Packet Reception Methods . 5-4

Bound Protocol Stack . 5-4
Prescan Protocol Stack . 5-4
Default Protocol Stack. . 5-4
Choosing a Packet Reception Method . 5-4

Receive Lookahead . 5-5
Receive Handler. . 5-6
LOOKAHEAD Structure . 5-6

Protocol Receive Handler for Bound Stacks . 5-16
Protocol Receive Complete Handler for Bound Stacks 5-20
Protocol Receive Handler for Prescan and Default Stacks 5-22
Protocol Receive Complete Handler for Prescan and Default Stacks 5-29

5 Protocol Stack Packet Transmission

Chapter Overview . 6-1
Transmit Routine Events . 6-1
Prescan Transmit Protocol Stack Method. . 6-2
iii

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Packet Transmission . 6-2
Supporting Multiple Outstanding Transmit Requests 6-3
Transmitting the Packet . 6-3
Priority Sends . 6-3

Event Control Blocks . 6-4
ECB_ESR Field . 6-5
ECB_StackID Field . 6-5
ECB_BoardNumber Field . 6-6
ECB_ProtocolID Field . 6-6
ECB_ImmediateAddress Field . 6-7
ECB_DataLength Field . 6-7
ECB_FragmentCount Field. . 6-7
Fragment Descriptors . 6-8

Transmit Handler . 6-9
Protocol Transmit Handler for Prescan Stacks. 6-10
Protocol Transmit Complete Handler . 6-13

6 Protocol Stack Control Routines

Chapter Overview . 7-1
Bind . 7-3
GetBoundNetworkInfo . 7-6
GetProtocolStackConfiguration . 7-8
GetProtocolStackStatistics . 7-9
GetProtocolStringForBoard . 7-10
MLIDDeRegistered. . 7-12
PromiscuousState . 7-14
ProtocolManagement . 7-16
Unbind . 7-19

8 Overview of the LSL

Chapter Overview . 8-1
 Link Support Layer (LSL) . 8-1
Completion Codes . 8-2
Specification Version String . 8-2

9 LSL Data Structures

Chapter Overview . 9-1
LSL Configuration Table . 9-1

LSL Configuration Table Structure Sample Code 9-1
LSL Statistics Table . 9-7

LSL Statistics Table Structure Sample Code. 9-7
iv ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

10 LSL Support Routines

Chapter Overview . 10-1
LSL API Services . 10-1
Locating the LSL . 10-6
CLSL_AddProtocolID . 10-8
CLSL_BindProtocolToBoard . 10-10
CLSL_BindStack . 10-12
CLSL_CancelAESEvent . 10-14
CLSL_CancelEvent . 10-15
CLSL_ControlStackFilter . 10-16
CLSL_DeRegisterDefaultChain . 10-18
CLSL_DeRegisterMLID . 10-20
CLSL_DeRegisterPreScanChain . 10-21
CLSL_DeRegisterStack . 10-23
CLSL_FastHoldEvent . 10-25
CLSL_FastSendComplete . 10-27
CLSL_GetBoundBoardInfo . 10-29
CLSL_GetIntervalMarker . 10-31
CLSL_GetLSLConfiguration . 10-32
CLSL_GetLSLStatistics . 10-33
CLSL_GetMaxECBBufferSize . 10-34
CLSL_GetMLIDControlEntry . 10-35
CLSL_GetMultipleECBs. . 10-37
CLSL_GetPhysicalAddressOfECB . 10-39
CLSL_GetPIDFromStackIDBoard. . 10-40
CLSL_GetProtocolControlEntry . 10-42
CLSL_GetSizedECB . 10-44
CLSL_GetStackECB . 10-46
CLSL_GetStackIDFromName. . 10-49
CLSL_GetStartofChain . 10-51
CLSL_HoldEvent . 10-53
CLSL_ModifyStackFilter . 10-55
CLSL_RegisterDefaultChain . 10-58
CLSL_RegisterMLID . 10-61
CLSL_RegisterPreScanChain . 10-64
CLSL_RegisterStack . 10-69
CLSL_ReSubmitDefault . 10-72
CLSL_ReSubmitPreScanRx . 10-75
CLSL_ReSubmitPreScanTx . 10-77
CLSL_ReturnECB. . 10-79
CLSL_ScheduleAESEvent . 10-80
CLSL_SendComplete . 10-83
CLSL_SendPacket . 10-85
v

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

CLSL_SendProtocolInfoToPartner . 10-87
CLSL_SendProtocolInfoToOtherEngine . 10-89
CLSL_ServiceEvents . 10-91
CLSL_UnbindStack . 10-92

11 Overview of the MLID

Chapter Overview . 11-1
Multiple Operating System Support . 11-1

NetWare MLID . 11-2
MLID Procedures . 11-2

MLID Initialization . 11-3
Board Service Routine . 11-4
Packet Transmission . 11-4
Control Routines . 11-4
Timeout Detection . 11-5
Driver Remove . 11-5

MLID Data Structures and Variables . 11-5
MLID Configuration Table . 11-5
MLID Statistics Table. . 11-5

MLID Functionality . 11-6
Reentrancy . 11-6
Multiple Frame Support . 11-7
Other Functionality . 11-12

MLID Design Considerations. . 11-12
Hardware Issues . 11-12

12 MLID Data Structures

Chapter Overview . 12-1
Frame Data Space . 12-1
MLID Configuration Table . 12-2

MLID Configuration Table Structure Sample Code 12-2
MLIDCFG_ModeFlags Field . 12-15
MLIDCFG_Flags Field . 12-18
MLIDCFG_SharingFlags Field . 12-20

Adapter Data Space . 12-24
MLID Statistics Table . 12-24

MLID Statistics Table Structure . 12-25
Field Descriptions . 12-25
MLID Statistics Table Media Specific Counters 12-32

13 MLID Initialization

Chapter Overview . 13-1
vi ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

The MLID Initialization Routine . 13-1
Initialization Parameters Passed on the Stack 13-2
Locating the LSL . 13-3
Frame and Adapter Data Spaces . 13-4
Determining Hardware Options . 13-4
Registering Hardware Options . 13-7
Initializing the Adapter . 13-7
Registering with the LSL . 13-8
Setting up a Board Service Routine . 13-8
Scheduling Timeout Callbacks . 13-9

14 MLID Packet Reception

Chapter Overview . 14-1
Reception Methods . 14-1

Reception Method - Option 1 . 14-2
Reception Method - Option 2 . 14-4
Reception Method - Option 3 . 14-5
Using Shared Interrupts . 14-8

15 MLID Packet Transmission

Chapter Overview . 15-1
MLID Packet Transmission Routine. . 15-1

Priority Transmission Support . 15-4

16 MLID Timeout Routine

Chapter Overview . 16-1
Establishing a Timeout Routine . 16-1

Scheduling a Timeout Check . 16-1
Determining the Wait Interval . 16-2
Identifying a Timeout Error . 16-2
Reinitializing the LAN Adapter. . 16-2

17 MLID Remove Routine

Chapter Overview . 17-1
Removing the MLID . 17-1
DeRegistering Logical Boards . 17-1
Canceling Timeout Check and Polling Routines 17-2
Shutting Down the LAN Adapter . 17-2
Remove Data Spaces . 17-2
vii

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

18 MLID Control Routines

Chapter Overview . 18-1
MLID Control Routine Overview . 18-1

AddMulticastAddress. . 18-7
DeleteMulticastAddress . 18-11
GetMLIDConfiguration . 18-13
GetMLIDStatistics . 18-15
GetMulticastInfo . 18-17

Index 15 (0x0F) 18-17
MLIDManagement . 18-20
MLIDReset . 18-22
MLIDShutdown. . 18-24
PromiscuousChange . 18-26
RegisterMonitor . 18-30

Index 11 (0x0B) 18-30
RemoveNetworkInterface . 18-34

Index 16 (0X10) 18-34
ResetNetworkInterface. . 18-36

Index 18 (0X12) 18-36
SetLookAheadSize. . 18-38
ShutdownNetworkInterface . 18-40

Index 17 (0X11) 18-40

Appendix A Event Control Blocks (ECBs)

Appendix Overview . A-1
Event Control Blocks . A-1

Event Control Block Structure Sample Code. A-1

Appendix B Portability Issues

Portability Issues Overview . B-1
Portability Rules . B-1
Translation Limits. . B-4
Assumptions . B-5
Data Packing and Alignment . B-5

Appendix C Platform Specific Information

Overview . C-1
Intel Processors . C-1

Building the CHSM . C-1
viii ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Appendix D ODI HEADER FILE

Appendix Overview . D-1
ODI.H . D-1

Glossary

Revision History
ix

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

x ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Figures
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Figure 1-1

The ODI Specification . 1-2
Figure 1-2

How the ODI Fits into the OSI Model . 1-3
Figure 1-3

The Multiple Protocol Interface (MPI) . 1-4
Figure 1-4

The Multiple Link Interface (MLI) . 1-6
Figure 1-5

Data Flow from Application to LSL . 1-7
Figure 1-6

Data Flow from the LSL to the Board . 1-7
Figure 1-7

Data Flow from the Board to the Wire . 1-8
Figure 1-8

Receive Data Flow from Wire to Application 1-9
Figure 1-1

One Protocol Stack Using
Multiple Frame Types . 2-2

Figure 1-2
Multiple Protocol Stacks Using
One Frame Type . 2-3

Figure 1-3
Multiple Protocol Stacks Using
Multiple FrameTypes . 2-4

Figure 1-4
Typical Configuration in
Protocol Stack Multiplexing . 2-6

Figure 1-5
MLID/Protocol Stack Multiplexing . 2-8

Figure 3-1
Receive Prescan and Default Protocol Stack
Chaining Overview . 4-10

Figure 3-2
xi

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Transmit Prescan Protocol Stack
Chaining Overview . 4-11

Figure 10-1
LSL Interfaces . 10-1

Figure 11-1
Implementations of
Multiple Frame Support Using Ethernet 11-10

Figure 11-2
Implementation of
Multiple Boards/Frame Support . 11-11

Figure 12-1
MLIDCFG_ModeFlags Field Default Values 12-15

Figure 12-2
MLIDCFG_Flags Field Default Values 12-18

Figure 12-3
MLIDCFG_SharingFlags Field Default Values 12-20
xii ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Tables
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Table 2-1
Protocol Stack Statistics Table Field Descriptions 3-2

Table 2-2
Protocol Stack Statistics Table Field Descriptions 3-5

Table 2-3
Generic Counters Array STAT_TABLE_ENTRY 3-7

Table 3-1
Receive and Control Handlers and the Stack ID 4-2

Table 4-1
Protocol Stack Receive Routine. . 5-2

Table 4-2
Receive Handler Event Sequence . 5-19

Table 4-3
Receive Complete Handler Event Sequence 5-21

Table 4-4
Receive Complete Handler Event Sequence 5-28

Table 4-5
Receive Complete Handler Event Sequence 5-31

Table 5-1
Protocol Stack Transmit Routine . 6-1

Table 5-2
Transmit Handler Event Sequence. . 6-9

Table 5-3
Transmit Complete Handler Event Sequence for Bound Stacks 6-14

Table 5-4
Transmit Complete Handler Event Sequence for Prescan Stacks 6-14

Table 9-1
LSL Configuration Table Field Descriptions 9-3

Table 9-2
LSL Statistics Table Field Descriptions 9-8

Table 9-3
LOG_BRD_STAT_TABLE_ENTRY Field Descriptions 9-8

Table 9-4
Generic STAT_TABLE_ENTRY Counters Array Fields 9-10

Table 10-1
xiii

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Finding LSL API Entry Points for an MLID 10-6
Table 10-2

CLSL_ModifyStackFilter . 10-57
Table 12-1

MLID Configuration Table Field Descriptions 12-4
Table 12-2

MLIDCFG_ModeFlags Bits Description 12-15
Table 12-3

MLIDCFG_Flags Bit Description . 12-18
Table 12-4

MLIDCFG_SharingFlags Bits Description 12-20
Table 12-5

Frame Types Versus Size Fields . 12-22
Table 12-6

MLID Statisitics Table Fields . 12-27
Table 12-7

MLID Statistics Table Generic Counters 12-30
Table 12-8

Media Specific Counters for Token-Ring 12-32
Table 12-9

Media Specific Counters for Ethernet 12-34
Table 12-10

Media Specific Counters for FDDI . 12-36
Table A-1

Fragment Structure and ECB Field Descriptions. A-2
Table C-1

Linker Definition File Example Definitions C-3
Table C-2

Load Keywords and Parameters Descriptions C-6
xiv ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Preface
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ns
e
er

the
This document describes the Open Data-Link Interface (ODI)
specification and how to write protocol stacks and network communicatio
drivers (LAN drivers) for NetWare. ODI allows multiple protocols to operat
in the NetWare 3.1x (and higher), DOS, OS/2, Windows NT, NEST, and oth
embedded environments. Writing a LAN driver that conforms to the ODI
specification ensures compatibility with any protocol that is also written to
ODI specification (for example, TCP/IP, ISO, IPX, etc.).

Protocol Stack Developers: It is possible for routines that are part of a protocol
stack to execute asynchronously as a result of various interrupt events. This
fact, along with today’s optimizing compilers, can cause problems with variables
changing value when the compiler did not expect them to. The following are two
possible solutions for this problem.

At a minimum, you must declare a variable volatile if it can be referenced by a
piece of code that can be executed asynchronously. These pieces of code
include event service routines (due to transmit completions), reception
completions, AES event completions, and MLID control functions where an
asynchronous event has completed.

A better solution than declaring variables volatile is to make protocol stacks fully
reentrant. This solution not only solves the volatility problem, but also allows
code to work on multiprocessor platforms. We strongly recommend this
solution, especially since fully reentrant protocol stacks will be required in future
versions of this specification.
xvii

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

in
le
at
ins

ant to

 stack

This
, the

ues

ol
Document Organization

This document describes the ODI architecture, which consists of three ma
elements: protocol stacks, the LSL and the LAN driver (also called Multip
Link Interface Driver or MLID). This document is organized into sections th
discuss each element of the architecture individually. The document conta
five sections: the introduction, one section for each ODI module, and the
appendixes.

• Section I Introduction

Introduces the ODI architecture and discusses the design issues relev
the ODI architecture as it applies to the NetWare environment.

• Section II Protocol Stacks

Explains the architecture of an ODI protocol stack and discusses the
design issues relevant to a stack. This section also discusses protocol
data structures, initialization, packet reception and transmission, and
control routines.

• Section III LSL

Presents a brief overview of the LSL and describes its statistics table.
section also includes descriptions of the general LSL support routines
Multiple Protocol Interface (MPI) support routines, and Multiple Link
Interface (MLI) support routines.

• Section IV MLIDs

Explains the architecture of an ODI MLID and discusses the design iss
relevant to an ODI MLID. This section also discusses MLID data
structures, initialization, packet reception and transmission, and contr
routines.

• Section V Appendixes
xviii ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Referenced Documents

This document refers to the following Novell documents.

• Novell ODI Specification: NetWare HSMs (C Language), part number
107-000053-001

• ODI Specification Supplement: The MLID Installation Information File,
part number 107-000056-001

• ODI Specification Supplement: The Hub Management Interface, part
number 107-000023-001

• ODI Specification Supplement: Source Routing, part number
107-000058-001

• ODI Specification Supplement: Canonical and Noncanonical Addressing,
part number 107-000059-001

• ODI Specification Supplement: Frame Types and Protocol IDs, part
number 107-000055-001

• ODI Specification Supplement: Standard MLID Message Definitions, part
number 107-000060-001
xix

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ou
ed
an

ny
t be
Execution Times

The two principal execution times are process time and privileged time. Y
must be aware of whether a routine is called at process time or at privileg
time. The times at which a routine is called effect the support routines it c
access.

Process Time

At process time you can allocate memory and (with certain exceptions)
perform file input and output (I/O).

Privileged Time

When a routine is called by a privileged process, this routine becomes
privileged. At privileged time, the routine should not allocate memory or
attempt file I/O, should not suspend its execution, and should not make a
calls to routines that may suspend execution. Privileged time routines mus
highly optimized and should limit their execution time.
xx ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

g

asic

g in
Portability Requirements

In writing your driver, if you want it to be portable across different operatin
systems and/or processors, you need to adhere to the following rules.

• Write your driver in ANSI C—this is extremely important.

• In general, do not declare any variable to be any of the C language b
types (short, long, int, char, etc.). Declare variables to be of an abstract
type. Then, typedef that type to the appropriate base type for each
processor/operating system combination.

In some cases, such as counters, it may be more efficient to use int instead
of an abstract type.

• Make sure that all members in any structure that describes data comin
from or going out to the LAN are given unique, abstract types.

Appendix B: Portability Issues describes the above portability rules and
additional rules and other important information in detail.
xxi

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

this
n.

te

ze
re
32

in
gs

. In
Typedef Definitions

The following is a list of typedef definitions for parameters that are used in
ANSI C implementation of the Open Data Link Interface (ODI) specificatio

The structures designated below should be considered as packed structures
when compiling.

Standard Definitions

The following are data type declarations and definitions that are used for
portability.

MEON Declared as an 8-bit unsigned character value which
contains a 7-bit character or a portion of a double-by
character.

MEON_STRING Declared as a NULL terminated string of MEON.

UINT8 Declared as an 8-bit unsigned integer.

UINT16 Declared as a 16-bit unsigned integer.

UINT32 Declared as a 32-bit unsigned integer.

UINT64 Declared as a 64-bit unsigned integer.

BOOLEAN Declared as an unsigned char:

FALSE = 0x0

TRUE = 0x1

All pointers are void pointers, or are pointers to a typedef. However, no si
definitions may be assumed for them. You cannot assume that pointers a
32-bit values. For example, assuming that a void pointer (PVOID) and UINT
are the same size is invalid.

All strings are MEON, NULL-terminated strings (ASCIIZ), which can conta
double-byte characters. Double-byte characters imbedded in MEON strin
may be handled by hardware directly on the platform on which this
specification is implemented, but this is not the concern of this specification
a platform that uses Unicode strings, Windows NT for example, it is the
responsibility of the application, driver, etc. to present the Unicode string
equivalents of the MEON strings to the platform.
xxii ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

 far

All bit field descriptions are described as numeric values and the use or
interrogation of bit field values is by numeric methods. This eliminates, as
as possible, the little endian and big endian conflicts.

For example:

#define bit_flag_x 0x0040 /* for b6 in a 16-bit
bit field. */

or implementation on the Windows NT platforms, the following definitions are
made:

typedef unsigned char MEON; /* equivalent UCHAR */
typedef unsigned char UINT8; /* equivalent UCHAR */
typedef unsigned short UINT16; /* equivalent USHORT */
typedef unsigned int UINT32; /* equivalent UINT */
typedef unsigned long UINT32; /* equivalent ULONG */
typedef unsigned char MEON_STRING; /* equivalent UCHAR */
typedef struct _UINT64_/* equivalent for UINT64 on 32-bit platform */
{

UINT32 Low_UINT32;
UINT32 High_UINT32;

} UINT64;

By convention, all MEON_STRINGs are NULL terminated strings—for
example:

MEON_STRING amsg [] = "String";
xxiii

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

nd

nd
Definitions for Standard Types

PROT_ID Structure

typedef struct _PROT_ID_ {

UINT8 protocolID [PID_SIZE];

} PROT_ID;

Where PID_SIZE is the number of bytes needed to identify a protocol stack a
is currently defined by the following:

#define PID_SIZE 6

NODE_ADDR Structure

typedef struct _NODE_ADDR_ {

UINT8 nodeAddress [ADDR_SIZE];

} NODE_ADDR;

Where ADDR_SIZE is the number of bytes needed to identify an address a
is currently defined by the following:

#define ADDR_SIZE 6

ODISTAT Enumeration

ODISTAT enumerates the values returned in the ODI platform by function
calls; these values are used to indicate success or an error.

typedef enum _ODISTAT_

{

ODISTAT_SUCCESSFUL= 0,

ODISTAT_RESPONSE_DELAYED= 1,

ODISTAT_SUCCESS_TAKEN= 2,

ODISTAT_BAD_COMMAND= -127,

ODISTAT_BAD_PARAMETER= -126,

ODISTAT_DUPLICATE_ENTRY= -125,

ODISTAT_FAIL= -124,

ODISTAT_ITEM_NOT_PRESENT= -123,

ODISTAT_NO_MORE_ITEMS= -122,
xxiv ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

rm
ODISTAT_MLID_SHUTDOWN= -121,

ODISTAT_NO_SUCH_HANDLER= -120,

ODISTAT_OUT_OF_RESOURCES= -119,

ODISTAT_RX_OVERFLOW= -118,

ODISTAT_IN_CRITICAL_SECTION= -117,

ODISTAT_TRANSMIT_FAILED= -116,

ODISTAT_PACKET_UNDELIVERABLE= -115,

ODISTAT_CANCELED= -4

} ODISTAT;

ODISTAT_NO_SUCH_DRIVER has been equated to
ODISTAT_MLID_SHUTDOWN:

#define ODISTAT_NO_SUCH_DRIVER ODISTAT_MLID_SHUTDOWN

SFTIII_STAT Enumeration

SFTIII_STAT enumerates the SFTIII status values returned in the ODI platfo
by function calls; these values are used to indicate success or an error.

typedef enum _SFTIII_STAT_

{

SFTIII_STAT_SUCCESSFUL= 0,

SFTIII_STAT_MIRROR_NOT_ACTIVE= 1,

SFTIII_STAT_NO_PARTNER= 2,

SFTIII_STAT_OUT_OF_RESOURCES= 3,

SFTIII_STAT_NOT_SUPPORTED= -1

} SFTIII_STAT;

SFTIII_STAT_NOT_SUPPORTED is assumed to be all bits set. s
xxv

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ol
CHNPOS Enumeration

CHNPOS enumerates the protocol stack chain position for chained protoc
stacks.

typedef enum _CHNPOS_

{

CHNPOS_FIRST_MUST,

CHNPOS_FIRST_NEXT,

CHNPOS_LOAD_ORDER,

CHNPOS_LAST_NEXT,

CHNPOS_LAST_MUST

} CHNPOS;
xxvi ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

e
Definition for Statistics Table Entries

STAT_TABLE_ENTRY Structure

typedef struct _STAT_TABLE_ENTRY_

{

UINT32 StatUseFlag;

void *StatCounter;

MEON_STRING *StatString;

} STAT_TABLE_ENTRY;

where the following are the permissible StatUseFlag values:

StatString is a pointer to a NULL terminated MEON string that describes th
statistics counter.

StatCounter is as defined by StatUseFlag.

ODI_STAT_UNUSED StatCounter entry not in use.

ODI_STAT_UINT32 StatCounter is a pointer to an UINT32
counter.

ODI_STAT_UINT64 StatCounter is a pointer to an UINT64
counter.

ODI_STAT_MEON_STRING StatCounter is a pointer to a Null
terminated string of MEON.

ODI_STAT_UNTYPED StatCounter is a pointer to a UINT32
length preceded array of UINT8.

ODI_STAT_RESETABLE StatCounter can be reset by an
external entity when needed.
xxvii

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Definition for API Function Array Passing

INFO_BLOCK Structure

typedef struct _INFO_BLOCK_

{

UINT32 NumberOfAPIs;

void (**SupportAPIArray) ();

} INFO_BLOCK;

Definitions for LSL

LOG_BRD_STAT_TABLE_ENTRY Structure

typedef struct _LOG_BRD_STAT_TABLE_ENTRY_

{

UINT32 LogBrd_TransmittedPackets;

UINT32 LogBrd_ReceivedPackets;

UINT32 LogBrd_UnclaimedPackets;

UINT32 LogBrd_TxOverloaded;

} LOG_BRD_STAT_TABLE_ENTRY;

LSL_CONFIG_TABLE Structure

typedef struct _LSL_CONFIG_TABLE_

{

UINT16 LConfigTableMajorVer;

UINT16 LConfigTableMinorVer;

MEON_STRING *LSLLongName;

MEON_STRING *LSLShortName;

UINT16 LSLMajorVer;

UINT16 LSLMinorVer;

UINT32 LMaxNumberOfBoards;

UINT32 LMaxNumberOfStacks;

UINT32 LConfigTableReserved0;

UINT32 LConfigTableReserved1;

UINT32 LConfigTableReserved2;

UINT8 LSLCFG_ODISpecMajorVer;
xxviii ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

UINT8 LSLCFG_ODISpecMinorVer;

UINT16 LConfigTableReserved3;

UINT32 LSLCFG_SystemFlags;

UINT32 LSLCFG_SmallECBCount;

UINT32 LSLCFG_MediumECBCount;

UINT32 LSLCFG_LargeECBCount;

UINT32 LSLCFG_XLargeECBCount;

UINT32 LSLCFG_HugeECBCount;

UINT32 LSLCFG_SmallECBBelow16Count;

UINT32 LSLCFG_MediumBelow16ECBCount;

UINT32 LSLCFG_LargeBelow16ECBCount;

UINT32 LSLCFG_XLargeBelow16ECBCount;

UINT32 LSLCFG_HugeBelow16ECBCount;

UINT32 LSLCFG_SmallECBMinCount;

UINT32 LSLCFG_MediumECBMinCount;

UINT32 LSLCFG_LargeECBMinCount;

UINT32 LSLCFG_XLargeECBMinCount;

UINT32 LSLCFG_HugeECBMinCount;

UINT32 LSLCFG_SmallECBMaxCount;

UINT32 LSLCFG_MediumECBMaxCount;

UINT32 LSLCFG_LargeECBMaxCount;

UINT32 LSLCFG_XLargeECBMaxCount;

UINT32 LSLCFG_HugeECBMaxCount;

UINT32 LSLCFG_SmallECBSize;

UINT32 LSLCFG_MediumECBSize;

UINT32 LSLCFG_LargeECBSize;

UINT32 LSLCFG_XLargeECBSize;

UINT32 LSLCFG_HugeECBSize;

} LSL_CONFIG_TABLE;
xxix

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

LSL_STATS_TABLE Structure

typedef struct _LSL_STATS_TABLE_

{

UINT16 LStatTableMajorVer;

UINT16 LStatTableMinorVer;

UINT32 LNumGenericCounters;

STAT_TABLE_ENTRY (*LGenericCountersPtr)[];

UINT32 LNumLogicalBoards;

LOG_BRD_STAT_TABLE_ENTRY
(*LogicalBoardStatTablePtr)[];

UINT32 LNumCustomCounters;

STAT_TABLE_ENTRY (*LCustomCountersPtr)[];

} LSL_STATS_TABLE;
xxx ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Definitions for Lookahead and Event Control Blocks

FRAGMENT_STRUCT Structure

typedef struct _FRAGMENT_STRUCT_

{

void *FragmentAddress;

UINT32 FragmentLength;

} FRAGMENT_STRUCT;

ECB Structure

typedef struct _ECB_

{

struct _ECB_ *ECB_NextLink;

struct _ECB_ *ECB_PreviousLink;

UINT16 ECB_Status;

void (*ECB_ESR)(struct _ECB_ *);

UINT16 ECB_StackID;

PROT_ID ECB_ProtocolID;

UINT32 ECB_BoardNumber;

NODE_ADDR ECB_ImmediateAddress;

union

{

UINT8 DWs_i8val[4];

UINT16 DWs_i16val[2];

UINT32 DWs_i32val;

void *DWs_pval;

} ECB_DriverWorkspace;

union

{

UINT8 PWs_i8val[8];

UINT16 PWs_i16val[4];

UINT32 PWs_i32val[2];

UINT64 PWs_i64val;

void *PWs_pval[2];

} ECB_ProtocolWorkspace;

UINT32 ECB_DataLength;
xxxi

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

UINT32 ECB_FragmentCount;

FRAGMENT_STRUCT ECB_Fragment[1];

} ECB;

AES_ECB Structure

typedef struct _AES_ECB_

{

struct _AES_ECB_ *AES_Link;

UINT32 AES_MSecondValue;

UINT16 AES_Status;

void (*AES_ESR)(struct _AES_ECB_ *);

UINT32 AES_Reserved;

void *AES_ResourceObj;

void *AES_Context;

} AES_ECB;

LOOKAHEAD Structure

typedef struct _LOOKAHEAD_

{

ECB *LkAhd_PreFilledECB;

UINT8 *LkAhd_MediaHeaderPtr;

UINT32 LkAhd_MediaHeaderLen;

UINT8 *LkAhd_DataLookAheadPtr;

UINT32 LkAhd_DataLookAheadLen;

UINT32 LkAhd_BoardNumber;

UINT32 LkAhd_PktAttr;

UINT32 LkAhd_DestType;

UINT32 LkAhd_FrameDataSize;

UINT16 LkAhd_PadAlignBytes1;

PROT_ID LkAhd_ProtocolID;

UINT16 LkAhd_PadAlignBytes2;

NODE_ADDR LkAhd_ImmediateAddress;

UINT32 LkAhd_FrameDataStartCopyOffset;

UINT32 LkAhd_FrameDataBytesWanted;

ECB *LkAhd_ReturnedECB;

UINT32 LkAhd_PriorityLevel;
xxxii ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

void *LkAhd_Reserved;

} LOOKAHEAD;

Definitions for Protocol Stack

PS_CONFIG_TABLE Structure

typedef struct _PS_CONFIG_TABLE_

{

UINT16 PConfigTableMajorVer;

UINT16 PConfigTableMinorVer;

MEON_STRING *PProtocolLongName;

MEON_STRING *PProtocolShortName;

UINT16 PProtocolMajorVer;

UINT16 PProtocolMinorVer;

} PS_CONFIG_TABLE;

PS_STATS_TABLE Structure

typedef struct _PS_STATS_TABLE_

{

UINT16 PStatTableMajorVer;

UINT16 PStatTableMinorVer;

UINT32 PNumGenericCounters;

STAT_TABLE_ENTRY (*PGenericCountersPtr)[];

UINT32 PNumCustomCounters;

STAT_TABLE_ENTRY (*PCustomCountersPtr)[];

} PS_STATS_TABLE;
xxxiii

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Definitions for MLID and Misc. Structures

MLID_CONFIG_TABLE Structure

typedef struct _MLID_CONFIG_TABLE_

{

MEON MLIDCFG_Signature[26];

UINT8 MLIDCFG_MajorVersion;

UINT8 MLIDCFG_MinorVersion;

NODE_ADDR MLIDCFG_NodeAddress;

UINT16 MLIDCFG_ModeFlags;

UINT16 MLIDCFG_BoardNumber;

UINT16 MLIDCFG_BoardInstance;

UINT32 MLIDCFG_MaxFrameSize;

UINT32 MLIDCFG_BestDataSize;

UINT32 MLIDCFG_WorstDataSize;

MEON_STRING *MLIDCFG_CardName;

MEON_STRING *MLIDCFG_ShortName;

MEON_STRING *MLIDCFG_FrameTypeString;

UINT16 MLIDCFG_Reserved0;

UINT16 MLIDCFG_FrameID;

UINT16 MLIDCFG_TransportTime;

UINT32 (*MLIDCFG_SourceRouting)

(UINT32, void*, void**,BOOLEAN);

UINT16 MLIDCFG_LineSpeed;

UINT16 MLIDCFG_LookAheadSize;

UINT8 MLIDCFG_SGCount;

UINT8 MLIDCFG_Reserved1;

UINT16 MLIDCFG_PrioritySup;

void *MLIDCFG_Reserved2;

UINT8 MLIDCFG_DriverMajorVer;

UINT8 MLIDCFG_DriverMinorVer;

UINT16 MLIDCFG_Flags;

UINT16 MLIDCFG_SendRetries;

void *MLIDCFG_DriverLink;

UINT16 MLIDCFG_SharingFlags;

UINT16 MLIDCFG_Slot;

UINT16 MLIDCFG_IOPort0;
xxxiv ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

UINT16 MLIDCFG_IORange0;

UINT16 MLIDCFG_IOPort1;

UINT16 MLIDCFG_IORange1;

void *MLIDCFG_MemoryAddress0;

UINT16 MLIDCFG_MemorySize0;

void *MLIDCFG_MemoryAddress1;

UINT16 MLIDCFG_MemorySize1;

UINT8 MLIDCFG_Interrupt0;

UINT8 MLIDCFG_Interrupt1;

UINT8 MLIDCFG_DMALine0;

UINT8 MLIDCFG_DMALine1;

void *MLIDCFG_ResourceTag;

void *MLIDCFG_Config;

void *MLIDCFG_CommandString;

MEON_STRING MLIDCFG_LogicalName[18];

void *MLIDCFG_LinearMemory0;

void *MLIDCFG_LinearMemory1;

UINT16 MLIDCFG_ChannelNumber;

void *MLIDCFG_DBusTag;

UINT8 MLIDCFG_DIOConfigMajorVer;

UINT8 MLIDCFG_DIOConfigMinorVer;

} MLID_CONFIG_TABLE;

MLID_STATS_TABLE Structure

typedef struct _MLID_STATS_TABLE_

{

UINT16 MStatTableMajorVer;

UINT16 MStatTableMinorVer;

UINT32 MNumGenericCounters;

STAT_TABLE_ENTRY (*MGenericCountersPtr)[];

UINT32 MNumMediaCounts;

STAT_TABLE_ENTRY (*MMediaCountersPtr)[];

UINT32 MNumCustomCounts;

STAT_TABLE_ENTRY (*MCustomCountersPtr)[];

} MLID_STATS_TABLE;
xxxv

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

MLID_REG Structure

typedef struct _MLID_REG_

{

void (*MLIDSendHandler)(ECB*, void *);

INFO_BLOCK *MLIDControlHandler;

void *MLIDSendContext;

void *MLIDResourceObj;

void *MLIDModuleHandle;

} MLID_REG;

PS_BOUND_NODE Structure

typedef struct _PS_BOUND_NODE_

{

MEON_STRING *ProtocolName;

ODISTAT (*ProtocolReceiveHandler)

(LOOKAHEAD*);

INFO_BLOCK *ProtocolControlHandler;

void *ProtocolResourceObj;

} PS_BOUND_NODE;

PS_CHAINED_RX_NODE Structure

typedef struct _PS_CHAINED_RX_NODE_

{

struct _PS_CHAINED_RX_NODE_ *StackChainLink;

UINT32 StackChainBoardNumber;

CHNPOS StackChainPositionRequested;

ODISTAT (*StackRxChainHandler)(LOOKAHEAD*,

struct _PS_CHAINED_RX_NODE_ *);

INFO_BLOCK *StackChainControl;

UINT32 StackChainFilter;

void *StackChainContext;

void *StackChainResourceObj;

} PS_CHAINED_RX_NODE;
xxxvi ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

PS_CHAINED_TX_NODE Structure

typedef struct _PS_CHAINED_TX_NODE_

{

struct _PS_CHAINED_TX_NODE_ *StackChainLink;

UINT32 StackChainBoardNumber;

CHNPOS StackChainPositionRequested;

ODISTAT (*StackTxChainHandler)(ECB*,

struct _PS_CHAINED_TX_NODE_ *);

INFO_BLOCK *StackChainControl;

UINT32 StackChainFilter;

void *StackChainContext;

void *StackChainResourceObj;

} PS_CHAINED_TX_NODE;

SFTIII_EXCHANGE_NODE Structure

typedef struct _SFTIII_EXCHANGE_NODE_

{

UINT32SubFunction,

void *Parameter1,

void *Parameter2

} SFTIII_EXCHANGE_NODE;
xxxvii

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

xxxviii ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Introduction to ODI
S

p

e

c

 v1

.1
1

 - D

o

c v

1

. 2

2

Overview

This chapter briefly describes the Open Data-Link Interface (ODI)
specification. It describes the functions of Multiple Link Interface Drivers,
protocol stacks, and the LSL. This chapter also contains a brief description of
data flow through the ODI model.

Because the ODI specification provides for communications between a variety
of protocols and media, LAN drivers are called Multiple Link Interface
Drivers (MLIDs). The Link Support Layer (LSL) handles the transfer
of information between MLIDs and protocol stacks.

The terms MLID and LAN driver can be interchanged.

You should read this chapter if you are not familiar with the basic concepts
involved in the ODI specification.

Open Data -Link Interface (ODI)

ANSI/ANSIC C language MLIDS and protocol stacks must conform to the
ODI specification. Figure 1.1 illustrates the elements that make up the ODI
specification.
Introduction to ODI 1-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

. It
k

, and
 the

ODI

e
Figure 1-1

The ODI Specification

The ODI specification allows multiple network protocols and adapters
(physical boards) to be used concurrently on the same client or file server
provides a flexible, high-performance Data Link Layer interface to Networ
Layer protocol stacks. The ODI specification is comprised of the three
elements listed below and illustrated above in Figure 1.1.

• Protocol Stacks

• Link Support Layer (LSL)

• Multiple Link Interface Drivers (MLIDs)

 Protocol Stacks

Protocol Stack Functionality

Network Layer protocol stacks transmit and receive data over a logical or
physical network. They also handle routing, connection services, and APIs
provide an interface to allow higher layer protocols or applications access to
protocol stack’s services. As a general rule, protocol stacks written to the
specification provide OSI (Open Systems Interconnection) Network Layer
functionality; however, they are not limited to this. Figure 1.2 illustrates th
ODI/OSI correspondence.

IPX TCP/IP AppleTalk

Link Support Layer (LSL)

Ethernet Token-Ring AppleTalk ISDN

Multiple Link Interface Drivers (MLIDs)

Protocol stacks

Network boards (or chipsets)
1-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

col
 all
e
ter
Figure 1-2

How the ODI Fits into the OSI Model

The Multiple Protocol Interface (MPI)

Protocol stacks communicate with the LSL through the Multiple Protocol
Interface (MPI) . The MPI is an interface that resides between the proto
stack and the LSL (see Figure 1.3). The MPI provides protocol stacks with
the APIs that are necessary for the protocol stack to communicate over th
network. However, protocol stacks written to the ODI specification 3 and la
also have full access to the NLM APIs documented in the NetWare Loadable

OSI
Model

ODI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

LSLLogical Link Control (LLC)

Media Access Control (MAC) MLID

Adapter

Protocol
Stack
Introduction to ODI 1-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

o

.
pes
cks
ight

ch
what
ocol
ects

ded
f the
Module Library Reference—Volume II. Protocol stacks also have full access t
the NLM APIs documented in NetWare Loadable Module Library Reference—
Volume II.

Figure 1-3

The Multiple Protocol Interface (MPI)

Link Support Layer (LSL)

The LSL handles the communication between protocol stacks and MLIDs
Because the ODI allows the physical topology to support many different ty
of protocols, the MLID receives packets destined for different protocol sta
that might be present in the system. For example, one Ethernet network m
support all of the following protocols: IPX, TCP/IP, AppleTalk*, and LAT*
(a Digital Equipment Corporation protocol). The LSL then determines whi
protocol stack is to receive the packet. Next, the protocol stack determines
should be done with the packet or where it should be sent. When the prot
stack transmits a packet, it hands the packet to the LSL. The LSL then dir
the packet to the appropriate MLID.

The term LAN adapter applies to any network controller that provides access
across a network. This network controller is as likely to be present directly on
the motherboard of a computer in an embedded system as it is on a network
interface card that inserts into a computer bus.

The LSL also tracks the various protocols and MLIDs that are currently loa
in the system and provides a consistent method of finding and using each o
loaded modules.

In addition, the LSL performs the following services:

IPX TCP/IP AppleTalk

Protocol stacks

Link Support Layer (LSL)

Multiple Protocol Interface (MPI)
1-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

 or to

ID.

r
set.)

s to

pe.

r’s

es
pport
that
• Allows a protocol stack to obtain and return Event Control Blocks (ECBs).
(ECBs are control structures that are used to send or receive packets
schedule events.)

• Queues and recovers ECBs for later use.

• Registers and deregisters the protocol stack.

• Allows protocol stacks to obtain timing services.

• Allows protocol stacks to determine Stack and Protocol IDs.

• Allows protocol stacks to obtain MLID statistics.

• Allows protocol stacks to bind with MLIDs.

• Allows protocol stacks to transmit and receive packets through an ML

• Maintains lists of all active protocol stacks and MLIDs.

• Allows protocol stacks to obtain information about MLIDs and other
protocol stacks.

• Allows protocol stacks to change the operational state of MLIDs. (Fo
example, the protocol stack could cause the MLID to shut down or re

Multiple Link Interface Drivers (MLIDs)

MLID Functionality

MLIDs are device drivers that handle the sending and receiving of packet
and from a physical or logical topology (for example, Ethernet SNAP is a
logical topology). MLIDs interface with a LAN adapter (also referred to as
Network Interface Card [NIC] or physical board) and handle frame header
appending and stripping. MLIDs also help determine the packet’s frame ty

Each MLID’s interface with the LAN adapter is determined by that adapte
hardware.

All MLIDs can handle packets from various protocols because the MLID do
not interpret the packet. Instead, it passes received packets to the Link Su
Layer (LSL) using Event Control Blocks (ECBs). ECBs are data structures
the MLID uses to send or receive packets or to schedule events.
Introduction to ODI 1-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

re
ion

d and
ate

tion

er to
ack
ses
h
I
The Multiple Link Interface (MLI)

The MLID communicates with the LSL through the Multiple Link Interface
(MLI ). The MLI is the interface between the LSL and the MLID (see Figu
1.4). This interface contains the APIs necessary to facilitate communicat
between these two modules.

Figure 1-4

The Multiple Link Interface (MLI)

Data Flow

When messages are sent and received, the various protocols or layers ad
remove their own information at each layer. The following diagrams illustr
basic data flow.

Send Data Flow

As Figure 1.6 illustrates, the protocol stack receives data from the applica
above it, determines whether the packet must be split into fragments,
determines the size of the fragments, adds the appropriate protocol head
the data packet, and sends it to the LSL. The LSL isolates the protocol st
from the topology and LAN medium below it. The protocol stack simply pas
data to the LSL. The LSL directs the packet to the appropriate MLID, whic
then takes care of the topology-specific information. This is the reason OD
protocol stacks are known as being media and frame-type independent.

Link Support Layer (LSL)

RX-Net Ethernet Token-Ring FDDI

Multiple Link Interface Drivers (MLIDs)

Network boards

Multple Link Interface (MLI)
1-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Figure 1-5

Data Flow from Application to LSL

As illustrated by Figure 1.7 , the LSL directs the packet to the appropriate
MLID. The MLID then adds the MAC header to the packet and hands the
packet to the LAN adapter.

Figure 1-6

Data Flow from the LSL to the Board

Stack (IPX)

LSL

Data

Application

Data

IPX
Header

• Determines fragment sizes
• Adds protocol header

MLID

Board

LSL

MAC
Header DataIPX

Header

DataIPX
Header

Determines which MLID
should receive the packet
and passes it.

Adds the Media Access
Control (MAC) header
Introduction to ODI 1-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

he

cket
the
tack,
ata to
In Figure 1.8 the hardware adds the preamble to the packet and places t
packet on the wire.

Figure 1-7

Data Flow from the Board to the Wire

Receive Data Flow

Figure 1.9 shows the LAN adapter receiving the packet off the wire and
stripping the preamble from the packet. The LAN adapter then hands the pa
to the MLID, which discards the MAC header from the packet and hands
packet to the LSL. The LSL directs the packet to the appropriate protocol s
which then removes the protocol header from the packet and hands the d
the application.

Board

MAC
HeaderPreamble DataIPX

Header

Hardware adds the preamble and
places the packet on the wire.

Wire
1-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Figure 1-8
Receive Data Flow from Wire to Application

•

MLID

MAC
Header DataIPX

Header

DataIPX
Header

Determines which protocol
stack should receive the
packet and passes it.

• Removes the (MAC) header
• Hands the packet to the LSL

Stack (IPX)

LSL

Data

Application

Data

IPX
Header

• Removes the protocol header
• Sends the data to the

application

Board

Wire

MAC
HeaderPreamble DataIPX

Header

Hardware strips the preamble and
gives the packet to the MLID.
Introduction to ODI 1-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

1-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 1 Overview of Protocol Stacks
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

l

I

e

lled
Chapter Overview

This chapter provides an overview of protocol stack operation. It covers
protocol stack and MLID multiplexing and introduces the concept of logica
boards. This chapter also introduces packet transmission and reception.

You should read this chapter if you have not previously developed an OD
protocol stack.

Protocol Stack

Protocol stacks transmit and receive data over a network. They provide th
interface that allows higher layer protocols or applications access to the
protocol stack’s services such as routing and connection.

Protocol Stack Multiplexing

ODI protocol stacks provide maximum flexibility because they are
independent of physical media and frame type. For instance, the following
three scenarios are possible:

• One protocol stack can concurrently use multiple frame types (also ca
logical boards)

• Multiple protocol stacks can be concurrently used by a frame type

• Or any combination of multiple protocols and multiple frame types is
possible. (See Figures 2-1 through 2-3 .)
Overview of Protocol Stacks 1-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Figure 1-1

One Protocol Stack Using
Multiple Frame Types

Link Support Layer (LSL)

Network boards (or chipsets)

Logical Board (or Frame Type)

Protocol Stack A

Protocol stack

FDDI
SNAP802.2

Token-Ring
802.2 SNAP

Multiple Link Interface Drivers (MLIDs)

802.2II

Ethernet
1-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Figure 1-2

Multiple Protocol Stacks Using
One Frame Type

Link Support Layer (LSL)

Network board (or chipset)

Logical Board (or Frame Type)

Protocol Stack B

Token-Ring
802.2 SNAP

Multiple Link Interface Drivers (MLIDs)

Protocol Stack A Protocol Stack C

Protocol stacks
Overview of Protocol Stacks 1-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Figure 1-3

Multiple Protocol Stacks Using
Multiple FrameTypes

Link Support Layer (LSL)

Network boards (or chipsets)

Logical Board (or Frame Type)

Protocol Stack B

FDDI
SNAP802.2

Token-Ring
802.2 SNAP

Multiple Link Interface Drivers (MLIDs)

802.2II

Ethernet

Protocol Stack A Protocol Stack C

Protocol stacks
1-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

r
ust
me

that
he
Packet Flow with Multiple Protocol Stacks

Protocol stacks are media and frame-type unaware. Therefore, in order fo
multiple protocol stacks to communicate with the logical boards, the LSL m
have a unique value identifying each protocol stack and logical board (fra
type).

Routing a Packet to the Correct Protocol Stack

Packet reception is more involved than packet transmission and requires
the protocol stack bind to a logical board in the system. Binding enables t
LSL to route incoming frames to the protocol stack.

Figure 2-4 illustrates the configuration for the following discussion.
Overview of Protocol Stacks 1-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Figure 1-4

Typical Configuration in
Protocol Stack Multiplexing

Link Support Layer (LSL)

Network board (or chipset)

Logical Board (or Frame Type)

Protocol Stack B

Token-Ring
802.2 SNAP

Multiple Link Interface Drivers (MLIDs)

Protocol Stack A Protocol Stack C

Protocol stacks

PID=000Ah PID=000Bh PID=000Ch

Logical
Board 1

Logical
Board 2
1-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

L
hen

res
 The

itting
t

 and

r

l
ID of
During protocol stack initialization, the stack registers with the LSL. The LS
assigns a unique value known as a Stack ID (SID) to each protocol stack. W
the LSL binds the protocol stack to a frame type (logical board), the LSL
assigns a predefined Protocol ID (PID) to that protocol stack. The LSL sto
the PID, the SID, and the logical board number of the frame type in a table.
LSL uses the SID, PID, and logical board number to allow communication
between the protocol stacks and the logical boards.

When a protocol stack sends a request to be transmitted, the MLID transm
the request embeds the appropriate PID in the MAC header of the reques
packet. The location and format of the PID in the frame header is topology
frame dependent and does not concern the protocol stack.

When a logical board in the MLID receives a request from the wire, its ISR
(Interrupt Service Routine) fills in the LOOKAHEAD structure’s
LkAhd_BoardNumber field or Event Control Block (ECB) structure’s
ECB_BoardNumber field with that logical board number. (An ECB is a buffe
that contains information regarding the packet and fragment descriptors
pertaining to the packet data. For information on the ECB, see Appendix A:
Event Control Blocks (ECBs).) The logical board in the MLID takes the PID
from the MAC header and places it in the LkAhd_ProtocolID/ECB_ProtocolID
field. The MLID hands the LOOKAHEAD structure, which contains the
prefilled ECB if the MLID uses ECBs, to the LSL. The LSL uses the logica
board number and the PID to index the table and determine the protocol S
the stack that is to receive the packet. (See Figure 2-5.)
Overview of Protocol Stacks 1-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Figure 1-5

MLID/Protocol Stack Multiplexing

Routing a Packet to the Correct Logical Board

When a response is transmitted, the LSL is able to check the
ECB_BoardNumber field (filled out in the process above) to determine the
logical board in the MLID that prepares the packet for transmission.

Link Support Layer (LSL)

Network board (or chipset)

Protocol Stack BProtocol Stack A
PID=000Ah PID=000Bh

Board 1 Board 2

Board # Stack ID PID
1

2
8137h
800h
E0h

1
1

12
1-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

lize

he

d at

tocol

tack
ID)

that
nt

e

col
or that
Packet Reception with Multiple Protocol Stacks

A protocol stack uses the following two system handles to concurrently uti
and service multiple boards in a system:

• Board Number The board number specifies the logical board and the
frame type.

• Protocol ID (PID) The PID, together with the board number, specifies t
protocol stack that the packet is sent to.

When a protocol stack registers with the LSL, the stack gives the LSL the
address of the stack’s receive handler routine. This routine is usually calle
privileged time.

Protocol Stack Packet Reception Methods

The ODI specification defines these protocol stack reception methods:

• Bound

• Prescan

• Default

Prescan and default protocol stacks can be chained (see Chapter 4, "Pro
Stack Initialization").

Bound Protocol Stacks

Bound protocol stacks are the most common method. A bound protocol s
requires that frames received from the LSL have a registered Protocol ID (P
in the LkAhd_ProtocolID/ECB_ProtocolID field. (The system administrator
and/or protocol stack registers a PID with the LSL for each protocol stack
will be used.) The appropriate PIDs for a given protocol are usually differe
for each frame type. The ODI Specification Supplement: Frame Types and
Protocol IDs lists the common IPX protocol stack PID values for most fram
types.

The LSL uses the PID in the LkAhd_ProtocolID/ECB_ProtocolID field to
locate the appropriate protocol stack to receive the packet. A bound proto
stack receives only the packets that have the same PID as that registered f
stack.
Overview of Protocol Stacks 1-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 to a
r
 be
tacks
 a
the
. The

ed

e
ss

N
k. If
t or
,
tacks.

 still

col
s,

cks
le

ith
e
A registered protocol stack only receives packets whose PID corresponds
logical board. Protocol stacks containing a limited number of network laye
protocols that use different PIDs (for example, TCP/IP, ARP, RARP) must
registered to the LSL as separate and distinct protocols. These protocol s
are logically fragmented and each fragment must register with the LSL as
separate protocol stack. However, these fragments can still be located in
same piece of software and can specify the same receive handler routine
receive handler routine then examines the LkAhd_ProtocolID/
ECB_ProtocolID field to determine the subprotocol that the frame is intend
for.

The bound protocol stack method allows multiple protocol stacks to servic
and share a single LAN adapter. This method also minimizes protocol cro
talk because the packet’s protocol type is not determined by parsing the
protocol header.

Prescan Protocol Stacks

Prescan protocol stacks receive all incoming packets from a particular LA
adapter before the packet is routed to the appropriate bound protocol stac
the prescan stack consumes the packet, it must either resubmit the packe
discard the packet. Special purpose protocol stacks such as packet filters
diagnostic utilities, or compression protocol stacks are used as prescan s

If a prescan protocol stack chain exists, other prescan protocol stacks will
be placed into their requested position in the chain. This allows multiple
prescan protocol stacks in the system.

Default Protocol Stacks

Default protocol stacks receive every frame not claimed by any other proto
stack (prescan, bound, or other default stacks in the chain). In other word
these stacks receive all leftover packets.

Default protocol stacks typically provide a Logical Link Control Layer
solution. If a default protocol stack chain exists, other default protocol sta
will be placed into their requested position in the chain. This allows multip
default protocol stacks in the system.

Packet Reception Process

In order to receive packets from an MLID, a protocol stack must register w
the LSL and then bind to that MLID. Registration provides the LSL with th
1-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

eps
et
information required to route packets from MLIDs to protocol stacks. The st
involved in packet reception are given in Chapter 5, "Protocol Stack Pack
Reception".

•

Overview of Protocol Stacks 1-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

1-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 2 Protocol Stack Data Structures
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ol
Chapter Overview

This chapter presents the structure code and field descriptions of a protoc
stack configuration table and a protocol stack statistics table.

Protocol Stack Configuration Table

Protocol Stack Configuration Table Structure Sample Code

typedef struct _PS_CONFIG_TABLE_

{

UINT16 PConfigTableMajorVer;

UINT16 PConfigTableMinorVer;

MEON_STRING *PProtocolLongName;

MEON_STRING *PProtocolShortName;

UINT16 PProtocolMajorVer;

UINT16 PProtocolMinorVer;

UINT8 PConfigTable_ODISpecMajorVersion;

UINT8 PConfigTable_ODISpecMinorVersion;

UINT8 PConfigTable_ProtocolAPIMajorVersion;

UINT8 PConfigTable_ProtocolAPIMinorVersion;

UINT32 PConfigTable_SystemFlags;

UINT32 PConfigTable_ProtocolFlags;

UINT32 PConfigTable_ProtocolReserved;

} PS_CONFIG_TABLE;
Protocol Stack Data Structures 2-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Protocol Stack Configuration Table Field Descriptions

Table 2-1

Protocol Stack Statistics Table Field Descriptions

Field Description

PConfigTableMajorVer The major version number of the protocol stack configuration
table. Use PSTK_CONFIG_TABLE_MAJOR_VER, defined in
ODI.H.

PConfigTableMinorVer The minor version number of the protocol stack configuration
table. Use PSTK_CONFIG_TABLE_MINOR_VER, defined in
ODI.H.

PProtocolLongName Pointer to a NULL terminated MEON string describing the
protocol stack in detail.

PProtocolShortName Pointer to a NULL terminated MEON string containing the
short name for the protocol stack, which is used to register the
protocol stack. This string cannot have more than 15
characters (not including the NULL terminator).

PProtocolMajorVer Decimal value that indicates the major version number of the
protocol stack.

PProtocolMinorVer Decimal value that indicates the minor version number of the
protocol stack (0 through 99).

PConfigTable_ODISpecMajorVersion The major version of the ODI Specification that the protocol
stack is written to. For example, if the ODI Specification is
version 1.11, the value of this field is 1. To set this field,
protocol stacks should use ODI_SPEC_MAJOR_VER,
defined in ODI.H.

PConfigTable_ODISpecMinorVersion The minor version of the ODI Specification that the protocol
stack is written to. For example, if the ODI Specification is
version 1.11, the value of this field is 11. To set this field,
protocol stacks should use ODI_SPEC_MINOR_VER, defined
in ODI.H.

PConfigTable_ProtocolAPIMajorVersion The major version of the protocol stack API interface. For
example, if the API interface is version 1.00, the value of this
field is 1. The protocol stack determines the value of this field.

PConfigTable_ProtocolAPIMinorVersion The minor version of the protocol stack API interface. For
example, if the API interface is version 1.00, the value of this
field is 00. The protocol stack determines the value of this field.
2-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

PConfigTable_SystemFlags The constants for this field are defined in ODI.H as follows:

PSTK_CFG_AUTO_NETWORK_RESOLUTION_BIT

SET if automatic network resolution is on.

PSTK_CFG_AUTO_BIND_ACTIVE_BIT

SET if automatic binding is on.

PSTK_CFG_ROUTER_ACTIVE_BIT

SET if a protocol router is present.

PSTK_CFG_SERVER_BIT

SET if the protocol stack is running in a server environment
(mutually exclusive with PSTK_CFG_CLIENT_BIT).

PSTK_CFG_CLIENT_BIT

SET if the protocol stack is running in a client environment
(mutually exclusive with PSTK_CFG_SERVER_BIT).

PConfigTable_ProtocolFlags Defined by individual protocol stacks.

PConfigTable_ProtocolReserved Reserved for protocol specific use.

Table 2-1

Protocol Stack Statistics Table Field Descriptions

Field Description
Protocol Stack Data Structures 2-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 and
Protocol Stack Statistics Table

All protocol stacks must keep a statistics table for the purpose of network
management. The following contains a sample of the statistics table code
a description of each of the fields in the statistics table.

Protocol Stack Statistics Table Structure Sample Code

typedef struct _PS_STATS_TABLE_

{

UINT16 PStatTableMajorVer;

UINT16 PStatTableMinorVer;

UINT32 PNumGenericCounters;

STAT_TABLE_ENTRY (*PGenericCountersPtr)[];

UINT32 PNumCustomCounters;

STAT_TABLE_ENTRY (*PCustomCountersPtr)[];

} PS_STATS_TABLE;
2-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Protocol Stack Statistics Table Field Descriptions

Table 2-2

Protocol Stack Statistics Table Field Descriptions

Field Description

PStatTableMajorVer The major version number of the protocol stack
statistics table (2 for this specification).

PStatTableMinorVer The minor version number of the protocol stack
statistics table (0 for this specification).

PNumGenericCounters The total number of generic STAT_TABLE_ENTRY
counters in this portion of the table. Set this field to
0x0003 for this specification.

PGenericCountersPtr Pointer to an array of STAT_TABLE_ENTRY counters
[PNumGenericCounters].

PNumCustomCounters The total number of custom STAT_TABLE_ENTRY
counters in this portion of the table. The value in this
field is protocol stack dependent.

PCustomCountersPtr Pointer to an array of STAT_TABLE_ENTRY counters
[PCustomCounters].
Protocol Stack Data Structures 2-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

STAT_TABLE_ENTRY Structure Sample Code

#define NUM_GENERIC_COUNTERS 3
UINT32 PTotalTxPackets, PTotalRxPackets, PIgnoredRxPackets;
MEON_STRING PTotalTxPacketStr "Total Tx Packets";
MEON_STRING PTotalRxPacketStr "Total Rx Packets";
MEON_STRING PIgnoredRxPacketStr "Rx Packets Ignored";
STAT_TABLE_ENTRY PGenericCounters[NUM_GENERIC_COUNTERS] =
{

{ ODI_STAT_UINT32, &PTotalTxPackets, &PTotalTxPacketsStr },
{ ODI_STAT_UINT32, &PTotalRxPackets, &PTotalRxPacketsStr },
{ ODI_STAT_UINT32, &PIgnoredRxPackets, &PIgnoredRxPacketsStr },

};
PS_STATS_TABLE PS_StatsTable = {2,0,NUM_GENERIC_COUNTERS,

PGenericCounters, 0 , NULL };

The strings for the protocol stack counters are initialized by language enabling
code.
2-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

STAT_TABLE_ENTRY Field Descriptions

•

Table 2-3

Generic Counters Array STAT_TABLE_ENTRY

Size Label Description

UINT32 PTotalTxPackets This field has the total number of
SendPacket requests made to the LSL.

UINT32 PTotalRxPackets This field contains the total number of
incoming packets that were consumed by
the protocol stacks.

UINT32 PIgnoredRxPackets This field has the total number of times the
protocol receive handler was called with
lookahead data and the protocol stack did
not return a receive ECB to the MLID to
receive the packet.
Protocol Stack Data Structures 2-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

2-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 3 Protocol Stack Initialization
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

lt
w in

on

d to
 of
Chapter Overview

This chapter describes registering and binding prescan, bound, and defau
protocol stacks. This chapter also covers the information you need to kno
order to chain protocol stacks.

You should review this chapter before writing the protocol stack initializati
routine.

Protocol Stack Initialization Steps

Protocol stack initialization involves the following general steps:

1. Locate the LSL.

2. Register the protocol stack.

3. Determine which logical board(s) to service.

4. Obtain the Protocol ID value(s).

5. Customize the protocol stack.

6. Bind the protocol stack to the logical board(s).

If your protocol stack is to be resident, it should free all the memory it use
hold the initialization code and data before turning resident. (The process
freeing initialization code and data is a design implementation decision.)
Protocol Stack Initialization 3-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 may

r

the

 SID

can
Locating the LSL

The LSL module must reside in the system before the user can load any
protocol stacks. On some platforms, such as the NetWare server, the LSL
already be preloaded. Refer to "Locating the LSL" in Chapter 10, "LSL
Support Routines".

Registering Protocol Stacks with the LSL

After a protocol stack has located the LSL, the protocol stack must registe
itself with the LSL. This accomplishes the following items:

• Gives the LSL pointers to the protocol stack’s receive handler and to
protocol stack’s control handler.

• Assigns a unique Stack ID (SID) to the protocol stack.

The following table illustrates how the receive and control handlers and the
are used.

The bound protocol stack registers by invoking the CLSL_RegisterStack
function as defined in Chapter 10: LSL Support Routines.

If the protocol stack is using the prescan or default receive methods (see
Chapter 5: Protocol Stack Packet Reception), it must register using
CLSL_RegisterPrescanChain or CLSL_RegisterDefaultChain,
respectively. The LSL does not assign a Stack ID (SID) to default or pres

Table 3-1

Receive and Control Handlers and the Stack ID

Actor/Agent Action

LSL 1 Calls the protocol stack’s receive handler whenever a
packet intended for that particular protocol stack is
received.

Applications and
LSL

2 Call the protocol stack’s control handler to obtain
configuration information and to issue defined control
functions.

LSL 3 Uses the Stack ID (SID) to track the protocol stack. The
LSL assigns the SID when the protocol stack registers.
3-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ch
rmine
AN
ight
ol
rd(s)

e
ecify
he

ists
t
 the

oard

n
ans
protocol stacks; however, pointers to the protocol’s receive and control
handlers are still necessary.

Determining Which Logical Board(s) to Service

Because an ODI system can have multiple LAN adapters and because ea
adapter can have multiple frame types enabled, protocol stacks must dete
which boards to bind to and service. For example, a user might have two L
adapters with each having enabled four frame types; this translates into e
logical boards registered with the LSL. The user must then tell the protoc
stack which board(s) to bind to. Protocol stacks can determine which boa
to bind to by using either the explicit method or the dynamic method; they
should support both methods.

Explicit Method

In the explicit method, the user explicitly specifies which logical boards th
protocol stack binds to. We suggest that for each protocol entry the user sp
a "bind" entry in the appropriate platform configuration file that looks like t
following:

bind "stack name" <MLID Short Name> [Board Number <Protocol ID>]

The method of specifying the binding of a protocol stack to a logical board is
entirely up to the protocol stack developer. The line specifying the binding
information can be passed to the protocol stack or some entity to parse and the
resultant binding information as to the stack and which logical board it is bound
to is passed in the CLSL_BindStack or CLSL_BindProtocolToBoard call.

The first thing a protocol stack does is verify whether a specified board ex
and whether a Protocol ID (PID) is available for the protocol that uses tha
particular board. The protocol stack can verify that a board exists by calling
CLSL_GetMLIDControlEntry function. If the board is valid, the protocol
stack determines whether a PID exists for the protocol on that particular b
by calling CLSL_GetPIDFromStackIDBoard. If a PID is not present for that
protocol, the protocol stack adds a PID to use or stops the initialization
procedure.

Dynamic Method

If no bind information is specified in the appropriate platform’s configuratio
file, the protocol stack scans for board(s) to bind to. The protocol stack sc
Protocol Stack Initialization 3-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

e

d

at
ck
 the

use

me
 LAN
D.

on.

D

h of

ular

’s

oes

r
e

the
through all the possible board numbers, starting with board 0, and calls th
CLSL_GetMLIDControlEntry function, which returns whether or not the
specified board number exists. The protocol stack continues scanning an
calling CLSL_GetMLIDControlEntry until the message
ODISTAT_NO_MORE_ITEMS is returned. The protocol stack then knows th
no more boards exist at any higher board numbers. When the protocol sta
encounters an active board, the stack queries the LSL for a PID by calling
CLSL_GetPIDFromStackIDBoard support function. If the protocol stack
cannot find a board that has a PID for it, the protocol stack adds a PID to
or stops the initialization procedure.

Adding Protocol IDs

You should write your protocol stacks so that they are LAN medium and fra
type unaware. Because PID values are determined by the frame type and
medium where they are used, the protocol stack does not interpret the PI
Usually, the user of your protocol stack will enter your protocol stack’s PID
with the configuration information for each frame type and board combinati
As discussed in the ‘‘Explicit Method“ and ‘‘Dynamic Method” sections
above, the protocol stack obtains the PID by calling
CLSL_GetPIDFromStackIDBoard . Your protocol stack can register an
appropriate PID for each board it binds to. This procedure eases system
configuration for the user because the user does not need to enter any PI
values for your protocol stack.

To add a PID, the protocol stack must know the common PID value for eac
the frames currently defined (for example, ETHERNET_802.2,
TOKEN_RING, NOVELL_RX-NET, FDDI_SNAP, etc.). See ODI
Specification Supplement: Frame Types and Protocol IDs for a list of the
current frame types. Before the protocol stack adds the PID, it determines
whether a PID has previously been registered for that stack on that partic
board. The protocol stack determines this by calling
CLSL_GetPIDFromStackIDBoard . If this call returns a PID, the protocol
stack uses it. If a PID is not returned, the protocol stack looks at the MLID
configuration table MLIDCFG_FrameID field to determine whether the
protocol stack has a known PID for that frame type. If the protocol stack d
have a known PID for that frame type, the protocol stack calls
CLSL_AddProtocolID . If the protocol stack does not have a known PID fo
that frame type (for example, perhaps a new frame type is being used), th
protocol stack returns an error that indicates a PID must be entered with
configuration information.
3-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

rd if

t

pe.
lly
.)

 to
rds

k is

 PID

y
e

 to

f
In summary, a protocol stack can add a PID to the LSL for a particular boa
the following two conditions are true:

• A PID for the protocol stack to use with a particular frame type has no
been previously registered (determined by
CLSL_GetPIDFromStackIDBoard).

• The protocol stack is internally aware of a PID for the board’s frame ty
(For example, the IPX PID on frame type ETHERNET_802.2 is usua
0xE0, and the TCP/IP PID on frame type Ethernet_II is usually 0x800

Multiple Board Support

The ODI specification allows a protocol stack to be simultaneously bound
multiple boards. Whether or not your protocol stack supports multiple boa
is for you to decide.

Obtaining Protocol ID Values

The protocol stack usually obtains a Protocol ID (PID) value when the stac
determining which board it can bind to. The
CLSL_GetPIDFromStackIDBoard function returns the assigned PID for
that protocol stack on the specified board. A protocol stack only needs the
value(s) when it sends packets and when it registers with the LSL (see Chapter
11: Overview of the MLID). A protocol stack must not interpret the PID in an
way so that LAN medium and frame type independence is maintained. Th
protocol stack simply saves the obtained PID(s) for use when transmitting
packets.

Customizing the Protocol Stack

One of the ODI specification’s goals is to keep the protocol stack interface
the LSL and the underlying MLIDs as general and independent of issues
specific to LAN adapters as possible. However, there are still a number o
issues that must be dealt with during initialization. This means that your
protocol stack must be customized to the particular capabilities of the
underlying MLIDs and the associated LAN adapters.
Protocol Stack Initialization 3-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 to
 they
e

ed of
ll

a is

k,

ure

 by
er

te
its

n
s for
using
ree
Line Speed

Most LAN media provide high speed data transfer rates (for example, 2M
100M bits per second). Protocol stacks that retry transmit operations when
do not receive an expected acknowledgment within a specific period of tim
might have to customize time-out values so they are appropriate to the spe
the underlying physical LAN medium. Time-out values can usually be sma
because transmission and reception acknowledgment on most LAN medi
very fast. However, keep in mind that the underlying medium might have
relatively low data rates (such as 2400 baud). Unless the protocol stacks
increase their internal time-out values when they are using a slow networ
excessive and unneeded transmit retries will occur and adversely affect
operation.

Measuring Effective Network Performance

Protocol stacks can use two fields in the MLID’s configuration table to meas
the effective performance of a particular network: MLIDCFG_TransportTime
and MLIDCFG_LineSpeed (see Chapter 12: MLID Data Structures for more
details regarding these fields).

MLIDCFG_TransportTime Field

The MLIDCFG_TransportTime field specifies the time required to transmit a
586 byte packet in milliseconds. This field is usually set to a value of 1 or 2
higher speed MLIDs. Lower speed LAN media must set this field to a high
value.

MLIDCFG_LineSpeed Field

The MLIDCFG_LineSpeed field specifies the effective bits per second data ra
of the underlying LAN medium. This field can be specified either in megab
per second or kilobits per second.

Maximum Packet Size

Each physical LAN medium has a defined maximum packet size that it ca
transmit and receive. Protocol stacks must, therefore, configure themselve
the maximum amount of packet data that they can send and receive when
a particular board. The logical board’s MLID configuration table contains th
maximum packet size fields: MLIDCFG_MaxFrameSize,
MLIDCFG_BestDataSize, and MLIDCFG_WorstDataSize.
3-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

et

ertain

a
vel

ctive
l

AN
y to
n one
 by all

set of
the
ets,

ackets
e
cast
MLIDCFG_MaxFrameSize Field

The MLIDCFG_MaxFrameSize field represents the absolute maximum pack
size. The maximum packet size includes all low-level headers with the
exception of the leaders and trailers managed by the hardware.

MLIDCFG_BestDataSize Field

The MLIDCFG_BestDataSize field represents the maximum number of data
bytes that the protocol stack can send and receive when it does not use c
low-level headers (such as the source routing headers in Token-Ring).

MLIDCFG_WorstDataSize Field

The MLIDCFG_WorstDataSize field represents the maximum number of dat
bytes the protocol stack can transmit and receive regardless of any low-le
headers managed by the MLID. Protocol stacks always use the value of
MLIDCFG_WorstDataSize when they determine the maximum data packet
they can send and receive. The value of MLIDCFG_WorstDataSize includes
the protocol stack’s header information.

For example, if the MLIDCFG_WorstDataSize is set to 1500 bytes and a
protocol stack appends a 16-byte header to all the data it transmits, the effe
maximum amount of data that an application using that particular protoco
stack can transmit and receive is 1500 – 16 = 1484 bytes.

Multicast Support

A number of protocol stacks take advantage of multicast transmission, a L
medium specific capability. Multicast transmission operates in a similar wa
broadcast transmission—transmitted packets can be targeted to more tha
node. The difference between these is that broadcast packets are received
nodes on a network while multicast packets are received by a defined sub
all nodes. This allows the protocol broadcast information to only preempt
resources on the nodes that will actually receive the protocol stack’s pack
significantly reducing the performance impact on the nodes that are not to
receive the broadcast packets.

In order for a LAN adapter to become a member of a multicast group, the
group’s multicast address has to be enabled on the adapter so that any p
received by it will be passed to the host computer and not discarded at th
hardware level. Protocol stacks determine whether an MLID supports multi
Protocol Stack Initialization 3-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

m

her

LAN
cast

st
ck
.

ular
 at
st
ast

erly

uring

tack
k to
by examining the MLIDCFG_ModeFlags field in the MLID configuration
table (see Chapter 12: MLID Data Structures).

Multicast support and the format of the multicast addresses is LAN mediu
dependent, and some LAN media do not support any type of multicast
capability. A protocol stack that utilizes multicasting must determine whet
the MLID is using noncanonical or canonical addressing by examining the
MLID configuration table entry MLIDCFG_ModeFlags (see Chapter 12:
MLID Data Structures). (Canonical addressing is a ‘‘generic“ form of
addressing that is media independent See ODI Specification Supplement:
Canonical and Noncanonical Addressing for more information.) If the MLID
is using noncanonical addressing, the protocol stack must determine the
medium type of the underlying LAN adapter and use the appropriate multi
address. MLIDs have control functions that add and remove multicast
addresses (see Chapter 15: MLID Control Routines).

If a protocol stack does not know the format of the LAN medium’s multica
address, or the LAN medium does not support multicasts, the protocol sta
simply uses real broadcasts (0xFF FF FF FF FF FF) instead of multicasts

Protocol stacks that use multicast addresses should also allow the user to
specify the multicast addresses that the protocol stack will use for a partic
board. This capability is usually accomplished by using a custom keyword
load time. This allows the protocol stack to use correctly formatted multica
addresses for LAN mediums other than the ones that the protocol’s multic
code was originally written to.

Receive Lookahead

As part of customization, your protocol stack informs the underlying MLID
about the amount of receive lookahead data it must have in order to prop
process received packets. (The SetLookAheadSize MLID control function is
discussed in detail in Chapter 15: MLID Control Routines. It is noted here in
order to specify that your protocol stack sets its needed lookahead size d
this phase of initialization.)

Binding to Logical Boards

One of the last things a protocol stack must do before it becomes fully
operational is to bind to the predetermined board(s). Binding the protocol s
enables the LSL to route incoming packets destined for that protocol stac
3-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

er

 is not
n the

.
ined

ks
tack
empt
its receive handler. Note, a protocol stack can send packets without being
bound to any board(s).

A protocol stack must be prepared to have its receive handler invoked aft
calling the Bind support function.

If the protocol stack uses the prescan or default receive methods, this step
necessary. Packet reception for these types of protocol stacks begins whe
CLSL_RegisterPreScanChain or CLSL_RegisterDefaultChain commands are
issued.

Chaining Prescan and Default Protocol Stacks

Prescan and default protocol stacks can be chained, so the received and
transmitted packets flow through the chained stacks in a prescribed order
Figure 1.1 illustrates sample receive packet flow through a system with cha
prescan and default stacks.

The LSL adds the chained stacks in the chain position order that the stac
request. If a stack must be first or must be last in the chain, and another s
that also must be first or must be last already occupies that position, the att
to load the second stack returns an error message.
Protocol Stack Initialization 3-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Figure 3-1

Receive Prescan and Default Protocol Stack
Chaining Overview

LSL

Adapter

Virus
Scanner

LANalyzer

Prescan Stacks Bound Stacks Default Stacks

Dropped

IPX TCP/IP ODINSUP 802.2
LLC

MLID
3-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Figure 3-2

Transmit Prescan Protocol Stack
Chaining Overview

LSL

Adapter

MLID

Prescan Transmit StacksTransmit Stacks (Initiating Send)

IPX TCP/IP Compression Security
Protocol Stack Initialization 3-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 it is
and
If more than one prescan stack is loaded on a machine and each prescan stack
attaches it’s own protocol header to the transmit data, the transmit load order of
the stacks on the transmitting machine will dictate the receive load order of the
stacks on the receiving machine. For example, if on the transmitting machine
you have three prescan stacks loaded in the order A B C, then in order to
process the headers properly, you must load the prescan stacks on the machine
receiving the packets in the order C B A. This is not a problem if both the
transmit and receive PreScan chain stacks are loaded at the same time using
CLSL_RegisterPreScanChain .

Final Initialization

At this point the protocol stack is fully operational. Whenever possible, we
recommend that your module display, to the user, the logical board(s) that
bound to and servicing. The display should include the MLID’s short name
any other information that the user might find useful.
3-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 4 Protocol Stack Packet Reception
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

,

n the

 a
at
e.
Chapter Overview

This chapter describes the protocol stack receive routine. It details bound
prescan, and default protocol stack receive methods. This chapter also
describes how the protocol stack uses the Event Control Block (ECB) whe
stack receives a packet.

Protocol Stack Packet Receive Operation

When a protocol stack registers with the LSL, the protocol stack specifies
routine for the LSL to call when an MLID receives a packet destined for th
particular protocol stack. This routine is the protocol stack’s receive routin
Protocol Stack Packet Reception 4-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Receive Routine Events

Table 5-1 lists the events that must occur during a protocol stack receive
routine.

Table 4-1

Protocol Stack Receive Routine

Actor/Agent Action

MLID 1. When a packet is received, a LOOKAHEAD structure is filled out and the MLID
LSL support routine CLSL_GetStackECB is called to obtain from a protocol stack
a receive buffer for the packet data. (For more information on
CLSL_GetStackECB , see Chapter 10, ’’LSL Support Routines’’).

LSL 2. Determines whether bound, prescan, or default protocol stacks will be receiving
the packet.

3 Calls the protocol stack that is to receive the data and passes to the protocol stack
a pointer to the LOOKAHEAD structure describing the received packet.

Protocol stack 4. Determines whether to receive the packet. If the LOOKAHEAD structure has a
prefilled ECB associated with it and the protocol stack utilizes the prefilled ECB
(the protocol stack responds ODISTAT_SUCCESS_TAKEN), step 6 is ignored.

If a protocol stack consumes the prefilled ECB by returning
ODISTAT_SUCCESS_TAKEN with the LkAhd_ReturnedECB field set to NULL, it
returns the prefilled ECB to the LSL using CLSL_ReturnECB , after it has finished
processing it.

5. Builds an ECB describing a set of receive buffers that the packets are dispersed
into.

6. Signals to the LSL that this protocol stack will consume the packet.

LSL 7. If the LOOKAHEAD structure has a prefilled ECB associated with it and the
protocol stack utilizes the prefilled ECB, it assumes control of the ECB. The
protocol stack will return the ECB to the LSL using CLSL_ReturnECB after it has
finished processing it and returns the status ODISTAT_SUCCESS_TAKEN
through the LSL to the MLID, and steps 8 and 9 are ignored.

If the LOOKAHEAD structure has a prefilled ECB associated with it and the
protocol stack does not utilize the prefilled ECB (the protocol stack returns an
ECB to be filled), the LSL will disperse the receive packet data from the prefilled
ECB into the receive buffers of the ECB supplied by the protocol stack. The LSL
will then place the ECB returned by the protocol stack onto the LSL hold event
queue, and steps 8 and 9 are ignored. The MLID is returned the status
ODISTAT_SUCCESS_TAKEN.
4-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Note: If an MLID presents a prefilled ECB in the LOOKAHEAD structure, no
further processing for that lookahead indication is required apart from
incrementing appropriate counters dependent on the returned status. For
example, if the status returned is ODISTAT_OUT_OF_RESOURCES, the MLID
counter MNoECBAvailableCount is incremented by the MLID.

If the LOOKAHEAD structure has no prefilled ECB associated with it and the
protocol stack returns an ECB to be filled (ODISTAT_SUCCESSFUL), steps 8
through 11 are executed.

Note: The LkAhd_ReturnedECB field may be NULL when
ODISTAT_SUCCESSFUL is returned, if the protocol stack was able to retrieve the
necessary information from the LOOKAHEAD data. Returning a NULL ECB
allows the MLID to adjust its statistics accordingly; for instance, if the packet was
not rejected.

If the protocol stack returns ODISTAT_OUT_OF_RESOURCES, the packet is
discarded and step 10 is executed.

MLID 8. Copies the packet data into the provided data buffers.

9. The ECB is placed onto the LSL hold event queue, CLSL_HoldEvent , or calls
CLSL_FastHoldEvent and skips steps 10 and 11.

10. Calls CLSL_ServiceEvents .

LSL 11. Dispatches the defined ESR (event service routine), signaling that packet
reception is complete.

Table 4-1

Protocol Stack Receive Routine

Actor/Agent Action
Protocol Stack Packet Reception 4-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

col

ID)

r
ocol

l
ume
efault

ound
 a

thod

me
ols
Protocol Stack Packet Reception Methods

The ODI specification defines three methods of packet reception for proto
stacks:

• bound

• prescan

• default

Bound Protocol Stack

Bound protocol stacks receive packets with the appropriate Protocol ID (P
in the LkAhd_ProtocolID/ECB_ProtocolID field. The PID is obtained from the
low-level frame header. A bound protocol stack can choose to consume o
reject a packet. If the protocol stack rejects the packet and no default prot
stack exists for this board, the packet is discarded from the system.

Prescan Protocol Stack

Prescan protocol stacks look at all packets received by a particular logica
board (adapter and frame type combination). The protocol stack can cons
select packets and allow others to be passed to the appropriate bound or d
protocol stack.

Default Protocol Stack

Default protocol stacks receive packets not consumed by the prescan and b
protocol stacks. A default protocol stack can choose to consume or reject
packet. If the packet is rejected, it is discarded from the system.

Choosing a Packet Reception Method

We strongly discourage you from using the prescan receive or default me
of packet reception for the following two reasons:

• A protocol stack might conflict with another protocol stack using the sa
method of packet reception. This would prevent the use of both protoc
with the same board.
4-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

s the
sses
ype.

r
e of
y
 the

g

an

ound

 the

E.

is

s the

• A protocol stack parses the packet header to determine if the packet i
correct type. Therefore, a protocol stack might receive a packet that pa
the protocol stack’s acceptance tests, but in reality is not the correct t
This could cause unpredictable results in the network station.

The prescan receive and default reception methods must only be used fo
specialized protocol stacks that must receive packets having a large rang
PIDs. For example, the 802.2 protocol stack must receive packets with an
Destination SAP. Protocol stacks that provide a data-link layer interface to
network layer protocol stacks are candidates for using prescan receive or
default receive methods. Also, protocol stacks that provide compression
services are candidates for prescan receive and default protocol stacks. A
receive monitor can also be implemented as a prescan receive stack by
registering for all its relevant destination types including packets containin
errors.

Multiple Chained Protocol Stacks

Multiple chained protocol stacks for each logical board can use the presc
receive or default reception method. The bound method allows multiple
protocol stacks to receive packets for a board. This method uses the PID f
in every packet to multiplex and demultiplex protocol packets.

MAC Packet Reception

To receive MAC frames, bound protocol stacks must register using either
MACTOK or MACFDI protocol ID. All three reception methods (bound,
prescan, and default) must set their filter mask to include DT_MAC_FRAM

Receive Lookahead

The receive method known as ‘‘receive lookahead“ entails passing the
beginning portion of the packet up to the protocol stack. In most cases, th
allows the receive packet data to be dispersed directly into the application
buffers. This is the optimal situation because the receive data only crosse
host’s bus once, and this method allows unwanted packets to be rejected
without ever leaving the adapter’s buffers.
Protocol Stack Packet Reception 4-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

e

the
ants
ffers
ion

ta
k

et
B,
, it

 an

lify

ck

e
Receive Handler

Regardless of whether the protocol stack is bound, prescan, or default, th
protocol stack is passed lookahead data whenever its receive handler is
invoked. This data is used to determine into which receive buffers (if any)
data is placed. (Receive buffers can be fragmented.) If the protocol stack w
to consume the packet, it must build an ECB that describes the receive bu
and then returns that ECB to the MLID. The MLID uses the ECB’s descript
of the receive buffers to move the data from the network adapter into the
described protocol receive buffers. When the MLID has completed the da
move, it passes the ECB to the LSL for event completion. All protocol stac
receive handlers must not block on the lookahead indication.

Alternatively, if the lookahead has an ECB associated with it
(LkAhd_PrefilledECB is not NULL), the protocol stack can accept the pack
by signaling that it has accepted the packet and taken the associated EC
which it returns to the LSL later. If a protocol stack performs this operation
must queue the ECB (using CLSL_HoldEvent) after placing an address to be
called in the ECB_ESR field or in an internal queue for processing at a later
point, since the lookahead indication is usually made at privileged time by
MLID. If the protocol stack chooses not to use the provided ECB in the
LOOKAHEAD structure and returns its own ECB to be filled, the LSL can
perform the prefilled ECB to stack ECB data copy and, by so doing, simp
the MLID’s operation.

After placing the ECB on the LSL’s hold queue (using CLSL_HoldEvent), the
event is completed when the MLID issues the LSL support command
CLSL_ServiceEvents. This calls the ECB’s ESR and allows the protocol sta
to process the packet. (For more information on the CLSL_ServiceEvents,
CLSL_HoldEvent, and CLSL_FastHoldEvent routines see Chapter 10:,
"LSL Support Routines".)

LOOKAHEAD Structure

The following LOOKAHEAD structure is given to the protocol stack’s receiv
handler.

typedef struct _LOOKAHEAD_

{

ECB *LkAhd_PreFilledECB;

UINT8 *LkAhd_MediaHeaderPtr;

UINT32 LkAhd_MediaHeaderLen;

UINT8 *LkAhd_DataLookAheadPtr;
4-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ad.

ived
t the
an

r

he
on.
UINT32 LkAhd_DataLookAheadLen;

UINT32 LkAhd_BoardNumber;

UINT32 LkAhd_PktAttr;

UINT32 LkAhd_DestType;

UINT32 LkAhd_FrameDataSize;

UINT16 LkAhd_PadAlignBytes1;

PROT_ID LkAhd_ProtocolID;

UINT16 LkAhd_PadAlignBytes2;

NODE_ADDR LkAhd_ImmediateAddress;

UINT32 LkAhd_FrameDataStartCopyOffset;

UINT32 LkAhd_FrameDataBytesWanted;

ECB *LkAhd_ReturnedECB;

UINT32 LkAhd_PriorityLevel;

void *LkAhd_Reserved;

} LOOKAHEAD;

Field descriptions:

LkAhd_PreFilledECB

If this field is not NULL, it contains a pointer to a completely filled ECB
(obtained from the LSL), which contains data referenced by the lookahe
Only the LkAhd_MediaHeaderPtr and LkAhd_MediaHeaderLen fields are
valid.

The lookahead method allows bus master adapters to provide a rece
packet with only one data copy. The protocol stack can elect to accep
already filled ECB and return the ECB to the LSL at a later point, or it c
provide its own ECB to be filled. The MM_PREFILLED_ECB_BIT bit is
implemented in the MLID configuration table’s MLIDCFG_ModeFlags
field to indicate adapters that always supply prefilled ECBs in the
LkAhd_PreFilledECB field, which allows protocol stacks to optimize thei
receive handler at initialization time.

Only ECBs provided by the LSL can be indicated in this field.

LkAhd_MediaHeaderPtr

Pointer to a buffer containing the complete low-level media header. T
protocol stack typically does not look at the low-level header informati

LkAhd_MediaHeaderLen

Contains the length of the media header pointed to by
LkAhd_MediaHeaderPtr.
Protocol Stack Packet Reception 4-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

rds,

.
hared

,
e
rt of

ocol
for

ber
LkAhd_DataLookAheadPtr

Pointer to a buffer containing the start of the frame’s data, in other wo
the protocol’s header and data.

The LkAhd_MediaHeaderPtr buffer is not guaranteed to immediately
precede the LkAhd_DataLookAheadPtr buffer (for example, an 802.3/
802.2 MAC header and the following frame data might not necessarily
be in contiguous memory).

LkAhd_DataLookAheadLen

Contains the length of the buffer pointed to by LkAhd_DataLookAheadPtr.
This value is normally the MLID’s currently configured lookahead size
Adapters that have the received packet available in memory, such as s
RAM, can set this field to the length of the data packet available, because
LkAhd_DataLookAheadPtr points at the packet located in memory. Note
you need to allow for the case of a packet wrapping over the end of th
shared memory space with the rest of the packet appearing at the sta
the shared memory space, etc.

If the received packet’s data length is less than the MLID’s configured
lookahead size, this field is set to the actual packet data length. A prot
stack must verify that this field is at least the minimum length required
the protocol stack. Note, if the contents of this field equal those of
LkAhd_FrameDataSize, you can assume that the packet has been fully
received and the contents of LkAhd_PktAttr are valid.

LkAhd_BoardNumber

Contains the logical board number that received this packet. Remem
that the logical board value specifies a LAN adapter and frame type
combination.
4-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

he

ia.

h

et.

 and
 any
LkAhd_PktAttr

Contains the attributes of the received packet. The following defines t
packet attribute bits.

Value Description

PAE_CRC_BIT CRC error—for example, frame check
sequence (FCS) error.

PAE_CRC_ALIGN_BIT CRC and frame alignment error.

PAE_RUNT_PACKET_BIT Runt packet.

PAE_TOO_BIG_BIT Packet larger than allowed by the med

PAE_NOT_ENABLED_BIT Received packet for a frame type not
supported (logical board not registered
for the frame type of the received
packet). A board number associated wit
the physical adapter is placed in the
LOOKAHEAD structure.

PAE_MALFORMED_BIT Malformed packet—for example, the
packet size is smaller than the minimum
size for the media header, such as
incomplete MAC header.

Contents of the length field in an
Ethernet 802.3 header is larger than the
total packet size.

PAE_NO_COMPRESS_BIT Do not decompress the received pack

PA_NONCAN_ADDR_BIT Implies that the address present in
LkAhd_ImmediateAddress is in
noncanonical format.

If no error bits are set, the received packet was received without error
the data contained within can be used. All undefined bits are cleared. If
error bit is set, the LkAhd_DestType field’s GlobalError bit will also be set.
Protocol Stack Packet Reception 4-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

;

re

e.
If the value in LkAhd_FrameDataSize is -1, the error status bits are invalid
however, the value PA_NONCAN_ADDR_BIT indicates that
noncanonical addressing is still valid.

LkAhd_DestType

Contains bits that indicate the type of received packet. The following a
the bit definitions.

Value Description

DT_MULTICAST Multicast: The packet was destined to
a subset of group addresses on the
physical network that the MLID has
been programmed to support.

DT_BROADCAST Broadcast: The packet was destined
to all nodes on the physical network.
Note: on receiving a broadcast both
b0 and b1 are set to 1, since a
broadcast address is also a group
address.

DT_REMOTE_UNICAST UnicastRemote: The packet was
directly destined to another
workstation on the physical network.
Generally, this bit is set only after the
MLID has been entered into
promiscuous mode or has received a
packet due to source routing.

DT_REMOTE_MULTICAST MulticastRemote: The packet was
destined to a subset of group
addresses on the physical network
that the MLID has not been
programmed to support. Generally,
this bit is set only after the MLID has
been entered into promiscuous mod

DT_SOURCE_ROUTE SourceRoute: This bit is set in
conjunction with other packet type
bits if the packet has source routing
information in the packet, in other
4-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

e

e

words, the RII bit is set. If the source
routing module is not loaded and the
length of the source route field is
greater than two bytes (packet from a
remote ring), all other bits will be
cleared.

DT_ERRORED GlobalError: Packet contains errors.
See LkAhd_PktAttr as to specific
error. This is an exclusive bit. If set,
all other bits must be 0. This value
supersedes SourceRoute and
MacFrame.

DT_MAC_FRAME MacFrame: Packet is a non-data
frame(for example, the MAC layer
frame). This is an exclusive bit, if set,
all other bits must be 0. Note, MAC
frames by definition are not source
routable.

DT_DIRECT Direct: The packet was destined to
this station only.

DT_8022_TYPE_I The received packet is an 802.2 Typ
I frame.

DT_8022_TYPE_II The received packet is an 802.2 Typ
II frame.

DT_RX_PRIORITY RxPriorityFrame: The received
packet is a priority packet. This is
only valid for topologies that support
a distinction in priority levels. When
this bit is set, the
LkAhd_PriorityLevel field will
contain the priority level of the frame.
This bit is not set if the received frame
is at the normal priority level or lower.

For 802.2 frame types, the received packet’s DSAP is returned in the last
byte of the LkAhd_ProtocolID field with all other bytes set to 0. For an
ETHERNET_II frame, neither the 802.2 Type I (0x0000 0100) nor the 802.2
Type II (0x0000 0200) values are set, which implies a non 802.2 frame.
Protocol Stack Packet Reception 4-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ames

et

 not
hen
ng

der.
.

ress,
In promiscuous mode with MAC frames enabled, all MAC frames are
received, including those transmitted by the MLID, generated by the
MLID’s hardware, and transmitted by protocol stacks performing raw
sends. For example, Token-Ring adapters can receive management fr
but not data frames. The MacFrame value is set in the LkAhd_DestType
field for these frames. The PID associated with MAC layer frames is
MACTOK for Token-Ring management frames and MACFDI for FDDI
management frames. Refer to the “Protocol Stack Packet Reception
Methods” section of this chapter for more information about MAC pack
reception.

All undefined bits are set to 0.

LkAhd_FrameDataSize

Contains the total number of data bytes in the received packet.

If the content of this field is not UNUSED, the entire received packet
and its error status is available from the adapter.

Not every LAN driver knows the exact size of a received frame when
CLSL_GetStackECB is called (RX-Net or pipelined LAN adapters are
examples of this). If the size of the received packet or its error status is
known, the protocol stack will need to check its error status and size w
the packet has been fully received. This condition is indicated by setti
the contents of this field to -1.

The MM_DATA_SZ_UNKNOWN_BIT bit is defined in the MLID
configuration table MLIDCFG_ModeFlags field to indicate an adapter
that can set LkAhd_FrameDataSize to -1, which allows protocol stacks to
optimize their receive handler at initialization time.

LkAhd_ProtocolID

Contains the PID value that was embedded in the low-level media hea
This is the protocol’s assigned PID value in the case of a bound stack

LkAhd_ImmediateAddress

Contains a representation of the address of sending station’s node add
that was embedded in the low-level media header.

If the MLID is using canonical addressing, the address in the
LkAhd_ImmediateAddress field is in canonical form.

LkAhd_FrameDataStartCopyOffset
4-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ta

ffers

e

e

e

ler.

dler
ult).
e

perly
ize
Contains the offset from the start of the frame data to start copying da
from. The returned value must not exceed the value presented in the
LkAhd_DataLookAheadLen field.

LkAhd_FrameDataBytesWanted

Contains the number of bytes of frame data to move into the receive bu
starting after the number of data bytes skipped, which is returned in
LkAhd_FrameDataStartCopyOffset. If this field contains -1, the entire
packet is copied into the receive buffers. This field is usually set by th
protocol stack when an ECB is returned to be filled.

This value can be larger than the number of data bytes in the frame,
but if it is larger, it is the responsibility of the MLID to ensure that no
errors occur. In other words, if the LkAhd_FrameDataBytesWanted
field value is larger than the number of data bytes copied from the
frame, the data length field (found in the returned ECB structure) will
be adjusted and filled in correctly by the MLID.

LkAhd_ReturnedECB

If this field is not NULL, it contains a pointer to an ECB provided by th
protocol stack that is to be filled with the packet’s data.

MLIDs rely on the value returned by CLSL_GetStackECB and this
field to decide whether a protocol stack excepts the packet and if it
returns an ECB to copy the packet into.

LkAhd_PriorityLevel

This field contains the priority level of the received packet. This field is
only valid if the RxPriorityFrame bit in the LkAhd_DestType field is set
and if the priority level is higher than the normal priority level. This valu
must not exceed the value in the MLID configuration table’s
MLIDCFG_PrioritySup field.

LkAhd_Reserved

Reserved for future use.

The LOOKAHEAD structure is valid only in the context of the receive hand

The amount of receive lookahead data needed by a protocol’s receive han
is usually different for each type of protocol stack (prescan, bound, or defa
The protocol stack can configure the amount of receive lookahead data th
MLID provides by invoking the SetLookAheadSize MLID control function as
part of the protocol’s initialization. SetLookAheadSize informs the MLID that
the protocol stack needs the specified number of packet data bytes to pro
determine into which receive buffers a packet is placed. The lookahead s
Protocol Stack Packet Reception 4-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

d size
river

’s
n the

 the

ol
OT

isions
ESR
tacks
ed
et or
ot

tocol

ived,

t
ir
y can

ed

t.

for
value can be any value between 0 and 128 bytes inclusive. The requeste
does not include any room for possible media headers, because the LAN d
will internally adjust the lookahead size value to include the LAN medium
worst case low-level media header size. If the requested size is larger tha
current lookahead size, the MLID will use the new value. However, if the
requested size is smaller than the current size, the MLID will not decrease
current size. (See Chapter 15: MLID Control Routines for information
regarding invoking the SetLookAheadSize MLID control function.)

Protocol stacks must not assume that the lookahead data is valid if the
lookahead field LkAhd_FrameDataSize is -1. The protocol stack must wait
until the filled ECB’s ESR is called. Then, from within the ESR, the protoc
stack must check the received packet’s error status. In other words, do N
copy the packet data if the MLID’s lookahead field LkAhd_FrameDataSize is -1,
and do not assume that the data is valid. Do not make any permanent dec
internal to the protocol stack that cannot be undone later when the ECB’s
is called. This is due to pipelined adapters presenting data to the protocol s
before they have finished completely receiving the packet. Hence, pipelin
adapters cannot inform protocol stacks as to the size of the received pack
whether the packet contains errors—for example, pipelined adapters cann
inform protocol stacks of CRC errors until after the packet has been fully
received.

An exception to this is when the received packet’s size is less than the pro
stacks configured lookahead size or is less than the MLID’s configured
lookahead size. Then the packet can be assumed to have been fully rece
and the LkAhd_PktAttr field contains the status of the received packet. This
condition is reported when the number of data bytes reported for the
LkAhd_DataLookAheadLen field in the LOOKAHEAD structure is less than
the configured lookahead size. For protocol stacks that utilize small packe
reception through the LOOKAHEAD structure, the protocol stacks set the
lookahead requirements to their requirements plus one to ensure that the
continue this function with pipelined adapters. Also a packet can be assum
to have been fully received if the LOOKAHEAD structure’s
LkAhd_DataLookAheadLen and LkAhd_FrameDataSize fields are equal.

If the LOOKAHEAD structure has a prefilled ECB associated with it
(LkAhd_PrefilledECB is not NULL), the protocol stack can accept the packe
The protocol stack accepts the packet by queuing the prefilled ECB and
returning ODISTAT_SUCCESS_TAKEN to the LSL. (By queuing the prefilled
ECB instead of processing it immediately, the MLID is not required to wait
the processing to be completed.) Once ODISTAT_SUCCESS_TAKEN is
returned by the protocol stack receive handler, it is the protocol stack’s
4-14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

d

d,
ess
an
n. If
e

sing,
cts
responsibility to call the receive complete handler and to return the prefille
ECB using CLSL_ReturnECB .

If the protocol stack chooses not to process the prefilled ECB in the
LOOKAHEAD structure and returns its own ECB (a stack ECB) to be fille
the LSL can perform the prefilled ECB to stack ECB copy of data. This proc
simplifies the operation of the MLID—for example, a bus mastering MLID c
provide a lookahead indication and not worry about touching the data agai
the protocol stack provides a stack ECB, the LSL can fill that ECB from th
prefilled ECB, place the stack ECB on its service events queue for proces
and return the prefilled ECB to the LSL buffer pool. If the protocol stack reje
the packet, the protocol stack returns ODISTAT_OUT_OF_RESOURCES and
the LSL returns the prefilled ECB to the LSL buffer pool.

If LkAhd_PrefilledECB is not NULL, only the LkAhd_MediaHeaderPtr and
LkAhd_MediaHeaderLen fields are valid. All other fields are referenced by their
ECB equivalents—for example, LkAhd_BoardNumber is referenced by
ECB_BoardNumber.
Protocol Stack Packet Reception 4-15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Protocol Receive Handler for Bound Stacks

The protocol receive handler for bound stacks is
invoked when a packet is received and the LSL
determines that the packet is intended for the
protocol stack.

Syntax

#include <odi.h>

ODISTAT (*StackRxHandler)

(LOOKAHEAD *LkAhead);

Input Parameters

LkAhead

Pointer to the received LOOKAHEAD structure.

Output Parameters

None.
4-16 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

an

is

n

ns:

 in
R

ferred

ious

as
Return Values

Remarks

This definition applies to bound stacks. The protocol stack examines the
lookahead data as described by the LOOKAHEAD structure and returns
ECB when appropriate.

The LOOKAHEAD structure and its fields are only valid in the context of th
function. This routine must complete quickly, since it executes during
privileged time. LAN driver functions must not be invoked inside this functio
(for example, CLSL_SendPacket must not be invoked inside this function).

The ECB must have the following fields and descriptors set before it retur
ECB_ESR, ECB_FragmentCount, and fragment descriptors. You can specify
more than one fragment descriptor. The ECB_FragmentCount field must not be
set to 0 and must not exceed 16 (0 < ECB_FragmentCount <= 16).

The LOOKAHEAD structure must have the LkAhd_FrameDataBytesWanted,
LkAhd_FrameDataStartCopyOffset, and LkAhd_ReturnedECB fields set with
appropriate values if the receive packet is accepted.

If the protocol stack also requires the ECB_ProtocolID, ECB_BoardNumber,
and ECB_ImmediateAddress fields to be filled in, the protocol stack fills it in
with the protocol identifier board number and immediate address supplied
the LOOKAHEAD structure. If an ECB is returned from this function, the ES
is called at a later time, which signals that the packet data has been trans
to the described receive buffers either successfully or with an error.

The protocol receive handler can be invoked multiple times before a prev
ECB’s ESR will be called. Therefore, the protocol stack allocates and
maintains multiple ECBs.

ODISTAT_SUCCESSFUL The protocol stack has returned a pointer in
LkAhd_ReturnedECB to an ECB to be filled with
the packet.

ODISTAT_SUCCESS_
TAKEN

The protocol stack has accepted the packet and h
taken the prefilled ECB associated with the
LOOKAHEAD structure.

ODISTAT_OUT_OF_
RESOURCES

The protocol stack will not receive the packet, in
other words, rejects the packet.
Protocol Stack Packet Reception 4-17

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ast
filter
n use
Protocol receive handlers are not called with a LOOKAHEAD structure if the
structure contains errors unless they register to receive packets with errors.
Pipelined adapters are an exception to this and cannot know the received status
of a packet when the protocol’s receive handler is called, refer to the
LOOKAHEAD structure definitions.

The filter mask for bound protocol stacks defaults to receiving direct, multic
direct, and broadcast addressed packets when they register. If any other
bit is needed or one of the above needs to be cleared, a protocol stack ca
CLSL_ModifyStackFilter . For more information, see CLSL_RegisterStack
in Chapter 10: LSL Support Routines.
4-18 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

The following table illustrates the event sequence of the receive handler.

Table 4-2

Receive Handler Event Sequence

Actor/Agent Action

MLID 1. Provides a LOOKAHEAD structure to the LSL (CLSL_GetStackECB).

LSL 2. The LSL determines the correct protocol stack for the received packet.

Protocol Stacks 3. Use the LOOKAHEAD structure to determine whether to keep or reject the
packet. If the protocol stack requires the ECBProtocolID, BoardNumber, and
ImmediateAddress fields to be filled in, the protocol stack should get these
from the lookahead structure. If an ECB is returned from this function, the
MLID will call the ESR at a later time, signaling that the packet data has been
transferred to the described receive buffers either successfully or with an error.

The receive handler should add the ECB to the protocol stack’s internal work-
to-do queue for processing at non-privileged time. The receive handler routine
should not poll for transmissions or receptions.

If the PreScan Receive stack or the Default Chain stack cannot understand the
MAC header, they should leave the MAC header unchanged and pass it on by
returning ODISTAT_OUT_OF_RESOURCES.

MLID 4. Disperses the receive packet data into the receive buffers supplied by the
protocol stack.

The MLID sets the following fields in the ECB (see Appendix A):
ECB_PreviousLink
ECB_Status
ECB_DriverWorkSpace
ECB_DataLength

5. Places the ECB onto the LSL hold event queue, or processes the ECB using
the CLSL_FastHoldEvent routine and step 6 is skipped.

6. Invokes the LSL’s service events routine after the MLID has finished servicing
the network adapter.

LSL’s Service
Events Routine

7. Calls each of the previously queued ECB’s event service routine (ESR). (The
protocol stack sets the address of the ESR before the protocol stack returned
an ECB to the MLID.)

8. Transfers ownership of the ECB and its associated data buffers back to the
protocol stack when the ECB’s ESR is called.
Protocol Stack Packet Reception 4-19

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Protocol Receive Complete Handler for Bound
Stacks

The LSL invokes this event service routine after the
MLID has dispersed the receive packet data (with
or without error) into the provided ECB data buffers
and has given the ECB to the LSL for processing
via CLSL _HoldEvent/CLSL_ServiceEvents or
CLSL_FastHoldEvent .

Syntax

#include <ODI.H>

void (ECB_ESR)(ECB*);

Input Parameters

ECB

Pointer to an ECB.

Output Parameters

None.

Return Values

None.
4-20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

 its

:

Remarks

When this function is called, the LSL transfers ownership of the ECB and
associated data buffers back to the protocol stack.

When this function is called, the following ECB fields are set by the MLID

• ECB_Previous Link

• ECB_Status

• ECB_DriverWorkspace

• ECB_DataLength

See the ECB field descriptions in Appendix A, "Event Control Blocks
(ECBs)".

Do not poll for transmissions or receptions when this function is called.

The following table illustrates the event sequence of the receive complete
handler.

Table 4-3

Receive Complete Handler Event Sequence

Actor/Agent Action

Protocol Stacks 1. Increment receive statistics counters.

2. Restore user’s ESR to the ECB_ESR field of the ECB structure. (The original
user’s ESR should have been stored in the ECB_ProtocolWorkspace field.)

3. Set the ECB_Status field of the ECB structure to ODISTAT_SUCCESSFUL.

4. If the stack accepted a prefilled ECB, return the prefilled ECB to the LSL by
calling CLSL_ReturnECB.
Protocol Stack Packet Reception 4-21

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

in
Protocol Receive Handler for Prescan and Default
Stacks

The receive handler for prescan and default
protocol stacks is similar to the receive handler for
bound protocol stacks. After the ECB has been
filled (or prefilled), the protocol stack is responsible
for returning its ECB. The stack is also responsible
for calling CLSL_ReSubmitPreScanRx with
prescan stacks, or for calling
CLSL_ReSubmitDefault with default stacks, for
continued processing of the ECB by protocol
stacks further down the chain.

Syntax

#include <odi.h>

ODISTAT (*StackRxChainHandler)

(LOOKAHEAD *LkAhead,

struct _PS_CHAINED_RX_NODE_
*StackChainNode);

Input Parameters

LkAhead

Pointer to the received LOOKAHEAD structure.

StackChainNode

Pointer to the stack chain’s node that was passed when the stack cha
registered for the board that generated this receive packet.
4-22 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ts

as

ed
,

t
e
Return Values

ODISTAT_SUCCESSFUL The protocol stack has returned a pointer to a
receive ECB that is to be filled with the packet in
the LOOKAHEAD structure’s
LkAhd_ReturnedECB field.

If the protocol stack was able to get everything it
needed from the look ahead, the
LkAhd_ReturnedECB field will be set to NULL.

If the LKAhd_PreFilledECB field contains a
pointer to an ECB, the LSL will perform an ECB to
ECB copy and queue the protocol stack ECB on i
hold event queue.

ODISTAT_SUCCESS_
TAKEN

The protocol stack has accepted the packet and h
taken the prefilled LSL ECB associated with the
LOOKAHEAD structure’s LkAhd_PreFilledECB
field.

If ODISTAT_SUCCESS_TAKEN is returned, the
LSL assumes that the protocol stack has consum
the ECB. The protocol stack ESR will not be called
and the protocol stack is responsible for calling
CLSL_ReturnECB.

ODISTAT_OUT_OF_
RESOURCES

Reports an error condition—for example, the LSL
was unable to obtain an ECB for this packet. The
LSL routes the LOOKAHEAD structure to the nex
prescan stack, the appropriate bound stack, or th
next default stack in the chain.
Protocol Stack Packet Reception 4-23

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 it
ets

 The
nd is
in,
ery

time
tack

will

dler.
—
ws

ave

l
ust
Remarks

A chained protocol stack must specify in its filter mask the type of packets
wants to receive when it registers for the board. A stack can receive pack
after binding/registering with a board and can modify its filter to allow it to
specify the type of packets that it wants the LSL to pass to it.

The LSL is responsible for calling the next prescan receive chained stack.
adding and calling of protocol stacks to the chain is at process time only a
in load order (first to load is first in chain, second to load is second in cha
etc.), unless an order position is specified (“must be very first” or “must be v
last”).

If the protocol stack rejects the packet, the LSL routes the LOOKAHEAD
structure to the next stack in the chain.

If the protocol stack wishes to accept the packet (by returning
ODISTAT_SUCCESSFUL), the stack will need to make a copy of the
LOOKAHEAD structure that has been passed to it. This is because some
after or during the execution of the stack’s receive complete handler, the s
will need to behave similarly to the LSL (see ‘‘Protocol Receive Complete
Handler for Prescan and Default Stacks“ later in this chapter). The stack
have to provide lookahead information to the next stack in the chain
(CLSL_ReSubmitDefault or CLSL_ReSubmitPreScanRx process).

The ECB that is returned should have the ECB_NextLink and
ECB_PreviousLink fields set to NULL. ECB_ESR should be set to the stack’s
receive complete handler.

Prescan and default stacks have no Stack IDs, so assigning a value to the
ECB_StackID field is optional.

Ownership of the LOOKAHEAD structure and its associated data buffer is
passed to the protocol stack when the LSL calls the protocol’s receive han
The protocol’s receive handler is called from the context of privileged time
for example, a hardware interrupt, deferred procedure call (DPC) in Windo
NT, or at process time (due to the resubmit process). The MLID will not h
finished servicing the network adapter but is waiting for an ECB from a
protocol stack to fill or a response to discard the received packet. Protoco
stacks must decide if they want the packet and provide an ECB to fill or m
respond that the LSL must route the LOOKAHEAD structure.

Also, if the stack wishes to accept the packet, the stack should set the
LOOKAHEAD structure’s LkAhd_FrameDataBytesWanted field to be the
4-24 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

be
e’s

B
g
m its

t and
ent as

col

ing
y
mit
nes

 LSL
d
he

ot
 the
s is
number of bytes wanted by the stack. The data pointed to by the
LkAhd_MediaHeaderPtr pointer should be copied into a buffer so that it can
used by stacks further down the chain. Finally, the LOOKAHEAD structur
LkAhd_ReturnedECB field should be set to the address of the ECB that
describes the receive buffers.

After the MLID finishes filling a protocol stack ECB, the protocol stack’s EC
ESR routine ((*ECB_ESR)(ECB*)) is called. The MLID is finished servicin
the network adapter and is ready to restore the processor state and exit fro
event handler, (it’s interrupt handler). Protocol stacks can queue the even
process it from a handler that is running at process time, or process the ev
a run-to-completion event aware that this can degrade performance.

If the LOOKAHEAD structure LKAhd_PreFilledECB field is not NULL, and
the protocol stack does not handle the prefilled ECB immediately, the proto
stack places the address of its receive handler ESR in the ECB’s ESR_ESR
field, then calls CLSL_HoldEvent, which queues the ECB for later
processing. The stack then returns ODISTAT_SUCCESS_TAKEN.

If the protocol stack processes the received ECB by queuing it and servic
the ECB at process time, it can resubmit the ECB for further processing b
other prescan, bound, or default protocol stacks by the appropriate resub
function. Packet reception ordering must be maintained. MLID control routi
must not be invoked from this routine because they can only be called at
process time. However, the protocol stack can freely make requests to the
(such as CLSL_GetSizedECB). If the protocol stack consumes an ECB supplie
by the LSL, after it has finished with it, it returns the ECB to the LSL using t
CLSL_ReturnECB support function.

If the protocol stack has only minor activity to perform on an ECB that is n
time intensive, it could, as an optimization, perform its functions, then pass
ECB on rather than queuing it and resubmitting it for processing later. Thi
usually done in the prescan/default receive complete handler.
Protocol Stack Packet Reception 4-25

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

e

ol

fer
ive

ll

g

can

d
Tasks for Accepting a Packet

Some tasks to perform when accepting a packet might be as follows:

1. Make a copy of the original LOOKAHEAD buffer, which is used when th
CLSL_ResubmitPreScanRx/ CLSL_ResubmitDefault pair is called.
The LSL can pass state information in this field if
ODISTAT_OUT_OF_RESOURCES is returned. The LKAhd_Prefilled
ECB must equal NULL if the stack is not dealing with a prefilled ECB.

2. Verify that the packet is wanted. The MLID will still be servicing the
network adapter and will be waiting either for an ECB from the protoc
stack to fill or a response to discard the received packet.

If the protocol stack wants the packet, it must provide an ECB to fill.

If the protocol stack wants to reject the packet, it must return
ODISTAT_OUT_OF_RESOURCES, and the LSL will route the
LOOKAHEAD structure to the next stack in the chain.

Ownership of the LOOKAHEAD structure and its associated data buf
is passed to the protocol stack when the LSL calls the protocol’s rece
handler. The protocol’s receive handler is called from the context of
privileged time, such as a hardware interrupt, a deferred procedure ca
(DPC) in Windows NT, or a resubmit process at process time.

If the packet is wanted, get a pointer to an ECB from the LSL by callin
CLSL_GetSizedECB. If the pointer to the ECB is NULL, return
ODISTAT_OUT_OF_RESOURCES.

3. Copy the lookahead media header information into a buffer so that it
be used later by the stack’s receive complete ESR.

4. If the stack is dealing with a prefilled ECB, set the
ECB_ProtocolWorkspace field to point to the chained stack ECB returne
by CLSL_GetSizedECB. Since copying the prefilled ECB to the stack
ECB is time intensive, it must be done at process time by adding the
prefilled ECB to the work queue using CLSL_FastHoldEvent. Then,
return ODISTAT_SUCCESS_TAKEN.

Once ODISTAT_SUCCESS_TAKEN has been returned to the LSL, the
lookahead indication is no longer valid. Therefore, make sure that the
ECB_ESR field in the chained stack contains the proper pointer to the
stack’s receive complete ESR.
4-26 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ally
’s

n.

et.

g
xit
5. Set the LOOKAHEAD structure’s LkAhd_FrameDataBytesWanted field
to be equal to the number of bytes wanted by the stack.

6. If required by the stack, set the ECB’s ECB_BoardNumber,
ECB_ImmediateAddress, ECB_ProtocolID, and ECB_DataLength fields
to either the values found in the LOOKAHEAD structure or the values
needed by the stack.

7. Verify that the packet has been fully received. If the packet has not tot
arrived, hold off on doing any processing of the packet until the stack
receive complete handler is called.

8. Set the ECB’s ECB_NextLink and ECB_PreviousLink fields to equal
NULL. Set the ECB_Status field to equal ODISTAT_SUCCESSFUL. Set
the ECB_ESR field equal to the stack’s receive complete handler functio
Verify that the ECB_FragmentCount field is properly set.

9. Set the LkAhd_FrameDataStartCopyOffset field in the LOOKAHEAD
structure to the offset value required for the stack to process the pack
Then, assign the pointer to the ECB to the LOOKAHEAD structure’s
LkAhd_ReturnedECB field and return ODISTAT_SUCCESSFUL.

10. After the MLID finishes filling the protocol stack’s ECB, the protocol
stack’s ECB ESR routine is called. The MLID is now finished servicin
the network adapter and is ready to restore the processor state and e
from it’s event handler (its interrupt handler).
Protocol Stack Packet Reception 4-27

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Prescan and Default Stacks Receive Complete Handler Event Sequence

The following table illustrates the event sequence of the receive handler.

Table 4-4

Receive Complete Handler Event Sequence

Actor/Agent

MLID 1. Provides a LOOKAHEAD structure to the LSL using CLSL_GetStackECB .

LSL 2. The LSL determines the correct protocol stack for the received packet.

Protocol Stack 3. Uses the LOOKAHEAD structure to determine whether to keep or reject a
packet.

MLID 4. Disperses the receive packet data into the receive buffers supplied by the
protocol stack.

5. Places the ECB onto the LSL hold event queue using CLSL_HoldEvent , or
processes the ECB using the CLSL_FastHoldEvent routine and step 6 is
skipped.

6. Invokes the LSL’s service events routine after the MLID has finished servicing
the network adapter.

LSL’s Service
Events Routine

7. Calls each of the previously queued ECB’s event service routine (ESR). (The
protocol stack sets the address of the ESR before the protocol stack returned
an ECB to the MLID.)

8. Transfers ownership of the ECB and its associated data buffers back to the
protocol stack when the ECB’s ESR ((*ECB_ESR)(ECB*)) is called.
4-28 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Protocol Receive Complete Handler for Prescan
and Default Stacks

The LSL invokes this event service routine function
after the MLID has dispersed the receive packet’s
data (either with or without error) into the previously
provided ECB’s data buffers and has placed the
ECB on the LSL’s holding queue or called directly
via CLSL_FastHoldEvent.

Synax

#include <odi.h>

void (*ECB_ESR)(ECB *);

Input Parameters

ECB

Pointer to an ECB.

Output Parameters

None.

Return Values

None.
Protocol Stack Packet Reception 4-29

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 its

B’s

der.

the

,

 in
Remarks

When this function is called, the LSL transfers ownership of the ECB and
associated data buffers back to the protocol stack.

Steps Performed by a Prescan and Default Receive Complete Handler

The receive complete handler for a prescan stack or a default stack must
perform the following steps:

1. Increment the receive statistics counters.

2. If the stack contains a header, adjust the LOOKAHEAD structure’s
LkAhd_DataLookAheadPtr pointer to point to the data that follows the
header.

Next, adjust the LOOKAHEAD structure’s LkAhd_FrameDataSize field to
be equal to the frame data size minus the size of the stack’s header.

3. If the stack has a header and received a prefilled ECB, adjust the EC
ECB_Fragment[n].FragmentAddress field so that the header is skipped
and only the data that belongs to the next stack is present.

Next, adjust the ECB’s ECB_Fragment[n].FragmentLength field to be
equal to the length of the fragment minus the length of the stack’s hea

Finally, adjust the ECB’s ECB_DataLength field to be equal to the data
length minus the length of the stack’s header.

4. If the stack does not consume the packet, it notifies the next stack in
chain that a packet has arrived. Call CLSL_ReSubmitPreScanRx/
CLSL_ReSubmitDefault.

a. If ODISTAT_SUCCESSFUL is returned, take the ECB found in the
LOOKAHEAD structure’s LkAhd_ReturnedECB field and copy into it
LkAhd_FrameDataBytesWanted bytes of the data pointed to by the
LOOKAHEAD structure’s LkAhd_DataLookAheadPtr pointer. Then
using the LOOKAHEAD structure’s LkAhd_ReturnedECB field as a
parameter, issue a call to CLSL_FastHoldEvent.

b. If ODISTAT_SUCCESS_TAKEN is returned, the next protocol stack
the chain wants the packet and has taken the prefilled LSL ECB
associated with the LOOKAHEAD structure.
4-30 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

s. If

ve

x A,
c. If ODISTAT_OUT_OF_RESOURCES is returned, the Link Support
Layer was unable to find another stack that wanted the packet.

5. The stack that returns ODISTAT_SUCCESS_TAKEN is given the
ownership and responsibility of the ECB and its associated data buffer
the next stack in the chain does not return ODISTAT_SUCCESS_TAKEN,
it is the responsibility of the current stack to call CLSL_ReturnECB.

After this function has been called, the following ECB fields and values ha
been set by the MLID:

• ECB_PreviousLink

• ECB_Status

• ECB_DriverWorkspace

• ECB_DataLength

For a description of these fields, see the ECB field descriptions in Appendi
"Event Control Blocks (ECBs)".

Do not poll for transmits or receives when this function is called.

.

Table 4-5

Receive Complete Handler Event Sequence

Actor/Agent Action

Protocol Stacks 1. Increments the receive statistics counters.

2. Notify the next stack in the chain that a packet has arrived.

3. If the current stack is responsible for returning the ECB to the LSL, call
CLSL_ReturnECB .
Protocol Stack Packet Reception 4-31

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

4-32 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 5 Protocol Stack Packet Transmission
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

 that

 LSL
to

AN
stack

Chapter Overview

In the ODI specification, packet transmission is an asynchronous operation
entails building an ECB and calling the CLSL_SendPacket protocol support
routine (see Chapter 10: LSL Support Routines). Packets sent through the
are connectionless and, if the conditions warrant, are neither guaranteed
reach their destination nor placed onto the LAN medium. Protocol stacks
typically do not need to use checksums because the underlying MLID and L
adapters guarantee a high degree of data integrity; however, your protocol
can use checksums if you desire.

Some protocol stacks must provide guaranteed packet delivery to the upper
layers. If this is the case, your protocol stack must contain the necessary
timeouts, retries, and packet acknowledgments to create a guaranteed delivery
system.

Transmit Routine Events

The events listed in Table 1.1 must occur during a protocol stack transmit
routine.

Table 5-1

Protocol Stack Transmit Routine

Actor/Agent Action

Protocol stack 1. Hands the ECB to the LSL for transmission.

LSL 2. If the ECB contains a valid BoardNumber, the underlying MLID transmit
handler is called with a pointer to the ECB, or the LSL send packet routine
returns the ODISTAT_ITEM_NOT_PRESENT status to the protocol stack and
returns ownership of the ECB back to the protocol stack.

3. Passes ownership of the ECB and its associated packet data buffers to the
MLID.
Protocol Stack Packet Transmission 5-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 for

iven
nd

sing
ther
, it

ck.
an
Prescan Transmit Protocol Stack Method

The ODI specification defines the prescan transmit protocol stack method
protocol stack packet transmission.

Prescan transmit protocol stacks are given the transmit ECB before it is g
to the MLID by the LSL. The protocol stack can consume select packets a
allow others to be passed to the appropriate MLID. The prescan transmit
protocol stack can alter the data to be transmitted—for example, compres
a packet, but it must treat the original ECB and its data as read-only. In o
words, when the original ECB is returned to the originating protocol stack
must be in its original state. The prescan transmit protocol stack can also
discard or pass the data to the next chained prescan transmit protocol sta
Multiple chained protocol stacks for each logical board can use the presc
transmit method.

Packet Transmission

A protocol stack can usually transmit packets at any time.

A protocol stack must not poll for a transmit complete or a receive packet inside
an event service routine (ESR). Polling for a transmit complete or a receive
packet inside of an ESR without following the above rule can create a dead-lock.
A protocol stack must also not issue transmit requests inside its packet

MLID 4. Transmits the packet.

5. Shows the transmitted packet to any transmit monitor, if one is registered,
including the media headers generated by the MLID, regardless of whether the
packet transmission was completed successfully or with an error.

6. Passes ownership of the ECB and its associated packet data buffers to the
LSL, regardless of whether the packet transmission was completed
successfully or with an error.

LSL 7. Calls the event service routine specified in the ECB.

Note: The ECB and its associated data buffers must not be modified until
ownership is returned to the protocol stack that originated the transmit request.

Table 5-1

Protocol Stack Transmit Routine

Actor/Agent Action
5-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

o the
N

est
. In
.

an
s not
ernet
least

 the

data
xteen
the

es
 in
t
lookahead receive handler routine (see Chapter 5: Protocol Stack Packet
Reception).

Supporting Multiple Outstanding Transmit Requests

The underlying MLIDs generally support multiple outstanding transmit
requests from protocol stacks. While the adapter transmits one packet ont
LAN medium, the MLID loads the next transmit packet’s data onto the LA
adapter. The number of transmits an MLID can give an adapter before the
MLID must queue the ECBs varies, because this number is hardware
dependent.

When the protocol stack must transmit bursts of packets, it achieves its b
performance by passing multiple transmit requests to an underlying MLID
theory, an MLID can handle any number of outstanding transmit requests

For example, on Ethernet, three outstanding requests are adequate, and
MLID that handles more than three active transmit requests generally doe
have higher throughput. (Three active transmit requests saturate most Eth
LAN adapters). In other words, a protocol stack should be able to have at
three transmits outstanding on a particular board.

Note: The number of active requests that an MLID can handle depends on
adapter, the media, and the bus that the adapter was designed for.

Transmitting the Packet

The protocol stack must provide data buffers and an ECB describing the
to be sent to send a packet. The protocol stack can specify from one to si
data buffers per transmit request. The underlying MLID will then combine
buffers to form a single data packet.

Priority Sends

The MLID sets the MLIDCFG_PrioritySup field in the MLID configuration
table to indicate the number of priority levels available. The MLID indicat
that priority support is active by setting or clearing the MF_PRIORITY_BIT
the MLIDCFG_Flags field of the MLID configuration table. The MLID can se
or reset the MF_PRIORITY_BIT as the MLID changes from the Priority
Queue Support Enabled state to the Disabled state.
Protocol Stack Packet Transmission 5-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

e

h a

it

sed

ack
The protocol sets the ECB_StackID field to a value greater than or equal to
0xFFF0. The values have the following meanings:

Priority levels are defined as follows:

0 = no priority

7 = highest priority

To extract the priority level, NEG (1s complement) the ECB_StackID field, and
AND it with 0x07. The result will be a number from 1 to 7.

The MLID will normally send the packet directly. If the MLID is busy and th
ECB is a priority transmit ECB, the MLID will either queue it in a priority
queue for transmission as soon as possible, or transmit the packet throug
priority channel.

After the MLID has transmitted the priority ECB, the MLID calls the transm
monitor (if it is registered), increments the necessary counters, and calls
CLSL_SendComplete to return the ECB to its original owner.

Event Control Blocks

An event control block (ECB) is a general purpose request control block u
for transmit and receive events in the ODI specification. The
ECB_ProtocolWorkspace field can be used for any purpose by the protocol
stack, because the ECB_ProtocolWorkspace field is not modified by the LSL
or the MLIDs. (See Appendix A: Event Control Blocks (ECBs) for a more
detailed discussion of ECBs.)

You must set the following ECB fields and descriptors before the protocol st
gives the ECB to the LSL for transmission:

• ECB_ESR

0xFFFF Raw send packets. No priority.

0xFFFE-0xFFF8 Raw send packets. Priority level 1-7.

0xFFF7 Non-raw send packets. No priority.

0xFFF6-0xFFF0 Non-raw send packets. Priority level 1-7.
5-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

u do
ld’s

e
d

at
ding
nd

t. To
cks
• ECB_StackID

• ECB_BoardNumber

• ECB_ProtocolID

• ECB_ImmediateAddress

• ECB_DataLength

• ECB_FragmentCount

• Fragment descriptors

These fields are treated as read-only by the LSL and MLIDs. Therefore, yo
not need to re-initialize each field after a transmit operation unless that fie
value needs to be changed.

ECB_ESR Field

The ECB_ESR field contains a pointer to a routine the LSL calls when the
underlying MLID has finished with the ECB and its data buffers. (See the
‘‘Transmit Complete“ section later in this chapter.)

ECB_StackID Field

The ECB_StackID field is initialized with the protocol’s assigned Stack ID (se
CLSL_GetStackIDFromName). Raw sends and priority sends are indicate
in this field.

Raw Sends

The ODI specification defines an optional capability (raw send) in MLIDs th
allows protocol stacks to specify the complete low-level header when sen
a packet. Because raw sends force a protocol stack to be LAN medium a
frame type aware, protocol stacks generally do not use raw sends unless
absolutely necessary.

Because a raw send is an optional capability, some MLIDs do not support i
determine if a particular board supports raw sends, the protocol stack che
MM_RAW_SENDS_BIT in the MLIDCFG_ModeFlags field. If this bit is set,
Protocol Stack Packet Transmission 5-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ode
n

 the
 is not

 the

ally,
 the

e
l

l type

e

r
.2
the MLID supports raw sends (see GetMLIDConfiguration for more
information).

A protocol stack signals a raw send to the MLID by placing 0xFFFy (see
ECB_StackID field in Appendix A: Event Control Blocks (ECBs) for more
information), instead of its Stack ID (SID) in the ECB_StackID field. The
underlying MLID checks this field for 0xFFFy; where y is a value from 0 to F
(see page 6-4). If this value is present in the field, the MLID skips over the c
used to build the low-level header. The first fragment of the ECB must the
contain all of the low-level header information.

The first data fragment must contain the complete MAC header, including
source address for the media in use. However, in some cases this address
used; some adapters automatically insert the source node address in the
low-level header. If an adapter supports raw sends, it should not overwrite
source address provided in the MAC header with its node address.

The protocol stack must be completely aware of frame characteristics. Usu
however, minimum packet length padding and evenization are handled by
MLID, even for raw sends.

ECB_BoardNumber Field

The ECB_BoardNumber field specifies the logical board used to transmit th
packet. The board number specifies the physical adapter and the low-leve
frame format (frame type) used.

ECB_ProtocolID Field

The ECB_ProtocolID field specifies the Protocol ID (PID) value embedded
into the frame header. This value stamps the packet as a particular protoco
(for example, IPX, TCP/IP, etc.). (See CLSL_GetPIDFromStackIDBoard
for more information.)

For example, the 802.2 frame ECB_ProtocolID field contains the Destination
Service Access Point (DSAP). The Source SAP (SSAP) is set equal to th
Destination SAP (DSAP or Protocol ID) when the MLID builds the frame
header. The MLID also sets the 802.2 control byte equal to 0x03 (UI).

In order to allow a protocol stack to specify the complete 802.2 header (fo
example, DSAP, SSAP, Control 0, Control 1), MLIDs that support the 802
frame allow a special flag in the transmit ECB_ProtocolID field. When this flag
5-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

SAP

t

2.2

 be a
 its

orm.)

s

is present, the MLID uses the specified 802.2 header instead of setting S
equal to DSAP and Control equal to 0x03 (the usual method).

If an explicit 802.2 header needs to be specified, set the ECB_ProtocolID field
to the following values:

Byte 0 x This byte is normally 0. However, if a nonzero number is
specified, the MLID will look for the explicit header
information. x = a zero-based number of bytes in the explici
number (for example, 0x00 signifies DSAP, 0x02 signifies
DSAP, SSAP, or Control 0 802.2 Type I header, and 0x03
signifies DSAP, SSAP, Control 0, Control 1 802.2 Type II
header). A value of a, where 0x40 < a < 0x7F, indicates that the
values in this field contain a management ID—for example,
HUBMGR.

Bytes 1 - 5 These bytes are set by the protocol stack for an explicit 80
header (see ODI Specification: Frame Types and Protocol IDs).
Unused bytes are set to 0.

ECB_ImmediateAddress Field

The ECB_ImmediateAddress field contains the destination address that
specifies the node on the local network where the packet is sent. This can
direct, multicast, or broadcast address. If your protocol stack must receive
own sends, it must emulate loopback capabilities. (If the MLID is using
canonical addressing, the destination address must also be in canonical f

The address 0xFF FF FF FF FF FF always indicates a broadcast packet. (All
adapters on the physical network will receive the packet.)

ECB_DataLength Field

The ECB_DataLength field holds the total length of the packet in bytes. Thi
is the length of the data portion of the packet.

ECB_FragmentCount Field

The ECB_FragmentCount field specifies the number of fragment descriptor
data structures that follow the ECB_FragmentCount field. This field must
contain a value greater than 0 and less than or equal to 16 (0 <
ECB_FragmentCount 16).
Protocol Stack Packet Transmission 5-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

en

one

tting
Fragment Descriptors

Each fragment descriptor contains the location and length of a contiguous
section of RAM memory. The protocol stack can specify a maximum of sixte
fragment descriptors. The MLID combines the fragments together to form
contiguous packet.

The length field of a fragment descriptor can be 0.

A frame containing only an 802.2 Type II header can be transmitted by se
the length fields of the fragment descriptors for the ECB containing the
transmit information to 0. The ECB_FragmentCount field must be equal to at
least 1. The ECB_ProtocolID field contains the entire explicit 802.2 Type II
header.
5-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

n.
Transmit Handler

The interface to the Transmit Handler is defined by each protocol stack.

Table 6-2 describes the events that occur to transmit a packet transmissio

Table 5-2

Transmit Handler Event Sequence.

If CLSL_FastSendComplete is called, the LSL can call the ESR in the ECB
directly, depending on the platform. However, this does not affect protocol stack
or MLID operations.

Actor/Agent Action

Protocol stack 1. Gives the ECB to the MLID by calling CLSL_SendPacket .

LSL 2. Determines which MLID to give the packet to via the board number.

MLID 3. Transmits the ECB.

4. Presents the transmitted packet to any transmit monitor, if one is registered.

5. Returns the ECB to the LSL via CLSL_SendComplete .

LSL 6. Places the ECB into a temporary event queue.

MLID 7. Calls the LSL’s CLSL_ServiceEvents routine after the MLID has finished
servicing the hardware.

LSL’s Service 8. Removes each ECB from the queue in turn and calls the ESR defined in the
ECB_ESR field.

Events Routine 9. The ESR is the protocol stack’s transmit complete handler. The MLID can
invoke the protocol stack’s transmit complete handler before the call to
CLSL_SendPacket returns. This is called a lying send.
Protocol Stack Packet Transmission 5-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

red

col
er
s an

r

d
e
e
Protocol Transmit Handler for Prescan Stacks

Syntax

#include <odi.h>

ODISTAT (*StackTxChainHandler)

(ECB *TransmitECB,

struct _PS_CHAINED_TX_NODE_
*StackChainNode);

Input Parameters

TransmitECB

Pointer to the transmit ECB.

StackChainNode

Pointer to the stack chain’s node passed when the stack chain registe
with the board that will transmit this packet.

Return Values

Remarks

The LSL is responsible for calling the next prescan transmit chained proto
stack. The adding to the chain and calling of protocol stacks is in load ord
(first to load is first in chain, second to load is second in chain, etc.) unles
order position is specified— "must be very first" or "must be very last".
Register/DeRegister Protocol Stack can be made at process time only.

ODISTAT_SUCCESSFUL The protocol stack wants the packet and is
responsible for returning the ECB to the LSL o
calling the LSL later (asynchronously) for
further processing of the ECB.

ODISTAT_FAIL The protocol stack does not want the packet an
returns a pointer to an ECB. The LSL routes th
ECB structure to the next stack in the chain. Th
pointer to the ECB is unchanged.
5-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

smit

tocol

nning
ware

.

SL

g the
her
e

y
 an

n

e
nd

a in
 the

is
 a
On transmission the prescan transmit stack is called with a pointer to a tran
ECB.

Ownership of the ECB and its associated data buffer is passed to the pro
stack when the LSL calls the protocol’s transmit handler. The protocol’s
transmit handler can be called either at process or privileged time.

Protocol stacks can queue an event and process it from a handler that is ru
at process time, or process the event as a run-to-completion event—be a
that this can degrade performance.

The network hardware can be fully functional at this point; hence, packet
transmission ordering must be maintained. MLID control routines must not be
invoked from this routine, because they can only be called at process time
However, the protocol stack can freely make requests to the LSL (such as
CLSL_GetSizedECB) to obtain another ECB buffer. If the protocol stack
consumes the ECB after it has finished with it, it returns the ECB to the L
using the CLSL_ReturnECB support function.

If the protocol stack processes the transmit ECB by queuing it and servicin
ECB at process time, it can resubmit the ECB for further processing by ot
transmit prescan protocol stacks by the appropriate resubmit function (se
CLSL_ReSubmitPreScanRx, CLSL_ReSubmitPreScanTx, and
CLSL_ReSubmitDefault for more information). If the protocol stack has onl
minor activity to perform on an ECB, which is not time intensive, it can, as
optimization, perform its functions even at privileged (interrupt or deferred
procedure call in Windows NT) time and then pass on the ECB rather tha
queue it and resubmit the ECB for processing later.

Transmitting prescan protocol stacks must treat ECBs that have data to b
modified as read-only. The protocol stack must make a copy of the ECB a
process the copy. For example, the protocol stack would install its Event
Service Routine (ESR) in the copy of the ECB. The reason for this is the
originating protocol stack, for instance a bound stack, can manipulate dat
the original ECB when its ESR is called. If the prescan stack manipulates
data (for example, compression), the data will be incomprehensible to the
original stack. Hence, when the prescan stack’s Transmit Complete ESR
called, it in turn calls the Transmit Complete ESR in the original ECB with
pointer to the original ECB.

Data transmitted by prescan stacks are still limited by the transmitting MLID
configuration table’s MLIDCFG_WorstDataSize field. Also calling the LSL
function CLSL_SendPacket from a transmit prescan stack can cause the
prescan stack’s protocol transmit handler to be called from itself.
Protocol Stack Packet Transmission 5-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

s

d the
n.
The Prescan Transmit Handler should add the ECB to the protocol stack’
internal work-to-do queue for processing at non-privileged time.

If the PreScan Receive stack or the Default Chain stack cannot understan
MAC header, they should leave the MAC header unchanged and pass it o

Do not use this function to poll for transmissions or receptions.
5-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ts

ard
ler,
sued
ete.
Protocol Transmit Complete Handler

Called when a previous transmit request has
completed successfully or with an error.

Syntax

#include <odi.h>

void (*ECB_ESR)(ECB *);

Input Parameters

ECB

Pointer to the completed ECB.

Output Parameters

None.

Return Values

None.

Remarks

When this routine is invoked, the LSL returns ownership of the ECB and i
data buffers to the protocol stack.

This routine must complete quickly because it is usually invoked from a bo
service routine during privileged context time—for example, interrupt hand
deferred procedure call (DPC) in Windows NT. Transmit requests can be is
from this routine, but a protocol stack must not poll for a transmit to compl

Do not poll when calling this function.

The ECB_Status field is set to one or more of the following.

The ODISTAT type is cast to UINT16 for the ECB_Status field.
Protocol Stack Packet Transmission 5-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

d

ds

The following tables describe the events that occur during the transmit
complete handler.

.

ODISTAT_SUCCESSFUL The MLID determined that the transmit was
successful. Because the transmit was
connectionless, this completion code does not
mean that the destination received the packet.

ODISTAT_MLID_SHUTDOWNThe LAN adapter specified in the
ECB_BoardNumber field cannot be found. This
usually means that the MLID has been remove
from memory by shut down (temporarily or
permanently).

ODISTAT_BAD_PARAMETERThe ECB contains bad parameters—for
example, the amount of data to transmit excee
the maximum possible for the MLID. The ECB
will not have been transmitted.

ODISTAT_CANCELED The ECB is being returned without being
transmitted. This usually occurs if the ECB was
held in an MLID’s queues, then the MLID clears
its queues due to a shut down request.

Table 5-3

Transmit Complete Handler Event Sequence for Bound Stacks

Actor/Agent Action

Protocol stack 1. Increment counters.

2. Restore the original ECBs ESR to the ECB_ESR field.

3. Call ECB_ESR using the ECB from the transmit complete handler.

Table 5-4

Transmit Complete Handler Event Sequence for Prescan Stacks

Actor/Agent Action

Protocol stack 1. Retrieve the pointer to the original Tx ECB.
5-14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

2. Increment counters.

3. Set the original Tx ECB_Status to the current ECB_Status.

4. Call the original Tx ECB ESR using the original Tx ECB as the parameter.

5. Call CLSLReturnECB to return the current ECB.

Table 5-4

Transmit Complete Handler Event Sequence for Prescan Stacks

Actor/Agent Action
Protocol Stack Packet Transmission 5-15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

5-16 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 6 Protocol Stack Control Routines
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

 to
ol
ck’s

on
Chapter Overview

The ODI specification requires protocol stacks to provide control functions
the LSL for use by applications and other protocol stacks. When a protoc
stack registers with the LSL, the LSL passes a pointer to the protocol sta
information block (INFO_BLOCK) for control functions. Applications and
other protocol stacks use these pointers as entry points to get configurati
information and statistics about specific protocols (see
CLSL_GetProtocolControlEntry).

All reserved and unsupported control functions must have pointers in the
information block (INFO_BLOCK), which, when called, will return
ODISTAT_BAD_COMMAND as the completion code.

The following functions are currently defined for these entry points:

Bind

GetBoundNetworkInfo

GetProtocolStackConfiguration

GetProtocolStackStatistics

GetProtocolStringForBoard

MLIDDeRegistered

PromiscuousStatus

ProtocolManagement

UnBind
Protocol Stack Control Routines 6-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

xes.
ion

tic),
I.H.

t
The functions above are accessed through the information block using inde
The location of the various protocol stack control functions in the informat
block are as follows:

Index Function

0 GetProtocolStackConfiguration

1 GetProtocolStackStatistics

2 Bind

3 UnBind

4 MLIDDeRegistered

5 PromiscuousState

6 Reserved

7 GetProtocolStringForBoard

8 ProtocolManagement

9 GetBoundNetworkInfo

Access to the Protocol Stack APIs, independent of the link method (dynamic or sta
in the information bock can be accomplished by using the macro definitions in OD
The macros are listed below. The infoBlock parameter is returned by
CLSL_GetProtocolControlEntry . Refer to the API definitions for details on the res
of the parameters.

PStkCntl_GetConfig(infoBlock, stackIdentifier)
PStkCntl_GetStats(infoBlock, stackIdentifier)
PStkCntl_Bind(infoBlock, boardNumber, userParmString, stackIdentifier)
PStkCntl_MLIDDeReg(infoBlock, boardNumber, stackIdentifier)
PStkCntl_Unbind(infoBlock, boardNumber, userParmString, stackIdentifier)
PStkCntl_PromiscState(infoBlock, boardNumber, promiscuousMask,

stackIdentifier)
PStkCntl_GetProtocolString(infoBlock, boardNumber, printString,

stackIdentifier)
PStkCntl_ProtManage(infoBlock, ManagementECB, stackIdentifier)
PStkCntl_GetBoundNetInfo(infoBlock, boardNumber, networkAddress,

stackIdentifier)
6-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2n
Bind
Index 2

Provides a consistent method of binding a protocol
stack with an MLID.

Syntax

#include <odi.h>

ODISTAT Bind (

UINT32 BoardNumber,

MEON_STRING *UserParmString,

void *StackIdentifier);

Input Parameters

BoardNumber

The board number for the protocol stack to bind to.

UserParmString

Pointer to an optional user specified MEON parameter string that is
implementation dependent; NULL if unused.

StackIdentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (i
other words, the content of the StackIdentifier parameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

None.
Protocol Stack Control Routines 6-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ists
t
s by

n

d

e

Return Values

Remarks

All protocol stacks must support this function.

The protocol stack is expected to issue the CLSL_BindStack or
CLSL_BindProtocolToBoard call to the LSL as well as perform any other
maintenance commands required to bind to an MLID.

This function is invoked when the user issues the ‘‘bind“ command to a
protocol stack to bind to a logical board, for example:

bind <MLID Short Name> [Board Number <Protocol ID>]

The method of specifying the binding of a protocol stack to a logical board is
entirely up to the protocol stack developer. The line specifying the binding
information can be passed to the protocol stack or some entity to parse and the
resultant binding information as to the stack and which logical board it is bound
to is passed in the CLSL_BindStack or CLSL_BindProtocolToBoard call.

The first thing a protocol stack does is verify whether a specified board ex
and whether a Protocol ID (PID) is available for the protocol that uses tha
particular board. The protocol stack can verify that a specified board exist

ODISTAT_SUCCESSFUL The protocol stack was successfully bound to a
MLID.

ODISTAT_BAD_PARAMETER The MLID corresponding to the requested boar
number or the protocol stack corresponding to
the specified StackIdentifier does not exist.

ODISTAT_DUPLICATE_ENTRY The protocol stack is already bound to this
MLID.

ODISTAT_FAIL The protocol stack failed to bind to the specified
MLID.

ODISTAT_ITEM_NOT_PRESENTNo Protocol ID (PID) has been registered for us
by this protocol stack with the specified board’s
frame type. In other words. you must register a
PID by calling CLSL_AddProtocolID for the
board’s frame type that is used with this stack.

ODISTAT_OUT_OF_RESOURCESThe call could not allocate enough memory.
6-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

s the
calling the CLSL_GetMLIDControlEntry function. If the board is valid, the
protocol stack determines whether a PID exists for the protocol on that
particular board by calling CLSL_GetPIDFromStackIDBoard . If a PID is
not present for that protocol, the protocol stack adds a PID to use or stop
initialization procedure.
Protocol Stack Control Routines 6-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 for.

is

n
GetBoundNetworkInfo

Index 9

Gets the bound network address for a board /
protocol stack combination.

Syntax

#include <odi.h>

ODISTAT GetBoundNetworkInfo (

UINT32 BoardNumber,

NETWORK_ADDRESS_INFO *networkAddress

void *StackIdentifier);

Input Parameters

boardNumber

The board number the protocol stack is to return the network address

networkAddress

Pointer to a buffer where the bound network address for the protocol
returned.

StackIdentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (i
other words, the content of the StackIdentifier parameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

networkAddress

NULL is placed at the start of the buffer if no address is returned.
6-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ith
ress.

Return Values

Remarks

The protocol stack will fill in the NETOWRK_ADDRESS_INFO structure
addressType field with it’s assigned transport address type, the size field w
the length of the address, and the address field with the bound network add
IPX returns all 12 bytes, network:node:socket. IP returns 4 bytes, network
address only (no socket).

The following Transport Address types have been assigned:

IPX 1

IP 2

DDP 3

NETBEUI 4

The networkAddress structure is defined in ODI.H as follows:

typedef struct_NETWORK_ADDRESS_INFO_
{

UINT32 addressType;
UINT32 size;
UINT8 address[32];

}NETWORK_ADDRESS_INFO;

ODISTAT_SUCCESSFUL The network address was successfully returned.

Note: ODISTAT__SUCCESSFUL is returned even if the
addressType and size fields are zero, and the address field is
NULL; this implies that there is no network address for the board
and protocol combination.

ODISTAT_BAD_PARAMETER The MLID corresponding to the requested board number or the
protocol stack corresponding to the specified StackIdentifier.
Protocol Stack Control Routines 6-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

n
GetProtocolStackConfiguration

Index 0

Returns a pointer to the protocol stack’s
configuration table.

Syntax

#include <odi.h>

PS_CONFIG_TABLE *GetProtocolStackConfiguration (

void *StackIdentifier);

Input Parameters

StackIdentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (i
other words, the content of the StackIdentifier parameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

None.

Return Values

Remarks

All protocol stacks must support this function. (See Chapter 3: Protocol Stack
Data Structures for the format of the protocol stack’s configuration table.)

ConfigTable Returns a pointer to the protocol stack configuration table.

NULL StackIdentifier is invalid
6-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

n
GetProtocolStackStatistics

Index 1

Returns a pointer to the protocol stack’s statistics
table.

Syntax

#include <odi.h>

PS_STATS_TABLE *GetProtocolStackStatistics (

void *StackIdentifier);

Input Parameters

StackIdentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (i
other words, the content of the StackIdentifier parameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

None.

Return Values

Remarks

All protocol stacks must support this function. (See Chapter 3: Protocol Stack
Data Structures for the format of the protocol stack’s statistics table.)

StatsTable Returns a pointer to the protocol stack statistics table.

NULL StackIdentifier is invalid
Protocol Stack Control Routines 6-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

r.

ed.

n
GetProtocolStringForBoard

Index 7

Obtains a unique ID string for a board and protocol
stack combination.

Syntax

#include <odi.h>

ODISTAT GetProtocolStringForBoard (

UINT32 BoardNumber,

MEON_STRING *PrintString,

void *StackIdentifier);

Input Parameters

BoardNumber

The board number of the protocol stack to return a unique ID string fo

PrintString

Pointer to a buffer where a unique ID string for a protocol stack is return

StackIdentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (i
other words, the content of the StackIdentifier parameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

PrintString

Zero is placed at the start of the buffer if no string is returned. The
maximum number of MEONs, including the NULL terminator, is 255.
6-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

rk
s

d

Return Values

Remarks

For example, an IPX protocol stack might return a string similar to ‘‘Netwo
FADE2200" for the board on which the protocol stack is functioning. In thi
string, the IPX’s network number, ‘‘FADE2200", is being used with that
particular board. A TCP/IP protocol stack might return a string similar to
‘‘128.34.31.01".

ODISTAT_SUCCESSFUL is returned even if a NULL is placed in the buffer
pointed to by PrintString; this implies that there is no unique ID string for a board
and protocol stack combination.

ODISTAT_SUCCESSFUL ID string was successfully obtained.

ODISTAT_BAD_PARAMETERThe MLID corresponding to the requested boar
number or the protocol stack corresponding to
the specified StackIdentifier does not exist.
Protocol Stack Control Routines 6-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

n
MLIDDeRegistered

Index 4

Informs the protocol stacks that the specified board
is no longer available.

Syntax

#include <odi.h>

void MLIDDeRegistered (

UINT32 BoardNumber,

void *StackIdentifier);

Input Parameters

BoardNumber

The number of the board that has deregistered from the LSL.

StackIdentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (i
other words, the content of the StackIdentifier parameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

None.

Return Values

None.
6-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Remarks

The LSL invokes MLIDDeRegistered whenever the logical board that a
protocol stack is using has deregistered. The protocol stack can use this
information in any way it chooses and can even discard it. However, the
specified board will not be available for packet transmission or reception.

When this function is called, a Prescan TX, RX, or default chain stack, must
remove its node from the appropriate chain before this call returns.
Protocol Stack Control Routines 6-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

LID

n
PromiscuousState

Index 5

Allows MLIDs to notify protocol stacks through the
LSL that their promiscuous modes have changed.

Syntax

#include <odi.h>

ODISTAT PromiscuousState (

UINT32 BoardNumber,

UINT32 PromiscuousMask,

void *StackIdentifier);

Input Parameters

BoardNumber

The number of the board whose promiscuous mode has changed.

PromiscuousMask

The current state of the promiscuous modes bit mask as defined for M
control function PromiscuousChange.

StackIdentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (i
other words, the content of the StackIdentifier parameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

None.
6-14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

,
ey

e

d

y
Return Values

Remarks

This function is useful in allowing specialized protocol stacks (for example
bridges) to be notified of a change in the promiscuous state of an MLID th
are using and to take appropriate steps.

The implementation of this function is optional. If this function is not
implemented, a function which returns ODISTAT_BAD_COMMAND must b
used in place of the PromiscuousState function.

ODISTAT_SUCCESSFUL Protocol stack notified of promiscuous mode
changes.

ODISTAT_BAD_PARAMETERThe MLID corresponding to the requested boar
number or the protocol stack corresponding to
the specified StackIdentifier does not exist.

ODISTAT_BAD_COMMAND PromiscuousStatus function is not supported b
the protocol stack.
Protocol Stack Control Routines 6-15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

irst
n

n
ProtocolManagement

Index 8 (0x08)

Provides a generic way to define protocol
dependent functions.

Syntax

#include <odi.h>

 ODISTAT ProtocolManagement (

ECB *ManagementECB,

void *StackIdentifier);

Input Parameters

ManagementECB

Pointer to the ECB that contains the management information. The f
byte of the ECB_ProtocolID field must be greater than 0x40 and less tha
0x7F.

StackIdentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (i
other words, the content of the StackIdentifier parameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

None.
6-16 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

l

e

 the

s
al to
e

R

he
Return Values

Remarks

This control function is a generic interface between protocols and protoco
dependent management functions.

The implementation of this function is optional. If this function is not
implemented, a function which returns ODISTAT_BAD_COMMAND must b
used in place of the ProtocolManagement function.

The management ECB is in the form of an ECB; however, all fields below
ECB_ProtocolID field can be redefined by the protocol.

The ECB_ProtocolID field is defined as a 6-byte string that uniquely identifie
the protocol. The first character of the string must be greater than or equ
0x41 (A) and less than or equal to 0x7E (~). The remaining characters ar
defined by the protocol.

If the first character of the ECB_ProtocolID field is not greater than or equal to
0x41 (A) and less than or equal to 0x7E (~), ODISTAT_BAD_PARAMETE
should be returned as the completion code.

If the protocol does not recognize the value in the ECB_ProtocolID field,
ODISTAT_NO_SUCH_HANDLER should be returned as the completion
code.

ODISTAT_SUCCESSFUL The command was successfully executed. T
ECB is returned to the caller.

ODISTAT_RESPONSE_DELAYED The requested operation was successfully
started, but will complete asynchronously.
The ECB is not returned. The
ManagmentECB event service routine will
be called with the completion code when the
command has finished execution.

ODISTAT_BAD_PARAMETER The first byte of the ECB_ProtocolID field
is not greater than 0x40 or less than 0x7F.

ODISTAT_BAD_COMMAND Protocol management functions are not
supported.

ODISTAT_NO_SUCH_HANDLER The Protocol ID value is not supported.
Protocol Stack Control Routines 6-17

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 it

B on
If the protocol must respond asynchronously to the management request,
should queue the ECB internally, and ODISTAT_RESPONSE_DELAYED
should be returned as the completion code.

When the queued request is completed, the protocol should place the EC
the LSL hold event queue by calling CLSL_HoldEvent. The LSL will then
process the ECB during the next call to CLSL_ServiceEvents.
6-18 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2n
Unbind

Index 3

Unbinds a protocol stack from an adapter/frame
type (logical board) combination.

Syntax

#include <odi.h>

ODISTAT Unbind (

UINT32 BoardNumber

MEON_STRING *UserParmString,

void *StackIdentifier);

Input Parameters

BoardNumber

The board number for the protocol stack to unbind from.

UserParmString

Pointer to an optional user specified MEON parameter string that is
implementation dependent; NULL if unused.

StackIdentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (i
other words, the content of the StackIdentifier parameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

None.
Protocol Stack Control Routines 6-19

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ified

Return Values

Remarks

All protocol stacks must support this function.

Protocol stacks should place themselves in a safe state and then call
CLSL_UnbindStack.

After this routine successfully returns, packet reception between the spec
protocol stack and the logical board is disabled.

 CLSL_DeRegisterStack performs this operation implicitly.

ODISTAT_SUCCESSFUL The protocol stack was successfully
unbound from an adapter/frame type
(logical board) combination.

ODISTAT_BAD_PARAMETER The MLID corresponding to the requested
board number or the protocol stack
corresponding to the specified
StackIdentifier does not exist.

ODISTAT_ITEM_NOT_PRESENTThe specified binding does not exist.
6-20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 7 Overview of the LSL
S

p

e

c

 v1

.1
1

 - D

o

c v

1

. 2

2

Chapter Overview

This chapter provides a brief overview of the Link Support Layer (LSL) and its
functions. It also documents the completion codes the LSL returns in the
support routines.

 Link Suppo rt Layer (LSL)

The LSL handles the communication between protocol stacks and MLIDs.
Because the ODI allows the physical topology to support many different types
of protocols, every MLID sends and receives packets of different frame types
that are destined for different protocol stacks. The LSL acts as a demultiplexer,
or switchboard, and determines the protocol stack or MLID that receives the
packet.

The LSL also tracks the various protocols and MLIDs that are currently loaded
in the system and provides a consistent method of finding and using each of the
loaded modules.

In addition, the LSL performs the following services:

• All ows a protocol stack to obtain and return Event Control Blocks (ECBs).
(ECBs are control structures that are used to send or receive packets and to
schedule events.)

• Queues and recovers ECBs for later use.

• All ows protocol stacks to obtain timing services.

• All ows protocol stacks to determine Stack IDs (SIDs)and Protocol IDs
(PIDs).

• All ows protocol stacks to obtain MLID statistics.
Overview of the LSL 8-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ID.

r
t.)

 a
L.
ual
• Allows protocol stacks to bind with MLIDs.

• Allows protocol stacks to transmit and receive packets through an ML

• Maintains lists of all active stacks and MLIDs.

• Allows protocol stacks to obtain information about MLIDs and other
protocol stacks.

• Allows protocol stacks to change the operational state of MLIDs. (Fo
example, the protocol stack can cause the MLID to shut down or rese

Completion Codes

This following are the completion codes returned by the LSL:

ODISTAT_SUCCESSFUL

ODISTAT_RESPONSE_DELAYED

ODISTAT_SUCCESS_TAKEN

ODISTAT_BAD_COMMAND

ODISTAT_BAD_PARAMETER

ODISTAT_DUPLICATE_ENTRY

ODISTAT_FAIL

ODISTAT_ITEM_NOT_PRESENT

ODISTAT_NO_MORE_ITEMS

ODISTAT_MLID_SHUTDOWN

ODISTAT_NO_SUCH_HANDLER

ODISTAT_OUT_OF_RESOURCES

ODISTAT_RX_OVERFLOW

ODISTAT_IN_CRITICAL_SECTION

ODISTAT_TRANSMIT_FAILED

ODISTAT_PACKET_UNDELIVERABLE

ODISTAT_CANCELED

Specification Version String

In order to identify which version of this specification an LSL conforms to,
version string (the ‘‘specification version string“) is embedded within the LS
The specification version string number (1. for this specification) is the act
8-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ion
le
version number of the specification. The following is the specification vers
string for this specification; it is located in the LSL where the global variab
declarations are made:

MEON_STRING CODISPEC[] = “ODI_CSPEC_VERSION: 1.11";
•

Overview of the LSL 8-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

8-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 8 LSL Data Structures
S

p

e

c

 v1

.1
1

 - D

o

c v

1

. 2

2

Chapter Overview

This chapter describes the Link Support Layer (LSL) configuration and
statistics tables and each of the fields in these structures.

LSL Configuration Table

The following describes the LSL configuration table in detail; specifically, it
includes a sample of the configuration table code and a description of each of
the configuration table fields.

LSL Configuration Table Structure Sample Code

typedef str uct _LSL_CONFIG_TABLE_

{

UINT16 LConfigTableM ajorVer;

UINT16 LConfigTableM i norVer;

MEON_STRING *LSLLongName;

MEON_STRING *LSLShortName;

UINT16 LSLMajorVer;

UINT16 LSLMinorVer;

UINT32 LMaxNumberOfBoards;

UINT32 LMaxNumberOfSt acks;

UINT32 LConfigTableR eserved0;

UINT32 LConfigTableR eserved1;

UINT32 LConfigTableR eserved2;

UINT8 LSLCFG_ODISpecMajorVer;

UINT8 LSLCFG_ODISpecMinorVer;

UINT16 LConfigTableR eserved3;

UINT32 LSLCFG_SystemFlags;
LSL Data Structures 9-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

UINT32 LSLCFG_SmallECBCount;

UINT32 LSLCFG_MediumECBCount;

UINT32 LSLCFG_LargeECBCount;

UINT32 LSLCFG_XLargeECBCount;

UINT32 LSLCFG_HugeECBCount;

UINT32 LSLCFG_SmallECBBelow16Count;

UINT32 LSLCFG_MediumECBBelow16Count;

UINT32 LSLCFG_LargeECBBelow16Count;

UINT32 LSLCFG_XLargeECBBelow16Count;

UINT32 LSLCFG_HugeECBBelow16Count;

UINT32 LSLCFG_SmallECBMinCount;

UINT32 LSLCFG_MediumECBMinCount;

UINT32 LSLCFG_LargeECBMinCount;

UINT32 LSLCFG_XLargeECBMinCount;

UINT32 LSLCFG_HugeECBMinCount;

UINT32 LSLCFG_SmallECBMaxCount;

UINT32 LSLCFG_MediumECBMaxCount;

UINT32 LSLCFG_LargeECBMaxCount;

UINT32 LSLCFG_XLargeECBMaxCount;

UINT32 LSLCFG_HugeECBMaxCount;

UINT32 LSLCFG_SmallECBSize;

UINT32 LSLCFG_MediumECBSize;

UINT32 LSLCFG_LargeECBSize;

UINT32 LSLCFG_XLargeECBSize;

UINT32 LSLCFG_HugeECBSize;

} LSL_CONFIG_TABLE;
9-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Table 9-1

LSL Configuration Table Field Descriptions

Field Description

LConfigTableMajorVer This field has the major version number of the LSL configuration
table. Use CLSL_CFG_TABLE_MAJOR _VER, defined in ODI.H.

LConfigTableMinorVer This field has the minor version number of the LSL configuration
table. Use CLSL_CFG_TABLE_MINOR _VER, defined in ODI.H.

LSLLongName Pointer to a NULL terminated MEON string containing the LSL
long name.

LSLShortName Pointer to a NULL terminated MEON string containing the LSL
short name.

LSLMajorVer This field has the major version number of the LSL. The number
in this field is a decimal number.

LSLMinorVer This field has the minor version number of the LSL (0 through 99).
The number in this field is a decimal number.

LMaxNumberOfBoards This field contains the maximum number of logical boards that the
LSL can handle.

LMaxNumberOfStacks This field contains the maximum number of bound protocol stacks
that the LSL can to handle.

LConfigTableReserved0 This field is reserved for future use.

LConfigTableReserved1 This field is reserved for future use.

LConfigTableReserved2 This field is reserved for future use.

LSLCFG_ODISpecMajorVer This field contains the major version of the ODI Specification that
this version of the C LSL is written too. For example, if the version
of the ODI specification is 1.11, the value of this field is 1.

LSLCFG_ODISpecMinorVer This field contains the minor version of the ODI Specification that
this version of the C LSL is written too. For example, if the version
of the ODI specification is 1.11, the value of this field is 11.

LconfigTableReserved3 This field is reserved.
LSL Data Structures 9-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

LSLCFG_SystemFlags The bits in this field are defined below:

CLSL_CFG_SERVER_BIT
When set to 1 this bit indicates the C LSL is running in a
server environment. This bit is mutually exclusive with
CLSL_CFG_CLIENT_BIT.

CLSL_CFG_CLIENT_BIT
When set to 1 this bit indicates the C LSL is running in a
client environment. This bit is mutually exclusive with
CLSL_CFG_SERVER_BIT

LSLCFG_SmallECBCount This field contains the current number of ECBs that have been
allocated for the small ECB pool. The maximum value for this
count is defined by LSLCFG_SmallECBMaxCount . The
minimum value is defined by LSLCFG_SmallECBMinCount .

LSLCFG_MediumECBCount This field contains the current number of ECBs that have been
allocated for the medium ECB pool. The maximum value for this
count is defined by LSLCFG_MediumECBMaxCount . The
minimum value is defined by LSLCFG_MediumECBMinCount

LSLCFG_LargeECBCount This field contains the current number of ECBs that have been
allocated for the large ECB pool. The maximum value for this
count is defined by LSLCFG_LargeECBMaxCount . The
minimum value is defined by LSLCFG_LargeECBMinCount

LSLCFG_XLargeECBCount This field contains the current number of ECBs that have been
allocated for the extra large ECB pool. The maximum value for
this count is defined by LSLCFG_XLargeECBMaxCount . The
minimum value is defined by LSLCFG_XLargeECBMinCount

LSLCFG_HugeECBCount This field contains the current number of ECBs that have been
allocated for the huge ECB pool. The maximum value for this
count is defined by LSLCFG_HugeECBMaxCount . The
minimum value is defined by LSLCFG_HugeECBMinCount

LSLCFG_SmallECBBelow16Count This field contains the current number of ECBs below 16 meg that
have been allocated for the small ECB pool. The maximum value
for this count is defined by LSLCFG_SmallECBMaxCount . The
initial value is zero.

Table 9-1

LSL Configuration Table Field Descriptions

Field Description
9-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

LSLCFG_MediumECBBelow16Count This field contains the current number of ECBs below 16 meg that
have been allocated for the medium ECB below 16 meg pool. The
maximum value for this count is defined by
LSLCFG_MediumECBMaxCount . The initial value is zero.

LSLCFG_LargeECBBelow16Count This field contains the current number of ECBs below 16 meg that
have been allocated for the large ECB below 16 meg pool. The
maximum value for this count is defined by
LSLCFG_LargeECBMaxCount . The initial value is zero.

LSLCFG_XLargeECBBelow16Count This field contains the current number of ECBs below 16 meg that
have been allocated for the extra large ECB below 16 meg pool.
The maximum value for this count is defined by
LSLCFG_XLargeECBMaxCount . The initial value is zero.

LSLCFG_HugeECBBelow16Count This field contains the current number of ECBs below 16 meg that
have been allocated for the huge ECB below 16 meg pool. The
maximum value for this count is defined by
LSLCFG_HugeECBMaxCount . The initial value is zero.

LSLCFG_SmallECBMinCount The minimum number of ECBs allocated for the small EBC pool.

LSLCFG_MediumECBMinCount The minimum number of ECBs allocated for the medium EBC
pool.

LSLCFG_LargeECBMinCount The minimum number of ECBs allocated for the large EBC pool.

LSLCFG_XLargeECBMinCount The minimum number of ECBs allocated for the extra large EBC
pool.

LSLCFG_HugeECBMinCount The minimum number of ECBs allocated for the huge EBC pool.

LSLCFG_SmallECBMaxCount The maximum number of ECBs allocated for the small EBC pool.

LSLCFG_MediumECBMaxCount The maximum number of ECBs allocated for the medium EBC
pool.

LSLCFG_LargeECBMaxCount The maximum number of ECBs allocated for the large EBC pool.

LSLCFG_XLargeECBMaxCount The maximum number of ECBs allocated for the extra large EBC
pool.

LSLCFG_HugeECBMaxCount The maximum number of ECBs allocated for the huge EBC pool.

Table 9-1

LSL Configuration Table Field Descriptions

Field Description
LSL Data Structures 9-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

LSLCFG_SmallECBSize This field contains the maximum data size of the ECBs contained
in the small ECB pool.

LSLCFG_MediumECBSize This field contains the maximum data size of the ECBs contained
in the medium ECB pool.

LSLCFG_LargeECBSize This field contains the maximum data size of the ECBs contained
in the large ECB pool.

LSLCFG_XLargeECBSize This field contains the maximum data size of the ECBs contained
in the extra large ECB pool.

 LSLCFG_HugeECBSize This field contains the maximum data size of the ECBs contained
in the huge ECB pool.

Table 9-1

LSL Configuration Table Field Descriptions

Field Description
9-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ch of

.

LSL Statistics Table

The following describes the LSL statistics table in detail; specifically, it
includes a sample of the LSL statistics table code and a description of ea
the statistics table fields.

The LSL keeps a statistics table for the purpose of network management

LSL Statistics Table Structure Sample Code

typedef struct _LOG_BRD_STAT_TABLE_ENTRY_

{

UINT32 LogBrd_TransmittedPackets;

UINT32 LogBrd_ReceivedPackets;

UINT32 LogBrd_UnclaimedPackets;

UINT32 LogBrd_TxOverloaded;

} LOG_BRD_STAT_TABLE_ENTRY;

LOG_BRD_STAT_TABLE_ENTRY

LogicalBoardStatTablePtr[MaxNumberOfLogicalBoards];

typedef struct _LSL_STATS_TABLE_

{

UINT16 LStatTableMajorVer;

UINT16 LStatTableMinorVer;

UINT32 LNumGenericCounters;

STAT_TABLE_ENTRY (*LGenericCountersPtr)[];

UINT32 LNumLogicalBoards;

LOG_BRD_STAT_TABLE_ENTRY

(*LogicalBoardStatTablePtr)[];

UINT32 LNumCustomCounters;

STAT_TABLE_ENTRY (*LCustomCountersPtr)[];
LSL Data Structures 9-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

} LSL_STATS_TABLE;

The following describes the LOG_BRD_STAT_TABLE_ENTRY fields.

Table 9-2

LSL Statistics Table Field Descriptions

Field Description

LStatTableMajorVer This field has the major version number of the statistics table (2 for this
specification).

LStatTableMinorVer This field has the minor version number of the statistics table (0 for this
specification).

LNumGenericCounters This field has the total number of generic STAT_TABLE_ENTRY counters in
this portion of this table. This field is set to 0x000A for this specification.

LGenericCountersPtr Pointer to an array of STAT_TABLE_ENTRY counters
[LNumGenericCounters].

LNumLogicalBoards This field has the number of logical boards whose specific statistics are
pointed to. Normally this value is the maximum number of boards the LSL
can handle.

LogicalBoardStatTablePtr Pointer to an array of LOG_BRD_STAT_TABLE_ENTRY counters
[LNumLogicalBoards].

LNumCustomCounters This field contains the total number of custom STAT_TABLE_ENTRY
counters in this portion of this table.

LCustomCountersPtr Pointer to an array of STAT_TABLE_ENTRY counters [LCustomCounters].

Table 9-3

LOG_BRD_STAT_TABLE_ENTRY Field Descriptions

Size Label Description

UINT32 LogBrd_TransmittedPackets Number packets that requested transmission by the LSL.

UINT32 LogBrd_ReceivedPackets Number packets received by the LSL.

UINT32 LogBrd_UnclaimedPackets Number packets not claimed by any protocol stack.

UINT32 LogBrd_TxOverloaded This field is incremented when LSL MLID transmit checking
detects that a device is overloaded and is consuming too many
system resources, such as when MQDepth is too high.
9-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Example

#define NUM_GENERIC_COUNTERS 10
UINT32 LTotalTxPackets, LGetECBRequests,

LGetECBFailures, LAESEventCount,
LPostponedEvents, LCancelEventFailures,
LValidBuffersReused, LReserved,
LTotalRxPackets, LUnclaimedPackets;

STAT_TABLE_ENTRY LGenericCounters [NUM_GENERIC_COUNTERS] =
{

{ ODI_STAT_UINT32, <otalTxPackets, NULL },
{ ODI_STAT_UINT32, &LGetECBRequests, NULL },
{ ODI_STAT_UINT32, &LGetECBFailures, NULL },
{ ODI_STAT_UINT32, &LAESEventCount, NULL },
{ ODI_STAT_UINT32, NULL, NULL },
{ ODI_STAT_UINT32, &LCancelEventFailures, NULL },
{ ODI_STAT_UINT32, NULL, NULL },
{ ODI_STAT_UINT32, NULL, NULL },
{ ODI_STAT_UINT32, <otalRxPackets, NULL },
{ ODI_STAT_UINT32, &LUnclaimedPackets, NULL },

};

LSL_STATS_TABLE LSL_StatsTable = {2, 0,
NUM_GENERIC_COUNTERS,
LGenericCounters, MaxNumberOfLogicalBoards,
LogicalBoardStatTablePtr, 0, NULL };
LSL Data Structures 9-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Table 9-4

Generic STAT_TABLE_ENTRY Counters Array Fields

Size Label Description

UINT32 LTotalTxPackets Total number of packets that requested transmission (whether they
were actually transmitted or not).

UINT32 LGetECBRequests Total number of transmit and receive ECB requests.

UINT32 LGetECBFailures Number of get ECB requests that failed because of unavailable
resources.

UINT32 LAESEventsCount Number of completed AES events.

UINT32 LReserved1 This field is reserved.

UINT32 LCancelEventFailures Number of cancel events that failed.

UINT32 LReserved2 This field is reserved.

UINT32 LReserved This field is reserved.

UINT32 LTotalRxPackets This field has the total number of CLSL_GetStackECB requests made
to the LSL.

UINT32 LUnclaimedPackets Number of incoming packets that were not claimed by any protocol
stack.
9-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

on
I
The LSLAPI_ARRAY function can be accessed through the LSL informati
block (INFO_BLOCK) using indexes. The location of the various LSL AP
services in the information block are as follows:

#define LSL_NUM_API 49L
void (*LSLAPI_Array[])(void)=
{

(void (*)(void)) CLSL_GetSizedECB,
(void (*)(void)) CLSL_ReturnECB,
(void (*)(void)) CLSL_CancelEvent,
(void (*)(void)) CLSL_ScheduleAESEvent,
(void (*)(void)) CLSL_CancelAESEvent,
(void (*)(void)) CLSL_GetIntervalMarker,
(void (*)(void)) CLSL_RegisterStack
(void (*)(void)) CLSL_DeRegisterStack,
(void (*)(void)) CLSL_Reserved,
(void (*)(void)) CLSL_Reserved,
(void (*)(void)) CLSL_Reserved,
(void (*)(void)) CLSL_GetStackECB,
(void (*)(void)) CLSL_SendPacket,
(void (*)(void)) CLSL_FastSendComplete,
(void (*)(void)) CLSL_SendComplete,
(void (*)(void)) CLSL_RegisterMLID,
(void (*)(void)) CLSL_GetStackIDFromName,
(void (*)(void)) CLSL_GetPIDFromStackIDBoard,
(void (*)(void)) CLSL_GetMLIDControlEntry
(void (*)(void)) CLSL_GetProtocolControlEntry,
(void (*)(void)) CLSL_GetLSLStatistics,
(void (*)(void)) CLSL_BindStack,
(void (*)(void)) CLSL_UnbindStack,
(void (*)(void)) CLSL_AddProtocolID,
(void (*)(void)) CLSL_GetBoundBoardInfo,
(void (*)(void)) CLSL_GetLSLConfiguration,
(void (*)(void)) CLSL_DeRegisterMLID,
(void (*)(void)) CLSL_RegisterDefaultChain,
(void (*)(void)) CLSL_RegisterPreScanChain,
(void (*)(void)) CLSL_Reserved,
(void (*)(void)) CLSL_DeRegisterDefaultChain,
(void (*)(void)) CLSL_DeRegisterPreScanChain,
(void (*)(void)) CLSL_Reserved,
(void (*)(void)) CLSL_GetStartOfChain,
(void (*)(void)) CLSL_ReSubmitDefault,
(void (*)(void)) CLSL_ReSubmitPreScanRx,
(void (*)(void)) CLSL_ReSubmitPreScanTx,
(void (*)(void)) CLSL_HoldEvent,
(void (*)(void)) CLSL_FastHoldEvent,
(void (*)(void)) CLSL_GetMaxECBBufferSize,
(void (*)(void)) CLSL_Reserved,
LSL Data Structures 9-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

(void (*)(void)) CLSL_ServiceEvents,
(void (*)(void)) CLSL_ModifyStackFilter,
(void (*)(void)) CLSL_ControlStackFilter,
(void (*)(void)) CLSL_SendProtocolInfoToOtherEngine,
(void (*)(void)) CLSL_SendProtocolInfoToPartner,
(void (*)(void)) CLSL_BindProtocolToBoard,
(void (*)(void)) CLSL_GetMultipleECBs,
(void (*)(void)) CLSL_GetPhysicalAddressOfECB

};

INFO_BLOCK LSLAPIInfoBlock = {
LSL_NUM_API,
(void(**)(void))&LSLAPI_Array };

For platforms with dynamic linkers, the above steps are unnecessary since the
linker takes care of these items. With dynamic linking formats (for example, NLM
and ELF) the LSL functions can be called directly by name. Only platforms that
do not allow for dynamic linking in this manner must locate the LSL entry points
through the underlying platform—for example, entry points are located in
Windows NT by a call to the resource manager.
9-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 9 LSL Support Routines
S

p

e

c

 v1

.1
1

 - D

o

c v

1

. 2

2

ce
s
Chapter Overview

This chapter describes the Link Support Layer (LSL) support routines that
comprise the Multiple Protocol Interface (MPI) and the Multiple Link Interfa
(MLI). Figure 1.1 is a block diagram illustrating these interfaces. The routine
in this chapter are available to both protocol stacks and MLIDs.

Figure 10-1

LSL Interfaces

LSL API Services

The LSL contains a number of services that are available to protocol stacks and
MLI Ds. You can invoke these services by calling the LSL support entry point

IPX TCP/IP AppleTalk

Link Support Layer (LSL)

Ethernet Token-Ring AppleTalk ISDN

Multiple Link Interface Drivers (MLIDs)

Protocol stacks

Network boards (or chipsets)

Multiple Protocol Interface (MPI)

Multiple Link Interface (MPI)
LSL Support Routines 10-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

obtained when the protocol stack or MLID locates the LSL. This chapter
defines the following functions available from the LSL:

CLSL_AddProtocolID

CLSL_BindProtocolToBoard

CLSL_BindStack

CLSL_CancelAESEvent

CLSL_CancelEvent

CLSL_ControlStackFilter

CLSL_DeRegisterDefaultChain

CLSL_DeRegisterMLID

CLSL_DeRegisterPreScanChain

CLSL_DeRegisterStack

CLSL_FastHoldEvent

CLSL_FastSendComplete

CLSL_GetBoundBoardInfo

CLSL_GetIntervalMarker

CLSL_GetLSLConfiguration

CLSL_GetLSLStatistics

CLSL_GetMaxECBBufferSize

CLSL_GetMLIDControlEntry

CLSL_GetMultipleECBs

CLSL_GetPhysicalAddressOfECB

CLSL_GetPIDFromStackIDBoard

CLSL_GetProtocolControlEntry

CLSL_GetSizedECB

CLSL_GetStackECB

CLSL_GetStackIDFromName

CLSL_GetStartofChain

CLSL_HoldEvent

CLSL_ModifyStackFilter

CLSL_RegisterDefaultChain

CLSL_RegisterMLID

CLSL_RegisterPreScanChain

CLSL_RegisterStack

CLSL_ReSubmitDefault

CLSL_ReSubmitPreScanRx

CLSL_ReSubmitPreScanTx
10-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

xes.

CLSL_ReturnECB

CLSL_ScheduleAESEvent

CLSL_SendComplete

CLSL_SendPacket

CLSL_SendProtocolInfoToOtherEngine (NetWare Server only)

CLSL_SendProtocolInfoToPartner (NetWare Server only)

CLSL_ServiceEvents

CLSL_UnbindStack

The functions above are accessed through the information block using inde
The location of the various CLSL functions in the information block are as
follows:

Index Function

 0 CLSL_GetSizedECB

 1 CLSL_ReturnECB

 2 CLSL_CancelEvent

 3 CLSL_ScheduleAESEvent

 4 CLSL_CancelAESEvent

 5 CLSL_GetIntervalMarker

 6 CLSL_RegisterStack

 7 CLSL_DeRegisterStack

 8 Reserved

 9 Reserved

10 Reserved

11 CLSL_GetStackECB

12 CLSL_SendPacket

13 CLSL_FastSendComplete

14 CLSL_SendComplete

15 CLSL_RegisterMLID

16 CLSL_GetStackIDFromName

17 CLSL_GetPIDFromStackIDBoard

18 CLSL_GetMLIDControlEntry

19 CLSL_GetProtocolControlEntry

20 CLSL_GetLSLStatistics

21 CLSL_BindStack

22 CLSL_UnbindStack

23 CLSL_AddProtocolID
LSL Support Routines 10-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

24 CLSL_GetBoundBoardInfo

25 CLSL_GetLSLConfiguration

26 CLSL_DeRegisterMLID

27 CLSL_RegisterDefaultChain

28 CLSL_RegisterPreScanChain

29 Reserved

30 CLSL_DeRegisterDefaultChain

31 CLSL_DeRegisterPreScanChain

32 Reserved

33 CLSL_GetStartofChain

34 CLSL_ReSubmitDefault

35 CLSL_ReSubmitPreScanRx

36 CLSL_ResubmitPreScanTx

37 CLSL_HoldEvent

38 CLSL_FastHoldEvent

39 CLSL_GetMaxECBBufferSize

40 Reserved

41 CLSL_ServiceEvents

42 CLSL_ModifyStackFilter

43 CLSL_ControlStackFilter

44 CLSL_SendProtocolInfoToOtherEngine (Server
only)

45 CLSL_SendProtocolInfoToPartner (Server only)

46 CLSL_BindProtocolToBoard

47 CLSL_GetMultipleECBs

48 CLSL_GetPhysicalAddressOfECB

Access to the CLSL APIs, independent of the link method (dynamic or static), in
the information block can be accomplished by using the macro definitions in
ODI.H. The macros are listed below. The infoblock parameter is returned by
CLSL_InitEntryPoint. Refer to the API definitions for details on the rest of the
parameters.

CLSLEntry_GetSizedECB (infoBlock, ecbDataSize, pResourceObj, Below16Meg)
CLSLEntry_ReturnECB (infoBlock, returnedECB)
CLSLEntry_CancelEvent (infoBlock, ecbBuffer)
CLSLEntry_ScheduleAESEvent (infoBlock, timerAESECB)
CLSLEntry_CancelAESEvent (infoBlock, timerAESECB)
CLSLEntry_GetIntervalMarker (infoBlock)
CLSLEntry_RegisterStack (infoBlock, protocolNode, protocolNumber)
CLSLEntry_DeRegisterStack (infoBlock, protocolNumber)
10-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

CLSLEntry_GetStackECB (infoBlock, lookAheadBuf)
CLSLEntry_SendPacket (infoBlock, sendECB)
CLSLEntry_FastSendComplete (infoBlock, sendECB)
CLSLEntry_SendComplete (infoBlock, sendECB)
CLSLEntry_RegisterMLID (infoBlock, mlidHandlers, mlidConfigTable, boardNumber)
CLSLEntry_GetStackIDFromName (infoBlock, name, protocolNumber)
CLSLEntry_GetPIDFromStackIDBoard (infoBlock, protocolNumber, boardNumber,

errorStatus)
CLSLEntry_GetMLIDControlEntry (infoBlock, boardNumber, errorStatus)
CLSLEntry_GetProtocolControlEntry (infoBlock, protocolNumber, errorStatus)
CLSLEntry_GetLSLStatistics (infoBlock)
CLSLEntry_BindStack (infoBlock, protocolNumber, boardNumber)
CLSLEntry_UnbindStack (infoBlock, protocolNumber, boardNumber)
CLSLEntry_AddProtocolID (infoBlock, protocolID, protocolName, frameTypeString)
CLSLEntry_GetBoundBoardInfo (infoBlock, boardNumber, stackBuffer)
CLSLEntry_GetLSLConfiguration (infoBlock)
CLSLEntry_DeRegisterMLID (infoBlock, boardNumber)
CLSLEntry_RegisterDefaultChain (infoBlock, stackChainNode)
CLSLEntry_RegisterPreScanChain (infoBlock, pStkChnPreRxNode, pStkChnTxNode)
CLSLEntry_DeRegisterDefaultChain (infoBlock, stackChainNode)
CLSLEntry_DeRegisterPreScanChain (infoBlock, pStkChainRxNode, pStkChainTxNode)
CLSLEntry_GetStartofChain (infoBlock, boardNumber, defaultChainStartNode,

preScanRxChainStartNode, preScanTxChainStartNode)
CLSLEntry_ReSubmitDefault (infoBlock, stackChainNode, LookAheadBuf)
CLSLEntry_ReSubmitPreScanRx (infoBlock, stackChainNode, lookAheadBuf)
CLSLEntry_ResubmitPreScanTx (infoBlock, stackChainNode, transmitECB)
CLSLEntry_HoldEvent (infoBlock, holdECB)
CLSLEntry_FastHoldEvent (infoBlock, ecbBuffer)
CLSLEntry_GetMaxECBBufferSize (infoBlock)
CLSLEntry_ServiceEvents (infoBlock)
CLSLEntry_ModifyStackFilter (infoBlock, stackIdentifier, boardNumber, newMask,
 pCurrentMask)
CLSLEntry_ControlStackFilter (infoBlock, boardNumber, function, mask,

parameter1, parameter2)
CLSLEntry_SendProtocolInfoToOtherEngine (infoBlock, protocolNumber,

protocolInfo, length, infoSendCallBack)
CLSLEntry_SendProtocolInfoToPartner (infoBlock, protocolNumber, protocolinfo,
 length, infoSendCallBack)
CLSLEntry_BindProtocolToBoard (infoBlock, protocolNumber, boardNumber,

userParmString)
CLSLEntry_GetMultipleECBs (infoBlock, ecbDataSize, pResourceObj, nECBs)
CLSLEntry_GetPhysicalAddressOfECB (info Block, ecb)
LSL Support Routines 10-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

, the

er

e
Locating the LSL

The LSL module must reside in the system before the user can load any
Protocol Stack or MLID. On some platforms, such as the NetWare server
LSL may already be preloaded.

The following is the process usually used to boot an ODI system:

LSL.xxx ;Load Link Support Layer

CNE2000.xxx ;Load MLID(s)

IPX.xxx ;Load protocol suites

NW_whatever.xxx;Load Redirector/Shell/IFS etc.

MLIDs and Protocol Stacks must first obtain the LSL API entry points in ord
to initialize. Table 10-1 outlines the procedure to find these entry points.

For platforms with dynamic linkers, the above steps are unnecessary since the
linker takes care of these items. With dynamic linking formats (for example, NLM
and ELF) the LSL functions can be called directly by name. Only platforms that
do not allow for dynamic linking in this manner must locate the LSL entry points
through the underlying platform—for example, entry points are located in
Windows NT by a call to the resource manager.

The MLID or protocol stack calls the LSL initialization entry point to get th
LSL Services entry points for the MLID and the protocol stack.

INFO_BLOCK* CLSL_InitEntryPoint (void);

Table 10-1

Finding LSL API Entry Points for an MLID

Actor/Agent Action

MLID 1. The method used is platform dependent and implementation
dependant.

2. Returns an error to the operating system if the MLID fails to
find the API entry points.

LSL 3. Returns a pointer to the LSL’s initialization entry point.

MLID 4. Calls the LSL’s initialization entry point.

LSL 5. Returns a pointer to the start of the LSL’s API array and the
number of elements in the array.
10-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

CLSL_InitEntryPoint in the above code returns a pointer to the LSL API
INFO_BLOCK structure, which is defined as follows:

typedef struct _INFO_BLOCK_

{

UINT32 NumberOfAPIs;

void (**SupportAPIArray) ();

} INFO_BLOCK;

Field descriptions:

NumberofAPIs

The number of elements in the SupportAPIArray.

(**SupportAPIArray)()

Pointer to an array of function pointers whose functions return voids.

In Windows NT, a call to the resource manager is used to obtain the LSL’s entry
points.
LSL Support Routines 10-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

for

e
r

CLSL_AddProtocolID
Index 23 (0x17)

Allows a protocol stack to register a Protocol ID
(PID) for a given frame type and protocol stack
combination.

Syntax

#include <odi.h>

ODISTAT CLSL_AddProtocolID (

PROT_ID *ProtocolID,

 MEON_STRING *ProtocolName,

 MEON_STRING *FrameTypeString);

Input Parameters

ProtocolID

Pointer to a byte area of size PID_SIZE containing the PID.

ProtocolName

Pointer to a NULL terminated MEON string containing the short name
the protocol stack that receives frames with the appropriate PID.

FrameTypeString

Pointer to a NULL terminated MEON string containing the name of th
frame type that is to receive the frames with the specified PID; in othe
words, the contents of FrameTypeString have a value identifying the frame
type—for example, ETHERNET_II.

Output Parameters

None.
10-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

n

e

Return Values

Remarks

A protocol stack invokes the CLSL_GetPIDFromStackIDBoard function
before it calls this function, because a PID might have been previously
registered for the specified protocol and frame type combination.

ODISTAT_SUCCESSFUL The specified PID was successfully
registered with the LSL.

ODISTAT_BAD_PARAMETER The length of the specified protocol short
name is equal to 0, is larger than the
maximum length allowed, or the frame
type identified by the FrameID has not
been registered with the LSL. In other
words, no board has registered with the
LSL using that frame type.

ODISTAT_DUPLICATE_ENTRY A PID for the specified frame type has
already been registered with the LSL,
possibly by this protocol stack, or has bee
registered for another protocol stack,
which has yet to register with the LSL.

ODISTAT_NO_MORE_ITEMS The specified PID and frame type
combination could not be registered with
the LSL for the named protocol stack,
because the combination is already in us
by a differently named protocol stack or
the named protocol stack and frame type
combination already has a different PID
registered for it.

ODISTAT_OUT_OF_RESOURCESThe LSL has no resources to register
another PID for the specified frame type.
LSL Support Routines 10-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

CLSL_BindProtocolToBoard
Index 46 (0x2E)

Binds a protocol stack to an adapter and frame
type (logical board) combination, which enables
packet reception.

Syntax

#include <odi.h>

ODISTAT CLSL_BindProtocolToBoard (

UINT32 ProtocolNumber,

UINT32 BoardNumber

MEON_STRING *UserParmString);

Input Parameters

ProtocolNumber

The Stack ID (SID).

BoardNumber

The board number for the protocol stack to bind to.

UserParmString

Pointer to an optional user specified MEON parameter string that is
implementation dependent; NULL if unused.

Output Parameters

None.
10-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

 The

 to

ard
ware

sues

ally

Return Values

Remarks

When this routine returns successfully, the specified binding has occurred.
bound protocol stack will receive the packets that contain the registered
Protocol ID for that stack and that are received by the specified board.

This function differs from CLSL_BindStack, because it obtains the protocol
stack control service point and executes the protocol stack’s bind control
service. This function allows a configuration entity to bind a protocol stack
a board in an easy manner.

We recommend that you use this function to bind a protocol stack to a bo
because of its ease of use, and because this function is NetWare SFTIII a
in NetWare SFTIII environments (it manages primary/secondary server is
of the function transparent to the user). In other words, when a protocol is
bound to a board on the primary server, the SFTIII environment automatic
causes the same operation to occur on the secondary server.

ODISTAT_SUCCESSFUL The protocol stack was successfully
bound to the board.

ODISTAT_BAD_PARAMETER The MLID corresponding to the requested
board number or the protocol stack
corresponding to the specified SID does
not exist.

ODISTAT_DUPLICATE_ENTRY The specified binding already exists.

ODISTAT_FAIL The protocol stack failed to bind to the
specified MLID.

ODISTAT_ITEM_NOT_PRESENTNo Protocol ID (PID) has been registered
for use by this protocol stack with the
specified board’s frame type; in other
words, a PID must be registered by calling
CLSL_AddProtocolID for the board’s
frame type.

ODISTAT_OUT_OF_RESOURCESThe call could not allocate enough
memory.
LSL Support Routines 10-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

CLSL_BindStack
Index 21 (0x15)

Binds a protocol stack to an adapter and frame
type (logical board) combination. This allows
received packets to be passed from the logical
board to the protocol stack’s receive handler by
way of the LSL.

Syntax

#include <odi.h>

ODISTAT CLSL_BindStack (

UINT32 ProtocolNumber,

UINT32 BoardNumber);

Input Parameters

ProtocolNumber

The Stack ID (SID).

BoardNumber

The board number for the protocol stack to bind to.

Output Parameters

None.
10-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

 The

the

e

d

e

Return Values

Remarks

When this routine returns successfully, the specified binding has occurred.
bound protocol stack will receive the packets that contain the registered
Protocol ID for that stack and that are received by the specified board.

This function differs from CLSL_BindProtocolToBoard, in that it does not
obtain the protocol control service point but is expected to be called from
protocol’s control service function Bind.

ODISTAT_SUCCESSFUL The protocol stack was successfully bound to th
board.

ODISTAT_BAD_PARAMETERThe MLID corresponding to the requested boar
number or the protocol stack corresponding to
the specified SID does not exist.

ODISTAT_DUPLICATE_
ENTRY

The specified binding already exists.

ODISTAT_FAIL The protocol stack failed to bind to the specified
MLID.

ODISTAT_ITEM_NOT_
PRESENT

No Protocol ID (PID) has been registered for us
by this protocol stack with the specified board’s
frame type. In other words. you must register a
PID by calling CLSL_AddProtocolID for the
board’s frame type.

ODISTAT_OUT_OF_
RESOURCES

The call could not allocate enough memory.
LSL Support Routines 10-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

e
CLSL_CancelAESEvent
Index 4 (0x04)

Cancels a previously scheduled AES event.

Syntax

#include <odi.h>

ODISTAT CLSL_CancelAESEvent (

AES_ECB *TimerAESECB);

Input Parameters

TimerAESECB

A pointer to the AES ECB to be canceled.

Output Parameters

None.

Return Values

Remarks

This function removes a scheduled ECB from the LSL’s event queue. If th
AES ECB was canceled, the ECB_Status field is set to ODISTAT_CANCELED
and cast as a UINT16. The defined ESR is not called.

ODISTAT_SUCCESSFUL The specified AES event was canceled.

ODISTAT_ITEM_NOT_PRESENT The specified AES ECB is not currently
scheduled.

ODISTAT_BAD_PARAMETER The resource tag for the AES ECB is invalid.
10-14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

s
CLSL_CancelEvent
Index 02 (0x02)

Cancels a previously scheduled event.

Syntax

#include <odi.h>

ODISTAT CLSL_CancelEvent (

ECB *ECBBuffer);

Input Parameters

ECBBuffer

Pointer to the ECB to be canceled.

Output Parameters None.

Return Values

Remarks

This function removes an ECB from the LSL’s event queue. If the ECB wa
canceled, the ECB_Status field is set to ODISTAT_CANCELED and is cast as
a UINT16. The defined ESR is not called.

ODISTAT_SUCCESSFUL The specified event was canceled.

ODISTAT_ITEM_NOT_
PRESENT

The specified ECB is not currently scheduled.
LSL Support Routines 10-15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

CLSL_ControlStackFilter
Index 43 (0x2B)

This routine allows an MLID or some other agent to
call all stacks that have at least one of the mask bits
set in the Mask parameter with a notification of a
change of state of the MLID and that match the
protocol stack’s filter mask settings. These stacks
must also be bound/registered to the board
number specified to be notified.

Syntax

#include <odi.h>

ODISTAT CLSL_ControlStackFilter (

UINT32 BoardNumber,

UINT32 Function,

UINT32 Mask,

void *Parameter1,

void *Parameter2);

Input Parameters

BoardNumber

The logical board number notifying the filtering of packets to protocol
stacks, which are bound/registered with this logical board (bound and
chained protocol stacks).

Function

The control handler function number to be called.

Mask

The filter mask for all stacks to be called.

Parameter1

A possible parameter to pass through to a control handler function.
10-16 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ode,

e
Parameter2

A possible parameter to pass through to a control handler function.

Output Parameters

None.

Return Values

Remarks

One example of this function’s use is when an MLID enters promiscuous m
it can use this routine to call all protocol stacks who need to know that the
MLID is now in promiscuous mode.

This function updates all stacks associated with the physical LAN adapter that
the logical board is operating on; in other words, this function updates other
protocol stacks that are operating on logical boards that have the same name
and instance as the logical board specified by BoardNumber. Also, see the
discussion of CLSL_ModifyStackFilter later in this chapter.

ODISTAT_SUCCESSFUL All stacks bound/registered with the logical
board with their corresponding mask bit set hav
been notified.

ODISTAT_ITEM_NOT_PRESENT The specified board does not exist.
LSL Support Routines 10-17

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

is
CLSL_DeRegisterDefaultChain

Index 30 (0x1E)

Deregisters a default protocol stack from the
specified board.

Syntax

#include <odi.h>

ODISTAT CLSL_DeRegisterDefaultChain (

PS_CHAINED_RX_NODE *StackChainNode);

Input Parameters

StackChainNode

Pointer to the node structure defining this chained stack.

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL The protocol stack was successfully
deregistered.

ODISTAT_BAD_PARAMETERThere is no MLID registered for the board
number provided in StackChainNode.

ODISTAT_ITEM_NOT_
PRESENT

There is no default chain stack registered for th
MLID with the provided StackChainNode.
10-18 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ts
ll to
Remarks

After this call, the protocol stack will not receive any more incoming packe
from the specified board (unless the protocol stack has an outstanding ca
CLSL_RegisterPrescanChain or CLSL_RegisterStack/CLSL_BindStack/
CLSL_BindProtocolToBoard) and must call CLSL_RegisterDefaultChain
again to start receiving packets.
LSL Support Routines 10-19

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

L
n.

.

CLSL_DeRegisterMLID
Index 26 (0x1A)

Called by the MLID to notify the LSL of a board
whose number is no longer available to the system.

Syntax

#include <odi.h>

ODISTAT CLSL_DeRegisterMLID (

UINT32 BoardNumber);

Input Parameters

BoardNumber

The board number to deregister.

Output Parameters

None.

Return Values

Remarks

Once the LSL has been notified that a board is no longer available, the LS
calls all protocol stacks using that board to notify them of the deregistratio

The MLID frees all LSL transmit control blocks and receive control blocks
(ECBs) before invoking this function. Remember to check internal send/
receive queues for ECBs.

ODISTAT_SUCCESSFUL The MLID has been successfully deregistered

ODISTAT_BAD_PARAMETERThe board number is invalid.
10-20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ck. If

ack.
CLSL_DeRegisterPreScanChain
Index 31 (0x1F)

Deregisters a prescan receive and/or a prescan
transmit protocol stack from the specified board.

Syntax

#include <odi.h>

ODISTAT CLSL_DeRegisterPreScanChain (

PS_CHAINED_RX_NODE *PStkChainRxNode,

PS_CHAINED_TX_NODE *PStkChainTxNode);

Input Parameters

PStkChainRxNode

Pointer to the node structure defining the prescan receive chained sta
NULL, no prescan receive stack is being deregistered.

PStkChainTxNode

Pointer to the node structure defining the prescan transmit chained st
If NULL, no prescan transmit stack is being deregistered.

Output Parameters

None.
LSL Support Routines 10-21

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

r

stack

d

o

Return Values

Remarks

After this call, the protocol stack will not receive any more incoming and/o
outgoing packets (unless the protocol stack has an outstanding
CLSL_RegisterDefaultChain or CLSL_RegisterStack/CLSL_BindStack/
CLSL_BindProtocolToBoard). The protocol stack must make a call to
CLSL_RegisterPreScanChain to again start receiving packets.

When deregistering both a receive and transmit protocol stack, the receive
is deregistered first.

The operation to deregister both the receive and transmit prescan chaine
stacks is executed monoatomically.

ODISTAT_SUCCESSFUL The protocol stack was successfully
deregistered.

ODISTAT_BAD_PARAMETER There is no MLID registered for the board
number provided in PStkChainRxNode or
PStkChainTxNode..

ODISTAT_ITEM_NOT_PRESENT There is no prescan receive stack or there is n
prescan transmit stack registered for this MLID
with the provided PStkChainRxNode or
PStkChainTxNode..
10-22 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

e
CLSL_DeRegisterStack
Index 07 (0x07)

Removes a protocol stack from the LSL’s list of
bound protocol stacks.

Syntax

#include <odi.h>

ODISTAT CLSL_DeRegisterStack (

UINT32 ProtocolNumber);

Input Parameters

ProtocolNumber

The Stack ID (SID).

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL The protocol stack was successfully
deregistered.

ODISTAT_ITEM_NOT_PRESENT Either the protocol stack is not registered, or th
ProtocolNumber is greater than the maximum
number of stacks supported by the LSL.
LSL Support Routines 10-23

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ts
Remarks

After this call, the protocol stack will not receive any more incoming packe
(unless the protocol stack has an outstanding CLSL_RegisterDefaultChain or
CLSL_RegisterPreScanChain). The protocol stack must make the
CLSL_RegisterStack/CLSL_BindStack/CLSL_BindProtocolToBoard
calls to again start receiving packets.

This command implicitly unbinds the protocol stack from all the MLIDs to
which it was bound.
10-24 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ore
CLSL_FastHoldEvent
Index 38 (0x26)

This routine may improve the performance of
drivers that call CLSL_ServiceEvents
immediately after calling CLSL_HoldEvent .
CLSL_FastHoldEvent may dispatch the ECB
directly to the protocol stack.

Syntax

#include <odi.h>

void CLSL_FastHoldEvent (

ECB *ECBBuffer);

Input Parameters

ECBBuffer

Pointer to an ECB to be processed immediately.

If the ECB is a receive ECB, the following fields of the ECB must be set bef
calling this routine:

ECB_PreviousLink
ECB_Status
ECB_DriverWorkSpace
ECB_DataLength
ECB_FragmentCount
ECB_Fragment (addresses and lengths)

Any other fields (for example, ECB_ProtocolID) that the protocol stack requires
must be filled in by the protocol stack from the LOOKAHEAD structure before
returning the ECB buffer to be filled during the call to CLSL_GetStackECB .

Output Parameters

None.
LSL Support Routines 10-25

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

g

s

o the
r
Return Values

None.

Remarks

This process can cause the board’s receive handling routine to be called.

Normally, the ECB is placed on the LSL’s event queue for processing usin
CLSL_HoldEvent. When the adapter finishes servicing its hardware, it calls
CLSL_ServiceEvents to inform the LSL to process any ECBs the adapter ha
placed there. CLSL_FastHoldEvent may allow intelligent adapters that have
finished servicing the adapter hardware by the time the ECB is presented t
LSL to reduce latency by passing the ECB directly to the protocol stack fo
processing.

The event service routine that is called by CLSL_FastHoldEvent must not
poll.

This functionality is not possible on any multi-processor capable platforms.
10-26 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

CLSL_FastSendComplete
Index 13 (0x0D)

This routine improves the performance of drivers
that call CLSL_ServiceEvents immediately after
calling CLSL_SendComplete .
CLSL_FastSendComplete dispatches the ECB
directly to the protocol stack.

Syntax

#include <odi.h>

void CLSL_FastSendComplete (

ECB *SendECB);

Input Parameters

SendECB

Pointer to a transmit ECB, which is to be processed immediately.

Output Parameters

None.

Return Values

None.
LSL Support Routines 10-27

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

g
t
er

nted
ack
Remarks

This process can cause the board’s send handling routine to be called .

Normally, the ECB is placed on the LSL’s event queue for processing usin
CLSL_SendComplete. When the adapter finishes servicing its hardware, i
calls CLSL_ServiceEvents to inform the LSL to process any ECBs the adapt
has placed there. CLSL_FastSendComplete allows intelligent adapters that
have finished servicing the adapter hardware by the time the ECB is prese
to the LSL to reduce latency by passing the ECB directly to the protocol st
for processing.

The event service routine that is called by CLSL_FastSendComplete must not
poll.

Passing the ECB directly to the protocol stack may not be possible on multi-
processor platforms.
10-28 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ol

d

e

s to
CLSL_GetBoundBoardInfo
Index 24 (0x18)

Allows a protocol stack to check the LSL to
determine the registered protocol stacks and
Protocol IDs that are bound or the boards that the
protocol stacks are registered for.

Syntax

#include <odi.h>

ODISTAT CLSL_GetBoundBoardInfo (

UINT32 BoardNumber,

UINT32*StackBuffer);

Input Parameters

BoardNumber

The value of the logical board that is checked to determine the protoc
stacks bound to it.

Input/Output Parameters

StackBuffer

Pointer to a array of UINT32 sized buffers where the number of boun
stacks and their Stack IDs (SIDs) are returned.

On entry, the first entry in the stack buffer contains the total size of th
stack buffer in bytes.

This buffer must be large enough to contain the maximum number
of stacks (the maximum number of stacks is available from the LSL
configuration table) and a count field (buffer size = max stacks + 1).

On exit, the first entry in the buffer contains the number of bound stack
the specified board, followed by the bound stacks’ SIDs.
LSL Support Routines 10-29

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

e

ht

e

Return Values

ODISTAT_SUCCESSFUL The command was successfully completed.

ODISTAT_NO_MORE_
ITEMS

The board number does not exist and there ar
no boards at higher values.

ODISTAT_ITEM_NOT_
PRESENT

The board number does not exist but there mig
be boards at higher values.

ODISTAT_OUT_OF_
RESOURCES

The stack buffer provided is insufficient for the
parameters to be returned. The first entry in th
stack buffer contains the number of bytes
required for the count of bound protocol stacks
and their SIDs that the MLID wants to return.
10-30 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

he
ver,

CLSL_GetIntervalMarker
Index 05 (0x05)

Returns a timing marker in milliseconds.

Syntax

#include <odi.h>

UINT32 CLSL_GetIntervalMarker (void);

Input Parameters

None.

Output Parameters

None.

Return Values

Milliseconds A time value in milliseconds.

Remarks

The timing marker is used for machine-independent time measurement. T
actual value returned has no relation to any real-world absolute time. Howe
when time marker values are compared with each other, the difference is
elapsed time in milliseconds.

This function is intended for use in the timing of low resolution events only.
LSL Support Routines 10-31

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

LSL

.

CLSL_GetLSLConfiguration
Index 25 (0x19)

Returns a pointer to the LSL configuration table

Syntax

#include <odi.h>

LSL_CONFIG_TABLE *CLSL_GetLSLConfiguration (void);

Input Parameters

None.

Output Parameters

None.

Return Values

ConfigTable Pointer to the LSL configuration table.

Remarks

The LSL configuration table is normally used to obtain the LSL’s current
version number. The version number can be used to determine if certain
features are present.

See Also

See Chapter 9: LSL Data Structures for more on the LSL configuration table
10-32 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

CLSL_GetLSLStatistics
Index 20 (0x14)

Returns a pointer to the LSL statistics table.

Syntax

#include <odi.h>

LSL_STATS_TABLE *CLSL_GetLSLStatistics (void);

Input Parameters

None.

Output Parameters

None.

Return Values

StatsTable Pointer to the LSL statistics table.

See Also

See Chapter 9: LSL Data Structures for a description of the LSL statistics
table.
LSL Support Routines 10-33

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ir
ined
CLSL_GetMaxECBBufferSize
Index 39 (0x27)

Returns the maximum LSL ECB buffer size.

Syntax

#include <odi.h>

UINT32 CLSL_GetMaxECBBufferSize (void);

Input Parameters

None.

Output Parameters

None.

Return Values

ECBBufferSize

The maximum LSL ECB buffer size.

0x00000000

No LSL ECB buffers defined.

Remarks

This size is the maximum amount of buffer space available, including one
fragment to store data in after the ECB’s defined fields have taken up the
required space. In other words, the returned value allows for the fields def
in the ECB structure.
10-34 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

alues.

CLSL_GetMLIDControlEntry
Index 18 (0x12)

Returns a pointer to the specified MLID’s
information block, which describes the control
handler routines.

Syntax

#include <odi.h>

INFO_BLOCK *CLSL_GetMLIDControlEntry (

UINT32 BoardNumber,

ODISTAT *ErrorStatus);

Input Parameters

BoardNumber

The logical board number whose information block is desired.

Output Parameters

ErrorStatus

If the returned value is a NULL pointer, ErrorStatus is one of the
following:

ODISTAT_NO_MORE_ITEMS

The board number does not exist and there are no boards at higher v

ODISTAT_ITEM_NOT_PRESENT

The board number does not exist but there might be boards at higher
values.
LSL Support Routines 10-35

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Return Values

Remarks

The MLID control handler routines can be called directly by a protocol or
an application to obtain configuration information and to issue defined
commands.

See Also

See Chapter 18, "MLID Control Routines" for the defined MLID control
functions.

APIInfoBlock A pointer to the MLID’s information block, which describes
the array of MLID control handler routines.

NULL An error condition that is indicated by *ErrorStatus.
10-36 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

mit

his
CLSL_GetMultipleECBs

Index 47 (0x2F)

Returns a pointer to the first ECB on the linked list.
MLIDs and protocol stacks use this call to get
linked lists of transmit buffers and receive buffers.

Syntax

#include <odi.h>

ECB *CLSL_GetMultipleECBs (

UINT32 ECBDataSize,

void *pResourceObj,

UINT32 *nECBs);

Input Parameters

ECBDataSize

The amount of data space required (in bytes) for the linked list of trans
and receive buffers.

The size of the ECB is not included in ECBDataSize. The LSL adds the size
of the ECB structure when generating an ECB of ECBDataSize.

pResourceObj

Pointer to a platform specific object used for resource management. T
value is a pass-through value, and is not interpreted.

nECBs

Pointer to the number of ECBs requested.

Output Parameters

nECBs

Pointer to the number of ECBs allocated.
LSL Support Routines 10-37

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ble,
st

ed
Return State

Pointer to the first ECB on the linked list. NULL if no ECBs are available.

Remarks

If the number of ECBs requested is larger than the number of ECBs availa
this procedure allocates all available ECBs and returns a pointer to the fir
ECB on the list.

On return nECBs points to the number of ECBs allocated. If no ECBs are
available, nECBs points to a value of zero.

All pointers are logical pointers, and the returned linked list of ECBs is link
according to the ECB structure.

Communications buffers are critical. Protocol stacks must use only a minimal
number of buffers concurrently and must return the buffers when they are
finished with them, using CLSL_ReturnECB .
10-38 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

CLSL_GetPhysicalAddressOfECB

Index 48 (0x030)

Gets the physical address of an LSL ECB.

Syntax

#include <odi.h>

ECB *CLSL_GetPhysicalAddressOfECB

(ECB *ecb);

Input Parameters

ecb

Pointer (logical address) to an LSL ECB.

Output Parameters

None.

Return Values

Remarks

This function can be only be used for ECBs obtained via
CLSL_GetSizedECB or CLSL_GetMultipleECBs .

Pointer (physical address) of the ECB structure.
LSL Support Routines 10-39

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

e
CLSL_GetPIDFromStackIDBoard
Index 17 (0x11)

Returns a pointer to a Protocol ID (PID) that
corresponds to a protocol and frame type
combination.

Syntax

#include <odi.h>

PROT_ID *CLSL_GetPIDFromStackIDBoard (

UINT32 ProtocolNumber,

UINT32 BoardNumber,

ODISTAT *ErrorStatus);

Input Parameters

ProtocolNumber

The Stack ID (SID).

BoardNumber

The board number.

Output Parameters

ErrorStatus

If the returned value is a NULL pointer, ErrorStatus is one of the
following:

ODISTAT_BAD_PARAMETER

The SID or the board number does not exist.

ODISTAT_ITEM_NOT_PRESENT

A Protocol ID has not been registered for the specified board and fram
type combination.
10-40 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

rame
er.

Return Values

Remarks

Protocol stacks use the returned PID to fill in the ECB_ProtocolID field of all
send ECBs. The returned PID is the value assigned to the protocol for the f
type (for example, ETHERNET_II) that is represented by the board numb

If a PID is not present, a protocol stack can add its own Protocol ID using
CLSL_AddProtocolID (see Chapter 10: LSL Support Routines).

ProtocolID A pointer to a byte area of PID_SIZE size, which contains
the PID.

NULL An error condition that is indicated by ErrorStatus.
LSL Support Routines 10-41

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

CLSL_GetProtocolControlEntry
Index 19 (0x13)

Returns a pointer to the specified protocol stack’s
information block, which describes the control
handler routines.

Syntax

#include <odi.h>

INFO_BLOCK *CLSL_GetProtocolControlEntry (

UINT32 ProtocolNumber,

ODISTAT *ErrorStatus);

Input Parameters

ProtocolNumber

The Stack ID (SID) whose information block is desired.

Output Parameters

ErrorStatus

If the returned value is a NULL pointer, ErrorStatus is one of the
following:

ODISTAT_NO_MORE_ITEMS

The SID does not exist and there are no others at higher values.

ODISTAT_ITEM_NOT_PRESENT

The SID does not exist but there might be others at higher values.
10-42 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

 an
Return Values

Remarks

The protocol control handler routine can be called directly by a protocol or
application to obtain configuration information and to issue defined
commands. (See Chapter 7: Protocol Stack Control Routines for the defined
protocol control functions.)

In previous assembly versions of the ODI specification, the corresponding
routine contained a board number parameter, which was used to get the
non-chained default or prescan receive protocol stack’s control handler routines
(for example, it was used before the introduction of chained protocol stacks).
Users must now use the CLSL_GetStartofChain command to get the control
handler routines for default, prescan receive, and prescan transmit protocol
stacks.

APIInfoBlock A pointer to protocol stack’s information block, which
describes the array of protocol stack control handler
routines.

NULL An error condition that is indicated by ErrorStatus.
LSL Support Routines 10-43

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

eive

his

he
CLSL_GetSizedECB
Index 00 (0x00)

Called by the MLID or protocol stack for several
purposes, such as obtaining transmit or receive
buffers; returns a pointer to an ECB.

Syntax

#include <odi.h>

ECB *CLSL_GetSizedECB (

UINT32 ECBDataSize,

void *pResourceObj,

BOOLEAN Below16Meg);

Input Parameters

ECBDataSize

The amount of data space required (in bytes) for the transmit and rec
buffers.

The size of the ECB is not included in ECBDataSize. The LSL adds the size
of the ECB structure when generating an ECB of ECBDataSize.

pResourceObj

Pointer to a platform specific object used for resource management. T
is a pass through value and is not interpreted.

Below16Meg

If set to TRUE, memory for the ECB is allocated from memory below t
16MB boundary. Normally, protocol stacks call with this value set to
FALSE.

Output Parameters

None.
10-44 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

 and

 and
list
Return Values

Remarks

You must keep in mind that communications buffers are a critical resource,
a protocol stack must not use a large number of buffers concurrently.

The protocol stack returns the buffer using CLSL_ReturnECB when the
protocol stack has finished with the buffer.

All buffers allocated by this function are physically and logically contiguous.

An ECB allocated by this function contains only one fragment. The address
the buffer size in the FRAGMENT_STRUCT element of the ECB fragment
must not be altered by the caller.

ECBBuffer A pointer to an ECB.

NULL An error condition indicating that there are no free ECBs
available.
LSL Support Routines 10-45

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

et.
cket
CLSL_GetStackECB
Index 11 (0x0B)

Called by the MLID to obtain communication
buffers from a protocol stack through the LSL.

Syntax

#include <odi.h>

ODISTAT CLSL_GetStackECB (

LOOKAHEAD *LookAheadBuf);

Input Parameters

LookAheadBuf

Pointer to a LOOKAHEAD structure, which defines the received pack
See the "Receive Lookahead" section in Chapter 5, "Protocol Stack Pa
Reception".

Output Parameters

None.
10-46 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

lds

e
 is
 the

ibes
he

om
ID

th

ted

e

it

d
h

Return Values

Remarks

On entry, CLSL_GetStackECB requires a pointer to the LOOKAHEAD
structure. The returned ECB’s fragment count and fragment descriptor fie
describe the buffers into which the packet is placed.

Regardless of whether the protocol stack is bound, prescan, or default, th
protocol stack is passed LOOKAHEAD data whenever its receive handler
invoked. This data is used to determine into which receive buffers (if any)
data is placed. (Receive buffers can be fragmented.) If the protocol stack
determines that it will consume the packet, it must build an ECB that descr
the receive buffers and then return that ECB to the MLID through the LSL. T
MLID uses the ECB’s description of the receive buffers to move the data fr
the LAN adapter into the described protocol receive buffers. When the ML
has completed the data move, it passes the ECB to the LSL for event
completion.

Alternatively, if the LOOKAHEAD structure has an LSL ECB associated wi
it (LkAhd_PreFilledECB is not NULL), the protocol stack can accept the
packet by signaling that it has accepted the packet and taken the associa
ECB, which it returns to the LSL later. If a protocol stack performs this
operation, it must queue the ECB for processing at a later point, since the
LOOKAHEAD indication is usually made at privileged time by an MLID. If

ODISTAT_SUCCESSFUL The protocol stack has returned a pointer in th
LOOKAHEAD structure’s ECB field to a
receive ECB to be filled with the packet.

If the protocol stack was able to get everything
needed from the LOOKAHEAD, the
LkAhd_ReturnedECB field will be set to NULL,
indicating that additional data does not need to
be copied.

ODISTAT_SUCCESS_
TAKEN

The protocol stack has accepted the packet an
has taken the prefilled LSL ECB associated wit
the LOOKAHEAD structure’s
LkAhd_PreFilledECB field.

ODISTAT_OUT_OF_
RESOURCES

The LSL was unable to obtain an ECB for this
packet.
LSL Support Routines 10-47

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

m

s.

the protocol stack chooses not to make use of the provided ECB in the
LOOKAHEAD structure and returns its own ECB to be filled, the LSL
performs the prefilled ECB to stack ECB copy of data, and by so doing,
simplifies the operation of the MLID.

MLIDs that provide a prefilled ECB in the LOOKAHEAD structure do not need
to return the ECB to the LSL, since the LSL always returns the prefilled ECB to
its buffer pool before returning to the caller of this function. When prefilled ECBs
are used, the return value is ODISTAT_SUCCESS_TAKEN or
ODISTAT_OUT_OF_RESOURCES.

If the protocol stack requires the ECB ProtocolID, BoardNumber, and
ImmediateAddress fields to be filled in, the protocol stack must get them fro
the LOOKAHEAD structure and place them in the relevent ECB fields.

When ODISTAT_SUCCESSFUL is returned, the LkAhd_ReturnedECB may
contain a NULL ECB. This allows an MLID to correctly maintain its statistic
This may occur if the protocol stack was able to retrieve all the necessary
information from the LOOKAHEAD data.
10-48 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

 of
CLSL_GetStackIDFromName
Index 16 (0x10)

Allows a protocol stack or an application to obtain
its own or any other Stack ID (SID).

Syntax

#include <odi.h>

ODISTAT CLSL_GetStackIDFromName (

MEON_STRING *Name,

UINT32 *ProtocolNumber);

Input Parameters

Name

Pointer to a NULL terminated MEON string containing the short name
the protocol stack.

Output Parameters

ProtocolNumber

Pointer to a UINT32 buffer where this function returns the SID if
successful.
LSL Support Routines 10-49

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Return Values

Remarks

The stack name is not case sensitive.

ODISTAT_SUCCESSFUL Function completed successfully; a SID has
been returned.

ODISTAT_BAD_PARAMETERThe length of the stack name given is greater
than the maximum allowed or is equal to 0.

ODISTAT_ITEM_NOT_
PRESENT

The named protocol stack is not presently
registered.
10-50 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

l

fied

the

r the
CLSL_GetStartofChain
Index 33 (0x21)

Returns pointers to pointers to the start of the
chains for the prescan transmit, prescan receive,
and default stack chains for the specified board.

Syntax

#include <odi.h>

ODISTAT CLSL_GetStartofChain (

UINT32 BoardNumber,

PS_CHAINED_RX_NODE
**DefaultChainStartNode,

PS_CHAINED_RX_NODE
**PreScanRxChainStartNode,

PS_CHAINED_TX_NODE
**PreScanTxChainStartNode);

Input Parameters

BoardNumber

The board number for which to obtain the start of the chained protoco
stacks.

Output Parameters

DefaultChainStartNode

Pointer to a pointer to the start of the default stack chain for the speci
board number.

PreScanRxChainStartNode

Pointer to a pointer to the start of the prescan receive stack chain for
specified board number.

PreScanTxChainStartNode

Pointer to a pointer to the start of the prescan transmit stack chain fo
specified board number.
LSL Support Routines 10-51

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Return Values

Remarks

If there are no stacks in the relevant chain, the pointer returned points to a
NULL.

ODISTAT_SUCCESSFUL Command successfully executed.

ODISTAT_BAD_PARAMETERInvalid board number.
10-52 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

hen

et

n
g
CLSL_HoldEvent
Index 37 (0x25)

Allows a protocol stack or MLID to place a
previously allocated ECB buffer on the LSL’s event
queue to be processed at service events time.

Syntax

#include <odi.h>

void CLSL_HoldEvent (

ECB *HoldECB);

Input Parameters

HoldECB

Pointer to an ECB to place on the LSL’s event queue for processing w
CLSL_ServiceEvents is executed.

If the ECB is a receive ECB, the following fields of the ECB must be s
before calling this routine:

MLID

ECB_PreviousLink

ECB_Status

ECB_DriverWorkSpace

ECB_DataLength

Protocol Stack

ECB_FragmentCount

ECB_Fragment Addresses and Lengths

If the protocol stack gets the ECB from the LSL (CLSL_GetSizedECB), the
protocol stack must not modify ECB_FragmentCount or ECB_Fragment
Addresses and Lengths.

Any other fields (for example, ECB_ProtocolID, ECB_BoardNumber, or
ECB_ImmediateAddress) that the protocol stack requires must be filled i
by the protocol stack from the LOOKAHEAD structure before returnin
the ECB buffer to be filled during the call to CLSL_GetStackECB.
LSL Support Routines 10-53

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Output Parameters

None.

Return Values

An ECB is always successfully placed on the LSL’s event queue.
10-54 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

in
ol

d

.

e bit
CLSL_ModifyStackFilter
Index 43 (0x2A)

Allows a stack of any type to modify its filter mask.

Syntax

#include <odi.h>

ODISTAT CLSL_ModifyStackFilter (

void *StackIdentifier,

UINT32 BoardNumber,

UINT32 NewMask,

UINT32 *pCurrentMask);

Input Parameters

StackIdentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (
other words, value is less than the maximum number of bound protoc
stacks supported), or the pointer is a pointer to a stack chain node.

BoardNumber

The logical board number where the filtering of packets to the supplie
SID is modified.

NewMask

The new filter mask for the stack and board combination (0 for query)
Table 10-2 gives the bit definitions.

Output Parameters

pCurrentMask

Returns a pointer to the current filter mask setting. Table 10-2 gives th
definitions.

Return Values

ODISTAT_SUCCESSFUL
LSL Support Routines 10-55

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

r if
ed.

ect,
ol
hen

 it
LSL.
the
The new filter mask is set for the stack and board combination, and/o
query, the current filter mask for the stack/board combination is return

ODISTAT_BAD_PARAMETER

Either the specified SID or the board does not exist.

ODISTAT_ITEM_NOT_PRESENT

The stack and board combination does not exist.

Remarks

When a bound stack registers with the LSL, it defaults to only receiving dir
supported multicast, and broadcast addressed packets. A chained protoc
stack must specify the type of packets it wants to receive in its filter mask w
it registers for a board.

A stack, after binding/registering with a board, can modify its filter to allow
to specify the type of packets that it now wishes to have passed to it by the
Normally, bound protocol stacks use the default setting for the mask with
filter functions being used by chained protocol stacks for bridging, traffic
monitoring, etc.

A chained protocol stack can be configured as a network monitor by filtering for
all direct, remote, and error packets.
10-56 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Table 10-2

CLSL_ModifyStackFilter

Name Description

DT_MULTICAST Receive supported, group addressed packets such as
multicast addressed packets that the MLID is configured to
receive.

DT_BROADCAST Receive broadcast packets.

DT_REMOTE_UNICAST Receive directed packets whose addresses do not match that
of the MLID’s node address—for example, if this bit is set and
the MLID is in promiscuous mode, it passes received,
directed packets destined for another workstation (the group
address bit is not set in the destination address of the
packet’s MAC header). Note, routing of receive packets can
occur if source routing is enabled.

DT_REMOTE_MULTICAST Receive unsupported, group addressed packets that the
MLID is not configured to receive—for example, multicast
packets.

DT_SOURCE_ROUTE Receive source routed packets.

DT_ERROR Receive packets that the MLID is configured to receive and
that contain errors.

DT_MAC_FRAME Receive frame packets that are non-data frames. Note, MAC
frames do not curtain source routing information.

DT_DIRECT Receive directed packets.

DT_RX_PRIORITY Receive priority packets.
LSL Support Routines 10-57

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

n

.

CLSL_RegisterDefaultChain
Index 27 (0x1B)

Registers a default protocol stack for the specified
board.

Syntax

#include <odi.h>

ODISTAT CLSL_RegisterDefaultChain (

PS_CHAINED_RX_NODE *StackChainNode);

Input Parameters

StackChainNode

Pointer to the node for the chained protocol stack.

Output Parameters

None.

Return Values

Remarks

After this call, the protocol stack will receive incoming packets from the
specified board.

ODISTAT_SUCCESSFUL The protocol stack was successfully
registered.

ODISTAT_BAD_PARAMETEREither the specified board does not exist or a
invalid stack chain position was requested.

ODISTAT_DUPLICATE_
ENTRY

Requested chain position already occupied
10-58 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

L
On reception, the default chain stack is called with a pointer to a
LOOKAHEAD structure.

PS_CHAINED_RX_NODE Structure

typedef struct _PS_CHAINED_RX_NODE_

{

struct _PS_CHAINED_RX_NODE_ *StackChainLink;

UINT32 StackChainBoardNumber;

CHNPOS StackChainPositionRequested;

ODISTAT (*StackRxChainHandler)(LOOKAHEAD*,

struct _PS_CHAINED_RX_NODE_ *);

INFO_BLOCK *StackChainControl;

UINT32 StackChainFilter;

void *StackChainContext;

void *StackChainResourceObj;

} PS_CHAINED_RX_NODE;

Field Descriptions

StackChainLink

Pointer to the next node in the chain, which is filled in by the LSL—NUL
terminated.

StackChainBoardNumber

Logical board number to register for.

StackChainPositionRequested

Position in chain desired.

StackChainPositionRequested is defined by the following values:

CHNPOS_FIRST_MUST

Load at very first position in chain.

CHNPOS_FIRST_NEXT

Load at next available position at front of chain.

CHNPOS_LOAD_ORDER

Chain position dependent on load order.
LSL Support Routines 10-59

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

r to
ined

his
CHNPOS_LAST_NEXT

Load at next available position at end of chain.

CHNPOS_LAST_MUST

Load at very end of chain.

StackRxChainHandler

Pointer to the default stack’s receive handler. See ‘‘Protocol Receive
Handler for Prescan and Default Stacks“ in Chapter 5: Protocol Stack
Packet Reception.

StackChainControl

Pointer to the default stack’s information block for control handler
routines.

StackChainFilter

The filter mask for the stack and board combination. Refer to
CLSL_ModifyStackFilter for a description of the operation and values
for this filter mask.

StackChainContext

Pointer to context used by the chained stack; in other words, a pointe
any context that the chained protocol stack desires when using the cha
receive node structure.

StackChainResourceObj

Pointer to a platform specific object used for resource management. T
value is a pass through value and is not interpreted.
10-60 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

D

ith
. In

h is
CLSL_RegisterMLID
Index 15 (0x0F)

Called by the driver initialization procedure to
register a logical board with the LSL.

Syntax

#include <odi.h>

ODISTAT CLSL_RegisterMLID (

MLID_REG *MLIDHandlers,

MLID_CONFIG_TABLE *MLIDConfigTable,

UINT32 *BoardNumber);

Input Parameters

MLIDHandlers

Pointer to MLID’s registration structure containing pointers to the MLI
transmit and control handling interfaces.

MLIDConfigTable

Pointer to the MLID configuration table that is attempting to register w
the LSL. This table is complete, except for values returned by the LSL
other words, it has MLIDCFG_MaxFrameSize, MLIDCFG_FrameID,
pointers to names, etc. filled except for the logical board number, whic
returned by this call.

BoardNumber

Pointer to the logical board number returned for this MLID.

Output Parameters

None.
LSL Support Routines 10-61

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ing
e,

o

nd

Return Values

Remarks

The MLID uses the logical board number returned by the LSL when referr
itself to the LSL and any other entity of the ODI specification—for exampl
protocol stacks.

MLID_REG Structure

typedef struct _MLID_REG_

{

void (*MLIDSendHandler)(ECB*, void *);

INFO_BLOCK *MLIDControlHandler;

void *MLIDSendContext;

void *MLIDResourceObj;

void *MLIDModuleHandle;

} MLID_REG;

Field Descriptions

MLIDSendHandler

Pointer to the MLID’s transmit function.

Note: MLIDSendHandler is called with a transmit ECB and a pointer t
the MLIDSendContext that it provided to the LSL when it registered
successfully with the LSL.

MLIDControlHandler

Pointer to the MLID’s information block (INFO_BLOCK) for it’s control
functions.

MLIDSendContext

Pointer to a MLID defined context to be passed to the MLID when it’s se
handler is called.

ODISTAT_SUCCESSFUL The MLID was successfully registered with the
LSL.

ODISTAT_OUT_OF_
RESOURCES

There is no more room to register another MLID
with the LSL.
10-62 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ent.

 the
MLIDResourceObj

Pointer to a platform specific object that is used for resource managem
This value is a pass through value and is not interpreted.

MLIDModuleHandle

Pointer to the module handle provided by the loader to the MLID when
loader loaded the MLID.
LSL Support Routines 10-63

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

o

o
CLSL_RegisterPreScanChain
Index 28 (0x1C)

Registers a prescan receive protocol stack and/or
a prescan transmit protocol stack for the specified
board.

Syntax

#include <odi.h>

ODISTAT CLSL_RegisterPreScanChain (

PS_CHAINED_RX_NODE *PStkChnPreRxNode,

PS_CHAINED_TX_NODE *PStkChnPreTxNode);

Input Parameters

*PStkChnPreRxNode

Pointer to the node for the chained received protocol stack. If NULL, n
prescan receive chain stack is being registered.

*PStkChnPreTxNode

Pointer to the node for the chained transmit protocol stack. If NULL, n
prescan transmit chain stack is being registered.

Output Parameters

None.
10-64 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

tacks

stack

ndler.

ler

.

Return Values

If any value other than ODISTAT_SUCCESSFUL is returned, neither input stack
is registered; either both input stacks register or neither one does.

Remarks

The operation to register both the receive and transmit prescan chained s
is executed monoatomically.

When deregistering both a receive and transmit protocol stack, the receive
is deregistered first.

The mechanism for denoting whether the chained receive protocol stack
accepts or rejects a received packet is defined by the protocol receive ha
For information on the protocol receive handler, see ‘‘Protocol Receive
Handler for Prescan and Default Stacks“ in Chapter 5: Protocol Stack Packet
Reception.

The mechanism for denoting whether the chained transmit protocol stack
accepts or rejects an ECB is defined by the protocol transmit handler. For
information on the protocol transmit handler, see ‘‘Protocol Transmit Hand
for Prescan and Default Stacks“ in Chapter 6: Protocol Stack Packet
Transmission.

PS_CHAINED_RX_NODE Structure

typedef struct _PS_CHAINED_RX_NODE_

{

struct _PS_CHAINED_RX_NODE_ *StackChainLink;

UINT32 StackChainBoardNumber;

CHNPOS StackChainPositionRequested;

ODISTAT (*StackRxChainHandler)(LOOKAHEAD*,

struct _PS_CHAINED_RX_NODE_ *);

ODISTAT_SUCCESSFUL The protocol stack was successfully registered

ODISTAT_BAD_PARAMETEREither the specified board does not exist or an
invalid stack chain position was requested.

ODISTAT_DUPLICATE_
ENTRY

Requested chain position already occupied.
LSL Support Routines 10-65

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

nd
INFO_BLOCK *StackChainControl;

UINT32 StackChainFilter;

void *StackChainContext;

void *StackChainResourceObj;

} PS_CHAINED_RX_NODE;

Field Descriptions

StackChainLink

Pointer to the next node in the chain. This field is filled in by the LSL a
is NULL terminated.

StackChainBoardNumber

Logical board number to register for.

StackChainPositionRequested

Position in chain desired.

StackChainPositionRequested is defined by the following values:

CHNPOS_FIRST_MUST

Load at very first position in chain.

CHNPOS_FIRST_NEXT

Load at next available position at front of chain.

CHNPOS_LOAD_ORDER

Chain position dependent on load order.

CHNPOS_LAST_NEXT

Load at next available position at end of chain.

CHNPOS_LAST_MUST

Load at very end of chain.

StackRxChainHandler

Pointer to the prescan stack’s receive handler. See Chapter 5: Protocol
Stack Packet Reception for information on the receive handler.

StackChainControl

Pointer to the prescan receive information block for control handler
routines.
10-66 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

r to
ined

his

nd
StackChainFilter

The filter mask for the stack and board combination. Refer to
CLSL_ModifyStackFilter for a description of the operation and values
for this filter mask.

StackChainContext

Pointer to context used by the chained stack; in other words, a pointe
any context that the chained protocol stack desires when using the cha
receive node structure.

StackChainResourceObj

Pointer to a platform specific object used for resource management. T
value is a pass through value and is not interpreted.

PS_CHAINED_TX_NODE Structure

typedef struct _PS_CHAINED_TX_NODE_

{

struct _PS_CHAINED_TX_NODE_ *StackChainLink;

UINT32 StackChainBoardNumber;

CHNPOS StackChainPositionRequested;

ODISTAT (*StackTxChainHandler)(ECB*,

struct _PS_CHAINED_TX_NODE_ *);

INFO_BLOCK *StackChainControl;

UINT32 StackChainFilter;

void *StackChainContext;

void *StackChainResourceObj;

} PS_CHAINED_TX_NODE;

Field Descriptions

StackChainLink

Pointer to the next node in the chain. This field is filled in by the LSL a
is NULL terminated.

StackChainBoardNumber

Logical board number to register for.

StackChainPositionRequested

Position in chain desired.

StackChainPositionRequested is defined by the following values:
LSL Support Routines 10-67

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

r to
ined

his
CHNPOS_FIRST_MUST

Load at very first position in chain.

CHNPOS_FIRST_NEXT

Load at next available position at front of chain.

CHNPOS_LOAD_ORDER

Chain position dependent on load order.

CHNPOS_LAST_NEXT

Load at next available position at end of chain.

CHNPOS_LAST_MUST

Load at very end of chain.

StackTxChainHandler

Pointer the prescan stack’s transmit handler. See Chapter 6: Protocol
Stack Packet Transmission for information on packet transmission.

StackChainControl

Pointer to the prescan transmit information block for control handler
routines.

StackChainFilter

This field is not used for prescan transmit chained protocol stacks.

StackChainContext

Pointer to context used by the chained stack; in other words, a pointe
any context that the chained protocol stack desires when using the cha
transmit node structure.

StackChainResourceObj

Pointer to a platform specific object used for resource management. T
value is a pass through value and is not interpreted.
10-68 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

col
CLSL_RegisterStack
Index 06 (0x06)

Registers a bound protocol stack with the LSL and
returns an LSL assigned handle for the stack (the
Stack ID or SID).

Syntax

#include <odi.h>

ODISTAT CLSL_RegisterStack (

PS_BOUND_NODE *ProtocolNode,

UINT32 *ProtocolNumber);

Input Parameters

ProtocolNode

Pointer to a bound protocol stack node structure.
Input/Output Parameters

ProtocolNumber

On entry, pointer to a buffer used to return the SID for the bound proto
stack.

On exit, pointer to the SID.
LSL Support Routines 10-69

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

as

pe
und
s

Return Values

Remarks

The protocol stack will not start receiving packets from the MLID until is h
been bound to the MLID by a call to CLSL_BindStack or
CLSL_BindProtocolToBoard.

When a bound stack registers with the LSL, its filter mask defaults to only
receiving direct, supported multicast, and broadcast addressed packets. A
bound stack can, after registering, modify its filter to allow it to specify the ty
of packets that it now wishes to have passed to it by the LSL. Normally, bo
protocol stacks use the default setting for the mask with the filter function
being used by chained protocol stacks for bridging, traffic monitoring, etc.

PS_BOUND_NODE Structure

typedef struct _PS_BOUND_NODE_

{

MEON_STRING*ProtocolName;

ODISTAT (*ProtocolReceiveHandler)(LOOKAHEAD*);

INFO_BLOCK *ProtocolControlHandler;

void *ProtocolResourceObj;

} PS_BOUND_NODE;

ODISTAT_SUCCESSFUL The protocol stack was successfully
registered.

ODISTAT_BAD_PARAMETERThe stack name length is greater than the
maximum allowed or is equal to 0.

ODISTAT_DUPLICATE_
ENTRY

The specified stack is already registered.

ODISTAT_OUT_OF_
RESOURCES

The maximum number of stacks is already
registered.
10-70 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

for

his
Field Descriptions

ProtocolName

Pointer to a NULL terminated MEON string containing the short name
the protocol stack that is to receive the frames with the appropriate
Protocol ID.

ProtocolReceiveHandler

Pointer the protocol stack’s receive handler.

ProtocolControlHandler

Pointer to the protocol stack’s information block for control handler
routines.

ProtocolResourceObj

Pointer to a platform specific object used for resource management. T
value is a pass through value and is not interpreted.
LSL Support Routines 10-71

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

et.
CLSL_ReSubmitDefault
Index 34 (0x22)

Allows default chained protocol stacks to pass
received packets back to the LSL for further
processing. The packets were originally queued
and later processed at process time by a chained
protocol stack. The LSL will pass these packets to
the next protocol stack in the chain.

Syntax

#include <odi.h>

ODISTAT CLSL_ReSubmitDefault (

PS_CHAINED_RX_NODE *StackChainNode,

LOOKAHEAD *LookAheadBuf);

Input Parameters

StackChainNode

Pointer provided by the LSL to the node structure, which defines this
chained stack.

LookAheadBuf

Pointer to a LOOKAHEAD structure, which defines the received pack

Output Parameters

None.
10-72 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Return Values

ODISTAT_SUCCESSFUL The protocol stack has returned a pointer to a
receive ECB to be filled with the packet in the
LOOKAHEAD structure’s
LkAhd_ReturnedECB field.

If the protocol stack was able to get everything
it needed from the LOOKAHEAD, the
LkAhd_ReturnedECB field will be set to NULL,
indicating that additional data does not need to
be copied.

ODISTAT_SUCCESS_TAKEN The protocol stack accepted the packet and
has taken the prefilled LSL ECB associated
with the LOOKAHEAD structure’s
LkAhd_PreFilledECB field.

ODISTAT_OUT_OF_RESOURCES Reports an error condition—for example, the
LSL was unable to obtain an ECB for this
packet. The default stack that performs a
CLSL_ReSubmitDefault function copies the
contents of its LOOKAHEAD structure
LkAhd_FrameDataStartCopyOffset field to the
original callers LOOKAHEAD structure
LkAhd_FrameDataStartCopyOffset field. This
is because the LSL passes state information in
the above field that it uses in the processing of
this received packet.
LSL Support Routines 10-73

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

alling
nue
Remarks

The chained stack node passed to this routine is that of the chained stack c
this routine. The LSL calls the next appropriate stack in the chain to conti
processing of this packet.
10-74 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ined
CLSL_ReSubmitPreScanRx
Index 35 (0x23)

Allows prescan receive chained protocol stacks to
pass received packets back to the LSL for further
processing. The packets were originally queued
and later processed at process time by a chained
protocol stack. The LSL will pass these packets to
the next protocol stack in the chain.

Syntax

#include <odi.h>

ODISTAT CLSL_ReSubmitPreScanRx (

PS_CHAINED_RX_NODE *StackChainNode,

LOOKAHEAD *LookAheadBuf);

Input Parameters

StackChainNode

Pointer provided by the LSL to the node structure that defines this cha
stack.

LookAheadBuf

Pointer to a LOOKAHEAD structure that defines the received packet.

Output Parameters

None.
LSL Support Routines 10-75

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

alling
r

it

d
h

s

d
Return Values

Remarks

The chained stack node passed to this routine is that of the chained stack c
this routine. The LSL calls the next appropriate stack in the chain to furthe
process this packet.

ODISTAT_SUCCESSFUL The protocol stack has returned a pointer to a
receive ECB to be filled with the packet in the
LOOKAHEAD structure’s
LkAhd_ReturnedECB field.

If the protocol stack was able to get everything
needed from the LOOKAHEAD, the
LkAhd_ReturnedECB field will be set to NULL,
indicating that additional data does not need to
be copied.

ODISTAT_SUCCESS_
TAKEN

The protocol stack has accepted the packet an
has taken the prefilled LSL ECB associated wit
the LOOKAHEAD structure’s
LkAhd_PreFilledECB field.

ODISTAT_OUT_OF_
RESOURCES

Reports an error condition, such as the LSL wa
unable to obtain an ECB for this packet. The
prescan receive stack that performs a
CLSL_ReSubmitPreScanRx function copies
the contents of its LOOKAHEAD structure
LkAhd_FrameDataStartCopyOffset field to the
original callers LOOKAHEAD structure
LkAhd_FrameDataStartCopyOffset field, since
the LSL will pass state information in the above
field that it uses in the processing of this receive
packet.
10-76 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

d
CLSL_ReSubmitPreScanTx
Index 36 (0x24)

Allows prescan transmit chained protocol stacks to
pass transmit ECBs back to the LSL for further
processing. The ECBs were originally queued and
later processed at process time by a prescan
transmit chain stack. The LSL will pass these ECBs
to the next protocol stack in the chain.

Syntax

#include <odi.h>

ODISTAT CLSL_ReSubmitPreScanTx (

PS_CHAINED_TX_NODE *StackChainNode,

ECB *TransmitECB);

Input Parameters

StackChainNode

Pointer provided by the LSL to the node structure defining this chaine
stack.

TransmitECB

Pointer to a transmit ECB.

Output Parameters

None.
LSL Support Routines 10-77

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

alling
er
Return Values

Remarks

The chained stack node passed to this routine is that of the chained stack c
this routine. The LSL will call the next appropriate stack in the chain to furth
process this packet.

ODISTAT_SUCCESSFUL Command executed successfully.

ODISTAT_BAD_PARAMETERThe board number defined by the node
structure and pointed to by StackChainNode
does not exist.
10-78 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2L.
CLSL_ReturnECB
Index 01 (0x01)

Enables a protocol stack to return a previously
allocated LSL ECB buffer to the LSL’s buffer pool.

Syntax

#include <odi.h>

ODISTAT CLSL_ReturnECB (

ECB *ReturnedECB);

Input Parameters

ReturnedECB

Pointer to an ECB to return to the LSL.

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL The ECB was successfully returned to the LS

ODISTAT_BAD_PARAMET
ER

The ECB did not originate from the LSL.
LSL Support Routines 10-79

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

er of

ssed
CLSL_ScheduleAESEvent
Index 03 (0x03)

Schedules an asynchronous event scheduler
(AES) event.

Syntax

#include <odi.h>

ODISTAT CLSL_ScheduleAESEvent (

AES_ECB *TimerAESECB);

Input Parameters

TimerAESECB

Pointer to an AES ECB to be scheduled.

Output Parameters

None.

Return Values

Remarks

The defined event service routine (ESR) is called after the specified numb
milliseconds. The ESR can reschedule itself after it resets AES_MSecondValue,
thus creating a simple polling function.

An AES ECB that is already in use by the LSL AES system must not be pa
again to CLSL_ScheduleAESEvent. To reset the AES event time, use

ODISTAT_SUCCESSFUL The specified AES event was
scheduled.

ODISTAT_BAD_PARAMETER The resource tag for the AES ECB
was invalid.
10-80 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2he

s
he

CLSL_CancelAESEvent and then issue a new CLSL_ScheduleAESEvent
call.

On entry to the AES_ESR routine:

AES_ESR (AES_ECB *TimerAESECB);

AES_ECB Structure

typedef struct _AES_ECB_

{

struct _AES_ECB_ *AES_Link;

UINT32 AES_MSecondValue;

UINT16 AES_Status;

void (*AES_ESR)(struct _AES_ECB_
*);

UINT32 AES_Reserved;

void *AES_ResourceObj;

void *AES_Context;

} AES_ECB;

Field Descriptions

AES_Link

This field is used by the LSL for list management.

AES_MSecondValue

This field specifies the number of milliseconds to wait before invoking t
defined AES_ESR routine. This field must be initialized each time the
AES_ECB is passed to CLSL_ScheduleAESEvent.

AES_Status

This field is set to 0 when the AES_ESR is invoked.

AES_ESR

This field specifies a routine that is invoked after a specified time. Thi
field must point to a valid routine and only needs to be initialized once. T
ESR must complete quickly because it is executing in the context of a
timer interrupt.

AES_Reserved

This field is reserved for use by the LSL.
LSL Support Routines 10-81

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

his

e
AES_ResourceObj

Pointer to a platform specific object used for resource management. T
is a pass through value and is not interpreted.

AES_Context

This optional field specifies a pointer to context parameters that can b
passed to the AES ESR routine upon completion of the AES event.
10-82 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

d
h
CLSL_SendComplete
Index 14 (0x0E)

Must be called by the MLID every time a packet is
transmitted with an ECB.

Syntax

#include <odi.h>

void CLSL_SendComplete (

ECB *SendECB);

Input Parameters

SendECB

Pointer to an ECB associated with a completed send event.

Output Parameters

None.

Return Values

None.

Remarks

The MLID must call this routine any time the driver is finished using a sen
ECB (also called a Transmit Control Block). The MLID is usually done wit
the send ECB after it sends the data to the network interface card.

After making this call, the MLID must call CLSL_ServiceEvents to process
the send.

The MLID sets the completion code in the ECB_Status field before making this
call.
LSL Support Routines 10-83

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

The completion codes for the ECB_Status field are as follows:

The ODISTAT type is cast to a UINT16 for the ECB_Status field.

See Also

CLSL_SendPacket

ODISTAT_SUCCESSFUL The MLID determined that the transmit was
successful. Because the transmit was
connectionless, this completion code does
not mean that the destination received the
packet.

ODISTAT_MLID_SHUTDOWN The MLID specified in the
ECB_BoardNumber field cannot be found.
This usually means that the MLID has been
removed from memory or is shut down
(temporarily or permanently).

ODISTAT_BAD_PARAMETER The ECB contains bad parameters—for
example, the amount of data to transmit
exceeds the maximum possible for the
MLID. Note, the ECB will not have been
transmitted.

ODISTAT_CANCELED The ECB is being returned without being
transmitted. This usually occurs if the ECB
was held in an MLID’s queues, then the
MLID clears its queues due to a shut down
request. This can also occur if the MLID was
unable to transmit the packet.
10-84 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

it
CLSL_SendPacket
Index 12 (0x0C)

Sends a packet, as described by an ECB, to the
specified MLID for transmission.

Syntax

#include <odi.h>

ODISTAT CLSL_SendPacket (

ECB *SendECB);

Input Parameters

SendECB

Pointer to an ECB to be sent.

Output Parameters

None.

Return Values

Remarks

When the MLID has transmitted the packet and is finished with the ECB,
calls CLSL_SendComplete to return the ECB.

If the MLID calls CLSL_SendComplete before this function returns, the
ECB’s ESR ((*ECB_ESR)(ECB*)) can be invoked.

ODISTAT_SUCCESSFUL The ECB has been handed to the MLID.

ODISTAT_ITEM_NOT_PRESENT The board number in the ECB_BoardNumber field does not
correspond to a registered MLID.

ODISTAT_FAIL The ECB was invalid or already in use elsewhere in the
system.
LSL Support Routines 10-85

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

s.
See Appendix A, "Event Control Blocks (ECBs)" for the ECB requirement

See Also

CLSL_SendComplete
10-86 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

CLSL_SendProtocolInfoToPartner
Index 44 (0x2C) NetWare Server only

Called (when using SFTIII) whenever protocol
information needs to be sent to the other IOEngine,
such as after a bind or unbind operation.

Syntax

#include <odi.h>

SFTIII_STAT CLSL_SendProtocolInfoToPartner (

UINT32 ProtocolNumber,

UINT8 *ProtocolInfo,

UINT32 Length,

void (*InfoSendCallBack)

(UINT32 Reserved, UINT8 *ProtocolInfo
));

Input Parameters

ProtocolNumber

The Stack ID (SID).

ProtocolInfo

Pointer to information to be sent.

Length

Number of bytes (UINT8) pointed to by ProtocolInfo.

InfoSendCallBack

Pointer to a function that is called when the information pointed to by
ProtocolInfo has been sent.

nformation sent does not imply that the destination received the
information.

Output Parameters

None.
LSL Support Routines 10-87

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2 all
Return Values

Remarks

The operating system will signal your protocol stack at certain times to give
needed protocol information to the other IOEngine.

SFTIII_STAT_SUCCESSFUL Operation completed successfully.

SFTIII_STAT_MIRROR_NOT_
ACTIVE

Engine not mirrored.

SFTIII_STAT_NO_PARTNER Engine does not have a partner.

SFTIII_STAT_NOT_
SUPPORTED

Function not supported.
10-88 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

CLSL_SendProtocolInfoToOtherEngine
Index 45 (0x2D) NetWare Server only

Called (when using SFTIII) whenever protocol
information needs to be sent to the other engine,
such as after a bind or unbind operation.

Syntax

#include <odi.h>

SFTIII_STAT CLSL_SendProtocolInfoToOtherEngine (

UINT32 ProtocolNumber,

UINT8 *ProtocolInfo,

UINT32 Length,

void (*InfoSendCallBack) (UINT8
*ProtocolInfo));

Input Parameters

ProtocolNumber

The Stack ID (SID).

ProtocolInfo

Pointer to information to be sent.

Length

Number of bytes (UINT8) pointed to by ProtocolInfo.

InfoSendCallBack

Pointer to a function to be called when the information pointed to by
ProtocolInfo has been sent.

Output Parameters

None.
LSL Support Routines 10-89

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

all

e

ed
Return Values

Remarks

The operating system signals your protocol stack at certain times to give
needed protocol information to the other engine.

CLSL_SendProtocolInfoToOtherEngine and CLSL_SendProtocolInfoToPartner
are available in all three server types (IOEngine, MSEngine, and server). If this
API is unsupported, the engine will return with all bits set.

SFTIII_STAT_
SUCCESSFUL

Operation completed successfully. Because th
transmit was connectionless, this completion
code does not mean that the destination receiv
the packet.

SFTIII_STAT_MIRROR_
NOT_ACTIVE

Mirrored server engine not active.

SFTIII_STAT_NO_
PARTNER

Engine does not have a partner.

SFTIII_STAT_OUT_OF_
RESOURCES

No memory available to queue request.

SFTIII_STAT_NOT_
SUPPORTED

Function not supported.
10-90 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

g
B’s
CLSL_ServiceEvents
Index 41 (0x29)

Causes the LSL to service any events placed on its
hold queue by CLSL_HoldEvent .

Syntax

#include <odi.h>

void CLSL_ServiceEvents (void);

Input Parameters

None.

Output Parameters

None.

Return Values

None.

Remarks

CLSL_ServiceEvents processes all of the ECBs on its hold queue by callin
the ESR ((*ECB_ESR)(ECB*)) routine for each ECB, as defined in the EC
ECB_ESR field. These ESR routines must not poll for transmit or receive
events.
LSL Support Routines 10-91

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

CLSL_UnbindStack
Index 22 (0x16)

Unbinds a protocol stack from an adapter and
frame type (logical board) combination.

Syntax

#include <odi.h>

ODISTAT CLSL_UnbindStack (

UINT32 ProtocolNumber,

UINT32 BoardNumber);

Input Parameters

ProtocolNumber

The Stack ID (SID).

BoardNumber

The board number.

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL The protocol stack was unbound from an adapter
and frame type (logical board) combination.

ODISTAT_BAD_PARAMETER The specified SID or the board number is invalid.

ODISTAT_ITEM_NOT_PRESENT The specified binding does not exist.
10-92 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ified
 an
Remarks

After this routine successfully returns, packet reception between the spec
protocol stack and logical board is disabled (unless the protocol stack has
outstanding CLSL_RegisterPrescanChain or
CLSL_RegisterDefaultChain).

•

LSL Support Routines 10-93

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

10-94 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 10 Overview of the MLID
S

p

e

c

 v1

.1
1

 - D

o

c v

1

. 2

2

Chapter Overview

This chapter describes the procedures and functionality that the MLID
provides. However, depending on the hardware and topology of your LAN
adapter, your MLID might not need to meet all of the requirements discussed
in this chapter.

You should read this chapter if you have never written an ODI MLID before.

As an alternative to writing a complete MLID, you may want to write a C
language Hardware Specific Module (CHSM) by getting the LAN Driver
Developer’s Guide kit. This kit provides many of the pieces of the MLID and only
requires you to write the HSM, which, depending upon your needs, may be
easier to do than writing a complete MLID.

Multiple Operating System Suppo rt

MLID development depends on the operating system under which the MLID
will run. An MLID developed to the NetWare operating system must be
developed differently than an MLID developed to the DOS, OS/2, or Windows
NT operating systems.

If you wish to develop a single MLID that runs under multiple operating
systems, we strongly recommend that (instead of writing an MLID) you
develop a C language Hardware Specific Module (CHSM) using the LAN
Driver Developer’s Guide kit to help you.
Overview of the MLID 11-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

s
nd
the
NetWare MLID

MLIDs handle the sending and receiving of packets on the network. MLID
drive a LAN adapter (also referred to as Network Interface Card or NIC) a
handle frame header appending and stripping. They also help determine
packet’s frame type.

The requirements of your LAN adapter dictate how you write your MLID.

MLID Procedures

The ODI specification defines the following procedures:

• MLID initialization routine (required)

• Board service routine (one or both are required)

• Interrupt Service Routine (ISR)

• Driver polling routine

• Packet transmission routine(required)

The MLID also supports the following control procedures:

• Control procedures for ODI IOCTLs

• AddMulticastAddress (required if hardware supports multicast
addressing)

• DeleteMulticastAddress (required if hardware supports multicast
addressing)

• GetMLIDConfiguration (required)

• GetMLIDStatistics (required)

• DriverPromiscuousChange(recommended)

• SetLookAheadSize (required)

• DriverManagement (optional)

• MLIDReset (required)

• MLIDShutdown (required)
11-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ng)

u
nt the

this
t true

is

g
• GetMulticastInfo (required if hardware supports multicast addressi

• RegisterMonitor (required)

• RemoveNetworkInterface (required)

• ShutdownNetworkInterface (required)

• ResetNetworkInterface (required)

• Timeout detection (some LAN adapters do not need to provide these
procedures)

• Interrupt call back routine (optional)

• AES call back routine (optional)

• MLID removal routine (required)

The specific hardware requirements of a LAN adapter can require that yo
write additional procedures; however, the procedures listed above represe
generic code elements found in every MLID.

A brief description of each procedure is presented throughout the rest of
chapter. These descriptions are high-level generalizations only and are no
in every case, nor do they describe every possible case. More detailed
descriptions of each procedure is provided in chapters 12 through 15 of th
specification.

MLID Initialization

In general terms, the MLID’s initialization routine must perform the followin
actions:

• Allocate memory for the MLID’s variables and structures.

• Parse the standard LOAD command line options.

• Process custom command line parameters and custom firmware.

• Register the hardware configuration with the operating system.

• Initialize the LAN adapter.

• Register the MLID with the LSL.
Overview of the MLID 11-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ing

R),

s to
nd

nd
ply a
• Provide a hook for the MLID’s board service routine by allocating an
interrupt or by establishing a polling procedure.

• Schedule callback events for timeout detection and recovery.

Board Service Routine

The board service routine generally needs to detect and handle the follow
events on the LAN adapter:

• Received packet

• Packet receiving error

• Completed transmission

• Packet transmission error

The MLID can be notified of these events by an interrupt service routine (IS
a polling procedure, or a polling procedure with interrupt backup.

Packet Transmission

The MLID’s packet transmission routine is called whenever a packet need
be transmitted onto the wire. The MLID must build the necessary frame a
media headers and then send the packet.

The MLID’s transmit handler is passed both the transmit ECB and a pointer to
its send context, which it provided to the LSL when it registered. For more
information, see CLSL_RegisterMLID in Chapter 10: LSL Support Routines s

Control Routines

Among the control procedures that the MLID must provide are control
procedures to support multicast addressing (if the hardware supports it) a
procedures to reset and shut down the hardware. The MLID can also sup
control procedure to support promiscuous mode.

MLIDs that support the hub management interface implement the driver
management support routine.
11-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

or

. If a
resets

 the

ing

in
ures:

tion
e

ter

ation
Timeout Detection

The MLID can schedule an AES event that it uses at specified intervals. F
example, the MLID might need to be called regularly to inspect the LAN
adapter and determine if the adapter has failed to complete a transmission
timeout error had occurred, the procedure discards the packet being sent,
the board, and begins transmitting the next packet in the send queue.

Driver Remove

Every MLID must have a remove procedure that allows the user to unload
MLID from the operating system. This procedure must shut down the LAN
adapter and return any resources that the MLID allocated from the operat
system.

MLID Data Structures and Variables

In addition to the procedures discussed above, the MLID must also conta
certain data structures and variables. The following are the primary struct

• MLID configuration table

• MLID statistics table

MLID Configuration Table

The MLID configuration table is a data structure that defines the configura
of the LAN adapter and MLID. The fields in this table are referred to by th
LSL, Protocol Stack, MLID, and other components in the system. The
requirements for MLID configuration tables are described in detail in Chap
12, "MLID Data Structures".

MLID Statistics Table

The MLID statistics table is a data structure that contains data on the oper
of the LAN adapter and the MLID. Chapter 12, "MLID Data Structures"
contains a detailed description of this data structure.
Overview of the MLID 11-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ty.

k

AN
) on
m to

Networtk management and ohter components in the system reference the
information in the MLID statistics table via the GetMLIDStatistics control
procedure.

MLID Functionality

We strongly recommend that your MLID provides the following functionali

• Reentrancy

• Multiple frame support (supports all frame types defined by a specific
topology)

• Source routing support when supported by the topology

• Promiscuous mode support

• Multicast addressing support

n some instances this specification makes recommendations on how to
implement certain functionality, but these are only recommendations and it is up
to you to implement the functionality the way you choose.

Reentrancy

We strongly recommend that your MLID support reentrancy. When you lin
your LAN driver, you can declare your driver reentrant. This allows the
operating system to use a single code image of the MLID to run multiple L
adapters (of the same type) or to run multiple frame types (logical boards
the same LAN adapter. A non-reentrant driver requires the operating syste
load an additional code image of the driver each time it uses another LAN
adapter or supports another logical board.
11-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ple.
rds.

ies

 we

 of

t is

this

cal
hare
is

age
To illustrate the advantage of reentrant code, consider the following exam
Suppose you want to configure a server to drive two Novell CNTR2000 ca
You enter the following commands at the server console:

load cntr2000

load cntr2000

If you have written reentrant code, the first load command loads the code
image of the driver into the server’s memory and then calls the MLID’s
initialization routine The second load command merely calls the MLID’s
initialization routine again. If you have not written reentrant code, two cop
of the CNTR2000 LAN driver are loaded into memory.

Multiple Frame Support

If the LAN adapter runs on a topology that supports multiple frame types,
strongly recommend that the MLID support all the frame types for that
particular topology. You can implement multiple frame support by using
logical boards.

Multiple Frame Support and Logical Boards

To illustrate how logical boards are used, consider the preceding example
loading a CNTR2000 twice. When you enter the load command the second
time, you are indicating one of two things:

• You want the MLID to run a second LAN adapter.

• You want the MLID to run a second frame type on the LAN adapter tha
already loaded.

Whichever is the case, your MLID creates a ‘‘logical board“ in response to
command. (A fuller description of logical boards is provided below.) The
operating system does not concern itself with distinguishing between logi
boards that have exclusive use of a LAN adapter and logical boards that s
the same LAN adapter with other logical boards. Only the MLID makes th
distinction.

Multiple Frame Support in Reentrant Code

If you are writing reentrant code, each logical board uses the same code im
of the MLID that was loaded into the operating system with the first load
Overview of the MLID 11-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

e for
n

ical

The

a space
D
ess,
this
 LAN
rts.

 data

 for
 for

a
ter:

es
ault,
command. However, the MLID must maintain a separate adapter data spac
each physical board or each separate channel (see the MLID configuratio
table for more information) and a separate frame data space for each log
board.

Adapter Data Space

When a second load command is issued, an ambiguous situation arises.
MLID resolves this ambiguity by asking the following question:

Do you want to add another frame type for a previously loaded board?

If your response to the operating system’s question is no, the MLID must
allocate an adapter data space to drive a second adapter. The adapter dat
is a structure that contains the hardware specific information that the MLI
needs to drive the LAN adapter (interrupt number, beginning memory addr
etc.). The statistics table required by the ODI specification is contained in
adapter data space. The MLID allocates one adapter data space for each
adapter, regardless of the number of logical boards (frame types) it suppo

The MLID must create an adapter data space for every LAN adapter of the same
type that is loaded.

Frame Data Space

Every logical board has a frame data space associated with it. The frame
space is a structure that contains the frame-specific information the MLID
needs to support that frame type. The MLID allocates a frame data space
each logical board. The MLID then copies the configuration table template
that logical board into its frame data space.

The MLID must create a frame data space for every frame type that is loaded.

Implementing Multiple Frame Support

Figure 1.1 illustrates how you might implement multiple frame support in
CNE2000 driver. In order to use the first CNE2000 adapter, you would en

load cne2000

In response to this command, the MLID creates logical board 1, which us
Frame Data Space 1 and Adapter Data Space A to run Adapter A. By def
11-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

net

ted
d:

 the

00

nt to
D
 Data
Frame Data Space 1 contains the information necessary to support Ether
802.2.

Now suppose you wanted to use a second CNE2000 adapter that suppor
both SNAP and 802.2 frames. You start by entering the following comman

load cne2000 frame=ETHERNET_SNAP

Afterwards, you are asked the following question:

Do you want to add another frame type for a previously
loaded board?

In order to use the second CNE2000 adapter, you need to enter n. This causes
the MLID to create Logical Board 2, which uses Frame Data Space 2 and
Adapter Data Space B to run Adapter B. The following command then tells
MLID that Frame Data Space 2 will support Ethernet SNAP:

frame=ETHERNET_SNAP

In order for Adapter B to also support 802.2, you need to load the CNE20
driver a third time:

load cne2000 frame=ETHERNET_802.2

This time, however, you enter y in response to the following question:

Do you want to add another frame type for a previously
loaded board?

The operating system then lets you indicate the LAN adapter that you wa
add additional frame support to. If you were to specify Adapter B, the MLI
would create logical board 3, which uses Frame Data Space 3 and Adapter
Space B to communicate with Adapter B.
Overview of the MLID 11-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Figure 11-1

Implementations of
Multiple Frame Support Using Ethernet

Logical Boards
Data and Code

Spaces

Frame Data
Space 3

Frame Data
Space 2

Frame Data
Space 1

Adapter Data
Space Z

Driver Z Executable Code
Image

Adapter Code Space

Frame Data
Space 2

Frame Data
Space 1

Adapter Data
Space X

Driver X Executable Code
Image

Adapter Code Space

Frame Data
Space 1

Adapter Data
Space Y

Driver Y Executable Code
Image

Adapter Code Space

802.3

LAN Adapters

Brand X

802.2Brand Y

Ell

SNAP

SNAP

802.2

Brand Z
11-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

oard
Figure 1.2 shows that when the boards are not all the same type, each b
has its own executable code image and adapter data space.

Figure 11-2

Implementation of
Multiple Boards/Frame Support

Logical Boards
Data and Code

Spaces

Configuration Table Z
Frame Data Space Z

Configuration Table Z
Frame Data Space Z

Original
Configuration Table Z
Frame Data Space Z

Statistics Table Z
NICInstance Structure

Z

Driver Z Executable Code
Image

Configuration Table X
Frame Data Space X

Original
Configuration Table X
Frame Data Space X

Statistics Table X
NICInstance Structure

X

Driver X Executable Code
Image

Original
Configuration Table Y
Frame Data Space Y

Statistics Table Y
NICInstance Structure

Y

Driver Y Executable Code
Image

802.3

Physical Boards

Brand X

802.2Brand Y

Ell

SNAP

SNAP

802.2

Brand Z
Overview of the MLID 11-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ly,
end
 of

e
us
nd
uch
by

ID

e
trol

sider

ding

ort
Other Functionality

An MLID can support source routing (Token-Ring and FDDI topologies on
not Ethernet), promiscuous mode, and multicast addressing. We recomm
that your MLID support all of these options, if the LAN adapter is capable
supporting them.

Source Routing Support

The ODI Specification Supplement: Source Routing describes how to add and
configure source routing in the MLID.

Promiscuous Mode Support

When MLIDs operate in promiscuous mode, they pass all packets they receiv
to the upper layers. This includes bad packets, if possible. Because vario
monitoring functions operate in promiscuous mode, we strongly recomme
that your MLID support promiscuous mode if your adapter is capable of s
support. The MLID enables or disables promiscuous mode upon request
using the PromiscuousChange control routine described in Chapter 15,
"MLID Control Routines".

Multicast Addressing Support

If your LAN adapter is capable of supporting multicast addressing, your ML
must support it. The AddMulticastAddress, GetMulticastInfo , and
DeleteMulticastAddress control routines implement multicast support. Thes
control procedures are discussed in more detail in Chapter 15, "MLID Con
Routines".

MLID Design Considerations

The following section discusses hardware and coding issues you must con
when developing the MLID.

Hardware Issues

Every type of LAN adapter, such as the CNTR2000 and CNE2000, have
different hardware and data transfer characteristics. A thorough understan
of your LAN adapter and LAN topology will allow you to create a more
efficient driver. Keep in mind that the board and chip manufacturer’s supp
11-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ID
rt

are:

are

)

engineers can provide you with up-to-date information regarding their
hardware.

Data Transfer Mode

The LAN adapter’s mode of data transfer is a primary consideration in ML
development. To achieve the highest performance, you must select suppo
procedures matched to the data transfer mode. The data transfer modes

• Programmed I/O

• Shared RAM (Memory Mapped I/O)

• Direct Memory Access (DMA)

• Bus Master

Bus Type

You must also consider the LAN adapter’s bus type and size. The MLID’s
initialization process must register its bus type with the LSL. The following
common bus types:

• Industry Standard Architecture (ISA)

• Micro Channel Architecture

• Extended Industry Standard Architecture (EISA)

• Personal Computer Memory Card International Association (PCMCIA

• Peripheral Component Interconnect (PCI)
Overview of the MLID 11-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

11-14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 11 MLID Data Structures
S

p

e

c

 v1

.1
1

 - D

o

c v

1

. 2

2

Chapter Overview

This chapter describes the data structures and variables that the MLID must
define. All the data structures defined in this chapter must be present in the
OSDATA segment of the MLID.

Frame Data Space

The ODI specification requires that every MLID have a configuration table as
part of the frame data space. The MLID keeps a copy of the configuration table
template in the OSDATA segment. The MLID uses the configuration table in
the OSDATA segment as the working configuration table for the default logical
board and as a template for the configuration tables it must copy for each
loaded logical board. When the MLID allocates the frame data space for each
logical board (frame type) that loads, it copies the configuration table template
for that logical board into that logical board’s frame data space. Because
external processes can also access this table, the ODI specification defines this
table’s format strictly.
MLID Data Structures 12-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

de
cific

s
he
try
 to
MLID Configuration Table

The MLID configuration table contains information about the MLID and its
configuration. The MLID must define one configuration structure for each
logical board number assigned by the LSL. Variables in this structure inclu
the interrupt number, port I/O address, node address, and other MLID spe
parameters.

The MLID must define the configuration table to contain the LAN adapter’
default configuration and any other information about that configuration. T
table must be defined by the fields described in this chapter, with each en
filled in accordingly. Certain variables in the configuration table are specific
your MLID. Other variables are specific to the LAN adapter the MLID is
running.

All data strings in the configuration table consist of NULL terminated MEON
strings.

Protocol stacks and other system modules treat the MLID configuration table as
read only!

MLID Configuration Table Structure Sample Code

typedef struct _MLID_CONFIG_TABLE_

{

MEON MLIDCFG_Signature[26];

UINT8 MLIDCFG_MajorVersion;

UINT8 MLIDCFG_MinorVersion;

NODE_ADDR MLIDCFG_NodeAddress;

UINT16 MLIDCFG_ModeFlags;

UINT16 MLIDCFG_BoardNumber;

UINT16 MLIDCFG_BoardInstance;

UINT32 MLIDCFG_MaxFrameSize;

UINT32 MLIDCFG_BestDataSize;

UINT32 MLIDCFG_WorstDataSize;

MEON_STRING *MLIDCFG_CardName;

MEON_STRING *MLIDCFG_ShortName;

MEON_STRING *MLIDCFG_FrameTypeString;

UINT16 MLIDCFG_Reserved0;

UINT16 MLIDCFG_FrameID;
12-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

UINT16 MLIDCFG_TransportTime;

UINT32
(*MLIDCFG_SourceRouting)(UINT32,

void*, void**,boolean);

UINT16 MLIDCFG_LineSpeed;

UINT16 MLIDCFG_LookAheadSize;

UINT8 MLIDCFG_SGCount;

UINT8 MLIDCFG_Reserved1;

UINT16 MLIDCFG_PrioritySup;

void MLIDCFG_Reserved2;

UINT8 MLIDCFG_DriverMajorVer;

UINT8 MLIDCFG_DriverMinorVer;

UINT16 MLIDCFG_Flags;

UINT16 MLIDCFG_SendRetries;

void *MLIDCFG_DriverLink;

UINT16 MLIDCFG_SharingFlags;

UINT16 MLIDCFG_Slot;

UINT16 MLIDCFG_IOPort0;

UINT16 MLIDCFG_IORange0;

UINT16 MLIDCFG_IOPort1;

UINT16 MLIDCFG_IORange1;

void *MLIDCFG_MemoryAddress0;

UINT16 MLIDCFG_MemorySize0;

void *MLIDCFG_MemoryAddress1;

UINT16 MLIDCFG_MemorySize1;

UINT8 MLIDCFG_Interrupt0;

UINT8 MLIDCFG_Interrupt1;

UINT8 MLIDCFG_DMALine0;

UINT8 MLIDCFG_DMALine1;

void *MLIDCFG_ResourceTag;

void *MLIDCFG_Config;

void *MLIDCFG_CommandString;

MEON_STRING MLIDCFG_LogicalName[18];

void *MLIDCFG_LinearMemory0;

void *MLIDCFG_LinearMemory1;

UINT16 MLIDCFG_ChannelNumber;

void *MLIDCFG_DBusTag;

UINT8 MLIDCFG_DIOConfigMajorVer;
MLID Data Structures 12-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

UINT8 MLIDCFG_DIOConfigMinorVer;

} MLID_CONFIG_TABLE

Table 12-1

MLID Configuration Table Field Descriptions

Name Type Description

MLIDCFG_Signature MEON [26] This field contains a string that indicates the start
of the configuration table. The string is
‘‘HardwareDriverMLID“ followed by exactly eight
spaces. It must be included in the table.

MLIDCFG_MajorVersion UINT8 This field must be set to the major version number
of the configuration table. The current major
version number is 1.

MLIDCFG_MinorVersion UINT8 This field must be set to the minor version number
of the configuration table. The current minor
version number is 21.

MLIDCFG_NodeAddress NODE_ADDR This field holds the card’s node address. The MLID
sets this field during its initialization routine. (See
ODI Specification Supplement: Canonical and
Noncanonical Addressing for information
regarding octet bit reversal.)

MLIDCFG_ModeFlags UINT16 See MLIDCFG_ModeFlags field description (Table
12-2). Unused bits are reserved and set to 0.

MLIDCFG_BoardNumber UINT16 During initialization, the MLID sets this field to the
board number that is returned by the
CLSLRegisterMLID .

MLIDCFG_BoardInstance UINT16 The MLID sets this field to the physical board
instance. For example, if two CNE2000 boards
were installed in the system, the first CNE2000
driver loaded would have this field set to 1; the
second CNE2000 driver would have this field set to
2.

Note: Each controller on a multi-channel adapter is
treated as a separate adapter if access to the
controller is independent of the other controllers.
12-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

MLIDCFG_MaxFrameSize UINT32 This value defines the largest possible packet size
that can be transmitted and/or received by the
driver and physical card combination. This value
includes all headers.

Ethernet drivers set this field to 1514 decimal.
Since Token-Ring drivers can send and receive a
number of different packet sizes, a Token-Ring
driver must determine during its DriverInit routine
the appropriate packet size and place that value in
this field. Token-Ring drivers support 4K
(4096+74+48 = 4218) packet sizes whenever it is
possible and practical. The value in this field
cannot be less than 618 decimal. See Table 12-5
for more details.

MLIDCFG_BestDataSize UINT32 The MLID sets this field after returning from
DriverInit. The MLID subtracts the length of the
smallest media header(s) from the value in the
MLIDCFG_MaxFrameSize field.

For example, an Ethernet MLIDs sets this field to
1500 decimal (1514 - 14 [MAC] = 1500) if the MLID
is running the Ethernet_II packet type. If a Token-
Ring MLID sets this field, it sets this field to
MLIDCFG_MaxFrameSize - 14 [MAC] - 3 [802.2
UI] if the MLID’s packet type is Token-Ring. See
Table 12-5 for more details.

MLIDCFG_WorstDataSize UINT32 The MLID sets this field after returning from
DriverInit. The MLID subtracts the length of the
largest media headers(s) from the
MLIDCFG_MaxFrameSize field.

Note, protocol stacks use the value in this field to
determine the largest packet size this driver can
send or receive.

For example, of a Token-Ring MLID sets this field,
it sets this field to MLIDCFG_MaxFrameSize - 14
[MAC] - 30 [source routing] - 4 [802.2 UI] if the
MLID’s frame type is Token-Ring. An Ethernet_II
MLID sets this field to 1500. See Table 12-5 for
more details.

Table 12-1

MLID Configuration Table Field Descriptions

Name Type Description
MLID Data Structures 12-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

MLIDCFG_CardName MEON_STRING * This field holds a pointer to a NULL terminated
MEON string that is identical to the description
string in the linker definition file. For example,
"Novell Ethernet NE2000". (See Appendix C,
Platform Specific Information).

MLIDCFG_ShortName MEON_STRING * This field holds a pointer to a NULL terminated
MEON string that contains a shortened version of
the long name. This string cannot contain more
than 8 MEON characters. The string is usually the
MLID’s file name. For example, "CNE2000".

MLIDCFG_FrameTypeString MEON_STRING * This field holds a pointer to a NULL terminated
MEON string describing the frame and media type
being used by this MLID. (See ODI Specification
Supplement: Frame Types and Protocol IDs for
possible frame types.)

MLIDCFG_Reserved0 UINT16 This field is reserved for future use and must be set
to 0.

MLIDCFG_FrameID UINT16 This field contains the frame type ID being used by
this MLID.

For more information on frame types, see ODI
Specification Supplement: Frame Types and
Protocol IDs.

MLIDCFG_TransportTime UINT16 This field indicates the number of milliseconds it
takes the adapter to transmit a 586-byte packet.
Most MLIDs set this field to 1. This field cannot be
set to 0.

If the MLID is used with a slow asynchronous line,
the value is set accordingly to a representative
value.

Table 12-1

MLID Configuration Table Field Descriptions

Name Type Description
12-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

MLIDCFG_SourceRouting UINT32 (*)
(UINT32,
void *,
void **,
boolean)

This field contains a pointer used by a Token-Ring
or FDDI MLID and a source routing module, such
as SROUTE.NLM. See the ODI Specification
Supplement: Source Routing for a discussion of
dynamic source routing.

Note: This function should use the ANSI C calling
convention.

MLIDCFG_LineSpeed UINT16 This field holds the data rate used by the physical
card’s media. This value is normally specified in
megabits per second (Mbps). If the line speed is
less than 1 Mbps or if it is a fractional number, the
value of this field can be defined in kilobits per
second (Kbps) by setting the most significant bit to
1.

If the line speed can be selected, as with
Token-Ring, the MLID must determine the selected
line speed and place that value in this field. Below
are some common values:

Ethernet 10 Mbps 0x000A
Token-Ring 4 Mbps 0x0004
Token-Ring 16 Mbps 0x0010
FDDI 100 Mbps 0x0064
ISDN 64 Kbps 0x8040

For example, if the speed of the line MLID is
10 Mbps (Ethernet for example) put 10 (decimal)
in this field.

Table 12-1

MLID Configuration Table Field Descriptions

Name Type Description
MLID Data Structures 12-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

MLIDCFG_LookAheadSize UINT16 This field holds the configured lookahead size as
set by protocol stacks. The MLID sets this to a
default value of 18 bytes. However, a protocol stack
can dynamically override this value using the
SetLookAheadSize MLID control function. The
maximum value is 128 bytes when receiving a
packet, the MLID uses this value and the maximum
possible media header when determining the
amount of lookahead data the MLID must pass to
the CLSL_GetStackECB routine for every packet
that the MLID receives. The value in this field can
be changed at any time. Therefore, the MLID must
reference this field for every packet that the MLID
receives.

Note: Once set, this value never decreases. See
SetLookAheadSize in Chapter 15 of this
document.

MLIDCFG_SGCount UINT8 The maximum number of Scatter/Gather elements
that the adapter is capable of handling. This is only
valid if the MM_FRAGS_PHYS_BIT in
MLIDCFG_ModeFlags is set by the MLID. The
minimum value for this field is 2 (1 MAC header
fragment and 1 data header fragment). The
maximum value for this field is 17 (1 MAC header
fragment and 16 ECB data fragments).

MLIDCFG_Reserved1 UINT8 This field is reserved for future use and must be set
to 0.

MLIDCFG_PrioritySup UINT16 This field contains the number of priority levels that
the MLID supports. This field has a maximum of 7
priorities (1-7). Zero (0) indicates a non-priority
packet. The MLID can set this field to 0 through 7.
Seven (7) is the highest priority.

MLIDCFG_Reserved2 void * This field is reserved for future use and must be set
to 0.

Table 12-1

MLID Configuration Table Field Descriptions

Name Type Description
12-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

MLIDCFG_DriverMajorVer UINT8 This field defines the current revision level of the
MLID and matches the revision level found in the
linker definition file and displayed by the MLID. For
example, if the MLID’s current major version is 2,
this field’s value is 2.

MLIDCFG_DriverMinorVer UINT8 This field defines the current revision level of the
MLID and matches the revision level found in the
linker definition file and displayed by the MLID.

For example, if the MLID’s current minor version is
.32, this field’s value is 32. (If the current major and
minor version level displayed by the MLID is 2.32,
these fields reflect that version of 2.32.)

MLIDCFG_Flags UINT16 See the MLIDCFG_Flags field description (Table
12-3).

This field is set by the MLID and reflects whether
the MLID supports hub management and whether
the adapter has specialized hardware to support
group addressing—for example, CAM. Unused bits
must be set to 0. See Table 12-3 for more
information.

MLIDCFG_SendRetries UINT16 This field is initialized by the MLID to an
appropriate value that represents the number of
times the MLID will retry a transmission operation
with an error before giving up. See the "RETRIES
Load" key word in Appendix C, ’Platform Specific
Information’.

MLIDCFG_DriverLink void * This field is set to NULL and is not modified by the
MLID.

Table 12-1

MLID Configuration Table Field Descriptions

Name Type Description
MLID Data Structures 12-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

MLIDCFG_SharingFlags UINT16 The MLID sets this variable. See the
MLIDCFG_SharingFlags field description (Table
12-4).

This field informs the system the hardware
resources that a driver/physical card can share
with other driver/physical cards. If the MLID
supports shareable interrupts, the MLID must set
the MS_SHARE_IRQx_BIT bit. The first bit is used
to indicate when the MLID is shutdown. The MLID
is responsible for setting and clearing this bit. The
bit definitions for this field are listed in Table 12-4.

MLIDCFG_Slot UINT16 For Micro Channel, EISA, PCI, PC Card, and other
buses which allow for the identification of the
location of an adapter, this field contains the
Hardware Instance Number (HIN). The HIN is a
system -wide, unique handle for a device, which is
returned by GetIInstanceNumber after calling
SearchAdapter . This value normally corresponds
to the number silk screened on the mother board or
stamped on the chassis of the compter. The
instances are assinged a unique value in the
following cases:

Integrated Motherboard Devices
PCI BIOS v2.0 Devices
PCI BIOS v2.1 Adapter

(with Multiple Devices or Functions)
PnP ISA Devices
Confilcts Between Physical Slot Numbers

If this field is not used, it must be set to
UNUSED_SLOT.

MLIDCFG_IOPort0 UINT16 Primary base I/O port. This field is initialized to the
default I/O port base address. The user can
override this value input from a configuration entry
that is operating system dependent. If the MLID is
self-configurable, it determines the appropriate
value for the physical card and place that value into
this field before before registering the hardware
options and returning from initialization. If the MLID
does not use I/O ports, this field is set to NULL.

Table 12-1

MLID Configuration Table Field Descriptions

Name Type Description
12-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

MLIDCFG_IORange0 UINT16 This field defines the number of UINT8 I/O ports
decoded by the physical card at
MLIDCFG_IOPort0. Set this field to
UNUSED_IO_RANGE if the physical card does
not use I/O ports.

MLIDCFG_IOPort1 UINT16 This field allows the MLID to define two I/O port
base addresses. The definition is the same as
MLIDCFG_IOPort0. Set this to
UNUSED_IO_PORT if the physical card does not
have a second range of I/O ports.

MLIDCFG_IORange1 UINT16 The number of UINT8 I/O ports starting at
MLIDCFG_IOPort1. If this field is not used, set it to
UNUSED_IO_RANGE.

MLIDCFG_MemoryAddress0 void * This field is initialized to the adapter’s default base
memory address. If the adapter does not use, or
define, shared RAM or ROM, set this field to
UNUSED_MEMORY_ADDRESS. This value is an
absolute physical address. On Intel processors, for
example, if a physical adapter’s RAM is located at
C000:0, the value in this field will be C0000. The
MLID sets this variable, but it can be changed by
the configuration.

MLIDCFG_MemorySize0 UINT16 If MS_MEM_PAGE_BIT in
MLIDCFG_SharingFlags is set, this field defines
the number of pages of memory decoded at
MLIDCFG_MemoryAddress0. If
MS_MEM_PAGE_BIT in MLIDCFG_SharingFlags
is clear, this field defines the number of paragraphs
(16 bytes) of memory decoded at
MLIDCFG_MemoryAddress0. If
MLIDCFG_MemoryAddress0 is not defined, set
this field to UNUSED_MEMORY_SIZE.

Note: The size of a page of memory is determined
by the processor for which this code is complied
on, such as Intel 4K, PowerPC 4K, Alpha 8K.

Table 12-1

MLID Configuration Table Field Descriptions

Name Type Description
MLID Data Structures 12-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

MLIDCFG_MemoryAddress1 void * This field allows the MLID to define a second
memory address range used by the MLID’s
adapter. For example,
MLIDCFG_MemoryAddress1 could define the
starting address of the adapter’s RAM, and this
field could define the starting address of the
adapter’s ROM. Set this field to
UNUSED_MEMORY_ADDRESS if the adapter
does not define a second memory range.

MLIDCFG_MemorySize1 UINT16 If MS_MEM_PAGE_BIT in
MLIDCGFG_SharingFlags is set, this field defines
the number of pages of memory decoded at
MLIDCFG_MemoryAddress1. If
MS_MEM_PAGE_BIT in MLIDCFG_SharingFlags
is clear, this field defines the number of paragraphs
(16 bytes) of memory decoded at
MLIDCFG_MemoryAddress1. If
MLIDCFG_MemoryAddress1 is not defined, set
this field to UNUSED_MEMORY_SIZE.

Note: The size of a page of memory is determined
by the processor for which this code is complied
on, such as Intel 4K, PowerPC 4K, Alpha 8K.

MLIDCFG_Interrupt0 UINT8 Primary interrupt vector number. This field is
initialized to the physical adapter’s default interrupt
request line (IRQ). If the adapter does not use an
interrupt line, set this field to
UNUSED_INTERRUPT. If the MLID’s adapter
supports IRQ 2 or 9, the MLID sets the value to be
consistent with the adapter’s documentation. This
field is set to the adapter’s default base interrupt
vector number. For example, if the adapter’s
documentation specifies the default jumper setting
as IRQ2, set this field to 2. If the default jumper
setting is IRQ9, set this field to 9.

MLIDCFG_Interrupt1 UINT8 Secondary interrupt vector number. This field is set
to the adapter’s second interrupt vector number.
Set this field to UNUSED_INTERRUPT if it is not
used.

Table 12-1

MLID Configuration Table Field Descriptions

Name Type Description
12-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

MLIDCFG_DMALine0 UINT8 This field is initialized to the adapter’s default DMA
channel number. If the adapter does not use a
DMA channel, set this field to
UNUSED_DMA_LINE.

MLIDCFG_DMALine1 UINT8 This field is used by the MLID if the MLID’s adapter
uses a second DMA channel. Set this field to
UNUSED_DMA_LINE if it is not used.

MLIDCFG_ResourceTag void * This field contains a pointer to a resource tag.

MLIDCFG_Config void * This field contains a pointer to the LSL’s copy of the
configuration table. The MLID does not use this
field.

MLIDCFG_CommandString void * Pointer to a structure containing two fields. The first
field is a forward link to the next structure. The
second field is a pointer to a NULL-terminated
string containing the parameters entered on the
command line. Normally, there is only one node in
the linked list, but if there are more than one, the
command line will be the concatenation of all of
them. Bits 9 and 10 of the MLID_SharingFlags field
are used in conjunction with this field. The MLID
sets this field.

MLIDCFG_LogicalName[18] MEON_STRING MLIDs do not use this field. It contains the NULL
terminated logical name of the LAN MLID if a name
exists.

MLIDCFG_LinearMemory0 void * The operating system fills in this field with the
linear address of MLIDCFG_MemoryAddress0
during the MLID’s initialization routine.

Do not convert MLIDCFG_MemoryAddress0 to the
logical address using the operating system
conversion routines.

Table 12-1

MLID Configuration Table Field Descriptions

Name Type Description
MLID Data Structures 12-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

MLIDCFG_LinearMemory1 void * The operating system fills in this field with the
linear address of MLIDCFG_MemoryAddress1
during the MLID’s initialization routine.

Do not use the operating system conversion
routines to convert MLIDCFG_MemoryAddress1
to the logical address.

MLIDCFG_ChannelNumber UINT16 This field is used in multichannel adapters. It holds
the channel number of the NIC to use. Set this field
to 0 if multichannel adapters are not in use.

MLIDCFG_DBusTag void * Pointer to an architecture dependent value which
specifies the bus on which the adapter is found.
The MLID must enter the value returned by
SearchAdapter in this field.

MLIDCFG_DIOConfigMajorVer UINT8 The major version of the IO_CONFIG_TABLE
structure (the bottom half of the
MLID_CONFIG_TABLE structure). The MLID sets
this field to 1.

MLIDCFG_DIOConfigMinorVer UINT8 The minor version of the IO_CONFIG_TABLE
structure (the bottom half of the
MLID_CONFIG_TABLE structure). The MLID sets
this field to 0.

Table 12-1

MLID Configuration Table Field Descriptions

Name Type Description
12-14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

MLIDCFG_ModeFlags Field

Replace with new sentence.

Figure 12-1

MLIDCFG_ModeFlags Field Default Values

Table 12-2 explains......

Table 12-2

MLIDCFG_ModeFlags Bits Description

Bit # Name Description

0 Reserved This bit is reserved and must be set to zero.

1 Reserved This bit is reserved and must be set to zero.

2 MM_DEPENDABLE_BIT The function of this bit has been rendered obsolete by recent
changes to NetWare (specifically, the NetWare Link Services
Protocol). Therefore, we recommend that this bit always be set to 0.
Previously, this bit was used to limit the frequency of IPX RIP/SAP
updates when operating over reliable delivery, low bandwidth, Wide
Area Network (WAN) data links. When set to 1 by a WAN MLID, this
bit caused IPX to suppress the normal, periodic, RIP/SAP updates,
unless the route or service databases had changed. However, use
of this bit to suppress updates sometimes resulted in IPX route or
service loss.

3 MM_MULTICAST_BIT Set this bit if the MLID and physical board support multicasting.
Multicast support is required for all media that have multicast
capability.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0

0

00
MLID Data Structures 12-15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

4 MM_CSL_COMPLIANT_
BIT

The MLID sets this bit if the supported data link protocol requires
connection management through the Call Support Layer (CSL)
interface. Typical Wide Area Network (WAN) data link protocols,
such as Frame Relay, PPP, and X.25 are connection oriented and
rely upon network layer protocol (IPX, IP, etc.) interaction to
establish, maintain, and terminate connections to remote peers.
The CSL provides extensions to ODI that allow this connection
management interaction between network and data link layer
protocols. This bit must not be set by connectionless data link
protocols, such as Token-Ring and Ethernet. For more information
on the CSL interface, see the WAN ODI Specification.

5 MM_PREFILLED_ECB_
BIT

Set this bit if the MLID always supplies prefilled (LSL) ECBs in the
LOOKAHEAD structure’s LkAhd_PreFilledECB field.

6 MM_RAW_SENDS_BIT The MLID sets this bit to 1 if it supports raw send.

7 MM_DATA_SZ_UNKNOWN_
BIT

Set this bit if the MLID is capable of setting the
LkAhd_FrameDataSize field in the LOOKAHEAD structure to a -1,
frame size and/or receive status unknown—for example, pipelined
LAN adapter.

8 MM_SMP_BIT Set this bit if the MLID supports symmetrical multiprocessing.

9 Reserved Reserved.

10 MM_FRAG_RECEIVES_
BIT

Set this bit to zero. This field is used only if the MLID was developed
with Novell’s LAN Driver Developer’s Kit for HSMs.

11 MM_C_HSM_BIT Set this bit to zero. This field is used only if the MLID was developed
with Novell’s LAN Driver Developer’s Kit for HSMs.

12 MM_FRAGS_PHYS_BIT Set this bit to zero. This field is used only if the MLID was developed
with Novell’s LAN Driver Developer’s Kit for HSMs.

13 MM_PROMISCUOUS_BIT The MLID sets this bit if it supports promiscuous mode.

14 MM_NONCANONICAL_BIT See Bit 15.

Table 12-2

MLIDCFG_ModeFlags Bits Description

Bit # Name Description
12-16 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

15 MM_PHYS_NODE_ADDR_
BIT

The MLID sets or clears bits 14 and 15 to indicate whether the
MLID’s configuration table NodeAddress field contains a canonical
or noncanonical address.

Bit 14 indicates when the configuration table is using the
noncanonical format.

Bit 15 indicates whether the MLID supports the use of a
PhysicalNodeAddress.

The following are the bit 15 and 14 combinations:

00 = MLIDCFG_NodeAddress format is unspecified. The node
address is assumed to be in the physical layer’s native format;
octet bit reversal is not supported.

01 = This is an illegal value and must not occur.

10 = MLIDCFG_NodeAddress is canonical and octet bit reversal is
supported.

11 = MLIDCFG_NodeAddress is noncanonical and octet bit reversal
is supported.

Table 12-2

MLIDCFG_ModeFlags Bits Description

Bit # Name Description
MLID Data Structures 12-17

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

MLIDCFG_Flags Field

Figure 12-2

MLIDCFG_Flags Field Default Values

Table 12-3 describes......

Table 12-3

MLIDCFG_Flags Bit Description

Bit # Name Description

8 MF_HUB_MANAGEMENT_
BIT

Set to 1 if the MLID supports hub management.

9 MF_SOFT_FILT_GRP_BIT See description below for bit 10.

10 MF_GRP_ADDR_SUP_BIT Bits 9 and 10 indicate different support mechanisms for multicast
filtering. These bits are only valid if bit 3 of the MModeFlags is set,
indicating that the MLID supports multicast addressing.

The MLID sets bit 10 if it has specialized adapter hardware (such as
hardware that utilizes CAM memory).

If an MLID that usually defaults to functional addressing also
supports group addressing sets bit 10, it receives both functional
addresses and group addresses.

The state of bit 9 is defined only if bit 10 is set. Bit 9 is set if the
adapter completely filters group addresses and the MLID does not
need to perform any checking. The MLID can dynamically set and
clear bit 9. For example, if the adapter utilizes CAM memory, but has
temporarily run out memory, the MLID must temporarily filter the
group addresses. In this case, the MLID must reset bit 9.

15

0

14

0

13

0

12 11 10 9 8 7

0

6

0

5

0

4

0

3 2 1 0
12-18 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

9/10 Bits 9 and 10 combinations are as follows:

00= The format of the multicast address defaults to that of the
topology:

Ethernet => Group Addressing (Multicast Addressing)

Token-Ring => Group Addressing and Functional
Addressing

FDDI => Group Addressing

01= Illegal value which must not occur.

10= Filter group address in MLID. Group addressing is
supported by the specialized adapter hardware.

11= Adapter filtered group address. MLID software checking is
not required. Group addressing is supported by the
specialized adapter hardware.

See also ODI Specification Supplement: Canonical and
Noncanonical Addressing for information regarding octet bit reversal

11 MF_RECONFIG_BIT This bit indicates to an MLID that indirect (such as file based)
configuration information for the associated interface instance may
have changed. This bit can be set by any caller prior to calling the
MLIDReset function. It is to be examined by the MLIDReset and
cleared upon completion of the reset processing. This bit has no
meaning for MLIDs which do not support use of indirect (such as file
based) configuration information.

12 MF_PRIORITYSUP_BIT The MLID sets this bit during initialization if the MLID has set the
MLIDCFG_PrioritySup field to something other than 0.

Note: The MLID may temporarily clear this bit to disable priority
support.

Table 12-3

MLIDCFG_Flags Bit Description

Bit # Name Description
MLID Data Structures 12-19

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

MLIDCFG_SharingFlags Field

Figure 12-3

MLIDCFG_SharingFlags Field Default Values

Table 12-4

MLIDCFG_SharingFlags Bits Description

Bit # Name Description

0 MS_SHUTDOWN_BIT Set to 1 if the logical board is currently shut down. This bit must
also be set during DriverInit until the driver/adapter is fully
functional and ready to send and receive packets.

1 MS_SHARE_PORT0_BIT Set to 1 if the adapter can share I/O port 0.

2 MS_SHARE_PORT1_BIT Set to 1 if the adapter can share I/O port 1.

3 MS_SHARE_MEMORY0_BIT Set to 1 if the adapter can share memory range 0.

4 MS_SHARE_MEMORY1_BIT Set to 1 if the adapter can share memory range 1.

5 MS_SHARE_IRQ0_BIT Set to 1 if the adapter can share interrupt 0

6 MS_SHARE_IRQ1_BIT Set to 1 if the adapter can share interrupt 1.

7 MS_SHARE_DMA0_BIT Set to 1 if the adapter can share DMA channel 0.

8 MS_SHARE_DMA1_BIT Set to 1 if the adapter can share DMA channel 1.

9 MS_NO_DEFAULT_INFO_BIT If this bit is set and bit 10 is not set, some install programs will
merge the contents of the user’s command line with the
system’s IOCONFIG structure. If it is not set, then only the
system’s IOCONFIG structure will be used to create the
command line. The MLID sets this bit if the command line
passed to DriverInit is not empty.

15 14

0

13

0

12

0

11

0

10 9 8 7 6 5 4 3 2 1 0
12-20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

less
All other values, except for combinations of the above values, are invalid un
stated otherwise.

10 MS_HAS_CMD_INFO_BIT If this bit is zero, the command line used by some install
programs will be created using the system’s IOCONFIG
structure and possibly (as controlled by bit 9) the content of the
users command line. This command line will include an entry
for every field that is used in the IOCONFIG structure. Setting
this bit prevents the install program from creating a command
line using the IOCONFIG structure; instead, it simply uses the
user’s command line and ignores the state of bit 9.

15 MS_MEM_PAGE_BIT When set this bit signifies that the values in fields
MLIDCFG_MemorySize0 and MLIDCFG_MemorySize1
contain the number of pages of memory used by the adapter.
For example, Intel platforms allow 4K pages with a maximum of
256 megabytes of shared memory address used by an adapter.

When clear this bit signifies that the values in fields
MLIDCFG_MemorySize0 and MLIDCFG_MemorySize1
contain the number of paragraphs (16 bytes) of memory used
by the adapter.

Table 12-4

MLIDCFG_SharingFlags Bits Description

Bit # Name Description
MLID Data Structures 12-21

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Table 12-5

Frame Types Versus Size Fields

Frame Type MLIDCFG_MaxFrameSize
(the lesser of the two
values)

MLIDCFG_BestDataSize MLIDCFG_WorstDataSize

Ethernet
802.3

Maximum ECB buffer
size or 1514

MLIDCFG_MaxFrameSize - 14 MLIDCFG_MaxFrameSize - 14

Ethernet
802.2

Maximum ECB buffer
size or1514

MLIDCFG_MaxFrameSize - 17 MLIDCFG_MaxFrameSize - 18

Ethernet II Maximum ECB buffer
size or 1514

MLIDCFG_MaxFrameSize - 14 MLIDCFG_MaxFrameSize - 14

Ethernet
SNAP

Maximum ECB buffer
size or 1514

MLIDCFG_MaxFrameSize - 22 MLIDCFG_MaxFrameSize - 22

Token-Ring
802.2

Maximum ECB buffer
size or the maximum size
the adapter can handle

MLIDCFG_MaxFrameSize - 17 MLIDCFG_MaxFrameSize - 48

Token-Ring
SNAP

Maximum ECB buffer
size or the maximum size
the adapter can handle

MLIDCFG_MaxFrameSize - 22 MLIDCFG_MaxFrameSize - 52

FDDI 802.2 Maximum ECB buffer
size or 4491

MLIDCFG_MaxFrameSize - 16 MLIDCFG_MaxFrameSize - 47

FDDI SNAP Maximum ECB buffer
size or 4491

MLIDCFG_MaxFrameSize - 21 MLIDCFG_MaxFrameSize - 51
12-22 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

pter
as

ader

ader
Example

If the maximum ECB buffer size equals 4096 bytes and the Token-Ring ada
can handle 8192 bytes, then the Token-Ring 802.2 values are calculated
follows:

• MLIDCFG_BestDataSize

The maximum packet size minus the headers if the source routing he
is not included.

= MLIDCFG_MaxFrameSize (4096) - MAC header (14) - 802.2 Type I
LLC header (3)

= 4079

• MLIDCFG_WorstDataSize

The maximum packet size minus the headers if the source routing he
is included.

= MLIDCFG_MaxFrameSize (4096) - MAC header (14) - 802.2 Type II
LLC header (4) - Source Routing header (30)

= 4048
MLID Data Structures 12-23

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

is

its
tain

cs

ent.

ters
d to
s.
Adapter Data Space

The MLID must allocate and initialize a structure called
DriverAdapterDataSpaceTemplate. This structure must contain the data that
specific to a particular LAN adapter. You must determine what
hardware-specific fields the MLID needs in this structure in order to drive
particular LAN adapter. But keep in mind that this structure must also con
the MLID statistics table.

MLID Statistics Table

This section describes the MLID statistics table in detail for MLIDs that
interface directly to the LSL. This section includes a sample of the statisti
table code and a description of each of the statistics table’s fields.

All MLIDs must keep a statistics table for the purpose of network managem
The following is the format of an MLID statistics table.

A protocol stack treats this table as read only!

The statistics table contains various diagnostic counters. All statistics coun
listed must be present in the table, but only those marked ‘‘mandatory“ nee
be supported. These counters can be grouped into the following categorie

• Generic Statistics Counters

• Standard Counters

• Media Specific Counters

• Custom Statistics Counters

When the statistics counters reach their maximum value, they wrap back to their
beginning value.
12-24 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

s
MLID Statistics Table Structure

typedef struct _STAT_TABLE_ENTRY_

{

UINT32 StatUseFlag;

void *StatCounter;

MEON_STRING *StatString;

} STAT_TABLE_ENTRY;

Field Descriptions

StatUseFlag

Values are defined as follows:

StatString

Pointer to a NULL terminated MEON string that describes the statistic
counter.

StatCounter

Defined by StatUseFlag.

ODI_STAT_UNUSED StatCounter entry not in use.

ODI_STAT_UINT32 StatCounter is a pointer to an UINT32
counter.

ODI_STAT_UINT64 StatCounter is a pointer to an UINT64
counter.

ODI_STAT_MEON_STRING StatCounter is a pointer to a Null
terminated string of MEON. The
maximum string length is 256, including
the NULL termination.

ODI_STAT_UNTYPED StatCounter is a pointer to a UINT8 array
preceded by its length (UINT32). This
value is generally used for debugging and
is displayed in hexadecimal bytes.
MLID Data Structures 12-25

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Statistics Table Structure

typedef struct _MLID_STATS_TABLE_

{

UINT16 MStatTableMajorVer;

UINT16 MStatTableMinorVer;

UINT32 MNumGenericCounters;

STAT_TABLE_ENTRY (*MGenericCountsPtr)[];

UINT32 MNumMediaCounters;

STAT_TABLE_ENTRY (*MMediaCountsPtr)[];

UINT32 MNumCustomCounters;

STAT_TABLE_ENTRY (*MCustomCountsPtr)[];

} MLID_STATS_TABLE;
12-26 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Table 12-6

MLID Statisitics Table Fields

Name Type Description

MStatTableMajorVer UINT16 This field contains the major version number of the
statistics table. The current major number is 4.

MStatTableMinorVer UINT16 This field contains the minor version number of the
statistics table. The current minor version number is 0.

MNumGenericCounters UINT32 This field has the total number of generic
STAT_TABLE_ENTRY counters in this portion of this
table. This field is set to 20 for this specification.

MGenericCountsPtr STAT_TABLE_ENTRY* Pointer to an array of STAT_TABLE_ENTRY counters
[MNumGenericCounters].

MNumMediaCounters UINT32 This field has the total number of media specific
STAT_TABLE_ENTRY counters in this portion of this
table. This field is set to the following values:

Token-Ring 13
Ethernet 8
FDDI 10

MMediaCountsPtr STAT_TABLE_ENTRY* Pointer to an array of STAT_TABLE_ENTRY counters
[MNumMediaCounters].

MNumCustomCounters UINT32 The total number of custom STAT_TABLE_ENTRY
counters in this portion of this table. This field is
variable (dependent on the MLID).

MCustomCountersPtr STAT_TABLE_ENTRY* Pointer to an array of STAT_TABLE_ENTRY counters
[MCustomCounters].
MLID Data Structures 12-27

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Example

#define NUM_GENERIC_COUNTERS 20
UINT32 MTotalTxPacketCount,

MTotalRxPacketCount,
MNoECBAvailableCount,
MPacketTxTooBigCount,
MPacketTxTooSmallCount,
MPacketRxOverflowCount,
MPacketRxTooBigCount,
MPacketRxTooSmallCount,
MTotalTxMiscCount,
MTotalRxMiscCount,
MRetryTxCount,
MChecksumErrorCount,
MHardwareRxMismatchCount,
MTotalTxOKByteCount,
MTotalRxOKByteCount,
MTotalGroupAddrTxCount,
MTotalGroupAddrRxCount,
MAdapterResetCount,
MAdapterOprTimeStamp,
MQDepth;

MEON_STRING MTotalTxPacketStr[] “Total Tx Packet Count”;
MEON_STRING MTotalRxPacketStr[] “Total Rx Packet Count”;
MEON_STRING MNoECBAvailableStr[] “No ECB Available Count”;
MEON_STRING MPacketTxTooBigStr[] “Packet Tx Too Big Count”;
MEON_STRING MPacketTxTooSmallStr[] “Packet Tx Too Small Count”;
MEON_STRING MPacketRxOverflowStr[] “Packet Rx Overflow Count”;
MEON_STRING MPacketRxTooBigStr[] “Packet Rx Too Big Count";
MEON_STRING MPacketRxTooSmallStr[] “Packet Rx Too Small Count";
MEON_STRING MTotalTxMiscStr[] “Total Tx Misc Count";
MEON_STRING MTotalRxMiscStr[] “Total Rx Misc Count";
MEON_STRING MRetryTxStr[] “Retry Tx Count";
MEON_STRING MChecksumErrorStr[] “Checksum Error Count";
MEON_STRING MHardwareMismatchStr[] “Hardware Mismatch Count";
MEON_STRING MTotalTxOKByteStr[] “Total Tx OK Byte Count";
MEON_STRING MTotalRxOKByteStr[] “Total Rx OK Byte Count";
MEON_STRING MTotalGroupAddrTxStr[] “Total Group AddrTx Count";
MEON_STRING MTotalGroupAddrRxStr[] “Total Group Addr Rx Count";
MEON_STRING MAdapterResetStr[] “Adapter Reset Count";
MEON_STRING MAdapterOprTimeStampStr[]“Adapter Opr Time Stamp";
MEON_STRING MQDepthStr[] “Tx Queue Depth";
12-28 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

STAT_TABLE_ENTRY MGenericCounters [NUM_GENERIC_COUNTERS] =
{

{ ODI_STAT_UINT32, &MTotalTxPacketCount, &MTotalTxPacketStr },
{ ODI_STAT_UINT32, &MTotalRxPacketCount, &MTotalRxPacketStr },
{ ODI_STAT_UINT32, &MNoECBAvailableCount, &MNoECBAvailableStr },
{ ODI_STAT_UINT32, &MPacketTxTooBigCount, &MPacketTxTooBigStr },
{ ODI_STAT_UINT32, &MPacketTxTooSmallCount, &MPacketTxTooSmallStr },
{ ODI_STAT_UINT32, &MPacketRxOverflowCount, &RMPacketRxOverflowStr},
{ ODI_STAT_UINT32, &MPacketRxTooBigCount, &MPacketRxTooBigStr },
{ ODI_STAT_UINT32, &MPacketRxTooSmallCount, &MPacketRxTooSmallStr },
{ ODI_STAT_UINT32, &MTotalTxMiscCount, &MTotalTxMiscStr },
{ ODI_STAT_UINT32, &MTotalRxMiscCount, &MTotalRxMiscStr },
{ ODI_STAT_UINT32, &MRetryTxCount, &M&MRetryTxStr },
{ ODI_STAT_UINT32, &MChecksumErrorCount, &MChecksumErrorStr },
{ ODI_STAT_UINT32, &MHardwareRxMismatchCount, &MHardwareMismatchStr },
{ ODI_STAT_UINT64, &MTotalTxOKByteCount, &MTotalTxOKByteStr },
{ ODI_STAT_UINT64, &MTotalRxOKByteCount, &MTotalRxOKByteStr },
{ ODI_STAT_UINT32, &MTotalGroupAddrTxCount, &MTotalGroupAddrTxStr },
{ ODI_STAT_UINT32, &MTotalGroupAddrRxCount, &MTotalGroupAddrRxStr },
{ ODI_STAT_UINT32, &MAdapterResetCount, &MAdapterResetStr },
{ ODI_STAT_UINT32, &MAdapterOprTimeStamp, &MAdapterOprTimeStampStr},
{ ODI_STAT_UINT32, &MQDepth, &MQDepthStr }

};

MLID_STATS_TABLE MLID_StatsTable = {4, 0,
NUM_GENERIC_COUNTERS, MGenericCounters, 0,
NULL, 0, NULL};
MLID Data Structures 12-29

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Table 12-7

MLID Statistics Table Generic Counters

Name Type Description

MTotalTxPacketCount UINT32 Number of packets successfully transmitted onto the media.
Mandatory.

MTotalRxPacketCount UINT32 Number of packets reported as successfully received without
errors. This counter is independent of whether the packet is
accepted. Mandatory.

MNoECBAvailableCount UINT32 Number of times an incoming packet was discarded due to lack
of host receive buffers or the host not wanting the packet.
Mandatory.

MPacketTxTooBigCount UINT32 Number of times a send packet was too big for transmission.
Mandatory.

MPacketTxTooSmallCount UINT32 Number of requested packets for transmission that were
normally too small to be transmitted. The packets might still
have been sent if the MLID does padding. Optional

MPacketRxOverflowCount UINT32 Number of times the adapter’s receive buffer pool was
exhausted, which caused subsequent incoming packets to be
discarded. Optional.

MPacketRxTooBigCount UINT32 Number of times a packet was received that was too large to fit
into preallocated receive buffers provided by the host or too
large for media definitions. Mandatory.

MPacketRxTooSmallCount UINT32 Number of times a packet was received that was too small for
media definitions. Optional.

MTotalTxMiscCount UINT32 This counter is incremented if the MLID failed to transmit and
has no appropriate generic counter to increment. Mandatory.

MTotalRxMiscCount UINT32 This counter is incremented if the MLID receives a packet with
errors and has no appropriate generic counter to increment.
Mandatory.

MRetryTxCount UINT32 Number of times the MLID retried a transmit operation because
of a failure. Optional.

MChecksumErrorCount UINT32 Number of times the MLID received a packet with corrupt data
(for example, CRC errors). Optional.
12-30 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

MHardwareRxMismatchCount UINT32 Number of times the MLID received a packet that did not pass
the length consistency checks. Optional.

MTotalTxOKByteCount UINT64 Number of bytes (including low-level headers) the MLID
successfully transmitted onto the media. Mandatory.

MTotalRxOKByteCount UINT64 Number of bytes (including low-level headers) the MLID
successfully received. Mandatory.

MTotalGroupAddrTxCount UINT32 Number of packets the MLID transmitted with a group
destination address. Mandatory.

MTotalGroupAddrRxCount UINT32 Number of packets the MLID received with a group destination
address. Mandatory.

MAdapterResetCount UINT32 Number of times the adapter was reset due to an internal failure
or a call to the MLIDReset function. Mandatory.

MAdapterOprTimeStamp UINT32 This counter contains the time, (platform dependent clock, for
example number of ticks), the adapter last changed operational
state, such as Loaded, MLID Shutdown and Reset Control
Service functions. Mandatory

MQDepth UINT32 Number of Transmit ECBs that are queued for the adapter. The
MLID maintains this field. Mandatory.

Table 12-7

MLID Statistics Table Generic Counters

Name Type Description
MLID Data Structures 12-31

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

is
MLID Statistics Table Media Specific Counters

The statistics table must contain the media specific counters defined in th
section for the topology.

Token-Ring

Media specific counters array STAT_TABLE_ENTRY for Token-Ring are as
follows:

Table 12-8

Media Specific Counters for Token-Ring

Size Label Description

UINT32 TRN_ACErrorCounter This counter is incremented when a station receives an AMP
or SMP frame in which A = C = 0, and then receives another
SMP frame with A = C = 0 without first receiving an AMP
frame. Mandatory.

UINT32 TRN_AbortDelimiterCounter This counter is incremented when a station transmits an
abort delimiter while transmitting. Mandatory.

UINT32 TRN_BurstErrorCounter This counter is incremented when a station detects the
absence of transitions for five half-bit times (burst-five error).
Note that only one station detects a burst-five error, because
the first station to detect it converts it to a burst-four.
Mandatory.

UINT32 TRN_FrameCopiedErrorCounter This counter is incremented when a station recognizes a
frame addressed to its specific address and detects that the
FS field bits are set to 1, indicating a possible line hit or
duplicate address. Mandatory.

UINT32 TRN_FrequencyErrorCounter This counter is incremented when the frequency of the
incoming signal differs by more than that specified in Section
7 (IEEE Std 802.5-1989) from the expected frequency.
Mandatory.

UINT32 TRN_InternalErrorCounter This counter is incremented when a station recognizes a
recoverable internal error. This can be used for detecting a
station in marginal operating condition. Mandatory.
12-32 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

UINT32 TRN_LastRingStatus This value contains the last ring status reported by the
adapter with the following bit definitions:

Bit 15 Signal loss
Bit 14 Hard error
Bit 13 Soft error
Bit 12 Transmit beacon
Bit 11 Lobe wire fault
Bit 10 Auto-removal error 1
Bit 9 Reserved
Bit 8 Remove received
Bit 7 Counter overflow
Bit 6 Single station
Bit 5 Ring recovery
Bit 4-0 Reserved

Mandatory.

UINT32 TRN_LineErrorCounter This counter is incremented when a frame or token is copied
or repeated by a station. The E bit is 0 in the frame or token
and one of the following conditions exists:

1. The frame or token contains a non-data bit (J or K bit)
between the SD and the ED of the frame or token.

2. The frame contains a FCS error in a frame.

Mandatory.

UINT32 TRN_LostFrameCounter This counter is incremented when a station is transmitting
and its TRR timer expires. This counts how often frames
transmitted by a particular station fails to return to it, thus
causing the active monitor to issue a new token. Mandatory.

UINT32 TRN_TokenErrorCounter This counter is incremented when a station acting as the
active monitor recognizes an error condition that needs a
token transmitted. This occurs when the TVX timer expires.
Mandatory.

UINT64 TRN_UpstreamNodeAddress This contains the upstream neighbor node address, right
justified with leading zeros. Mandatory.

UINT32 TRN_LastRingID This contains the value of the local ring. Mandatory.

Table 12-8

Media Specific Counters for Token-Ring

Size Label Description
MLID Data Structures 12-33

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Ethernet

Media specific counters array STAT_TABLE_ENTRY for Ethernet are as
follows:

UINT32 TRN_LastBeaconType This contains the value of the last beacon type. Mandatory.

Table 12-9

Media Specific Counters for Ethernet

Size Label Description

UINT32 ETH_TxOKSingleCollisionsCount This counter contains a count of frames that are involved
in a single collision and are subsequently transmitted
successfully. This counter is incremented when the result
of a transmission is reported as successful and the
attempt value is 2. Mandatory.

UINT32 ETH_TxOKMultipleCollisionsCount This counter contains a count of frames that are involved
in more than one collision and are subsequentially
transmitted successfully. This counter is incremented
when the result of a transmission is reported as
successful and the attempt value is greater than 2 and
less than or equal to the attempt limit of the network
controller used by the MLID. (The attempt limit is
specified by MLIDCFG_SendRetries .) Mandatory.

UINT32 ETH_TxOKButDeferred This counter contains a count of frames whose
transmission was delayed on its first attempt because the
medium was busy. Mandatory.

UINT32 ETH_TxAbortLateCollision This counter contains a count of the times that a collision
has been detected later than 512 bit times into the
transmitted packet. A late collision is counted twice, both
as a collision and as a late collision. Mandatory.

UINT32 ETH_TxAbortExcessCollision This counter contains a count of frames that, due to
excessive collisions, did not transmit successfully. This
counter is incremented when the value of attempts
during a transmission equals the attempt limit specified
by MLIDCFG_SendRetries . Mandatory.

Table 12-8

Media Specific Counters for Token-Ring

Size Label Description
12-34 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

UINT32 ETH_TxAbortCarrierSense This counter contains a count of frames that the
carrierSense variable was not asserted or was
deasserted during the transmission of a frame without
collision. Mandatory.

UINT32 ETH_TxAbortExcessiveDeferral This counter contains a count of frames that were
deferred for an excessive period of time. This counter
must only be incremented once per LLC transmission.
Mandatory.

UINT32 ETH_RxAbortFrameAlignment This counter contains a count of frames that are not an
integral number of bytes in length and do not pass the
FCS check. Mandatory.

Table 12-9

Media Specific Counters for Ethernet

Size Label Description
MLID Data Structures 12-35

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

FDDI

Media specific counters array STAT_TABLE_ENTRY for FDDI are as follows:

Table 12-10

Media Specific Counters for FDDI

Size Label Description

UINT32 FDI_ConfigurationState (ANSI fddiSMTCFState) This field contains attachment
configuration for the station or concentrator.

0= Isolated
1 = local_a
2 = local_b
3 = local_ab
4 = local_s
5 = wrap_a
6 = wrap_b
7 = wrap_ab
8 = wrap_s
9 = c_wrap_a
10 = c_wrap_b
11 = c_wrap_s
12 = through

Mandatory .

UINT64 FDI_UpstreamNode (ANSI fddiMACUpstreamNbr) This counter contains the MAC’s
upstream neighbor’s long individual MAC address; 0 if unknown.
Mandatory.

UINT64 FDI_DownstreamNode (ANSI fddiMACDownstreamNbr) This field contains the MAC’s
downstream neighbor’s long individual MAC address; 0 if
unknown. Mandatory.

UINT32 FDI_FrameErrorCount This field contains a count of the number of frames that were
detected in error by this MAC that had not been detected in error
by another MAC. Mandatory.

UINT32 FDI_FramesLostCount This field contains a count of the number of instances that this
MAC detected a format error during frame reception such that the
frame was stripped. Mandatory.
12-36 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

UINT32 FDI_RingManagementState This field indicates the current state of the ring management state
machine.

0 = Isolated
1 = Non_Op
2 = Ring_Op
3 = Detect
4 = Non_Op_Dup
5 = Ring_Op_Dup
6 = Directed
7 = Trace

Mandatory.

UINT32 FDI_LCTFailureCount This counter contains the count of consecutive times the link
confidence test (LCT) has failed during connection management.
Mandatory.

UINT32 FDI_LemRejectCount This counter contains a link error monitoring count of the times
that a link has been rejected. Mandatory .

UINT32 FDI_LemCount This counter contains the aggregate link error monitor error count;
this field is set to 0 only on station power-up. Mandatory.

UINT32 FDI_LConnectionState This field contains the state of this port’s PCM state machine.

0 = Off
1 = Break
2 = Trace
3 = Connect
4 = Next
5 = Signal
6 = Join
7 = Verify
8 = Active
9 = Maintenance

 Mandatory.

Table 12-10

Media Specific Counters for FDDI

Size Label Description
MLID Data Structures 12-37

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

12-38 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 12 MLID Initialization
S

p

e

c

 v1

.1
1

 - D

o

c v

1

. 2

2

Chapter Overview

This chapter explains the issues involved in the initialization and registration of
the MLID, including the following topics:

• Determining hardware options

• Parsing the command line

• Allocating frame and adapter data space

• Setting up the board service routine

The MLID Initialization Routine

When the MLID is loaded, the MLID initial ization routine is called.

The MLID initialization routine must do the following tasks.

• Locate the LSL

• Allocate the frame and adapter data spaces

• Parse the LOAD command line

• Process the custom command line keywords and custom firmware

• Register hardware options

• Initialize the adapter hardware

• Register the MLID with the LSL

• Set up a board service routine

• Start timeout checks

If the MLID is unsuccessful in these initialization tasks, it should return
ODISTAT_FAIL.
MLID Initialization 13-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

rt

he
 the
Initialization Parameters Passed on the Stack

The initialization routine is called as follows:.

Syntax

ODISTAT DriverInit (
MODULE_HANDLE *ModuleHandle,
SCREEN_HANDLE *ScreenHandle,
MEON_STRING *CommandLine,
MEON_STRING *ModuleLoadPath,
UINT32UninitizedDataLength,
void*CustomDataFileHandle,
UINT32(* FileRead)(void *FileHandle,UINT32 FileOffset,

void *FileBuffer,UINT32 FileSize),
UINT32 CustomDataOffset,
UINT32 CustomDataSize,
UINT32 NumMsgs,
MEON_STRING **Msgs);

Input Parameters

ModuleHandle

Identifies your initialization routine. Your initialization routine must
provide this handle when calling many of the operating system suppo
routines for MLIDs.

ScreenHandle

Your initialization routine must use this handle during the
OutputToScreen function to perform any screen I/O.

CommandLine

Pointer to the command line that was used to load the driver. This
parameter is used when parsing for the hardware configuration
information from the command line.

ModuleLoadPath

Path used to load the MLID, including the module name.

UninitizedDataLength

Used by the operating system to determine the data image length.

CustomDataFileHandle

The custom data file is appended to the end of your MLID. Because t
MLID was opened during loading, this handle points to a structure that
13-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ided

ded

er to

e
operating system uses to read the custom data file. This value is prov
as a parameter to FileRead.

FileRead

Pointer to a read function that DriverInit can use to read auxiliary files.

CustomDataOffset

The starting offset of the custom data inside the file. This value is provi
as a parameter to FileRead.

CustomDataSize

The length of the custom data file. This value is provided as a paramet
FileRead.

NumMsgs

Number of message strings in your module.

Msgs

Pointer to an array of pointers of MEON_STRING that is used by the
message enabling macros for handling messages.

Output Parameters

None.

Return Values

Locating the LSL

The LSL module must reside in the system before the any MLIDs can be
loaded. An MLID must first obtain the LSL API entry points to initialize. (Se
“Locating the LSL” in Chapter 10, “LSL Support Routines”.)

ODISTAT_SUCCESSFUL The MLID initialized successfully.

ODISTAT_FAIL The MLID failed to initialize successfully.
MLID Initialization 13-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ata
e

e
 data

.

 get
lls

uses
ltiple

ations,
lation

N).
The

evices.

2.1,
uch

s:
Frame and Adapter Data Spaces

Each time the operating system calls the initialization routine, the MLID
creates a logical board. The initialization routine must allocate the frame d
space for the logical board to use, and the MLID must create a copy of th
configuration table in this space. If the MLID is being loaded for the first tim
for a given adapter, the initialization routine must also allocate the adapter
space for the adapter.

Determining Hardware Options

The MLID must determine the hardware configuration of the LAN adapter
This includes parameters such as:

• Base port for programmed I/O adapters

• Memory decode addresses for shared RAM adapters

• Interrupt numbers

• DMA channels

For machines with bus types that support standard retrievable product IDs
(such as EISA, PCI, Micro Channel, PnP ISA, and PC Card), the MLID can
hardware configuration information directly from the system using NBI ca
once the Hardware Instance Number (HIN) has been identified.

For EISA and Micro Channel busses, it is possible to uniquely identify an
adapter by its physical slot number. However, this is not possible for new b
such as PCI and PnP ISA. These busses can have multiple functions or mu
devices present on a single adapter, and in the cases of some bus configur
such as PCI BIOS v2.0 and PnP ISA, the buses have no physical slot corre
scheme.

The slot parameter is used to contain the Hardware Instance Number (HI
The HIN is a system-wide, bus-independent, unique handle for a device.
HIN enables the MLID to identify functions and devices on multiple device
adapters as well as single device adapters and integrated motherboard d

For single device adapters such as EISA, Micro Channel, and PCI BIOS v
the HIN is the physical slot number unless there is a physical slot conflict, s
as with multi-bus systems.

In the following cases, the hardware instances are assigned unique value
13-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ing
ust

he
ine

g

e
• Integrated motherboard devices

• PCI BIOS v2.0 devices

• PCI BIOS v2.1 multiple device adapters

• PnP ISA devices

• Physical slot number conflicts

To identify the required hardware parameters, DriverInit must perform the
following steps (where appropriate for the hardware).

If the MLID supports an adapter with a product ID that is retrievable accord
to a standard (such as EISA, PCI, Micro Channel, or PC Card), the MLID m
perform the following steps:

1. Scan for the adapter for each supported bus type using SearchAdapter.
SearchAdapter gets the bus tag and the unique identifier for each
hardware instance found.

2. Call GetInstanceNumber once for each hardware instance found.
GetInstanceNumber uses the bus tag and the unique identifier to get t
HIN for each adapter. The MLID uses this HIN when parsing to determ
which hardware instance the MLID is being loaded for. The MLID then
places the selected HIN in the MLIDCFG_Slot field of the configuration
table.

3. Call GetInstanceNumberMapping with the configuration table
MLIDCFG_Slot field as an input parameter. The corresponding bus ta
and unique identifier will be returned. The bus tag returned from
GetInstanceNumberMapping must be placed in the
MLIDCFG_DBusTag field of the configuration table.

4. Call GetCardConfigInfo to get the adapter's configuration and fill out th
I/O portion of the configuration table. (The bus tag and the unique
identifier for the selected HIN are used as input parameters for
GetCardConfigInfo .
MLID Initialization 13-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

n

nd

le,
If the MLID supports a bus adapter whose product ID is not retrievable
according to a standard (such as Legacy ISA), the MLID must parse the
command line to get the hardware configuration information, using the
following steps:

If the MLID needs to get more than one parameter to determine the value(s) of
other parameters, it should parse the command line more than once.

1. Parse the command line for all standard keywords.

2. Parse the command line for all custom keywords.

In an advanced installation environment, custom keywords should be
restricted to ensure optimal performance of automatic driver selection
and loading.

For family drivers that support adapters of more than one bus type
(including legacy ISA), the custom keyword, ISA, should be used to
differentiate between a legacy ISA bus hardware instance and an
advanced bus hardware instance, such as EISA, Micro Channel, PCI,
PnP ISA, and PC Card.

3. After parsing the command line, fill in the I/O portion of the configuratio
table in the frame data space for the logical board. The MLIDCFG_Slot
field of the configuration table will contain the selected adapter HIN, a
the MLIDCFG_DBusTag field will contain the busTag.

4. When the MLID has all the needed information for the configuration tab
DriverInit calls RegisterHardwareOptions.

If the MLID needs to access shared memory before registering the
hardware options, it must use ReadPhysicalMemory .
13-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ame

ID's

n

ered,

ter

e

re
 and

n

 to

g
Registering Hardware Options

The MLID calls RegisterHardwareOptions to register with the operating
system. This routine reports to the MLID whether a new adapter or a new fr
format for an existing adapter is being loaded. If a new adapter is being
registered, the MLID allocates the adapter data space and copies the ML
DRIVER_DATA to that area. This routine also notifies the MLID of any
conflicts with existing hardware in the system.

The MLID must be able to process the following three conditions on retur
from RegisterHardwareOptions:

• If the return value indicates that a new adapter was successfully regist
the MLID must proceed with the hardware initialization.

• If the return value indicates that a new frame type for an existing adap
was successfully registered, the initialization is complete.

• If the returned value indicates that the MLID was unable to register th
hardware options, DriverInit should clean up and return with an error
code.

Initializing the Adapter

At this point, the MLID initializes the adapter hardware.

When the MLID initializes the adapter hardware, it must include all softwa
controlled configuration of hardware, and may also include hardware tests
diagnostics such as RAM testing. DriverReset can be called to do this part of
the DriverInit procedure since it performs all of the steps necessary to
initialize hardware.

During initialization, the MLID may adjust MLIDCFG_MaxFrameSize dow
if necessary.

If f irmware is to be installed on the adapter, it must be done when the MLID
is initializing the adapter.

If an error occurs during hardware initialization, DriverInit should generate an
error message, return the allocated resources, and return ODISTAT_FAIL
the operating.

When hardware initialization is successful, the MLID must do the followin
tasks:

• Set the MLIDCFG_SharingFlags MS_SHUTDOWN_BIT to zero
MLID Initialization 13-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2 o the

d

ing

re it
• Call NESLProduceMLIDEvent to produce a NESL Service Resume
MLID Card Insertion Complete event

• Return ODISTAT_SUCCESSFUL to the operating system

Registering with the LSL

DriverInit calls CLSL_RegisterMLID to register the MLID with the LSL.

During registration, the MLID passes the LSL a pointer to the MLID’s
registration structure, which contains pointers to the MLID’s transmit and
control handling interfaces.

When registration is successful, the LSL assigns a logical board number t
adapter, and the MLID places it in the configuration table.

At this point, MLIDs for intelligent bus master adapters can pass the boar
number and the frame ID information to the adapter.

Setting up a Board Service Routine

At this point, the MLID registers its board service routine(s) with the operat
system.

If the adapter is interrupt driven, it must be ready to process interrupts befo
calls the operating system.

Polling MLIDs can use GetPollSupportLevel to determine the level of polling
support provided on the platform.
13-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

Scheduling Timeout Callbacks

If an adapter is interrupt driven, the MLID can schedule a timer event to
determine when a board is unable to complete a transmission.

To schedule a timer event, the MLID must call CLSL_ScheduleAESEvent,
which schedules periodic calls to the MLID’s DriverAES routine. However,
the MLID cannot call CLSL_ScheduleAESEvent until after it has called
CLSL_RegisterMLID .

If an adapter is not interrupt driven, the MLID should use polling routines to
determine when a board is unable to complete a transmission.
MLID Initialization 13-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

13-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 13 MLID Packet Reception
S

p

e

c

 v1

.1
1

 - D

o

c v

1

. 2

2

Chapter Overview

This chapter is a brief overview of the various MLID reception methods
available, and describes how to provide a LOOKAHEAD buffer.

You should review this chapter before writing the MLID’s board service
routine.

Reception Methods

When a physical board gets a packet from the network, the board service
routine processes the packet.

Usually, the board service routine requests an ECB from the LSL and fills it in
with information about the incoming packet. The MLID then passes the
address of the ECB to the LSL, and the LSL transfers the information to the
appropriate protocol stack.

The board service routine may also receive transmission complete interrupts.
In which case, the board service routine must be able to handle the additional
overhead involved in completing and re-issuing the transmission requests.

There are several different methods used for packet reception. The method
selected is typically dependent on the adapter’s data transfer method.
MLID Packet Reception 14-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

A

ks:

 not

 To do

pts
all.

ffer.
cket
Reception Method - Option 1

Option 1 is the simplest and most preferred reception method for host DM
adapters and bus master adapters.

For Reception Method - Option 1, the MLID must perform the following tas

1. Save the processor state and disable the system interrupts if they are
already disabled.

2. Start an internal critical section.

3. Enable the system interrupts so that external processes can execute.
this, the MLID must perform the following tasks:

a. If the adapter is interrupt driven, disable the physical board's interru
and dismiss the interrupt using the appropriate operating system c

b. Enable system interrupts.

4. Get an ECB from the LSL using CLSL_GETSizedECB.

5. If an ECB is returned, fill in the ECB. Refer to Appendix A, “Event
Control Blocks (ECBs)” for detailed descriptions of the ECB fields.

If an ECB is not available, discard the packet and increment the
appropriate statistics counters.

The data buffer described by the ECB can be fragmented.

If the packet contains errors, set the GlobalError bit in the
ECB_DriverWorkspace field of the ECB structure and fill out the
appropriate error bit in the ECB_PreviousLink field.

6. Filter the packet and the frame header, and set up a LOOKAHEAD bu
See the “Receive Lookahead” section in Chapter 5 “Protocol Stack Pa
Reception”.

The LkAhd_PreFilledECB field in the LOOKAHEAD buffer is set to point to
the ECB.

If the packet contains errors, set the GlobalError bit in the LkAhd_DestType
field of the LOOKAHEAD structure and fill out the appropriate error bit in
the LkAhd_PktAttr field.

7. Call CLSL_GetStackECB with a pointer to the LOOKAHEAD buffer.
14-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

r has

 the

pts.

g an
8. Increment the appropriate statistic counters.

9. Check whether the adapter has received another packet. If the adapte
received another packet, initiate the packet reception process again.

10. Set the interrupts to their original state by taking the following steps in
order given:

a. Disable system interrupts.

b. If the adapter is interrupt driven, enable the physical board's interru

c. Enable the system interrupts.

11. Terminate the internal critical section and call CLSL_ServiceEvents.
CLSL_ServiceEvents must be called before exiting the procedure to
process ECBs in the hold queue.

12. Return control to the calling routine by restoring the registers and doin
IRET or another return as required by the platform that the MLID is
executing on.
MLID Packet Reception 14-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ion
.

ess

g

(in

ks:

 not

 To do

pts
all.

ffer.
cket
Reception Method - Option 2

Option 2 is the preferred reception method for shared RAM adapters and
programmed I/O adapters.

Option 2 uses a LOOKAHEAD process, where the frame header informat
is confirmed before the packet is transferred from the adapter to the ECB

The adapter's data transfer mode determines how the LOOKAHEAD proc
is handled.

For shared RAM adapters, the LOOKAHEAD buffer starts at the beginnin
offset of the packet in shared RAM.

For programmed I/O adapters, the LOOKAHEAD buffer must be the size
bytes) of the maximum frame header size plus the value in the
MLIDCFG_LookAheadSize field of the MLID configuration table.

For Reception Method - Option 2, the MLID must perform the following tas

1. Save the processor state and disable the system interrupts if they are
already disabled.

2. Start an internal critical section.

3. Enable the system interrupts so that external processes can execute.
this, the MLID must perform the following tasks:

a. If the adapter is interrupt driven, disable the physical board's interru
and dismiss the interrupt using the appropriate operating system c

b. Enable system interrupts.

4. Filter the packet and the frame header, and set up a LOOKAHEAD bu
See the “Receive Lookahead” section in Chapter 5 “Protocol Stack Pa
Reception”.

If the packet contains errors, set the GlobalError bit in the LkAhd_DestType field
of the LOOKAHEAD structure and fill out the appropriate error bit in the
LkAhd_PktAttr field.

5. Call CLSL_GetStackECB with a pointer to the LOOKAHEAD buffer.

If a protocol stack wants the packet, CLSL_GetStackECB returns an
ECB.
14-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

's

has

 the

pts.

g an
If an ECB is not available, CLSL_GetStackECB discards the packet and
increments the appropriate statistics counters.

6. Fill in the ECB. Refer to Appendix A, “Event Control Blocks (ECBs)” for
detailed descriptions of the ECB fields.

7. Increment the appropriate statistics counters.

The data buffer described by the ECB can be fragmented.

If the packet contains errors, set the GlobalError bit in the
ECB_DriverWorkspace field of the ECB structure and fill out the
appropriate error bit in the ECB_PreviousLink field.

8. Call CLSL_HoldEvent. This call places the specified ECB on the LSL
holding queue for processing.

9. Increment the appropriate statistic counters.

10. Determine if the adapter has received another packet. If the adapter
received another packet, initiate the packet reception process again.

11. Set the interrupts to their original state by taking the following steps in
order given:

a. Disable system interrupts.

b. If the adapter is interrupt driven, enable the physical board's interru

c. Enable the system interrupts.

12. Terminate the internal critical section and call CLSL_ServiceEvents.
CLSL_ServiceEvents must be called before exiting the procedure to
process ECBs in the hold queue.

13. Return control to the calling routine by restoring the registers and doin
IRET or another return as required by the platform that the MLID is
executing on.

Reception Method - Option 3

Pipelined adapters can be configured to interrupt before they receive the
complete packet.
MLID Packet Reception 14-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

as

ks:

 not

 To do

pts
all.

 in

s
At driver initialization time, the adapter must be configured to wait until it h
received at least the maximum header size plus the value in the
MLIDCFG_LookAheadSize field of the MLID configuration table before it
interrupts.

For Reception Method - Option 3, the MLID must perform the following tas

1. Save the processor state and disable the system interrupts if they are
already disabled.

2. Start an internal critical section.

3. Enable the system interrupts so that external processes can execute.
this, the MLID must perform the following tasks:

a. If the adapter is interrupt driven, disable the physical board's interru
and dismiss the interrupt using the appropriate operating system c

b. Enable system interrupts.

4. Set up a LOOKAHEAD buffer. See the “Receive Lookahead” section
Chapter 5 “Protocol Stack Packet Reception”.

The LkAhd_FrameDataSize field in the LOOKAHEAD buffer must be set to
UNUSED. This indicates that the entire packet has not been received and that
its error status is unknown at this time.

5. Call CLSL_GetStackECB with a pointer to the LOOKAHEAD buffer.

If a protocol stack wants the packet, CLSL_GetStackECB returns an
ECB.

If an ECB is not available, CLSL_GetStackECB discards the packet and
increments the appropriate statistics counters.

6. Fill in the ECB and call CLSL_HoldEvent/CLSL_ServiceEvents. Refer
to Appendix A, “Event Control Blocks (ECBs)” for detailed description
of the ECB fields.

7. Increment the appropriate statistic counters.

The data buffer described by the ECB can be fragmented.

If the packet contains errors, set the GlobalError bit in the
ECB_DriverWorkspace field of the ECB structure and fill out the
appropriate error bit in the ECB_PreviousLink field.
14-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

g

apter
ain.

 the

pts.

g an
8. Call CLSL_HoldEvent to place the specified ECB on the LSL's holdin
queue for processing.

9. Increments the appropriate statistic counters.

10. Determine whether the adapter has received another packet. If the ad
has received another packet, initiate the packet reception process ag

11. Set the interrupts to their original state by taking the following steps in
order given:

a. Disable system interrupts.

b. If the adapter is interrupt driven, enable the physical board's interru

c. Enable the system interrupts.

12. Terminate the internal critical section and call CLSL_ServiceEvents.
CLSL_ServiceEvents must be called before exiting the procedure to
process ECBs in the hold queue.

13. Return control to the calling routine by restoring the registers and doin
IRET or another return as required by the platform that the MLID is
executing on.
MLID Packet Reception 14-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

d by

r if

nd

t
ing

 can
d

ting
Using Shared Interrupts

MLIDs can support shared interrupts, provided that they are also supporte
the host bus and the adapters that will share the interrupt.

Interrupts can be shared if the bus is operating in level-triggered mode, o
external logic exists on the adapters sharing the interrupt.

The following list describes how some buses handle interrupts:

• PCI and Micro Channel buses always use level-triggered interrupts a
can support shared interrupts.

• ISA buses normally use edge-triggered interrupts and will not suppor
shared interrupts unless external logic exists on the adapters for shar
interrupts.

• EISA buses normally use edge-triggered interrupts, but each interrupt
be individually configured to the level-triggered mode to support share
interrupts.

• Other buses vary in their use of edge and level triggered interrupts.

• The MLID must indicate that the adapters are sharing interrupts by set
the appropriate bit in the MLIDCFG_SharingFlags field of the
configuration table.
14-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 14 MLID Packet Transmission
S

p

e

c

 v1

.1
1

 - D

o

c v

1

. 2

2

Chapter Overview

This chapter is a brief overview of the MLID Packet Transmission routine.

You should review this chapter before writing an MLID Packet Transmission
routine.

MLID Packet Transmission Routine

The MLID transmits packets through the physical board. When a packet is
ready to be sent, the protocol stack prepares an Event Control Block (ECB) and
calls the LSL's send packet routine (CLSL_SendPacket). The LSL inspects
the ECB board number and calls the associated MLID send handler. (The send
handler entry point is exchanged with the LSL during initialization time.)

Generally, to prepare a packet for transmission when called by the LSL, the
MLID must perform the following steps; however, the steps and their order are
dependent on the operating system platform.

1. Start an internal critical section.

2. Enable the system interrupts so that external processes can execute. To do
this, the MLID must perform the following tasks in the order given:

a. Disable system interrupts.

b. If the adapter is interrupt driven, disable the physical board's interrupts

c. Enable system interrupts.

3. Determine if the hardware is busy with a transmission. If it is, queue the
send.
MLID Packet Transmission 15-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 and

e
4. When the hardware is not busy with a transmission, set the busy flag
inspect the ECB for raw sends.

5. Determine whether the packet is a raw send.

a. If the packet is a raw send, do not generate the media header.

b. If the packet is not a raw send, generate a media header.

6. Begin transmission of the header and data by sending a request to th
hardware.

7. Increment the appropriate counter(s).
15-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

her

 (This

smit

 the

pts.
8. The MLID must perform one of the following tasks, depending on whet
the transmission is a lying send or a non-lying send:

• Lying send

Immediately following the send request to the hardware, set the
ECB_Status field to 0 as if the send had completed successfully.

• Non-lying send

After the send operation has completed, set the ECB_Status field to 0 if the
send was successful or to an error code if the send was unsuccessful.
usually takes place in the board service routine after receiving a send
complete interrupt.)

9. If a transmit monitor is registered, pass the completed TCB to the tran
monitor for inspection.

10. Return the ECB by calling CLSL_SendComplete.

11. Check the MLID internal queue for pending transmissions. If any are
found, start sending them.

12. Set the interrupts to their original state by taking the following steps in
order given:

a. Disable system interrupts.

b. If the adapter is interrupt driven, enable the physical board's interru

c. Enable the system interrupts.

13. Terminate the internal critical section and call CLSL_ServiceEvents.
CLSL_ServiceEvents must be called before exiting the procedure to
process ECBs in the hold queue.

14. Return control to the calling routine.

The entity that made the transmit request should not poll for completion; instead,
the entity should wait for the transmit request ESR in the transmit ECB to be
called. Polling for completion of a transmit request can cause a dead-lock and
system failure.
MLID Packet Transmission 15-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

D
 The
.

hat
iate
Priority Transmission Support

The following algorithm is used for priority transmission support.

1. During DriverInit , the CHSM must set the following parameters:

• The MF_PRIORITY_BIT in the MLIDCFG_Flags field of the MLID
configuration table.

• The MLIDCFG_PrioritySup field of the MLID configuration table to
indicate the number of levels available.

The MLID can set or reset the MF_PRIORITYSUP_BIT as the MLI
changes the priority queue support state from enabled to disabled.
MF_PRIORITYSUP_BIT is checked on a per queued packet basis

2. The protocol stack must set the ECB_StackID field to a value greater than
or equal to 0x0FFF0. Refer to Appendix A, "Event Control Blocks
(ECBs)" for the valid values for the ECB_StackID field:

3. The MLID must follow the steps given in the previous section of this
chapter for the MLID Packet Transmission routine, with the exception t
step five must include a check for priority packets and take the appropr
action.
15-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 15 MLID Timeout Routine
S

p

e

c

 v1

.1
1

 - D

o

c v

1

. 2

2

eriod
Chapter Overview

This chapter gives an overview of an MLID Timeout routine. This chapter
discusses:

• Scheduling the timeout check

• Determining the wait interval

• Identifying a timeout error,

• Reinitializing the LAN adapter

You should review this chapter before writing the MLID timeout routine.

Establishing a Timeout Routine

Depending on the hardware capabilities of the LAN adapter, the MLID might
need to establish a timeout check or “dead man timer” that regularly checks the
LAN adapter to determine if the LAN adapter is blocked by an unfinished
transmission. If a transmission has failed to complete after a reasonable p
of time, the timeout procedure should perform the following tasks:

• Reinitialize the LAN adapter

• Increment statistics counters

Scheduling a Timeout Che ck

You can establish a timer function for your MLID’s timeout check using
CLSL_ScheduleAESEvent. This call does not create a perpetual timer.
CLSL_ScheduleAESEvent must be called again to reschedule the next check
each time the MLID’s timeout procedure is called.
MLID Timeout Routine 16-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

cks

, you

ve a

ss
les

m

e
nd

s the
s and
eue (if
Determining the Wait Interval

You might need to experiment with the interval you set between timeout che
to determine the optimal wait interval. This value is affected by the LAN
adapter’s hardware, the network topology, and the network load. Generally
will start working with an interval of 1 or 2 seconds.

Identifying a Timeout Error

Immediately after the MLID sends a packet, the send procedure should sa
time stamp for later inspection. The timeout procedure compares the time
stamp with the current time. If the difference between the two values is le
than the established wait interval, the timeout procedure simply reschedu
itself. If the wait interval has expired and the LAN adapter is still trying to
transmit, a timeout condition has occurred.

Reinitializing the LAN Adapter

After identifying a timeout condition, the MLID should try to reinitialize the
LAN adapter without destroying the send event in progress. If the maximu
number of retries allowed for the LAN adapter has not been exceeded, th
MLID should increment the retry counter and tell the LAN adapter to rese
the packet.

If the maximum number of retries has been exceeded, the MLID increment
transmission error statistics counter, resets and clears the transmission bit
the buffers on the adapter, and then sends the next packet on the send qu
one is waiting to be sent).
16-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S

p

e

c

 v1

.1
1

 - D

o

c v

1

. 2

2

16 MLID Remove Routine

Chapter Overview

This chapter discusses the MLID Remove procedure. The MLID remove
procedure is a routine that allows the operating system to dynamically unload
the MLID.

This chapter discusses how the MLID should be shut down. In particular, it
covers deregistering, canceling events, shutting down the LAN adapter, and
removing the data spaces.

You should read this chapter before you write the MLID timeout and removal
routines.

Removing the MLID

This routine is called whenever the MLID is unloaded. It gives the MLID a
chance to clean up and return resources before being removed.

DeRegistering Logical Boa rds

When unloading the MLID, the remove procedure must deregister all of the
MLI D’s logical boards with the LSL by calling CLSL_DeRegisterMLID. In
addition, the remove procedure must deregister the hardware options the MLID
registered with the operating system.
MLID Remove Routine 17-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

e

ll
 at

g

he

areful
ical
l
Canceling Timeout Check and Polling Routines

The MLID must be sure to cancel any Timeout Check routines it may hav
scheduled before returning from this procedure by calling
CLSL_CancelAESEvent. If the MLID’s remove procedure does not cancel a
AES events, the operating system will try to call the MLIDs AES procedure
a memory address that is no longer valid. If the MLID is Polled it needs to
deregister the polling routine with the operating system.

Shutting Down the LAN Adapter

The remove procedure must disable the LAN adapter. If the MLID is drivin
an interrupt-driven LAN adapter or using interrupt backup for a polling
procedure, the remove procedure must also deregister the interrupt with t
operating system.

Remove Data Spaces

The MLID must also free all the memory that has been allocated for each
adapter data space and frame data space. However, the MLID should be c
not to try to remove any adapter data space or frame data space for a log
board that has been completely shut down by the MLID Shutdown contro
routine.
17-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c h a p t e r 17 MLID Control Routines
S

p

e

c

 v1

.1
1

 - D

o

c v

1

. 2

2

e
Chapter Overview

This chapter describes the control routines that ODI requires the MLID to
provide.

MLID Cont rol Routine Overvi ew

The ODI specification requires MLIDs to provide control functions to the LSL
for use by protocol stacks and applications. When an MLID registers with the
LSL, the LSL passes a pointer to the MLID information block
(INFO_BLOCK) for control functions. Applications and protocol stacks us
these pointers as entry points to get configuration information and statistics
about an MLID (see CLSL_GetMLIDCont rolEntry).

All reserved and unsupported control functions must have pointers in the
information block (INFO_BLOCK), which, when called, will return
ODISTAT_BAD_COMMAND as the completion code.
MLID Control Routines 18-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

The following functions are currently defined for these entry points:

AddMulticastAddress

DeleteMulticastAddress

GetMLIDConfiguration

GetMLIDStatistics

GetMulticastInfo

MLIDManagement

MLIDShutdown

MLIDReset

PromiscuousChange

RegisterMonitor

RemoveNetworkInterface

ShutdownNetworkInterface

ResetNetworkInterface

SetLookAheadSize
18-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

The functions above are accessed through the MLID information block
(INFO_BLOCK) using indexes. The location of the various MLID control
functions in the information block are as follows:

IndexFunction

0 GetMLIDConfiguration
1 GetMLIDStatistics
2 AddMulticastAddress
3 DeleteMulticastAddress
4 Reserved
5 MLIDShutdown
6 MLIDReset
7 Reserved
8 Reserved
9 SetLookAheadSize
10 PromiscuousChange
11 RegisterMonitor
12 Reserved
13 Reserved
14 MLIDManagement
15 GetMulticastInfo
16 RemoveNetworkInterface
17 ShutdownNetworkInterface
18 ResetNetworkInterface

Access to the MLID APIs, independent of the link method (dynamic or static), in
the information block can be accomplished by using the macro definitions in
ODI.H. The macros are listed below. The infoBlock parameter is returned by
CLSL_GetMLIDControlEntry . Refer to the API definitions for details on the rest
of the parameters.

MLIDCntl_GetConfig (infoBlock, boardNumber, boardConfig, pAsyncECB)
MLIDCntl_GetStats (infoBlock, boardNumber, boardStats, pAsyncECB)
MLIDCntl_AddMulti (infoBlock, boardNumber, addMulticastAddr, pAsyncECB)
MLIDCntl_DelMulti (infoBlock, boardNumber, delMulticastAddr, pAsyncECB)
MLIDCntl_Shutdown (infoBlock, boardNumber, shutdownType, pAsyncECB)
MLIDCntl_Reset (infoBlock, boardNumber, pAsyncECB)
MLIDCntl_PromisChange (infoBlock, boardNumber, PromiscuousState,

PromiscuousMode, pAsyncECB)
MLIDCntl_RegMon (infoBlock, boardNumber, txMonRoputine, pAsyncECB,

monitorState)
MLIDCntl_Management (infoBlock, boardNumber, managementECB)
MLIDCntl_GetMulticastInfo (infoBlock, boardNumber, multicastinfoECB)
MLIDCntl_RemoveNetworkInterface (infoBlock, boardNumber, pAsyncECB)
MLIDCntl_ShutdownNetworkInterface (infoBlock, boardNumber, pAsyncECB)
MLIDCntl_ResetNetworkInterface (infoBlock, boardNumber, pAsyncECB)
MLID Control Routines 18-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

te

han

g

B,
y
Adhere to the following procedures for MLID control services that comple
asynchronously and for which an asynchronous ECB has been provided.

If the MLID can not finish the request in a reasonable amount of time (less t
a millisecond), it does the following:

1. Queue the provided asynchronous ECB.

2. Return ODISTAT_RESPONSE_DELAYED.

3. Start servicing requests and schedule an AES event instead of pollin
hardware for completion.

If another application calls the same MLID control service with an EC
before the MLID has finished with the first one, the MLID should dela
until the first request has completed and then initiate the request.

If an ECB has been provided, the ESR is only called if
ODISTAT_RESPONSE_DELAYED is returned.
18-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

MLID Control Service Completed

For the following control services:

• GetMLIDConfiguration

• GetMLIDStatistics

• GetMLIDMulticastInfo

• MLIDShutdown

• MLIDReset

• AddMulticastAddress

• DeleteMulticastAddress

• SetLookAheadSize

• PromiscuousChange

• RegisterMonitor

• MLID Management

• RemoveNetworkInterface

• ShutdownNetworkInterface

• ResetNetworkInterface
MLID Control Routines 18-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

.

.

The MLID does the following for each ECB queued for this control service

1. Unlink the ECB from the MLID queue.

2. Fill in the ECB_Status field with the appropriate ODISTAT return status.

3. If GetMLIDConfiguration is used:

Fill the ECB_PreviousLink field with the pointer to the MLID
configuration table; NULL if error.

If GetMLIDStatistics is used:

Fill the ECB_PreviousLink field with the pointer to the MLID
statistics table; NULL if error.

If PromiscuousChange is used:

Fill the ECB_PreviousLink field with the current promiscuous mode

4. Call the ECB’s Event Service Routine ((*ECB_ESR) (ECB*)).
18-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

up)

AddMulticastAddress

Index 2 (0x02)

Adds the specified node address to the multicast
(group) address table.

Syntax

#include <odi.h>

ODISTAT AddMulticastAddress (

UINT32 BoardNumber,

NODE_ADDR *AddMulticastAddr,

ECB *pAsyncECB);

Input Parameters

BoardNumber

The board number, which indicates the MLID to add the multicast (gro
address for.

AddMulticastAddr

Pointer to an ADDR_SIZE size byte area, which contains the multicast
(group) address. ADDR_SIZE is defined in ODI.H.

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is to be called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the caller
does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYED will still be returned if the MLID
control service is performed asynchronously.

Output Parameters

None.
MLID Control Routines 18-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

t
t
d.
sion.)

ded.

llows

m
EE

g
ress

in

le

t

y
Return Values

Remarks

Protocol stacks that enable multicast reception should first check
MM_MULTICAST_BIT in the MLID configuration table’s
MLIDCFG_ModeFlags field. Some LAN media (for example, RX-Net) do no
support multicasting. When an underlying MLID/adapter does not suppor
multicasting, the protocol stack should use broadcast transmission instea
(The destination address is 0xFF FF FF FF FF FF for a broadcast transmis

The MLID keeps a count of the number of times the specified address is ad
When the address is deleted by DeleteMulticastAddress, the count is
decremented. When the count is 0, the address is disabled. This behavior a
two or more protocols to safely use the same multicast (group) address.

The MLID manages enabled multicast (group) addresses according to the
physical adapter. The format of a multicast (group) address is LAN mediu
dependent. The two most common formats are for Ethernet (Ethernet_II/IE
802.3) and Token-Ring (802.5), which are summarized below. Proprietary
LAN media that support multicasting can have alternate address encodin
methods. Therefore, a protocol stack should allow a multicast (group) add
that can be configured by the user. This allows the protocol stack to work
correctly on proprietary LAN media.

ODISTAT_SUCCESSFUL Multicasting was successfully enabled.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete
a reasonable amount of time and will complete
asynchronously.

ODISTAT_OUT_OF_RESOURCES The MLID has insufficient resources to enab
the multicast (group) address.

ODISTAT_BAD_PARAMETER The requested multicast (group) address is no
valid for the MLID’s media type, or the specified
board number is invalid.

ODISTAT_BAD_COMMAND Multicast (group) addressing is not supported b
the MLID and/or the underlying hardware
device.

ODISTAT_MLID_SHUTDOWN The MLID is temporarily shutdown.
18-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

LID/
um
ing
nal

 hash
ot
ress

eive
ly
tacks.

re to

up)
or

for it
are.
unctional addresses should never be sent on the medium with more than one
function bit set. If more than one function bit is set, the address will not work on
all media. For example, Token-Ring accepts a functional address that has more
than one function bit set but PCN_II does not.

f a Token-Ring based adapter is operating in canonical mode (that is, bit 14 is
clear and bit 15 is set in the MLIDCFG_ModeFlags field), the Token-Ring MLID
accepts functional addresses in canonical format, that is, instead of C0-00,
it accepts 03-00

Maximum Number of Multicast (Group) Addresses

The number of multicast (group) addresses supported by an underlying M
LAN medium is not specified by ODI. In the case of Token-Ring, the maxim
number supported is specified by the definition of the address, with 28 be
the maximum. Ethernet, however, has an almost infinite number of functio
addresses. The maximum number supported is defined in ODI.H as
MAXMULTICASTS.

Group Addressing Hardware

Most adapters for Ethernet, FDDI, etc. create a multicast (group) address
table to filter incoming packets destined to a multicast group. Hashing is n
usually a guaranteed filter; therefore, more than one multicast (group) add
might be received by the adapter. This causes the underlying MLID to rec
unwanted multicast packets. The MLID will complete the filtering so that on
addresses enabled through this command are actually passed to protocol s

A class of adapters have been developed that contain specialized hardwa
support multicast (group) addressing—for example, Content Addressable
Memory (CAM) memory, which ensures that only supported multicast (gro
addresses get passed up from the hardware to the software of the MLID f
processing. The MLID configuration table MF_SOFT_GRP_BIT and
MF_MF_GRP_ADDR_SUP_BIT bits of the MLIDCFG_Flags field allow for
such adapters. They allow for this hardware support to be recognized and
to indicate when multicast (group) addresses need to be checked by softw
See Chapter 12: MLID Data Structures for the MLID’s configuration table and
a discussion of the format of these bits.

Examples
MLID Control Routines 18-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

r
ique

kets

the

led

y

ves
 bits

the
0

th

ed for
Ethernet Multicasts

Ethernet multicast (group) addresses must have bit 0 of byte 0 set to 1 (fo
example, x1 xx xx xx xx xx). The address is value based; each value is un
and separate from other values.

Most Ethernet adapters create a multicast hash table to filter incoming pac
destined to a multicast group. Hashing is not usually a guaranteed filter;
therefore, more than one multicast (group) address might be received by
adapter. This causes the underlying MLID to receive unwanted multicast
packets. The MLID will complete the filtering so that only addresses enab
through this command are actually passed to protocol stacks.

Token-Ring Multicasts

Token-Ring multicast addresses in an ODI system can be Token-Ring
functional addresses or group addresses as defined by the Token-Ring
topology. These addresses are bit based. Each bit position in the address
signifies a unique address, and more than one address can be specified b
simply setting multiple bits. Addresses always begin with C0-00, which lea
32 bits (4 bytes) for functional addresses. However, four of the 32 possible
are reserved by IBM, which leaves 28 unique multicast (group) addresses
available.

More than one multicast (group) address can be added when you invoke
AddMulticastAddress command. For example, if C0 00 00 01 00 00 and C
00 00 02 00 00 need to be enabled, AddMulticastAddress can be called twice
(once for each address) or simply called once with C0 00 00 03 00 00. Bo
methods are equivalent. Token-Ring MLIDs keep a use count for each
functional address bit.

The media specification produced by the standards committees should be referenc
complete descriptions on multicast addresses.
18-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

p)

)

DeleteMulticastAddress

Index 3 (0x03)

Disables reception of a previously enabled
multicast (group) address.

Syntax

#include <odi.h>

ODISTAT DeleteMulticastAddress (

UINT32 BoardNumber,

NODE_ADDR *DelMulticastAddr,

ECB *pAsyncECB);

Input Parameters

BoardNumber

The board number describing which MLID to delete the multicast (grou
address for.

DelMulticastAddr

Pointer to an ADDR_SIZE size byte area containing the multicast (group
address. ADDR_SIZE is defined in ODI.H.

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the caller
does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYED will still be returned if the MLID
control service is performed asynchronously.

Output Parameters

None.
MLID Control Routines 18-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

s.
ee
s.)

y

in

t

d in

y
Return Values

Remarks

This command decrements the MLID’s use count for the specified addres
When the use count becomes 0, response of that address is disabled. (S
AddMulticastAddress for a discussion of multicast (group) address format

ODISTAT_SUCCESSFUL One instance of the address was successfull
deleted.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete
a reasonable amount of time and will complete
asynchronously.

ODISTAT_BAD_PARAMETER The requested multicast (group) address is no
valid for the MLID’s media type, or the specified
board number is invalid.

ODISTAT_ITEM_NOT_PRESENT The specified address is not presently enable
the MLID.

ODISTAT_BAD_COMMAND Multicast (group) addressing is not supported b
the MLID and/or the underlying hardware
device.

ODISTAT_MLID_SHUTDOWN The MLID is temporarily shutdown.
18-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ver,
GetMLIDConfiguration

Index 0 (0x00)

Returns a pointer to a pointer to the MLID
configuration table for the specified logical board.

Syntax

#include <odi.h>

ODISTAT GetMLIDConfiguration (

UINT32 BoardNumber,

MLID_CONFIG_TABLE **BoardConfig,

ECB *pAsyncECB);

Input Parameters

BoardNumber

The board number to obtain the MLID configuration table for.

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the
caller does not need to be informed of completion of the request; howe
ODISTAT_RESPONSE_DELAYED will still be returned if the MLID
control service is performed asynchronously.

Output Parameters

BoardConfig

Pointer to a buffer where a pointer to the specified board’s MLID
configuration table can be returned.
MLID Control Routines 18-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2 is

ee

Return Values

Remarks

This command is supported by all MLIDs. A separate configuration table
maintained by the MLID for each adapter and frame type combination. (S
Chapter 12: MLID Data Structures for the format of the MLID configuration
table.)

This control service usually completes synchronously.

ODISTAT_SUCCESSFUL The pointer to the specified board’s MLID
configuration table was successfully returned.

ODISTAT_RESPONSE_DELAYED The MLID control service could not be
completed in a reasonable amount of time and
will complete asynchronously.

ODISTAT_BAD_PARAMETER The specified board number is invalid.
18-14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ver,

ble
GetMLIDStatistics

Index 1 (0x01)

Returns a pointer to a pointer to the MLID statistics
table for the specified board.

Syntax

#include <odi.h>

ODISTAT GetMLIDStatistics (

UINT32 BoardNumber,

MLID_STATS_TABLE **BoardStats,

ECB *pAsyncECB);

Input Parameters

BoardNumber

The board number to obtain the MLID statistics table for.

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the
caller does not need to be informed of completion of the request; howe
ODISTAT_RESPONSE_DELAYED will still be returned if the MLID
control service is performed asynchronously.

Output Parameters

BoardStats

Pointer to a buffer where a pointer to the specified board’s statistics ta
can be returned.
MLID Control Routines 18-15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2 or

sical
board
ber,

ed

Return Values

Remarks

All MLIDs support this command. The MLID maintains one statistics table f
each physical adapter. Each frame type (logical board) present for that phy
adapter uses the same table. The board number can be any of the logical
values present for a physical adapter. Regardless of the logical board num
GetMLIDStatistics returns the same table for each logical board associat
with the MLID. (See Chapter 12: MLID Data Structures for the format of the
MLID statistics table.)

Usually, this control service completes synchronously.

ODISTAT_SUCCESSFUL The pointer to the specified board’s MLID
statistics table was successfully returned.

ODISTAT_RESPONSE_DELAYED The MLID control service could not be
completed in a reasonable amount of time and
will complete asynchronously.

ODISTAT_MLID_SHUTDOWN The MLID is temporarily shutdown.
18-16 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

al
nt
GetMulticastInfo
Index 15 (0x0F)

Allows management entities to get group
addresses or functional addresses that the MLID is
using.

Syntax

#include <odi.h>

ODISTAT GetMulticastInfo (

UINT32 BoardNumber,

ECB *MulticastInfoECB);

Input Parameters

BoardNumber

 The logical board number.

Output Parameters

MulticastInfoECB

Pointer to an ECB in which to return Group (Multicast) and/or Function
address information. The MulticastInfoECB contains a single fragme
into which to copy Group address (Multicast) information:

On Entry:

ECB_FragmentCount

Is equal to 1.

ECB_Fragment.FragmentAddress

Points to the buffer to copy Group address structures.

ECB_Fragment.FragmentLength

The size of the buffer to copy Group address structures.
MLID Control Routines 18-17

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

he

st

d by

r
On Exit:

ECB_ImmediateAddress

Contains the Functional address currently used by the MLID, zero if t
MLID does not use Functional Addresses (eg. Ethernet, FDDI), or the
Function Address is currently unused.

ECB_DataLength

Contains the number of bytes transferred into the buffer indicated by
ECB_Fragment.FragmentAddress. If the MLID does not use Group
addresses the ECB_DataLength field will be set to zero.

This field will contain the size of the buffer required to return the Multica
address information, if the buffer is insufficient in size, that is when
ODISTAT_OUT_OF_RESOURCES is returned.

ECB_Fragment.FragmentAddress

Points to a buffer containing a series of Group address structures use
the MLID. If the MLID does not use Group addresses the
ECB_DataLength field will be set to zero. The MLID returns in the buffe
a series of repeating structures defined as follows:

typedef struct _GROUP_ADDR_LIST_NODE_ {

NODE_ADDR GRP_ADDR;

UINT16 GRP_ADDR_COUNT;

} GROUP_ADDR_LIST_NODE;

GRP_ADDR

Multicast address in the MLID configuration
table. A value of zero indicates an entry
that has never been used.

GRP_ADDR_COUNT

This count is the number of times the address
has been added. A value of zero indicates
that the address is currently inactive.

ECB_Fragment.FragmentLength

Unchanged.
18-18 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

alid

riate

cal

he

by

Return Values

Remarks

The MulticastInfoECB ESR ((*ECB_ESR)(ECB*)) will only be called if the
function returns ODISTAT_RESPONSE_DELAYED, any other return code
implies that the processing of the ECB is complete and the ECB contains v
information, eg. ODISTAT_OUT_OF_RESOURCES returned implies
ECB_DataLength contains the size of the buffer required to return approp
information.

If this function is not implemented, a function which returns
ODISTAT_BAD_COMMAND must be placed here in lieu of the
GetMulticastInfo function.

The list of Group (Multicast) address returned are in canonical/noncanoni
format as described by the MLID Configuration MLID_ModeFlags fields’s bit
14 and 15.

ODISTAT_SUCCESSFUL The command was successfully executed. T
ECB is returned to the caller.

ODISTAT_RESPONSE_DELAYED The requested operation was successfully
started, but will complete asynchronously. The
MulticastInfoECB event service routine will be
called with the completion code when the
command has finished execution.

 ODISTAT_BAD_COMMAND GetMulticastInfo functions are not supported
by the MLID.

 ODISTAT_OUT_OF_RESOURCES The buffer presented in MulticastInfoECB to
transfer the Group (Multicast) addresses used
the MLID into was insufficient. The field
MulticastInfoECB.ECB_DataLength contains
the size the buffer should be to transfer Group
(Multicast) addresses used by the MLID.

ODISTAT_MLID_SHUTDOWN The MLID is temporarily shutdown.
MLID Control Routines 18-19

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 of
MLIDManagement

Index 14 (0x0E)

Allows various management entities to access
management information—for example, hub
management, SMT management for FDDI,
protocol stacks off-loading routing duties to
intelligent adapters, etc.

Syntax

#include <odi.h>

ODISTAT MLIDManagement (

UINT32 BoardNumber,

ECB *ManagementECB);

Input Parameters

BoardNumber

The logical board number.

ManagementECB

Pointer to an ECB containing management information. The first byte
the ECB_ProtocolID field is greater than 0x40 and less than 0x7F.

Output Parameters

None.
18-20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

e

n

le

e
Return Values

Remarks

The MLID management ECB ESR ((*ECB_ESR)(ECB*)) could be called
before returning from this function.

ODISTAT_SUCCESSFUL Command was executed successfully.

ODISTAT_RESPONSE_

DELAYED

Command will complete asynchronously. The
management ECB event service routine will be
called with the completion code when the
command has finished execution.

ODISTAT_BAD_COMMAND Management functions are not supported by th
MLID.

ODISTAT_BAD_PARAMETER First byte of the ECB_ProtocolID field
containing the management handle provided i
the management ECB is not greater than 0x40
and less than 0x7F, or the specified board
number is invalid.

ODISTAT_NO_SUCH_HANDLER Management entity for the management hand
provided in the management ECB_ProtocolID
field does not exist.

ODISTAT_FAIL The command was recognized, but could not b
executed.
MLID Control Routines 18-21

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

MLIDReset
Index 6 (0x06)

Causes the MLID to totally reinitialize the physical
adapter. This command also brings an MLID back
into active operation if it was temporarily shut
down.

Syntax

#include <odi.h>

ODISTAT MLIDReset (

UINT32 BoardNumber,

ECB *pAsyncECB);

Input Parameters

BoardNumber

The logical board number.

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the caller
does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYED will still be returned if the MLID
control service is performed asynchronously.

Output Parameters

None.
18-22 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

led.

in

s
Return Values

Remarks

The MS_SHUTDOWN_BIT bit in each logical board’s configuration table
MLIDCFG_SharingFlags field will be reset to 0 when this function returns
successfully.

This function leaves previously enabled multicast (group) addresses enab

ODISTAT_SUCCESSFUL The physical card has been reactivated.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete
a reasonable amount of time and will complete
asynchronously.

ODISTAT_FAIL The MLID was unable to reset its hardware. Thi
can indicate a hardware failure or system
corruption.

ODISTAT_BAD_COMMAND The MLID does not support this command.

ODISTAT_BAD_PARAMETER The specified board number is invalid.
MLID Control Routines 18-23

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

MLIDShutdown

Index 5 (0x05)

Allows an application to shut down a physical
adapter.

Syntax

#include <odi.h>

ODISTAT MLIDShutdown (

UINT32 BoardNumber,

UINT32 ShutDownType,

ECB *pAsyncECB);

Input Parameters

BoardNumber

The logical board number.

ShutDownType

The form of shut down desired:

SHUTDOWN_PERMANENT

Shut down hardware and deregister with the LSL (permanent
shutdown).

SHUTDOWN_PARTIAL

Shut down hardware only (temporary shutdown).

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the caller
does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYED will still be returned if the MLID
control service is performed asynchronously.
18-24 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

etely
es.

by

 are

re

re

in

r
Output Parameters

None.

Return Values

Remarks

If the MLID is permanently shutdown, a subsequent call to MLIDReset will
not be successful. Permanent shutdowns are normally used only to compl
disable the hardware and return any interrupt vectors and system resourc

MLIDs that are temporarily shutdown can be brought back into operation
invoking the MLIDReset control command.

All the adapter’s logical boards that share the same physical adapter and
represented by the logical board number in MLIDCFG_BoardNumber are
affected by this command. All logical board MLID configuration tables that a
affected by this command will have MS_SHUTDOWN_BIT set in the
MLIDCFG_SharingFlags field.

Any outstanding protocol transmit and receive ECBs will be returned befo
this command is completed.

ODISTAT_SUCCESSFUL The MLID was successfully shutdown.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete
a reasonable amount of time and will complete
asynchronously.

ODISTAT_FAIL The MLID was unable to shut down its
hardware. This can indicate a hardware failure o
system corruption.

ODISTAT_BAD_COMMAND The MLID does not support this command.

ODISTAT_BAD_PARAMETER The specified board number is invalid.
MLID Control Routines 18-25

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

PromiscuousChange

Index 10 (0x0A)

Used by protocol stacks to enable or disable
promiscuous mode on the MLID’s adapter.

Syntax

#include <odi.h>

ODISTAT PromiscuousChange (

UINT32 BoardNumber,

UINT32 PromiscuousState,

UINT32 *PromiscuousMode,

ECB *pAsyncECB);

Input Parameters

BoardNumber

The logical board number.

PromiscuousState

Promiscuous state is set or reset according to the following values:

Prom_State_Off Disable promiscuous mode

Prom_State_On Enable promiscuous mode
18-26 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

mes

PromiscuousMode

Pointer to the promiscuous mode mask, which indicates the type of fra
the MLID is to promiscuously receive. The following defines the
promiscuous mode mask:

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is to be called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the caller
does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYED will still be returned if the MLID
control service is performed asynchronously.

Output Parameters

PromiscuousMode

Pointer to the current promiscuous mode mask for the MLID at the
completion of this function. See PromiscuousMode above for definitions
of the promiscuous mode mask values.

PROM_MODE_QUERY Query as to promiscuous
mode

PROM_MODE_MAC MAC frames

PROM_MODE_NON_MAC NonMAC frames

PROM_MODE_MACANDNON Both MAC & nonMAC frames

PROM_MODE_SMT All Station Management
Frames SMT for FDDI

PROM_MODE_RMC Remote multicast frames are
to be received.
MLID Control Routines 18-27

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

or.
e

and
C

 for
pt all
his
et.
lso
ive

 is
ed,
ode

in

Return Values

Remarks

A protocol stack can enable promiscuous mode multiple times without err
The current value of PromiscuousMode determines the type of frames that ar
promiscuously received. PromiscuousState determines whether promiscuous
mode is enabled or disabled, unaffecting the current PromiscuousMode
settings. If the LAN medium or adapter does not distinguish between MAC
nonMAC frames (for example, Ethernet does not differentiate between MA
or nonMAC frames), both MAC and nonMAC frames are assumed for the
PromiscuousMode mask.

Setting the Remote Multicast Frames bit causes the MLID to activate all
multicast frame reception. For example, if an adapter utilizes a hash table
filtering active multicast frame, then the adapter sets the hash table to acce
multicast frames. Filtering of active multicast entries will be disabled while t
bit is set. MLIDS that can filter must also disabled filtering while this bit is s
Protocols that enable the MLID to receive remote multicast frames must a
remember to set the RxPkt_RemoteMulticast_Bit in their stack filter to rece
remote multicast frames.

Multiple Bits may be set, each bit adds to the type of frames that are to be
received.

The driver must keep a counter for each promiscuous mode. Each time it
enabled, the counter(s) should be incremented, and each time it is disabl
they should be decremented. When the counters reach 0, promiscuous m
should be disabled on the adapter.

ODISTAT_SUCCESSFUL Command was executed successfully.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete
a reasonable amount of time and will complete
asynchronously.

ODISTAT_BAD_COMMAND Promiscuous mode is not supported by the
MLID.

ODISTAT_BAD_PARAMETER The specified board number is invalid.

ODISTAT_NO_SUCH_DRIVER This usually means the driver is temporarily
shutdown.
18-28 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

p bad

ffect
other
ress in
ered.
All packets are presented to the LSL.

MLIDs that support promiscuous mode set the MM_PROMISCUOUS_BIT in
the MLIDCFG_ModeFlags field of the MLID’s configuration table. Pad bytes are
passed up.

All adapters that have promiscuous mode enabled should be able to pass u
packets, if possible.

All adapters that have promiscuous mode and raw send ability should not a
the source address of a raw send transmit when in promiscuous mode; in
words, you should not insert the adapters node address as the source add
the media layer header but transmit the provided media layer header unalt
MLID Control Routines 18-29

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

RegisterMonitor

Index 11 (0x0B)

Invoked by protocol stacks to monitor the packets
the adapter is transmitting.

Syntax

#include <odi.h>

ODISTAT RegisterMonitor (

UINT32 BoardNumber,

void (*TxMonRoutine)(CTCB*),

ECB *pAsyncECB,

BOOLEAN MonitorState);

Input Parameters

BoardNumber

The logical board number.

TxMonRoutine

Pointer to the transmit monitor routine.

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the caller
does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYED will still be returned if the MLID
control service is performed asynchronously.

MonitorState

Boolean value to enable or disable the monitor transmit routine.

TRUE Enable monitor transmit routine.
FALSE Disable monitor transmit routine.
18-30 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2dless

in

Output Parameters

None.

Return Values

Remarks

If a transmit monitor is registered, packets are passed to the monitor regar
of whether the MLID is in promiscuous mode or not. In other words,
promiscuous mode has no effect on a transmit monitor.

The transmit monitor is registered on a per logical board basis.

ODISTAT_SUCCESSFUL The commands completed successfully.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete
a reasonable amount of time and will complete
asynchronously.

ODISTAT_OUT_OF_RESOURCES The monitor is already attached.

ODISTAT_BAD_COMMAND This function is not supported.

ODISTAT_NO_SUCH_HANDLER The value of the pointer to TxMonRoutine from
an attempt to disable the monitor differs from
that used when enabling the monitor transmit
routine. In other words,the value for
TxMonRoutine ensures that only the entity that
enabled the monitor can disable it.

ODISTAT_BAD_PARAMETER The specified board number is invalid.

ODISTAT_MLID_SHUTDOWN The MLID is temporarily shutdown.
MLID Control Routines 18-31

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 can

the
it
hain
Transmit Monitor

The transmit monitor is passed a pointer to a CTCB . The transmit monitor
copy part or all of the packet described by the CTCB but cannot modify it.

Syntax

void TxMonRoutine(CTCB *TxMon_CTCB);

Input Parameters

TxMon_CTCB

Pointer to a CTCB.

Output Parameters

None.

Return Values

None.

Remarks

The transmit monitor differs from the prescan transmit chain stack in that
transmit monitor presents the MAC layer header generated for the transm
packet to whoever is registered as a transmit monitor. A prescan transmit c
stack is only presented with the data that is to be transmitted.
18-32 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

CTCB Structure
typedef struct _CTCB_FRAGMENT_BLOCKSTRUCT_
{

UINT32 CTCB_FragmentCount;
FRAGMENT_STRUCT CTCB_Fragment[1];

}CTCB_FRAGMENT_BLOCK;

typedef struct _CTCB_
{

void *CTCB_Reserved;
UINT32 CTCB_BoardNumber;
UINT32 CTCB_DriverWS[3];
UINT32 CTCB_DataLen;
CTCB_FRAGMENT_STRUCT *CTCB_FragBlockPtr;
UINT32 CTCB_MediaHeaderLen;
UINT8 CTCB_MediaHeader[MAX_MEDIA_HEADER_SIZE];

}CTCB;

The CTCB will always contain logical addresses when presented to the
transmit monitor.
MLID Control Routines 18-33

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

RemoveNetworkInterface
Index 16 (0X10)

Allows an application to remove (unload) a logical
board.

Syntax

#include <odi.h>

ODISTAT RemoveNetworkInterface

(UINT32 boardNumber,

ECB *pAsyncECB);

Input Parameters

boardNumber

The logical board number.

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the
caller does not need to be informed of the completion of the request;
however, ODISTAT_RESPONSE_DELAYED will still be returned if the
MLID control service is performed asynchronously.

Output Parameters

None.
18-34 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

 in
Return Values

Remarks

This function permanently removes the logical board associated with
boardNumber.

ODISTAT_SUCCESSFUL The logical board was successfully removed.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete
a reasonable amount of time and will be
completed asynchronously.

ODISTAT_FAIL The MLID was unable to remove the logical
board.

ODISTAT_BAD_COMMAND The MLID does not support this command.

ODISTAT_BAD_PARAMETER The specified board number is invalid.
MLID Control Routines 18-35

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ResetNetworkInterface
Index 18 (0X12)

Allows an application to reset a logical board.

Syntax

#include <odi.h>

ODISTAT ResetNetworkInterface

(UINT32 boardNumber,

ECB *pAsyncECB);

Input Parameters

boardNumber

The logical board number.

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the
caller does not need to be informed of the completion of the request;
however, ODISTAT_RESPONSE_DELAYED will still be returned if the
MLID control service is performed asynchronously.

Output Parameters

None.
18-36 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

 in

.

Return Values

Remarks

This function resets the logical board associated with boardNumber. For most
LAN drivers this is a NOP.

ODISTAT_SUCCESSFUL The logical board was successfully reset.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete
a reasonable amount of time and will be
completed asynchronously.

ODISTAT_FAIL The MLID was unable to reset the logical board

ODISTAT_BAD_COMMAND The MLID does not support this command.

ODISTAT_BAD_PARAMETER The specified board number is invalid.
MLID Control Routines 18-37

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

SetLookAheadSize

Index 9 (0x09)

Tells the MLID the amount of lookahead data that
is needed by the caller to properly process
received packets.

Syntax

#include <odi.h>

ODISTAT SetLookAheadSize (

UINT32 BoardNumber,

UINT32 RequestedSize,

ECB *pAsyncECB);

Input Parameters

BoardNumber

The logical board number.

RequestedSize

The requested lookahead size.

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is to be called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the caller
does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYED will still be returned if the MLID
control service is performed asynchronously.

Output Parameters

None.
18-38 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

to

e
size is
ger

in

nds
Return Values

Remarks

As part of a protocol stack’s initialization, this function should be invoked
properly configure the MLID specified in MLIDCFG_BoardNumber for the
amount of lookahead data a protocol stack needs for packet reception. Th
lookahead data value must be between 0 and 128 bytes. If the requested
less than the MLID’s current lookahead size value, the MLID will use the lar
value. In other words, it is impossible to adjust the size downward.

ODISTAT_SUCCESSFUL The lookahead size was updated.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete
a reasonable amount of time and will complete
asynchronously.

ODISTAT_BAD_PARAMETER The requested lookahead size exceeded bou
or the specified board number is invalid.

ODISTAT_MLID_SHUTDOWN The MLID is temporarily shutdown.
MLID Control Routines 18-39

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ShutdownNetworkInterface
Index 17 (0X11)

Allows an application to perform a partial shutdown
of a logical board.

Syntax

#include <odi.h>

ODISTAT ShutdownNetworkInterface

(UINT32 boardNumber,

ECB *pAsyncECB);

Input Parameters

boardNumber

The logical board number.

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the
caller does not need to be informed of the completion of the request;
however, ODISTAT_RESPONSE_DELAYED will still be returned if the
MLID control service is performed asynchronously.

Output Parameters

None.
18-40 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ith

.

 in
Return Values

Remarks

This function performs a partial shutdown of the logical board associated w
boardNumber.

ODISTAT_SUCCESSFUL The logical board was successfully shutdown

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete
a reasonable amount of time and will be
completed asynchronously.

ODISTAT_FAIL The MLID was unable to shutdown the logical
board.

ODISTAT_BAD_COMMAND The MLID does not support this command.

ODISTAT_BAD_PARAMETER The specified board number is invalid.
MLID Control Routines 18-41

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

18-42 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

A p p e n d i x A Event Control Blocks (ECBs)
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

re,
eful

ceive

t
Appendix Overview

This appendix describes the Event Control Block (ECB), the ECB structu
and each of the fields in the ECB structure. This appendix is especially us
for those developing for ECB aware LAN adapters.

Event Control Blocks

The ODI system uses Event Control Blocks (ECBs) for two purposes:

• To describe the protocol data during packet transmission

• To describe the protocol buffers during packet reception

The format of the ECB is the same regardless of whether it is a send or a re
ECB.

This appendix includes the ECB structure in sample code and a table tha
describes the fields of the ECB.

Event Control Block Structure Sample Code

typedef struct _FRAGMENT_STRUCT_

{

void *FragmentAddress;

UINT32 FragmentLength;

} FRAGMENT_STRUCT;

typedef struct _ECB_

{

struct _ECB_*ECB_NextLink;
Event Control Blocks (ECBs) A-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

struct _ECB_*ECB_PreviousLink;

UINT16 ECB_Status;

void (*ECB_ESR)(struct _ECB_ *);

UINT16 ECB_StackID;

PROT_ID ECB_ProtocolID;

UINT32 ECB_BoardNumber;

NODE_ADDR ECB_ImmediateAddress;

union

{

UINT8 DWs_i8val[4];

UINT16 DWs_i16val[2];

UINT32 DWs_i32val;

void *DWs_pval;

} ECB_DriverWorkspace;

union

{

UINT8 PWs_i8val[8];

UINT16 PWs_i16val[4];

UINT32 PWs_i32val[2];

UINT64 PWs_i64val;

void *PWs_pval[2];

} ECB_ProtocolWorkspace;

UINT32 ECB_DataLength;

UINT32 ECB_FragmentCount;

FRAGMENT_STRUCT ECB_Fragment[1];

} ECB;

Table A-1

Fragment Structure and ECB Field Descriptions

Name Description

FragmentAddress This field specifies a pointer to a data buffer of FragmentLength bytes.

FragmentLength This field specifies the length of the buffer in bytes pointed to by
FragmentAddress. This field can be 0, in which case the MLID will skip over it
when transmitting or receiving data.
A-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ECB_NextLink This field is typically used as a forward link to a list of ECBs. The current owner
of the ECB (the protocol stack, in this case) uses this field.

ECB_PreviousLink This field is typically used as a back link to manage a list of ECBs. The current
owner of the ECB uses this field. When an ECB is returned from an MLID
containing a received packet, this field contains the received packet error
status defined as follows:

Bit Value Description

PAE_CRC_BIT CRC error (for example, Frame Check
Sequence (FCS) error).

PAE_CRC_ALIGN_BIT CRC / Frame Alignment error.

PAE_RUNT_PACKET_BIT Runt packet.

PAE_TOO_BIG_BIT Packet larger than allowed by media.

PAE_NOT_ENABLED_BIT Received packet for a frame type not
supported, for example, Logical Board not
registered for the frame type of the received
packet. A board number associated with the
physical adapter is placed in the lookahead
structure.

PAE_MALFORMED_BIT Malformed packet. For example, packet size
smaller than minimum size for Media Header
(for example, incomplete MAC Header).
Contents of the length field in an Ethernet
802.3 header is larger than the total packet
size.

PAE_NO_COMPRES_BIT Do not decompress the received packet.

PAE_NONCAN_ADDR_BIT The Address present in
ECB_ImmediateAddress is in noncanonical
format.

If no error bits are set, the packet was received without error and the data can
be used. All undefined bits are cleared.

Table A-1

Fragment Structure and ECB Field Descriptions

Name Description
Event Control Blocks (ECBs) A-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ECB_Status This field indicates the completion status of an ECB. This field is invalid until
the associated event service routine is called. The following are the possible
return values.

ODISTAT_SUCCESSFUL Packet was received successfully.

ODISTAT_RX_OVERFLOW Packet was too big to fit into the fragments
described by the ECB. However, only the
portion of the packet that overflowed the
buffer was lost; the buffer contains as much
data as it could hold.

ODISTAT_CANCELED The ECB was not needed by the MLID. The
MLID signals to the protocol stack that the
ECB was not transmitted.

ODISTAT_MLID_SHUTDOWN The LAN adapter specified in the
ECB_BoardNumber field cannot be found.
This usually means that the MLID has been
shut down (temporarily or permanently).

ODISTAT_BAD_PARAMETER The ECB contains bad parameters—for
example, the amount of data to transmit
exceeds the maximum possible for the MLID.
The ECB will not have been transmitted.

Note: The return values are ODISTAT cast as UINT16.

ECB_ESR The protocol stack sets this field to point to an appropriate routine that is to be
called when the send or receive event is complete (either successfully or with
an error). This field must point to a valid handler ((*ECB_ESR)(ECB*)).

Table A-1

Fragment Structure and ECB Field Descriptions

Name Description
A-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ECB_StackID When a packet is transmitted, the protocol stack sets this field to the protocol
stack’s assigned Stack ID (SID) before the protocol stack sends the ECB to the
LSL. When a packet is being received, the LSL sets this field to the Stack ID
assigned to the protocol stack that is receiving the packet. If a packet is being
transmitted as a raw send, the protocol stack can set this field to 0xFFFF as a
signal to the underlying MLID that this is a raw send. This gives the protocol
stack the ability to specify the complete packet, including all low-level headers.

The following values are valid for the ECB_StackID field.

RAW_SEND_PRIORITY_0 0xFFFF 0 = No Priority

RAW_SEND_PRIORITY_1 0xFFFE 1 = Lowest Priority

RAW_SEND_PRIORITY_2 0xFFFD

RAW_SEND_PRIORITY_3 0xFFFC

RAW_SEND_PRIORITY_4 0xFFFB

RAW_SEND_PRIORITY_5 0xFFFA

RAW_SEND_PRIORITY_6 0xFFF9

RAW_SEND_PRIORITY_7 0xFFF8 7 = Highest Priority

SEND_PRIORITY_0 0xFFF7 0 = No Priority

SEND_PRIORITY_1 0xFFF6 1 = Lowest Priority

SEND_PRIORITY_2 0xFFF5

SEND_PRIORITY_3 0xFFF4

SEND_PRIORITY_4 0xFFF3

SEND_PRIORITY_5 0xFFF2

SEND_PRIORITY_6 0xFFF1

SEND_PRIORITY_7 0xFFF0 7 = Highest Priority

Table A-1

Fragment Structure and ECB Field Descriptions

Name Description
Event Control Blocks (ECBs) A-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ECB_ProtocolID This field contains the Protocol ID (PID) value for sends and receives. If the
ECB is a send ECB, the protocol stack sets this field before calling SendPacket.
In a send ECB, the PID is embedded into the low-level packet header by the
underlying MLID and is used to uniquely identify the packet as the caller’s
protocol type.

For receive ECBs, the protocol stack fills in this field with the protocol ID
supplied in the LOOKAHEAD structure. The PID is stored in high-low order.

ECB_BoardNumber When an MLID registers with the LSL, the MLID is given a logical board
number. The BoardNumber field of the configuration table contains that board
number. On sends, a protocol stack fills in this field to indicate the target logical
board.

For receive ECBs, the protocol stack fills in this field with the board number
supplied in the LOOKAHEAD structure.

ECB_ImmediateAddress If the ECB is a send ECB, the protocol stack sets this field before calling
SendPacket. The immediate address is the destination address of the packet
on the physical network. If the ECB is a receive ECB, the protocol stack fills in
this field with the immediate address supplied in the LOOKAHEAD structure.
This source address is the node on the same physical network that just sent
the packet. If the MLID is utilizing canonical addressing, the immediate
address is in canonical form.

Table A-1

Fragment Structure and ECB Field Descriptions

Name Description
A-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ECB_DriverWorkspace This field is generally reserved for use by the MLID. Protocol stacks should not
modify this field unless the protocol stack currently owns the ECB.

The first byte, offset 0 of the DriverWorkspace field, is used to indicate the type
of received packet and the number of data bytes present in the packet after an
MLID has finished filling the ECB and the ECB is placed on the LSL event
queue.

Value Description

ECB_MULTICAST Multicast : The packet was destined to a subset
of group addresses on the physical network
that the MLID has been programmed to
support.

ECB_BROADCAST Broadcas t: The packet was destined to all
nodes on the physical network. Note: on
receiving a broadcast both b0 and b1 are set to
1, since a broadcast address is also a group
address.

ECB_UNICASTREMOTE UnicastRemote : The packet was directly
destined to another workstation on the physical
network. Note, this bit set generally only occurs
after the MLID has been entered into
promiscuous mode or has received a packet
due to source routing.

ECB_MULTICASTREMOTE MulticastRemote : The packet was destined to
a subset of group addresses on the physical
network that the MLID has not been
programmed to support. Generally, this bit is
set only after the MLID has been entered into
promiscuous mode.

ECB_SOURCE_ROUTE SourceRoute : This bit is set in conjunction with
other packet type bits if the packet has source
routing information in the packet, in other
words, the RII bit is set. If the source routing
module is not loaded and the length of the
source route field is greater than two bytes
(packet from a remote ring), all other bits will be
cleared.

Table A-1

Fragment Structure and ECB Field Descriptions

Name Description
Event Control Blocks (ECBs) A-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ECB_GLOBALERROR GlobalError : The packet contains errors. See
the ECB_PreviousLink field as to specific error.
This is an exclusive bit, if set all other bits
should be 0. This value supersedes
SourceRoute.

ECB_MACFRAME MacFrame : The packet is a non-data frame (for
example, the MAC layer frame). This is an
exclusive bit if set, all other bits must be 0.
Note: MAC frames by definition are not source
routable.

ECB_UNICASTDIRECT Direct : The packet was destined to this station
only.

The MLID supports 802.2 Type II. The number of control bytes present in the
802.2 header is presented in the second byte, for example, offset 1, of the
DriverWorkspace field:

Bit Value Description

ECB_TYPE_I 1 control byte is present in the 802.2 header

ECB_TYPE_II 2 control bytes are present in the 802.2 header

ECB_RX_PRIORITY RxPriorityFrame: The received packet is a priority
packet. This is only valid for topologies that support a
distinction in priority levels.

When this bit is set the LKAhd_PriorityLevel field in
the LOOKAHEAD structure contains the priority level.
If the protocol stack needs the priority level when the
ECB is returned it must save it at LOOKAHEAD time.

This bit is not set if the received frame is at the normal
priority level or lower.

If ECB_TYPE_I or ECB_TYPE_II is not set, no 802.2 header is in the frame.

The second word, offsets 2 and 3 for example, of the DriverWorkspace field are
filled with the size of the received frame minus the MAC header, for example,
the total number of data bytes present in the frame.

ECB_ProtocolWorkspace This field is reserved for use by the originating protocol stack and must not be
modified by the LSL or the MLIDs.

Table A-1

Fragment Structure and ECB Field Descriptions

Name Description
A-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ECB_DataLength If this is a send ECB, the protocol stack sets this field to the total length of the
data in bytes before it calls SendPacket.

If this is a receive ECB, this field is set to the length in bytes of the data that is
copied into the fragment structure portion of the ECB.

ECB_FragmentCount This field contains the number of fragment buffer descriptors immediately
following this field. This value cannot be larger than 16, for example, range 0 <
ECB_FragmentCount <= MAX_FRAG_COUNT.

ECB_Fragment[1] This field specifies a fragment structure.

Table A-1

Fragment Structure and ECB Field Descriptions

Name Description
Event Control Blocks (ECBs) A-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

A-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

A p p e n d i x B Portability Issues
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

u need
es,
help

r to
ines
agma

the
ing

nd

with,

ters.

 one

sed

st.
ntel
Portability Issues Overview

For your code to be portable across processors and operating systems, yo
to do several things. This appendix describes some programming practic
assumptions, general principles, and other miscellaneous information to
you in writing a portable driver.

In most cases, it should be possible to port your code from one processo
another or from one operating system to another by modifying a few #def
and/or typedef statements in a few header files, and perhaps defining a pr
or setting a compiler switch.

Portability Rules

The following are rules and guidelines that you should follow to increase
probability that your code will be portable to other processors and operat
systems. This is not a comprehensive list, therefore, you may need to do
additional things not listed to ensure portability (test on different platforms a
operating systems, learn about the specifics of hardware you are working
etc.).

• Adhere strictly to the ANSI C specification.

• Don’t make assumptions about the size of a given type, especially poin

• Be aware that numeric fields composed of more than 1 byte can be in
of two formats: big endian (high-low) or little endian (low-high). Big
endian numbers contain the most significant byte in the lowest addres
byte of the field, the next most significant byte in the second lowest
addressed byte, and so on, with the least significant byte appearing la
Little endian numbers are stored in the opposite order. For example, I
microprocessors store numbers in little endian order.
Portability Issues B-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ing
e

t

nt

ters

d

asic
ct
ssor/

g in
ke
ment

d use

 the
• Pay attention to alignment constraints when allocating memory and us
pointers. The addresses that certain operands may be assigned to ar
restricted on some architectures.

• Be aware that pointers to objects may have the same size but differen
formats.

• Do not redefine the NULL symbol. NULL should always be the consta
zero.

• Make file names no more than eight main and three extension charac
long.

• Always dereference the pointer when calling functions passed as
arguments. For example, if ‘‘F“ is a pointer to a function, use ‘‘*F” instea
of ‘‘F“, because some compilers may not recognize ‘‘F”.

• In general, do not declare any variable to be any of the C language b
types (short, long, int, char, etc.). Declare variables to be of some abstra
type, and typedef that type to the appropriate base type for each proce
operating system combination.

In some cases, such as counters, it may be more efficient to use int instead of
an abstract type.

• Make sure that all members in any structure that describes data comin
from or going out to the LAN are given unique, abstract types. Also, ma
sure that all references to these members use the appropriate misalign
correction and byte order correction macros.

• Isolate processor and operating system code into separate modules an
conditional compilation to make it easier to port your code.

• Do not modify string constants, because many implementations place
constants into read-only memory. (This is required by the ANSI C
standard.)

• Enclose #pragma directives with #ifdef’s in order to document under
which platform they make sense (suggested).

• Protect header files (suggested).

• Use the sizeof operator to determine the size of an object, rather than
making an assumption or hard-coding a value.
B-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

tions

se the
to the

ers
ly

 given

.

are
ays

f

 is not
• Use the offsetof macro to determine the offset of a member within a
structure, rather than making an assumption or hard-coding a value.

• Initialize all data.

• Do not depend on parameter passing conventions; especially assump
about which parameters will be passed on the stack or in registers.

• Do not access arrays based on a knowledge of the storage method. U
standard C language access methods instead of computing offsets in
array; .

• Do not assume a stack growth direction.

• Use the varargs features to implement functions that require variable
arguments.

• Pay attention to word sizes. Objects may be non-intuitive sizes. Point
are not always the same size as ints, the same size as each other, or free
interconvertible.

• Be aware that some machines have more than one possible size for a
type. The size you get can depend upon both the compiler and
compile-time flags.

• Understand that the void* type is guaranteed to have enough bits of
precision to hold a pointer to any data object.

• Be aware that even when, say, an int* and char* are the same size, they
may have different formats.

• Understand that the integer constant zero may be cast to any pointer type
The resulting pointer is called a NULL pointer for that type, and is
different from any other pointer of that type. A NULL pointer always
compares equal to the constant zero. A NULL pointer might not comp
equal with a variable that has the value zero. NULL pointers are not alw
stored with all bits zero. NULL pointers for two different types are
sometimes different. A NULL pointer of one type cast in to a pointer o
another type will be cast in to the NULL pointer for that second type.

• Watch out for signed characters. Code that assumes signed/unsigned
portable.

• Avoid assuming ASCII. Characters may hold more than 8 bits.
Portability Issues B-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

tion

 and

ng

the
.

ters

me
rs

e

n.
• Do not use code that takes advantage of two’s compliment representa
of numbers in most cases.

• Be aware that there may be unused holes in structures. Suspect unions used
for type cheating. Specifically, a value should not be stored as one type
retrieved as another.

• Be aware that different compilers use different conventions for returni
structures.

• Be aware that the address space may have holes. Simply computing
address of an unallocated element in an array may crash the program

• Be aware that only the == and != comparisons are defined for all poin
of a given type. It is only portable to use <, <=, >, or >= to compare
pointers when they both point in to (or to the first element after) the sa
array. It is likewise only portable to use arithmetic operators on pointe
that both point into the same array or the first element afterwards.

• Be aware that side effects within expressions can result in code whos
semantics are compiler-dependent, since the order of evaluation is
explicitly undefined in most places in the C language.

Translation Limits

The following are transaction limits that you should follow to ensure
portability between operating systems and processors. The following are
maximum values.

• Eight nesting levels of conditional inclusion.

• Eight nesting levels for #include’d files

• 32 nesting levels of parenthesized expressions within a full expressio

• 1024 macro identifiers simultaneously.

• 509 characters in a logical source line.

• Six significant initial characters in an external identifier.

• 127 members in a single structure or union.
B-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

.

t

the

he
sors

ssors
ned
ed as
C

r in
bers
t in
eader

sic

h or
• 31 parameters in one function call.

Assumptions

The following are assumptions that need to be made in writing your code

• All target architectures will align 8-bit items on 8-bit boundaries, 16-bi
items on 16-bit boundaries, and 32-bit items on 32-bit boundaries.

• All compilers support the volatile data type qualifier.

• The compiler and architecture will align structures to the alignment of
largest data item within the structure (for example, a structure whose
largest element is a byte can be byte aligned).

Data Packing and Alignment

The ANSI C specification states that a programmer cannot assume that t
members of a structure will be contiguous. The compiler for many proces
will insert padding into a structure to force each member to begin on the
alignment value appropriate for its type. This is done because many proce
will cause a processor exception if an attempt is made to access ‘‘misalig
data.“ This causes problems because the MAC header cannot be describ
a structure in many media types. In these media, the members of the MA
header structure are not guaranteed to be properly aligned, either in the
structure definition, which prevents the computer from inserting padding, o
memory, which prevents processor exceptions. This implies that all mem
of such structures should be declared as types not used anywhere excep
such structure declarations. This allows these types to be declared in a h
file that is platform dependent. On platforms that have no alignment
restrictions or on platforms with alignment restrictions and an appropriate
compiler switch or pragma, the type can be typedef’d to its appropriate ba
type. On platforms that have alignment restrictions and no compiler switc
pragma to force packed structures, the member can be typedef’d to an
appropriately-sized array of char.
Portability Issues B-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

B-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

A p p e n d i x C Platform Specific Information
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

 in

nes.

n

 one.
Overview

This appendix presents platform-specific information related to writing
MLIDs. Currently, only Intel (80x86 and Pentium) processor specific
information is provided. Information about other platforms will be provided
the future.

Intel Processors

The following information is specific to Intel 80x86 based processor machi

Building the CHSM

The following describes the process of creating, compiling, linking, and
loading an MLID.

Creating the Source Files

C language NetWare drivers are written in ANSI C code. This specificatio
provides the details for writing the driver.

Compiling the Source Files

The source file (<driver>.c) and header files (odi.h, <ctsm>.h, cmsm.h, and
odi_nbi.h) are compiled into an object file (<driver>.OBJ). The driver can
consist of one or more object files. Depending on the target platform, the
developer may have a choice of several compilers or may be restricted to
Platform Specific Information C-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ile
re

n
be
Linking the Object Files

The NetWare linker (NLMLINKX) converts the <driver>.OBJ object file and
any other object files that make up the MLID into a super object file called
<driver>.LAN. NLMLINKX requires a linker definition file to create a
NetWare Loadable Module. The linker definition file is described below.
To use the linker, type:

nlmlinkx Driver

(where Driver is the name of the linker definition file)

Linker Definition File

Each NetWare Loadable Module must have a corresponding definition file
with a ".DEF" extension. This file is needed by the NetWare linker,
NLMLINKX. All definition file information can also be embedded inside a
make file, and the make file can produce the definition file. The definition f
contains information about the loadable module, including a list of NetWa
variables and routines that the loadable module must access.

The following shows a definition file example that can be used to create a
MLID. The file consists of keywords followed by data. The keywords can
upper or lower case.

Linker Definition File Example

TYPE 1

DESCRIPTION “NetWare CNE2000"

VERSION 5,30,2

OUTPUT <drivername>

INPUT <.OBJ drivername>

START DriverInit

EXIT DriverRemove

MESSAGE CNE2000.MSG

MODULE ETHERTSM

REENTRANT

MAP

IMPORT CEtherTSMRegisterHSM

CEtherTSMGetRCB

CEtherTSMRcvComplete
C-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

CEtherTSMSendComplete

CEtherTSMGetNextSend

CEtherTSMUpdateMulticast

CMSMAlloc

CMSMDriverRemove

CMSMFree

CMSMParseDriverParameters

CMSMPrintString

CMSMRegisterHardwareOptions

CMSMRegisterMLID

CMSMReturnDriverResources

CMSMScheduleAES

CMSMSetHardwareInterrupt

Table C-1

Linker Definition File Example Definitions

Name Description

TYPE Extension to append to the output file. The default extension is ".NLM". A value of 1
specifies ".LAN", and a value of 2 specifies ".DSK".

DESCRIPTION Description string in the header of the <driver>.LAN file. This string describes the
loadable module and is from 1 to 127 bytes long. The console commands, MODULES,
CONFIG, and LOAD display this description string on the file server console.

Example of the description string: Novell Ethernet NE2000

OUTPUT Output file name.

INPUT OBJ files to include in the loadable module. It is not necessary to use the filename
extension in this list.

START Name of the loadable module’s initialization routine, in this case, DriverInit . This is the
procedure the NetWare loader will call when the module is loaded.

EXIT Name of the loadable module’s remove routine, in this case, DriverRemove. The
UNLOAD command uses this routine to unload the module from memory.

REENTRANT Allows the driver to be loaded more than once, but only have the driver’s code copied
into memory the first time.

MAP Tells the linker to create a map file.
Platform Specific Information C-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

IMPORT NetWare variables and routines the loadable module must access.

EXPORT A list of variable and function names resident in the loadable module that are available
to other loadable modules.

MODULE Loadable modules that must be loaded before the loadable module defined by this file
is loaded. If the necessary loadable modules are not already in memory, the loader will
attempt to find and load them. If it cannot find them, the loader will not load the current
module.

CUSTOM Name of a file that contains custom firmware data. When the linker sees this keyword it
includes the specified file in the output file it is creating.

DEBUG Tells the linker to include debug information in the output file that it creates. This allows
public labels to be accessible as symbols in some debuggers.

CHECK Name of the loadable module’s check procedure. Both the UNLOAD and DOWN
console commands call a loadable module’s check procedure if one exists. An MLID’s
check procedure might check to see if an adapter is currently being accessed and return
a nonzero value to the NetWare operating system if the board is busy. The NetWare
operating system can then display a message warning the console operator that the
board is busy.

MULTIPLE Tells the linker that more than one code image of the loadable module can be loaded
into memory concurrently.

COPYRIGHT Tells the linker to include a copyright string in the output file. A MEON string 1 to 252
bytes long, in double quotes following the keyword COPYRIGHT is displayed whenever
the module is loaded. To start a new line within the displayed string, use "\n". If the
copyright keyword is used but no string is entered, the linker includes the Novell default
copyright message.

Note: You must use NLMLINKX.EXE to use the COPYRIGHT keyword.

Table C-1

Linker Definition File Example Definitions continued

Name Description
C-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2
and

 file.
 the

 line.
MLID Configuration File

MLIDs that support a large number of custom keywords may have trouble
specifying all parameters on the limited space of the command line. Comm
line parameters can be listed in a driver configuration file or load response
To use a load response file, type the parameters as they would appear on
command line in the file and at the command line type:

LOAD <drivername> @<response filename>

If this file exists in the same directory as the driver, the MLID will open the
file, parse it, and process it along with other parameters on the command

VERSION Gives the linker the version of the module that should be placed into the NLM header
version field. The format for this keyword is:

VERSION Major, Minor[, Revision]

The version must be separated by commas. The major version number is one digit, and
the minor version number is two digits. The revision number is optional and is a number
from 1-26 representing a-z.

For example, "VERSION 3,50,2" produces the version field 3.50b in the NLM header
of the output file.

Note that to use the VERSION keyword, you must use NLMLINKX.EXE. The date is
automatically set by the linker to the date that the files are linked.

The CMSM.NLM and <CTSM>.NLM must be loaded (only once) before any CHSMs are
loaded. These can be auto-loaded using the "module" keyword in the linker definition
file.

To load the driver, you could enter a command similar to this:

LOAD <driver>FRAME=ETHERNET_802.3, PORT=300,
NODE=2608C760361, INT=3

The parameters do not have a set order. The commas are optional.

Table C-1

Linker Definition File Example Definitions continued

Name Description
Platform Specific Information C-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

 The
Load Keywords and Parameters

This section describes the parameters for the NetWare LOAD command.
load parameters and examples of their use are described below.

Table C-2

Load Keywords and Parameters Descriptions

Name Descriptions

PORT, PORT1 I/O mapped address base that the user wants the board to use. A port length
can also be included as shown in the following examples.

LOAD <driver> PORT=300
LOAD <driver> PORT=300:A
LOAD <driver> PORT=300:A PORT1=700:8

MEM, MEM1 Beginning address of the shared RAM that the board can use. The size of the
shared memory buffer can also be specified.

LOAD <driver> MEM=C0000
LOAD <driver> MEM=C0000:1000
LOAD <driver> MEM=C0000:1000 MEM1=CC000

INT, INT1 Interrupt number that the board is expected to use to awaken the interrupt
service routine.

LOAD <driver> INT=3
LOAD <driver> INT=3 INT1=5

DMA, DMA1 If the board supports DMA, this is the direct memory address channel that the
adapter should use for data transfer to memory.

LOAD <driver> DMA=0
LOAD <driver> DMA=0 DMA1=3

SLOT System-wide unique Hardware Instance Number (HIN) that may be the
physical slot number on a slot based bus such as Micro Channel, PCI, PC
Card, EISA, or another uniquely assigned number.

LOAD <driver> SLOT=4

RETRIES Number of send retries that the MLID should use in its attempts to send
packets.

RETRIES = n
C-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

CHANNEL Channel number (controller number) to use for multichannel adapters. A
multichannel adapter is a board containing more than one adapter.

CHANNEL = number

FRAME String specifying the frame type (see ODI Supplement: Frame Types and
Protocol IDs for a list of frame type strings).

FRAME = type

Token-Ring drivers can add "MSB" or "LSB" following the frame type
designation. LSB forces canonical addresses to be passed between the MLID
and the upper layers. The MSB designation forces noncanonical addresses to
be passed (this is the default for Token-Ring media). Ethernet media cannot
use the MSB designator.

NODE Node address that the board is to use; this address should override the default
address on the board if one exists.

NODE = nnnnnnnnnnnn

In the case of Token-Ring media, which has a noncanonical physical layer
format, the override node address on the command line can be entered in
either canonical or noncanonical format (see ODI Specification Supplement:
Canonical and Noncanonical Addressing). To indicate the format of the
address, an "L" (LSB) or an "M" (MSB) can be appended. For example, to
indicate a node address for Token-Ring media in canonical format enter:

NODE = nnnnnnnnnnnnL

No matter what the format of the node address specified on the command line,
the format of the node address actually placed in the configuration table is
indicated by the MM_NONCANONICAL_BIT bit in the
MLIDCFG_ModeFlags field.

Table C-2

Load Keywords and Parameters Descriptions continued

Name Descriptions
Platform Specific Information C-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

C-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

A p p e n d i x D ODI HEADER FILE
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

s
Appendix Overview

This appendix contains the contents of the ODI header file which contain
structures and defines needed by the MLI or MPI interface.

ODI.H

/*--*
* Copyright Unpublished Work of Novell, Inc. All Rights Reserved
*
* THIS WORK IS AN UNPUBLISHED WORK AND CONTAINS CONFIDENTIAL,
* PROPRIETARY AND TRADE SECRET INFORMATION OF NOVELL, INC.
* ACCESS TO THIS WORK IS RESTRICTED TO (I) NOVELL EMPLOYEES
* WHO HAVE A NEED TO KNOW TO PERFORM TASKS WITHIN THE SCOPE
* OF THEIR ASSIGNMENTS AND (ii) ENTITIES OTHER THAN NOVELL
* WHO HAVE ENTERED INTO APPROPRIATE LICENSE AGREEMENTS.
* NO PART OF THIS WORK MAY BE USED, PRACTICED, PERFORMED, COPIED,
* DISTRIBUTED, REVISED, MODIFIED, TRANSLATED, ABRIDGED,
* CONDENSED, EXPANDED, COLLECTED, COMPILED, LINKED, RECAST,
* TRANSFORMED OR ADAPTED WITHOUT THE PRIOR WRITTEN CONSENT OF
* NOVELL. ANY USE OR EXPLOITATION OF THIS WORK WITHOUTAUTHORIZATION
* COULD SUBJECT THE PERPETRATOR TO CRIMINAL AND CIVIL LIABILITY.
---/
/**
*
* Program Name:C ODI Header File
*
* Filename:ODI.H
*
* ODI Spec Ver:1.11
*
* Description:This file is the main source for the C ODI SPECIFICATION.
* Any structures needed by the MLI or MPI interface are defined here.
*
**/
ODI Header File D-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

#ifndef _ODI_Include_
#define _ODI_Include_

/* C ODI Specification Version Numbers */

#define ODI_SPEC_MAJOR_VER1
#define ODI_SPEC_MINOR_VER11

/*State Definitions TRUE / FALSE*/

#ifndef OS_NT
#ifndef OS_WIN95
#ifndef _cdecl
#define _cdecl
#endif
#endif
#endif
#ifdef OS_WIN95
#define CALLCNV _cdecl
#else
#define CALLCNV
#endif

#ifdef TRUE
#undef TRUE
#endif

#ifdef FALSE
#undef FALSE
#endif

#ifdef UNUSED
#undef UNUSED
#endif

#ifdef BOOLEAN
#undef BOOLEAN
#endif

#define FALSE 0x0
#define TRUE 0x1
#define UNUSED -1
#define BOOLEAN unsigned char
D-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

/**
C ODI Type Definitions

The following are typedef definitions for parameters used by the
ANSI C ODI Interface. The conditional declarations define both a
preprocessor symbol as itself and a typedefof the same name.
The purpose behind this is to protect the typedef against multiple
declarations. The definition of a preprocessor definition as
itself is allowed by the ANSI language specification.
***/

#ifndef MEON
#define MEON MEON
typedef unsigned charMEON;
#endif

/* Definition for MEON Strings, NB. MEON_STRING is really used as mnemonic.*/

#ifndef MEON_STRING
#define MEON_STRING MEON_STRINGtypedefunsigned charMEON_STRING;

/* by convention MEON_STRINGS
NULL terminated */

#endif

#ifndef UINT8
#define UINT8 UINT8
typedef unsigned char UINT8;
#endif

#ifndef UINT16
#define UINT16 UINT16
typedef unsigned short UINT16;
#endif

#ifndef UINT32
#define UINT32 UINT32
typedef unsigned int UINT32;
#endif

#ifndef UINT64
#define UINT64 UINT64
typedef struct_ UINT64_

{
UINT32 Low_UINT32;
UINT32 High_UINT32;
} UINT64;
ODI Header File D-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

#endif

#ifndef VOID
#define VOID VOID
typedef void VOID;
#endif

/* declare the pointer for the ODI definitions */

#ifndef PMEON
#define PMEON PMEON
typedef MEON *PMEON;
#endif

#ifndef PUINT8
#define PUINT8 PUINT8
typedef UINT8 *PUINT8;
#endif

#ifndef PUINT16
#define PUINT16 PUINT16
typedef UINT16* PUINT16;
#endif

#ifndef PUINT32
#define PUINT32 PUINT32
typedef UINT32* PUINT32;
#endif

#ifndef PUINT64
#define PUINT64 PUINT64
typedef UINT64* PUINT64;
#endif

#ifndef PVOID
#define PVOID PVOID
typedef VOID* PVOID;
#endif
D-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

/* Well Defined Sizes */

#define PID_SIZE 0x06/* Number of Octets in Protocol Identifier */
#define ADDR_SIZE 0x06/* Number of Octets in Address */

/* define assumed Maximum Media Header Size that we'll encounter */
/**/
/* assume that it will be Token-Ring (with SRT)*/
/**/
/* AC, FC, Dest[6], Source[6], SRFields[30], 802.2UI[3], SNAP[5] = 52*/
/* */
#define MAX_MEDIA_HEADER_SIZE52L

#define DefaultNumECBs 0x00
#define DefaultECBSize 1518L/* not including ECB Structure */
#define MinECBSize (512+74+MAX_MEDIA_HEADER_SIZE)L

/* Max. ECB size < 64K*/

#define MAXLOOKAHEADSIZE 128L/* Max. LookAhead Data Size */

#define MAXSTACKNAMELENGTH 65L
#define MAXNAMELENGTH 64L

#define MAXMULTICASTS 16L /* MAXIMUM number of Multicast addresses*/
#define MAX_FRAG_COUNT 16L /* MAXIMUM number of Fragment Count */

typedef struct _PROT_ID_
{

UINT8 protocolID[PID_SIZE];
}
PROT_ID;

typedef struct_NODE_ADDR_
{

UINT8 nodeAddress[ADDR_SIZE];
}
NODE_ADDR;
ODI Header File D-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

/* Chained Protocol Stack position values */

typedef enum_CHNPOS_
{
CHNPOS_FIRST_MUST = 0, /* Load at very first position*/
CHNPOS_FIRST_NEXT = 1, /* Load at next front position*/
CHNPOS_LOAD_ORDER = 2, /* Load dependent on load order */
CHNPOS_LAST_NEXT =3, /* Load next end position*/
CHNPOS_LAST_MUST =4 /* Load at very end of chain*/
} CHNPOS;

#define CHNPOS_MAX_POSIT 0x0004 /* Maximum possible Chain position */
#define CHAINTYPE_TX 0x0000 /* Transmit type Chain Protocol Stack */
#define CHAINTYPE_RX 0x0001 /* Receive type Chain Protocol Stack */

/*SFT III Status values*/

typedef enum_SFTIII_STAT_{

SFTIII_STAT_SUCCESSFUL = 0,
SFTIII_STAT_MIRROR_NOT_ACTIVE = 1,
SFTIII_STAT_NO_PARTNER = 2,
SFTIII_STAT_OUT_OF_RESOURCES = 3,
SFTIII_STAT_NOT_SUPPORTED = -1

}SFTIII_STAT;

/* Look Ahead Definitions */
/* MLIDCFG_LookAheadSize Values*/

#define DEFAULT_LOOK_AHEAD_SIZE 0x12/* Default of 18 look ahead bytes*/
#define MAX_LOOK_AHEAD_SIZE 0x80/* Maximum 128 look ahead bytes*/

/* Rx Packet Attributes(ie. LkAhd_PktAttr) */

#define PAE_CRC_BIT 0x00000001 /* CRC Error */
#define PAE_CRC_ALIGN_BIT 0x00000002 /* CRC/Frame Alignment Error */
#define PAE_RUNT_PACKET_BIT 0x00000004 /* Runt Packet */
#define PAE_TOO_BIG_BIT 0x00000010 /* Packet Too Large for Media */
#define PAE_NOT_ENABLED_BIT 0x00000020 /* Unsupported Frame */
#define PAE_MALFORMED_BIT 0x00000040 /* Malformed Packet */
#define PA_NO_COMPRESS_BIT 0x00004000 /* Do not compress received

packet*/
#define PA_NONCAN_ADDR_BIT 0x00008000 /* Set if Addr.in ImmediateAddress

field is noncanonical*/
D-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

#define PAE_ERROR_MASK(PAE_CRC_BIT | PAE_CRC_ALIGN_BIT |
PAE_RUNT_PACKET_BIT | \
PAE_TOO_BIG_BIT |
PAE_NOT_ENABLED_BIT | PAE_MALFORMED_BIT)

/* Rx Packet Destination Address Types(LkAhd_DestType, Modify Stack Filter) */
/* Low order 16 bits of the Rx Packet Destination Address Types are copied in
ECB_DriverWorkspace.DWs_i16val[0] */

#define DT_MULTICAST 0x00000001 /* Multicast Dest.
address (Group Address)
*/

#define DT_BROADCAST 0x00000002 /* Broadcast Dest.
address */

#define DT_REMOTE_UNICAST 0x00000004 /* Remote Unicast Dest.
address */

#define DT_REMOTE_MULTICAST0x00000008 /* Unsupported
Multicast address */

#define DT_SOURCE_ROUTE 0x00000010 /*Source Routed
packet*/

#define DT_ERRORED 0x00000020 /* Global Error,
exculsive bit. */

#define DT_MAC_FRAME 0x00000040 /*MAC/SMT frames. (ie.
NON-DATA Frame)

*/
#define DT_DIRECT 0x00000080 /* Unicast for this

workstation */

#define DT_8022_TYPE_I 0x00000100 /*Set if packet is 802.2
Type I*/

#define DT_8022_TYPE_II 0x00000200 /*Set if
packet is 802.2 Type II
*/

#define DT_8022_BYTES_BITS0x00000300
#define DT_RX_PRIORITY 0x00000400 /* Set if packet has priority

value other than base
values*/
#define DT_PROMISCUOUS (DT_ERRORED | DT_DIRECT | DT_MULTICAST |
DT_BROADCAST |\
DT_REMOTE_UNICAST |
DT_REMOTE_MULTICAST | DT_SOURCE_ROUTE |\
DT_MAC_FRAME |
DT_RX_PRIORITY)

/* mask off allowable Destination Address Types */
ODI Header File D-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

#define DT_MASK(DT_MULTICAST | DT_BROADCAST |
DT_REMOTE_UNICAST |\

DT_REMOTE_MULTICAST | DT_SOURCE_ROUTE | DT_ERRORED |\
DT_MAC_FRAME |
DT_DIRECT | DT_RX_PRIORITY)

/* ECB Definitions */

/* Stack ID Definitions */

#define ECB_RAWSEND 0xFFFF/* Raw Send, ie. ECB includes MAC Header */
/*implies MLID should not */
/* build MAC Header for this Tx.*/

/* Receive ECB_DriverWorkspace.DWs_i16val[0] */

#define ECB_MULTICAST 0x0001 /* Multicast Dest. address (Group
Address) */

#define ECB_BROADCAST 0x0002 /* Broadcast Dest. address */
#define ECB_UNICASTREMOTE 0x0004 /* Remote Unicast Dest. address

*/
#define ECB_MULTICASTREMOTE0x0008/* Unsupported Multicast address */
#define ECB_SOURCE_ROUTE 0x0010 /* Source Routed packet*/
#define ECB_GLOBALERROR 0x0020 /* Set if packet contains errors

(exculsive)*/

/* NB. If set all other bits should be reset.*/
#define ECB_MACFRAME 0x0040 /* Packet is not a data packet. */

/* NB. If set all other bits should be reset. */
#define ECB_UNICASTDIRECT0x0080/* Unicast for this workstation */

#define ECB_MASK0xFFFF /* mask off allowable Destination Address Types */

#define ECB_TYPE_I 0x0100 /* Set if packet is 802.2 Type I
*/

#define ECB_TYPE_II 0x0200 /* Set if packet is 802.2 Type II
*/

#define ECB_RX_PRIORITY 0x0400 /* Set if packet has priority
value other base
values*/

#define ECB_PROMISCUOUS(ECB_ERRORED | ECB_MULTICAST | ECB_BROADCAST |
ECB_UNICASTREMOTE |\
D-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ECB_MULTICASTREMOTE | ECB_SOURCE_ROUTE | ECB_MAC_FRAME | ECB_RX_PRIORITY)

/* PromiscuousChange state and mode values.*/
#define PROM_STATE_OFF 0x00 /* Disable Promiscuous Mode*/
#define PROM_STATE_ON 0x01 /* Enable Promiscuous Mode */
#define PROM_MODE_QUERY 0x00 /* Query as to promiscuous mode

*/
#define PROM_MODE_MAC 0x01 /* MAC frames*/
#define PROM_MODE_NON_MAC 0x02 /* Non-MAC frames*/
#define PROM_MODE_MACANDNON0x03 /* Both MAC and Non-MAC frames*/
#define PROM_MODE_SMT 0x04 /* FDDI SMT Type MAC frames. */
#define PROM_MODE_RMC 0x08 /* Remote Multicast frames */

/* Operation Scope Definitions */

typedef enum _OPERATION_SCOPE_
{
OP_SCOPE_ADAPTER= 0,
OP_SCOPE_LOGICAL_BOARD = 1
} OPERATION_SCOPE;

/* System Return Code Definitions */

typedef enum _ODISTAT_
{
ODISTAT_SUCCESSFUL= 0,
ODISTAT_RESPONSE_DELAYED= 1,
ODISTAT_SUCCESS_TAKEN= 2,
ODISTAT_BAD_COMMAND= -127,
ODISTAT_BAD_PARAMETER= -126,
ODISTAT_DUPLICATE_ENTRY= -125,
 ODISTAT_FAIL= -124,
ODISTAT_ITEM_NOT_PRESENT= -123,
ODISTAT_NO_MORE_ITEMS= -122,
ODISTAT_MLID_SHUTDOWN= -121,
ODISTAT_NO_SUCH_HANDLER= -120,
ODISTAT_OUT_OF_RESOURCES= -119,
ODISTAT_RX_OVERFLOW= -118,
ODISTAT_IN_CRITICAL_SECTION= -117,
ODISTAT_TRANSMIT_FAILED= -116,
ODISTAT_PACKET_UNDELIVERABLE= -115,
ODISTAT_CANCELED= -4
}ODISTAT;

#define ODISTAT_NO_SUCH_DRIVERODISTAT_MLID_SHUTDOWN
ODI Header File D-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

/* MLID Configuration Table Bit Defintions. */

/* MLID 'Flags' Bit Definitions. */
#define MF_HUB_MANAGEMENT_BIT 0x0100
#define MF_SOFT_FILT_GRP_BIT 0x0200
#define MF_GRP_ADDR_SUP_BIT 0x0400
#define MF_MULTICAST_TYPE_BITS 0x0600
#define MF_RECONFIG_BIT 0x0800
#define MF_PRIORITYSUP_BIT 0x1000

/* MLID 'ModeFlags' Bit Definitions. */
#define MM_REAL_DRV_BIT 0x0001
#define MM_USES_DMA_BIT 0x0002
#define MM_DEPENDABLE_BIT 0x0004

/*Should only be set if MM_POINT_TO_POINT_BIT*/

/*set, for hardware that is normally*/
/*dependable but is not 100% guaranteed*/
#define MM_MULTICAST_BIT 0x0008

/*#redef'ed defineMM_POINT_TO_POINT_BIT0x0010*/
/* Set if point-to-point link,dynamic */

/* call setup and tear down, eg. X.25*/
#define MM_CSL_COMPLIANT_BIT 0x0010 /* Set if MLID is CSL compliant*/
#define MM_PREFILLED_ECB_BIT 0x0020 /* MLID supplies prefilled ECBs*/
#define MM_RAW_SENDS_BIT 0x0040
#define MM_DATA_SZ_UNKNOWN_BIT 0x0080
 #define MM_SMP_BIT 0x0100 /* Set if MLID is SMP enabled.*/
#define MM_FRAG_RECEIVES_BIT 0x0400 /* MLID can handle Fragmented

Receive ECB. */
#define MM_C_HSM_BIT 0x0800 /* Set if HSM written in C. */
#define MM_FRAGS_PHYS_BIT 0x1000 /* Set if HSM wants Frags with

Physical Addresses.*/
#define MM_PROMISCUOUS_BIT 0x2000 /* Set if supports Promiscuous

Mode. */
#define MM_NONCANONICAL_BIT 0x4000 /* Set if Config Node Address

Non-Canonical. */
#define MM_PHYS_NODE_ADDR_BIT 0x8000 /* Set if MLID utilizes Physical

Node Address. */
#define MM_CANONICAL_BITS 0xC000
D-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

/* MLID 'SharingFlags' Bit Defintions */
#define MS_SHUTDOWN_BIT 0x0001
#define MS_SHARE_PORT0_BIT 0x0002
#define MS_SHARE_PORT1_BIT 0x0004
#define MS_SHARE_MEMORY0_BIT 0x0008
#define MS_SHARE_MEMORY1_BIT 0x0010
#define MS_SHARE_IRQ0_BIT 0x0020
#define MS_SHARE_IRQ1_BIT 0x0040
#define MS_SHARE_DMA0_BIT 0x0080
#define MS_SHARE_DMA1_BIT 0x0100
#define MS_HAS_CMD_INFO_BIT 0x0200
#define MS_NO_DEFAULT_INFO_BIT 0x0400
#define MS_MEM_PAGE_BIT 0x8000

/* MLID 'LineSpeed' Bit Definitions. */
#define MLS_MASK 0x7FFF
#define MLS_KILO_IND_BIT 0x8000

/* MLID unused resource definitions. */
#define UNUSED_SLOT 0xFFFF
#define UNUSED_IO_PORT 0
#define UNUSED_IO_RANGE 0
#define UNUSED_MEMORY_ADDRESS 0
#define UNUSED_MEMORY_SIZE 0
#define UNUSED_INTERRUPT 0xFF
#define UNUSED_DMA_LINE 0xFF

#define UNASSIGNED_BOARD_NUMBER 0xFFFF

/* STAT_TABLE_ENTRY Definitons. */

#define ODI_STAT_UNUSED 0xFFFFFFFF/* Statistics Table Entry not in use.*/
#define ODI_STAT_UINT32 0x00000000/* Statistics Table Entry UINT32 Counter.

*/
#define ODI_STAT_UINT64 0x00000001/* Statistics Table Entry UINT64 Counter.

*/
#define ODI_STAT_MEON_STRING0x00000002/* Statistics Table Entry Counter is a
MEON_STRING. */
#define ODI_STAT_UNTYPED 0x00000003/* Statistics Table Entry Counter is a

UINT32 */
/* length preceded array UINT8*/
#define ODI_STAT_RESETABLE0x80000000/* Statistics Table Entry Counter is

resetable */
/* by external entity.This define is only used */
/* by management agents and other modules that */
/* are using STAT_TABLE definintions from this */
/* header file.ODI_STAT_RESETABLE is not a */
ODI Header File D-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

/* part of the ODI Specification and is not allowed */
/* for MLID stats counters.ODI considers */
/* 0x80000000 a reserved bit to avoid conflicts */
/* with other modules in the system. */

#ifdef OS_NT
/* Set PRAGMA to pack these structures */

#pragmapack(1)

#endif

typedef struct _STAT_TABLE_ENTRY_
{

UINT32StatUseFlag;
void*StatCounter;
MEON_STRING*StatString;

}
StatTableEntry, *PStatTableEntry, STAT_TABLE_ENTRY;

/* StatUseFlagDetermines how StatCounter is defined. */
/* *StatCounterpointer as defined by the StatUseFlag.*/
/* *StatCounterpointer to a UINT32 or UINT64 counter.*/
/* *StatStringpointer to a MEON String, describing the statistics counter.*/

/* Definitions for Information Block for passing API's, eg. Function Lists */

typedef struct _INFO_BLOCK_
{

UINT32NumberOfAPIs;
void(**SupportAPIArray)();

}
INFO_BLOCK, *PINFO_BLOCK;

/* Definitions for Link Support Layer (LSL) */

typedef struct _LOG_BRD_STAT_TABLE_ENTRY_
{

UINT32 LogBrd_TransmittedPackets;
UINT32 LogBrd_ReceivedPackets;
UINT32 LogBrd_UnclaimedPackets;
UINT32 LogBrd_TxOverloaded;

}
LogBrdStatTableEntry, *PLogBrdStatTableEntry, LOG_BRD_STAT_TABLE_ENTRY;
D-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

/**
C LSL Configuration Table Definitions.
***/

#define CLSL_CFG_TABLE_MAJOR_VER 2
#define CLSL_CFG_TABLE_MINOR_VER 1

/**
C LSL Configuration Table System Flags definitions.
***/

#define CLSL_CFG_SERVER_BIT0x40000000
#define CLSL_CFG_CLIENT_BIT0x80000000

/**
C LSL Configuration Table Structure definition.
***/

typedef struct _LSL_CONFIG_TABLE_
{

UINT16 LConfigTableMajorVer;
UINT16 LConfigTableMinorVer;
MEON_STRING *LSLLongName;
MEON_STRING *LSLShortName;
UINT16 LSLMajorVer;
UINT16 LSLMinorVer;
UINT32 LMaxNumberOfBoards;
UINT32 LMaxNumberOfStacks;
UINT32 LConfigTableReserved0;
UINT32 LConfigTableReserved1;
UINT32 LConfigTableReserved2;
UINT8 LSLCFG_ODISpecMajorVer;
UINT8 LSLCFG_ODISpecMinorVer;
UINT16 LConfigTableReserved3;
UINT32 LSLCFG_SystemFlags;
UINT32 LSLCFG_SmallECBCount;
UINT32 LSLCFG_MediumECBCount;
UINT32 LSLCFG_LargeECBCount;
UINT32 LSLCFG_XLargeECBCount;
UINT32 LSLCFG_HugeECBCount;
UINT32 LSLCFG_SmallECBBelow16Count;
UINT32 LSLCFG_MediumECBBelow16Count;
UINT32 LSLCFG_LargeECBBelow16Count;
UINT32 LSLCFG_XLargeECBBelow16Count;
UINT32 LSLCFG_HugeECBBelow16Count;
UINT32 LSLCFG_SmallECBMinCount;
UINT32 LSLCFG_MediumECBMinCount;
UINT32 LSLCFG_LargeECBMinCount;
ODI Header File D-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

UINT32 LSLCFG_XLargeECBMinCount;
UINT32 LSLCFG_HugeECBMinCount;
UINT32 LSLCFG_SmallECBMaxCount;
UINT32 LSLCFG_MediumECBMaxCount;
UINT32 LSLCFG_LargeECBMaxCount;
UINT32 LSLCFG_XLargeECBMaxCount;
UINT32 LSLCFG_HugeECBMaxCount;
UINT32 LSLCFG_SmallECBSize;
UINT32 LSLCFG_MediumECBSize;
UINT32 LSLCFG_LargeECBSize;
UINT32 LSLCFG_XLargeECBSize;
UINT32 LSLCFG_HugeECBSize;

}
LSL_ConfigTable, *PLSL_ConfigTable, LSL_CONFIG_TABLE;

/**
C LSL Statistics Table Structure definition.
***/

typedef struct _LSL_STATS_TABLE_
{

UINT16 LStatTableMajorVer;
UINT16 LStatTableMinorVer;
UINT32 LNumGenericCounters;
STAT_TABLE_ENTRY (*LGenericCountersPtr)[];
UINT32 LNumLogicalBoards;
LOG_BRD_STAT_TABLE_ENTRY (*LogicalBoardStatTablePtr)[];
UINT32 LNumCustomCounters;
STAT_TABLE_ENTRY (*LCustomCountersPtr)[];

}
LSL_StatsTable, *PLSL_StatsTable, LSL_STATS_TABLE;

#define NUM_GENERIC_LSL_COUNTERS 10

#define LSL_TOTAL_TX_PACKET_COUNT 0
#define LSL_GET_ECB_REQUESTS 1
#define LSL_GET_ECB_FAILURES 2
#define LSL_AES_EVENTS_COUNT 3
#define LSL_POSTPONED_EVENTS 4
#define LSL_CANCEL_EVENT_FAILURES 5
#define LSL_VALID_BUFFERS_REUSED 6
#define LSL_RESERVED 7
#define LSL_TOTAL_RX_PACKETS 8
#define LSL_UNCLAIMED_PACKETS 9

/* Definitions for LookAhead and Event Control Blocks (ECB). */
D-14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

typedef struct_FRAGMENT_STRUCT_
{
void*FragmentAddress;
UINT32FragmentLength;
}
FRAGMENTSTRUCT, FRAGMENT_STRUCT, *PFRAGMENTSTRUCT;

/**

With compilers that implement strict alignement the location of
were padding is assumed in the structure has been indicated below.

***/
typedef struct _ECB_
{

struct _ECB_*ECB_NextLink;
struct _ECB_*ECB_PreviousLink;
UINT16 ECB_Status;
/*UINT8 ECB_Pad1[2];*//* Compiler padding */
void (_cdecl *ECB_ESR)(struct _ECB_ *);
UINT16 ECB_StackID;
PROT_ID ECB_ProtocolID;
UINT32 ECB_BoardNumber;
NODE_ADDRECB_ImmediateAddress;
/*UINT8 ECB_Pad2[2];*//* Compiler padding */

union {
UINT8DWs_i8val[4];
UINT16DWs_i16val[2];
UINT32DWs_i32val;
void*DWs_pval;
} ECB_DriverWorkspace;

union {
UINT8PWs_i8val[8];
UINT16PWs_i16val[4];
UINT32PWs_i32val[2];
UINT64PWs_i64val;
void*PWs_pval[2];
} ECB_ProtocolWorkspace;

UINT32 ECB_DataLength;
UINT32E CB_FragmentCount;
FRAGMENT_STRUCTECB_Fragment[1];

}
ECB, *PECB;
ODI Header File D-15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

#define MAX_ECB_FRAGS 16
#define RAW_SEND 0xFFFF /* If in ECB.ECB_StackID raw send (Old

Def.) */
#define RAW_SEND_PRIORITY_00xFFFF /* Same as old Def. No Priority */
#define RAW_SEND_PRIORITY_10xFFFE /* Scale 1-7; 1 being lowest */
#define RAW_SEND_PRIORITY_20xFFFD
#define RAW_SEND_PRIORITY_30xFFFC
#define RAW_SEND_PRIORITY_40xFFFB
#define RAW_SEND_PRIORITY_50xFFFA
#define RAW_SEND_PRIORITY_60xFFF9
#define RAW_SEND_PRIORITY_70xFFF8 /* Scale 1-7 7 being Highest Priority */
#define SEND_PRIORITY_0 0xFFF7 /* Scale 1-7 0 No Priority */
#define SEND_PRIORITY_1 0xFFF6 /* Scale 1-7 1 being low priority */
#define SEND_PRIORITY_2 0xFFF5
#define SEND_PRIORITY_3 0xFFF4
#define SEND_PRIORITY_4 0xFFF3
#define SEND_PRIORITY_5 0xFFF2
#define SEND_PRIORITY_6 0xFFF1
#define SEND_PRIORITY_7 0xFFF0 /* Scale 1-7 7 being Highest Priority. */
#define NON_STACKED_BIT 0x8000 /* Used to filter non-stack IDs */
#define NON_STACKID_RAW_SEND_MASK

0x80F8 /* Used to filter raw send packets */

/**
CTCB is used at the MLI interface
***/
typedef struct _CTCB_FRAGMENT_BLOCK_STRUCT_
{

UINT32CTCB_FragmentCount;
FRAGMENT_STRUCT CTCB_Fragment[1];

} CTCB_FRAGMENT_BLOCK;

typedef struct _CTCB_
{

void *CTCB_Reserved;
UINT32 CTCB_BoardNumber;
UINT32 CTCB_DriverWS[3];
UINT32 CTCB_DataLen;

CTCB_FRAGMENT_BLOCK*CTCB_FragBlockPtr;
UINT32CTCB_MediaHeaderLen;
UINT8

CTCB_MediaHeader[MAX_MEDIA_HEADER_SIZE];
} CTCB;
D-16 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

/**

With compilers that implement strict alignement the location of
were padding is assumed in the structure has been indicated below.

***/
typedef struct_AES_ECB_
{
 struct_AES_ECB_*AES_Link;

UINT32AES_MSecondValue;
UINT16AES_Status;
/*UINT8AES_Pad1[2];*//* Compiler padding */
void (_cdecl *AES_ESR)(struct _AES_ECB_ *);
UINT32AES_Reserved;
void *AES_ResourceObj;
void *AES_Context;

}
AESECB, *PAESECB, AES_ECB;

typedef struct_LOOKAHEAD_
{

ECB*LkAhd_PreFilledECB;
UINT8*LkAhd_MediaHeaderPtr;
UINT32LkAhd_MediaHeaderLen;
UINT8*LkAhd_DataLookAheadPtr;
UINT32LkAhd_DataLookAheadLen;
UINT32LkAhd_BoardNumber;
UINT32LkAhd_PktAttr;
UINT32LkAhd_DestType;
UINT32LkAhd_FrameDataSize;

 UINT16LkAhd_PadAlignBytes1;
 PROT_IDLkAhd_ProtocolID;

UINT16LkAhd_PadAlignBytes2;
NODE_ADDR LkAhd_ImmediateAddress;
UINT32LkAhd_FrameDataStartCopyOffset;
UINT32LkAhd_FrameDataBytesWanted;
ECB*LkAhd_ReturnedECB;
UINT32LkAhd_PriorityLevel;
void*LkAhd_Reserved;

}
LOOKAHEAD, *PLOOKAHEAD;
ODI Header File D-17

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

/* Definitions for Protocol Stack Configuration And Statistics Tables */

/**
C Protocol Stack Configuration Table Definitions.
***/

#define PSTK_CONFIG_TABLE_MAJOR_VER 2
#define PSTK_CONFIG_TABLE_MINOR_VER 1

/**
C Protocol Stack Configuration Table System Flags definitions.
***/

#define PSTK_CFG_AUTO_NETWORK_RESOLUTION_BIT0x08000000
#define PSTK_CFG_AUTO_BIND_ACTIVE_BIT 0x10000000
#define PSTK_CFG_ROUTER_ACTIVE_BIT 0x20000000
#define PSTK_CFG_SERVER_BIT 0x40000000
#define PSTK_CFG_CLIENT_BIT 0x80000000

/**
C Protocol Stack Configuration Table Structure definition.
***/

typedef struct _PS_CONFIG_TABLE_
{

UINT16PConfigTableMajorVer;
UINT16PConfigTableMinorVer;
MEON_STRING*PProtocolLongName;
MEON_STRING*PProtocolShortName;
UINT16PProtocolMajorVer;
UINT16PProtocolMinorVer;
UINT8 PConfigTable_ODISpecMajorVersion;
UINT8 PConfigTable_ODISpecMinorVersion;
UINT8 PConfigTable_ProtocolAPIMajorVersion;
UINT8 PConfigTable_ProtocolAPIMinorVersion;
UINT32 PConfigTable_SystemFlags;
UINT32 PConfigTable_ProtocolFlags;
UINT32 PConfigTable_ProtocolReserved;

}
PS_ConfigTable, *PPS_ConfigTable, PS_CONFIG_TABLE;
D-18 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

typedef struct _PS_STATS_TABLE_
{

UINT16PStatTableMajorVer;/* Config Table Version 2.00 */
UINT16PStatTableMinorVer;/* For the CODI 1.10 Spec */
UINT32PNumGenericCounters;
STAT_TABLE_ENTRY(*PGenericCountersPtr)[];
UINT32PNumCustomCounters;
STAT_TABLE_ENTRY(*PCustomCountersPtr)[];

}
PS_StatsTable, *PPS_StatsTable, PS_STATS_TABLE;

#define NUM_GENERIC_PS_COUNTERS 3

#define PS_TOTAL_TX_PACKETS 0
#define PS_TOTAL_RX_PACKETS 1
#define PS_IGNORED_RX_PACKETS 2

/**
Network Address Information structure used by protocol stack IOCTL 9.
***/

typedef struct_NETWORK_ADDRESS_INFO_
{

UINT32 addressType;
UINT32 size;
UINT8 address[32];

} NETWORK_ADDRESS_INFO;

/**

With compilers that implement strict alignement the location of
were padding is assumed in the structure has been indicated below.

***/

typedefstruct _Lan_Memory_Configuration_
{

void* MemoryAddress;
UINT16 MemorySize;
/*UINT8 Lan_Mem_Pad1[2];*/ /* Compiler padding */

} Lan_Memory_Configuration;
ODI Header File D-19

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

/* *** */
/* Definitions for MLID Configuration, Statistics Tables and Misc. structures

*/
/* *** */
D-20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

/**

With compilers that implement strict alignement the location of
were padding is assumed in the structure has been indicated below.

***/

typedef struct _MLID_CONFIG_TABLE_
{

MEON MLIDCFG_Signature[26];
UINT8 MLID MLIDCFG_MajorVersion;/* Config Table Version

1.21 */
UINT8 MLIDCFG_MinorVersion; /* for the CODI 1.11 Spec

*/
NODE_ADDR MLIDCFG_NodeAddress;
UINT16 MLIDCFG_ModeFlags;
UINT16 MLIDCFG_BoardNumber;
UINT16 MLIDCFG_BoardInstance;
UINT32 MLIDCFG_MaxFrameSize;
UINT32 MLIDCFG_BestDataSize;
UINT32 MLIDCFG_WorstDataSize;
MEON_STRING* MLIDCFG_CardName;
MEON_STRING* MLIDCFG_ShortName;
MEON_STRING* MLIDCFG_FrameTypeString;
UINT16 MLIDCFG_Reserved0;
UINT16 MLIDCFG_FrameID;
UINT16 MLIDCFG_TransportTime;
/*UINT8 MLIDCFG_Pad1[2];*/ /* Compiler padding */
UINT32 (_cdecl *MLIDCFG_SourceRouting)(UINT32, void*,

void**, BOOLEAN);
UINT16 MLIDCFG_LineSpeed;
UINT16 MLIDCFG_LookAheadSize;
UINT8 MLIDCFG_SGCount;
UINT8 MLIDCFG_Reserved1;
UINT16 MLIDCFG_PrioritySup;
void *MLIDCFG_Reserved2;
UINT8 MLIDCFG_DriverMajorVer;
UINT8 MLIDCFG_DriverMinorVer;

 UINT16 MLIDCFG_Flags;
 UINT16 MLIDCFG_SendRetries;

/*UINT8 MLIDCFG_Pad2[2];*//* Compiler padding */
void *MLIDCFG_DriverLink;
UINT16 MLIDCFG_SharingFlags;
UINT16 MLIDCFG_Slot;
UINT16 MLIDCFG_IOPort0;
UINT16 MLIDCFG_IORange0;
UINT16 MLIDCFG_IOPort1;
UINT16 MLIDCFG_IORange1;
ODI Header File D-21

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

Lan_Memory_ConfigurationLAN_MEMORY_CONFIGURATION[2];

#define MLIDCFG_MemoryAddress0 LAN_MEMORY_CONFIGURATION[0].MemoryAddress
#define MLIDCFG_MemorySize0 LAN_MEMORY_CONFIGURATION[0].MemorySize
#define MLIDCFG_MemoryAddress1 LAN_MEMORY_CONFIGURATION[1].MemoryAddress
#define MLIDCFG_MemorySize1 LAN_MEMORY_CONFIGURATION[1].MemorySize

UINT8 MLIDCFG_Interrupt0;
UINT8 MLIDCFG_Interrupt1;
UINT8 MLIDCFG_DMALine0;
UINT8 MLIDCFG_DMALine1;
void *MLIDCFG_ResourceTag;
void *MLIDCFG_Config;
void *MLIDCFG_CommandString;
MEON_STRINGMLID

CFG_LogicalName[18];
/*UINT8 MLIDCFG_Pad3[2];*//* Compiler padding */
void *MLIDCFG_LinearMemory0;
void *MLIDCFG_LinearMemory1;

 UINT16 MLIDCFG_ChannelNumber;
/*UINT8 MLIDCFG_Pad4[2];*//* Compiler padding */
void *MLIDCFG_DBusTag;
UINT8 MLIDCFG_DIOConfigMajorVer;
UINT8 MLIDCFG_DIOConfigMinorVer;
/*UINT8 MLIDCFG_Pad5[2];*//* Compiler padding */

}
MLID_ConfigTable, *PMLID_ConfigTable, MLID_CONFIG_TABLE;

typedef struct_IO_CONFIG_
{

struct _IO_CONFIG_ *IO_DriverLink;
UINT16 IO_SharingFlags;
UINT16 IO_Slot;
UINT16 IO_IOPort0;
UINT16 IO_IORange0;
UINT16 IO_IOPort1;
UINT16 IO_IORange1;
Lan_Memory_Configuration
LAN_MEMORY_CONFIGURATION[2];

#define IO_MemoryAddress 0 LAN_MEMORY_CONFIGURATION[0].MemoryAddress
#define IO_MemorySize 0 LAN_MEMORY_CONFIGURATION[0].MemorySize
#define IO_MemoryAddress 1 LAN_MEMORY_CONFIGURATION[1].MemoryAddress
#define IO_MemorySize 1 LAN_MEMORY_CONFIGURATION[1].MemorySize

UINT8 IO_Interrupt0;
UINT8 IO_Interrupt1;
UINT8 IO_DMALine0;
D-22 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

UINT8IO_DMALine1;
struct ResourceTagStructure*IO_ResourceTag;
void *IO_Config;
void *IO_CommandString;

 MEON_STRINGIO_LogicalName[18];
/*UINT8IO_Pad1[2];*//* Compiler padding */
void *IO_LinearMemory0;
void *IO_LinearMemory1;
UINT16 IO_ChannelNumber;
/*UINT8IO_Pad2[2];*//* Compiler padding */
void *IO_DBusTag;
UINT8 IO_DIOConfigMajorVer;
UINT8 IO_DIOConfigMinorVer;
/*UINT8IO_Pad3[2];*//* Compiler padding */

}
IO_CONFIG;

typedef struct _MLID_STATS_TABLE_
{

UINT16 MStatTableMajorVer;
UINT16 MStatTableMinorVer;
UINT32 MNumGenericCounters;
STAT_TABLE_ENTRY (*MGenericCountsPtr)[];
UINT32 MNumMediaCounters;
STAT_TABLE_ENTRY (*MMediaCountsPtr)[];
UINT32 MNumCustomCounters;
STAT_TABLE_ENTRY (*MCustomCountersPtr)[];

}
MLID_StatsTable, *PMLID_StatsTable, MLID_STATS_TABLE;

#define NUM_GENERIC_MLID_COUNTERS 20
#define MLID_TOTAL_TX_PACKET_COUNT 0
#define MLID_TOTAL_RX_PACKET_COUNT 1
#define MLID_NO_ECB_AVAILABLE_COUNT 2
#define MLID_PACKET_TX_TOO_BIG_COUNT 3
#define MLID_PACKET_TX_TOO_SMALL_COUNT 4
#define MLID_PACKET_RX_OVERFLOW_COUNT 5
#define MLID_PACKET_RX_TOO_BIG_COUNT 6
#define MLID_PACKET_RX_TOO_SMALL_COUNT 7
#define MLID_PACKET_TX_MISC_ERROR_COUNT 8
#define MLID_PACKET_RX_MISC_ERROR_COUNT 9
#define MLID_RETRY_TX_COUNT 10
#define MLID_CHECKSUM_ERROR_COUNT 11
#define MLID_HARDWARE_RX_MISMATCH_COUNT 12
#define MLID_TOTAL_TX_OK_BYTE_COUNT 13
#define MLID_TOTAL_RX_OK_BYTE_COUNT 14
ODI Header File D-23

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

#define MLID_TOTAL_GROUP_ADDR_TX_COUNT 15
#define MLID_TOTAL_GROUP_ADDR_RX_COUNT 16
#define MLID_ADAPTER_RESET_COUNT 17
#define MLID_ADAPTER_OPR_TIME_STAMP 18
#define MLID_Q_DEPTH 19
#define NUM_TOKEN_SPECIFIC_COUNTERS 13
#define TRN_AC_ERROR_COUNT 0
#define TRN_ABORT_DELIMITER_COUNTER 1
#define TRN_BURST_ERROR_COUNTER 2
#define TRN_FRAME_COPIED_ERROR_COUNTER 3
#define TRN_FREQUENCY_ERROR_COUNTER 4
#define TRN_INTERNAL_ERROR_COUNTER 5
#define TRN_LAST_RING_STATUS 6
#define TRN_LINE_ERROR_COUNTER 7
#define TRN_LOST_FRAME_COUNTER 8
#define TRN_TOKEN_ERROR_COUNTER 9
#define TRN_UPSTREAM_NODE_ADDRESS 10
#define TRN_LAST_RING_ID 11
#define TRN_LAST_BEACON_TYPE 12

#define NUM_ETHERNET_SPECIFIC_COUNTERS 8

#define ETH_TX_OK_SINGLE_COLLISIONS_COUNT 0
#define ETH_TX_OK_MULTIPLE_COLLISIONS_COUNT1
#define ETH_TX_OK_BUT_DEFERRED 2
#define ETH_TX_ABORT_LATE_COLLISION 3
#define ETH_TX_ABORT_EXCESS_COLLISION 4
#define ETH_TX_ABORT_CARRIER_SENSE 5
#define ETH_TX_ABORT_EXCESSIVE_DEFERRAL 6
#define ETH_RX_ABORT_FRAME_ALIGNMENT 7

#define NUM_FDDI_SPECIFIC_COUNTERS 10

#define FDDI_CONFIGURATION_STATE 0
#define FDDI_UPSTREAM_NODE 1
#define FDDI_DOWNSTREAM_NODE 2
#define FDDI_FRAME_ERROR_COUNT 3
#define FDDI_FRAMES_LOST_COUNT 4
#define FDDI_RING_MANAGEMENT_STATE 5
#define FDDI_LCT_FAILURE_COUNT 6
#define FDDI_LEM_REJECT_COUNT 7
#define FDDI_LEM_COUNT 8
#define FDDI_L_CONNECTION_STATE 9
D-24 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

typedef struct _MLID_REG_
{

void (*MLIDSendHandler)(ECB*, void*);
INFO_BLOCK*MLID ControlHandler;
void *MLID SendContext;
void *MLID ModuleHandle;

}
MLID_Reg, *PMLID_Reg, MLID_REG;

/* Definitions for Bound Protocol Stacks */

typedef struct_PS_BOUND_NODE_
{

MEON_STRING *ProtocolName;
ODISTAT(CALLCNV *ProtocolReceiveHandler)(LOOKAHEAD*);
INFO_BLOCK *ProtocolControlHandler;
void *ProtocolResourceObj;

}
PS_BoundNode, *PPS_BoundNode, PS_BOUND_NODE;

/* Definitions for PreScan Rx and Default Chained Protocol Stacks */

typedef struct _PS_CHAINED_RX_NODE_
{
 struct_PS_CHAINED_RX_NODE_*StackChainLink;

UINT32 StackChainBoardNumber;
CHNPOS StackChainPositionRequested;
ODISTAT (CALLCNV *StackRxChainHandler)(LOOKAHEAD*, struct

_PS_CHAINED_RX_NODE_ *);
INFO_BLOCK *StackChainControl;
UINT32 StackChainFilter;
void *StackChainContext;
void *StackChainResourceObj;

}
PS_ChainedRxNode, *PPS_ChainedRxNode, PS_CHAINED_RX_NODE;

/* Definitions for PreScan Tx Chained Protocol Stacks */

typedef struct _PS_CHAINED_TX_NODE_
{
 struct_PS_CHAINED_TX_NODE_*StackChainLink;

UINT32 StackChainBoardNumber;
CHNPOS StackChainPositionRequested;
ODISTAT (CALLCNV *StackTxChainHandler)(ECB*, struct

_PS_CHAINED_TX_NODE_ *);
INFO_BLOCK*StackChainControl;
UINT32 StackChainFilter;
ODI Header File D-25

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

void *StackChainContext;
void *StackChainResourceObj;

}
PS_ChainedTxNode, *PPS_ChainedTxNode, PS_CHAINED_TX_NODE;

/*Definitions for SFT III Exchange Protocol Control Service */

typedef struct_SFTIII_EXCHANGE_NODE_
{

UINT32 SubFunction;
void* Parameter1;
void* Parameter2;

} SFTIIIExchangeNode, SFTIII_EXCHANGE_NODE;

#ifdef OS_NT

/* Reset PRAGMA to normal after packing above structures */

#pragmapack()

#endif

/*========[Function Prototypes]================*/

ODISTAT CLSL_AddProtocolID(PROT_ID*ProtocolID,
MEON_STRING *ProtocolName,
MEON_STRING *FrameName);

ODISTAT CLSL_BindProtocolToBoard(UINT32ProtocolNumber,
UINT32 BoardNumber,
MEON_STRING *UserParmString);

ODISTAT CLSL_BindStack(UINT32ProtocolNumber,
UINT32BoardNumber);

ODISTAT CLSL_CancelAESEvent(AES_ECB*TimerAESECB);

ODISTAT CLSL_CancelEvent(ECB*ECBBuffer);

ODISTAT CLSL_ControlStackFilter(UINT32 BoardNumber,
UINT32 Function,
UINT32 Mask,
void *Parameter1,
void *Parameter2);

ODISTAT CLSL_Dummy(void);
D-26 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ODISTAT CLSL_DeRegisterDefaultChain(PS_CHAINED_RX_NODE *StackChainNode);

ODISTAT CLSL_DeRegisterMLID(UINT32BoardNumber);

ODISTAT CLSL_DeRegisterPreScanChain(PS_CHAINED_RX_NODE *PStkChainRxNode,

PS_CHAINED_TX_NODE *PStkChainTxNode);

ODISTAT CLSL_DeRegisterStack(UINT32ProtocolNumber);

voidCLSL_FastHoldEvent(ECB*ECBBuffer);

void CLSL_FastSendComplete(ECB*SendECB);
ODISTAT CLSL_GetBoundBoardInfo (UINT32BoardNumber,

UINT32 *StackBuffer);

UINT32CLSL_GetIntervalMarker(void);

LSL_CONFIG_TABLE*CLSL_GetLSLConfiguration(void);

LSL_STATS_TABLE*CLSL_GetLSLStatistics(void);

UINT32CLSL_GetMaxECBBufferSize(void);

INFO_BLOCK*CLSL_GetMLIDControlEntry(UINT32 BoardNumber,
ODISTAT *ErrorStatus);

PROT_ID* CLSL_GetPIDFromStackIDBoard(UINT32ProtocolNumber,
 UINT32 BoardNumber,
 ODISTAT *ErrorStatus);

INFO_BLOCK *CLSL_GetProtocolControlEntry(UINT32ProtocolNumber,
ODISTAT *ErrorStatus);

ECB *CLSL_GetSizedECB(UINT32ECBDataSize,
 void *pResourceObj,
BOOLEAN Below16Meg);

ECB * CLSL_GetMultipleECBs(UINT32ECBDataSize,
void *pResourceObj,
UINT32 *nECBs);

ODISTAT CLSL_GetStackECB(LOOKAHEAD*LookAheadBuf);

ODISTAT CLSL_GetStackIDFromName(MEON_STRING*Name,
UINT32 *ProtocolNumber);
ODI Header File D-27

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ODISTAT CLSL_GetStartofChain(UINT32 BoardNumber,
PS_CHAINED_RX_NODE **DefaultChainStartNode,
PS_CHAINED_RX_NODE **PreScanRxChainStartNode,
PS_CHAINED_TX_NODE **PreScanTxChainStartNode);

voidCLSL_HoldEvent(ECB*HoldECB);

ODISTAT CLSL_ModifyStackFilter(void*StackIdentifier,
UINT32 BoardNumber,
UINT32 NewMask,
UINT32 *pCurrentMask);

ODISTAT CLSL_RegisterDefaultChain(PS_CHAINED_RX_NODE*StackChainNode);

ODISTAT CLSL_RegisterMLID (MLID_REG*MLIDHandlers,
MLID_CONFIG_TABLE *MLIDConfigTable,
UINT32 *BoardNumber);

ODISTAT CLSL_RegisterPreScanChain(PS_CHAINED_RX_NODE*PStkChnPreRxNode,
PS_CHAINED_TX_NODE*PStkChnPreTxNode);

ODISTAT CLSL_RegisterStack(PS_BOUND_NODE*ProtocolNode,
UINT32 *ProtocolNumber);

ODISTAT CLSL_ReSubmitDefault(PS_CHAINED_RX_NODE*StackChainnode,
LOOKAHEAD*LookAheadBuf);

ODISTAT CLSL_ReSubmitPreScanRx(PS_CHAINED_RX_NODE*StackChainnode,
LOOKAHEAD*LookAheadBuf);

ODISTAT CLSL_ReSubmitPreScanTx(PS_CHAINED_TX_NODE*StackChainnode,
ECB *TransmitECB);

ODISTAT_cdecl
CLSL_ReturnECB(ECB*ReturnedECB);

ODISTAT CLSL_ScheduleAESEvent(AES_ECB*TimerAESECB);

void CLSL_SendComplete(ECB*SendECB);

ODISTAT CLSL_SendPacket(ECB*SendECB);

SFTIII_STATCLSL_SendProtocolInfoToPartner(UINT32ProtocolNumber,
UINT8 *ProtocolInfo,
UINT32 Length,
void (*InfoSendCallBack)

(UINT32 Reserved,
D-28 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

UINT8 *ProtocolInfo));

SFTIII_STATCLSL_SendProtocolInfoToOtherEngine(UINT32ProtocolNumber,
UINT8 *ProtocolInfo,
UINT32 Length,
void (*InfoSendCallBack)
void CLSL_ServiceEvents(void);

ODISTAT CLSL_UnbindStack(UINT32ProtocolNumber,
UINT32 BoardNumber);

void CLSL_Reserved(void);

/*========[Macro Defintions]================*/

/*Macro Definitions to ease access to Control Procedures for
Protocol Stacks and MLIDs
*/

/*Protocol Stack Control Functions*/

#define PSTK_NUM_API 10L

#define PSTK_GET_CONFIGURATION 0x0000
#define PSTK_GET_STATISTICS 0x0001
#define PSTK_BIND 0x0002
#define PSTK_UNBIND 0x0003
#define PSTK_MLID_DEREGISTER 0x0004
#define PSTK_PROMISCUOUS_STATE 0x0005
#define PSTK_RESERVED 0x0006
#define PSTK_GET_PROTOCOL_STRG 0x0007
#define PSTK_PROT_MANAGE 0x0008
#define PSTK_GET_BOUND_NETWORK_INFO0x0009

/*w is ptr. to INFO_BLOCK defining API Array for Protocol Stack Control*/

#define PStkCntl_GetConfig(w, x)\
((PS_CONFIG_TABLE* (CALLCNV *)(void*))\
w->SupportAPIArray[PSTK_GET_CONFIGURATION])(x)

#define PStkCntl_GetStats(w, x)\
((PS_STATS_TABLE* (CALLCNV *)(void*)) \
w->SupportAPIArray[PSTK_GET_STATISTICS])(x)

#define PStkCntl_Bind(w, x, y, z)\
((ODISTAT (CALLCNV *)(UINT32, MEON_STRING*, void*))\
w->SupportAPIArray[PSTK_BIND])(x, y, z)
ODI Header File D-29

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

#define PStkCntl_MLIDDeReg(w, x, y)\
((void (CALLCNV *)(UINT32, void*))\
w->SupportAPIArray[PSTK_MLID_DEREGISTER])(x, y)

#define PStkCntl_Unbind(w, x, y, z)\
((ODISTAT (CALLCNV *)(UINT32, MEON_STRING*, void*))\
w->SupportAPIArray[PSTK_UNBIND])(x, y, z)

#define PStkCntl_PromiscState(w, x, y, z)\
((ODISTAT (CALLCNV *)(UINT32, UINT32, void*))\
w->SupportAPIArray[PSTK_PROMISCUOUS_STATE])(x, y, z)

#define PStkCntl_GetProtocolString(w, x, y, z)\
((ODISTAT (CALLCNV *)(UINT32, MEON_STRING*, void*))\
w->SupportAPIArray[PSTK_GET_PROTOCOL_STRG])(x, y, z)

#define PStkCntl_ProtManage(w, x, y)\
((ODISTAT (CALLCNV *)(ECB *, void*))\
w->SupportAPIArray[PSTK_PROT_MANAGE])(x, y)

#define PSTKCntl_GetBoundNetInfo (w, x, y, z) \
((ODISTAT (CALLCNV*)(UINT32, NETWORK_ADDRESS_INFO*, void*)) \
w->SupportAPIArray[PSTK_GET_GOUND_NET_INFO]))(x, y, z)

/*MLID Control Functions*/

#define MLID_NUM_API 19L

#define MLID_GET_CONFIGURATION 0x0000 /* 0 - GetMLIDConfiguration */
#define MLID_GET_STATISTICS 0x0001 /* 1 - GetMLIDStatistics */
#define MLID_ADD_MULTICAST 0x0002 /* 2 - AddMulticastAddress */
#define MLID_DELETE_MULTICAST 0x0003 /* 3 - DeleteMulticastAddress */
#define MLID_RESERVED 0x0004 /* 4 - Reserved */
#define MLID_SHUTDOWN 0x0005 /* 5 - MLIDShutdown */
#define MLID_RESET 0x0006 /* 6 - MLIDReset */
#define MLID_RESERVED1 0x0007 /* 7 - Reserved1 */
#define MLID_RESERVED2 0x0008 /* 8 - Reserved2 */
#define MLID_SET_LOOK_AHEAD 0x0009 /* 9 - SetLookAheadSize */
#define MLID_PROMISCUOUS_CHANGE 0x000A /* 10 - PromiscuousChange */
#define MLID_REGISTER_TX_MONITOR 0x000B /* 11 - RegisterMonitor */
#define MLID_RESERVED3 0x000C /* 12 - Reserved3 */
#define MLID_RESERVED4 0x000D /* 13 - Reserved4 */
#define MLID_MANAGEMENT 0x000E /* 14 - MLIDManagement */
#define MLID_GET_MULTICAST_INFO 0x000F /* 15 - GetMulticastInfo */
#define MLID_REMOVE_NETWORK_INTERFACE0x0010 /* 16 - RemoveNetworkInterface
D-30 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

*/
#define MLID_SHUTDOWN_NETWORK_INTERFACE0x0011/* 17 -

ShutdownNetworkInterfac
e */

#define MLID_RESET_NETWORK_INTERFACE 0x0012 /* 18 -
ResetNetworkInterface
*/

/* Shutdown type defines */

#define SHUTDOWN_PERMANENT 0x0000
#define SHUTDOWN_PARTIAL 0x0001

/*w is ptr. to INFO_BLOCK defining API Array for MLID Control*/

#define MLIDCntl_GetConfig(w, x, y, z)\
((ODISTAT (CALLCNV *)(UINT32, MLID_CONFIG_TABLE**, ECB*))\
w->SupportAPIArray[MLID_GET_CONFIGURATION])(x, y, z)

#define MLIDCntl_GetStats(w, x, y, z)\
((ODISTAT (CALLCNV *)(UINT32, MLID_STATS_TABLE**, ECB*))\
w->SupportAPIArray[MLID_GET_STATISTICS])(x, y, z)

 #define MLIDCntl_AddMulti(w, x, y, z)\
((ODISTAT (CALLCNV *)(UINT32, NODE_ADDR*, ECB*))\
w->SupportAPIArray[MLID_ADD_MULTICAST])(x, y, z)

 #define MLIDCntl_DelMulti(w, x, y, z)\
((ODISTAT (CALLCNV *)(UINT32, NODE_ADDR*, ECB*))\
w->SupportAPIArray[MLID_DELETE_MULTICAST])(x, y, z)

#define MLIDCntl_Shutdown(w, x, y, z)\
((ODISTAT (CALLCNV *)(UINT32, UINT32, ECB*))\
w->SupportAPIArray[MLID_SHUTDOWN])(x, y, z)

#define MLIDCntl_Reset(w, x, y)\
((ODISTAT (CALLCNV *)(UINT32, ECB*))\
w->SupportAPIArray[MLID_RESET])(x, y)

#define MLIDCntl_SetLookAhead(w, x, y, z)\
((ODISTAT (CALLCNV *)(UINT32, UINT32, ECB*))\
w->SupportAPIArray[MLID_SET_LOOK_AHEAD])(x, y, z)

#define MLIDCntl_PromisChange(w, x, y, z, aa)\
((ODISTAT (CALLCNV *)(UINT32, UINT32, UINT32*, ECB*))\
w->SupportAPIArray[MLID_PROMISCUOUS_CHANGE])(x, y, z, aa)
ODI Header File D-31

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

#define MLIDCntl_RegMon(w, x, y, z, aa)\
((ODISTAT (CALLCNV *)(UINT32, void*, ECB*, BOOLEAN))\
w->SupportAPIArray[MLID_REGISTER_TX_MONITOR])(x, y, z, aa)

#define MLIDCntl_Management(w, x, y)\
((ODISTAT (CALLCNV *)(UINT32, ECB*))\
w->SupportAPIArray[MLID_MANAGEMENT])(x, y)

#define MLIDCntl_GetMulticastInfo(w, x, y) \
((ODISTAT (CALLCNV *)(UINT32, ECB*))\
w->SupportAPIArray[MLID_GET_MULTICAST_INFO])(x, y)

#define MLIDCntl_RemoveNetworkInterface(w, x, y)\
 ((ODISTAT (CALLCNV *)(UINT32, ECB*))\

w->SupportAPIArray[MLID_REMOVE_NETWORK_INTERFACE])(x, y)

#define MLIDCntl_ShutdownNetworkInterface(w, x, y)\
 ((ODISTAT (CALLCNV *)(UINT32, ECB*))\

w->SupportAPIArray[MLID_SHUTDOWN_NETWORK_INTERFACE])(x, y)

#define MLIDCntl_ResetNetworkInterface(w, x, y)\
((ODISTAT (CALLCNV *)(UINT32, ECB*))\

w->SupportAPIArray[MLID_RESET_NETWORK_INTERFACE])(x, y)

typedef struct _GROUP_ADDR_LIST_NODE_ {
NODE_ADDRGRP_ADDR;
UINT16GRP_ADDR_COUNT;

} GROUP_ADDR_LIST_NODE;

/*LSL Function Indexes */

#define LSL_NUM_API 49L

#define CLSL_GET_SIZED_ECB 0x0000 /* 0 - CLSL_GetSizedECB */
#define CLSL_RETURN_ECB 0x0001 /* 1 - CLSL_ReturnECB */
#define CLSL_CANCEL_EVENT 0x0002 /* 2 - CLSL_CancelEvent */
#define CLSL_SCHEDULE_AES_EVENT 0x0003 /* 3 - CLSL_ScheduleAESEvent */
#define CLSL_CANCEL_AES_EVENT 0x0004 /* 4 - CLSL_CancelAESEvent */
#define CLSL_GET_INTERVAL_MARKER 0x0005 /* 5 - CLSL_GetIntervalMarker */
#define CLSL_REGISTER_STACK 0x0006 /* 6 - CLSL_RegisterStack */
#define CLSL_DEREGISTER_STACK 0x0007 /* 7 - CLSL_DeRegisterStack */
#define CLSL_RESERVED 0x0008 /* 8 - Reserved */
#define CLSL_RESERVED1 0x0009 /* 9 - Reserved1 */
#define CLSL_RESERVED2 0x000A /* 10 - Reserved2 */
#define CLSL_GET_STACK_ECB 0x000B /* 11 - CLSL_GetStackECB */
D-32 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

#define CLSL_SEND_PACKET 0x000C /* 12 - CLSL_SendPacket */
#define CLSL_FAST_SEND_COMPLETE 0x000D /* 13 - CLSL_FastSendComplete */
#define CLSL_SEND_COMPLETE 0x000E /* 14 - CLSL_SendComplete */
#define CLSL_REGISTER_MLID 0x000F /* 15 - CLSL_RegisterMLID */

#define CLSL_GET_STACK_ID_FROM_NAME
0x0010 /* 16 - CLSL_GetStackIDFromName */

#define CLSL_GET_PID_FROM_STACK_ID_BOARD
0x0011 /* 17 - CLSL_GetPIDFromStackIDBoard */

#define CLSL_GET_MLID_CONTROL_ENTRY
0x0012 /* 18 - CLSL_GetMLIDControlEntry */

#define CLSL_GET_PROTOCOL_CONTROL_ENTRY
0x0013 /* 19 - CLSL_GetProtocolControlEntry */

#define CLSL_GET_LSL_STATISTICS 0x0014 /* 20 - CLSL_GetLSLStatistics */
#define CLSL_BIND_STACK 0x0015 /* 21 - CLSL_BindStack */
#define CLSL_UNBIND_STACK 0x0016 /* 22 - CLSL_UnbindStack */
#define CLSL_ADD_PROTOCOL_ID 0x0017 /* 23 - CLSL_AddProtocolID */
#define CLSL_GET_BOUND_BOARD_INFO

0x0018 /* 24 - CLSL_GetBoundBoardInfo */
#define CLSL_GET_LSL_CONFIGURATION 0x0019 /* 25 - CLSL_GetLSLConfiguration

*/
#define CLSL_DEREGISTER_MLID 0x001A /* 26 - CLSL_DeRegisterMLID */

#define CLSL_REGISTER_DEFAULT_CHAIN
0x001B /* 27 - CLSL_RegisterDefaultChain */

#define CLSL_REGISTER_PRESCAN_CHAIN
0x001C /* 28 - CLSL_RegisterPreScanChain */

#define CLSL_RESERVED3 0x001D /* 29 - Reserved3 */

#define CLSL_DEREGISTER_DEFAULT_CHAIN
0x001E /* 30 - DeRegisterDefaultChain */

#define CLSL_DEREGISTER_PRESCAN_CHAIN
0x001F /* 31 - DeRegisterPreScanChain */

#define CLSL_RESERVED4 0x0020 /* 32 - Reserved4 */
#define CLSL_GET_START_OF_CHAIN 0x0021 /* 33 - CLSL_GetStartofChain */
#define CLSL_RESUBMIT_DEFAULT 0x0022 /* 34 - CLSL_ReSubmitDefault */

#define CLSL_RESUBMIT_PRESCAN_RX
0x0023 /* 35 - CLSL_ReSubmitPreScanRx */
ODI Header File D-33

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

#define CLSL_RESUBMIT_PRESCAN_TX
0x0024 /* 36 - CLSL_ResubmitPreScanTx */

#define CLSL_HOLD_EVENT 0x0025 /* 37 - CLSL_HoldEvent */
#define CLSL_FAST_HOLD_EVENT 0x0026 /* 38 - CLSL_FastHoldEvent */

#define CLSL_GET_MAX_ECB_BUFFER_SIZE
0x0027 /* 39 - CLSL_GetMaxECBBufferSize */

#define CLSL_RESERVED5 0x0028 /* 40 - Reserved5 */
#define CLSL_SERVICE_EVENTS 0x0029 /* 41 - CLSL_ServiceEvents */

#define CLSL_MODIFY_STACK_FILTER
0x002A /* 42 - CLSL_ModifyStackFilter */

#define CLSL_CONTROL_STACK_FILTER
0x002B /* 43 - CLSL_ControlStackFilter */

#define CLSL_SEND_PROTOCOL_INFO_TO_OTHER_ENGINE
0x002C /* 44 - CLSL_SendProtocolInfoToOtherEngine (Server

ONLY) */

#define CLSL_SEND_PROTOCOL_INFO_TO_PARTNER
0x002D /* 45 - CLSL_SendProtocolInfoToPartner

(Server ONLY) */

#define CLSL_BIND_PROTOCOL_TO_BOARD
0x002E /* 46 - CLSL_BindProtocolToBoard */

#define CLSL_GET_MULTIPLE_ECBS 0x002F /* 47 - CLSL_GetMultipleECBs */

#define CLSL_GET_PHYSICAL_ADDRESS_OF_ECB 0x0030
/*48 CLSL_GetPhysicalAddressOfECB */

/* w is ptr. to INFO_BLOCK defining API Array for C LSL APIs */

#define CLSLEntry_GetSizedECB(w, x, y, z)\
((ECB* (CALLCNV *)(UINT32, void*, BOOLEAN))\
w->SupportAPIArray[CLSL_GET_SIZED_ECB])(x, y, z)

#define CLSLEntry_ReturnECB(w, x)\
((ODISTAT (_cdecl *)(ECB*))\
w->SupportAPIArray[CLSL_RETURN_ECB])(x)

#define CLSLEntry_CancelEvent(w, x)\
((ODISTAT (CALLCNV *)(ECB*))\
w->SupportAPIArray[CLSL_CANCEL_EVENT])(x)
D-34 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

#define CLSLEntry_ScheduleAESEvent(w, x)\
 ((void (CALLCNV *)(AES_ECB*))\

w->SupportAPIArray[CLSL_SCHEDULE_AES_EVENT])(x)

#define CLSLEntry_CancelAESEvent(w, x)\
((ODISTAT (CALLCNV *)(AES_ECB*))\
w->SupportAPIArray[CLSL_CANCEL_AES_EVENT])(x)

#define CLSLEntry_GetIntervalMarker(w)\
((UINT32 (CALLCNV *)(void))\
w->SupportAPIArray[CLSL_GET_INTERVAL_MARKER])()

#define CLSLEntry_RegisterStack(w, x, y)\
((ODISTAT (CALLCNV *)(PS_BOUND_NODE*, UINT32*))\
w->SupportAPIArray[CLSL_REGISTER_STACK])(x, y)

#define CLSLEntry_DeRegisterStack(w, x)\
((ODISTAT (CALLCNV *)(UINT32))\
w->SupportAPIArray[CLSL_DEREGISTER_STACK])(x)

#define CLSLEntry_GetStackECB(w, x)\
((ODISTAT (CALLCNV *)(LOOKAHEAD*))\
w->SupportAPIArray[CLSL_GET_STACK_ECB])(x)

#define CLSLEntry_SendPacket(w, x)\
((ODISTAT (CALLCNV *)(ECB*))\
w->SupportAPIArray[CLSL_SEND_PACKET])(x)

#define CLSLEntry_FastSendComplete(w, x)\
((void (CALLCNV *)(ECB*))\

w->SupportAPIArray[CLSL_FAST_SEND_COMPLETE])(x)

#define CLSLEntry_SendComplete(w, x)\
 ((void (CALLCNV *)(ECB*))\

w->SupportAPIArray[CLSL_SEND_COMPLETE])(x)

#define CLSLEntry_RegisterMLID(w, x, y, z)\
((ODISTAT (CALLCNV *)(MLID_REG*, MLID_CONFIG_TABLE*, UINT32*))\
w->SupportAPIArray[CLSL_REGISTER_MLID])(x, y, z)

#define CLSLEntry_GetStackIDFromName (w, x, y)\
((ODISTAT (CALLCNV *)(MEON_STRING*, UINT32*))\
w->SupportAPIArray[CLSL_GET_STACK_ID_FROM_NAME])(x, y)

#define CLSLEntry_GetPIDFromStackIDBoard(w, x, y, z)\
((PROT_ID* (CALLCNV *)(UINT32,UINT32,ODISTAT*))\
w->SupportAPIArray[CLSL_GET_PID_FROM_STACK_ID_BOARD])(x, y, z)
ODI Header File D-35

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

#define CLSLEntry_GetMLIDControlEntry(w, x, y)\
((INFO_BLOCK* (CALLCNV *)(UINT32, ODISTAT*))\
w->SupportAPIArray[CLSL_GET_MLID_CONTROL_ENTRY])(x, y)

#define CLSLEntry_GetProtocolControlEntry(w, x, y)\
((INFO_BLOCK* (CALLCNV *) (UINT32, ODISTAT*))\
w->SupportAPIArray[CLSL_GET_PROTOCOL_CONTROL_ENTRY])(x, y)

#define CLSLEntry_GetLSLStatistics(w)\
((LSL_STATS_TABLE* (CALLCNV *)(void))\
w->SupportAPIArray[CLSL_GET_LSL_STATISTICS])()

#define CLSLEntry_BindStack(w, x, y)\
((ODISTAT (CALLCNV *)(UINT32, UINT32))\
w->SupportAPIArray[CLSL_BIND_STACK])(x, y)

#define CLSLEntry_UnbindStack(w, x, y)\
((ODISTAT (CALLCNV *)(UINT32, UINT32))\
w->SupportAPIArray[CLSL_GET_UNBIND_STACK])(x, y)

#define CLSLEntry_AddProtocolID(w, x, y, z)\
((ODISTAT (CALLCNV *)(PROT_ID*, MEON_STRING*, MEON_STRING*))\
w->SupportAPIArray[CLSL_ADD_PROTOCOL_ID])(x, y, z)

#define CLSLEntry_GetBoundBoardInfo(w, x, y)\
((ODISTAT (CALLCNV *)(UINT32, UINT32*))\
w->SupportAPIArray[CLSL_GET_BOUND_BOARD_INFO])(x, y)

#define CLSLEntry_GetLSLConfiguration(w) \
((LSL_CONFIG_TABLE* (CALLCNV *)(void))\
w->SupportAPIArray[CLSL_GET_LSL_CONFIGURATION])()

#define CLSLEntry_DeRegisterMLID(w, x)\
((ODISTAT (CALLCNV *)(UINT32))\
w->SupportAPIArray[CLSL_DEREGISTER_MLID])(x)

#define CLSLEntry_RegisterDefaultChain(w, x)\
((ODISTAT (CALLCNV *)(PS_CHAINED_RX_NODE*))\
w->SupportAPIArray[CLSL_REGISTER_DEFAULT_CHAIN])(x)

#define CLSLEntry_RegisterPreScanChain(w, x, y)\
((ODISTAT (CALLCNV *)(PS_CHAINED_RX_NODE*, PS_CHAINED_TX_NODE*))\
w->SupportAPIArray[CLSL_REGISTER_PRE_SCAN_CHAIN])(x, y)

#define CLSLEntry_DeRegisterDefaultChain(w, x)\
D-36 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

((ODISTAT (CALLCNV *)(PS_CHAINED_RX_NODE*))\
w->SupportAPIArray[CLSL_DEREGISTER_DEFAULT_CHAIN])(x)

#define CLSLEntry_DeRegisterPreScanChain(w, x, y)\
((ODISTAT (CALLCNV *)(PS_CHAINED_RX_NODE*, PS_CHAINED_TX_NODE*))\
w->SupportAPIArray[CLSL_DEREGISTER_PRE_SCAN_CHAIN])(x, y)

#define CLSLEntry_GetStartofChain(w, x, y, z, aa)\
((ODISTAT (CALLCNV *)(UINT32, PS_CHAINED_RX_NODE**,\
PS_CHAINED_RX_NODE**,PS_CHAINED_TX_NODE**))\
w->SupportAPIArray[CLSL_GET_START_OF_CHAIN])(x, y, z, aa)

 #define CLSLEntry_ReSubmitDefault(w, x, y)\
((ODISTAT(CALLCNV *)(PS_CHAINED_RX_NODE*, LOOKAHEAD*))\
w->SupportAPIArray[CLSL_RESUBMIT_DEFAULT])(x, y)

 #define CLSLEntry_ReSubmitPreScanRx(w, x, y)\
((ODISTAT (CALLCNV *)(PS_CHAINED_RX_NODE*, LOOKAHEAD*))\
w->SupportAPIArray[CLSL_RESUBMIT_PRESCAN_RX])(x, y)

#define CLSLEntry_ResubmitPreScanTx(w, x, y)\
((ODISTAT (CALLCNV *)(PS_CHAINED_TX_NODE*, ECB*))\
w->SupportAPIArray[CLSL_RESUBMIT_PRESCAN_TX])(x, y)

#define CLSLEntry_HoldEvent(w, x)\
((void (CALLCNV *)(ECB*))\
w->SupportAPIArray[CLSL_HOLD_EVENT])(x)

#define CLSLEntry_FastHoldEvent(w, x)\
((void (CALLCNV *)(ECB*))\
w->SupportAPIArray[CLSL_FAST_HOLD_EVENT])(x)

#define CLSLEntry_GetMaxECBBufferSize(w)\
((UINT32 (CALLCNV *)(void))\

w->SupportAPIArray[CLSL_GET_MAX_ECB_BUFFER_SIZE])()

#define CLSLEntry_ServiceEvents(w)\
((void (CALLCNV *)(void))\
w->SupportAPIArray[CLSL_SERVICE_EVENTS])()

#define CLSLEntry_ModifyStackFilter(w, x, y, z, aa)\
((ODISTAT (CALLCNV *)(void*, UINT32, UINT32, UINT32*))\
w->SupportAPIArray[CLSL_MODIFY_STACK_FILTER])(x, y, z, aa)

#define CLSLEntry_ControlStackFilter(w, x, y, z, aa, bb)\
((ODISTAT (CALLCNV *)(UINT32, UINT32, UINT32, void*, void*))\
w->SupportAPIArray[CLSL_CONTROL_STACK_FILTER])(x, y, z, aa, bb)
ODI Header File D-37

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

#define CLSLEntry_SendProtocolInfoToOtherEngine(w, x, y, z, aa)\
((SFTIII_STAT (CALLCNV *)(UINT32, UINT8*, UINT32, \

void(*InfoSendCallBack)(UINT8*)))\
w->SupportAPIArray[CLSL_SEND_PROTOCOL_INFO_TO_OTHER_ENGINE])(x,y, z,

aa)

#define CLSLEntry_SendProtocolInfoToPartner(w, x, y, z, aa)\
 ((SFTIII_STAT (CALLCNV *)(UINT32, UINT8*, UINT32,\

void(*InfoSendCallBack)(UINT32, UINT8*)))\
w->SupportAPIArray[CLSL_SEND_PROTOCOL_INFO_TO_PARTNER])(x, y, z, aa)

#define CLSLEntry_BindProtocolToBoard(w, x, y, z)\
((ODISTAT (CALLCNV *)(UINT32, UINT32, MEON_STRING*))\
w->SupportAPIArray[CLSL_BIND_PROTOCOL_TO_BOARD])(x, y, z)

#define CLSLEntry_GetMultipleECBs(w, x, y ,z)\
((ECB* (CALLCNV *)(UINT32, void*, UINT32*))\
w->SupportAPIArray[CLSL_GET_MULTIPLE_ECBS])(x, y, z)

#define CLSLEntry_GetPhysicalAddressOfECB (w, x)/
((void (CALLCNV *)(ECB*))/
w->SupportAPIArray[CLSL_GET_PHYSICAL_ADDRESS_OF_ECB])(x)

#endif /* _ODI_Include_ */
D-38 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Glossary
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

not or

ter

y

e

ns.
Abort
To execute an orderly termination of a process whenever the process can
should not complete.

Adapter
A circuit board driven by software. In the context of this document an adap
refers to a physical board. See also NIC, MLID, Driver.

Address
A unique group of characters that correspond either to a selected memor
location, an input/output port, or a device on the network. See also Node
address.

AES--Asynchronous Event Scheduler
An auxiliary service that measures elapsed time and triggers events at th
conclusion of measured time intervals.

API--Application Programming Interface
A defined set of routines that enables two software modules to pass
information between them.

ARP--Address Resolution Protocol
The protocol used by TCP/IP to locate nodes on a network.

Asynchronous process
A process that does not depend upon occurrence of a timing signal.

Bit
A binary digit that can only be 0 or 1.

Broadcast
A simultaneous transmission of data from a single source to all destinatio
1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

is

tes
d.

 the

J

ther

 also

 (or
Buffer
A data area used for the temporary storage of data being moved between
processes.

Bus
The hardware interface upon which data is transferred.

Byte
A sequence of 8 bits.

CAM--Content Addressable Memory
Memory that resides on the adapter. In the context of this specification, th
memory is used to hold the group addresses that the adapter is to filter.

CHSM--C language Hardware Specific Module
One of three modules comprising the LAN driver toolkit. The developer wri
the CHSM to handle all hardware interactions for a specific physical boar

CMSM--C language Media Support Module
One of three modules comprising the LAN driver toolkit. The CMSM
standardizes and manages the generic details of interfacing ODI MLIDs to
LSL and the operating system.

CTSM--C language Topology Specific Module
One of three modules comprising the LAN driver toolkit. The <CTSM>.OB
manages the operations unique to a specific media type.

Completion code
A code returned by a routine to indicate that the routine has completed ei
successfully or unsuccessfully.

Control Block
A data structure that is used by a process to store control information. See
ECB.

Destination Address
A field that identifies the physical location to which data is to be sent.

Driver

The software module that operates a circuit board. In the context of this
document, driver refers to a software module that drives a network board
adapter) and enables a device to communicate over a LAN. See also Adapter,
NIC, MLID.
2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ing

vent
st, or

m a

rate

ed
yer

uting

t

andle
ECB--Event Control Block
A data structure that contains the information required to coordinate the
scheduling and activation of certain operations. All ODI layers and AES
functions act upon ECBs.

EISA--Extended Industry Standard Architecture
A 32-bit bus standard, a superset of the ISA standard.

EOI--End of Interrupt
A command issued to the programmable interrupt controller (PIC) indicat
an end of interrupt.

ESR--Event Service Routine
An application-defined procedure that is called after an event occurs. An e
can be the completion of a send request, the completion of a listen reque
the recurrence of an event that rescheduled itself with the AES.

Ethernet
A data-link protocol that specifies how data is placed on and retrieved fro
common transmission medium.

FDDI--Fiber Distributed Data Interface
A cable interface capable of transmitting data at 100 Mbps. FDDI can ope
over fiber lines or twisted-pair cable.

Frame
The unit of transmission on the network. The frame includes the associat
addresses and control information in the Media Access Control (MAC) La
and the transmitted data.

Interrupt
A hardware signal that causes the orderly suspension of the currently exec
process in order to execute a special program (or interrupt handler).

IOCTL--I/O Control
MLID procedures that perform specific actions (for example, add multicas
address, reset, shut down, etc.).

IP--Internet Protocol
The protocol used by TCP/IP. IP is connectionless and was designed to h
a large number of WANs and LANs on an internetwork.
3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

m

ith

st.

rces.

e

r

to

This

s
IPX--Internet Packet Exchange
An implementation of the Internetwork Datagram Packet (IDP) protocol fro
Xerox. It allows applications running on NetWare workstations to take
advantage of NetWare communications drivers to communicate directly w
other workstations, servers, or devices on the internetwork.

ISA--Industry Standard Architecture
An 8/16-bit bus standard used with Intel’s microprocessors.

ISR--Interrupt Service Routine
Routine that is executed to handle a hardware or software interrupt reque

LAN--Local Area Network
At least two computers (usually located in the same building) connected
together in such a way as to allow them to communicate and share resou

LSL--Link Support Layer
An ODI layer through which multiple protocol packets are directed from th
MLID to a designated protocol stack, and vice versa. The LSL directs
incoming and outgoing packets.

MAC Header--Media Access Control Header
Controls the transmission of packets through a network. The MAC heade
includes source and destination data.

Medium
The physical carrier of a signal.

Micro Channel Architecture
A bus standard defined by IBM.

MLI--Multiple Link Interface
The interface between the MLID and the LSL that allows multiple MLIDs
exist concurrently.

MLID--Multiple Link Interface Driver
The ODI layer that receives and transmits packets to a hardware device.
acronym refers to ODI LAN drivers.

MMIO--Memory Mapped I/O
An architecture for input and output that allows I/O ports to be accessed a
though they were memory locations.
4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ows

group

are

have

n the

me

ted
MPI--Multiple Protocol Interface
The interface between the LSL and a Network Layer protocol stack that all
different communication protocols to operate concurrently.

Multicast
The simultaneous transmission of data from a single source to a selected
of destination addresses on the network.

NIC--Network Interface Controller/Card
The physical network board installed in workstations and file servers.

NLM--NetWare Loadable Module
Applications that are loaded dynamically and integrated with all the NetW
server operating systems starting with NetWare 3.

Node
Any network device that transmits and/or receives data. The device must
a physical board and a unique address. See also Node Address.

Node Address
A unique combination of characters that corresponds to a physical board o
network. Each adapter must have a unique node address.

ODI--Open Data-Link Interface
The model that allows multiple network protocols, physical boards, and fra
types to coexist on a single workstation or server.

OSI--Open Systems Interconnection
A standard communications model that defines communications between
computer systems.

Packet
The unit of transmission on the network. The packet includes the associa
addresses and control information.

Peripheral Component Interconnect—PCI
A 32-bit or 64-bit bus standard with multiplexed address and data lines.

Personal Computer Memory Card International Association—PCMCIA
A 16-bit bus standard.
5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

at

itted

cific

be

puter

ing

d
PID--Protocol Identification
A value containing a globally administered value (1 to 6 bytes in length) th
reflects the protocol stack in use (for example, E0h=IPX 802.2). The PID
located in every packet is a value that uniquely identifies the packet as
belonging to a specific protocol.

Privileged Time
An execution time that has higher execution priority than process time.

Process Time
An execution time where you can allocate memory and (with certain
exceptions) perform file input and output (I/O).

Protocol
The set of rules and conventions that determines how data is to be transm
and received on the network.

Pseudocode
Describes computer program algorithms generically without using the spe
syntax of any programming language.

RAM--Random Access Memory
The computer’s (or physical board’s) storage area into which data can be
entered and retrieved nonsequentially.

RCB--Receive Control Block
A data structure used by the MLID to receive data.

ROM--Read Only Memory
The portion of the computer’s (or physical board’s) storage area that can
read only (write operations are ignored).

Shared RAM
The RAM on some physical boards that can be accessed by either the com
or the physical board on which the RAM is installed.

Source Address
A field in a frame that identifies the physical location of a node that is send
the packet.

SPX--Sequenced Packet Exchange
A Session Layer protocol that uses IPX. SPX provides connection oriente
services and guarantees packet delivery.
6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ine.

timing

fer

e to
d the

d

 its
re the
irtual

llow
Stubbed Routine
A routine that contains only an instruction to return to the caller of the rout

Synchronous Process
A process that depends upon the occurrence of another event such as a
signal.

TCB--Transmit Control Block
The data structure used by the MLID to transmit data.

TCP--Transmission Control Protocol
A communication protocol that provides a reliable stream service to trans
data between nodes on a network.

Token-Ring
A network that utilizes a ring topology and passes a token from one devic
another. A node that is ready to send data can capture the token and sen
data for as long as it holds the token.

TSR--Terminate-and-Stay-Resident
A DOS program or routine that remains in memory after being loaded an
subsequently exited.

Virtual Machine
An illusion of multiple processes, each executing on its own processor with
own memory. The resources of the physical computer can be used to sha
CPU and make it appear that each process has its own processor. The v
machine is created with an interface that appears to be identical to the
underlying hardware.

WAN--Wide Area Network
At least two computers remotely connected together in such a way as to a
them to communicate over wide distances and to share resources.
7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Revision History
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

.

ress
This Revision History covers document changes from Doc Version 1.20 to Doc
Version 1.21 and from Doc Version 1.21 to Doc Version 1.22.

Items 1 through 27 are Doc Version 1.21 changes.

Items 28 through 32 are Doc Version 1.22 changes.

All page numbers refer to the current Doc Version: Doc Version 1.22.

1. The following new function was added to Chapter 7:

GetBoundNetworkInfo

Index 9

Gets the bound network address for a board / protocol stack combination

Syntax

#include <odi.h>

ODISTAT GetBoundNetworkInfo (
UINT32 BoardNumber,
NETWORK_ADDRESS_INFO *networkAddress
void *StackIdentifier);

Input Parameters

boardNumber
The board number the protocol stack is to return the network add
for.

networkAddress
9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

col

ck
s

er

with
ress.

Pointer to a buffer where the bound network address for the proto
is returned.

StackIdentifier
Pointer is either a Stack ID (SID) identifying a bound protocol sta
(in other words, the content of the StackIdentifier parameter is les
than the maximum number of bound protocol stacks supported
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a point
to a stack chain node.

Output Parameters

networkAddress
NULL is placed at the start of the buffer if no address is returned.

Return Values

Remarks

The protocol stack will fill in the NETOWRK_ADDRESS_INFO structure
addressType field with it's assigned transport address type, the size field
the length of the address, and the address field with the bound network add
IPX returns all 12 bytes, network:node:socket. IP returns 4 bytes, network
address only (no socket).

The following Transport Address types have been assigned:

IPX 1
IP 2
DDP 3
NETBEUI 4

ODISTAT_SUCCESSFUL The network address was successfully returned.

Note: ODISTAT_SUCCESSFUL is returned even
if the addressType and size fields are zero, and the
address field is NULL; this implies that there is no
network address for the board and protocol
combination.

ODISTAT_BAD_PARAMETER The MLID corresponding to the requested board
number or the protocol stack corresponding to the
specified StackIdentifier.
10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

The networkAddress structure is defined in ODI.H as follows:
typedef struct_NETWORK_ADDRESS_INFO_
{
 UINT32addressType;
 UINT32size;
 UINT8address[32];
}NETWORK_ADDRESS_INFO;

2. On page 7-1, GetBoundNetworkInfo was added to the list of currently
defined functions.

3. On page 7-1, SFTIIIExchange and ProtocolManagement were deleted
from the list of currently defined functions.

4. On page 7-2, the code sample was replaced with the following code
sample:

PStkCntl_GetConfig(infoBlock, stackIdentifier)
PStkCntl_GetStats(infoBlock, stackIdentifier)
PStkCntl_Bind(infoBlock, boardNumber, userParmString, stackIdentifier)
PStkCntl_MLIDDeReg(infoBlock, boardNumber, stackIdentifier)
PStkCntl_Unbind(infoBlock, boardNumber, userParmString, stackIdentifier)
PStkCntl_PromiscState(infoBlock, boardNumber, promiscuousMask,
stackIdentifier)
PStkCntl_GetProtocolString(infoBlock, boardNumber, printString,
stackIdentifier)
PStkCntl_ProtManage(infoBlock, ManagementECB, stackIdentifier)
PStkCntl_GetBoundNetInfo(infoBlock, boardNumber, networkAddress,
stackIdentifier)

5. The function, SFTIIIExchange, was deleted from Chapter 7.

6. On page 12-20, in Table 12-4, "MLIDCFG_SharingFlags Bits
Descriptions", in the description for MS_SHUTDOWN_BIT, the word
"adapter" was changed to "logical board".

7. On page 18-4, the following Note was added:

If an ECB has been provided, the ESR is only called if
ODISTAT_RESPONSE_DELAYED is returned.

8. On page A-8, in Table A-1, under Bit Value, the second occurrence of
"ECB_TYPE_I" was changed to "ECB_TYPE_II".
11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ed
9. On page D-11, the #define value for MS_MEM_PAGE_BIT was chang
from 0x0800 to 0x8000.

10. On page D-16, the following two #defines were added:

#define NON_STACKED_BIT 0x8000 /* Used to filter non-stack IDs */
#define NON_STACKID_RAW_SEND_MASK 0x80F8 /* Used to filter raw send packets
*/

11. On page D-19, the following structure was added:

/**
Network Address Information structure used by protocol stack IOCTL 9.
**/

typedef struct_NETWORK_ADDRESS_INFO_
{
 UINT32 addressType;
 UINT32 size;
 UINT8 address[32];
} NETWORK_ADDRESS_INFO;

12. On page D-29, under "/*Protocol Stack Control Functions*/", the
following #define was deleted:

#define PSTK_SFTIIIExchange 0x0006

13. On page D-29, under "/*Protocol Stack Control Functions*/", the
following two #defines were added:

#define PSTK_RESERVED 0x0006
#define PSTK_GET_BOUND_NETWORK_INFO 0x0009

14. On page D-30, the following #define was deleted:

#define PStkCntl_SFTIIIExchange

15. On page D-30, the following #define was added:

#define PSTKCntl_GetBoundNetInfo (w, x, y, z) \
 ((ODISTAT (CALLCNV*)(UINT32, NETWORK_ADDRESS_INFO*, void*)) \
 w->SupportAPIArray[PSTK_GET_GOUND_NET_INFO]))(x, y, z)

16. On page 6-7, under the ECB_DataLength Field, the word "date" was
changed to "data".
12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

ed
17. On page 9-11, the value of the #define for LSL_NUM_API was chang
from 48L to 49L.

18. On page 9-12, the following entry was added as the last item to the
LSLAPI_Array:

(void (*))CLSL_GetPhysicalAddressOfECB

19. On page 10-2, the following entry was added to the list of functions
available from the LSL:

CLSL_GetPhysicalAddressOfECB

20. On page 10-4, the following entry was added to the list of functions
indexed in the information block:

48 CLSL_GetPhysicalAddressOfECB

21. On page 10-5, the following entry was added to the list of macros:

CLSLEntry_GetPhysicalAddressOfECB (info block, ecb)

22. The following new API was added to Chapter 10:

CLSL_GetPhysicalAddressOfECB

Index 48 (0x030)

Gets the physical address of an LSL ECB.

Syntax

#include <odi.h>

ECB *CLSL_GetPhysicalAddressOfECB
(ECB *ecb);

Input Parameters

ecb
Pointer (logical address) to an LSL ECB.

Output Parameters
13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

e

None.

Return Values

Pointer (physical address) of the ECB structure.

Remarks

This function can only be used for ECBs obtained via CLSL_GetSizedECB
or CLSL_GetMultipleECBs .

23. On page D-28, the entry for

ODISTAT CLSL_ReturnECB(ECB*ReturnedECB);

was changed to:

ODISTAT_cdecl CLSL_ReturnECB(ECB*ReturnedECB);

24. On page D-32, under "/* LSL Function Indexes */", the value of the
#define for LSL_NUM_API was changed from 48L to 49L.

25. On page D-34, right after "#define CLSL_GET_MULTIPLE_ECBS" th
following entry was added:

#define CLSL_GET_PHYSICAL_ADDRESS_OF_ECB 0x0030 /*
48 CLSL_GetPhysicalAddressOfECB */

26. On page D-34, under "#define CLSLEntry_ReturnECB (w, x)/",

CALLCNV *

was changed to:

_cdecl *

27. On page D-38, the following entry was added as the last #define:

#define CLSLEntry_GetPhysicalAddressOfECB (w, x)/
 ((void (CALLCNV *)(ECB*))/
 w->SupportAPIArray[CLSL_GET_PHYSICAL_ADDRESS_OF_ECB])(x)
14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

g

to
28. On page 5-5, right after the Multiple Chained Protocol Stacks section,
the following section was added:

MAC Packet Reception
To receive MAC frames, bound protocol stacks must register usin
either the MACTOK or MACFDI protocol ID. All three reception
methods (bound, prescan, and default) must set their filter mask
include DT_MAC_FRAME.

29. On page 9-9, under STAT_TABLE_ENTRY, the following entries:

{ ODI_STAT_UINT32, &LPostponedEvents, NULL },
{ ODI_STAT_UINT32, &LValidBufferReused, NULL },
{ ODI_STAT_UINT32, &LReserved, NULL },

were changed to:

{ ODI_STAT_UINT32, NULL, NULL },
{ ODI_STAT_UINT32, NULL, NULL },
{ ODI_STAT_UINT32, NULL, NULL },

30. On page 9-10, in Table 9-4, "Generic STAT_TABLE_ENTRY
Counters Array Fields, the following entries:

LPostponedEvents
LValidBuffersReused

were changed to:

LReserved1
LReserved2

31. On page 10-36:

See Chapter 15, "MLID Control Routines"

was corrected to read:

See Chapter 18, "MLID Control Routines"
15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

:

n.

the

es

tion

32. On page 12-25, under Field Descriptions: StatUseFlag, the following
sentence was added to the definition for ODI_STAT_MEON_STRING

The maximum string length is 256, including the NULL terminatio

and the following sentence was added to the definition for
ODI_STAT_UNTYPED:

This value is generally used for debugging and is displayed in
hexadecimal bytes.

33. On page 5-12, in the first paragraph, the following text:

There is no PID associated with MAC layer frames in this
specification. In previous ODI assembly language specifications,
values MACTOK (for Token-Ring management frames) and
MACFDI (for FDDI management frames) were used. These valu
are no longer valid.

has been changed to read as follows:

The PID associated with MAC layer frames is MACTOK for
Token-Ring management frames and MACFDI for FDDI
management frames. Refer to the "Protocol Stack Packet Recep
Methods" section of this chapter for more information about MAC
packet reception.
16 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Index
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

A
adapter

base memory address 12-11
reinitializing 18-22
shutting down 18-24

adapter data space 12-24
allocating 11-8
defined 11-8

adding
Protocol ID (PID) 4-4

AddMulticastAddress function 18-7
ADDR_SIZE parameter xxiv
AES event

canceling 10-14, 10-39
scheduling 10-80

AES_ECB structure xxxii, 10-81
field descriptions 10-81

alignment issues B-5
ANSI C xxi, B-1
ASCII B-3
assumptions

coding B-5

B
base memory address

adapter 12-11
big endian B-1
Bind function 4-9, 7-3
binding

NET.CFG file entry 4-3
protocol stack

logical board 4-8
protocol stack to adapter 10-10, 10-12
protocol stack to frame type 10-10, 10-12
protocol stack to MLID 7-3

board
service routine

overview 11-4
BoardNumber

filling in 2-7
BOOLEAN enumeration xxii
bound protocol stack 5-4

defined 2-9
receive handler 5-16
registering 10-69

building CHSM
NetWare/Intel C-1

bus type
Extended Industry Standard Architecture 11-13
Industry Standard Architecture (ISA) 11-13
listed 11-13
Micro Channel Architecture 11-13
Peripheral Component Interconnect (PCI) 11-13
Personal Computer Memory Card Internati 11-13

C
canceling

AES events 10-14, 10-39
events 10-15

canonical and noncanonical addressing
document xix, 12-4

chain
protocol stack

default 2-10
17

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

defined 4-9
prescan 2-10

CHNPOS enumeration xxvi
CHSM

building
NetWare/Intel C-1

revision level 12-9
CLSL_AddProtocolID function 10-8
CLSL_BindProtocolToBoard function 10-10
CLSL_BindStack function 10-12
CLSL_CancelAESEvent function 10-14, 10-39
CLSL_CancelEvent function 10-15
CLSL_ControlStackFilter function 10-16
CLSL_DeRegisterDefaultChain function 10-18
CLSL_DeRegisterMLID function 10-20
CLSL_DeRegisterPreScanChain function 10-21
CLSL_DeRegisterStack function 10-23
CLSL_FastHoldEvent function 10-25
CLSL_FastSendComplete function 10-27
CLSL_GetBoundBoardInfo function 10-29
CLSL_GetIntervalMarker function 10-31
CLSL_GetLSLConfiguration function 10-32
CLSL_GetLSLStatistics function 10-33
CLSL_GetMaxECBBufferSize function 10-34
CLSL_GetMLIDControlEntry function 10-35
CLSL_GetPIDFromStackIDBoard function 10-40
CLSL_GetProtocolControlEntry function 10-42
CLSL_GetSizedECB function 10-44
CLSL_GetStackECB function 10-46
CLSL_GetStackIDFromName function 10-49
CLSL_GetStartOfChain function 10-51
CLSL_HoldEvent function 10-53
CLSL_ModifyStackFilter function 10-55
CLSL_RegisterDefaultChain function 10-58
CLSL_RegisterMLID function 10-61
CLSL_RegisterPreScanChain function 10-64
CLSL_RegisterStack function 10-69
CLSL_ReSubmitDefault function 10-72
CLSL_ReSubmitPreScanRx function 10-75
CLSL_ReSubmitPreScanTx function 10-77
CLSL_ReturnECB function 10-79
CLSL_ScheduleAESEvent function 10-80
CLSL_SendComplete function 10-83
CLSL_SendPacket function 10-85

CLSL_SendProtocolInfoToOtherEngine func 10-89
CLSL_SendProtocolInfoToPartner function 10-87
CLSL_ServiceEvents function 10-91
CLSL_UnbindStack function 10-92
code

portability xxi, B-1
completion codes

listed 8-2
configuration table

LSL xxviii, 9-1
major version number 9-3
minor version number 9-3
pointer to 10-32

MLID xxxiv, 11-5, 12-2
major version number 12-4
minor version number 12-4

protocol stack xxxiii, 3-1
major version number 3-2
minor version number 3-2

control
routines

MLID
overview 11-4

control block
event xxxi, 6-4, A-1

control procedure
required 11-2
supported 11-2

control routines
MLID 18-1

D
data

transfer mode
methods 11-13

data flow 2-5
receive 1-8
send 1-6

data packing B-5
data space

adapter 12-24
frame 12-1
18 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

data structures
MLID 11-5

default
protocol stack 5-4

chaining 2-10, 4-9
defined 2-10
deregistering 10-18
receive handler 5-22
registering 10-58

DelelteMulticastAddress function 18-11
deregistering

default protocol stacks 10-18
prescan protocol stacks 10-21

destination
determining packet 8-1

Destination SAP (DSAP) 6-6
Destination Service Access Point (DSAP) 6-6
determining

packet destination 1-4, 8-1
DMA channel

default 12-13
document

canonical and noncanonical addressing s xix, 12-4
frame types xix, 2-9
hub management interface xix
installation information file xix
MLID message definition xix
other xix
protocol IDs (PIDs) xix, 2-9
source routing xix
supplement xix

dynamic method, logical board service 4-3

E
ECB (Event Control Block) 6-4
ECB_BoardNumber field 6-6, A-6
ECB_DataLength field 6-7, A-9
ECB_DriverWorkspace field A-7
ECB_ESR field 6-5, A-4
ECB_Fragment field A-9
ECB_FragmentCount field 6-7, A-9
ECB_ImmediateAddress field 6-7, A-6

ECB_NextLink field A-3
ECB_PreviousLink field A-3
ECB_ProtocolID field 6-6, A-6
ECB_ProtocolWorkspace field A-8
ECB_StackID field 6-5, A-5
ECB_Status field A-4
enumeration

BOOLEAN xxii
CHNPOS xxvi
ODISTAT xxiv
SFTIII_STAT xxv

ETH_RxAbortFrameAlignment field 12-35
ETH_TxAbortCarrierSense field 12-35
ETH_TxAbortExcesiveDeferral field 12-35
ETH_TxAbortExcessCollision field 12-34
ETH_TxAbortLastCollision field 12-34
ETH_TxOKButDeferred field 12-34
ETH_TxOKMultipleCollisionCount field 12-34
ETH_TxOKSingleCollisionCount field 12-34
Ethernet

group addresses 18-10
multicast addresses 18-10

event
canceling 10-15

Event Control Block (ECB) A-1
description A-1
ECB_BoardNumber field 6-6
ECB_DataLength field 6-7
ECB_ESR field 6-5
ECB_FragmentCount field 6-7
ECB_ImmediateAddress field 6-7
ECB_ProtocolID field 6-6
ECB_StackID field 6-5
maximum buffer size 10-34
structure xxxi, A-1

execution time xx
privileged time xx
process time xx

explicit method, logical board service 4-3
Extended Industry Standard Architecture 11-13
19

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

F
FDI_ConfigurationStats field 12-36
FDI_DownstreamNode field 12-36
FDI_FrameErrorCount field 12-36
FDI_FramesLostCount field 12-36
FDI_LConnectionState field 12-37
FDI_LCTFailureCount field 12-37
FDI_LemCount field 12-37
FDI_LemRejectCount field 12-37
FDI_RingManagementCount field 12-37
FDI_UpstreamNode field 12-36
filter mask

modifying 10-55
flags field 12-20
flow of data

receive 1-8
send 1-6

fragment descriptors 6-8
fragment structure xxxi, A-1
FRAGMENT_STRUCT structure xxxi, A-1
FragmentAddress field A-2
frame

data space 12-1
allocating 11-8
defined 11-8

supporting multiple types 2-1, 11-7, 11-8
type

relation of to logical board 11-7
frame types

document xix, 2-9

G
generic statistics counter

media specific 12-24
standard 12-24

GetMLIDConfiguration function 7-16, 18-13, 18-17,
18-34, 18-36, 18-40

GetMLIDStatistics function 18-15
GetProtocolStackConfiguration function 7-6, 7-8
GetProtocolStackStatistics function 7-9

GetProtocolStringForBoard function 7-10
group addresses

adding 18-7
disabling 18-11
Ethernet 18-10
maximum supported 18-9

group addressing
hardware 18-9

H
handles

system
used by protocol stack in packet recept 2-9

hardware
bus type

listed 11-13
data transfer 11-13
independence 2-1

HardwareDriverMLID string 12-4
header file B-2
hub management 12-18

bit 12-18
hub management interface

document xix

I
Industry Standard Architecture (ISA) bu 11-13
INFO_BLOCK structure xxviii, 10-7

field descriptions 10-7
information block xxviii, 10-7
initializing

MLID 11-3
protocol stack 2-7, 4-1

installation information file
document xix

interface
Multiple Link Interface (MLI) 10-1
Multiple Protocol Interface (MPI) 10-1

interrupt
vector number 12-12
20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

L
LAESEventCount field 9-10
LCancelEventFailures field 9-10
LConfigTableMajorVer field 9-3
LConfigTableMinorVer field 9-3
LConfigTableReserved0 field 9-3
LConfigTableReserved1 field 9-3
LConfigTableReserved2 field 9-3
LCustomCountersPtr field 9-8
LGenericCountersPtr field 9-8
LGetECBFailures field 9-10
LGetECBRequests field 9-10
Link Support Layer (LSL)

completion codes
listed 8-2

configuration table xxviii, 9-1
pointer to 10-32

defined 1-4, 8-1
interfaces 10-1
locating 4-2, 10-6
statistics table xxx, 9-7

pointer to 10-33
linker definition file

NetWare/Intel C-2
lins speed

protocol stack 4-6
little endian B-1
LkAhd_BoardNumber field 5-8
LkAhd_DataLookAheadLen field 5-8
LkAhd_DataLookAheadPtr field 5-8
LkAhd_DestType field 5-10
LkAhd_FrameDataBytesWanted field 5-13
LkAhd_FrameDataSize field 5-12
LkAhd_FrameDataStartCopyOffset field 5-12
LkAhd_ImmediateAddress field 5-12
LkAhd_MediaHeaderLen field 5-7
LkAhd_MediaHeaderPtr field 5-7
LkAhd_PktAttr field 5-9
LkAhd_PreFilledECB field 5-7
LkAhd_PriorityLevel field 5-13
LkAhd_ProtocolID field 5-12
LkAhd_Reserved field 5-13

LkAhd_ReturnedECB field 5-13
LMaxNumberOfBoards field 9-3
LMaxNumberOfStacks field 9-3
LNumCustomCounters field 9-8
LNumGenericCounters field 9-8
LNumLogicalBoards field 9-8
LOG_BRD_STAT_TABLE_ENTRY structure xxviii,

9-7
LogBrd_ReceivedPackets field 9-8
LogBrd_TransmittedPackets field 9-8
LogBrd_UnclaimedPackets field 9-8
logical

board
number

defined 2-7
registering with LSL 10-61
relation of to frame type 11-7
routing packet to 2-8
servicing 4-3
supporting 2-1

logical board service
dynamic method 4-3
explicit method 4-3

LogicalBoardStatTablePtr field 9-8
lookahead xxxii, 5-6

method 4-8, 5-5
receive handler 5-6
size

setting 18-38
LOOKAHEAD structure xxxii, 5-6

field descriptions 5-7
LReserved field 9-10
LSL_CONFIG_TABLE structure xxviii, 9-1
LSL_STATS_TABLE structure xxx, 9-7
LSLLongName field 9-3
LSLMajorVer field 9-3
LSLMinorVer field 9-3
LSLShortName field 9-3
LStatTableMajorVer field 9-8
LStatTableMinorVer field 9-8
LTotalRxPackets field 9-10
LTotalTxPackets field 9-10
LUnclaimedPackets field 9-10
21

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

M
MACFDI 5-12, 16
MACTOK 5-12, 16
MAdapterOprTimeStamp field 12-31
MAdapterResetCount field 12-31
major version number

LSL
configuration table 9-3
statistics table 9-8

MLID
configuration table 12-4
statistics table 12-27

protocol stack 3-2
configuration table 3-2
statistics table 3-5

MChecksumErrorCount field 12-30
MCustomCounterPtr field 12-27
media

independence 2-1
media specific counter 12-32

Ethernet 12-34
FDDI 12-36

MEON xxii
MEON_STRING xxii
MF_GRP_ADDR_SUP_BIT bit 12-18
MF_HUB_MANAGEMENT_BIT bit 12-18
MF_SOFT_FILT_GRP_BIT bit 12-18
MGenericCountersPtr field 12-27
MHardwareRxMismatchCount field 12-31
Micro Channel Architecture bus 11-13
minor version number

LSL
configuration table 9-3
statistics table 9-8

MLID
configuration table 12-4
statistics table 12-27

protocol stack 3-2
configuration table 3-2
statistics table 3-5

MLI (Multiple Link Interface)
defined 1-6

MLID (Multiple Link Interface Driver)
configuration table xxxiv, 12-2
control routines

overview 11-4
defined 1-5
message definition

document xix
multiple frame support,, see also frame, supporting

multiple types
removing

overview 11-5
statistics table xxxv, 12-24, 12-26
timeout detection 11-5

MLID_CONFIG_TABLE structure xxxiv, 12-2
MLID_REG structure xxxvi, 10-62

field descriptions 10-62
MLID_STATS_TABLE structure xxxv, 12-26
MLIDCFG_BestDataSize field 4-7, 12-5
MLIDCFG_BoardInstance field 12-4
MLIDCFG_BoardNumber field 12-4
MLIDCFG_CardName field 12-6
MLIDCFG_ChannelNumber field 12-14
MLIDCFG_CommandString field 12-13
MLIDCFG_Config field 12-13
MLIDCFG_DBusTag field 12-14
MLIDCFG_DIOConfigMajorVer field 12-14
MLIDCFG_DIOConfigMinorVer field 12-14
MLIDCFG_DMALine0 field 12-13
MLIDCFG_DMALine1 field 12-13
MLIDCFG_DriveMajorVer field 12-9
MLIDCFG_DriverLink field 12-9
MLIDCFG_DriverMinorVer field 12-9
MLIDCFG_Flags field 12-9, 12-20
MLIDCFG_FrameID field 12-6
MLIDCFG_FrameTypeString field 12-6
MLIDCFG_Interrupt0 field 12-12
MLIDCFG_Interrupt1 field 12-12
MLIDCFG_IOPort0 field 12-10
MLIDCFG_IOPort1 field 12-11
MLIDCFG_IORange0 field 12-11
MLIDCFG_IORange1 field 12-11
MLIDCFG_LinearMemory0 field 12-13
MLIDCFG_LinearMemory1 field 12-14
MLIDCFG_LineSpeed field 4-6, 12-7
22 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

MLIDCFG_LogicalName field 12-13
MLIDCFG_LookAheadSize field 12-8
MLIDCFG_MajorVersion field 12-4
MLIDCFG_MaxFrameSize field 4-7, 12-5
MLIDCFG_MemoryAddress0 field 12-11
MLIDCFG_MemoryAddress1 field 12-12
MLIDCFG_MemorySize0 field 12-11
MLIDCFG_MemorySize1 field 12-12
MLIDCFG_MinorVersion field 12-4
MLIDCFG_ModeFlags field 6-5, 12-4, 12-15
MLIDCFG_NodeAddress field 12-4
MLIDCFG_PrioritySup field 12-8
MLIDCFG_Reserved0 field 12-6
MLIDCFG_Reserved1 field 12-8
MLIDCFG_Reserved2 field 12-8
MLIDCFG_ResourceTag field 12-13
MLIDCFG_SendRetries field 12-9
MLIDCFG_SharingFlags field 12-10
MLIDCFG_ShortName field 12-6
MLIDCFG_Signature field 12-4
MLIDCFG_Slot field 12-10
MLIDCFG_SourceRouting field 12-7
MLIDCFG_TransportTime field 4-6, 12-6
MLIDCFG_WorstDataSize field 4-7, 12-5
MLIDDeRegistered function 7-12
MLIDManagement function 18-20
MLIDReset function 18-22
MLIDShutdown function 18-24
MM_C_HSM_BIT bit 12-16
MM_CSL_COMPLIANT_BIT bit 12-16
MM_DATA_SZ_UNKNOWN_BIT bit 12-16
MM_DEPENDABLE_BIT bit 12-15
MM_FRAG_RECEIVES_BIT bit 12-16
MM_FRAGS_PHYS_BIT bit 12-16
MM_MULTICAST_BIT bit 12-15
MM_PREFILLED_ECB_BIT bit 12-16
MM_RAW_SENDS_BIT bit 6-5, 12-16
MM_SMP_BIT bit 12-16
MMediaCountersPtr field 12-27
MNoECBAvailableCount field 12-30
MNumCustomCounters field 12-27
MNumGenericCounters field 12-27
MNumMediaCounters field 12-27
mode flags field 12-15

modifying
filter mask 10-55

monitoring
packet transmission 18-30

MPacketRxOverflowCount field 12-30
MPacketRxTooBigCount field 12-30
MPacketRxTooSmallCount field 12-30
MPacketTxTooBigCount field 12-30
MPacketTxTooSmallCount field 12-30
MQDepth field 12-31
MRetryTxCount field 12-30
MS_HAS_CMD_INFO_BIT bit 12-21
MS_NO_DEFAULT_INFO_BIT bit 12-20
MS_SHARE_DMA0_BIT bit 12-20
MS_SHARE_DMA1_BIT bit 12-20
MS_SHARE_IRQ0_BIT bit 12-20
MS_SHARE_IRQ1_BIT bit 12-20
MS_SHARE_MEMORY0_BIT bit 12-20
MS_SHARE_MEMORY1_BIT bit 12-20
MS_SHARE_PORT0_BIT bit 12-20
MS_SHARE_PORT1_BIT bit 12-20
MS_SHUTDOWN_BIT bit 12-20
MStatTableMajorVer field 12-27
MStatTableMinorVer field 12-27
MTotalGroupAddrRxCount field 12-31
MTotalGroupAddrTxCount field 12-31
MTotalRxMiscCount field 12-30
MTotalRxOKByteCount field 12-31
MTotalRxPacketCount field 12-30
MtotalTxMiscCount field 12-30
MTotalTxOKByteCount field 12-31
MTotalTxPacketCount field 12-30
multicast addresses

adding 18-7
disabling 18-11
Ethernet 18-10
maximum supported 18-9

multicast addressing
hardware 18-9
support

MLID 11-12
multicast support

protocol stack 4-7
multicast transmission
23

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

NET.CFG file 4-8
multiple

operating systems
supporting 11-1

multiple board support
protocol stacks 4-5

multiple chained protocol stack 5-5
multiple frame support

MLID 11-7
Multiple Link Interface (MLI) 10-1
Multiple Link Interface Driver (MLID)

configuration table 11-5
control routines 18-1
data structures 11-5
definition 11-2
design considerations 11-12
initializing 11-3
multicast addressing support 11-12
multiple frame support 11-7
optional functionality 11-12
portability 11-1
promiscuous mode support 11-12
recommended functionality 11-6
reentrancy 11-6
source routing support 11-12
statistics table 11-5
transmit monitor 18-32

Multiple Protocol Interface (MPI) 10-1
defined 1-3

multiplexing
protocol stacks 2-1

multiprocessing bit 12-16
multiprocessor platform xvii

N
nesting level B-4
NET.CFG file

``bind" entry 4-3
multicast addresses 4-8

NetWare/Intel
building CHSM C-1
creating source file C-1

linker definition file C-2
NODE_ADDR structure xxiv
NULL B-2, B-3

O
ODI (Open DataLink Interface) sp 1-1, 1-2
ODI_STAT_UINT32 status xxvii, 12-25
ODI_STAT_UINT64 status xxvii, 12-25
ODI_STAT_UNUSED status xxvii, 12-25
ODISTAT enumeration xxiv
offsetof macro B-3
operating system

supporting multiple 11-1
outstanding transmit requests

number of 6-3

P
packet

destination
determining 1-4, 8-1

flow 1-6, 2-5
reception

priority level 5-11, 5-13
protocol stack

choosing a method 5-4
events 5-2
methods 5-4
methods of 2-9
overview 2-9
process 2-10
system handles 2-9

routing
to logical board 2-8
to protocol stack 2-5

transmission 11-4
monitoring 18-30
protocol stack 6-1

packet size
maximum 4-6

packets
24 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

protocol stack
steps in accepting 5-26

PConfigTableMajorVer field 3-2
PConfigTableMinorVer field 3-2
PCustomCountersPtr field 3-5
performance

measuring
protocol stack 4-6

Peripheral Component Interconnect (PCI) 11-13
Personal Computer Memory Card Internati 11-13
PGenericCountersPtr field 3-5
PID_SIZE parameter xxiv
PIgnoredRxPackets field 3-7
platform

multiprocessor xvii
PNumCustomCounters field 3-5
PNumGenericCounters field 3-5
portability

alignment B-5
assumptions B-5
data packing B-5
issues B-1
MLID 11-1
requirements xxi
rules B-1

porting code B-1
PProtocolLongName field 3-2
PProtocolMajorVer field 3-2
PProtocolMinorVer field 3-2
PProtocolShortName field 3-2
pragma B-2
prescan protocol stack 5-4

chaining 2-10, 4-9
defined 2-10
deregistering 10-21
receive handler 5-22
registering 10-64

prescan transmit method
protocol stack 6-2

priority level
packet reception 5-11, 5-13

priority sends 6-3
priority transmits 6-3
privileged time xx

process time xx
promiscuous mode

defined 11-12
diabling 18-26
enabling 18-26
support

MLID 11-12
PromiscuousChange function 18-26
PromiscuousStatus function 7-14
PROT_ID structure xxiv
Protocol ID (PID) 2-7

adding 4-4
conditions for 4-5

defined 2-7
registering 10-8
value

obtaining 4-5
protocol receive complete handler

default stacks 5-29
prescan stacks 5-29

protocol receive handler
bound stack 5-16
default stack 5-22
prescan stack 5-22

protocol stack
accepting packet

general steps 5-26
binding to adapter 10-10, 10-12
binding to frame type 10-10, 10-12
binding to logical board 4-8
bound 5-4

defined 2-9
registering 10-69

chaining 2-10, 4-9
configuration table xxxiii, 3-1
customizing 4-5
default 5-4

defined 2-10
deregistering 10-18
registering 10-58

defined 1-2
independence 2-1
initialization 4-1
initializing 2-7
25

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

line speed 4-6
major version number 3-2
maximum packet size 4-6
measuring performance 4-6
minor version number 3-2
multicast support 4-7
multiple board support 4-5
multiple chained 5-5
multiple frame support,, see also frame, supporting

multiple types
multiplexing 2-1
overview 2-1
packet

reception
methods of 2-9
process 2-10

packet receive events 5-2
packet reception methods 5-4
packet transmission 6-1
prescan 5-4

defined 2-10
deregistering 10-21
registering 10-64

prescan transmit method 6-2
receive lookahead 4-8
registering with LSL 4-2
routing packet to 2-5
send routine event 6-1
statistics table xxxiii, 3-4
transmit routine event 6-1
unbinding from adapter 10-92
unbinding from frame type 10-92

protocol transmit complete handler 6-13
protocol transmit handler

prescan stacks 6-10
PS_BOUND_NODE structure xxxvi, 10-70

field descriptions 10-71
PS_CHAINED_RX_NODE structure xxxvi, 10-59,

10-65
field descriptions 10-59, 10-66

PS_CHAINED_TX_NODE structure xxxvii, 10-67
field descriptions 10-67

PS_CONFIG_TABLE structure xxxiii, 3-1
PS_STATS_TABLE structure xxxiii, 3-4

PStatTableMajorVer field 3-5
PStatTableMinorVer field 3-5
PTotalRxPackets field 3-7
PTotalTxPackets field 3-7

R
raw send

ECB 6-5
receive complete handler

default stacks 5-29
prescan stacks 5-29

receive handler
receive lookahead 5-6

receive lookahead xxxii, 4-8, 5-5, 5-6
receive handler 5-6

reception
packet

priority level 5-11, 5-13
reentrancy

MLID 11-6
reentrant code

implementing multiple frame support in 11-7
registering

bound protocol stacks 10-69
default protocol stacks 10-58
logical board with LSL 10-61
prescan protocol stacks 10-64
Protocol ID (PID) 10-8
protocol stacks with LSL 4-2

RegisterMonitor function 18-30
removing

MLID
overview 11-5

required control procedures 11-2
resetting adapters 18-22
retries at sending packet 12-9
revision level

CHSM 12-9
routing

packet
to logical board 2-8
to protocol stack 2-5
26 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

S
scheduling

AES events 10-80
sending packets

from LSL to MLID 10-85
number of retries 12-9

sending protocol information to IOEngin 10-87
sending protocol information to other e 10-89
service

dynamic method 4-3
explicit method 4-3

servicing
events in the LSL hold queue 10-91
logical boards 4-3

SetLookAheadSize function 18-38
SFTIII

sending protocol information 10-87, 10-89
SFTIII_EXCHANGE_NODE structure xxxvii
SFTIII_STAT enumeration xxv
shutting down adapters 18-24
sizeof operator B-2
source file

creating
NetWare/Intel C-1

source routing
document xix

source routing support
MLID 11-12

Source SAP (SSAP) 6-6
specification version number 8-2
specification version string 8-2
speed

topology 12-7
Stack ID (SID) 2-7

defined 2-7
STAT_TABLE_ENTRY structure xxvii, 12-25
statistics counter

custom 12-24
generic 12-24

media specific 12-24
standard 12-24

statistics table

LSL xxx, 9-7
major version number 9-8
minor version number 9-8
pointer to 10-33

media specific counter
description 12-32

MLID xxxv, 11-5, 12-24, 12-26
major version number 12-27
minor version number 12-27

protocol stack xxxiii, 3-4
major version number 3-5
minor version number 3-5

structure
AES_ECB xxxii, 10-81
ECB xxxi, A-1
fragment xxxi, A-1
FRAGMENT_STRUCT xxxi, A-1
INFO_BLOCK xxviii, 10-7
LOG_BRD_STAT_TABLE_ENTRY xxviii, 9-7
LOOKAHEAD xxxii, 5-6
LSL_CONFIG_TABLE xxviii, 9-1
LSL_STATS_TABLE xxx, 9-7
MLID_CONFIG_TABLE xxxiv, 12-2
MLID_REG xxxvi, 10-62
MLID_STATS_TABLE xxxv, 12-26
NODE_ADDR xxiv
PROT_ID xxiv
PS_BOUND_NODE xxxvi, 10-70
PS_CHAINED_RX_NODE xxxvi, 10-59, 10-65
PS_CHAINED_TX_NODE xxxvii, 10-67
PS_CONFIG_TABLE xxxiii, 3-1
PS_STATS_TABLE xxxiii, 3-4
SFTIII_EXCHANGE_NODE xxxvii
STAT_TABLE_ENTRY xxvii, 12-25

supporting
logical boards 2-1
multiple

operating systems 11-1
system

handles
used by protocol stack in packet recept 2-9
27

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

T
timeout

MLID
overview 11-5

timeout detection
MLID 11-5

timing marker 10-31
group addresses

TokenRing 18-10
media specific counter

TokenRing 12-32
multicast addresses

TokenRing 18-10
TokenRing 18-10
topology

speed 12-7
translation limit B-4
transmit monitor

MLID 18-32
transmit routine event

protocol stack 6-1
transmits

priority 6-3
transmitting

packets 11-4
TRN_AbortDelimiterCounter field 12-32
TRN_ACErrorCounter field 12-32
TRN_BurstErrorCounter field 12-32
TRN_FrameCopiedErrorCounter field 12-32
TRN_FrequencyErrorCounter field 12-32
TRN_InternalErrorCounter field 12-32
TRN_LastBeaconType field 12-34
TRN_LastRingID field 12-33
TRN_LastRingStatus field 12-33
TRN_LineErrorCounter field 12-33
TRN_LostFrameCounter field 12-33
TRN_TokenErrorCounter field 12-33
TRN_UpstreamNodeAddress field 12-33

U
UINT16 xxii
UINT32 xxii
UINT64 xxii
UINT8 xxii
Unbind function 7-19
unbinding

protocol stack from adapter 7-19, 10-92
protocol stack from frame type 10-92

V
vector number

interrupt 12-12
version number

LSL
configuration table 9-3
statistics table 9-8

MLID
configuration table 12-4
statistics table 12-27

protocol stack
configuration table 3-2
statistics table 3-5

version string
specification 8-2

void* B-3
volatile variable xvii
28 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Trademarks
S
p

e
c v1

.1
1

 - D
o

c v1
.2

2

y
t of

c.

n
Novell, Inc. has attempted to supply trademark information about compan
names, products, and services mentioned in this manual. The following lis
trademarks was derived from various sources.

Novell Trademarks
Hardware Specific Module, HSM, and CHSM are trademarks of Novell, In

Internetwork Packet Exchange and IPX are trademarks of Novell, Inc.

Link Support Layer and LSL are trademarks of Novell, Inc.

MAC is a trademark of Novell, Inc.

Media Support Module, MSM, and CMSM are trademarks of Novell, Inc.

Multiple Link Interface Driver and MLID are trademarks of Novell, Inc.

Multiple Protocol Interface and MPI are trademarks of Novell, Inc.N-Desig
is a registered trademark of Novell, Inc.

N-Design is a registered trademark of Novell, Inc.

NE1000, NE2000, NE2100, NE/2, NE2-32, NTR2000 are trademarks of
Novell, Inc.

NetWare is a registered trademark of Novell, Inc.

NetWare Access Services is a trademark of Novell, Inc.

NetWare Core Protocol and NCP are trademarks of Novell, Inc.

NetWare Directory Services and NDS are trademarks of Novell, Inc.

NetWare DOS Requester and NDR are trademarks of Novell, Inc.

NetWare Express is a trademark of Novell, Inc.

NetWare Management Agent is a trademark of Novell, Inc.

NetWare Loadable Module and NLM are trademarks of Novell, Inc.

NetWare Logotype is a registered trademark of Novell, Inc.

NetWare Requester is a trademark of Novell, Inc.

NetWare Run-time is a trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc.

NetWare System Interface and NSI are trademarks of Novell, Inc.
29

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S
p

e
c

v1
.1

1
 -

 D
o

c
v1

.2
2

ell,

.

Novell Embedded Systems Technology and NEST are trademarks of Nov
Inc.

Novell Labs is a trademark of Novell, Inc.

Open Data-Link Interface and ODI are trademarks of Novell, Inc.

Packet Burst is a trademark of Novell, Inc.

RX-Net is a trademark of Novell, Inc.

SFT is a trademark of Novell, Inc.

Topology Specific Module, TSM, and CTSM are trademarks of Novell, Inc

Transactional Tracking System and TTS are trademarks of Novell, Inc.

Virtual Loadable Module and VLM are trademarks of Novell, Inc.

Third-Party Trademarks
AMP is a trademark of AMP Inc.

AppleTalk is a registered trademark of Apple Computer, Inc.

IBM is a registered trademark of International Business Machines
Corporation.

IBM Operating System/2 Local Area Network Server (LAN Server) is a
trademark of International Business Machines Corporation.

LAT is a trademark of Digital Equipment Corporation.
30 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

	Contents
	Preface
	Introduction to ODI
	1 Overview of Protocol Stacks
	2 Protocol Stack Data Structures
	3 Protocol Stack Initialization
	4 Protocol Stack Packet Reception
	5 Protocol Stack Packet Transmission
	6 Protocol Stack Control Routines
	7 Overview of the LSL
	8 LSL Data Structures
	9 LSL Support Routines
	10 Overview of the MLID
	11 MLID Data Structures
	12 MLID Initialization
	13 MLID Packet Reception
	14 MLID Packet Transmission
	15 MLID Timeout Routine
	16 MLID Remove Routine
	17 MLID Control Routines
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Glossary
	Revision History
	Index

