SPEC VERSION 1.11

Hardware Specific Modules (HSMs)
(C Language)

ODI Specification

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

disclaimer

trademarks

Novell, Inc. makes no representations or warranties with respect to the contents
or use of this manual, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. reserves the right to revise this publication and to make changes to
its content, at any time, without obligation to notify any person or entity of such
revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any
NetWare software, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. reserves the right to make changes to any and all parts of NetWare
software, at any time, without any obligation to notify any person or entity of
such changes.

Novell and NetWare are registered trademarks of Novell, Inc. in the United
States and other countries.

The Novell Network Symbol is a trademark of Novell, Inc.

Macintosh is a registered trademark of Apple Computer, Inc.

DynaText is a registered trademark of Electronic Book Technologies, Inc.
Microsoft is a registered trademark of Microsoft Corporation.

Copyright [0 1993-1997 Novell, Inc. All rights reserved. No part of this
publication may be reproduced, photocopied, stored on a retrieval
system, or transmitted without the express written consent of the
publisher.

U.S. Patent Nos. 5,157,663; 5,349,642; and 5,455,932. U.S. and
International Patent Pending.

Novell, Inc.

122 East 1700 South
Provo, UT 84606
U.S.A.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
January 29, 1998

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

COI’It&'l’Il‘S

Preface
OVEIVIEW o o o e e e e e e e e e XV
Prerequisites to Using thisManual Xvii
Manual Conventions e XVii
Data Type Definitions XVii
Structure Definitions. Xviii
DRIVER_DATA Structure o oot Xviii
MODULE_HANDLE Structure. v XX
GROUP_ADDR_LIST _NODE_ Structure. XX
NODE_ADDR Structure. o i e XX
PROT_ID Structure oo it et e e e e XX
CHSM_STACK Structureo ot e e e e e XXi
Enumeration Definitions. e XXi
AES_TYPE Enumeration XXi
BOOLEAN Enumeration. i XXii

ODI_NBI Enumeration. o v i i XXii

ODISTAT Enumeration o o i it e e xXiii

ODI_STAT Enumeration v XXiii

REG_TYPE Enumeration, XXiv

OPERATION_SCOPE Enumeration XXiV

Portability Requirements XXV

Referenced Documents. XXVi
Introduction to ODI

OVEIVIEW o o e 11

Open Data-Link Interface (ODI). o 1-1

Protocol Stacks 1-2

The Multiple Protocol Interface (MPI) 1-4

Link Support Layer (LSL)« . 1-4

Multiple Link Interface Drivers (MLIDS) 1-6

MLID Functionality.o 1-6

The Multiple Link Interface (MLI) 1-6

LAN Driver Toolkit. 1-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Overview
CHSM Procedures
Initialization.
Board Service Routine oo
Packet Transmission.
Control Procedures. e e
Timeout Detection
DriverRemoval. e
CHSM Data Structures and Variables
CHSM Design Considerations
Topology Issues
Hardware ISsues e e e e e e e
Network Interface Controllers.
Data TransferMode
BusType
NetWare EnvironmentlIssues
Interrupt Service Routine L.
Execution TiMmes e e e e
Process Time. e
Privileged Time
CodeandDataSpace e
Frame DataSpace e
AdapterDataSpace
AdapterCode Space
Special Support L
Reentrancyo
Multicast Addressing L L
PromiscuousMode e
Optional Support
Hub Management.
SourceRouting. L
Brouter (Source Route Bridging)
NESL Support e e

C Language Media Support Module (CMSM)
C Language Topology Specific Module (CTSM)
C Language Hardware Specific Module (CHSM).
NetWare Bus Interface (NBI).
Data Flow
SendDataFlow
Receive DataFlow

ODI C Language HSM Overview

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

1-8
1-8
1-9
1-9
1-10
1-10
1-12

2-1
2-1
2-2
2-2
2-3
2-3
2-3
2-3

2-4
2-4
2-4
2-4
2-5
2-5
2-6
2-6
2-7
2-7
2-7
2-8
2-9
2-9
2-9
2-11
2-11
2-11
2-11
2-11
2-11
2-12
2-12
2-12

CHSM Data Structures and Variables

OVEIVIBW o o e e e e e e e e e 3-1

Driver Parameter Block 3-1

Driver Parameter Block Structure 3-2
Frame DataSpace e 3-10
Configuration Table 3-10
Driver Configuration Table Template 3-11
MLIDCFG_ModeFlags Field., 3-22
MLIDCFG_Flags Field., 3-26
MLIDCFG_SharingFlags Field, 3-29
Maximum Packet Size. 3-30
Driver Adapter DataSpace 3-33
Specification Version Stringo oo 3-34
Driver Statistics Table. oo 3-35
STAT _TABLE_ENTRY Structure 3-35
Field Descriptions 3-35
Statistics Table Structure 3-36
Example 3-37
MLID Statistics Table Media Specific Counters 3-41
Token-Ring Counters 3-41
EthernetCounters 3-43
FDDI Counters. e 3-45
Driver Firmware e e e e e e e e 3-47
DriverFirmwareSize Value. 3-47
DriverFirmwareBufferValue. 3-47

CMSM/CTSM Structures and Variables

OVEIVIBW o o e e e e e e e e e 4-1

CMSM Data ACCESS. e e e e e e e 4-2
DADSP_TO CMSMADSP Macro. v i v i 4-2
CMSMVirtualBoardLink Pointers 4-2
CMSMDefaultVirtualBoard Pointer 4-4
CMSMStatusFlags Variable Lo 4-4
CMSMTxFreeCount Variable 4-4
CMSMPriorityTxFreeCount o 4-5
CMSMMaxFrameHeaderSize Variable 4-5
CMSMPhysNodeAddress Variable, 4-6

Data Structures e e e e e e e 4-6
Fragment Structure L 4-8
Receive Control Blocks (RCBS) 4-8
RCB Structure.. e 4-10
Transmit Control Blocks (TCBS). 4-12

ili

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

iv

TCB Structure e e e
CMSM_CONFIG_TABLE e e
CTSM_CONFIG_TABLE. o o

CHSM Functions

OVEIVIEW o o o e e
Initialization. L
DriverInit e
DriverRemove
Board Service Routine
Packet Reception
Reception Methods. L
Reception Method—Option 1.

Reception Method—Option 2.

Reception Method—Option 3.

Reception Method—Option 4.

DriverlSR. e
DriverPoll. e
Packet Transmission.
Transmission Methodso
Transmission Method—Option 1.
Transmission Method—Option2

Priority Transmission Supporto
Adapters that Need Physical Addresses
DriverPriorityQueueSupporto
DriverSend
Control Procedures L
DriverReset
DriverShutdown L
DriverMulticastChange.
DriverPromiscuousChange« o
DriverStatisticsChange (optional)
DriverRxLookAheadChange (optional)
DriverManagement (optional). Lo oo
DriverEnableinterrupt Lo
DriverDisablelnterrupt
DriverDisablelnterrupt2
Timeout Detection
DriverAES e

CTSM Functions

OVEIVIEBW o o e e e e e e e e e e e e,

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

4-12
4-15
4-17

5-1

5-3

5-11
5-14
5-15
5-15
5-15
5-15
5-16
5-16
5-17
5-19
5-22
5-24
5-24
5-24
5-25
5-26
5-28
5-29
5-31
5-34
5-36
5-39
5-43
5-46
5-50
5-52
5-54
5-56
5-57
5-59
5-61
5-62

6-1

<CTSM>BuildTransmitControlBlock 6-2

<CTSM>CancelPrioritySend 6-5

<CTSM>FastProcessGetRCB 6-7

<CTSM>FastRcvComplete 6-9

<CTSM>FastRcvCompleteStatus. 6-11
<CTSM>FastSendComplete 6-13
<CTSM>GetConfiginfo 6-15
<CTSM>GetHSMIFLevel 6-17
<CTSM>GetRCB e 6-18
<CTSM>ProcessGetRCB. it 6-21
<CTSM>RcvComplete 6-24
<CTSM>RcvCompleteStatus 6-26
<CTSM>RegisterHSM 6-28
<CTSM>SendComplete. 6-30
<CTSM>UpdateMulticast 6-32

CMSM Functions

OVEIVIEW o o e e 7-1

CMSMAddToCounter e e e 7-2

CMSMAIOC o 7-4

CMSMAllocateMultipleRCBs 7-6

CMSMAIIOCPages. o o o 7-9

CMSMAllocateRCB 7-11
CMSMCancelAES. 7-13
CMSMControlComplete. 7-14
CMSMDeRegisterResource. Lo 7-16
CMSMDriverReEMOVE o o o o 7-19
CMSMECBPhysToLogFrags oo i 7-20
CMSMEnablePolling 7-22
CMSMFree e e 7-24
CMSMFreePages o i i 7-26
CMSMGetAlignment L 7-27
CMSMGetBusInfo. 7-29
CMSMGetBusSpecificinfoo 7-30
CMSMGetBUSTYPE o 7-34
CMSMGetCardConfiginfo. 7-36
CMSMGetConfiginfo 7-42
CMSMGetCurrentTime e e e 7-44
CMSMGetHINFromHINName 7-46
CMSMGetHINNameFromHIN. oo 7-48
CMSMGetinstanceNumbero 7-50
CMSMGetinstanceNumberMappingo 7-52
CMSMGetMicroTimer. o e e e e e e 7-54

\'

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Vi

CMSMGetPhysical e
CMSMGetPhysList.
CMSMGetPollSupportLevel
CMSMGetUniqueldentifier. o L
CMSMGetUniqueldentifierParameters.
CMSMHardwareFailureo
CMSMIncrCounter o e e e
CMSMINItAlloc
CMSMInitParser e
CMSMNESLDeRegisterConsumer. v v v e e
CMSMNESLDeRegisterProducer
CMSMNESLProduceEvent
CMSMNESLProduceMLIDEvent. e
CMSMNESLRegisterConsumer v v v v v i e e
CMSMNESLRegisterProducer. e
CMSMParseDriverParameters. o
CMSMParseSingleParameter oo
CMSMPrintString.
CMSMRdConfigSpacex e
CMSMReadPhysicalMemory.o
CMSMRegisterHardwareOptionso
CMSMRegisterMLID
CMSMRegisterResource.
CMSMReRegisterHardwareOptions
CMSMResetMLID e
CMSMResumePolling
CMSMReturnDriverResoUrces. v v v v v v i e
CMSMReturnMultipleRCBs
CMSMReturnRCB o
CMSMScanBusInfo
CMSMScheduleAES e
CMSMSearchAdapter
CMSMServiceEvents
CMSMSetHardwarelnterrupt. Lo
CMSMShutdownMLID e
CMSMSuspendPolling
CMSMTCBPhysToLogFrags. o v v it e e e e e
CMSMUpdateConfigTables,
CMSMWrtConfigSpacex o
CMSMWritePhysicalMemory. oo

NetWare Bus Interface

OVEIVIEBW o o e e e e e e e e e e

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

7-55
7-56
7-58
7-60
7-63
7-65
7-67
7-68
7-69
7-71
7-73
7-75
7-79
7-83
7-87
7-91
7-95
7-97
7-100
7-102
7-104
7-106
7-108
7-112
7-116
7-118
7-120
7-122
7-124
7-126
7-128
7-131
7-135
7-136
7-138
7-140
7-142
7-144
7-146
7-148

8-1

Bus Architecture. 8-2

Multiple Bus Platforms. 8-2

Memory Mapping and Address Manipulation 8-3

Byte Order. e 8-4
DMACIeanup o o o 8-5
DMASTtart e e 8-6
DMAStatus 8-9
FreeBusMemory e 8-10
INX. . e e 8-12
INBUffX. e 8-14
MapBusMemory. e 8-16
MovFastFromBus 8-18
MovFastToBus e 8-20
MovFromBusXx. L L e e e 8-22
MovToBuUSX e 8-25
OUX . . . L e e 8-28
OutBuffx. o 8-30
RAX . . o e 8-32
SetX . . . e 8-34
SIOW. . . e 8-36
WX . . o e e e 8-37

Appendix A Language Enabling

OVEIVIEW o o o e e e e e e e e e A-1
Language Enabling Procedure o A-1

Appendix B Event Control Blocks (ECBS)

OVEIVIEW o o o e e e e e e e e e B-1
ECB Aware Adapters B-1
Event Control Block Structure. Lo B-2
Relationship between Receive ECBsand RCBs B-10
Relationship between Transmit ECBsand TCBs B-11

Appendix C Platform Specific Information

OVEIVIEW o o C-1
Intel Processors. e C-1
Buildingthe CHSM C-1
Creating the Source Files C-1

Compiling the Source Files C-1

Linking the ObjectFiles C-2

Linker Definition File. oL C-2

MLID Configuration File C-5

Vi

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Load Keywords and Parameters C-5

Appendix D Portability Issues

OVEIVIEW o o o e e D-1
Portability Rules D-1
Translation Limits D-4
Coding ASSUmptions e D-5
Data Packing and Alignment.o oL D-5
Portability Macros D-6
COPY_FROM_HILO UINTX. . . . o v v vt e e e e e e e e e e e e e D-7
COPY_FROM_LOHI_UINTX. . . . v o v v ot e e e e e e e e e e e e e D-8
COPY_TO_HILO_UINTX. o o o e e e s e e e e e e e D-9
COPY_TO_LOHI_UINTX. o oo e e e s e e e e e e e e D-10
COPY_UINTX . . v v o o e e e e e e e e e e e e e s s D-11
GET_HILO_UINTX o o e e e e e e s s e e e e D-12
GET_LOHI_UINTX o e e s e e e s s e e e e D-13
GET_UINTX o e s e e e e e D-14
HOST_FROM_HILO _UINTX. oo e e s s e D-15
HOST_FROM_LOHI_UINTX. o e e s s e e D-16
HOST_TO_HILO_UINTX. e s e e e s s e D-17
HOST _TO_LOHI_UINTX. o e e e et e e e e s e e D-18
PUT HILO_UINTX o e e e e e e e e D-19
PUT _LOHI_UINTX o e e e e e e e e e D-20
PUT UINTX . . . o o e e e e e e e s e e e e e e e D-21
UINTX_EQUAL. e e e D-22
VALUE _FROM_HILO UINTX o ot e e e i e e e e D-23
VALUE FROM_LOHI_UINTX o o e e e s e e e e e e e D-24
VALUE _TO HILO_UINTX oo e e e s s e e e e e D-25
VALUE TO LOHI_UINTX oo e e e e e e e e e e D-26

Appendix E NESL Support

viii

OVEIVIEW o o o e e E-1
Registering and Deregistering Event Producers. E-2
Registering and Deregistering Event Consumers E-2
NESL Structures e e e E-3
EPB (Event Parameter Block) Structure E-3
NESL_ECB Structure e E-4
Eventsand Types E-7
EventNames. e E-7
EventTypes E-8
Service Suspend Typeso E-8
..................................... E-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Suspend Request E-9

Service Resumed Types. oo E-10
Service/Status Changed Types E-11
CMSM NESL String Exports e E-12
NESL Return Codes o o i E-13
NESLEventFlags. E-14
NESL OSI Layer Definitions. E-15

Glossary
Revision History
Index

Trademarks

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

F igures

Figure 1-1

The ODI Specification Elements 1-2
Figure 1-2

How ODI Fits into the OSIModel 1-3
Figure 1-3

The Multiple Protocol Interface (MPI) 1-4
Figure 1-4

The Multiple Link Interface (MLI) 1-7
Figure 1-5

MLID Modules. e e 1-8
Figure 1-6

Data Flow from ApplicationtoLSL 1-10
Figure 1-7

Data Flow from the LSLtotheBoard 1-11
Figure 1-8

Data Flow from the Boardtothe Wire. 1-11
Figure 1-9

Receive Data Flow from Wire to Application 1-12
Figure 2-1

Implementation of Multiple Frame Support 2-10
Figure 3-1

Frame and Adapter Data Space. 3-10
Figure 3-2

MLIDCFG_ModeFlags Field Default Values 3-23
Figure 3-3

MLIDCFG_Flags Field. o 3-27
Figure 3-4

MLID_SharingFlags Field DefaultValues 3-29
Figure 3-5

Driver Frame and Adapter DataSpace 3-33
Figure 4-1

Packet Transfer throughthe MLID 4-7
Figure 8-1

Multiple Bus Platform Example oL 8-2

Xi

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Figure B-1
Figure B-2

Figure B-3

Xii

Packet Transfer through MLID
RCB CorrespondencetoECB

Relationship between TCBandECB.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Tab/es

Table 2-1

Execution Time of MLID Routines 2-8
Table 3-1

Driver Parameter Block Field Descriptions 3-3
Table 3-2

Driver Configuration Table Field Descriptions 3-12
Table 3-3

MLIDCFG_ModeFlags Bits Description 3-23
Table 3-4

MLIDCFG_Flags Bits Description. 3-27
Table 3-5

MLIDCFG_SharingFlags Bits Description. 3-29
Table 3-6

Frame Types Versus SizeFields 3-31
Table 3-7

MLID Statistics Table Fields. 3-36
Table 3-8

MLID Statistics Table Generic Counters 3-38
Table 3-9

Media Specific Counters for Token-Ring 3-41
Table 3-10

Media Specific Counters for Ethernet 3-43
Table 3-11

Media Specific Counters for FDDI 3-45
Table 4-1

Fragment Structure Field Descriptions 4-8
Table 4-2

Programmed RCB Field Description 4-10
Table 4-3

TCB Field Descriptions 4-13
Table 4-4

Interpretation of ParameterO, Parameterl, and Parameter2 4-19
Table 4-5

Input and Results for Each Character Type. 4-26
Table 5-1

Xiii

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

DriverEndofChainFlag Values 5-18

Table 5-2

Code Path of Control Functions 5-34
Table B-1

Fragment Structure and ECB Field Descriptions B-3
Table C-1

Linker Definition File Example Definitions C-3
Table C-2

Load Keywords and Parameters Descriptions C-6
Xiv ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Preface

Overview

Importantv
Note"’
v

This document provides the information necessary to develop the C language
Hardware Specific Modulé (CHSMO) portion of a NetWare driver. Drivers
written using the information in this document conform to the Open Data-Link
Interfacé] (ODIO) specification.

This document is written with the assumption that you are writing a driver in the
C language; however, you can write portions of the driver in assembly language
if you wish.

This specification does not apply to 16-bit DOS ODI platforms.

This document does not describe the full ODI specification, but explains the
development of a driver using the Novell-provided development modules.

This document is organized as follows:

« Chapter 1: Introduction to ODI

Describes the NetWare environment by presenting a brief overview of the
ODI architecture and an introduction to the ODI LAN driver structure.

« Chapter 2: ODI C Language HSM Overview

Provides an overview of the driver CHSM and its required functions.

« Chapter 3: CHSM Data Structures and Variables

Describes the data structures and variables that the CHSM developer must
define.

XV

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

» Chapter 4: CMSM/CTSM Structures and Variables

Describes the data structures and variables provided by the C language
Media Support Module (CMSM) and the C language Topology Specific
Module (CTSM) for CHSM development.

» Chapter 5: CHSM Functions

Describes the functions that the CHSM developer must provide.

» Chapter 6: CTSM Functions

Describes the CTSM functions available for CHSM development.

» Chapter 7: CMSM Functions

Describes the CMSM functions available for CHSM development.

- Chapter 8: NetWare Bus Interface

Describes the NetWare Bus Interface (NBI) functions needed by the
CHSM to isolate the CHSM from the platform’s bus architecture.

- Appendix A: Language Enabling

Describes how to enable your CHSM to display messages in more than one
language.

- Appendix B: Event Control Blocks (ECBS)

Provides information used in writing drivers for ECB aware adapters.

- Appendix C: Platform Specific Information

Contains operating system and processor specific information that can be
used to help in driver development on a particular platform.

- Appendix D: Portability Issues

Describes the rules you must follow to ensure that your driver is portable
to different operating systems and/or processors. Also, describes a set of
macros that you can use to help make your driver portable.

XVi ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Prerequisites to Using this Manual

The developer should be experienced with the ANSI C programming language
and have a sound understanding of reentrant coding, event-driven systems, and
interrupt-driven device drivers. The developer should also be familiar with the
features of the processor(s) used on the computer platform(s) where the driver
will be used.

Manual Conventions

All numbers in this document are decimal unless otherwise specified. Where
bit fields within a byte are specified, bit 0 is assumed to be the low-order bit.

<"and ">" are used to enclose symbolic names for actual file names. For
example, the developer must replace <CTSM> with the appropriate media
type, depending on which module is used.

UNUSEDis used in this specification to symbolize an invalid or unknown
value.

The pseudocode used in this specification is intended to illustrate a general
flow of events and does not necessarily describe optimized code.

Data Type Definitions

The following data types are defined:

MEON 8-bit unsigned value that contains a single byte character
or a portion of a double-byte character

MEON_STRING NULL-terminated string of MEON

UINT8 8-bit unsigned integer

UINT16 16-bit unsigned integer
UINT32 32-bit unsigned integer
UINT64 64-bit unsigned integer

XVii

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

MSG_ID Integer constant defined by the developer and message
handling system to identify a string

Structure Definitions

The following are definitions of structures used in this specification.

DRIVER_DATA Structure

typedef struct DRIVER_DATA _

{
/* Place CHSMs data here */

[* Statistics Table */
MLID_STATS _TABLE StatsTable;
/* Generic Statistics Table Entries */

StatTableEntry for TotalTxPacket
StatTableEntry for TotalRxPacket
StatTableEntry for NOECBAvailable
StatTableEntry for PacketTxTooBig
StatTableEntry for PacketTxTooSmall
StatTableEntry for PacketRxOverflow
StatTableEntry for PacketRxTooBig
StatTableEntry for PacketRxTooSmall
StatTableEntry for PacketTxMiscError
StatTableEntry for PacketRxMiscError
StatTableEntry for RetryTx
StatTableEntry for ChecksumError
StatTableEntry for HardwareRxMismatch
StatTableEntry for TotalTXOKByte
StatTableEntry for TotalRxOKByte
StatTableEntry for TotalGroupAddrTx
StatTableEntry for TotalGroupAddrRx
StatTableEntry for AdapterReset
StatTableEntry for AdapterOprTimeStamp
StatTableEntry for QDepth

XViii ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

[* Media Statistics Table Entries go here */
[* Custom Statistics Table Entries go here */
[* Generic Counters */

UINT32 TotalTxPacketCount;
UINT32 TotalRxPacketCount;
UINT32 NoECBAvailableCount;
UINT32 PacketTxTooBigCount;
UINT32 PacketTxTooSmallCount;
UINT32 PacketRxOverflowCount;
UINT32 PacketRxTooBigCount;
UINT32 PacketTxMiscErrorCount;
UINT32 PacketRxMiscErrorCount;
UINT32 RetryTxCount;

UINT32 ChecksumErrorCount;
UINT32 HardwareRxMismatchCount;
UINT64 TotalTxOKByteCount;
UINT64 TotalRxOKByteCount;
UINT32 TotalGroupAddrTxCount;
UINT32 TotalGroupAddrRxCount;
UINT32 AdapterResetCount;
UINT32 AdapterOprTimeStamp;
UINT32 QDepth;

/* Media Counters go here */
[* Custom Counters go here */
} DRIVER_DATA;

Important DRIVER_DATA is unique for each CHSM. However, it must contain: the
v MLID_STATS_TABLE structure; all generic, media, and custom
STAT_TABLE_ENTRY structures; and all generic, media, and custom counter
variables.

XiX

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

MODULE_HANDLE Structure

typedef struct MODULE_HANDLE_
{

[* platform specific module handle information
defined in cmsm.h */

} MODULE_HANDLE;

GROUP_ADDR_LIST _NODE_ Structure

typedef struct _GROUP_ADDR_LIST_NODE_

{
NODE_ADDR GRP_ADDR;

UINT16 GRP_ADDR_COUNT;
} GROUP_ADDR_LIST_NODE;

NODE_ADDR Structure

typedef struct NODE_ADDR_ {
UINT8 nodeAddress [ADDR_SIZE];
} NODE_ADDR,;

WhereADDR_SIZEis the number of bytes needed to identify an address and
is currently defined by the following constant:

#define ADDR_SIZE 6

PROT_ID Structure

typedef struct PROT_ID_{
UINT8 protocollD [PID_SIZE];
} PROT_ID;

Where PID_SIZE is the number of bytes needed to identify a protocol stack and
is currently defined by the following constant:

#define PID_SIZE 6

XX ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

CHSM_STACK Structure

Typedef struct CHSM_STACK _

{

struct MODULE_HANDLE_*ModuleHandle;

SCREEN_HANDLE

MEON
MEON
UINT32
void
UINT32

UINT32
UINT32
UINT32
MEON

} CHSM_STACK;

Enumeration Definitions

*ScreenHandle;
*CommandLine;
*ModuleLoadPath;

UnitializedDatalLength;
*CustomDataFileHandle;
(*FileRead)(
void *FileHandle,
UINT32 FileOffset,
void *FileBuffer,
UINT32 FileSize);
CustomDataOffset;
CustomDataSize;
NumMsgs;
**Msgs;

The following enumerations are used throughout this specification to define

return values.

AES_TYPE Enumeration

typedef enum _AES TYPE_

{

} AES_TYPE;

AES_TYPE_PRIVILEGED_ONE_SHOT,
AES_TYPE_PRIVILEGED_CONTINUOUS,
AES_TYPE_PROCESS_ONE_SHOT,
AES_TYPE_PROCESS_CONTINUOUS

XXi

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

BOOLEAN Enumeration

typedef enum _BOOLEAN_
{
FALSE,
TRUE
} BOOLEAN;

ODI_NBI Enumeration

typedef enum _ODI_NBI_

{
ODI_NBI_SUCCESSFUL,
ODI_NBI_PROTECTION_VIOLATION,
ODI_NBI_HARDWARE_ERROR,
ODI_NBI_MEMORY_ERROR,
ODI_NBI_PARAMETER_ERROR,
ODI_NBI_UNSUPPORTED_OPERATION,
ODI_NBI_ITEM_NOT_PRESENT,
ODI_NBI_NO_MORE_ITEMS,
ODI_NBI_FAIL

} ODI_NBI;

XXIi ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ODISTAT Enumeration

typedef enum _ODISTAT_

{

} ODISTAT;

ODI_STAT Enumeration

ODISTAT_SUCCESSFUL
ODISTAT_RESPONSE_DELAYED
ODISTAT_SUCCESS_TAKEN
ODISTAT_BAD_COMMAND
ODISTAT_BAD_PARAMETER
ODISTAT_DUPLICATE_ENTRY
ODISTAT_FAIL
ODISTAT_ITEM_NOT_PRESENT
ODISTAT_NO_MORE_ITEMS
ODISTAT_MLID_SHUTDOWN
ODISTAT_NO_SUCH_HANDLER
ODISTAT_OUT_OF_RESOURCES
ODISTAT_RX_OVERFLOW

ODISTAT_RX_IN_CRITICAL_SECTION

ODISTAT_TRANSMIT_FAILED

ODISTAT_PACKET_UNDELIVERABLE

ODISTAT_CANCELED

typedef enum _ODI_STAT_

} ODI_STAT;

ODI_STAT_UNUSED
ODI_STAT_UINT32
ODI_STAT_UINT64
ODI_STAT_MEON_STRING
ODI_STAT_UNTYPED

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

=0,
=1,
=2,
=127,
=-126,
=125,
=124,
=123,
=122,
=121,
=-120,
=-119,
=-118,
=117,
=-116,
=-115,
=4

XXxiii

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

REG_TYPE Enumeration

typedef enum _REG_TYPE_

{
REG_TYPE_NEW_ADAPTER,
REG_TYPE_NEW_FRAME,
REG_TYPE_NEW_CHANNEL,
REG_TYPE_FAIL

} REG_TYPE;

OPERATION_SCOPE Enumeration

typedef enum _OPERATION_SCOPE
{
OP_SCOPE_ADAPTER,
OP_SCOPE_LOGICAL_BOARD,
} OPERATION_SCOPE;

XXIV ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Portability Requirements

To ensure that a driver is portable across different operating systems and/or
processors, you must adhere to the following rules:

» Write your driver in ANSI C—this is extremely important.

» In general, do not declare variables with standard C language types such
as short, long, int, char. Declare variables with abstract types or typedefs,
such as BYTE, MEON, UINT32, that are appropriate for the processor/
operating system combination. However, in some cases such as counters,
it may be more efficient to use int instead of an abstract type.

« Ensure that all members of a structure containing data that is sent to and
from the LAN are given unique, abstract types. Also, ensure that the
references to these members use the appropriate misalignment correction
macros and byte order correction macros described in Appendix D:
Portability Issues.

XXV

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Referenced Documents

XXVi

The following is a list of Novell documents referenced in this specification.

NetWare Client SDK

ODI Specification Supplement: Brouter Support

ODI Specification Bpplement: Canonical and Noncanonical Addressing
ODI Specification Supplement: Standard MLID Message Definitions
ODI Specification Supplement: Frame Types and Protocol IDs

ODI Specification Supplement: The Hub Management Interface

ODI Specification Supplement: The MLID Installation Information File
ODI Specification Supplement: Source Routing

NetWare Wide Area Network Open Data-Link Interface Specification

IEEE Std. 803.5 -1989

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

chapter)
1 Introduction to ODI/

Overview

This chapter briefly describes the Open Data-Link Inteffa¢@DI)
specification. It describes the functions of Multiple Link Interface Drivers
(MLIDs), protocol stacks, and the The Link Support Laydt. SLO). This
chapter also contains a brief description of data flow through the ODI model.

Because the ODI specification provides for communications between a variety
of protocols and media, LAN drivers are calMdiltiple Link Interface
DriversQD (MLIDsO). The Link Support Layét (LSLO) handles the transfer
of information between MLIDs and protocol stacks.
Note"vl The terms MLID and LAN driver are interchangeable.

You should read this chapter if you are not familiar with the basic concepts
involved in the ODI specification.

Open Data-Link Interface (ODI)

C language HSMs and protocol stacks must conform to the ODI specification.
Figure 1.1 illustrates the elements that make up the ODI specification.

Introduction to ODI 1-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Figure 1-1
The ODI Specification Elements

IPX TCP/IP AppleTalk

Protocol stacks

Link Support Layer (LSL)

Ethernet Token-Ring FDDI Ethernet

L Network boards (or chipsets) _—

The ODI specification allows multiple network protocols and adapters
(physical boards) to be used concurrently on the same client or file server. It
provides a flexible, high-performance data link layer interface to network layer
protocol stacks. The ODI specification is comprised of the three elements listed
below and illustrated above in Figure 1-1.

« Protocol Stacks
 Link Support Layer (LSL)

« Multiple Link Interface Drivers (MLIDs)

Protocol Stacks

Network layer protocol stacks transmit and receive data over a logical or
physical network. They handle routing, connection services, and APIs. They
also provide an interface that allows higher layer protocols and applications to
access the protocol stack’s services.

As a general rule, protocol stacks written to the ODI specification provide OSI
(Open Systems Interconnection) network layer functionality; however, they are
not limited to this. Figure 1-2 illustrates the ODI/OSI correspondence.

1-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Figure 1-2
How ODI Fits into the OSI Model

Application
Presentation
Session
OSI | || Transport
Model Protocol
Stack
Network
, Logical Link Control (LLC)
DatalLink -------- e
Media Access Control (MAC)
Physical Adapter "}

_'_1

ODI Model

Introduction to ODI 1-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

The Multiple Protocol Interface (MPI)

Protocol stacks communicate with the LSL through the Multiple Protocol
Interfacé] (MPIO). The MPI is an interface that resides between the protocol
stack and the LSL (see Figure 1.3). The MPI provides protocol stacks with all
the APIs that are necessary for the protocol stack to communicate over the
network.

Figure 1-3
The Multiple Protocol Interface (MPI)

TCP/IP AppleTalk

Protocol stacks

Multiple Protocol Interface (MPI)

' Link Support Layer (LSL) '

Link Support Layer (LSL)

The LSL handles the communication between protocol stacks and MLIDs. The
ODI specification allows physical topologies to support many different types
of protocols. Consequently, the MLID may receive packets for any of the
different protocol stacks residing in the system.

For example, an Ethernet network might support all of the following protocols:
IPXO, TCP/IP, AppleTalk, and LAT (a Digital Equipment Corporation

protocol). The LSL determines which protocol stack is to receive the packet.
Then, the protocol stack determines where the packet should be sent and sends
it. The LSL then directs the packet to the appropriate MLID.

The LSL tracks all protocols and MLIDs currently in the system and provides
a consistent method of accessing each protocol module and MLID module.

In addition, the LSL performs the following services:

14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Queues and recovers Event Control Blocks (ECBs) for later use. (ECBs
are control structures used to send and receive packets and to schedule
events.)

Registers and deregisters protocol stacks.

Allows protocol stacks to obtain timing services.

Allows protocol stacks to determine stack IDs and protocol IDs.

Allows protocol stacks to obtain MLID statistics.

Allows protocol stacks to bind with MLIDs.

Allows protocol stacks to transmit and receive packets through MLIDs.

Maintains lists of all active protocol stacks and MLIDs.

Allows protocol stacks to obtain information about MLIDs and other
protocol stacks.

Allows protocol stacks to change the operational state of MLIDs. (For
example, the protocol stack can cause the MLID to shut down or reset.)

Introduction to ODI 1-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Multiple Link Interface Drivers (MLIDs)

MLID Functionality

Note"’
\v

Multiple Link Interface Drivers (MLIDs) are device drivers that handle the
sending and receiving of packets to and from LAN adapters.

A LAN adapter is any network controller that provides access across a network.
A LAN adapter may be present directly on the motherboard in an embedded
system, or it may be a network interface card inserted into the computer bus.
The MLID interface is determined by the adapter hardware.

The MLID determines the packet’s frame type and then strips or appends the
frame header to the packet. (Ethernet and Token Ring are examples of frame
types. Refer t@®DI Specification: Frame Types and Protocol Is a list of
currently supported frame types and their protocol IDs.)

MLIDs can handle packets from various different types of protocols because
MLIDs do not interpret packets. MLIDs use Event Control Blocks (ECBs) to
pass packets to the LSL. ECBs are data structures that the MLID uses to send
and receive packets, and to schedule events. (See Appendix B: "Event Control
Blocks (ECBs)" for complete information on ECBs.) The MLID

communicates with the LSL through the Multiple Link InterfacéMLIO).

The Multiple Link Interface (MLI)

1-6

The Multiple Link Interfacél (MLIO) is the communication interface
between the LSL and the MLID (see Figure 1.4). This interface contains the
APls necessary to facilitate communication between these two modules.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Figure 1-4

The Multiple Link Interface (MLI)

LAN Driver Toolkit

[Link Support Layer (LSL)]

Multiple Link Interface (MLI)

Ethernet Token-Ring

Multiple Link Interface Drivers (MLIDs)

NIC NIC NIC

Novell has simplified the task of ODI LAN driver development by furnishing
a set of support modules that provide all the tools necessary to interface a LAN
driver to the LSL. These modules are:

» C Language Media Support Module (CMSM)

« C Language Topology Specific Modules (CTSM)
These support modules are a collection of procedures, macros, structures, and
variables that simplify driver development. When using these modules, LAN
driver development is reduced to creating the C language Hardware Specific

Module (CHSM). The CHSM handles all hardware interactions. (Figure 1.5
illustrates the relationship of these modules to an MLID.)

Introduction to ODI 1-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Figure 1-5
MLID Modules

CMSM

Media Support Module LSL
ElIE MLID
Topology Specific Module

CHSM
Uardware Specific Modul

Board

C Language Media Support Module (CMSM)

The C Language Media Support Module (CMSM) contains general functions
that are common to all drivers.

C Language Topology Specific Module (CTSM)

The C Language Topology Specific Module (CTSM) manages the operations
for specific topologies. CTSMs provide support for the standardized topology
types of Ethernet, Token-Ring, and FDDI. Multiple frame type support is
implemented in the CTSM so that all frame types for a given topology are
supported. The possible topology modules are as follows:

« ETHERTSM.NLM

« TOKENTSM.NLM

« FDDITSM.NLM

Source code for each CTSM is provided inlkteevell LAN Driver Developer’s
Kit.

1-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Although not recommended, you can create your own proprietary topology
modules by modifying existing CTSMs, or by creating new modules that
provide the same functionality as the Novell CTSMs. However, all topology
modules must conform to the functionality defined in this specification, and the
modules and the APIs must have unique names.

C Language Hardware Specific Module (CHSM)

You create the C Language Hardware Specific Module (CHSM) for your
specific LAN adapter. A CHSM handles all hardware interactions.

The primary functions of a CHSM are as follows:
« Adapter initialization
- Adapter reset
» Adapter shut down
- Packet reception
« Packet transmission
Additional procedures that a CHSM may provide support for are as follows:
- Timeout detection
« Multicast addressing
« Promiscuous mode reception

When you use the LAN driver toolkit to develop an MLID, the CHSM is the
only module that you write.

This document uses the term CHSM to refer to that portion of the MLID that
you develop with this toolkit.

NetWare Bus Interface (NBI)

The NetWare Bus Interface (NBI) is the machine specific code that gives the
NetWare Driver a uniform view of the system, regardless of the architecture.
The NBI deals with such things as interrupts and stack manipulation.

Introduction to ODI 1-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Data Flow

Send Data Flow

Figure 1-6

When messages are sent and received, the various protocols or layers add and
remove their own information at each layer. The following diagrams illustrate
basic data flow.

As Figure 1-6 illustrates, the protocol stack receives data from the application
above it, determines whether the packet must be split into fragments,
determines the size of the fragments, adds the appropriate protocol header to
the data packet, and sends it to the LSL. The LSL isolates the protocol stack
from the topology and LAN medium below it. The protocol stack simply passes
data to the LSL. The LSL directs the packet to the appropriate MLID, which
then takes care of the topology-specific information. This is the reason ODI
protocol stacks are known as being media and frame type independent.

Data Flow from Application to LSL

(Application)

» Determines fragment sizes
« Adds protocol header

|-/

(Stack (IPX)

IPX
Header

s)

As illustrated by Figure 1-7, the LSL directs the packet to the appropriate
MLID. The MLID then adds the MAC header to the packet and hands the
packet to the LAN adapter.

1-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Figure 1-7
Data Flow from the LSL to the Board

(LSL) Determines which MLID
should receive the packet
IPX and passes it.
Header
(MLID I N Adds the Media Access
1] J Control (MAC) header

MAC IPX
Header | Header

=

Board

In Figure 1.8 the hardware adds the preamble to the packet and places the

packet on the wire.

Figure 1-8
Data Flow from the Board to the Wire

MAC

Preamble Header

IPX
Header

Board

Hardware adds the preamble and

places the packet on the wire.

—

Wire

Introduction to ODI 1-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Receive Data Flow

Figure 1.9 shows the LAN adapter receiving the packet off the wire and
stripping the preamble from the packet. The LAN adapter then hands the packet
to the MLID, which discards the MAC header from the packet and hands the
packet to the LSL. The LSL directs the packet to the appropriate protocol stack,
which then removes the protocol header from the packet and hands the data to
the application.

Figure 1-9
Receive Data Flow from Wire to Application

(Application)

(Stack (IPX)) « Removes the protocol header

* Sends the data to the
application

(LSL) Determines which protocol
stack should receive the
packet and passes it.

IPX
Header
(MLID)— * Removes the (MAC) header
~ * Hands the packet to the LSL

MAC IPX
Header | Header

MAC IPX
Preamble Header Header

Hardware strips the preamble and
gives the packet to the MLID.

——

Wire

1-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

chapter
2 ODI C Language HSM Overview

Overview

This chapter provides an overview of the C Language Hardware Specific
Module (CHSM) of an ODI MLID. Specific issues that influence the
development of the CHSM are also addressed.

CHSM Procedures

The CHSM contains procedures that perform the following types of functions:

Initialization

Board service
Packet transmission
Control procedures
Timeout detection

Driver removal

You may add additional procedures to support the specific hardware features of
a particular LAN adapter. Additional procedures may be required if Hub
Management or Source Bridge Routing (Brouter) is supported. (Hub
Management and Source Bridge Routing are described later in this chapter.)

ODI C Language HSM Overview 2-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Initialization

Board Service Routine

Brief descriptions of the required CHSM procedures are provided on the
following pages. These descriptions are general and do not apply in every case,
nor do they describe every possible case. Detailed descriptions of the required
procedures (including pseudocode) are provided in Chapter 5, "CHSM
Functions".

The CHSM's initialization functionDriverInit , initializes the LAN adapter
hardwareDriverlnit uses CMSM functions and CTSM functions to do the
following tasks:

Allocate memory for MLID variables and structures

Parse the standard load command line options

Process custom command line parameters and custom firmware
Register the MLID and hardware

Setup the hardware for the board’s interrupt service routine or polling
procedure

Schedule callback events for timeout detection and recovery

Handle any initialization errors

The CHSM’s board service routine will generally need to detect and handle the
following events:

Packet reception and reception complete
Reception error
Transmission complete

Transmission error

The MLID can be notified of these events by using either an interrupt service
routine PriverISR) or a polling procedureDiverPoll).

2-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Note"’
v

If DriverPoll is used, we recommend that you implement interrupt backup.

Error detection and handling are optional in cases where the hardware is able
to handle transmission and reception errors without MLID intervention.
However, the MLID must be notified of errors so it can maintain the statistics
table. (The statistics table is described in Chapter 3, "CHSM Data Structures
and Variables.")

Packet Transmission

Control Procedures

Timeout Detection

Driver Removal

Before a packet is transmitted, the CTSM builds the frame and media headers
for the packet. Then, the CTSM collects the header and data fragments, and
transmits the packet by calling the CHSM functisriverSend. DriverSend

is called whenever a packet needs to be transmitted.

The CHSM must provide the control procedubeaerReset and

DriverShutdown to handle the hardware operations involved in resetting or
shutting down the adapter. Additional control procedures must be used to
support multicast addressing and promiscuous mode reception. These control
procedures arBriverMulticastChange andDriverPromiscuousChange

The CHSM may need to be called regularly to inspect the adapter’s status. If
the CHSM requires this capability, it can enableRnieerAES routine. Once
enabled, the CMSM will call this routine at an interval specified by the
developer.

For example, the MLID might need to periodically inspect the adapter to
determine if it has failed to complete a transmission. If a timeout error has
occurred, the procedure will discard the packet being sent, increment the
appropriate statistics counter(s), reset the board if appropriate, and begin
transmitting the next packet in the send queue.

Every CHSM must have a removal procedure that allows the user to unload it.
This procedureDriverRemove, must shut down the physical board and return

ODI C Language HSM Overview 2-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

all resources allocated to the MLID. The CMSM provides routines that handle
the return of resources, but the CHSM is responsible for deciding when it must
be done and for calling the appropriate CMSM routines.

CHSM Data Structures and Variables

In addition to the procedures described in the previous section, the CHSM also
contains certain data structures and variables. The primary structures are:

« Driver parameter block
« Driver configuration table
« Driver statistics table

Chapter 3, "CHSM Data Structures and Variables" provides detailed
descriptions of all the required CHSM data structures and variables.

CHSM Design Considerations

Topology Issues

Hardware Issues

The following sections present the hardware and coding issues that must be
considered when creating a CHSM.

Before writing a CHSM, you must have a thorough understanding of the
topology (such as Ethernet, Token-Ring, FDDI) that the driver and the
hardware operate on. Refer to the specifications for the specific topology you
will be using.

Before writing a CHSM, you should have a thorough understanding of the
adapter. Knowing the characteristics of the hardware, bus type, and data
transfer mode will allow you to create a more efficient MLID.

Network Interface Controllers

The MLID developer must be familiar with the network interface controller
integrated circuit. Make every effort to obtain and use current data books and

2-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Data Transfer Mode

Bus Type

application notes from the manufacturer. In addition, the manufacturer’s
support engineers can provide developers with up-to-date information on
hardware quirks and changes.

The CMSM and CTSM provide support procedures that are optimized for
specific data transfer modes. CHSM packet reception and packet transmission
routines, in particular, are affected by the adapter’s transfer mode. To achieve
the highest performance, you must select support procedures that are optimized
for the specific data transfer mode. The data transfer modes are:

+ Programmed I/O

« Shared RAM (Memory Mapped 1/O)

- Direct Memory Access (DMA)

« Bus Master

You must also consider the bus type and size when creating optimized CHSM
operations. The initialization process can be affected by the bus type when it
initializes and registers the hardware configuration with the CMSM and the
LSL. Some bus types are:

» Industry Standard Architecture (ISA)

« Plug and Play ISA (PNP ISA)

« Micro Channel Architecture

« Extended Industry Standard Architecture (EISA)

« Peripheral Component Interconnect (PCI)

« PC Card (formally PCMCIA)

ODI C Language HSM Overview 2-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

NetWare Environment Issues

ODI MLIDs operate as an integral part of the NetWare environment. Therefore,
you must consider the following operating system characteristics when writing
CHSM code.

Most of the code in the CHSM will run at privileged time (see definition
below). Therefore, CHSM routines must not dominate system resources. If the
code is optimized, normal execution will not be a problem. Care should be
taken so that the handling of board error conditions, initialization, and
shutdown adequately allows other processes to access system resources.

Interrupt Service Routine

2-6

Note"’
\4

The MLID’s interrupt service routine needs only to service the adapter and
return.

In order to achieve operating system and platform independence, the CHSM
must not enable or disable system interrupts. If during DriverISR or DriverSend,
the interrupts are enabled or disabled, the interrupts must be restored to their
initial state of entry before returning. Enabling or disabling interrupts will
preclude the MLID from working on some platforms.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Execution Times

Process Time

Privileged Time

The two principal execution times are:
« Process time
 Privileged time

As you write an MLID, you must be aware of whether a routine is called at
process time or at privileged time. Table 2-1 shows when the operating

system(OS) and the CMSM may call MLID routines. Which support routines

the MLID can access depends on the time that the MLID routine is called.
The execution time restrictions for CTSM and CMSM support routines are

documented in Chapter 6, "CTSM Functions" and Chapter 7, "CMSM
Functions".

The MLID may do the following operations at process time:
« Memory allocation

« File /0O (with some exceptions)

When a privileged process calls a routine, the routine becomes privileged.
Privileged time routines must be highly optimized and limit their execution
time.
Routines may nado the following operations at privileged time:

» Allocate memory

- Attempt file I/O

« Suspend execution

« Call routines that suspend execution

ODI C Language HSM Overview 2-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table 2-1
Execution Time of MLID Routines

Called by the OS or CMSM
at Process Time

Can be called by the OS or
CMSM at Privileged Time

Can be called by the OS or
CMSM at Privileged or
Process Time

Driverlnit

DriverRemove

DriverShutdown

DriverAES

DriverISR

DriverPoll

DriverReset

DriverMulticastChange
DriverPromiscuousChange

DriverSend

Note: Functions that can be called at either process or privileged time must
adhere to the restrictions for privileged time functions.

Important You must also observe privileged time restrictions for routines that are called by
v by other MLID routines. For example, after a transmit complete interrupt,
DriverISR typically calls DriverSend to transmit the next packet in the send
queue. Since DriverISR executes at privileged time, DriverSend must also
observe privileged time restrictions.

Code and Data Space

This section describes the organization of the code and data space for ODI

MLIDs. Figure 2-1 illustrates the code and data space used for multiple
adapters with multiple frame support.

The CMSM creates the frame data space that represents a logical board for each
installed frame type. The CMSM also creates the adapter data space for each
physical board. If an MLID is reentrant, all physical boards of the same type
use a single adapter code space. (See the reentrancy section later in this

chapter.)

2-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Frame Data Space

Importantv
Note"’
\v

Adapter Data Space

Adapter Code Space

The frame data space (see Figure 2-1) contains all the information needed to
support a specific frame type, as well as the hardware configuration for the
corresponding board. The MLID allocates a separate frame data space for each
installed frame type, which represents a logical board.

From the CHSM'’s point of view, the only thing in the frame data space is the
configuration table; therefore, the frame data space is referred to as the
configuration table in this specification. (See Chapter 3, "CHSM Data
Structures and Variables" for details on the frame data space.)

MLIDs must support all frame types for a particular topology. Because all
CTSMs provide full multiple frame support, MLIDs developed with these
modules are guaranteed to support all applicable frame types for the topology.

The adapter data space contains hardware information and statistical
information that the MLID uses to drive and manage a specific physical board.
The CHSM allocates only one adapter data space for each physical board,
regardless of the number of frame types supported by that board. (See Chapter
3, "CHSM Data Structures and Variables" for details on the adapter data space.)

When an adapter supports multiple frame types and/or multiple adapters of the
same type, all logical boards associated with those adapters use a single code
image of the MLID.

When multiple adapters of different types are loaded, a separate adapter code
space is used.

ODI C Language HSM Overview 2-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Figure 2-1
Implementation of Multiple Frame Support

Data and Code

Spaces Logical Boards

Physical Boards

Configuration Table Z

Frame Data Space Z

802.2 i

Configuration Table Z
Frame Data Space Z

SNAP ™

|

.

Original
Brand Z Configuration Table Z
Frame Data Space Z

Statistics Table Z
NIClInstance Structure
Z

Driver Z Executable Code
Image

Original
Brand Y Configuration Table Y
Frame Data Space Y

Statistics Table Y
NICInstance Structure
Y

802.2

!

Driver Y Executable Code
Image

J

~

Configuration Table X
Frame Data Space X

Original
Brand X Configuration Table X
Frame Data Space X

Statistics Table X
NIClInstance Structure
X

802.3 T

* SNAP "T

Driver X Executable Code

Image
| J

2-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Special Support

Reentrancy

Multicast Addressing

Promiscuous Mode

Optional Support

Hub Management

The organization of the code and data spaces, as described in the previous
section, suggests that the CHSM is reentrant. Reentrancy, in this case, means
that the MLID code is written to work with multiple logical boards and with
multiple adapters of the same type.

The CMSM passes pointers to the appropriate frame data space and adapter
data space when calling an MLID routine. References to structures and
variables must be made using pointers and offsets rather than hardcoded values.

If an MLID is reentrant, the CHSM'’s linker definition file must include the

reentrant keyword. This keyword allows a CHSM to be loaded more than once
to support multiple frame types or multiple boards of the same type. However,
only a single code image of the MLID is loaded. If the reentrant keyword is not

used, separate code and data spaces are allocated each time the MLID is loaded.

If the adapter hardware is physically capable of supporting multicast
addressing, the CHSM must implement multicast functionality, as described in
the DriverMulticastChangesection of Chapter 5, "CHSM Functions".

MLIDs that pass all packets being received by the adapter are said to have a
promiscuous reception. Monitoring functions use this mode. We strongly
recommend that the CHSM support promiscuous mode if the adapter is capable
of it. The CHSM must enable or disable promiscuous reception on request as
described in the DriverPromiscuousChange section of Chapter 5, "CHSM
Functions".

The Simple Network Management Protocol (SNMP) and the HUBCON utility
can manage 10BaseT repeaters and Token-Ring concentrator hubs attached to
or integrated into the servéDI Specification Supplement: The Hub

ODI C Language HSM Overview 2-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Source Routing

Management Interfacdescribes how to support management requests from
these two agents in the CHSM.

An MLID can include the capability to pass packets across an IBM bridge. To
do this, source routing information must be added to the packet's MAC header.
The Novell-provided SROUTE.NLM and CTSM modules handle this
procedure with no interaction from the CHSM. For more on source routing, see
ODI Specification SupplemenSource Routing

Brouter (Source Route Bridging)

NESL Support

A Token-Ring adapter capable of source route bridging mode (through a source
route accelerator or address filter CAM) can have capabilities added to its
CHSM to allow programs, such as the Multi Protocol Router Plus, to use it. For
more information on Brouter, s&DI| Specification Supplement: Brouter
Support

The NetWare Event Service Layer (NESL) handles event registration and
modification. The NESL is designed around the concept of consumers and
producers. Generally, a producer will produce events, which a consumer
consumes. See Appendix E for a detailed description of NESL support.

2-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

chapter
3 CHSM Data Structures and Variables

Overview

This chapter describes the data structures and variables that the C HSM must
define when an MLID is written using the support modules.

The modules that make up an MLID are designed to be loaded in the following
order:

1. CMSM.NLM
2. <CTSM>.NLM
3. <C HSM>.LAN
<CTSM> represents a user-defined topology file name—for example,

ETHERTSM. <C HSM> represents a user-defined name for the hardware
specific module—for example, CNE2000.

Driver Parameter Block

ST'IAN 200 - TT'TA dads

When the CMSM and CTSM are installed, all public variables and functions
are exported to the installer and are available to the NLMs. The C HSM can
gain access to them by declaring them "extern" and including them in the
import list in the linker definition file. The import list tells the linker which
external variables and procedures the C HSM can access.

Since the C HSM is loaded last, it must make its public variables and functions
available to the support modules by putting them in the Driver Parameter Block
structure. The Driver Parameter Block structure contains the required C HSM
public variables, tables, pointers, and driver management information. The
Driver Parameter Block fields are accessed by external functions using the
offsets defined icmsm.h

CHSM Data Structures and Variables 3-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

The C HSM'sDriverlnit routine must pass a pointer to the Driver Parameter
Block when it callskCTSM>RegisterHSM so that external procedures can
access the Driver Parameter Block.

Driver Parameter Block Structure

typedef struct _DRIVER_PARM_BLOCK_

{
UINT32 DriverParameterSize;
C HSM_STACK *DriverlnitParmPointer;
MODULE_HANDLE *DriverModuleHandle;
void *DPB_Reserved0;
void *DriverAdapterPointer;
MLID_CONFIG_TABLE*DriverConfigTemplatePtr;
™ UINT32 DriverFirmwareSize;
‘\! void *DriverFirmwareBuffer;
~ UINT32 DPB_Reservedl;
> void *DPB_Reserved?2;
O void *DPB_Reserved3;
o void *DPB_Reserved4;
Q UINT32 DriverAdapterDataSpaceSize;
DRIVER_DATA *DriverAdapterDataSpacePtr;
1 UINT32 DriverStatisticsTableOffset;
~ UINT32 DriverEndOfChainFlag;
~ UINT32 DriverSendWantsECBS;
. UINT32 DriverMaxMulticast;
~ UINT32 DriverNeedsBelow16Meg;
> void *DPB_Reserved5;
Q void *DPB_Reserved6;
QO void (*DriverISRPtr) (DRIVER_DATA *);
Q. ODISTAT (*DriverMulticastChangePtr)(DRIVER_DATA*,
0] MLID_CONFIG_TABLE*, GROUP_ADDR_LIST_NODE*,
UINT32, UINT32);
void (*DriverPollPtr) (DRIVER_DATA*, MLID_CONFIG_TABLE *);
ODISTAT (*DriverResetPtr) (DRIVER_DATA *,
] MLID_CONFIG_TABLE *, OPERATION_SCOPE);
void (*DriverSendPtr) (DRIVER_DATA *,
MLID_CONFIG_TABLE *, TCB *, UINT32, void *);
ODISTAT (*DriverShutdownPtr) (DRIVER_DATA *,
[| MLID_CONFIG_TABLE *, UINT32, OPERATION_SCOPE);
void (*DriverTxTimeoutPtr) (DRIVER_DATA *,
MLID_CONFIG_TABLE *);
ODISTAT (*DriverPromiscuousChangePtr) (DRIVER_DATA *,
MLID_CONFIG_TABLE *, UINT32);
ODISTAT (*DriverStatisticsChangePtr) (DRIVER_DATA *,
MLID_CONFIG_TABLE *);
ODISTAT (*DriverRxLookAheadChangePtr) (DRIVER_DATA *,
_—
| 3-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

ODISTAT

void
BOOLEAN
void
MEON

MEON_STRING

ODISTAT

CONFIG_TABLE *);
(*DriverManagementPtr) (DRIVER_DATA *,
CONFIG_TABLE *, ECB *);
(*DriverEnablelnterruptPtr) (DRIVER_DATA *);
(*DriverDisablelnterruptPtr) (DRIVER_DATA *, BOOLEAN);
(*DriverISR2Ptr) (DRIVER_DATA *);
***DriverMessagesPtr;
*HSMSpecVersionStringPtr;
(*DriverPriorityQueuePtr)

(DRIVER_DATA* MLID_CONFIG_TABLE *, ECB*);

BOOLEAN

} DRIVER_PARM_BLOCK;

Table 3-1

Driver Parameter Block Field Descriptions

(*DriverDisablelnterrupt2Ptr)(DRIVER_DATA*, BOOLEAN);

Head

Type

Description

DriverParameterSize

DriverInitParmPointer

DriverModuleHandle

DPB_Reserved0

UINT32

C HSM_STACK *

MODULE_HANDLE *

void *

Set this variable to the size of the defined
Driver Parameter Block structure before
calling <CTSM>RegisterHSM . Since the
Driver Parameter Block format is strictly
defined and its size must remain constant,
the CMSM uses this field to screen for
invalid parameter blocks.
<CTSM>RegisterHSM will fail if this value is
incorrect.

When the Driverlnit routine is called, it
passes certain information needed by the
CMSM. Driverlnit must set this field to point
to the struct (C HSM_STACK), which
contains information passed into it prior to
calling <CTSM>RegqisterHSM .

The CMSM sets this value when the
Driverlnit routine calls
<CTSM>RegisterHSM . This handle is used
to identify the NLM and is used by the
operating system support routines to access
and manage information about the NLM.
The C HSM's DriverRemove routine needs
this value when it calls
CMSMDriverRemove .

This field is reserved and must be set to
NULL.

CHSM Data Structures and Variables 3-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Table 3-1
Driver Parameter Block Field Descriptions continued

Head Type Description

DriverAdapterPointer void * The CMSM sets this value when the
Driverlnit routine calls
CMSMRegisterHardwareOptions . This
field is reserved for use by the CMSM.

DriverConfigTemplatePtr MLID_CONFIG_TABLE * Set this variable to point to the MLID’s
configuration table template before calling
<CTSM>RegisterHSM . (The configuration
table is described later in this chapter.)

DriverFirmwareSize UINT32 See the "Driver Firmware" section later in
this chapter.

DriverFirmwareBuffer void * See the "Driver Firmware" section later in
this chapter.

DPB_Reservedl UINT32 This field is reserved and must be set to 0.

DPB_Reserved2 void * This field is reserved and must be set to
NULL.

DPB_Reserved3 void * This field is reserved and must be set to
NULL.

DPB_Reserved4 void * This field is reserved and must be set to
NULL.

DriverAdapterDataSpaceSize UINT32 Set this field to the size of the driver adapter
data space template (described later in this
chapter) before calling
<CTSM>RegisterHSM .

Spec vl.11 - Doc v1.13

DriverAdapterDataSpacePtr DRIVER_DATA * Set this field to point to the driver adapter
data space template (described later in this
chapter) before calling
<CTSM>RegisterHSM .

DriverStatisticsTableOffset UINT32 Set this variable to the offset of the driver
statistics table from the top of the driver
adapter data space template before calling
<CTSM>RegisterHSM . The statistics table
and template are described later in this
chapter.

| 3-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

Table 3-1
Driver Parameter Block Field Descriptions

continued

Head Type

Description

DriverEndOfChainFlag UINT32

DriverSendWantsECBs UINT32

DriverMaxMulticast UINT32

Set this field to any nonzero value before
calling CMSMRegisterHardwareOptions if
the MLID supports shared interrupts and
wants to be placed at the end of the chain.
Set this field to O if the MLID wants to be at
the beginning of the chain. This field is used
only if the MS_SHARE_IRQO_BIT bit is set
in the MLIDCFG_SharingFlags field of the
configuration table.

Before calling
CMSMRegisterHardwareOptions , set this
field to 1 if the DriverSend routine needs
ECBs rather than TCBs. Intelligent bus
master adapters that are designed to be
ECB-aware use this field. (For more
information on ECB-aware adapters, see
Appendix B, "Event Control Blocks (ECBs)".)

Before calling
CMSMRegisterHardwareOptions , set this
field to the maximum number of multicast
addresses that the adapter can handle.
ETHERTSM.NLM, TOKENTSM.NLM, and
FDDITSM.NLM can accommodate an
almost unlimited number of multicast
addresses (limited only by available
memory). If a C HSM can handle unlimited
multicast addresses, set this field to -1. (Also
see definitions for
MF_SOFT_FILT_GRP_BIT and
MF_GRP_ADDR_SUP_BIT in the
configuration table MLIDCFG_Flags field
later in this chapter.)

CHSM Data Structures and Variables 3-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table 3-1
Driver Parameter Block Field Descriptions continued

Head Type

Description

DriverNeedsBelow16Meg UINT32

DPB_Reserved5 void *

DPB_Reserved6 void *

DriverISRPtr void (*fn)()

DriverMulticastChangePtr ODISTAT (*fn)()

DriverPollPtr void (*fn)()

MLIDs for bus master adapters and DMA
adapters must set this field to 1 before
calling <CTSM>RegisterHSM if the adapter
can only communicate with host memory
below 16 MB. If the system already has
more than 16 MB at the time the MLID loads,
setting this field to 1 informs the CMSM to
only allocate buffers, RCBs, TCBs, and
ECBs below the 16MB boundary.

If the MLID is loaded on a system that
initially has less than 16 MB of memory, but
will have more memory added later using
the server’s "REGISTER MEMORY*
command, you must use the "BELOW16"
keyword on the load command line to force
the CMSM to allocate memory below 16 MB.

This field is reserved and must be set to
NULL.

This field is reserved and must be set to
NULL.

Set this field to point to the C HSM'’s
DriverISR routine before calling
CMSMSetHardwarelnterrupt . If DriverPoll
is used instead, set this field to NULL.

Set this field to point to the C HSM’s
DriverMulticastChange routine before
calling CMSMRegisterHardwareOptions

If multicast addressing is not supported, set
this field to NULL.

Set this field to point to the C HSM'’s
DriverPoll routine before calling
CMSMEnablePolling . If this routine is not
used, set this field to NULL.

3-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Table 3-1
Driver Parameter Block Field Descriptions continued
Head Type Description

DriverResetPtr

DriverSendPtr

DriverShutdownPtr

DriverTxTimeoutPtr

DriverPromiscuousChangePtr

DriverStatisticsChangePtr

ODISTAT (*n)()

void (*fn)()

ODISTAT (*n)()

void (*fn)()

void (*fn)()

ODISTAT (*fn)()

Set this field to point to the C HSM'’s
DriverReset routine before calling
CMSMRegisterHardwareOptions .

Set this field to point to the C HSM’s
DriverSend routine before calling
CMSMRegisterHardwareOptions .

Set this field to point to the C HSM'’s
DriverShutdown routine before calling
CMSMRegisterHardwareOptions .

If the HSM must access a hardware device
when the TSM has detected a transmit time-
out, set this field to a pointer to the C HSM
DriverTx Time-out routine before Options.
Most C HSMs set this field to NULL.

Set this field to point to the C HSM'’s
DriverPromiscuousChange routine before
calling CMSMRegisterHardwareOptions

If promiscuous mode is not supported, set
this field to NULL.

Pointer to a DriverStatisticsChange

routine that is called whenever the CMSM'’s
control procedure function 1 (get MLID
statistics) is invoked. The
DriverStatisticsChange routine allows C
HSMs with intelligent adapters that keep
track of statistics to update the statistics
table only as needed.

If the adapter supports this feature, this field
must be set before calling
CMSMRegisterHardwareOptions . If not
used, set this field to NULL.

CHSM Data Structures and Variables 3-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table 3-1
Driver Parameter Block Field Descriptions continued

Head Type Description

DriverRxLookAheadChangePtr ODISTAT (*fn)() Pointer to a DriverRxLookAheadChange
routine that is called whenever the CMSM'’s
control procedure function 9 (set look-ahead
size) is invoked. This routine allows C HSMs
with intelligent adapters to be informed
when they receive
MLIDCFG_LookAheadSize field in the
configuration table and the
CMSMMaxFrameHeaderSize variable
changes rather than constantly checking.

If the adapter supports this feature, this field
must be set before calling
CMSMRegisterHardwareOptions . If not
used, set this field to NULL.

DriverManagementPtr ODISTAT (*fn)() If an MLID accepts management requests
from outside NLMs (HMI or CSL), this field
contains a pointer to the
DriverManagement routine that is called
whenever the CMSM control procedure
management function is called. (See OD/
Supplement: Hub Management Interface for
more information.)

If used, this field must be set before calling
CMSMRegisterHardwareOptions . If not
supported, set this field to NULL.

DriverEnablelnterruptPtr void (*fn)() Pointer to a DriverEnableInterrupt routine
that is called by the CMSM to enable
interrupts at the adapter.

DriverDisablelnterruptPtr BOOLEAN (*fn)() Pointer to a DriverDisablelnterrupt routine
that is called by the CMSM to disable
interrupts at the adapter.

DriverISR2Ptr void (*fn)() If the C HSM uses a secondary interrupt,
this value is a pointer to the C HSM’s
interrupt service routine for the second
interrupt. If the C HSM does not use two
interrupts, set this pointer to NULL.

3-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Table 3-1
Driver Parameter Block Field Descriptions continued

Head Type Description

DriverMessagesPtr MEON *** Pointer to a pointer to an array of MEON
string pointers that is defined as
"*MEON_STRING DriverMessages", which
is filled in by the C HSM prior to calling
<CTSM>RegisterHSM . DriverMessagesPtr
is used by the message enabling macros for
handling messages. (For more information
on the message handling macros, see
Appendix A, "Language Enabling".)

HSMSpecVersionStringPtr MEON_STRING* Pointer to the version string that describes
the version of the HSM specification that the
HSM is written to. The string is defined by
Novell as "HSM_CSPEC_VERSION: 1.11".

DriverPriorityQueuePtr ODISTAT Pointer to the DriverPriorityQueueSupport
function called by the CTSM to handle HSM
priority packets when the normal send path
is congested. If the C HSM/adapter supports
this feature, this field must be set before
calling CMSMRegisterHardwareOptions
If not used, set this field to NULL.

DriverDisablelnterrupt2Ptr BOOLEAN (*fn)() Pointer to a DriverDisablelnterrupt2
routine that is called by the CMSM to disable
the interrupts. This routine is required if the
C HSM supports a secondary interrupt, such
as when DriverISR2Ptr is notsetto NULL or
when the MLIDCFG_ Interrupt1 field in the
configuration table is not set to
UNUSED_INTERRUPT. If the C HSM does
not support a secondary interrupt, set this
field to NULL.

ST'IAN 200 - TT'TA dads

CHSM Data Structures and Variables 3-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Frame Data Space

WhenDriverlnit calls<CTSM>RegisterHSM, the CMSM allocates a frame

data space and creates a copy of a configuration table template in it. A separate
frame data space containing a separate configuration table template is created
for each installed frame type (illustrated in Figure 3.1). The CMSM and the
CTSM both pass pointers to the appropriate frame data space when they call C
HSM procedures. Configuration tables can also be accessed through the
CMSMVirtualBoardLinkarray.

Figure 3-1
Frame and Adapter Data Space

Data and Logical
Code Spaces Boards
Configuration Table > 8022

Frame Data Space

Configuration Table - SNAP
Frame Data Space B
Configuration Table > Ell i
Frame Data Space
Physical
Boards

Adapter Data Space
® Hardware Specific Vars
Statistics Table

Adapter Code Space

Configuration Table

The configuration table is a structure defined by the ODI specification. It
contains configuration information about the MLID and the adapter. The C
HSM must provide the template for initializing the fields of the configuration
table. The CMSM then creates a copy of this template in a separate frame data
space for each installed frame type.

The configuration table fields are used primarily during initialization to reserve
hardware resources. Fields that can be modified when the MLID is installed are

3-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

set to their default values before the driver parameters are parsed. Fields that
cannot be modified when the MLID is installed are setto values that mark them
as invalid (usually O or -1, depending on the field).

CMSMParseDriverParameters collects information from the install

command line and the operator console. Once the configuration table fields are
entered, the MLID useBMSMRegisterHardwareOptions to reserve the
hardware resources.

Driver Configuration Table Template

typedef struct _MLID_CONFIG_TABLE_

{
MEON MLIDCFG_Signature[26];
UINTS8 MLIDCFG_MajorVersion;
UINTS8 MLIDCFG_MinorVersion;
NODE_ADDR MLIDCFG_NodeAddress;
UINT16 MLIDCFG_ModeFlags;
UINT16 MLIDCFG_BoardNumber;
UINT16 MLIDCFG_BoardInstance;
UINT32 MLIDCFG_MaxFrameSize;
UINT32 MLIDCFG_BestDataSize;
UINT32 MLIDCFG_WorstDataSize;

MEON_STRING *MLIDCFG_CardName;
MEON_STRING *MLIDCFG_ShortName;
MEON_STRING *MLIDCFG_FrameTypeString;

UINT16 MLIDCFG_ReservedO;

UINT16 MLIDCFG_FramelD;

UINT16 MLIDCFG_TransportTime;

UINT32 (*MLIDCFG_SourceRouting)
(UINT32, void*, void**,boolean)

UINT16 MLIDCFG_LineSpeed;

UINT16 MLIDCFG_LookAheadSize;

UINT8 MLIDCFG_SGCount;

UINTS8 MLIDCFG_Reserved1;

UINT16 MLIDCFG_PrioritySup;

void *MLIDCFG_Reserved?;

UINTS8 MLIDCFG_DriverMajorVer;

UINTS8 MLIDCFG_DriverMinorVer;

UINT16 MLIDCFG_Flags;

UINT16 MLIDCFG_SendRetries;

void *MLIDCFG_DriverLink;

UINT16 MLIDCFG_SharingFlags;

UINT16 MLIDCFG_Slot;

UINT16 MLIDCFG_IOPort0;

UINT16 MLIDCFG_IORange0;

CHSM Data Structures and Variables 3-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

UINT16
UINT16
void
UINT16
void
UINT16
UINTS8
UINTS8
UINTS8
UINTS8
void
void
void

MEON_STRING

void
void
UINT16
void
UINTS8
UINTS8

MLIDCFG_IOPort1;
MLIDCFG_IORange1l,
*MLIDCFG_MemoryAddresso;
MLIDCFG_MemorySize0;
*MLIDCFG_MemoryAddressi;
MLIDCFG_MemorySizel,;
MLIDCFG_InterruptO;
MLIDCFG_Interruptl;
MLIDCFG_DMALIne0;
MLIDCFG_DMALinel;
*MLIDCFG_ResourceTag;
*MLIDCFG_Config;
*MLIDCFG_CommandString;
MLIDCFG_LogicalName[18];
*MLIDCFG_LinearMemory0;
*MLIDCFG_LinearMemory1,;
MLIDCFG_ChannelNumber;
*MLIDCFG_DBusTag;
MLIDCFG_DIOConfigMajorVer;
MLIDCFG_DIOConfigMinorVer;

} MLID_CONFIG_TABLE;

Table 3-2

Driver Configuration Table Field Descriptions

Name

Type Description

MLIDCFG_Signature

MLIDCFG_MajorVersion

MLIDCFG_MinorVersion

MEON [26] String that indicates the beginning of the configuration
table. The string is "HardwareDriverMLID" followed by
exactly eight spaces. (Required)

UINT8 The major version number of the configuration table.
The current major version number is 1. (Required)

UINT8 The minor version number of the configuration table.
The current minor version number is 21. (Required)

3-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Table 3-2

Driver Configuration Table Field Descriptions

continued

Name

Type

Description

MLIDCFG_NodeAddress

MLIDCFG_ModeFlags

MLIDCFG_BoardNumber

NODE_ADDR

UINT16

UINT16

When Driverlnit calls <CTSM>RegisterHSM , the
CMSM fills these bytes with OXFF, then checks the
command line for a node address override. If an
override address is found, the CMSM places the
physical layer format of the address in this field.

After the MLID calls
CMSMRegisterHardwareOptions , it must check this
field for an override.

If these bytes are not all OxFF, an override occurred
and the C HSM sets the physical board’s address to
the value in this field. If there is not an override, the C
HSM must place the node address that was read from
the hardware into this field.

On Token-Ring adapters, if the MLID has been loaded
as LSB, the CMSM will change
MLIDCFG_NodeAddress to a canonical address.

After the C HSM calls CMSMRegisterMLID , the
CTSM places the physical layer format of the node
address into the CMSMPhysNodeAddress variable
and sets the appropriate MLIDCFG_ModeFlag bits.
This physical address can be in canonical or
noncanonical form. (For more information, refer to
MLIDCFG_ModeFlags, CMSMPhysNodeAddress,
and ODI Specification Supplement: Canonical and
Noncanonical Addressing.)

See MLIDCFG_ModeFlags field description (Table
3.3).

The CMSM sets this field to the board number
assigned by the LSL when Driverlnit calls
CMSMRegisterMLID .

CHSM Data Structures and Variables 3-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Table 3-2
Driver Configuration Table Field Descriptions continued

Name Type Description

MLIDCFG_BoardInstance UINT16 The CMSM sets this field when the Driverlnit routine
calls CMSMRegisterHardwareOptions . If the C
HSM is driving two adapters, all logical boards
associated with the first adapter will have a value of 1
and all the logical boards associated with the second
adapter will have a value of 2.

Note: Each controller on a multichannel adapter is
treated as a separate adapter.

MLIDCFG_MaxFrameSize UINT32 Largest possible packet size that can be transmitted
or received by the C HSM. This value includes all
headers. The C HSM sets this value.

The CMSM can reduce this value, depending on
platform specifics, when the C HSM's Driverlnit
routine calls <CTSM>RegisterHSM .

The C HSM can reduce this value prior to calling
CMSMRegisterMLID .

Ethernet C HSMs set this field to 1514.
FDDI C HSMs set this value to 4491.

Token-Ring C HSMs must not set this value greater
than the maximum size supported by the Token-Ring
board configuration (4Mbit Token-Ring sets this field
to 4464; 16Mbit Token-Ring may set this field to
17954. See Table 3-6 for more detail.

Spec vl.11 - Doc v1.13

MLIDCFG_BestDataSize UINT32 The CTSM sets this field during execution of
CMSMRegisterMLID . The CTSM subtracts the length
of the smallest media header(s) from the value in the
MLIDCFG_MaxFrameSize field.

For example, an Ethernet_Il MLID sets this field to
1500 decimal (1514 - 14 [MAC] = 1500). A Token-Ring
MLID sets this field to MLIDCFG_MaxFrameSize - 14
[MAC] - 3 [802.2 UI].

j 314 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

Table 3-2

Driver Configuration Table Field Descriptions continued

Name Type Description

MLIDCFG_WorstDataSize UINT32 The CTSM sets this field during execution of

MLIDCFG_CardName

MLIDCFG_ShortName

MLIDCFG_FrameTypeString

MLIDCFG_Reserved0

MEON_STRING *

MEON_STRING *

MEON_STRING *

UINT16

CMSMRegisterMLID . The CMSM subtracts the
length of the largest media header(s) from the
MLIDCFG_MaxFrameSize field.

For example, a Token-Ring MLID sets this field to
MLIDCFG_MaxFrameSize - 14 [MAC] - 30 [source
routing] - 4 [802.2 Sl]. An Ethernet_II MLID sets this
field to 1500:

MLIDCFG - MAXFRAMESIZE(1514) -

14[MAC] = 1500

The C HSM may set this field to point to a
NULL-terminated, MEON string that is identical to the
description string in the linker definition file (see
Appendix C: Platform Specific Information).

For example: "Novell Ethernet NE2000", O

If this field is initialized to NULL, the CMSM will extract
the description string from the NLM header (derived
from the linker definition file) when the C HSM'’s
Driverlnit routine calls <CTSM>RegisterHSM . This
way, only one description string must be maintained.

The C HSM must set this field to point to a
NULL-terminated, MEON string that describes the
adapter in eight bytes or less.

For example: "NE2000", 0

The string is usually the name of the <C HSM>.LAN
file.

This field holds a pointer to a NULL-terminated,
MEON string that describes the frame and media type
being used by this MLID. (See ODI Specification
Supplement: Frame Types and Protocol IDs for
possible frame types.) The CMSM sets this field.

This field is reserved for future use and must be set to
0.

CHSM Data Structures and Variables 3-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table 3-2
Driver Configuration Table Field Descriptions continued

Name Type Description

MLIDCFG_FramelD UINT16 The CMSM sets this field when the Driverlnit routine
calls CMSMRegisterHardwareOptions . It contains
the frame type ID number.

For more information on frame types, see OD/
Supplement: Frame Types and Protocol IDs.

MLIDCFG_TransportTime UINT16 Number of milliseconds it takes the adapter to
transmit a 586-byte packet. Most C HSMs set this field
to 1. This field cannot be set to 0.

MLIDCFG_SourceRouting UINT32 (*fn()) Pointer to a source routing module, such as
SROUTE.NLM, used by a Token-Ring or FDDI MLID.

CTSMs that do not use source routing set this field to
NULL and do not modify it.

See the ODI Supplement: Source Routing for a
discussion of dynamic source routing.

MLIDCFG_LineSpeed UINT16 The speed of the topology; set by the C HSM. This
value is normally specified in megabits per second
(Mbps). If the line speed is less than 1 Mbps or if it is
a fractional number, the value of this field can be
defined in kilobits per second (Kbps) by setting the
most significant bit to 1. This field is undefined if it is
setto 0.

For example, if the speed of the line MLID is 10 Mbps
(Ethernet for example) put 10 (decimal) in this field.

MLIDCFG_LookAheadSize UINT16 The amount of data required by a protocol stack when
previewing received packets; the default is 18 bytes.
The CTSM sets this variable. The variable,
CMSMMaxFrameHeaderSize (see Chapter 4: CMSM/
CTSM Data Structures and Variables), is equal to this
value plus the maximum media header size. This size
can be dynamically changed; its maximum value is
128 bytes.

3-16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Table 3-2
Driver Configuration Table Field Descriptions continued

Name Type Description

MLIDCFG_SGCount UINT8 The maximum number of scatter/gather elements the
adapter is capable of handling. The C HSM sets this
variable. This field is only valid if the
MM_FRAGS_PHYS_BIT bit in the
MLIDCFG_ModeFlags field is set. The minimum
value is 2 (1 for the MAC header and 1 for data). The
maximum value is 17 (1 for the MAC header and 16 for

data).
MLIDCFG_Reservedl UINTS8 Reserved; must be set to 0.
MLIDCFG_PrioritySup UINT16 The number of priority levels that the C HSM can
handle. This field has a maximum of 7 priorities (1-7).
Zero indicates no priority packet support. Therefore,
the C HSM can set this field to a value of 0 through 7.
MLIDCFG_Reserved2 void * Reserved; must be set to 0.
MLIDCFG_DriverMajorVer UINT8 The current revision level of the C HSM; matches the

revision level displayed by the C HSM. The C HSM
sets this variable. For example, if the C HSM's current
major version is 2, this field’s value is 2. If this field is
initialized to NULL, the CMSM extracts the major
version from the NLM header, which is derived from
the linker definition file when the C HSM's Driverlnit
function calls <CTSM>RegisterHSM . This ensures
that only one version must be maintained.

ST'IAN 200 - TT'TA dads

MLIDCFG_DriverMinorVer UINT8 The current revision level of the C HSM; matches the
revision level displayed by the C HSM. The C HSM
sets this variable. For example, if the C HSM's current
minor version is .32, this field’s value is 32. If this field
is initialized to NULL, the CMSM extracts the minor
version from the NLM header, which is derived from
the linker definition file when the C HSM's Driverlnit
function calls <CTSM>RegisterHSM . This ensures
that only one version must be maintained.

MLIDCFG_Flags UINT16 See the MLIDCFG_Flags field description (Table 3.4).

CHSM Data Structures and Variables 3-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Table 3-2

Driver Configuration Table Field Descriptions continued

Name

Type Description

MLIDCFG_SendRetries UINT16 The number of times the C HSM tries to resend a

packet before aborting the transmission. This count
may be overwritten at load time. The C HSM sets this
variable. (See RETRIES in the "Load Keywords and
Parameters Descriptions” table in Appendix C,
"Platform Specific Information™.)

MLIDCFG_DriverLink void * NULL; not modified by the C HSM.

MLIDCFG_SharingFlags UINT16 The C HSM sets this variable. See the

MLIDCFG_SharingFlags field description (Table 3.5).

MLIDCFG_Slot UINT16 For Micro Channel, EISA, PCI, PC Card, and other

buses which allow for the identification of the location
of an adapter, this field contains the Hardware
Instance Number (HIN). The HIN is a system-wide,
unique handle for a device, which is returned by
CMSMGetinstanceNumber after calling
CMSMSearchAdapter . This value normally
corresponds to the number silk-screened on the
motherboard or stamped on the chassis of the
computer. The instances are assigned a unigue value
in the following cases:

Integrated motherboard devices

PCI BIOS v2.0 devices

PCI BIOS v2.1 adapters with multiple devices or
functions

PnP ISA devices

Conflicts between physical slot numbers

If this field is not used, it must be set to
UNUSED_SLOT.

MLIDCFG_IOPort0 UINT16 Primary base I/O port. This field is initialized to the

adapter’s default base 1/O port. If this field is not used,
itis set to UNUSED_IO_PORT. The C HSM sets this
variable, but it may be changed during a call to
CMSMParseDriverParameters .

3-18

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Table 3-2

Driver Configuration Table Field Descriptions

continued

Name

Type

Description

MLIDCFG_IORange0

MLIDCFG_IOPortl

MLIDCFG_IORangel

MLIDCFG_MemoryAddress0

MLIDCFG_MemorySize0

UINT16

UINT16

UINT16

void *

UINT16

Number of UINT8 /O ports starting at
MLIDCFG_IOPortO. If this field is not used, it is set to
UNUSED_IO_RANGE. The C HSM sets this variable,
but it may be changed during a call to
CMSMParseDriverParameters .

Secondary base 1/O port. This field is initialized to the
adapter’s default base 1/O port. If this field is not used,
itis set to UNUSED_IO_PORT. The C HSM sets this
variable, but it may be changed during a call to
CMSMParseDriverParameters .

Number of UINT8 /O ports starting at
MLIDCFG_IOPortl. If this field is not used, it is set to
UNUSED_IO_RANGE. The C HSM sets this variable,
but it may be changed during a call to
CMSMParseDriverParameters .

This field is initialized to the adapter’s default base
memory address. If the adapter does not use, or
define, shared RAM or ROM, set this field to
UNUSED_MEMORY_ADDRESS. This value is an
absolute physical address. On Intel processors, for
example, if a physical adapter’s RAM is located at
C000:0, the value in this field will be C0000. The C
HSM sets this variable, but it may be changed during
a call to CMSMParseDriverParameters .

If MS_MEM_PAGE_BIT in MLIDCFG_SharingFlags is
set, this field defines the number of pages of memory
decoded at MLIDCFG_MemoryAddressO. If
MS_MEM_PAGE_BIT in MLIDCFG_SharingFlags is
clear, this field defines the number of paragraphs (16
bytes) of memory decoded at
MLIDCFG_MemoryAddress0. If
MLIDCFG_MemoryAddress0 is not defined, set this
field to UNUSED_MEMORY_SIZE.

Note: The size of a page of memory is determined by
the processor for which this code is compiled on, such
as Intel 4K, PowerPC 4K, Alpha 8K.

CHSM Data Structures and Variables 3-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table 3-2
Driver Configuration Table Field Descriptions

continued

Name Type

Description

MLIDCFG_MemoryAddressl void *

MLIDCFG_MemorySizel UINT16
MLIDCFG_InterruptO UINTS8
MLIDCFG_Interruptl UINT8

This field allows the MLID to define a second memory
address range for use by the MLID’s adapter. For
example, MLIDCFG_MemoryAddress0 could define
the starting address of the adapter's RAM, and this
field could define the starting address of the adapter’s
ROM. Set this field to
UNUSED_MEMORY_ADDRESS if the adapter does
not define a second memory range. The C HSM sets
this variable, but it may be changed during a call to
CMSMParseDriverParameters .

If MS_MEM_PAGE_BIT in MLIDCGFG_SharingFlags
is set, this field defines the number of pages of
memory decoded at MLIDCFG_MemoryAddress1. If
MS_MEM_PAGE_BIT in MLIDCFG_SharingFlags is
clear, this field defines the number of paragraphs (16
bytes) of memory decoded at
MLIDCFG_MemoryAddress1. If
MLIDCFG_MemoryAddress1 is not defined, set this
field to UNUSED_MEMORY_SIZE.

Note: The size of a page of memory is determined by
the processor for which this code is complied on, such
as Intel 4K, PowerPC 4K, Alpha 8K.

The adapter’s default base IRQ number. If the adapter
does not use an interrupt line, set this field to
UNUSED_INTERRUPT. If the MLID’s adapter
supports IRQ 2 or 9, the MLID sets the value to be
consistent with the adapter’'s documentation. The C
HSM sets this variable, but it may be changed during
a call to CMSMParseDriverParameters .

For example, if the adapter’s documentation specifies
the default jumper setting as IRQ2, set this field to 2.
If the default jumper setting is IRQ9, set this field to 9.

The adapter’s second IRQ number. Set this field to
UNUSED_INTERRUPT if unused. The C HSM sets
this variable, but it may be changed during a call to
CMSMParseDriverParameters .

3-20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Table 3-2

Driver Configuration Table Field Descriptions continued

Name Type Description

MLIDCFG_DMALIine0O UINT8 Initialized to the adapter’'s default DMA channel
number. If the adapter does not use a DMA channel,
set this field to UNUSED_DMA_LINE (unused). The C
HSM sets this variable, but it may be changed during
a call to CMSMParseDriverParameters .

MLIDCFG_DMALinel UINT8 Used by the MLID if the MLID’s adapter uses a second
DMA channel. Set this field to UNUSED_DMA_LINE
if it is not needed. The C HSM sets this variable, but it
may be changed during a call to
CMSMParseDriverParameters .

MLIDCFG_ResourceTag void * Pointer to a resource tag; set by the CMSM.

MLIDCFG_Config void * Pointer to the LSLs copy of the configuration table. C
HSMs do not use this field.

MLIDCFG_CommandsString void * This field is set by the C MSM to point to a structure

MLIDCFG_LogicalName[18]

MLIDCFG_LinearMemory0

MEON_STRING

void *

containing two fields. The first field is a forward link to
the next structure if any. The second field is a pointer
to a null terminated string containing the parameters
entered on the command line. Normally, there is only
one node in the linked list, but if there are more than
one, the command line is the concatenation of all the
nodes. Bits 9 and 10 of the MLIDSharingFlags fields
are used in conjunction with this field.

NULL terminated logical name of the MLID if a name
exists. C HSMs do not use this field.

The address in MLIDCFG_MemoryAddressO0 is
converted into the correct address for the C HSM and
is stored in this field when
CMSMRegisterHardwareOptions is called. Due to
address mapping on platforms with varying
processors or multiple buses, the address in
MLIDCFG_MemoryAddress0 might not work for the C
HSM. C HSMs must always use the address in this
field to access an adapter's memory.

CHSM Data Structures and Variables 3-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table 3-2
Driver Configuration Table Field Descriptions

continued

Name Type

Description

MLIDCFG_LinearMemoryl void *

MLIDCFG_ChannelNumber UINT16

MLIDCFG_DBusTag void *

MLIDCFG_DIOConfigMajorVer UINT8

MLIDCFG_DIOConfigMinorVer UINT8

The address in MLIDCFG_MemoryAddress1 is
converted into the correct address for the C HSM and
is stored in this field when
CMSMRegisterHardwareOptions is called. Due to
address mapping on platforms with varying
processors or multiple buses, the address in
MLIDCFG_MemoryAddress1 might not work for the C
HSM. C HSMs must always use the address in this
field to access an adapter's memory.

The channel number of the LAN adapter--used with
multichannel adapters only. The channel number can
be specified when the MLID is installed, using the
"channel=#" keyword (where # is any value greater
than 0). Set this field to 0 if multichannel adapters are
not used. The C HSM sets this variable, but it may be
changed during a call to
CMSMParseDriverParameters .

Pointer to an architechure-dependent value, which
specifies the bus on which the adapter is found. The
value placed in this field is returned by
CMSMSearchAdapter unless the board is Legacy
ISA, in which case it is set to zero. This field must be
set before calling CMSMRegisterHardwareOptions

The current major revision level of the IO_CONFIG
structure (the bottom half of MLID_CONFIG_TABLE
structure). The CMSM sets this variable to 1.

The current minor revision level of the IO_CONFIG
structure (the bottom half of MLID_CONFIG_TABLE
structure). The CMSM sets this variable to 0.

MLIDCFG_ModeFlags Field

This section describes the bits of ieIDCFG_ModeFlagdield in the

configuration table. Figure 3-2 shows the reserved bits and their values for this

field.

3-22 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Figure 3-2

MLIDCFG_ModeFlags Field Default Values

1514131211109 8 7 6 5 4 3 2 10

0 010

Table 3-3 describes the non-reserved bit values faitH®CFG_ModeFlags

field.

Table 3-3

MLIDCFG_ModeFlags Bits Description

Bit Name
#

Description

2 MM_DEPENDABLE_BIT

3 MM_MULTICAST_BIT

This bit has been rendered obsolete by the NetWare Link
Services Protocol. We recommend that this bit always be set to
0. Previously, this bit was used to limit the frequency of IPX RIP/
SAP updates when operating over reliable delivery, low
bandwidth, Wide Area Network (WAN) data links. When setto 1
by a WAN C HSM, this bit caused IPX to suppress the normal,
periodic, RIP/SAP updates, unless the route or service
databases had changed. However, use of this bit to suppress
updates sometimes resulted in IPX route or service loss.

The C HSM sets this bit if it supports multicast addressing.
Multicast support is required for all media that have multicast
capability.

CHSM Data Structures and Variables 3-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001

January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table 3-3

MLIDCFG_ModeFlags Bits Description continued

Bit Name
#

Description

4 MM_CSL_COMPLIANT BIT

5 MM_PREFILLED_ECB_BIT

6 MM_RAW_SENDS_BIT

7 MM_DATA_SZ_UNKNOWN_BIT

8 MM_SMP_BIT

10 MM_FRAG_RECEIVES_BIT

11 MM_C_HSM_BIT

The C HSM sets this bit if the supported data link protocol
requires connection management through the Call Support
Layer (CSL) interface. Typical Wide Area Network (WAN) data
link protocols, such as Frame Relay, PPP, and X.25, are
connection oriented and rely upon network layer protocol (IPX,
IP) interaction to establish, maintain, and terminate connections
to remote peers. The CSL provides extensions to ODI that allow
this connection management interaction between network and
data link layer protocols. This bit must not be set by
connectionless data link protocols, such as Token-Ring and
Ethernet. For more information on the CSL and WAN C HSM
interfaces, see NetWare Wide Area Network Open Data-Link
Interface Specification.

Set this bit if the MLID always supplies prefilled LSL ECBs in the
LkAhd_PreFilledECB field of the LOOKAHEAD structure.

The CTSM sets this bit to indicate that raw sends are supported.
Refer to the TCB section of Chapter 4: CMSM/CTSM Data
Structures and Variables for more information on raw sends.

Set this bit if the C HSM is capable of setting the
LkAhd_FrameDataSize field of the LOOKAHEAD structure to a
-1 (frame size and/or receive status unknown)—for example,
pipelined LAN adapter.

Set by the CMSM if the CMSM and CTSM support symmetrical
multiprocessing (SMP).

The C HSM must set this bit if it can handle fragmented RCBs.
(RCBs are described in Chapter 4, "CMSM/CTSM Data
Structures and Variables".)

This bit distinguishes an HSM written to this specification from
one written to the assembly language specification. If this bit is
set, the HSM is written to this specification. If this bit is clear, the
HSM is written to the assembly language specification.

3-24 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Table 3-3

MLIDCFG_ModeFlags Bits Description continued

Bit Name
#

Description

12 MM_FRAGS_PHYS_BIT

13 MM_PROMISCUOUS_BIT

The C HSM sets this bit if it expects the following from the CTSM:

1) For TCBs, fragment pointers will all contain physical
addresses pointing to locked, contiguous buffers.

2) For ECB-aware adapters and for send ECBs, pointers to the
ECB can be converted to a physical address and return
physical and logical addresses to the ECB.

3) <CTSM>ProcessGetRCB will return an RCB with locked,
contiguous, physical addresses in the fragment pointer.

For more information on using this bit, see “Adapters that Need
Physical Addresses" in Chapter 5, "C HSM Functions".

The C HSM must set this bit if it supports promiscuous mode.

CHSM Data Structures and Variables 3-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001

January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table 3-3

MLIDCFG_ModeFlags Bits Description continued

Bit Name
#

Description

14 MM_NONCANONICAL_BIT
15 MM__PHYS_NODE_ADDR_BIT

These bits indicate whether the MLIDCFG_NodeAddress field of
the configuration table contains a canonical or noncanonical
address. The CMSM controls these bits.

Bit 15 indicates whether the node address format can be
configured. If this bit is set, the format can be configured and the
C HSM uses the CMSMPhysNodeAddress variable instead of
the configuration table MLIDCFG_NodeAddress to obtain the
physical layer node address. (For NetWare versions later than
3.11, the CMSM always sets bit 15.)

Bit 14 indicates whether MLIDCFG_NodeAddress contains the
canonical or noncanonical form of the node address. The state
of bit 14 is only defined when bit 15 is set.

The bit 15 and 14 combinations are:

00 MLIDCFG_NodeAddress format is unspecified. The
node address is assumed to be in the physical layer's
native format; CMSMPhysNodeAddress is not used.

01 Thisis anillegal value and must not be used.

10 MLIDCFG_NodeAddress is canonical; use
CMSMPhysNodeAddress .

11 MLIDCFG_NodeAddress is noncanonical; use
CMSMPhysNodeAddress .

Also see MLIDCFG_NodeAddress, CMSMPhysNodeAddress ,
and ODI Specification Supplement: Canonical and
Noncanonical Addressing.

All bits that are not listed in the above table are reserved and must be initialized

to 0.

MLIDCFG_Flags Field

This section describes the bits of MeIDCFG_Flagsfield in the

configuration table. Figure 3-3 shows the reserved bits and their values for this

field.

3-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Figure 3-3
MLIDCFG_Flags Field

1514131211109 8 7 6 5 4 3 21

0

01010 0{0{0{0(0|0]0

0

Table 3-4 describes the non-reserved bit values fauMtti®CFG_Flagsfield

Table 3-4
MLIDCFG_Flags Bits Description

Bit# Name Description

8 MF_HUB_MANAGEMENT_BIT Setto 1 if the C HSM supports hub management.
9 MF_SOFT_FILT_GRP_BIT See description below for bit 10.

10 MF_GRP_ADDR_SUP_BIT Bits 9 and 10 indicate different support mechanisms for
multicast filtering. These bits are only valid if bit 3 of the
MModeFlags is set, indicating that the C HSM supports
multicast addressing.

The C HSM sets bit 10 if it has specialized adapter hardware

(such as hardware that utilizes CAM memory).

When the C HSM sets bit 10; and its default is functional
addressing, but it also supports group addressing; it receives

both functional addresses and group addresses.

The state of bit 9 is defined only if bit 10 is set. Bit 9 is set if the
adapter completely filters group addresses and the CTSM does
not need to perform any checking. The C HSM can dynamically

set and clear bit 9. For example, if the adapter utilizes CAM

memory, but has temporarily run out memory, the CTSM must
temporarily filter the group addresses. In this case, the C HSM

must reset bit 9.

Bit 9 is not used by ECB aware HSMs. ECB aware HSMs must

do their own filtering of multicast addresses.

CHSM Data Structures and Variables 3-27

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Table 3-4
MLIDCFG_Flags Bits Description

Bit# Name Description

10/9 Bits 10 and 9 combinations are as follows:

00 The format of the multicast address defaults to that of
the topology:

Ethernet=> Group Addressing (Multicast
Addressing)

Token-Ring => Group Addressing and Functional
Addressing

FDDI => Group Addressing
01 lllegal value which must not occur.

10 Group addressing is supported by the specialized
adapter hardware, but the TSM filters the addresses.

11 Group addressing is supported by the specialized
adapter hardware, and the TSM is not required to
filter the addresses.

See also ODI Specification Supplement: Canonical and
Noncanonical Addressing for information regarding octet bit
reversal.

11 MF_RECONFIG_BIT This bit is used by the Novell Driver Developer’s Guide kit. When
set, it indicates to the C HSM that indirect (file based)
configuration information for the associated interface instance
may have changed. This bit can be set by any caller prior to
calling the DriverReset function. Itis to be examined by
DriverReset and cleared upon completion. This bit has no
meaning for C HSMs which do not support use of indirect (file
based) configuration information.

Spec vl.11 - Doc v1.13

12 MF_PRIORITYSUP_BIT The C HSM sets this bit during initialization if the following
conditions are met:

(1) The C HSM has provided a priority queue service support
routine (such as, DriverPriorityQueueSupport).

(2) The C HSM has set the MLIDCFG_PrioritySup field to
something other than 0.

Note: The C HSM may set/clear this bit to enable/disable priority
support as needed.

g 328 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

All bits that are not listed in the previous table are reserved and must be
initialized to 0.

MLIDCFG_SharingFlags Field

This section describes the bits of MeIDCFG_SharingFlagdield in the
configuration table. Figure 3-4 shows the reserved bits and their values for this
field.

Figure 3-4
MLID_SharingFlags Field Default Values

1514131211109 8 7 6 54 3 2 10
0{0(0]0

Table 3-5 describes the non-reserved bit values for the
MLIDCFG_SharingFlagdield.

Table 3-5
MLIDCFG_SharingFlags Bits Description

Bit# Name Description

0 MS_SHUTDOWN_BIT Setto 1ifthe logical board is currently shut down. This bit should
also be set during Driverlnit until the driver/adapter is fully
functional and ready to send and receive packets.

1 MS_SHARE_PORTO_BIT Set to 1 if the adapter can share 1/0O port 0.

2 MS_SHARE_PORT1_BIT Set to 1 if the adapter can share 1/O port 1.

3 MS_SHARE_MEMORYO_BIT Set to 1 if the adapter can share memory range 0.

4 MS_SHARE_MEMORY1_BIT Set to 1 if the adapter can share memory range 1.

5 MS_SHARE_IRQO_BIT Set to 1 if the adapter can share interrupt O.
6 MS_SHARE_IRQ1_BIT Set to 1 if the adapter can share interrupt 1.
7 MS_SHARE_DMAO_BIT Set to 1 if the adapter can share DMA channel 0.

CHSM Data Structures and Variables 3-29

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table 3-5
MLIDCFG_SharingFlags Bits Description

Bit# Name Description
8 MS_SHARE_DMA1_BIT Set to 1 if the adapter can share DMA channel 1.
10 MS_HAS_CMD_INFO_BIT If this bit is zero, the command line used by some install

programs will be created using the system’s IOCONFIG
structure and possibly (as controlled by bit 9) the content of the
users command line. This command line will include an entry for
every field that is used in the IOCONFIG structure. Setting this
bit prevents the install program from creating a command line
using the IOCONFIG structure; instead, it simply uses the user’s
command line and ignores the state of bit 9.

9 MS_NO_DEFAULT_INFO_BIT If this bit is set and bit 10 is not set, some install programs will
merge the contents of the user's command line with the system’s
IOCONFIG structure. If it is not set, then only the system’s
IOCONFIG structure will be used to create the command line.
The C MSM sets this bit if the command line passed to
Driverlnit is not empty.

15 MS_MEM_PAGE_BIT When set, this bit signifies that the values in fields
MLIDCFG_MemorySize0 and MLIDCFG_MemorySizel contain
the number of pages of memory used by the adapter. For
example, Intel platforms allow 4K pages with a maximum of 256
megabytes of shared memory address used by an adapter.

When clear, this bit signifies that the values in fields
MLIDCFG_MemorySize0 and MLIDCFG_MemorySizel contain
the number of paragraphs (16 bytes) of memory used by the
adapter.

All bits that are not listed in the above table are reserved and must be initialized
to 0.

Maximum Packet Size

TheMLIDCFG_MaxFrameSizéeld of the configuration table is set to the
LSL's maximum ECB buffer size durinrgCTSM>RegisterHSM. The C HSM
can lower this value prior to callingMSMRegisterMLID . During this
procedure, the CTSM alters the size if the topology requires a smaller
maximum packet size. The CTSM also 9dtdDCFG_BestDataSizand
MLIDCFG_WorstDataSizeAfter CMSMRegisterMLID returns, MLIDs for

3-30 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

intelligent adapters can pass the maximum size to the hardware if required. The

following table shows how these values are determined.

Table 3-6
Frame Types Versus Size Fields

Frame Type MLIDCFG_MaxFrameSize
(the lesser of the two

MLIDCFG_BestDataSize

MLIDCFG_WorstDataSize

values)
Ethernet Maximum ECB buffer
802.3 size or 1514
Ethernet Maximum ECB buffer
802.2 size orl514
Ethernet Il Maximum ECB buffer
size or 1514
Ethernet Maximum ECB buffer
SNAP size or 1514

Token-Ring Maximum ECB buffer
802.2 size orthe maximum size
the adapter can handle

Token-Ring Maximum ECB buffer
SNAP size orthe maximum size
the adapter can handle

FDDI 802.2 Maximum ECB buffer
size or 4491

FDDI SNAP Maximum ECB buffer
size or 4491

MLIDCFG_MaxFrameSize - 14

MLIDCFG_MaxFrameSize - 17

MLIDCFG_MaxFrameSize - 14

MLIDCFG_MaxFrameSize - 22

MLIDCFG_MaxFrameSize - 17

MLIDCFG_MaxFrameSize - 22

MLIDCFG_MaxFrameSize - 16

MLIDCFG_MaxFrameSize - 21

MLIDCFG_MaxFrameSize - 14

MLIDCFG_MaxFrameSize - 18

MLIDCFG_MaxFrameSize - 14

MLIDCFG_MaxFrameSize - 22

MLIDCFG_MaxFrameSize - 48

MLIDCFG_MaxFrameSize - 52

MLIDCFG_MaxFrameSize - 47

MLIDCFG_MaxFrameSize - 51

CHSM Data Structures and Variables 3-31

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

3-32

Example

If the maximum ECB buffer size equals 4096 bytes and the Token-Ring adapter
can handle 8192 bytes, then the Token-Ring 802.2 values are calculated as
follows:

+ MLIDCFG_BestDataSize

The maximum packet size minus the headers if the source routing header
is not included.

= MLIDCFG_MaxFrameSizé4096) - MAC header (14) - 802.2 Type |
LLC header (3)

= 4079

+ MLIDCFG_WorstDataSize

The maximum packet size minus the headers if the source routing header
is included.

= MLIDCFG_MaxFrameSiz¢4096) - MAC header (14) - 802.2 Type Il
LLC header (4) - Source Routing header (30)

= 4048

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Driver Adapter Data Space

Importantv

Figure 3-5

The C HSM must define and initialize a structure containing certain hardware-
related and statistical information specific to the adapter. This structure is
called DRIVER_DATA and must contain the statistics table and any hardware-
specific fields needed in order to drive the physical board. The statistics table
is defined by the ODI specification.

DRIVER_DATA must contain: the MLID_STATS_TABLE structure, all the
generic, media, and custom STAT_TABLE_ENTRY structures, and all of the
generic, media, and custom counter variables.

When theDriverlnit routine callsCMSMRegisterHardwareOptions, the

CMSM allocates the adapter data space and creates a copy of DRIVER_DATA
in this area. There is only one adapter data space allocated for each physical
board, regardless of the number of frame types supported. Figure 3.2 shows the
relationship between the frame and adapter data space.

Driver Frame and Adapter Data Space

Data and Logical
Code Spaces Boards

Configuration Table
Frame Data Space

\/

Configuration Table » - SNAP
Frame Data Space T R
Configuration Table > E||
Frame Data Space
Physical
Boards

Adapter Data Space
» Hardware Specific Vars
Statistics Table

Adapter Code Space

CHSM Data Structures and Variables 3-33

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Specification Version String

3-34

In order to identify which version of this specification a C HSM conforms to,
a version string (the "specification version string") must be embedded in the C
HSM. The specification version string number (1.11 for this specification) is
the actual version number of the specification. The following is the
specification version string for this specification; it must be added to the C
HSM where the global variable declarations are made, exactly as shown:

MEON_STRING CHSMSPEC[]=“HSM_CSPEC_VERSION: 1.11";

The pointer in the DriverParameterBlock structure field,
HSMSpecVersionStringRtmust point to this string.

Note‘vvl One space is required between the colon and the 1.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Driver Statistics Table

The statistics table contains various diagnostic counters. All statistics counters
listed must be present in the table, but only those marked mandatory must be
supported. These counters can be grouped into the following categories.

« Generic Statistics Counters
» Media Specific Counters

« Custom Statistics Counters

beginning value. Each category of counters must be grouped in memory
contiguously as shown in the examples. They must be ordered as described in
the following tables. The CMSM/CTSM fix the string pointers for Generic and
Media Specific counters during CMSMRegisterMLID .

Importantv When the statistics counters reach their maximum value, they wrap back to their

STAT_TABLE_ENTRY Structure

typedef struct _STAT _TABLE_ENTRY_

{
UINT32 StatUseFlag;

void *StatCounter;
MEON_STRING *StatString;
} STAT_TABLE_ENTRY;

Field Descriptions
StatUseFlag

The permissible values &tatUseFlagare defined as:

ODI_STAT_UNUSED StatCounteris not in use.

ODI_STAT_UINT32 StatCounteris a pointer to a UINT32
counter.

ODI_STAT_UINT64 StatCounteris a pointer to a UINT64
counter.

ODI_STAT_MEON_STRING StatCounteris a pointer to MEON
string.

CHSM Data Structures and Variables 3-35

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

ODI_STAT_UNTYPED

StatCounter
As defined by thé&tatUseFlag.
StatString

Pointer to a NULL-terminated
counter.

Statistics Table Structure

StatCounteris a pointer to a UINT8
array preceded by its length (UINT32).

MEON string describing the statistics

typedef struct _MLID_STATS TABLE_

{
UINT16

UINT16
UINT32
STAT_TABLE_ENTRY
UINT32
STAT_TABLE_ENTRY
UINT32
STAT_TABLE_ENTRY
} MLID_STATS_TABLE;

Table 3-7
MLID Statistics Table Fields

MStatTableMajorVer;
MStatTableMinorVer;
MNumGenericCounters;
(*MGenericCountsPts)[];
MNumMediaCounters;
(*MMediaCountsPts)[];
MNumCustomCounters;
(*MCustomCountersPtr)[];

Name Type Description

MStatTableMajorVer UINT16 The major version number of the statistics table. The
current major number is 4.

MStatTableMinorVer UINT16 The minor version number of the statistics table. The
current minor version number is 0.

MNumGenericCounters UINT32 The total number of generic STAT_TABLE_ENTRY
counters in this portion of this table. This field is set
to 20 for this specification.

MGenericCountsPts STAT_TABLE_ENTRY* Pointerto an array of STAT_TABLE_ENTRY counters
[MNumGenericCounters].

3-36 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Table 3-7

MLID Statistics Table Fields

Name

Type

Description

MNumMediaCounters

MMediaCountsPts

UINT32

The total number of media specific
STAT_TABLE_ENTRY counters in this portion of this
table. This field is set to the following values:

Token-Ring 13
Ethernet 8

FDDI 10

STAT_TABLE_ENTRY* Pointertoan array of STAT_TABLE_ENTRY counters

[MNumMediaCounters].
MNumCustomCounters UINT32 This field contains the total number of custom
STAT_TABLE_ENTRY counters in this portion of this
table. This field is variable (dependent on the C
HSM).
MCustomCountersPtr STAT_TABLE_ENTRY* Pointertoan array of STAT_TABLE_ENTRY counters
[MCustomCounters].
Example
#define NUM_GENERIC_COUNTERS 20
UINT32 MTotalTxPacketCount,

MTotalRxPacketCount,
MNoECBAvailableCount,
MPacketTxTooBigCount,
MPacketTxTooSmallCount,
MPacketRxOverflowCount,
MPacketRxTooBigCount,
MPacketRxTooSmallCount,
MTotalTxMiscCount,
MTotalRxMiscCount,
MRetryTxCount,
MChecksumErrorCount,
MHardwareRxMismatchCount,
MTotalTxOKByteCount,
MTotalRxOKByteCount,
MTotalGroupAddrTxCount,
MTotalGroupAddrRxCount,
MAdapterResetCount,
MAdapterOprTimeStamp,
MQDepth;

CHSM Data Structures and Variables 3-37

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

STAT_TABLE_ENTRY
{
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT64,
{ ODI_STAT_UINT64,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,
{ ODI_STAT_UINT32,

h

MLID_STATS_TABLE

Table 3-8
MLID Statistics Table Generic Counters

MGenericCounters [NUM_GENERIC_COUNTERS] =

&MTotalTxPacketCount, NULL },
&MTotalRxPacketCount, NULL },
&MNOECBAVvailableCount, NULL },
&MPacketTxTooBigCount, NULL },
&MPacketTxTooSmallCount, NULL },
&MPacketRxOverflowCount, NULL },
&MPacketRxTooBigCount, NULL },
&MPacketRxTooSmallCount, NULL },
&MTotalTxMiscCount, NULL },
&MTotalRxMiscCount, NULL },
&MRetryTxCount, NULL },
&MChecksumErrorCount, NULL },
&MHardwareRxMismatchCount, NULL},
&MTotalTXOKByteCount, NULL },
&MTotalRXxOKByteCount, NULL },
&MTotalGroupAddrTxCount, NULL },
&MTotalGroupAddrRxCount, NULL },
&MAdapterResetCount, NULL },
&MAdapterOprTimeStamp, NULL },
&MQDepth, NULL },

MLID_StatsTable = {4, 0,
NUM_GENERIC_COUNTERS,
MGenericCounters, 0, NULL, 0, NULL};

Name Type Description

MTotalTxPacketCount UINT32 Number of packets successfully transmitted onto the
media. The CTSM/CMSM increments this counter,
except on ECB-aware adapters where the C HSM
increments this counter. Mandatory.

MTotalRxPacketCount UINT32 Number of packets reported as successfully received

without errors. This counter is independent of whether
the packet is accepted. Mandatory.

3-38 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Table 3-8
MLID Statistics Table Generic Counters continued

Name Type Description

MNOECBAvailableCount UINT32 Number of times an incoming packet was discarded due
to lack of host receive buffers or the host not wanting the
packet. The CTSM/CMSM increments this counter,
except on ECB-aware adapters where the C HSM
increments this counter. Mandatory.

MPacketTxTooBigCount UINT32 Number of times a send packet was too big for
transmission. The CTSM/CMSM increments this
counter, except on ECB-aware adapters where the C
HSM increments this counter. Mandatory.

MPacketTxTooSmallCount UINT32 Number of requested packets for transmission that were
normally too small to be transmitted. The packets might
still have been sent if the MLID does padding. Normally
this field will not be used. The CTSM/CMSM increments
this counter, except on ECB-aware adapters where the C
HSM increments this counter. Optional.

MPacketRxOverflowCount UINT32 Number of times the adapter’s receive buffer pool was
exhausted, causing subsequent incoming packets to be
discarded. The C HSM increments this counter.
Optional.

MPacketRxTooBigCount UINT32 Number of times a packet was received that was too
large to fit into preallocated receive buffers provided by
the host, or too large for media definitions. The CTSM/
CMSM increments this counter, except on ECB-aware
adapters where the C HSM increments this counter.
Mandatory.

MPacketRxTooSmallCount UINT32 Number of times a packet was received that was too
small for media definitions. The CTSM/CMSM
increments this counter, except on ECB-aware adapters
where the C HSM increments this counter. Optional.

MTotalTxMiscCount UINT32 Number of times the MLID failed to transmit and has no
appropriate generic counter to increment. The C HSM
increments this counter. Mandatory.

MTotalRxMiscCount UINT32 Number of times the MLID receives a packet with errors
and has no appropriate generic counter to increment.
The C HSM increments this counter. Mandatory.

ST'IAN 200 - TT'TA dads

CHSM Data Structures and Variables 3-39

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Table 3-8
MLID Statistics Table Generic Counters continued

Name Type Description

MRetryTxCount UINT32 Number of times the MLID retried a transmit operation
because of afailure. The C HSM increments this counter.
Optional.

MChecksumErrorCount UINT32 Number of times the MLID received a packet with corrupt

data—for example, CRC errors. The C HSM increments
this counter. Optional.

MHardwareRxMismatchCount ~ UINT32 Number of times the MLID received a packet that did not
pass the length consistency checks. The CTSM/CMSM
increments this counter, except on ECB-aware adapters
where the C HSM increments this counter. Optional.

MTotalTxOKByteCount UINT64 Number of bytes (including low-level headers) the MLID
successfully transmitted onto the media. The CTSM/
CMSM increments this counter. Mandatory.

MTotalRxOKByteCount UINT64 Number of bytes (including low-level headers) the MLID
successfully received. The CTSM/CMSM increments
this counter. Mandatory.

MTotalGroupAddrTxCount UINT32 Number of packets the MLID transmitted with a group
destination address. The CTSM/CMSM increments this
counter, except on ECB-aware adapters where the C
HSM increments this counter. Mandatory.

MTotalGroupAddrRxCount UINT32 Number of packets the MLID received with a group
destination address. The CTSM/CMSM increments this
counter, except on ECB-aware adapters where the C
HSM increments this counter. Mandatory.

MAdapterResetCount UINT32 Number of times the adapter was reset due to an internal
failure or a call to the MLID’s DriverReset function. The
C HSM increments this counter. Mandatory.

MAdapterOprTimeStamp UINT32 This counter contains the time (platform dependent
clock, such as number of ticks) since the adapter last
changed operational state—for example, load time,
DriverShutdown , DriverReset . Mandatory.

3-40 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Table 3-8
MLID Statistics Table Generic Counters continued

Name Type Description

MQDepth UINT32 Number of transmit ECBs that are queued for the

adapter. The CTSM/CMSM increments this counter,
except on ECB-aware adapters where the C HSM
increments this counter. Mandatory.

MLID Statistics Table Media Specific Counters

The statistics table must contain the media-specific counters for the topology,

defined in this section.

Note V! Media-specific counters must be grouped in memory contiguously and in the
order described in the following tables:

Token-Ring Counters

Table 3-9

The following table describes media specific counters array
STAT_TABLE_ENTRY for Token-Ring.

Media Specific Counters for Token-Ring

Size

Label

Description

UINT32

UINT32

UINT32

TRN_ACErrorCounter

TRN_AbortDelimiterCounter

TRN_BurstErrorCounter

Number of times a station receives an AMP or SMP frame
in which A = C = 0, and then receives another SMP frame
with A = C = 0 without first receiving an AMP frame. The C
HSM increments this counter. Mandatory.

Number of times a station transmits an abort delimiter while
transmitting. The C HSM increments this counter.
Mandatory.

Number of times a station detects the absence of transitions
for five half-bit times (burst-five error). Note that only one
station detects a burst-five error, because the first station to
detect it converts it to a burst-four. The C HSM increments
this counter. Mandatory.

CHSM Data Structures and Variables 3-41

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table 3-9
Media Specific Counters for Token-Ring

continued

Size Label

Description

UINT32 TRN_FrameCopiedErrorCounter

UINT32 TRN_FrequencyErrorCounter

UINT32 TRN_InternalErrorCounter

UINT32 TRN_LastRingStatus

UINT32 TRN_LineErrorCounter

Number of times a station recognizes a frame addressed to
its specific address and detects that the FS field bits are set
to 1, indicating a possible line hit or duplicate address. The
C HSM increments this counter. Mandatory.

Number of times the frequency of the incoming signal differs
from the expected frequency by more than what is specified
in Section 7 of the IEEE Std 802.5-1989. The C HSM
increments this counter. Mandatory.

Number of times a station recognizes a recoverable internal
error. This can be used for detecting a station in marginal
operating condition. The C HSM increments this counter.
Mandatory.

The last ring status reported by the adapter with the
following bit definitions:

Bit 15 Signal loss

Bit 14 Hard error

Bit 13 Soft error

Bit 12 Transmit beacon
Bit 11 Lobe wire fault
Bit 10 Auto-removal error 1
Bit 9 Reserved

Bit 8 Remove received
Bit 7 Counter overflow
Bit 6 Single station

Bit 5 Ring recovery
Bit4-0 Reserved

The C HSM maintains this value. Mandatory.

Number of times a frame or token is copied or repeated by
a station. The E bitis O in the frame or token and one of the
following conditions exists:

1) The frame or token contains a non-data bit (J or K bit)
between the SD and the ED of the frame or token.

2) The frame contains a FCS error in a frame.

The C HSM increments this counter. Mandatory.

3-42 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

Table 3-9

Media Specific Counters for Token-Ring continued

Size Label Description

UINT32 TRN_LostFrameCounter Number of times a station is transmitting and its TRR timer
expires. This counts how often frames transmitted by a
particular station fail to return to it, thus causing the active
monitor to issue a new token. The C HSM increments this
counter. Mandatory.

UINT32 TRN_TokenErrorCounter Number of times a station acting as the active monitor
recognizes an error condition that needs a token
transmitted. This occurs when the TVX timer expires. The C
HSM increments this counter. Mandatory.

UINT64 TRN_UpstreamNodeAddress The upstream neighbor node address, right justified with
leading zeros. The C HSM maintains this value.
Mandatory.

UINT32 TRN_LastRingID The value of the local ring. The C HSM maintains this value.
Mandatory.

UINT32 TRN_LastBeaconType The value of the last beacon type. The C HSM maintains

this value. Mandatory.

Ethernet Counters

Table 3-10

This section describes the media specific counters array
STAT_TABLE_ENTRY for Ethernet.

Media Specific Counters for Ethernet

Size

Label

Description

UINT32

ETH_TxOKSingleCollisionsCount

Count of frames that are involved in a single collision and
are subsequently transmitted successfully. This counter
is incremented when the result of a transmission is
reported as successful and the attempt value is 2. The C
HSM increments this counter. Mandatory.

CHSM Data Structures and Variables 3-43

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Table 3-10
Media Specific Counters for Ethernet continued

Size Label Description

UINT32 ETH_TxOKMultipleCollisionsCount Count of frames that are involved in more than one
collision, but are transmitted successfully. This counter is
incremented when the transmission is successful and
the attempt value is greater than 2, but less than or equal
to the attempt limit of the network controller used by the
MLID (the attempt limit is specified by
MLIDCFG_SendRetries). The C HSM increments this
counter. Mandatory.

UINT32 ETH_TxOKButDeferred Count of frames whose transmission was delayed on its
first attempt because the medium was busy. The C HSM
increments this counter. Mandatory.

UINT32 ETH_TxAbortLateCollision Count of the times that a collision has been detected
later than 512 bit times into the transmitted packet. A late
collisionis counted twice, both as a collision and as a late
collision. The C HSM increments this counter.
Mandatory.

UINT32 ETH_TxAbortExcessCollision Count of frames that, due to excessive collisions, are not
transmitted successfully. This counter is incremented
when the value of attempts variable equals the attempt
limit (the attempt limit is specified by
MLIDCFG_SendRetries) during a transmission. The C
HSM increments this counter. Mandatory.

UINT32 ETH_TxAbortCarrierSense Count of frames that the carrierSense signal was not
asserted or was deasserted during the transmission of a
frame without collision. The C HSM increments this
counter. Mandatory.

Spec vl.11 - Doc v1.13

UINT32 ETH_TxAbortExcessiveDeferral Count of frames that were deferred for an excessive
period of time. This counter must only be incremented
once per LLC transmission. The C HSM increments this
counter. Mandatory.

UINT32 ETH_RxAbortFrameAlignment Count of frames that are not an integral number of bytes
in length and do not pass the FCS check. The C HSM
increments this counter. Mandatory.

j 344 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

FDDI Counters

Table 3-11 describes the media specific counters array STAT_TABLE_ENTRY

for FDDI.

Table 3-11
Media Specific Counters for FDDI

Size Label Description

UINT32 FDDI_ConfigurationState (ANSI fddiSMTCFState) This field contains attachment
configuration for the station or concentrator.

0 = Isolated

1=local_a

2 =local_b

3 =local_ab

4 =local_s

5=wrap_a

6 =wrap_b

7 =wrap_ab

8 =wrap_s

9=c wrap_a
10=c_wrap_b
11 =c_wrap_s
12 = through

The C HSM increments this counter. Mandatory .

UINT64 FDDI_UpstreamNode (ANSI fddiMACUpstreamNbr) This counter contains the MAC’s
upstream neighbor’s long individual MAC address; O if
unknown. The C HSM maintains this counter. Mandatory.

UINT64 FDDI_DownstreamNode (ANSI fddiMACDownstreamNbr) This field contains the MAC's
downstream neighbor’s long individual MAC address; O if
unknown. The C HSM maintains this counter. Mandatory.

UINT32 FDDI_FrameErrorCount Count of the number of frames that were detected in error by
this MAC that had not been detected by another MAC. The C
HSM increments this counter. Mandatory.

UINT32 FDDI_FramesLostCount Count of the number of instances that this MAC detected
format errors during frame reception such that the frame was
stripped. The C HSM increments this counter. Mandatory.

CHSM Data Structures and Variables 3-45

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Table 3-11
Media Specific Counters for FDDI continued

Size Label Description

UINT32 FDDI_RingManagementState This field indicates the current state of the ring management
state machine.

0 = Isolated

1 =Non_Op
2 =Ring_Op
3 = Detect

4 = Non_Op_Dup
5 = Ring_Op_Dup

6 = Directed
™ 7 = Trace
‘\! The C HSM maintains this value. Mandatory.
~
> UINT32 FDDI_LCTFailureCount Count of consecutive times the link confidence test (LCT) has
3) failed during connection management. The C HSM increments
o this counter. Mandatory.
Q UINT32 FDDI_LemRejectCount Link error monitoring count of the times that a link has been
! rejected. The C HSM increments this counter. Mandatory .
~ UINT32 FDDI_LemCount Aggregate link error monitor error count (zero only on station
. power up). The C HSM increments this counter. Mandatory .
H
> UINT32 FDDI_ConnectionState The state of this port's pcm state machine.
O 0 = off
QO _
1 = break
Q 2=t
) = trace
3 = connect
4 = next
5 = signal
6 = join
7 = verify
8 = active
9 = maint
The C HSM maintains this value. Mandatory .
[

| 3-46 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

Driver Firmware

C HSMs might need to download firmware for intelligent adapters. Since most
intelligent adapters have a microprocessor on the adapter, such as an Intel
80186, the firmware code must be separately written, assembled, and linked to
generate a binary file. This section describes how this firmware binary file can
be attached to the C HSM at link time, and then transferred to the adapter
during initialization.

To attach a firmware binary file to the C HSM, the linker definition file must
include the keyword "custom”, followed by the name of the binary file. When
the MLID is linked, the file is attached to the end of the C HSM code and
becomes part of the NLM.

During the initialization process, the CMSM allocates a buffer and copies the
contents of the attached file to that buffer. To gain access to the firmware buffer,
the C HSM must properly initialize the Driver Parameter Block variables
described below. The CMSM determines the value of these parameters when
the C HSM'sDriverlnit routine callsxCTSM>RegisterHSM. The C HSM

can then download the contents of the firmware buffer to the adapter.

DriverFirmwareSize Value

If custom firmware is used, the C HSM initializes this UINT32 variable to any
nonzero value. The CMSM replaces this value with the actual size of the
firmware buffer wherDriverlnit calls<CTSM>RegisterHSM. If custom
firmware is not used, the C HSM must initialize this variable to O.

DriverFirmwareBuffer Value

This void pointer value is set to point to the firmware buffer by the CMSM
whenDriverlnit calls<CTSM>RegisterHSM.

CHSM Data Structures and Variables 3-47

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

| 3-48 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

chapter 4 CMSM/CTSM Structures and

Overview

Variables

This chapter describes the functions, structures, variables, and constants
defined by the CMSM and the CTSM. Some of the variables and structures in
this chapter are required for controlling processes, and must be initialized,
updated, or managed by the CHSM. Others are available as optional support
for developers and may be used accordingly.

The following functions, variables, and structures are described in this chapter:

The CMSM Data Access Function and CMSM Variables
« CMSMVirtualBoardLink
- CMSMDefaultVirtualBoard
« CMSMStatusFlags
+ CMSMTxFreeCount
+ CMSMPriorityTxFreeCount
« CMSMMaxFrameHeaderSize

+ CMSMPhysNodeAddress

CMSM/CTSM Structures and Variables 4-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Data Structures
« Receive Control Blocks (RCBSs)
« Transmit Control Blocks (TCBSs)
« CMSM Configuaration Table (CMSM_CONFIG_TABLE)
« CTSM Configuaration Table (CTSM_CONFIG_TABLE)

+ DRIVER_OPTION Structure

CMSM Data Access

The CHSM must access several variables located in the CMSM'’s data space.
This section describes these variables and the function that enables the CHSM
to access them.

DADSP_TO_CMSMADSP Macro

TheDADSP_TO_CMSMADSP (CHSM Driver Adapter Data Space to

CMSM Adapter Data Space) macro takes a pointer to the CHSM’s adapter data
space and returns a pointer to the CMSM'’s shared data space. This pointer can
then be used to access the CMSM variables that follow.

CMSMVirtualBoardLink Pointers

The CMSM maintains a separate configuration table for each frame type
supported by the MLIDCMSMVirtualBoardLink is an array of pointers to
these configuration tables. This array contains four pointers for Ethernet, two
for Token-Ring, and two for FDDI. If a particular frame has not been loaded,
the pointer to the corresponding configuration table is NULL.

The following examples are definitions GMSMVirtualBoardLink for
Ethernet, Token-Ring, and FDDI.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Ethernet Example

/* ETHERNET 802.2 */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[0]
/* ETHERNET 802.3 */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[1]
/* ETHERNET Il */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[2]
/* ETHERNET SNAP */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[3]

Token-Ring Example

/* TOKEN 802.2 */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[0]
/* TOKEN SNAP */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[1]

FDDI Example

[* FDDI 802.2 */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[0]
/* FDDI SNAP */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[1]

CMSM/CTSM Structures and Variables 4-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMDefaultVirtualBoard Pointer

CMSMDefaultVirtualBoards a pointer to the configuration table that contains
the identity of the first frame type loaded. If the frame type is not important,
calling CMSMDefaultVirtualBoard will quickly select the first frame type
loaded.

CMSMStatusFlags Variable

The CMSM maintains a UINT32 variable that provides adapter status
information that enables the CHSM to determine if the adapter is shut down.

Bit 0 SHUTDOWN When set, this bit indicates
that the adapter is shut
down.

Bits 1-3 Reserved Reserved for use by the
CMSM/CTSM.

Bit 4 POLLING_SUSPENDED When set, this bit indicates
that polling has been
suspended.

Bits 5-31 Reserved Reserved for use by the
CMSM/CTSM.

The CHSM can usEMSMStatusFlagt determine if an adapter is partially
shut down. If bit 0 is set, the adapter is partially shut down and should not be
serviced. The CMSM will not cabriverSend to transmit a packet if the
adapter is partially shut down.

CMSMTxFreeCount Variable

4-4

During initialization, the CHSM must specify the number of hardware
resources available on the adapter for handling pending packet transmissions.
The CTSM uses this value to determine if the adapter is ready to accept another
packet for transmission. The count is also used to determine how many TCB
structures the CTSM allocates.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

For example, if the adapter has a second transmit buffer that can accept another
packet before the current transmission is complete, the CHSM should set
CMSMTxFreeCounb a value of 2. If the adapter supports hardware queuing,
the count should represent the number of transmissions that the adapter can
efficiently process. If the adapter has no additional resources available, other
than those used to transmit the current packeCBEMTxFreeCounto 1.

The CTSM decremenBMSMTxFreeCourbefore it callDriverSend. The
CTSM assumes that the adapter is not ready for another packet if this count
reaches 0.

The CHSM is responsible for incrementing the count each time one of the
adapter’s transmit resources becomes available. The CHSM must increment
the count not only when the adapter successfully completes a transmission, but
also when a transmission is aborted due to timeout error or maximum retry
errors.

Example:

++(DADSP_TO_CMSMADSP(driverData)->CMSMTxFreeCount);

CMSMPriorityTxFreeCount

During initialization, the CHSM must specify the number of hardware
resources available on the adapter for handling priority packet transmissions.

Example:

DADSP_TO_CMSMADSP(driverData)->CMSMPriority TxFreeCount = 2;

CMSMMaxFrameHeaderSize Variable

The<CTSM>GetRCB function, which can be used during packet reception,
employs d@lookahead process, where the packet header is placed in a buffer
and previewed by the upper layers. This allows the upper layers to verify that
they want the packet before the entire packet is read from the adapter.

The CTSM set€MSMMaxFrameHeaderSize the number of bytes the
CHSM must transfer to the lookahead buffer. This value is equal to
MLIDCFG_LookAheadSizeom the configuration table plus the maximum

CMSM/CTSM Structures and Variables 4-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

media header size. TMLIDCFG_LookAheadSizsize can be up to 128 bytes.
For example:

MLIDCFG_LookAheadSize = 128
Ethernet Maximum Media Header Size = 22
CMSMMaxFrameHeaderSize = 128 + 22 = 150

The CHSM must read the lookahead buffer size before calling
<CTSM>GetRCB each timebecause the size can change dynamically. The
CHSM can optionally implememriverRxLookAheadChange inform
intelligent adapters when the size changes, rather than forcing them to
continually check.

For more information on the lookahead process, see the Packet Reception
section in Chapter 5, "CHSM Functions" andTSM>GetRCB in Chapter 6,
"CTSM Functions". Refer to thBriverRxLookAheadChangePfield

description of the driver parameter block in Chapter 3, "CHSM Data Structures
and Variables" for more information on implementing this control procedure
for intelligent adapters.

CMSMPhysNodeAddress Variable

CMSMPhysNodeAddressused to access the physical layer format of the node
address afteEMSMRegisterMLID has been called.

If the MM_PHYS_NODE_ADDR_BIbit of theMLIDCFG_ModeFlagdield
is set, the CHSM must u&MSMPhysNodeAddress get the physical layer
format of the node address instead of the configuration table’s
MLIDCFG_NodeAddres§he CMSM sets theMSMPhysNodeAddresgalue
when the CHSM’s initialization routine cal@VSMRegisterMLID .

For additional information, refer to the configuration table
MLIDCFG_NodeAddresandMLIDCFG_ModeFlagsiescriptions in Chapter

3, "CHSM Data Structures and Variables" and the canonical and noncanonical
format discussion i©@DI SupplementCanonical and Noncanonical

Addressing

Data Structures

The structures used to transfer data between the layers of the ODI model are
called Event Control Blocks (ECBs). The CMSM defines two specific forms of
the ECB structure:

4-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

« Receive Control Blocks (RCBSs)
« Transmit Control Blocks (TCBSs)

These streamlined forms of the general ECB structure (defined in Appendix B,
"Event Control Blocks (ECBs)") are provided by the CMSM to simplify
CHSM development. Only the fields relevant to the specific packet transaction
in progress are visible to the CHSM.

The following sections describe the RCB and the TCB structures. The CHSM
must refer to these structures during packet reception and transmission. The
relationship of these CMSM structures with the general ECB structure is also
discussed. (Figure 4-1 illustrates this relationship.)

Specific reception and transmission methods and related CMSM/CTSM
support routines are described in Chapter 5, "CHSM Functions".

Figure 4-1
Packet Transfer through the MLID

[Lirk Support Laper (LSL) ﬁ

ST'IAN 200 - TT'TA 28ds

Hardwa re Specific Module] CHSM)

CMSM/CTSM Structures and Variables 4-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Fragment Structure

Table 4-1

A fragment is an area in memory which contains part or all of a packet that is
ready for transmission, or it is an area in memory which is ready to contain part
or all of a packet on reception. Each such area is described in the fragment
structure (FRAGMENT_STRUCT), and each RCB or TCB contains one or
more fragment structures.

The fragment structure and fragment structure field descriptions are as follows:

typedef struct FRAGMENT_STRUCT _
{
void *FragmentAddress;
UINT32 FragmentLength;
} FRAGMENT_STRUCT;

Fragment Structure Field Descriptions

Name Type Description

FragmentAddress void * Pointer to the fragment buffer.

FragmentLength UINT32 Length of the buffer pointed to by
FragmentAddress.

Receive Control Blocks (RCBS)

4-8

Receive Control Blocks (RCBs) are the structures used to transfer data from the
CHSM to the CTSM.

Usually, when the adapter receives a packet, the CHSM passes a pointer to the
lookahead data of the CTSM (se€TSM>GetRCB in Chapter 5, "CHSM
Functions"). The CTSM filters the lookahead data and then passes the packet
to the LSL, which passes it to the protocol stacks. If a protocol stack wants the
packet, an RCB is passed back to the CHSM, which fills out the RCB and calls
<CTSM>RcvComplete

The CHSM receive routine must be designed to handle multiple fragmented
receive buffers for lookahead data. Ml FRAG_RECEIVES_ BIHit of the
MLIDCFG_ModeFlagdield in the configuration table must be set if the
CHSM can handle multiple fragmented receive buffers. If the CHSM cannot

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

handle multiple fragmented receive buffers, the CHSM must use preallocated
RCBs along withck CTSM>ProcessGetRCB

The following support routines are available to obtain RCBs.
+ CMSMAllocateRCB

¢ <CTSM>GetRCB

<CTSM>ProcessGetRCB
« <CTSM>FastProcessGetRCB

The <CTSM>GetRCB routine can provide fragmented RCBs. CHSMs that
cannot handle fragmented receive buffers shouldM&MAllocateRCB or
<CTSM>ProcessGetRCBto obtain RCBs. Chapter 5, "CHSM Functions"
describes specific reception methods and illustrates the use of these support
routines.

The following describes the RCB structures and fields. These structures are
defined in theemsm.Hile.

Note V! The size of the RCBReservedfield is defined to preserve the ECB defined fields.
(See Appendix B.)

ST'IAN 200 - TT'TA dads

CMSM/CTSM Structures and Variables 4-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

RCB Structure

typedef struct _RCB_

{
union { UINT8 RWs_i8val[8];
UINT16 RWs_il6val[4];
UINT32 RWs_i32val[2];
UINT64 RWs_i64val;
} RCBDriverWs;
UINT8 RCBReserved[(See Table 4-2 for equation.)]
UNIT32 RCBFragCount;
FRAGMENT_STRUCT RCBFragStruct;
} RCB;
Table 4-2

Programmed RCB Field Description

Name Type Description

RCBDriverWs UINT32[2] The CHSM can use this field for any purpose,
as long as the C HSM controls the RCB.

For APIs that deal with linked lists of RCBs,
such as CMSMAllocateMultipleRCBs and
CMSMReturnMultipleRCBs , the fields
RCB->RCBDriverWS.RWs_i32val[0] and
RCB->RCBDriverWS.RWs_i32val[1] will
contain pointers to the next RCB on the list.
RCB->RCBDriverWS.RWs_i32val[0] will
contain the logical address of the next RCB,
while RCB->RCBDriverWS.RWs_i32val[1]
will contain the physical address (when
needed). The remaining operation and the
description of the RCB will be unchanged.

RCBReserved UINT8 [(UINT32 &(((ECB*)0)-> The CHSM should not modify this field,
ECBFragmentCount -(UINT32) except as described in the functions
&(((ECB*)0)-> ECB_Status] <CTSM>ProcessGetRCB and

<CTSM>FastProcessGetRCB . This field
contains status indicators, protocol
information, and additional data maintained
by the CMSM and the LSL.

RCBFragCount UINT32 The number of data fragment descriptors to
follow (1 through 16).

4-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Table 4-2

Programmed RCB Field Description

Name

Type Description

RCBFragStruct

FRAGMENT_ STRUCT An array of fragment descriptors. Each
descriptor consists of a pointer to a fragment
buffer and the size of that buffer. The CHSM
copies the received packet into these buffers.
There may be up to 16 fragment descriptors,
but there must always be at least one.

CMSM/CTSM Structures and Variables 4-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Transmit Control Blocks (TCBS)

Transmit Control Blocks (TCBs) are structures used to transfer data from the
CTSM to the CHSM.

When a protocol stack sends a packet, the following tasks are performed:

1.

2.

TCB Structure

{

Spec vl.11 - Doc v1.13

The protocol stack assembles a list of fragment pointers in a transmit ECB.
The protocol stack passes the ECB to the LSL.
The LSL transfers the ECB to the CTSM

The CTSM processes the information and builds a TCB. (The TCB
structure consists of the packet header and the data fragment information.)

The CTSM directs the TCB to the appropriate CHSM.

The CHSM collects the header and the packet fragments and transmits the
packet.

The following describes the TCB structures used during packet transmission.
The structures are defined in thsm.Hile.

typedef struct _ TCB_FRAGMENT_BLOCK_STRUCT _

UINT32 TCB_FragmentCount;

FRAGMENT_STRUCT TCB_Fragment[1];
} TCB_FRAGMENT_BLOCK;

typedef struct _TCB_

{

void *TCB_Reserved;
UINT32 TCB_BoardNumber;
UINT32 TCB_DriverWS[3];
UINT32 TCB_Datalen;
TCB_FRAGMENT_BLOCK *TCB_FragBlockPtr;
UINT32 TCB_MediaHeaderLen;
union

B 412 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Table 4-3

UINT8 TCB_Media]MAX_MEDIA_HEADER_SIZE];
ETHER_MEDIA_HEADEREtherMedia;
TOKEN_MEDIA_HEADERTokenMedia;
FDDI_MEDIA_HEADERFDDIMedia;

} TCB_MediaHeader;

} TCB;

TCB Field Descriptions

Name

Type

Description

TCB_FragmentCount

TCB_Fragment[1]

TCB_Reserved

TCB_Boardnumber

TCB_DriverWs

TCB_DatalLen

TCB_FragBlockPtr

UINT32

Fragment_Struct

void*

UINT32

UINT32[3]

UINT32

TCB_FRAGMENT_BLOCK *

The number of data fragment descriptors to
follow. Each descriptor consists of a pointer to
a fragment buffer and the size of that buffer.
The CHSM collects the data from these buffers
when forming a packet for transmission.

The first fragment structure. The maximum
number of TCB fragment entries allowed is 16.
(See Table 4-1 "Fragment Structure Field
Descriptions".)

Reserved; must be set to zero.

The logical board that the TCB is being
transmitted on. In general, CHSMs do not use
this field.

The CHSM can use this field for any purpose,
as long as the CHSM controls the TCB.

The length of the packet described by the data
fragments plus the media header. This value
will never be 0.

This field contains a pointer to a list of
fragments defined by
TCB_FRAGMENTSTRUCT.

CMSM/CTSM Structures and Variables 4-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Table 4-3
TCB Field Descriptions continued

Name Type Description

TCB_MediaHeaderLen UINT32 The length of the media header that
immediately follows the TCB in memory. This
value can be odd, even, or 0. A value of 0
indicates a raw send. If the CHSM is handed a
raw send, the originating protocol stack has
already included the media header in the first
data fragment.

TCB_MediaHeader UINT8[MAX_MEDIA_HEADER_SIZE] A buffer containing the media header that was
assembled by the CTSM.

Spec vl.11 - Doc v1.13

Media header structure definitions are as follows:

typedef struct _ETHER_MEDIA HEADER _

{
NODE_ADDR MH_Destination;
NODE_ADDR MH_Source;
UINT16 MH_Length;
UINTS8 MH_DSAP;
UINTS8 MH_SSAP;
UINTS8 MH__CtrlO;
UINT8 MH_SNAP[5];

} ETHER_MEDIA_HEADER,;

typedef struct _ TOKEN_MEDIA_HEADER _

{
UINT8 MH_AccessControl;
UINT8 MH_FrameControl;
NODE_ADDR MH_Destination;
NODE_ADDR MH_Source;
UINTS8 MH_DSAP;
UINTS8 MH_SSAP;
UINTS8 MH_Ctrlo;
UINT8 MH_SNAP [5];

4-14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

} TOKEN_MEDIA_HEADER;

typedef struct _FDDI_MEDIA HEADER _

{
UINT8 MH_FrameControl;
NODE_ADDR MH_Destination;
NODE_ADDR MH_Source;
UINTS8 MH_DSAP;
UINT8 MH_SSAP;
UINTS8 MH_Ctrlo;
UINT8 MH_SNAP [5];

} FDDI_MEDIA_HEADER,;

CMSM_CONFIG_TABLE

typedef struct _CMSM_CONFIG_TABLE_

{

UINT32 CMSMCFG_TableSize;

UINT8 CMSMCFG_TableMajorVersion;
UINT8 CMSMCFG_TableMinorVersion;
UINT8 CMSMCFG_ModuleMajorVersion;
UINT8 CMSMCFG_ModuleMinorVersion;
UINT8 CMSMCFG_ODISpecMajorVersion;
UINT8 CMSMCFG_ODISpecMinorVersion;
UINT16 CMSMCFG_Reserved,

UINT32 CMSMCFG_MaxNumberOfBoards;
UINT32 CMSMCFG_SystemFlags;
JCMSM_CONFIG_TABLE;

ST'IAN 200 - TT'TA dads

CMSMCFG_TableSize

The actual size of the C MSM configuration table
(CMSM_CONFIG_TABLE). The value of this field should not be
confused with the number of bytes requested or copied (such as nBytes).

CMSMCFG_TableMajorVersion

This field contains the major version of the configuration table. The
current major version is 1.

CMSM/CTSM Structures and Variables 4-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

4-16

CMSMCFG_TableMinorVersion
This field contains the minor version of the configuration table. The
current minor version is 0.

CMSMCFG_ModuleMajorVersion
This field contains the major version of the C MSM binary (i.e.,
CMSM.NLM).

CMSMCFG_ModuleMinorVersion
This field contains the minor version of the C MSM binary (i.e.,
CMSM.NLM).

CMSMCFG_ODISpecMajorVersion
This field contains the major version of the ODI Specification that this
version of the C MSM is written too. For example, if the version of the
ODI specification is 1.11, the value of this field is 1.

CMSMCFG_ODISpecMinorVersion

This field contains the minor version of the ODI Specification that this
version of the C MSM is written too. For example, if the version of the
ODI specification is 1.11, the value of this field is 11.

CMSMCFG_Reserved
This field is reserved.

CMSMCFG_MaxNumberOfBoards

The value of this field represents the maximum number of boards the C
MSM supports.

CMSMCFG_SystemFlags
The bits in this field are defined below.

Bits 0-29 Reserved
These bits are reserved.
Bit 30 CMSM_CFG_SERVER_BIT

When set to 1 this bit indicates the C MSM is
running in a server environment. This bit is
mutually exclusive with bit 31.

Bit 31 CMSM_CFG_CLIENT_BIT
When set to 1 this bit indicates the C MSM is
running in a client environment. This bit is
mutually exclusive with bit 30.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

CTSM_CONFIG_TABLE

typedef struct _ CTSM_CONFIG_TABLE_

{

UINT32 CTSMCFG_TableSize;

UINT8 CTSMCFG_TableMajorVersion;
UINTS8 CTSMCFG_TableMinorVersion;
UINT8 CTSMCFG_ModuleMajorVersion;
UINTS8 CTSMCFG_ModuleMinorVersion;
UINT8 CTSMCFG_ODISpecMajorVersion;
UINT8 CTSMCFG_ODISpecMinorVersion;
UINT16 CTSMCFG_Reserved;

UINT32 CTSMCFG_MaxFrameSize;
UINT32 CTSMCFG_SystemFlags;
JCTSM_CONFIG_TABLE;

CTSMCFG_TableSize
This field contains the actual size of the C TSM'’s configuration table (i.e.,
CTSM_CONFIG_TABLE). The value of this field should not be confused
with the number of bytes requested or copied (i.e., nBytes).

CTSMCFG_TableMajorVersion
This field contains the major version of the configuration table. The
current major version is 1.

CTSMCFG_TableMinorVersion
This field contains the minor version of the configuration table. The
current minor version is 0.

CTSMCFG_ModuleMajorVersion
This field contains the major version of the <CTSM> binary (e.g.,
ETHERTSM.NLM).

CTSMCFG_ModuleMinorVersion
This field contains the minor version of the <CTSM> binary (i.e.,
ETHERTSM.NLM).

CTSMCFG_ODISpecMajorVersion

This field contains the major version of the ODI Specification that this
version of the <CTSM> is written too. For example, if the version of the
ODI specification is 1.11, the value of this field is 1.

CMSM/CTSM Structures and Variables 4-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

4-18

CTSMCFG_ODISpecMinorVersion

This field contains the minor version of the ODI Specification that this
version of the <CTSM> is written too. For example, if the version of the
ODI specification is 1.11, the value of this field is 11.

CTSMCFG_Reserved
This field is reserved.

CTSMCFG_MaxFrameSize

The value of this field represents the maximum frame size that the
<CTSM> supports.

CTSMCFG_SystemFlags

The bits in this field are defined below.

Bits 0-29 Reserved
These bits are reserved.

Bit 30 CTSM_CFG_SERVER_BIT
When set to 1 this bit indicates the C TSMis
running in a server environment. This bit is
mutually exclusive with bit 31.

Bit 31 CTSM_CFG_CLIENT_BIT
When set to 1 this bit indicates the C TSMis
running in a client environment. This bit is
mutually exclusive with bit 30.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

DRIVER_OPTION Structure

Table 4-4

typedef struct DRIVER_OPTION_

{
struct _DRIVER_OPTION_ *Link;
MEON_STRING *ParseString;
union
{
void *OptionPtr;
int Min
} Parameter0;
union
{
UINT32 Range;
int Max;
} Parameterl;
union
{
int Default;

MEON_STRING *StringDefault;
} Parameter2;
UINT16 Type;
UINT16 Flags;
MEON_STRING String[MAX_PARAM_LEN];
} DRIVER_OPTION;

Field descriptions
On entry to the parser, the valueRaframeterQ Parameterl andParameter2

is based on whether tiRange Enumeration or Stringbit of theFlagsfield is
set.

Interpretation of ParameterO, Parameterl, and Parameter2

Flags Field Bit Parameter0 Value Parameterl Value Parameter2 Value
Range Min Max Default
Enumeration OptionPtr Range N/A

String N/A N/A StringDefault

CMSM/CTSM Structures and Variables 4-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table 4-4
Interpretation of ParameterO, Parameterl, and Parameter2

Flags Field Bit Parameter0 Value Parameterl Value Parameter2 Value
None of the above N/A N/A Default
Link
Pointer to the next DRIVER_OPTION structure (NULL if it is the last
one).
ParseString

See the "ParseString" heading below.
Min
The lower bound of the range the user can enter.

OptionPtr

Pointer to a structure containing the allowed values for this parameter. The
first field of the structure is of type UINT32 and contains the number of
values. The other field of the structure is an array of the type to match the
format specifier in th®arseStringandType The array contains the values

(or pointers to the values for the string type). The first element of the array
is the default.

When there is an option structure, the valuParimeterZand the value
of the default bit in thé&lagsfield are ignored.
Max

This UINT32 field specifies the upper bound of the allowed range that the
user can enter. On return from the parser, if the parameter is of any numeric
type, the field contains the value selected/defined by the user. If the
parameter is a keywortiaxis returned with a value of 1. If the parameter

is not a keyword or a numeric typgdax is returned with a value of 0.

Range
This UINT32 field, if used, contains the length or range associated with
this option. Typically, this field is used in specifying memory decode
ranges and port lengths.

Default

Thisint field, if used, contains the default value of the parameter. The
Defaultbit in theFlagsfield controls whether this field is used or not.

When there is an option structure, the valuParimeter2s ignored.

4-20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

StringDefault

Thischarfield, if used, contains the default value of the parameter. The
Defaultbit in theFlagsfield controls whether this field is used or not.

Type
Thisis a UINT16 field that contains a code indicating the option type. The
following is a list of possible values for this field:

0x0000 CUSTOMPARAM
0x0001 INTPARAM

0x0002 INTIPARAM

0x0003 PORTPARAM

0x0004 PORT1PARAM %
0x0005 DMAPARAM 2
0x0006 DMA1PARAM <
0x0007 MEMPARAM =
0x0008 MEM1PARAM ',:
0x0009 SLOTPARAM |
0x000A NODEPARAM o)
0x000B CHANNELPARAM 8
0x000C FRAMEPARAM <
0x000D Reserved H
0x000E NAMEPARAM ':o
0x000F RETRIESPARAM

0x0010 BELOW16PARAM

0x0011 BUFFERS16PARAM

0x0012 to OXFFFF Reserved

Note‘VvI After calling the parser, DRIVER_OPTION records defined as type
PORTPARAM, PORT1PARAM, MEMPARAM, and MEM1PARM will have their
Parameterl (Range or Maximum) fields overwritten. Before using the record

again (such as loading another frame type), the CHSM must reset the
Parameterl (Range or Maximum) fields.

CMSM/CTSM Structures and Variables 4-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Flags

This is a UINT16 field that contains a bitmap indicating the status of the

option. The following is a list of bits in this field:

OPTIONALPARAM

REQUIREDPARAM

DEFAULTPRESENT

KEYWORDPARAM

ENUMPARAM

RANGEPARAM

STRINGPARAM

SHARABLE

Optional—if not specified on the command line,
the option is ignored.

Required—if not specified on the command
line, prompt the user.

Default—The default value for this parameter is
contained in Parameter2 of the
DRIVER_OPTION structure. When the
ENUMPARAM is set, this bit is ignored.

Keyword—if this bit is set, the keyword is not
followed by a value. If the keyword is present,
Max s returned with a value of 1. If the keyword
is not present, Max is returned with a value of
0. If KEYWORDPARAM is used,
DEFAULTPRESENT and REQUIREDPARAM
are ignored.

Enumeration—if this bit is set:
DRIVER_OPTION. ParameterO is a pointer to
an OptionsList array containing the list of
allowed values for this parameter.

Range—if this bit is set: DRIVER_OPTION.
Minis the minimum allowed value of the range
and DRIVER_OPTION. Max is the maximum
allowed value.

String—if this bit is set, the parameter is of type
string. This bit must be set if, and only if, there
is a %s or %c format specifier in ParseString.

Sharable option—such as shared interrupts.

Interpretation of the Flags Field in the DRIVER_OPTION Structure

KEYWORDPARAM, ENUMPARAM, RANGEPARAM, and

STRINGPARAM are mutually exclusive. Only one of these bits can be

set at a time, but it is not required to set any of the bits. If the

ENUMPARAM and RANGEPARAM bits are not set, any value of the

appropriate type may be entered by the user.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

OPTIONALPARAM and REQUIREDPARAM are mutually exclusive
and one of the bits is required unless the KEYWORDPARAM bit is
present. KEYWORDPARAM implies that it is an optional parameter.

The DEFAULTPRESENT is valid for RANGEPARAM and
STRINGPARAM. ltis also valid if none of the KEYWORDPARAM,
ENUMPARAM, RANGEPARAM, and STRINGPARAM bits are
present.

Function of the DEFAULTPRESENT Bit

The DEFAULTPRESENT bit is basically used to determine how
prompting is handled. There are two major cases:

DEFAULTPRESENT and OPTIONALPARAM
DEFAULTPRESENT and REQUIREDPARAM

DEFAULTPRESENT and OPTIONALPARAM

The parameter is not present on the command line; the user is not
prompted and ODISTAT_ITEM_NOT_PRESENT is returned.

The parameter is present on the command line and the parameter is
valid: the parameter is used as is.

The parameter is present on the command line and the parameter is
invalid: the user is prompted with the default value as the default input.

DEFAULTPRESENT and REQUIREDPARAM

The parameter is not present on the command line: the user is prompted
with the default value as the default input.

The parameter is present on the command line and the parameter is
valid: the parameter is used as is.

The parameter is present on the command line and the parameter is
invalid: The user is prompted with the default value as the default input.

CMSM/CTSM Structures and Variables 4-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

String

On entry, this field must contain a pointer to a NULL terminated buffer,
which is large enough to contain the largest expected user input to this
parameter. On return from the parser, this buffer contains a NULL
terminated string corresponding to the value selected or entered by the
user.

Note Vvl Double byte charaters are not allowed.

Note‘vvl Prompt strings must be limited to 512 bytes.

ParseString Field

The DRIVER_OPTION structure format string controls how the parser scans
and converts the MLID’s parameters. The format string is a character string
composed of three types of objects:

- Whitespace characters

- Keyword characters

- A format string

The following is the format of the parse string:

I [whitespace]keyword[whitespace]=[whitespace]conversion specifier[whitespace]

B 424

Whitespace Characters

The whitespace characters are blank, tab (\t), and newline (\n). If the parser
encounters a whitespace character in the format string, it reads and skips all
subsequent whitespace characters in the input until it finds an ordinary
character.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Keyword Characters

The keyword characters are the alphanumeric ASCII characters plus the
underscore and period. Any keyword characters found are assumed to be the
parameter keyword for this parameter. The parser uses these characters in the
format string to search the user input and to find the appropriate value for this
parameter.

Conversion Specifiers
The conversion specifier directs the parser function to read and convert
characters from the input field into specific value types. The maximum

conversion specifier length is 80 characters including the NULL termination.

The CMSMParseDriverParameters conversion specifier has the following
format:

% [width] type_character

where:

% is the character used to begin each conversion specifier, and

width is the width specifier (optional). It is the maximum number of characters
to read. If the function encounters a whitespace or unconvertible character,
fewer characters may be read.

Type Characters

Thetype_character specifier represents the type character. Table 7.2 lists the
parser type characters, the input type expected by each type character, and the
input storage form.

The information in the table assumes that no width specified is included in the

conversion specifier. To see how the addition of the width specifier affects the
parser input, see the width specifier section below.

CMSM/CTSM Structures and Variables 4-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table 4-5

Input and Results for Each Character Type

Type Character Expected Input Type of Result
Numbers

d Decimal integer 32-hit integer
D Decimal integer 32-hit integer
u Unsigned decimal integer UINT32

U Unsigned decimal integer UINT32

X Hexadecimal integer UINT32

X Hexadecimal integer UINT32
Characters

Whitespace-terminated character string MEON_STRING *

Character MEON

Note"’
v

In order to allow the input of string parameters that include white space, it is
permissible to have multiple %[width]s conversion specifiers in a parse string.
In such a case, only %s, %[search set], and %c conversion specifiers are
allowed.

White space between conversion specifiers is not allowed.

The effect of this is to input as many string fields as there are %s conversion
specifiers and concatenate them together with one shacbetween each. If
there are more %s conversion specifiers than user supplied fields, the result is
platform dependant, but will not include anything not entered as a parameter by
the user. It is the CHSM's responsibility to parse the returned string and ignore
any fields beyond the end of its parameter.

4-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Input Fields
The following are considered input fields:
« All characters up to, but not including, the next whitespace character.

« All characters up to the first one that cannot be converted under the current
conversion specifier.

« Up ton characters, wheneis the specified field width.
Conventions

Certain conventions accompany some of these conversion specifiers. These
conventions are described in the following paragraphs.

%][search_set] ConversionThe set of characters surrounded by square
brackets can be substituted for the s-type character.

Thesearch_skvariable represents a set of characters that define a search set of
possible characters making up the string (the input field).

If the first character in the brackets is a carat ("), the search set is inverted to
include all ASCII characters except those between the square brackets.

The input field is a string that is not delimited by whitespace. The parser reads
the corresponding input field up to the first character that does not appear in the
search set (or in the inverted search set). The following is an example of two of
these types of conversion:

[abcd] Searches for characters a, b, ¢, and d in the input field. The
search terminates when it encounters the first character not in
the search_set.

[abcd] Searches for any characters except a, b, ¢, and d in the input
field. The search terminates when it encounters any character
in the search_set.

Width Specifiers

The width specifierrf), a decimal integer, specifies the maximum number of
characters that can be read from the current input field.

CMSM/CTSM Structures and Variables 4-27

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

4-28

If the input field contains fewer thancharacters, the parser reads all the
characters in the field.

If a whitespace or nonconvertible character occurs befoharacters are read,
the characters up to that character are read, converted, and stored.

A nonconvertible character is one that cannot be converted according to the
given format (such as a "L" or "q" when the format is decimal).

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

chapter)
5 CHSM Functions

Overview

This chapter describes the routines that are the primary components of the C
language Hardware Specific Module (CHSM).

Initialization and Removal
. Driverlnit
. DriverRemove
Board Service
. DriverISR
. DriverPoll (optional)
Packet Transmission
. DriverSend
Control Functions
. DriverReset
. DriverShutdown
. DriverMulticastChange
. DriverPromiscuousChangeescommended)
. DriverStatisticsChangéptional)

. DriverRxLookAheadChange (optional)

CHSM Functions 5-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

§ 52

Importantv

- DriverGetMulticastinfo

« DriverManagement (optional)

« DriverEnablelnterrupt

« DriverDisablelnterrupt
Timeout Detection

« DriverAES (optional)
The CHSM may require the optional routines, depending on the adapter. The
CHSM indicates unsupported, optional routines by placing a 0 in the
corresponding fields of the driver parameter block. Additional procedures

might also be needed for specific hardware requirements.

All functions described on the following pages are calls from the CMSM and
the CTSM to the CHSM.

In order to achieve operating system and platform independence, the CHSM
must not enable or disable system interrupts.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Initialization

The CHSM'sDriverlnit routine controls the complete initialization process.
However, specific tasks performed during initialization are handled by CMSM
routines or CTSM routines.

The initialization tasks are as follows:

. Allocate the frame and driver data space

. Process custom command line keywords and custom firmware
. Parse the standard load command line options

. Register hardware options

. Initialize the adapter hardware

. Register the MLID with the LSL

. Set up a board service routine

. Schedule timeout callbacks

Registering with the CMSM/CTSM

Before the C HSM callsCTSM>RegisterHSM or CMSMInitParser
Driverlnit must take the following steps:

. Copy its incoming parameters into a CHSM_STACK structure. (The
CHSM_STACK structure is defined amsm.hand in the "Structure
Definitions" section of the "Preface" of this document).

. Copy the address of the CHSM_STACK structutesmStackinto
DriverlnitParmPointer.

After it has done thiDriverlnit must callCMSMInitParser to initialize the
parser. This must be done before any other CMSM or CTSM APIs are called.

The CHSM setMLIDCFG_MaxFrameSizto the largest frame size supported
by the adapter. The CHSM sets the MLIDCFG_SharingFlags
MS_SHUTDOWN_BIT to 1Driverlnit calls<CTSM>RegisterHSM with a

CHSM Functions 5-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

pointer to the driver parameter block. The CTSM passes the CHSM's
parameter block pointer along with its own pointer to the CMSM.

The CMSM makes a local copy of both parameter blocks and processes the
information passed from the operating system. If the CHSM has custom
firmware, the CMSM loads the firmware and initializes the
DriverFirmwareSizeandDriverFirmwareBuffeffields as described i@hapter

3: CHSM Data Structures and Variables

The CMSM allocates memory for the frame data space and creates a copy of
the CHSM's configuration table template in that area. If the
MLIDCFG_CardNameandMLIDCFG_ DriverMajor\Verfields of the

configuration table are initialized to 0, the CMSM will fill in these fields and
the MLIDCFG_DriverMinorVerfield using information derived from the

linker definition file. If the CHSM has placed nonzero values in the card name
and driver version fields, these fields will not be modified.

Finally, the CMSM may set thdLIDCFG_MaxFrameSizéeld of the
configuration table to a smaller packet size (depending upon platform
specifics) and then return Briverlnit .

. If the CMSM is unsuccessful in its initialization tasks, it returns an
error codeDriverlnit should then return an error code.

. If the CMSM is successful, it returns with
ODISTAT_SUCCESSFWndconfigTablepointing to the MLID’s
new frame data space. The CHSM must now gather the hardware
option information needed for the configuration table and call the
CMSM to parse the MLID parameters entered on the command line.

Determining Hardware Options

After <CTSM>RegisterHSMreturns successfully, the CHSM must determine
the hardware configuration of the adapter. This includes the following
parameters:

. Base port for programmed 1/O adapters

. Memory decode addresses for shared RAM adapters

. Interrupt numbers

. DMA channels

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

For machines with bus types that support standard retrievable product IDs, such
as EISA, PCI, Micro Channel, PnP ISA, or PC Card; the MLID can get
hardware configuration information directly from the system using CMSM
calls once the Hardware Instance Number (HIN) has been identified.

For EISA buses and Micro Channel buses, it is possible to uniquely identify an
adapter by its physical slot number. However, this is not possible for new buses
such as PCl and PnP ISA. These buses can have multiple functions or multiple
devices present on a single adapter, and, in the cases of some bus
configurations, such as PCI BIOS v2.0 and PNP ISA, the buses have no
physical slot correlation scheme.

The CHSM now uses thaot parameter to contain the Hardware Instance
Number (HIN). The HIN is a system-wide, bus-independent, unique handle for
a device. The HIN enables the CHSM to identify functions and devices on
multiple device adapters as well as single device adapters and integrated
motherboard devices.
For single device adapters such as EISA, Micro Channel, and PCI BIOS v2.1,
the HIN is the physical slot number, unless there is a physical slot conflict, such
as with multibus systems.
In the following cases, the hardware instances are assigned unique values:

. Integrated motherboard devices

. PCI BIOS v2.0 devices

. PCI BIOS v2.1 multiple device adapters

. PnP ISA devices

. Physical slot number conflicts

To identify the required hardware paramet@&syerlnit must perform the
following steps (where appropriate for the hardware):

1. If the CHSM supports an adapter with a product ID that is retrievable
according to a standard, such as EISA, PCI, Micro Channel, or PC Card,
the CHSM should do the following:

. Scan for the adapter for each supported bus type using

CMSMSearchAdapter. CMSMSearchAdapter returns a bus tag
and a unique identifier for each hardware instance found. This pair

CHSM Functions 5-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

of values is used b§MSMGetinstanceNumber, which must be
called once for each hardware instance found. The HIN numbers
returned byCMSMGetinstanceNumber are placed in the Slot
DRIVER_OPTION structure, afdMSMParseDriverParameters

is called. The selected HIN is put in thieIDCFG_ Sloffield of the
configuration table.

. Call CMSMGetInstanceNumberMapping with the configuration
tableMLIDCFG_Slotfield as an input parameter. The
corresponding bus tag and unique identifier are returned. The bus tag
returned fromCMSMGetinstanceNumberMapping must be
placed in theMLIDCFG_DBusTadield of the configuration table.

. Call CMSMGetCardConfiginfo to get the adapter's configuration
and fill out the 1/0O portion of the configuration table. (The bus tag
and unique identifier for the selected HIN are used as input
parameters t&€MSMGetCardConfiginfo .

If the CHSM supports a bus adapter that does not have a product ID that is
retrievable by some standard, it must define a set of DRIVER_OPTION
structures that will cause the parser to get whatever hardware configuration
information the CHSM needs, but cannot get for itself. Legacy ISA is an
example of such a bus.

. Ifthe CHSM needs certain parameter values to determine other parameter

values, it should calLMSMParseSingleParameterbefore it calls
<CTSM>RegisterHSM. CMSMParseSingleParametemay be called
multiple times as needed.

CMSMParseDriverParameters must contain the valid hardware
configuration options in the DRIVER_OPTION structure.

CMSMParseDriverParameters or CMSMParseSingleParametercan

be used to process custom command line keywords. However, for
automatic driver selection and loading to function properly in an advanced
installation environment, the use of custom command line keywords
should be restricted.

For family drivers that support adapters of more than one bus type --
including the legacy ISA bus--the custom command line keyw&#id
should be used to differentiate between a legacy ISA bus hardware
instance and an advanced bus hardware instance, such as EISA, Micro
Channel, PCI, PnP ISA, and PC Card.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Importantv

Importantv

After parsing the parameters, the 1/0 portion of the logical board’s
configuration table in the frame data space has been filled in by
CMSMParseDriverParameters or the CHSM and now contains the
selected adapter HIN in tihLIDCFG_Slotfield, and itsbusTagn the
MLIDCFG_DBusTadield.

Driverlnit must call CMSMParseDriverParameters at least once, but never
more than once.

When the CHSM has obtained all needed information for the configuration
table,Driverlnit callsCMSMRegisterHardwareOptions.

If the MLID must access shared memory before registering the hardware
options, it must use CMSMReadPhysicalMemory .

Registering Hardware Options

The CHSM callCMSMRegisterHardwareOptions to register with the
operating system. This routine reports to the CHSM whether a new adapter or
a new frame format for an existing adapter is being loaded. If a new adapter is
being registered, the CMSM allocates the driver data space and copies the
MLID’s DRIVER_DATA to that area. This routine also notifies the CHSM of
any conflicts with existing hardware in the system.

There are four possible conditions that the CHSM must handle on return from
CMSMRegisterHardwareOptions.

. If the returned value equaREG_TYPE_NEW_ADAPTER new
adapter was successfully registered, and the CHSM must proceed
with the hardware initialization (thdriverDataparameter in
CMSMRegisterHardwareOptions now contains a pointer to the
driver data space).

. If the returned value equaREG_TYPE_NEW_FRAMB new
frame type for an existing adapter was successfully registered, and
initialization is essentially complete.

. If the returned value equaREG_TYPE_NEW_CHANNE& new
channel for an existing multichannel adapter was successfully
registered. The CMSM typically treats the registering of a new
channel as a new adapter. The CHSM must proceed with the
hardware initialization. (ThdriverData parameter in
CMSMRegisterHardwareOptions now contains a pointer to the
CHSM’s driver adapter data space.)

CHSM Functions 5-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Initializing the Adapter

Importantv

. If the returned value equaREG_TYPE_FAILthe CMSM was
unable to register the hardware optiobsverlnit should return
with an error code.

At this point the CHSM initializes the adapter hardware. This consists of all
software controlled configuration of the hardware, and may also include
hardware tests and diagnostics such as RAM testing.

TheDriverResetroutine can be called to handle part of this procedure since it
performs steps needed to initialize the hardware.

At this point, the CHSM examin@dLIDCFG_MaxFrameSizand adjusts it
down if necessary.

Driverlnit should set up the correct number of transmit buffers (the maximum
number of simultaneous sends allowed by the hardware) by placing an
appropriate value in CMSMTxFreeCount. A description of this variable is in
Chapter 4, "CMSM/CTSM Data Structures and Variables", and information
about its use is in the packet transmission section of this chapter. If firmware is
to be loaded down to the adapter, it should be done at this point.

If an error occurs during the hardware initializatibmiverlnit should print an
appropriate error message, @MSMReturnDriverResources, and return to
the operating system with a ODISTAT _FAIL value.

If the hardware initializes successfully, the CHSM sets the
MLIDCFG_SharingFlags MS_SHUTDOWN_BIT to zero, produces a NESL
Service Resume MLID Card Insertion Complete event, using
CMSMNESLProduceMLIDEvent, and returns ODISTAT_SUCCESSFUL to
the operating system.

Registering with the LSL

5-8

Driverlnit calls theCMSMRegisterMLID routine to register the MLID with
the LSL.CMSMRegisterMLID registers the MLID by passing the addresses
of the following items to the LSL:

. CMSM Send Routine

. CMSM Control Handler Routine

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Note"’
\v

. Pointer to the CHSM configuration table (returned by
<CTSM>RegisterHSM)

The LSL assigns a logical board number to the adapter, and the CMSM places
it in the configuration table. The CMSM automatically registers a logical board
with the LSL duringCMSMRegisterHardwareOptions each time a new

frame is added for an existing adapter. If an error occurs, the CMSM routine
returns ODISTAT_OUT_OF_RESOURCES.

If CMSMRegisterMLID is successful, the configuration table contains a valid
board number. CHSMs for intelligent bus master adapters can now pass the
board number and frame ID information to the adapter if necessary.

CMSMTxFreeCount and CMSMPriorityTXFreeCount must be set before calling
CMSMRegisterMLID.

Setting up a Board Service Routine

Note"’
\4

The CHSM registers its board service routine®)VerISR , DriverISR2, or
DriverPoll) by calling eithelCMSMSetHardwarelnterrupt or
CMSMEnablePolling. TheDriverISR description later in this chapter
provides special instructions on setting up and handling shared interrupts.

The adapter must be ready to process interrupts before calling
CMSMSetHardwarelnterrupt or CMSMEnablePolling . Polling HSMs can use
CMSMGetPollSupportLevel to find out the level of support provided on the
platform.

Scheduling Timeout Callbacks

Note"’
\4

If the CHSM is running an interrupt driven adapter, it can schedule a timer
event to check if a board is unable to complete a send. To schedule a timer
event, the CHSM callEMSMScheduleAES which schedules periodic calls
to the CHSM'sDriverAES routine.

CMSMScheduleAES can not be called until after the CHSM has called
CMSMRegisterMLID .

If the adapter is not interrupt driven, the polling routines can check if a board
is unable to complete a send.

CHSM Functions 5-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Driver Removal

The operating system calls the MLID’s exit functi@rjverRemove, when it
receives the command to unload the MLID.

Spec vl.11 - Doc v1.13

| 5-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

Driverinit

The initialization routine is called by the loader
when it loads the CHSM.

Syntax

ODISTAT Driverlnit (
MODULE_HANDLE *ModuleHandle,
SCREEN_HANDLE *ScreenHandle,

Input Parameters

MEON_STRING *CommandLine,

MEON_STRING *ModuleLoadPath, wn
UINT32 UninitizedDataLength, o
void *CustomDataFileHandle, 2
UINT32 (* FileRead) (void <
*FileHandle,UINT32 FileOffset, ~
void *FileBuffer,UINT32 H
FileSize), ~

UINT32 CustomDataOffset, '
UINT32 CustomDataSize,)
UINT32 NumMsgs, (@)
MEON_STRING **Msgs); O
<
~
~
QW

ModuleHandle

Identifies your initialization routine. Your initialization routine must
provide this handle when calling many of the operating system support
routines for MLIDs.

ScreenHandle

Your initialization routine must use this handle during@heputToScreen
function to perform any screen 1/O. This handle is not valid after
initialization.

CHSM Functions 5-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Output Parameters

CommandLine

Pointer to the command line that was used to load the driver. This

parameter is passed @V SMParseDriverParametersto get the

hardware configuration information from the command line.
ModuleLoadPath

Path used to load the MLID, including the module name.

UninitizedDatalLength
Used by the operating system to determine the data image length.

CustomDataFileHandle

The custom data file is appended to the end of your NLM. Because the
NLM was opened during loading, this handle points to a structure that the
operating system uses to read the custom data file. This value is provided
as a parameter feileRead.

FileRead

Pointer to a read function thBriverlnit can use to read auxiliary files.

CustomDataOffset
The starting offset of the custom data inside the .NLM (or .LAN) file. This
value is provided as a parameteFiteRead.

CustomDataSize
The length of the custom data file. This value is provided as a parameter to
FileRead.

NumMsgs
Number of message strings in your module.

Msgs

Pointer to an array of pointers of MEON_STRING that is used by the
message enabling macros for handling messages.

None.

5-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL The CHSM initialized successfully.
ODISTAT_FAIL The CHSM failed to initialize successfully.

When the loader receives the command to load the CHSM, it calls the
Driverlnit routine (specified as the "start" routine in the CHSM's linker
definition file; see Appendix C).

If the initialization was successfDiriverinit must produce a NESL Service
Resume Event for MLID Card Insertion Complete.

CHSM Functions 5-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Driver

Remove

Syntax

Causes the CHSM to return its resources prior to
being unloaded.

void DriverRemove ();

Input Parameters

None.

Output Parameters

None.

Return Values

Remarks

5-14

None.

TheDriverRemove routine is called whenever the CHSM is unloaded. The
CHSM’s linker definition file must include the keyword "exit" followed by
DriverRemove .

This routine callCMSMDriverRemove with the value of
DriverModuleHandlefrom the driver parameter block.

the CHSM. This function does not need to return resources that are returned by

Note‘vvl CMSMDriverRemove triggers a call t®riverShutdown to permanently shutdown
DriverShutdown.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Board Service Routine

The board service routine detects and handles receive events and transmit
complete events. The MLID is notified of these events by an interrupt service
routine PriverISR) or a polling routine@riverPoll).

Packet Reception

This section provides a brief overview of various reception methods available
to the developer, followed by details of thaverlSR andDriverPoll routines.

Reception Methods

The method of packet reception selected is typically dependent on the adapter’s
data transfer method.

Reception Method—Option 1

This is the simplest and the most preferred reception method for host DMA and
bus master adapters. TRETSM>ProcessGetRCBfunction inChapter 6:

CTSM Functionprovides a detailed description of this process. The steps
performed in this reception method are outlined below:

1. The CHSM call€MSMAllocateRCB to get an RCB (unless it already
has one from Step 5 below). If tMM_FRAGS_PHYS_BIBit of the
MLIDCFG_ModeFlagdield is set, this call returns physical addresses in
the fragment list.

2. The CHSM copies the received packet into the RCB.

3. The CHSM call&CTSM>ProcessGetRCB

4. The CTSM checks the frame header information and fills in the remainder
of the RCB fields.

5. The CTSM returns the RCB to the operating system and gets a new RCB
for the CHSM. If no RCB is available, it returns 0.

CHSM Functions 5-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Reception Method—Option 2

This is the preferred reception method for shared RAM and programmed /O
adapters. This method involves using a lookahead process, in which the frame
header information is confirmed before the entire packet is transferred from the
adapter into an RCB. During initial development, it might be helpful to use
Option 1 to create a functioning CHSM, and then implement Option 2.

The adapter’s data transfer mode determines how the lookahead process is
handled. If a programmed 1/O adapter is used, the
CMSMMaxFrameHeaderSizariable is the number of bytes to be read into a
lookahead buffer. If the adapter uses a shared RAM transfer mode, the
lookahead buffer is the start of the packet in shared RAM.

The<CTSM>GetRCB function in Chapter 6, "CTSM Functions" provides a
detailed description of this process. The steps performed for this reception
method are outlined below:

1. The CHSM sets up a lookahead buffer.

2. The CHSM call&CTSM>GetRCB with a pointer to the lookahead
buffer.

3. The CTSM filters the packet and frame header and passes the lookahead
data to the LSL. If a protocol stack wants the packet, an RCB is returned.

4. The CHSM copies the remainder of the packet into the RCB and calls
<CTSM>RcvComplete If no RCB is returned, the CHSM checks for
another receive packet to send up.

Reception Method—Option 3

5-16

This method is recommended for intelligent adapters that are designed to be
"ECB aware." (See Appendix B for more information on ECBs.) This method
dramatically reduces the load on the system by off-loading code to the adapter.
In this way, the adapter’s firmware handles most of the reception process. The
steps performed for this reception method are outlined as follows:

1. The CHSM obtains an ECB by calli@MSMAllocateRCB and queues
it until it is needed for a received packet. Be careful not to preallocate too
many ECBs.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

2. The firmware filters the frame header information and all fields of the ECB
as described in Appendix B, "Event Control Blocks (ECBs)".

3. The CHSM call&CTSM>RcvCompleteto return the ECB after it is
completely filled in.

Reception Method—Option 4

The pipelined adapter can be configured to interrupt prior to receiving a
complete packet. At driver initialization time, the adapter must be able to be
configured to wait until it has received at least the
CMSMMaxFrameHeaderSizebefore it interrupts.

1. The CHSM sets up a LookAhead buffer.

2. The CHSM call&CTSM>GetRCB with packetSizeet to UNUSED
before it has received the entire packet.

3. The CTSM checks the frame header information and passes the
LookAhead data to the LSL. (The CTSM cannot fill in all the LookAhead
fields with definitive values such as error bits and length fields.)

4. The CHSM copies the remainder of the packet into the RCB and calls
<CTSM>RCVCompleteStatus If no RCB is returned, the CHSM checks
for another receive packet to send.

Using Shared Interrupts

A CHSM can support shared interrupts, provided that they are also supported
by the host bus and the adapters that will share the interrupt. Interrupts can be
shared if the bus is operating in level-triggered mode, or if external logic exists
on the adapters sharing the interrupt. The following list describes how some
buses handle interrupts:

. The PCI and Micro Channel buses always use level-triggered
interrupts and can support shared interrupts.

. The ISA bus normally uses edge-triggered interrupts and will not
support shared interrupts unless external logic exists on the adapters
for sharing the interrupt.

CHSM Functions 5-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

. The EISA bus normally uses edge-triggered interrupts, but each
interrupt can be individually configured to level-triggered mode in
order to support shared interrupts.

. Other buses vary in their use of edge and level triggered interrupts.

The CHSM must indicate that the adapters are sharing interrupts by setting the
MS_SHARE_IRQO_BIfit in theMLIDCFG_SharingFlagdield of the
configuration table. The CHSM must also initialize the driver parameter block
variable,DriverEndOfChainFlagas described in the following table.

The CMSM will callDriverDisablelnterrupt andDriverEnablelnterrupt to
discover which CHSM(s) need to service their adapters and invoke the ones
that do.

Table 5-1
DriverEndofChainFlag Values

If the CHSM: The CHSM must: DriverEndofChainFlag value:
Supports shared Set the MS_SHARE_IRQO_BIT Zero: The shared interrupt vector is placed
interrupts bit in the first on the shared interrupt chain. If

MLIDCFG_SharingFlags field of another interrupt vector is requested after

the CHSM’s configuration table. the original vector is placed at the head of
the chain, the latter vector will be serviced
first.

Nonzero: The shared interrupt vector is
placed at the end of the shared interrupt
chain by the operating system.

Does not support shared Clear the Not used.
interrupts MS_SHARE_IRQO_BIT bitin the
MLIDCFG_SharingFlags field of
the CHSM’s configuration table.

5-18 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

DriverISR

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Called by the CMSM when a hardware interrupt is
detected.

void DriverISR (
DRIVER_DATA *driverData);

%))
. o
driverData D
Pointer to the CHSM’s driver adapter data space. O
<
~
~
None. =
1
S
o
O
None.
<
~
~
(V)

DriverISR only needs to service the adapter and return.

We recommend that interrupts remain unaltered duirgerISR . If the
DriverISR routine enables or disables interrupts, it must restore them to their
state on entry before returning. Enabling or disabling interrupts will preclude
the MLID from working on some platforms.

The interrupt service routine generally needs to detect and handle the following
events:

. Packet Reception Event

. Transmission Complete Event

CHSM Functions 5-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

The interrupt service routine should continue checking for reception and
transmission events until there are no more to be serviced.

Packet Reception Event

The reception portion of the board service routine services the packet using one
of the reception methods described in the previous section of this chapter. If an
error has occurred the CHSM should increment the appropriate error counters
that it is responsible for and indicate the appropriate status before handing the
packet to the CTSM. (Sd@riverPromiscuousChangelater in the chapter.)

Note Vvl The CHSM should maintain the diagnostic counters in the statistics table for
every detectable error condition. This will aid in debugging the CHSM as well as
maintaining it in the future.

™M

~

hi Transmission Complete Event

>

Each time the CHSM detects a successfully completed transmission event, it
8 should do the following:
Q 1. Return the TCB usingCTSM>SendCompleteif the TCB was not
! returned durind@riverSend.

~

~ 2. Increment the number of available transmit resources using

- CMSMTxFreeCount

>

O If the CHSM encounters a transmission error, it should perform the following

Q actions:

Q

0] . Attempt to identify the errolThe CHSM should try to pinpoint the
specific cause of the error (excess collisions, cable disconnect, FIFO
underrun).

. Increment diagnostic counter§.he CHSM should maintain the
diagnostic counters in the statistics table for every detectable error
condition. The CHSM should also increment the generic statistic
TotalTxMiscCountf a fatal transmission error occurred that is not
counted in any other generic counter. The fatal transmission error
could also be counted using a media specific counter.

. Attempt to send the paclagain. In the event the CHSM has
reached the maximum retry limit for sending a packet, it should do
the following:

|

| 5-20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

1. Discard the packet.

2. Return the TCB usingCTSM>SendCompleteif the TCB was not
returned durind@riverSend.

3. Increment the number of available transmit resources using
CMSMTxFreeCount

ST'IAN 200 - TT'TA dads

CHSM Functions 5-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

DriverPoll

Syntax

Input Parameters

Return Values

Remarks

Note"’
\4

Note"’
v

Services the adapter.

void DriverPoll (
const DRIVER_DATA *driverData,
const MLID_CONFIG_TABLE *configTable);

driverData
Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table, of the first logical board which the
CHSM registered. The tool kit refers to this as the default virtual board.

None.

TheDriverPoll function is used if the CHSM requires a poll-driven board
service routine. This routine will typically perform functions similar to those
of theDriverISR function.

DriverPoll is normally not used by an interrupt driven CHSM. However, some
CHSMs might require polling or could require polling in addition to the interrupt
service routine.

To register the polling routine, place a pointer to the routine in the
DriverPollPtr field of the driver parameter block. The CHSM can then enable
polling during initialization by callinCMSMEnablePolling.

We recommend that polled MLIDs have an interrupt backup facility to service
the adapter if polling becomes too infrequent. On some platforms, frequent
polling is not available and servicing the adapter with interrupts is required for

5-22 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

the adapter to function efficiently. Call CMSMGetPollSupportLevel to find out
the level of support provided on the platform.

ST'IAN 200 - TT'TA dads

CHSM Functions 5-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Packet Transmission

The CHSM routine that handles packet transmission is influenced by the
adapter’s data transfer mode. Transmission methods for different transfer
modes are discussed here, followed by a description &fritierSend routine.

Transmission Methods

There are two methods for transmitting packets. The method you choose
depends upon the type of adapter you are writing your CHSM for.

Transmission Method—Option 1

This is the method for transmitting packets on programmed I/O, shared RAM,
host DMA, and bus master adapters.

1.

The CHSM set€MSMTxFreeCounb the maximum number of packets
that the adapter can buffer (performedDiriverinit). If the adapter needs
physical addresses, set & _FRAGS_PHYS_BIBit in the
MLIDCFG_ModeFlagdield atDriverlnit time.

The CTSM receives an ECB, processes the information, and constructs a
TCB. The TCB structure consists of the assembled packet header and data
fragment information. If the Ethernet CTSM is uspdddedLeris set to

the padded length of the packet (EreverSend for more information).

(This is the value that the adapter sends on the wire, regardless of the value
in theTCBDatalLerfield. In fact, the value ipaddedLers not equal to
TCBDatalLenf the packet is Ethernet 802.3 or Ethernet Il and was
evenized or if the packet was padded to 60 bytes.)

The CTSM decremen@SMTxFreeCounand callDriverSend with a
pointer to a filled in TCB structure.

The CHSM calls&CTSM>SendCompleteafter the packet has been
buffered onto the adapter or after the transmission has been completed.

The CHSM increment€MSMTxFreeCourdfter the adapter completes
the transmission (typically performedniverISR).

5-24 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Transmission Method—Option 2

This method is recommended if the adapter is ECB-aware and has sufficient
adapter processor speed. This transmission method dramatically reduces the

load on the system by reducing the host’s process time.

1.

The CHSM sets theriverSendWantsECBeld in the DRIVER_PARM
structure to 1 and seBMSMTxFreeCountb the number of packets that
the adapter can process at one time (perform&tiiwerinit). If the
adapter needs physical addresses, sétileFRAGS_PHYS_BIBit in
the MLIDCFG_ModeFlagdield.

The CTSM decremen@GMSMTxFreeCourdnd callDriverSend with a
pointer to the configuration table and a pointer to the ECB.

The CHSM adds the media header and sends the packet.

The CHSM calls eithetCTSM>SendCompleteafter the packet has been

buffered onto the adapter or after the transmission has been completed.

The CHSM increment€MSMTxFreeCourafter the adapter completes
the transmission (typically performedniverISR).

CHSM Functions 5-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Priority Transmission Support
The following algorithm is used for priority transmission support.

1. DuringDriverlnit , the CHSM sets the following parameters:

u TheDriverPriorityQueuePtrvariable is set with a pointer to the
function, DriverPriorityQueueSupport .

u The MF_PRIORITY_BIT in theMILIDCFG_Flagsfield of the MLID
Configuration Table is set.

u TheMLIDCFG_PrioritySupfield in the MLID Configuration Table is
set to indicate the number of levels available.

™ The CHSM can set or reset the MF_PRIORITYSUP_BIT as the CHSM
‘\! changes the Priority Queue Support state from enabled to disabled. The
;| MF_PRIORITYSUP_BIT is checked on a per queued packet basis.
Q 2. The protocol stack sets tB&€B_StackIOfield to a value greater than or
O equal to OXOFFFO. The following values are valid forE@B_StackID
Q field:
1
~ RAW_SEND_PRIORITY_0 OxFFFF No Priority.
~ RAW_SEND_PRIORITY_1 OxFFFE Scale 1-7: 1 = Lowest Priority.
. RAW_SEND_PRIORITY_2 OxFFFD
:' RAW_SEND_PRIORITY_3 OxFFFC
O RAW_SEND_PRIORITY_4 OxFFFB
Q RAW_SEND_PRIORITY_5 OxFFFA
Q. RAW_SEND_PRIORITY_6 OxFFF9
0p) RAW_SEND_PRIORITY_7 OxFFF8 Scale 1-7: 7 = Highest Priority.
SEND_PRIORITY_O OxFFF7 Scale 1-7: 0 = No Priority.
SEND_PRIORITY_1 OxFFF6 Scale 1-7: 1 = Lowest Priority.
SEND_PRIORITY_2 OxFFF5
SEND_PRIORITY_3 OxFFF4
SEND_PRIORITY_4 OxXFFF3
SEND_PRIORITY_5 OxFFF2
SEND_PRIORITY_6 OxFFF1
SEND_PRIORITY_7 OXFFFO Scale 1-7: 7 = Highest Priority.

3. The CTSM normally gives the packet to the CHSM directly, as a TCB
using theDriverSend function. However, ICMSMTxFreeCounis zero
and the transmit ECB is a priority transmit ECB, the CTSM calls
DriverPriorityQueueSupport , which gives the CHSM a chance to take

—

| 5-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

the transmit ECB. ThBriverPriorityQueueSupport function, provided

by the CHSM, queues the ECB in the CHSM for transmission as soon as
possible, or transmits the packet through a priority channel by first
building a TCB usingckCTSM>BuildTransmitControlBlock , or returns

a failure code and does not accept the ECB.

. The CHSM callsxCTSM>BuildTransmitControlBlock to build a TCB
whenever a priority transmit resource becomes available and a transmit
ECB is in the CHSM’s priority queue. The CHSM tracks the number of
available priority TCBSCMSMPriorityTxFreeCount is set during
Driverlnit and must provide the maximum number of priority TCBs,
which must not change without unloading and reloading the CHSM. See
Chapter 4, "CMSM/CTSM Structures & Variables" for more details on
CMSMPriorityTxFreeCount . Non-priority packets use the original
number of TCBs fronCMSMTxFreeCount, which is reserved

exclusively for their use. The CHSM must not call
<CTSM>BuildTransmitControlBlock if no priority TCBs are available.

. After the CHSM has transmitted the TCB returned by
<CTSM>BuildTransmitControlBlock , the CHSM calls
<CTSM>SendCompleteor <CTSM>FastSendComplete which
increments the statistic counters, caidvionitor , places the TCB back
on the TCBs Free list, and returns the ECB to its original owner.

CHSM Functions 5-27

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Adapters that Need Physical Addresses

5-28

Note"’
\4

Some adapters need physical addresses because they are bus master or DMA
adapters. If your adapter needs physical addresses, you can set the
MM_FRAGS_PHYS_BIBit in theMLIDCFG_ModeFlagdield of the

configuration table.

Specifically, set this bit if the CHSM expects the following things from the
CTSM:

1. For TCBs, fragment pointers all contain physical addresses pointed to
locked, contiguous buffers.

2. For ECB aware adapters and for send ECBs, pointers to the ECB can be
converted to a physical address, so physical and logical addresses can be
returned to the ECB.

3. <CTSM>ProcessGetRCBreturns an RCB with locked, contiguous,
physical addresses in the fragment pointer.

For transmissions, if the MM_FRAGS_PHYS_BIT bitin the
MLIDCFG_ModeFlags field of the configuration table is set and you need to
access the data from the processor—for example, to double copy a small
packet—you can use either CMSMECBPhysToLogFrags or
CMSMTCBPhysToLogFrags . CMSMECBPhysToLogFrags is used if you are
using ECBs and CMSMTCBPhysToLogFrags is used if you are using TCBs.
These APIs are described in Chapter 7, "CMSM Functions".

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

DriverPriorityQueueSupport

Called by <CTSM> before it queues a priority

packet.
Syntax
ODISTAT DriverPriorityQueueSupport(
DRIVER_DATA *driverData,
MLID_CONFIG_TABLE *configTable,
ECB *ech);
Parameters

ech
Pointer to a Transmit ECB.

driverData
Pointer to the CHSM’s driver adapter data space.

configTable
Pointer to the configuration table.

Output Parameters

None.

ST'IAN 200 - TT'TA dads

CHSM Functions 5-29

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Return Values

Remarks

Spec vl.11 - Doc v1.13

I 530

Note‘V’

\v

Note‘vl
\Z

ODISTAT_SUCCESSFUL The ECB was processed/queued by
the CHSM.

ODISTAT_OUT_OF_RESOURCES The ECB was not processed/queued
by the CHSM. The CTSM will now
queue the ECB and initiate
transmission at a later time.

This function must either transmit the packet immediately or queue the ECB.

The CHSM must be able to service the priority queue and handle priority level
detection issues. This function should process essential items only and return
as quickly as possible.

The CHSM must sdriverPriorityQueuePtrin the Driver Parameter Block to
point to this function. The CHSM can set or reset MF_PRIORITYSUP_BIT
in theMLIDCFG_Flagsfield of the configuration table as the CHSM changes
from supporting to not supporting priority packet states.
MF_PRIORITYSUP_BIT is checked on a per packet basis.

The ECB_DriverWorkSpace field of the ECB cannot be modified by the CHSM.

The addresses in the ECB fragment structure are logical addresses. If the
CHSM needs physical addresses, they will be returned when
<CTSM>BuildTransmitControlBlock is called. If the CHSM is ECB-aware and
needs physical addresses in the ECB’s fragment structure, it must call
<CTSM>BuildTransmitControlBlock.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

DriverSend

Syntax

Input Parameters

Transfers a frame onto the LAN medium.

DriverSend (
const DRIVER_DATA *driverData,
const MLID_CONFIG_TABLE *configTable,
const TCB *tcb,
UINT32 paddedLen,
void *ecbPhysicalPtr);

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table.

Pointer to a TCB or, if the adapter is ECB aware, an ECB.

paddedLen

Padded length of the packet. This parameter is used for Ethernet only. If
the adapter is ECB aware, the value is zero. This parameter contains the
length of the entire frame as it appears on the LAN medium. Ethernet
CHSMs gives this value to the LAN adapter, which defines the number of
bytes to transmit. THECBDataLerfield only describes the amount of data
being passed in the TCB. In the case of Ethernet, the frame might have
been padded or evenized. For example, if the CHSM uses DMA to transfer
the TCB data to the LAN adapter’'s memory, TieBDatal erfield tells

the LAN adapter how many bytes to transfer.

ecbPhysicalPtr

Pointer to the physical ECB (ECB aware adapters only).

CHSM Functions 5-31

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Output Parameters

None.

Return Values

None.

Remarks

The CTSM callDriverSend to transmit a frame onto the medium.
DriverSend is provided a pointer to a TCB. ReferGbapter 3: CHSM Data
Structures and Variable®r information on TCBs.

The CHSM can assume that the TCB will be valid for its topology; it should

not do consistency checking on the TCB fields. The CHSM can also assume
that it has the resources necessary to handle the transmission operation; it does
not need to check to see if it has a transmission hardware resource available,
because the CTSM will do flow control for the CHSM. The CTSM determines
how many outstanding transmissions the CHSM can handle by using the value
set in theCMSMTxFreeCoumntariable duringriverinit.

TheDriverSend routine can request ECBs instead of TCBs by initializing the
driver parameter block variablriverSendWantsECB® 1 (see Chapter 3,
"CHSM Data Structures and Variables")DfiverSend uses ECBs for packet
transmission, it is responsible for building the proper media header (refer to
Appendix B, "Event Control Blocks (ECBs)" for additional information on
ECB aware adapters). If the CHSM uses ECBs instead of TCBs, it must not
modify the transmit ECB’€CB_PreviousLinHield.

Spec vl.11 - Doc v1.13

Interrupts are unchanged. We recommend that interrupts remain unchanged
during DriverSend.

| 5-32 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

Pseudocode

Copy theMediaHeadeifrom the TCB into a transmit buffer.

Copy the fragmented data from the TCB’s fragment structure into a transmit
buffer.

Give the command to send the packet.
IF lying send

Call <CTSM>SendCompletéconfig Table, tcbp, transmitStatus)
RETURN

ST'IAN 200 - TT'TA dads

CHSM Functions 5-33

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Control Procedures

Table 5-2

The ODI specification requires MLIDs to implement the I/O control functions
(IOCTLs) listed in the table below. The CMSM and CTSM perform several of
the required IOCTL functions without assistance from the CHSM, as indicated
in the table. The CHSM is responsible for implementing the control functions
described in this section.

DriverResetandDriverShutdown are mandatory and must be present for the
MLID to function properly. The CHSM should also provide the
DriverMulticastChange andDriverPromiscuousChangefunctions if the
hardware supports these functions.

TheDriverStatisticsChangeandDriverRxLookAheadChange functions are
optional. These functions allow MLIDs for intelligent adapters to update the
statistics table or the lookahead size only as needed. Refer to the driver
parameter block field descriptions in Chapter 3, "CHSM Data Structures and
Variables" for additional information on these control functions.

MLIDs that support the hub management interface must implement the
DriverManagement function to handle management requests and commands,
as described in th@DI Supplement: Hub Management Interface

MLIDs whose adapters are able to enable and disable generating interrupts at
the adapter must implemetiverDisablelnterrupt and

DriverEnablelnterrupt . MLIDs whose adapter is not able to do this must not
implement these calls and will not be able to execute on some platforms.

Code Path of Control Functions

Control Function

Code Path

0 Get configuration table CMSM

1 Get statistics table

CMSM -> DriverStatisticsChange

2 Add Multicast Address CMSM -> CTSM -> DriverMulticastChange

or, if promiscuous mode is enabled:
CMSM -> CTSM -> (DriverMulticastChange and
DriverPromiscuousChange)

5-34

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Table 5-2
Code Path of Control Functions continued
Control Function Code Path

3

10

11

12

13

14

15

Delete Multicast Address

Reserved

Shut down driver

Reset Driver

Reserved

Reserved

Set receive lookahead size

Enable/Disable Promiscuous
Mode

RegisterMonitor
Reserved

Reserved

Driver Management

Get Multicast Info

CMSM -> CTSM -> DriverMulticastChange

or, if promiscuous mode is enabled:

CMSM -> CTSM -> (DriverMulticastChange and
DriverPromiscuousChange)

CMSM

CMSM -> CTSM -> DriverShutdown

CMSM -> CTSM -> DriverReset

CMSM

CMSM

CMSM -> CTSM -> DriverRxLookAheadChange

CMSM -> CTSM -> DriverPromiscuousChange

CMSM -> CTSM

CMSM

CMSM

CMSM -> DriverManagement

CMSM -> CTSM

CHSM Functions 5-35

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001

January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

DriverReset

Syntax

Input Parameters

Output Parameters

Resets and initializes the specified part of the

MLID.

ODISTAT * DriverReset (
const DRIVER_DATA *driverData,
const MLID_CONFIG_TABLE *configTable
OPERATION_SCOPE operationScope);

driverData
Pointer to the CHSM’s driver adapter data space.

configTable
Pointer to the configuration table.

operationScope
Indicates the scope of the operation to be performed.

OP_SCOPE_ADAPTER
Resets and initializes the physical adapter.
OP_SCOPE_LOGICAL BOARD

Performs a logical board reset.

None.

5-36 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL This function completed successfully.

ODISTAT_RESPONSE_DELAYED The function cannot complete
immediately; this is due to the
asynchronous nature of this function.

ODISTAT_FAIL The function was unable to complete
successfully.

OP_SCOPE_ADAPTER

When a reset is required, the CTSM waits for transmissions in progress to
complete and then calBriverReset

If resetting the adapter clears the hardware’s multicast and/or promiscuous
mode capabilityPriverReset must restore this capability to the way it was
before it was called usingCTSM>UpdateMulticast.

From within the CHSMDriverResetcan be called bipriverAES or
Driverlnit . It can also be called WyriverISR if the adapter has problems.

If the CMSM callsDriverResetand the CHSM returns successfully, the
CMSM resets th€MSMTxFreeCountariable to the initial value set by the
MLID during initialization. If the CMSM call®riverResetand the adapter
cannot be reset, the CMSM automatically cBitszerShutdown with
shutdownTypequal to SHUTDOWN_PERMANENT.

Hardware features, such as advanced power management and docking stations,
require this routine so they can reinitialize the adapter after power has been
removed and is then restored.

This routine can also test the hardware to verify that it is functional. If the

MLID has been temporarily shut down, an application can call this routine to
bring the board back into full operation.

CHSM Functions 5-37

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Importantv
Note"’
\v

Pseudocode

OP_SCOPE_LOGICAL BOARD

The meaning of this operation is adapter/media/driver-dependant. This
operation is a NO-OP for most LAN drivers.

f ODISTAT_RESPONSE_DELAYED is returned by DriverReset , due to delays
in completing events performed by this function, the CHSM must call
CMSMControlComplete when the event is complete. If DriverReset must be
called from within the CHSM, use CMSMResetMLID.

DriverReset must not assume that other initialization processes have been
performed on the hardware. DriverReset must be capable of initializing the
hardware completely.

Increment the reset statistics counter (MAdapterResetCount)
IF OP_SCOPE_ADAPTER
Reset the hardware (includes performing any hardware testing)
CALL <CTSM>UpdateMulticast
ELSE perform logical board reset
IF successful
Return ODISTAT_SUCCESSFUL
ELSE IF the update will complete asynchronously
Return ODISTAT_RESPONSE_DELAYED
/* Call CMSMControlComplete when done. * /
ELSE
Return ODISTAT_FAIL
END IF
RETURN

5-38 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

DriverShutdown

Releases the HSM resources associated with the
entity being shutdown. If an adapter is being
shutdown, it puts the adapter in an inactive state.

Syntax

ODISTAT DriverShutdown (
const DRIVER_DATA *driverData,
const MLID_CONFIG_TABLE *configTable,
UINT32 shutdownType,
OPERATION_SCOPE operationScope);

Input Parameters

driverData
Pointer to the CHSM’s driver adapter data space.

configTable
Pointer to the configuration table.

shutdownType
SHUTDOWN_PERMANENT
Permanent shutdown.
SHUTDOWN_PARTIAL
Partial shutdown.

ST'IAN 200 - TT'TA dads

operationScope
OP_SCOPE_ADAPTER

All the logical boards associated with the CHSM's driver adapter
data space are to be shut down.

OP_SCOPE_LOGICAL_BOARD
Only the logical board specified lopnfigTableis to shut down.

CHSM Functions 5-39

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL The operation was successful.

ODISTAT_RESPONSE_DELAYED The function cannot complete
immediately; this is due to the
asynchronous nature of this function.

ODISTAT_FAIL The operation failed.

Remarks

OP_SCOPE_ADAPTER

SHUTDOWN_PARTIAL

Passing SHUTDOWN_PARTIAL as tlshutdownTyp@arameter indicates a
partial shutdown.

In a partial shutdown, the C MSM does the following:

1. SetsCMSMStatusFlagto SHUTDOWN.

Spec vl.11 - Doc v1.13

2. Setsthe MS_SHUTDOWN_BIT of ttMLIDCFG_SharingFlagdield in
the configuration table.

3. Waits for the transmissions in progress to complete
4. Returns the transmit ECBs.

DriverShutdown must place the hardware into a safe, inactive state.

SHUTDOWN_PERMANENT

Passing SHUTDOWN_PERMANENT as teeutdownTyp@arameter
indicates a permanent shutdown.

| 5-40 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

Importantv

In a permanent shutdown, the C MSM does the following:
1. Sets CMSMStatusFlag to SHUTDOWN.

2. Sets the MS_SHUTDOWN_BIT of the MLIDCFG_SharingFlags field in
the configuration table.

3. Empties the send queue.
4. Returns all resources not allocated directly by the C HSM.

If the CHSM allocated memory usi@MSMAlloc or CMSMinitAlloc , the
CHSM must return the memory usi@dMSMFree after disabling the
hardware.

If the C HSM can power down or power off the adapter, it may do so at this
time. The C MSM disables the adapter’s interrupt service routine immediately
after this routine returns.

The CMSM automatically callBriverShutdown with
SHUTDOWN_PERMANENT and OP_SCOPE_ADAPTER when the
DriverResetroutine fails to reset the hardwabeiverShutdown is also called
when the MLID is about to be unloaded or wi@&vSMShutdownMLID is
called.

OP_SCOPE_LOGICAL BOARD

SHUTDOWN_PARTIAL
In most cases, C HSMs do not need to do anything. However, some C
HSMs may have house keeping to be done.
SHUTDOWN_PERMANENT

DriverShutdown must release all C HSM-allocated resources associated
with the specified logical board.

If ODISTAT_RESPONSE_DELAYED is returned by DriverShutdown , due to
delays in completing events performed by this function, the CHSM must call
CMSMControlComplete when the event is complete. If DriverReset must be
called from within the CHSM, use CMSMShutdownMLID .

CHSM Functions 5-41

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Pseudocode

If OP_SCOPE_ADAPTER
Disable Hardware
If SHUTDOWN_ PERMANENT

Returnmemory associated with the adapter that
was allocated by the CHSM.

Else /* OP_SCOPE_LOGICAL_BOARD */
If SHUTDOWN_PERMANENT

Return memory associated with the logical
board that was allocated by the CHSM.

If failure
Return ODISTAT_FAIL
Return ODISTAT_SUCCESSFUL

Note Vvl If ODISTAT_RESPONSE_DELAYED is returned as the completion code,
DriverShutdown will execute differently and will require that
CMSMControlComplete be called when the shutdown is complete.

Spec vl.11 - Doc v1.13

j 542 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

DriverMulticastChange

Updates the adapter to reflect the changes in the
CTSM'’s functional address table.

Syntax

ODISTAT DriverMulticastChange (
const DRIVER_DATA *driverData,
const MLID_CONFIG_TABLE *configTable,
const GROUP_ADDR_LIST_NODE*groupAddrListNode,
UINT32 numEntries,
UINT32 funAddrBits);

Input Parameters

driverData
Pointer to the CHSM’s driver adapter data space.

configTable
Pointer to the configuration table.

groupAddrListNode

Pointer to the Group Address List Node table (Ethernet, FDDI, and
sometimes Token-Ring).

ST'IAN 200 - TT'TA dads

numEntries

Number of valid entries in the Group Address List Node table (Ethernet,
FDDI, and sometimes Token-Ring).

funAddrBits
32-bit functional address (Token-Ring).

Output Parameters

None.

CHSM Functions 5-43

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Return Values

ODISTAT_SUCCESSFUL The multicast/functional address
table was updated successfully.

ODISTAT_RESPONSE_DELAYED The multicast/functional address
table will be updated asynchronously.

ODISTAT_FAIL The multicast/functional address
table was not updated successfully.

Remarks

CHSMs must support multicast addressing if the hardware allows it. The
following flags and variables must be initialized properly for the adapter’s
multicast mode.

. MM_MULTICAST_BIhit of theMLIDCFG_ModeFlagdield must
be set to indicate whether multicast addressing is supported.

. MF_SOFT_FILT _GRP_BlandMF_GRP_ADDR_SUP_BIBits
of theMLIDCFG_Flagsfield must be set appropriately to reflect the
multicast mechanism or format used by the adapter/MLID.

. The driver parameter block variab@riverMaxMulticast must be
set to reflect the maximum number of multicast addresses the
adapter can handle.

The CTSM maintains an internal table of multicast addresses. The CTSM
modules handle the addition and deletion of addresses in this table. Whenever
the table changes, the CTSM cdlisverMulticastChange to update the
adapter’s multicast filtering. The adapter can maintain its own multicast
address table or use a hash table to filter incoming packets.

Important f ODISTAT_RESPONSE_DELAYED is returned by DriverMulticastChange ,
due to delays in completing events performed by this function, the CHSM must
call CMSMControlComplete when the event is complete.

Adapter Multicast Filtering

Hashing is the most common method used by adapters to filter incoming
packets. When the adapter uses the hashing médniwdrMulticastChange
must recalculate and update the adapter’s hash table. Hashing does not
guarantee 100 percent multicast filtering; therefore, the CTSM looks up

5-44 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Pseudocode

incoming packets in its multicast address table to ensure that the packet’s
destination address is enabled.

The CTSM verifies that all the addresses it places in its table are valid multicast
addresses, so the CHSM does not need to validate them.

In either case, the CHSM routine must read the CTSM'’s multicast address
table.

ECB aware HSMs must do their own filtering of multicast addresses.
Ethernet and FDDI

On entry to this routineyumEntriescontains the number of valid entries in the
multicast table. All valid entries will be contiguous, so the CHSM does not
necessarily need to check MelticastinUseflag. If numEntriess 0, multicast
reception is disabled.

Token-Ring

The CTSM passes the 32-bit functional addre$anddrBits In this case
numEntriesandmulticastTableare normally not used. If the Token-Ring

adapter is capable of supporting both functional and group addressing and the
MF_SOFT_FILT_GRP_BlandMF_GRP_ADDR_SUP_BI®its in
MLIDCFG_Flagsare set properly, both group addressing usiotiicastTable

and functional addressing usiighAddrBitsmay be in use simultaneously.

ST'IAN 200 - TT'TA dads

The default method (if thBlF_SOFT_FILT _GRP_BIl&and
MF_GRP_ADDR_SUP_BIBits of theMLIDCFG_Flagsfield are 0) for
handling multicast operations is as follows:

Clear the hardware registers that filter incoming packets for multicast
addresses.

Get the current multicast addresses from the CTSM’s multicast table.
Reload the hardware register with new multicast address filtering values.
Return.

CHSM Functions 5-45

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

DriverPromiscuousChange

Provides a means for the stack monitor function to
enable or disable promiscuous reception.

Syntax

ODISTAT DriverPromiscuousChange (
const DRIVER_DATA *driverData,
const MLID_CONFIG_TABLE *configTable,
UINT32 changeTo);

Input Parameters

driverData
Pointer to the CHSM’s driver adapter data space.

configTable
Pointer to the configuration table.

changeTo
0 to disable promiscuous mode.
All bits set to receive all packets.
If changeTds nonzero:
Bit 0 is set if MAC frames are to be received
Bit 1 is set if non-MAC frames are to be received
Bit2 is set if Station Management Frames (SMT) are to be received.

Bit 3 is set if Remote Multicast Frames are to be received
(see Remarks section below).

Multiple bits can be set.

Output Parameters

None.

5-46 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL Promiscuous mode was changed
successfully.

ODISTAT_RESPONSE_DELAYED Promiscuous mode will be changed
asynchronously.

ODISTAT_FAIL Promiscuous mode was not changed
successfully.

Adapters/MLIDs that can pass all packets to a monitor function in the protocol
stack are said to have a promiscuous reception mode.

A monitor function examines packets sent from or received by an adapter. If the
MLID supports promiscuous mode, the monitoring function can request that
the adapter enter promiscuous mode. When promiscuous mode is enabled, the
MLID must allow all packets (including bad packets if possible) to be passed
up to the monitor function.

Setting the RemoteMulticastFrames bit causes the CHSM to activate all
multicast frame reception. For example, if an adapter utilizes a hash table for
filtering active multicast frames, then the adapter sets the hash table to accept
all multicast frames. Filtering active multicast entries is disabled when this bit
is set. CHSMs that can filter must disable filtering also when this bit is set.

Multiple bits may be set so that each bit adds to the type of frames that are to
be received.

CHSM Functions 5-47

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

5-48

<CTSM>GetRCB and<CTSM>ProcessGetRCBrequire the MLID to

indicate the status of the packet. The returned values, where appropriate, for
Token-Ring, Ethernet, and FDDI are as follows:

0 = good packets

10 = bad packets

BITS are set as follows for bad packets:

PAE_CRC_BIT CRC Error (Bit 0)

PAE_CRC_ALIGN_BIT CRC/Frame Alignment Error (Bit 1)
PAE_RUNT_PACKET_BIT Runt Packet

PAE_TOO_BIG_BIT Packet Too Large for Media
PAE_NOT_ENABLED_BIT Unsupported Frame
PAE_MALFORMED_BIT Malformed Packet
PA_NO_COMPRESS_BIT Do not compress received packet
PA_NONCAN_ADDR_BIT Set if address in Immediate Address field is

noncanonical

The CHSM must set all bits for ECB-aware adapters.

The CHSM must only set bits 0 anddR(C Error and CRC/Frame Alignment
Error) for RCB-aware adapters.
Note WvA Enabling promiscuous mode will have a detrimental impact on system
‘ performance.
If the CHSM does not support promiscuous mode, the
MM_PROMISCUOQUS_BIbit of theMLIDCFG_ModeFlagdield in the

configuration table must be cleared, andBmererPromiscuousChangePtr
field in the driver parameter block must be NULL.

Important f ODISTAT_RESPONSE_DELAYED is returned by
v DriverPromiscuousChange , due to delays in completing events performed by
this function, the CHSM must call CMSMControlComplete when the event is
complete.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Pseudocode

IF requested to enable promiscuous mode
Send enabling command to hardware
ELSE
Send disabling command to hardware
ENDIF

CHSM Functions 5-49

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

DriverStatisticsChange (optional)

Allows the CMSM to notify MLIDs whenever an
application requests IOCTL 1 (get MLID statistics).

Syntax

ODISTAT DriverStatisticsChange (
const DRIVER_DATA *driverData,
const MLID_CONFIG_TABLE *configTable);

Input Parameters

driverData
Pointer to the CHSM’s driver adapter data space.

configTable
Pointer to the configuration table.

Output Parameters

None.

5-50 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL The statistics table was successfully
updated.

ODISTAT_RESPONSE_DELAYED The function cannot complete
immediately; this is due to the
asynchronous nature of this function.

ODISTAT_FAIL The statistics table was not
successfully updated.

Because some intelligent adapters maintain statistical information on boards,
this optional routine enables MLIDs to update the statistics table in the driver
data space before the CMSM passes it up to the requesting application.

due to delays in completing events performed by this function, the CHSM must

Importantv If ODISTAT_RESPONSE_DELAYED is returned by DriverStatisticsChange

See Also

call CMSMControlComplete when the event is complete.

DriverStatisticsChangePfield of DriverParameterBlock.

CHSM Functions 5-51

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

DriverRxLookAheadChange (optional)

Allows the CMSM to notify CHSMs after an
application invokes IOCTL 9 to set the lookahead
size.

Syntax

ODISTAT DriverRXLookAheadChange (
const DRIVER_DATA *driverData,
const MLID_CONFIG_TABLE *configTable);

Input Parameters

driverData
Pointer to the CHSM’s driver adapter data space.

configTable
Pointer to the configuration table.

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL The requested operation was completed
successfully.

ODISTAT_RESPONSE_DELAYED The function cannot complete
immediately; this is due to the
asynchronous nature of this function.

Remarks
This routine changes tt@MSMMaxFrameHeaderSizariable and

the MLIDCFG_LookAheadSizield in the configuration table. MLIDs use
this routine to inform adapters when the size changes rather than forcing the

5-52 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

adapter to check the value. Non-intelligent adapters usually use
CMSMMaxFrameHeaderSizdMLIDCFG_LookAheadSizairectly.

Important If ODISTAT_RESPONSE_DELAYED is returned by
v DriverRxLookAheadChange , due to delays in completing events performed by
this function, the CHSM must call CMSMControlComplete when the event is
complete.

See Also

DriverRxLookAheadChangePfield of DriverParameterBlock,
MLIDCFG_LookAheadSizm the configuration table, the
CMSMMaxFrameHeaderSizariable, and theCTSM>GetRCB function.

ST'IAN 200 - TT'TA dads

CHSM Functions 5-53

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

DriverManagement (optional)

Syntax

Input Parameters

Output Parameters

Processes management requests if an MLID
accepts management commands from outside
NLMs (such as hub management interface,
Brouter, or CSL).

ODISTAT DriverManagement (
const DRIVER_DATA *driverData,
const MLID_CONFIG_TABLE *configTable,
ECB *ecbp);

driverData
Pointer to the CHSM’s driver adapter data space.

configTable
Pointer to the configuration table.

ecbp

Pointer to the management ECB containing the requesi(geendix B:

Event Control BlocKs The first byte of th&CB_ProtocollDfield is
greater than 0x40 and less that Ox7F.

None.

5-54 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Return Values

ODISTAT_SUCCESSFUL The requested operation was completed
successfully.

ODISTAT_RESPONSE_DELAYED The function cannot complete
immediately; this is due to the
asynchronous nature of this function.

ODISTAT_NO_SUCH_HANDLER The ECB requested an operation that is
not available.

Importantv If ODISTAT_RESPONSE_DELAYED s returned by DriverManagement , due to

See Also

delays in completing events performed by this function, the CHSM must call
CMSMControlComplete when the event is complete.

Refer toODI Supplement: The Hub Management Interfexxea hub
management implementation of this function. See also the
DriverManagementPtfield of the driver parameter block in Chapter 3,
"CHSM Data Structures and Variables".

For more information on Brouter, s&®I| Supplement: Brouter Support

CHSM Functions 5-55

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

DriverEnablelnterrupt

Syntax

Input Parameters

Output Parameters
Return Values

Remarks

Importantv

Called by the CMSM through the driver parameter
block to enable the adapter’s interrupt(s) at the
adapter.

void DriverEnablelnterrupt (
const DRIVER_DATA *driverData);

driverData
Pointer to the CHSM’s driver adapter data space.

None.

None.

This function re-enables the adapter’s interrupt; it should undo whatever
DriverDisablelnterrupt does.

It is critical that this function performs the necessary operations to enable the
adapter’s interrupt(s) as quickly as possible and then returns.

5-56 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

DriverDisablelnterrupt

Called by the CMSM through the driver parameter
block to disable the adapter’s interrupt(s) at the
adapter.

Syntax

BOOLEAN DriverDisablelnterrupt (
const DRIVER_DATA *driverData,
BOOLEAN flag);

Input Parameters

driverData
Pointer to the CHSM’s driver adapter data space.

flag

TRUE if the function is to return a value.
FALSE if the function is not to return a value.

Output Parameters

None.

ST'IAN 200 - TT'TA dads

Return Values
TRUE The adapter generated the interrupt, for the primary
interrupt.

FALSE The adapter did not generate the interrupt, for the primary
interrupt.

Remarks

This function must be present and return its specified return value. If the CHSM
can disable the adapter’s ability to generate interrupts, it must do so with this
function.

CHSM Functions 5-57

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

If DriverDisablelnterrupt is called from the context of an interrupt, the
CHSM must return to the CMSM whether it generated the interrupt for the
primary interrupt or not.

If DriverDisablelnterrupt is called with the flag parameter set to FALSE, the
return value must be FALSE.

adapter’s interrupt(s) as quickly as possible and then returns.

Importantv It is critical that this function performs the necessary operations to disable the

See Also

5-58

DriveDisablelnterrupt2

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

DriverDisablelnterrupt2

Called by the CMSM through the driver parameter
block to disable the adapter's interrupt(s) at the
adapter.

Syntax

BOOLEAN DriverDisablelnterrupt2
(const DRIVER_DATA *driverData,
BOOLEAN flag);

0}
o
Input Parameters (0))
. O
driverData <
Pointer to the CHSM's driver adapter data space. ~
fla =~
9 ~
TRUE if the function is to return a value. :
FALSE if the function is not to return a value. D
Q
Output Parameters O
<
None. ~
~
Return Values W
TRUE

The adapter generated the interrupt for the secondary interrupt.

FALSE
The adpater did not generate the interrupt for the secondary interrupt.

CHSM Functions 5-59

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Remarks

See Also

5-60

Note"’
v

This function must be present and return its specified return value if the CHSM
uses a secondary interrupt for which a second interrupt service routine (ISR)
has been provided (see DriverISR2Ptr in DRIVER_PARM_BLOCK and
MLIDCFG_Interruptl in the MLID_CONFIG_TABLE). If the CHSM can
disable the adapter's ability to generate interrupts, it must do so with this
function.

If DriverDisablelnterrupt2 is called from the context of an interrupt, the CMSM
calls DriverDisablelnterrupt2 with flag set to TRUE and the CHSM must return
to the CMSM whether it generated the interrupt for the secondary interrupt or
not. If DriverDisablelnterrupt2 is called with the flag parameter set to FALSE,
the return value must be FALSE.

It is critical that this function performs the necessary operations to disable the
adapter's interrupt(s) as quicky as posible and then return.

DriverDisablelnterrupt

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Timeout Detection

TheDriverAES routine may be used when the CHSM needs to be called after
a specified interval or at periodic intervals. Typically, this routine allows an
adapter to complete a time-consuming operation, such as a reset, or to
determine if an adapter has failed to complete a packet transmission. This
routine can also set up timed functions.

Execution time constraints determine whether the routine is called at privileged
or nonprivileged time. At privileged timéhe CHSM can only use operating
system routines that are called at privileged time. If any routines are used that
must be called during process time omyiverAES should be set up to be
invoked at nonprivileged time.

ST'IAN 200 - TT'TA dads

CHSM Functions 5-61

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

DriverAES

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

5-62

Note"’
\4

DriverAES is an event service routine.

void DriverAES (
const DRIVER_DATA *driverData,
const MLID_CONFIG_TABLE *configTable);

driverData
Pointer to the CHSM’s driver adapter data space.

configTable
Pointer to the configuration table.

None.

None.

DriverAES is typically enabled during initialization) by calling
CMSMScheduleAES(see Chapter 7, "CMSM Functions").

Once scheduled, the CMSM invokes this routine either once or continuously
with a pointer to the configuration table and a pointer to the driver data space.

You can use as many AES routines as you want, as long as the function names
are different.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Pseudocode

The actual content @riverAES is entirely up to the developer. The following
pseudocode illustrates the useDuiverAES to identify a send timeout error.

<DriverAES > (const DRIVER_DATA *driverData, const
MLID_CONFIG_TABLE *configTable);

IF Transmit is in Progress
IF Elapsed Transmit Time > Maximum Time for Transmit
Increment appropriate error counter
Reset the adapter
Reset CMSMTxFreeCount
ENDIF
ENDIF
RETURN

ST'IAN 200 - TT'TA dads

CHSM Functions 5-63

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

| 5-64 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

chapter 6

Overview

CTSM Functions

This chapter describes the topology specific functions provided as tools for
CHSM developers.

The C Language Topology Specific Module (CTSM) manages the operations
that are unigue to a specific media type. Multiple frame support is implemented
in the CTSM so all frame types for a given media are supported.

In this specification, topology specific functions and variables are indicated
with "<CTSM>". The developer must replace "<CTSM>" with the appropriate
media type, depending on which module is used. Since the MLID must be
compiled with case sensitivity on, the names must be used exactly as shown.

ETHERTSM.NLM - replace <CTSM> with CEtherTSM
TOKENTSM.NLM - replace <CTSM> with CTokenTSM
FDDITSM.NLM - replace <CTSM> with CFDDITSM

CTSM Functions 6-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

<CTSM>BuildTransmitControlBlock

The C HSM calls this function when it is ready to
send a priority packet that has been queued using
DriverPriorityQueueSupport . The C HSM calls
this function to convert an ECB to a TCB. ECB-
aware C HSMs must call this function if they need
physical addresses in the ECB fragment structure.

Syntax

#include <odi.h>
#include <<ctsm>.h>

ODISTAT <CTSM>BuildTransmitControlBlock(
DRIVER_DATA *driverData,
ECB *ech,
TCB **tch
UINT32 *pktSize);

Input Parameters

driverData
CHSM adapter data space.

Spec vl.11 - Doc v1.13

ech
Pointer to a Transmit ECB.

Output Parameters

tcb

Pointer to a pointer to the TCB to send. If the CHSM is ECB-aware and
has theMLIDCFG_ModeFlaggMM_FRAGS_PHYS_BIT set, this field
will have a pointer to an ECB with physical addresses in the fragment
structure.

| 6-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

pktSize

Padded length of the packet. This parameter is used for Ethernet only. This
parameter contains the length of the entire frame as it appears on the LAN
medium. Ethernet CHSMs give this value to the LAN adapter, which
defines the number of bytes to transmit. Ti@BDataLerfield only

describes the amount of data being passed in the TCB. In the case of
Ethernet, the frame might have been padded or evenized. For example, if
the CHSM uses DMA to transfer the TCB data to the LAN adapter’s
memory, theTCBDataL erfield tells the LAN adapter how many bytes to

Return Values

Remarks

transfer.
ODISTAT_SUCCESSFUL TCB pointer is valid. The CHSM should
transmit the TCB.
ODISTAT_OUT_OF_RESOURCES A TCB was not available. The CHSM must not

call this routine with more outstanding TCBs
than it set in the CMSMPriorityTxFreeCount
variable. The ECB is returned to the CHSM.
The CHSM must either call this function again
after a TCB resource is available, or return the
ECB via <CTSM>CancelPrioritySend .

ODISTAT_PACKET_UNDELIVERABLE A TCB was available, but the ECB created a
packet that was too large for the media. The
ECB was returned to the LSL and a TCB was
not allocated.

The CHSM should be aware of the number of TCBs available to the MLID for
priority sends. The CTSM allocates a number of TCBs based on the sum of
CMSMTxFreeCount andCMSMPriorityTxFreeCount . The CHSM must

not have more outstanding priority TCBs than was set by the CHSM using
CMSMPriorityTxFreeCount duringDriverlnit . If the CHSM makes this call
when no TCBs are available, ODISTAT_OUT_OF_RESOURCES is returned.

The CHSM does not need to do size checking on the resultant TCB. If the
packet generated is too large for the media, this function returns
ODISTAT_PACKET_UNDELIVERABLE after it returns the ECB to the LSL.
It does not return a TCB to the CHSM.

CTSM Functions 6-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

6-4

The CHSM must not change teMSMTxFreeCount for any TCB obtained
for a priority transmit. An internal counter for priority support resources should
be maintained by the CHSM.

If the CHSM needs to cancel the TCB after this function has been called, then
it should set the status field in the TCB to ODISTAT _CANCELED and call
<CTSM>SendCompleteor <CTSM>FastSendComplete

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

<CTSM>CancelPrioritySend

The CHSM calls this function to cancel/return an
ECB that has not been sent.

Syntax

#include <odi.h>
#include <<ctsm>.h>

void <CTSM>CancelPrioritySend
(DRIVER_DATA *driverData,

ECB *ech,); %
D
O
Input Parameters <
driverData H
Pointer to the CHSM’s driver adapter data space. ::
ech .
Pointer to a transmit ECB.)
o
O
Output Parameters <
None. H
~
W
Return Values
None.

CTSM Functions 6-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Remarks

The CHSM calls this function when it is canceling an ECB that was originally
accepted to be transmitted \BaiverPriorityQueueSupport .

Note‘vvl Call this function only if canceling the ECB. If the CHSM has called
<CTSM>BuildTransmitControlBlock , it should set th&CB_Stausield to
ODISTAT_CANCELED. Then it should caiCTSM>SendCompleteor

<CTSM>FastSendComplete

Spec vl.11 - Doc v1.13

| 6-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

<CTSM>FastProcessGetRCB

Syntax

Input Parameters

Called by the CHSM to process an RCB for a
received packet and to preallocate a new
nonfragmented RCB for the next packet.

#include <odi.h>
#include <cmsm.h>
#include <<ctsm>.h>

RCB *<CTSM>FastProcessGetRCB (
DRIVER_DATA *driverData,
RCB *rcb,

UINT32 pktSize,
UINT32 rcvStatus,
UINT32 newRcbSize);

driverData
Pointer to the HSM'’s driver adapter data space.

rch
Pointer to the received packet's RCB.

pkiSize
Size of the received packet including the MAC header.

rcvStatus
Status of received packet for the Receive Monitor (see

DriverPromiscuousChangein Chapter 5, "CHSM Functions").

newRcbSize
Minimum packet size for the new RCB.

CTSM Functions 6-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Output Parameters

Return Values

Remarks

Note"’

\/A

Note‘VI
v

I Note"’
\v

Spec vl.11 - Doc v1.13

Note"’
\4

See Also

None.

Pointer to a new nonfragmented RCB.

NULL No nonfragmented RCBs are available.

<CTSM>FastProcessGetRCHs called at process or privileged time.
<CTSM>FastProcessGetRCHs identical tocCTSM>ProcessGetRCB

except that before this routine returns, the RCB’s event service routine is called
to complete the processingCTSM>ProcessGetRCBused in conjunction

with CMSMServiceEventsaccomplishes the same task.

Do not call this function until the packet has been received into host memory and is
ready to be handed to the CTSM.

This functionality is not possible on any multiprocessor-capable platforms.

For some busMaster implementations, you must set the first UINT32 parameter,
starting at RCBReserved[28] (defined in CMSM.H), to the number of bytes
necessary to skip to the beginning of the packet. This value can be as high as
128 bytes for chips which have poor alignment capabilities. This field is normally
part of the reserved space in the RCB definition and can only be used with this
call for the purpose stated for this function.

If the MM_FRAGS_PHYS_BIT of th&ILIDCFG_Modeflagdield is set, the fragment
offset of the RCB contains a physical pointer to the RCB data buffer.

<CTSM>ProcessGetRCB

| 6-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

<CTSM>FastRcvComplete

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Called by the CHSM to direct a completed RCB to
the protocol stack.

#include <cmsm.h>
#include <<ctsm>.h>

void <CTSM>FastRcvComplete (
const DRIVER_DATA *driverData,
RCB *rcb);

driverData
Pointer to the HSM'’S driver adapter data space.

rch
Pointer to the received packet's RCB.

None.

None.

This routine increments thdTotalRxPacketdMTotalRxOkByteCoungnd
MTotalGroupAddrRxCourdtatistics counters as needed for ECB-aware
adapters only. On adapters that have previously calldtEM>GetRCB, the
counters will have already been incremented.

<CTSM>FastRcvCompleteis called at process or privileged time.
<CTSM>FastRcvCompleteis identical tocCTSM>RcvCompletewith the

CTSM Functions 6-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Importantv
Importantv

See Also

exception that before this routine returns, the RCB’s event service routine is
called to complete the processing. Us#@TSM>RcvCompletein
conjunction withCMSMServiceEventsaccomplishes the same task.

Normally, <CTSM>FastRcvCompleteis preferred over

<CTSM>RcvComplete <CTSM>FastRcvCompletegives the ECB directly

to the protocol stack and saves an extra queus@g§SM>RcvComplete

does not send a packet directly to the protocol stack but to the LSL, where it is
queued. Adapters that have minimal amounts of memory should use
<CTSM>RcvCompleteto help keep the adapter from overflowing the buffer
when too many packets are received.

Do not call this function until the packet has been received into host memory and is
ready to be handed to the CTSM.

This functionality is not possible on any multiprocessor capable platforms.

<CTSM>RcvComplete

6-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

<CTSM>FastRcvCompleteStatus

Syntax

Input Parameters

Output Parameters

Allows the CTSM to fill in the proper packet length
fields of the RCB, record the error status, and direct
the completed RCB to the protocol stack.

#include <odi.h>
#include <cmsm.h>
#include <<ctsm>.h>

void <CTSM>FastRcvCompleteStatus (
DRIVER_DATA *driverData,
RCB *rcb,
UINT32 packetLength,
UINT32 packetStatus);

driverData
Pointer to the HSM'’S driver adapter data space.

rch
Pointer to the received packet's RCB.

packetLength
Size of the received packet including the MAC header.

packetStatus

Status of received packet for stack monitoring functions (see
DriverPromiscuousChangein Chapter 5, "CHSM Functions").

None.

CTSM Functions 6-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Return Values

None.

Remarks

<CTSM>FastRcvCompleteStatuss identical to
<CTSM>RcvCompleteStatusexcept that before this routine returns, the
RCB'’s event service routine is called to complete the processing.
<CTSM>RcvCompleteStatusused in conjunction with
CMSMServiceEventsperforms the same task as
<CTSM>FastRcvCompleteStatus

During the RCB'’s event service routine, the state of the system interrupt mask
may change. The CHSM should preserve any needed state before calling
<CTSM>FastRcvCompleteStatusIf having interrupts enabled is

undesirable, the MLID should us€TSM>RcvCompleteStatusand wait

until the conclusion of the receive routine before servicing events.

This function is called at process or privileged time.

Important Do not call this function until the packet has been received into host memory and
is ready to be handed to the CTSM.

Importantv This functionality is not possible on any multiprocessor capable platforms.

Important Intelligent adapters that are ECB aware should use <CTSM>RcvComplete to
return the RCBs.

See Also

<CTSM>RcvCompleteStatus

6-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

<CTSM>FastSendComplete

Called by the CHSM's DriverSend or DriverISR
routine to release a TCB after a packet has been
transmitted.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <<ctsm>.h>

void <CTSM>FastSendComplete (
DRIVER_DATA *driverData,
TCB *tch,
UINT32 transmitStatus);

Input Parameters

driverData
Pointer to the HSM'’S driver adapter data space.

tcb
Pointer to the TCB.

transmitStatus

ST'IAN 200 - TT'TA dads

Used to flag whether a packet was actually sent.
0 Successful.
nonzero Undeliverable.

Output Parameters

None.

Return Values

None.

CTSM Functions 6-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Remarks

Importantv
Importantv

See Also

The MTotalTxPacketCounMTotal TxOkByteCountnd
MTotalGroupAddrTxCoungtatistics counters have been updated.

<CTSM>FastSendCompletes called at process or privileged time.
<CTSM>FastSendCompletds identical tocCTSM>SendCompletewith

the exception that before this routine returns, the TCB’s event service routine
is called to notify the upper layers that the transmission is complete. Using
<CTSM>SendCompleteandCMSMServiceEventstogether accomplishes

the same task.

Normally, <CTSM>FastSendCompletds preferred over
<CTSM>SendComplete <CTSM>FastSendCompleteggives the ECB

directly to the protocol stack and saves an extra queueing.
<CTSM>SendCompletedoes not send a packet directly to the protocol stack,
but to the LSL where it is queued. Adapters that have minimal amounts of
memory should useCTSM>SendCompleteto help keep the adapter from
overflowing the buffer when lots of packets are being sent to it.

Do not call this function until the packet has been handed to the card and the
transmission has been initialized.

This functionality is not possible on any multiprocessor capable platforms.

<CTSM>SendComplete

6-14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

<CTSM>GetConfiginfo

Syntax

Input Parameters

Output Parameters

Allows a C HSM to get the configuration
information for the <CTSM>, including module and
ODI specification versions.

#include <odi.h>
#include <cmsm.h>

ODISTAT <CTSM>GetConfigInfo(
void *configlnfo,
UINT32 *nBytes);

nBytes

Pointer to the requested number of bytes to be returned into the buffer.

configinfo

A pointer to a buffer used to receive the returned configuration
information. The caller needs to be sure that the buffer is atnBgts
bytes long.

nBytes
Pointer to the number of bytes returned in the configuration buffer.

CTSM Functions 6-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Return Values s

ODISTAT_SUCCESSFUL The configuration information of
nBytes was successfully returned in
the buffer.

ODISTAT_BAD_PARAMETER The nBytes requested was larger than

the actual configuration information
available. The number of bytes of the
configuration table actually returned is
indicated by the output parameter
nBytes.

Remarks

The configuration information is returned in the format defined by
CTSM_CONFIG_TABLE.

Spec vl.11 - Doc v1.13

| 6-16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

<CTSM>GetHSMIFLevel

Gets the interface level between the CHSM and
CTSM.

Syntax

#include <odi.h>
#include <<ctsm>.h>

UINT32 <CTSM>GetHSMIFLevel ();

Input Parameters

None.

Output Parameters

None.

Return Values

Current CHSM interface level.

Remarks

ST'IAN 200 - TT'TA dads

The current interface level is 111.

CTSM Functions 6-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

<CTSM>GetRCB

Syntax

Input Parameters

Spec vl.11 - Doc v1.13

Output Parameters

Called by the CHSM to pass lookahead data to the
CTSM, and to get a fragmented RCB for the
remainder of the packet that has been received by
the adapter.

#include <odi.h>
#include <<ctsm>.h>

RCB * <CTSM>GetRCB (
DRIVER_DATA *driverData,
UINT8 *lookAheadData,
UINT32 pktSize,

UINT32 rcvStatus,
UINT32 “*startBytes,
UINT32 *numBytes);

driverData
Pointer to the C HSM'S driver adapter data space.

lookAheadData
Pointer to the received packet header (lookahead buffer).

pkiSize
Size of the received packet including the MAC header.

rcvStatus

Status of received packet (d@averPromiscuousChangein Chapter 5,
"CHSM Functions").

startBytes

Pointer to the number of bytes to skip over from the beginning of packet.

| 6-18 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Return Values

Remarks

Note"’
\4

numBytes
Pointer to the number of bytes remaining to read.

Pointer to a fragmented RCB if this call is successful.
NULL if no fragmented RCBs are available.

This routine increments thdTotalRxPacketdMTotalRxOkByteCoungnd
MTotalGroupAddrRxCourgtatistics counters as needed.

<CTSM>GetRCB is called at process or privileged time. MLIDs that cannot
handle fragmented receive buffers should get RCBs using either
CMSMAllocateRCB or <CTSM>ProcessGetRCB

<CTSM>GetRCB uses a lookahead process where the CTSM previews the
packet header information before it gives the RCB to the CHSM. This allows
the CTSM to verify that it wants the packet before the CHSM transfers the
entire packet from the adapter to the RCB.

The RCB might be fragmented.

The adapter’s data transfer method governs how the lookahead process is
handled.

- If a programmed I/O adapter is being used, the CHSM must transfer the
packet header information from the adapter to a buffer maintained for this
purpose. The number of bytes to transfer is specified by
CMSMMaxFrameHeaderSizevhich is described in Chapter"€MSM/
CTSM Data Structures and Variablefhe CHSM must sgtacketHdrto
point to the beginning of the lookahead buffer before calling this routine.

» Ifashared RAM (memory-mapped I/O) adapter is used, the CHSM simply
pointspacketHdrto the beginning of the packet buffer in shared RAM.

On entry to this routinggacketHdrmust point to the packet’s header
information in the lookahead buffer, apacketSizenust contain the size of the
received packet. If the header information is verified, the CTSM will obtain an
RCB and use the lookahead information to fill in R@BReservefields

before it returns a pointer to the RCB.

CTSM Functions 6-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Importantv

Importantv

Bus Master Adapters

Pipeline Adapters

After obtaining the RCB, the CHSM must transfer the remainder of the packet
into the RCB fragment bufferaskipis the offset from the beginning of the
packet to start copying from, antbReadcontains the number of bytes in the
packet left to read.

The address and buffer size contained in the RCB fragment list's
FRAGMENT_STRUCT element must not be altered by the CHSM.

After the CHSM reads the rest of the packet, it must use
<CTSM>RcvCompleteandCMSMServiceEventsto return the RCB to the
LSL.

If this routine returns a NULL pointer, the CHSM should discard the received
packet.

Bus master devices require preallocated RCBs. Since preallocation is not
compatible withxCTSM>GetRCB, the CHSM for a bus mastering adapter
usesCMSMAllocateRCB and<CTSM>ProcessGetRCB

On pipeline adapters, the first part of the packet can be indicated while the rest
of the packet is still being received. This condition is indicated by setting the
contents of the packet size fieldttNUSED The CTSM assumes that at least
CMSMMaxFrameHeaderSit®ytes of the data are presented. See
<CTSM>RcvCompleteStatusfor information on returning the RCB. With
pipeline adapters, the counters are updated when
<CTSM>RcvCompleteStatusis called.

If a packet is not wantedCTSM>GetRCB will update the statistics counters
as best it can; since the packet is not wanted, there is no way to know its size
and other information for sure.

6-20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

<CTSM>ProcessGetRCB

Syntax

Input Parameters

Called by the CHSM to process an RCB for a
received packet and to preallocate a new
nonfragmented RCB for the next packet.

#include <odi.h>
#include <cmsm.h>
#include <<ctsm>.h>

RCB * <CTSM>ProcessGetRCB (
DRIVER_DATA *driverData,
RCB *rcb,

UINT32 pktSize,
UINT32 rcvStatus,
UINT32 newRcbSize);

driverData
Pointer to the HSM'’s driver adapter data space.

rcb

ST'IAN 200 - TT'TA dads

Pointer to the received packet's RCB.

pkiSize
Size of the received packet including the MAC header.

rcvStatus

Status of received packet (d@averPromiscuousChangein Chapter 5,
"CHSM Functions").

newRcbSize
Minimum packet size for the new RCB.

CTSM Functions 6-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Output Parameters

Return Values

Remarks

Spec vl.11 - Doc v1.13

Ethernet

g 622

Note"’
v

None.

Pointer to a new nonfragmented RCB.
NULL No nonfragmented RCBs are available.

The CHSM callsxCTSM>ProcessGetRCBat process or privileged time.
The CHSM must have previously copied the contents of the received packet
into the RCB data buffer.

Use this routine if the RCB was preallocated usihgSMAllocateRCB or
was obtained from a previous call to this routine.

This routine increments the following statistics counters:
MTotalRxPacketCount
MTotalRxMiscCount
MPacketRxTooBigCount
MPacketRxTooSmallCount
MTotalGroupAddrRxCount

If the adapter/MLID is ECB-aware and has already filled in all required ECB
fields as described in Chapter 4, "CMSM/CTSM Data Structures and Variables",
it should return the ECB for processing by using <CTSM>RcvCompleteStatus
and CMSMServiceEvents . If the MM_FRAGS_PHYS_BIT bit of the
MLIDCFG_ModeFlags field is set, the fragment offset of the RCB contains a
physical pointer to the RCB data buffer.

The CHSM must eventually uMSMServiceEvents which enables the
RCB'’s event service routine to complete the processing.

The CHSM starts copying the packet from the 6-byte destination field of the
media header into the RCB data buffer.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Token-Ring

FDDI

Importantv Do not call this function until the packet has been received into host memory and is

See Also

The CHSM starts copying the packet from the access control byte of the media
header into the RCB data buffer.

The CHSM starts copying the packet from the frame control byte of the media
header into the RCB data buffer.

Note Vvl For some busMaster implementations, you must set the first UINT32 parameter,
‘ starting at RCBReserved[28] (defined in CMSM.H), to the number of bytes
necessary to skip to the beginning of the packet. This value can be as high as
128 bytes for chips which have poor alignment capabilities. This field is normally
part of the reserved space in the RCB definition and can only be used with this
call for the purpose stated for this function.

ready to be handed to the CTSM.

CMSMReturnRCB

ST'IAN 200 - TT'TA dads

CTSM Functions 6-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

<CTSM>RcvComplete

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Called by the CHSM to direct a completed RCB to
the LSLs holding queue to await processing.

#include <cmsm.h>
#include <<ctsm>.h>

void <CTSM>RcvComplete (
DRIVER_DATA *driverData,
RCB *rch);

driverData
Pointer to the HSM'’S driver adapter data space.

rch
Pointer to the received packet's RCB.

None.

None.

<CTSM>RcvCompleteis called at process or privileged time. This routine
increments thdTotalRxPacketCounMTotalRxOkByteCoungnd

MTotalGroupAddrRxCourdtatistics counters for ECB_Aware adapters. Use

this routine if the CHSM gets the RCB using #E&TSM>GetRCB function
and copies the received packet into the RCB receive buffer(s).

6-24 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

When the CHSM uses this routine to queue an RCB, it must eventually use
CMSMServiceEventsto call the RCB’s event service routine and complete
the processing.

ST'IAN 200 - TT'TA dads

CTSM Functions 6-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

<CTSM>RcvCompleteStatus

Syntax

Input Parameters

Output Parameters

Allows the CTSM to fill in the packet length of the
RCB fields, record the error status, and direct the
RCB to the LSLs holding queue to await
processing.

#include <odi.h>
#include <cmsm.h>
#include <<ctsm>.h>

void <CTSM>RcvCompleteStatus (
DRIVER_DATA *driverData,
RCB *rcb,
UINT32 packetLength,
UINT32 packetStatus);

driverData
Pointer to the HSM'’S driver adapter data space.

rch
Pointer to the received packet's RCB.

packetLength
Size of the received packet including the MAC header.

packetStatus

Status of the received packet for stack monitoring functions (see
DriverPromiscuousChangein Chapter 5, "CHSM Functions").

None.

6-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Return Values

None.

Remarks

Use this routine if a pipelined adapter obtained the RCB by calling
<CTSM>GetRCB with packetSizequal totUNUSED

When the CHSM uses this routine to queue an RCB, it must eventually use the
CMSMServiceEventsmacro to call the ECB’s event service routine and
complete the processing.

This function is called at process or privileged time.

ST'IAN 200 - TT'TA dads

CTSM Functions 6-27

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

<CTSM>RegisterHSM

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Initially registers the CHSM with the CTSM and
CMSM.

#include <odi.h>
#include <<ctsm>.h>

ODISTAT <CTSM>RegisterHSM (
DRIVER_PARM *DriverParameterBlock,
MLID_CONFIG_TABLE **configTable);

DriverParameterBlock
Pointer to the driver parameter block structure.

configTable
Pointer to a pointer to the configuration table.

ODISTAT_SUCCESSFUL The CHSM was successfully registered with
the CTSM and CMSM.

ODISTAT_FAIL The CHSM was not successfully registered
with the CTSM and CMSM.

<CTSM>RegqisterHSM is called at initialization time only. The CHSM'’s
Driverlnit routine must cakCTSM>RegisterHSMwith a pointer to its driver
parameter block structuredmiverParm This routine calls the CMSM, which
performs the following tasks:

6-28 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

« Copies the driver parameter block into local data space

» Processes driver firmware variables

« Allocates the frame data space

« Copies the driver configuration table template into the frame data space

« Parses information derived from the linker definition file

ST'IAN 200 - TT'TA dads

CTSM Functions 6-29

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

<CTSM>SendComplete

Syntax

Input Parameters

Output Parameter

Return Values

Called by the CHSM's DriverSend or DriverISR
routine to return a TCB after a packet has been
transmitted.

#include <odi.h>
#include <cmsm.h>
#include <<ctsm>.h>

void <CTSM>SendComplete (
DRIVER_DATA *driverData,
TCB *tch,
UINT32 transmitStatus);

driverData
Pointer to the HSM'’S driver adapter data space.

tcb

Pointer to the TCB. If the CHSM is ECB aware, then it is a pointer to an

ECB that has been type cast to a TCB pointer.

transmitStatus
Used to flag whether a packet was really sent.
0 Successful
nonzero Undeliverable

None.

None.

6-30 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Remarks

<CTSM>SendCompleteis called at process or privileged time.
<CTSM>SendCompletecan be called before the actual transmission is
complete (a "lying send"), as long as all packet data has been transferred into
the adapter’s transmit buffer.

This function returns the packet’s TCB to the unused TCB queue and directs
the underlying transmit ECB to the LSL's service queue.

The CHSM must eventually usgMSMServiceEvents which calls the

ECB'’s event service routine. Typically, if tiiverSend routine is called to
transmit the next packet after a send complete interrupt, the interrupt service
routine should invok€MSMServiceEvents

The MTotalTxPacketCounMTotalTxOkByteCountnd
MTotalGroupAddrTxCourgtatistics counters are updated.

Note QgAY The DriverSend routine can use ECBs instead of TCBs by initializing the driver
‘v parameter block variable DriverSendWantsECBs to a nonzero value (see
Chapter 3, "CHSM Data Structures and Variables"). In this case,
<CTSM>SendComplete will simply direct the ECB to the LSL’s service queue.

CTSM Functions 6-31

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

<CTSM>UpdateMulticast

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Forces the CTSM to call DriverMulticastChange

#include <<ctsm>.h>

ODISTAT <CTSM>UpdateMulticast (
DRIVER_DATA *driverData);

driverData
Pointer to the HSM'’S driver adapter data space.

None.

ODISTAT_SUCCESSFUL The requested operation was completed
successfully.

ODISTAT_RESPONSE_DELAYED The function cannot complete
immediately; this is due to the
asynchronous nature of this function.

ODISTAT_FAIL The requested operation could not be
completed.

The CHSM can cakCTSM>UpdateMulticast at process or privileged time,
but it is generally called bpriverReset When this routine is called, it passes
the current multicast table (maintained by the CTSM) to the CHSM’s
DriverMulticastChange routine. This allows the driver to update the adapter’s
multicast address registers.

6-32 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

This routine is called by internal CTSM functions each time multicast
addresses are added to or deleted from the CMSM'’s multicast table. The MLID
can also call this routine during the CHSNDsverResetroutine.

Refer to the sections in Chapter 3, "CHSM Data Structures and Variables"
covering the following flags and variables for more information on multicast
addressing:

« MM_MULTICAST_BITbit of theMLIDCFG_ModeFlagdield is used to
indicate whether or not multicast addressing is supported.

« MF_SOFT_FILT_GRP_BI&ndMF_GRP_ADDR_SUP_BIfits of the
MLIDCFG_Flagsfield must be set appropriately to reflect the multicast
filtering mechanism used by the adapter/driver.

- The driver parameter block variab@riverMaxMulticast must be set to
reflect the maximum number of multicast addresses the adapter can
handle.

CTSM Functions 6-33

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

| 6-34 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

chapter 7

Overview

CMSM Functions

This chapter describes the C language Media Support Module (CMSM)
functions provided as tools for CHSM developers. These CMSM functions,
along with the topology-specific functions described in Chapter 6, manage the
primary details of interfacing the CHSM to the LSL and the operating system.
The functions in this chapter are media independent and handle generic
initialization and run-time issues.

The functions included in this chapter are designed to shield the MLID from
future operating system changes. These functions are definedamsne h

file. If an operating system call changes, we will modify the corresponding
functions incmsm.hThen, instead of modifying your existing CHSM, you can
simply recompile it with the newmsm.h

CMSM Functions 7-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMAddToCounter

Syntax

Input Parameters

Output Parameters

Adds a user-specified value to the counter pointed
to by STAT_TABLE_ENTRY.

#include <odi.h>
#include <cmsm.h>

void CMSMAddToCounter (
STAT_TABLE_ENTRY *statTableEntryPtr,
UINT32 value);

StatTableEntryPtr
Pointer to the statistics table entry whose counter is to be incremented by
value

value
The value to increment the counter by.

None.
Return Values
None.
Remarks
This function is intended to simplify the process of adding a value to a 64-bit
counter, but it can also be used for 32-bit counters.
7-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

See Also
CMSMiIncrCounter

For more information on STAT_TABLE_ENTRY, see the statistics table
information in Chapter 3, "CHSM Data Structures and Variables".

ST'IAN 200 - TT'TA dads

CMSM Functions 7-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMAIloc

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Used by the CHSM to allocate memory at process
time.

#include <odi.h>
#include <cmsm.h>

void *CMSMAIlloc (
CONST DRIVER_DATA *driverData,
UINT32 nbytes);

driverData
Pointer to the HSM'’S driver adapter data space.

nbytes
Number of bytes of memory to allocate.

None.

If successfulCMSMAIloc returns a pointer to the allocated space. Otherwise,
it returns NULL.

The CHSM must return the buffer allocatedd®SMAIlloc at shutdown time
usingCMSMFree.

If the driver parameter block variabriverNeedsBelow16Meds initialized
to 1 (see Chapter 3, "CHSM Data Structures and Variables"), the CMSM will
allocate memory below the 16MB boundary.

7-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

The memory allocated lyMSMAlloc is logically contiguous, but may not be
physically contiguous.

Example
[* Allocate memory for transmit buffers if using Am7990 LANCE chipset.*/

if ((configTable->MLIDCFG_ModeFlags & MM_FRAGS_PHYS_BIT) == 0) {
driverData->TxBuffers =CMSMAlloc(driverData, BUFFER_SIZE *TX_BUFFERS);
if (driverData->TxBuffers == 0) {
CMSMPrintString(configTable, MSG_TYPE_INIT_ERROR,
MSG(“073: Unable to allocate memory.\n\r”, 39), 0 ,0);
CMSMReturnDriverResources(configTable);
return-1;

CMSM Functions 7-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMAllocateMultipleRCBs

Syntax

Input Parameters

Output Parameters

Allocates a block of RCBs for packets to be
received by the CHSM.

#include <odi.h>
#include <cmsm.h>

RCB * CMSMAllocateMultipleRCBs (
const Driver_Data *driverData,
UINT32 nbytes,

UINT32 *nRCBs,
void **physicalRCB);

driverData
Pointer to the CHSM's driver adapter data space.

nbytes

Number of data bytes of memory to allocate per RCB. As this call is to be
used for preallocation of RCBs, this value should be set to the value of the
MLIDCFG_MaxFramesSize field of the configuration table (see remarks
below).

NnRCBs

Pointer to the number of RCBs to be allocated.

physicalRCB

Address of the pointer to the physical address of the first RCB in list. Set
to NULL if physical addresses are not needed.

nRCBs

Pointer to the number of RCBs actually allocated. This routine will update
the input parameter, in the case of requested RCBs equals RCBs allocated,
the value will remain the same.

7-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Return Values

Remarks

Note"’
\4

physicalRCB

Pointer to the physical address of the first RCB on the linked list of RCBs.
Set to NULL if there was an allocation error.

If successful, CMSMAllocateMultipleRCBSs returns a pointer to the first
RCB allocated in the linked list. If Unsuccessful,
CMSMAllocateMultipleRCBs returns a NULL.

If the number of RCBs available is less than nRCBs, then the procedure will
allocate as many RCBs as are available. If there are no available RCBs, then the
procedure will return a NULL, and the C MSM will increment the
NoECBAvailableCount statistics counter. If nNRCBs is zero at call time, the
procedure will return with null pointers and the NoECBAvailableCount will

not be incremented.

The returned RCBs will be nonfragmented and large enough to hold the
received packet frame. The length passed in nbytes includes the length of all
protocol and hardware headers, but does not include the size of the RCB itself.

C HSMs that support bus mastering DMA adapters may use this routine to pre
allocate blocks of RCBs. If the MM_FRAGS_PHYS_BIT bit of the
MLIDCDFG_ModeFlags field is set, PhysicalRCB will be set to the physical
address of the first RCB on the linked list, and the fragment pointer will contain
a physical pointer. After the adapter copies the packet into the fragment of the
RCB, the C HSM uses <CTSM>ProcessGetRCB to return each RCB to the C
MSM for processing and get a replacement RCB. CMSMReturnRCB can be
used to return individual unused RCBs to the CMSM without processing.
CMSMReturnMultipleRCBs can be used to return lists of unused RCBs to the
C MSM without processing them.

ST'IAN 200 - TT'TA dads

If the adapter is ECB aware (see 'Event Control Blocks (ECBs)') and has
previously filled in all the RCB fields according to the ODI specification, the
C HSM should call <CTSM>RcvComplete.

This procedure is designed for speed and performance, and does not
incorporate all of the checking found in CMSMAIllocateRCB. |If the driver
requires the RCBs to be allocated below the 16 MegaByte boundary, this
procedure should not be used.

CMSM Functions 7-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

See Also

7-8

The fields RCB->RCBDriverWS.RWs_i32val[0] and
RCB->RCBDriverWS.RWs_i32val[1] will be returned as 32 bit pointers to the
next RCB on the list. RCB->RCBDriverWS.RWs_i32val[0] will contain the
logical address of the next RCB, while RCB->RCBDriverWS.RWs_i32val[1]
will contain the physical address (when needed). The remaining operation and
description of the RCB will be unchanged.

Ethernet

The C HSM starts copying the packet from the 6-byte destination field of the
media header into the RCB RCBDataBuffer field.

Token-Ring

The C HSM starts copying the packet from the access control byte of the media
header into the RCB's RCBDataBuffer field.

FDDI

The C HSM starts copying the packet from the frame control byte of the media
header into the RCB's RCBDataBuffer field.

CMSMAllocateRCB
CMSMReturnRCB
CMSMReturnMultipleRCBs

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

CMSMAllocPages

Allocates a system, page-aligned, memory buffer
at process time.

Syntax

#include <odi.h>
#include <cmsm.h>

void *CMSMAllocPages (
const DRIVER_DATA *driverData,
UINT32 nbytes),

Input Parameters

driverData
Pointer to the CHSM’S driver adapter data space.

nbytes
Number of bytes of memory to allocate.

Output Parameters

None.

ST'IAN 200 - TT'TA dads

Return Values

If successfulCMSMAllocPagesreturns a pointer to the allocated space.
Otherwise, it returns NULL.

Remarks

The CHSM callCMSMAllocPagesat process time onlzMSMAIllocPages
returns a pointer to the allocated buffer. If the routine is unsuccessful, it returns
0. The CHSM must return this buffer at shutdown time using
CMSMFreePages

CMSM Functions 7-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

If the driver parameter block varialilziverNeedsBelow16Mag initialized to
1 (see Chapter 3, "CHSM Data Structures and Variables"), the CMSM will
allocate memory below the 16MB boundary.

Spec vl.11 - Doc v1.13

g 7/-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

CMSMAIllocateRCB

Syntax

Input Parameters

Output Parameters

Return Values

Allocates an RCB for a packet received by the
CHSM, or preallocates an RCB for a packet the
CHSM will receive.

#include <odi.h>
#include <cmsm.h>

RCB * CMSMAIllocateRCB (
const DRIVER_DATA *driverData,
UINT32 nbytes,
void **physicalRCB);

driverData
Pointer to the CHSM’S driver adapter data space.

nbytes
Number of bytes of memory to allocate.

physicalRCB

Pointer to a pointer to the RCB’s physical address. Usually, this parameter

is used only by ECB-aware, C HSMs. Set to 0 if not needed.

If successfulCMSMAIllocateRCB returns a pointer to the allocated RCB.

Otherwise, it returns NULL.

CMSM Functions 7-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Remarks

Ethernet

Token-Ring

FDDI

See Also

The returned RCB will be nonfragmented and large enough to hold the received
packet frame. The length passedbytesincludes the length of all protocol

and hardware headers. If an RCB is not available, the CTSM increments the
MNoECBAvailableCourgtatistics counter, and the CHSM discards the packet.

CHSMs that support bus mastering DMA adapters use this routine to
preallocate RCBs. In this case, the CHSM gaétgesto the maximum packet
size specified by theILIDCFG_MaxFrameSizéeld of the configuration table
before usingCMSMAllocateRCB. If the MM_FRAGS_PHYS_BIfit of the
MLIDCFG_ModeFlagdield is set. The fragment pointer will contain a
physical pointer.

After the adapter copies the packet into the fragment of the RCB, the CHSM
use<xCTSM>ProcessGetRCBo return the RCB to the CMSM. If the adapter
is ECB aware (see Appendix B, "Event Control Blocks (ECBs)") and has
previously filled in all the RCB fields according to the ODI specification, the
CHSM calls<CTSM>RcvComplete

If DriverNeedsBelow16Megf the driver parameter block is initialized to 1

(see Chapter 3, "CHSM Data Structures and Variables"), the CMSM allocates
the RCB in memory below the 16MB boundary.

The CHSM starts copying the packet from the 6-byte destination field of the
media header into the RABCBDataBuffefield.

The CHSM starts copying the packet from the access control byte of the media
header into the RCBRCBDataBuffeffield.

The CHSM starts copying the packet from the frame control byte of the media
header into the RCBRCBDataBuffefield.

CMSMReturnRCB

7-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

CMSMCancelAES

Syntax

Called to cancel an AES event.

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMCancelAES (
DriverData *driverData,
MLID_AES ECB *mlidAESECB);

Input Parameters

driverData
Pointer to the C HSM's driver adapter data space.

mlidAESECB

Pointer to the MLID_AES_ECB structure of the AES to be canceled.

Output Parameters

Return Values

Remarks

See Also

None.
ODISTAT_SUCCESSFUL Call back was successfully Canceled.
ODISTAT_BAD_PARAMETER AES was not active.

This function is called to cancel an AES event that was scheduled using
CMSMScheduleAES.

CMSMScheduleAES

CMSM Functions 7-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMControlComplete

Called to notify the CMSM that the previously
scheduled event has completed.

Syntax

#include <odi.h>
#include <cmsm.h>

void CMSMControlComplete (
DRIVER_DATA *driverData,
CHSM_COMPLETE controlFunction,
ODISTAT completionStatus);

Input Parameters

driverData
Pointer to the CHSM'S driver adapter data space.

controlFunction
The control function that has completed.

completionStatus
The return states of the completed event.

Output Parameters

None.

Return Values

None.

Remarks

This function should not be used if the CHSM can quickly and synchronously
complete all of the control functions. This function is used by the CHSM if it

7-14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

returned ODISTAT_RESPONSE_DELAYED for a given control procedure to
signal that the event completed.

Importantv You can only have one outstanding scheduled event.

CHSM_COMPLETE Enumeration

typedef enum _CHSM_COMPLETE_

{
CHSM_COMPLETE_STATISTICS,
CHSM_COMPLETE_MULTICAST,
CHSM_COMPLETE_SHUTDOWN,
CHSM_COMPLETE_RESET,
CHSM_COMPLETE_LOOK_AHEAD,
CHSM_COMPLETE_PROMISCUOUS,
CHSM_COMPLETE_MANAGEMENT,
CHSM_COMPLETE_RESERVED

} CHSM_COMPLETE;

See Also

DriverReset
DriverShutdown
DriverMulticastChange
DriverPromiscuousChange
DriverStatisticsChange
DriverRxLookAheadChange
DriverManagement

ST'IAN 200 - TT'TA dads

CMSM Functions 7-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMDeRegisterResource

Allows a C HSM to deregister resources registered
with CMSMRegisterResource

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMDeRegisterResource (
DRIVER_DATA *driverData,
EXTRA_CONFIG *extraConfig,
ECB *pAsyncECB);

Input Parameters

driverData
Pointer to the CHSM’s driver adapter data space.

extraConfig

Pointer to an EXTRA_CONFIG structure that contains the hardware
options to be deregistered. This pointer must be the same pointer used to
register the resources @MSMRegisterResource

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB®¥)) is called if
CMSMDeRegisterResourceeturns
ODISTAT_RESPONSE_DELAYED.

The ESR is called withAsyncECBas a parameter and the pAsyncECB
ECB_ Status field will contain the return value.

Other ECB fields may be used by the C HSM to store context or other
information that is needed by the ESR.

Output Parameters

None.

7-16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Return Values

Remarks

Note"’
v

ODISTAT_SUCCESSFUL

ODISTAT_BAD_PARAMETER

ODISTAT_FAIL

ODISTAT_ITEM_NOT_PRESENT

ODISTAT_RESPONSE_DELAYED

The resources contained in the
extraConfig parameter were
successfully deregistered.

An input parameter was invalid or the
call was made atinterrupttime and the
pAsyncECB parameter was a NULL.

The adapter was not in a shutdown
state before the call was made,
another C MSM API returned
ODISTAT_RESPONSE_DELAYED
and has not completed when this
routine was called, or an unknown
error occurred.

The extraConfig pointer was not found
in the list of extraConfig pointers used
in calls to CMSMRegisterResource .

The operation of de-registering
resources could not be completed at
the present time. An asynchronous
process will be scheduled to complete
the operation at a later time.

After CMSMRegisterMLID has been called, but before
CMSMDeRegisterResources called, the adapter must be placed in a
shutdown state by callingMSMShutdownMLID .

CMSMDeRegisterResourcewill deregister those resources found in

extraConfig’s substructure IOConfig. The resources must previously have
been registered throu@MSMRegisterResourcausing the same extraConfig

pointer.

If CMSMDeRegisterResourcecannot complete the operation at the present
time, an asynchronous process will be scheduled to complete the operation
later. Once the asynchronous operation is complete, the pAsyncECB’s ESR
routine will be called to report the final return value of the operation. The

return value will be stored in the pAsyncECB’s ECB_ Status field.

CMSM Functions 7-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

See Also

7-18

Upon successful return fro@MSMDeRegisterResourceor from the
asynchronous process, the CHSM is responsible for putting the adapter in a
functional state. If additional resources of an EXTRA _CONFIG nature are
required, the CHSM must caIMSMRegisterResourceto register the
additional resources.

CMSMDeRegisterResourceupon successful completion will produce a
NESL Service/Status Change event to inform consumers that the configuration
of the adapter has been updated.

CMSMRegisterResource
CMSMShutdownMLID

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

CMSMDriverRemove

Called by the CHSM's DriverRemove function to
deregister the CHSM and return all CHSM
resources allocated by the CMSM or the CTSM.

Syntax
#include <cmsm.h>

void CMSMDriverRemove (

MODULE_HANDLE *moduleHandle); (0p)
o
®
Input Parameters o
<
moduleHandle '“
The module load handle passedverinit and placed in ~
DriverModuleHandleof the driver parameter block. ~
1
Output Parameters g
None. O
<
~
Return Values .
(V)
None.

Remarks

CMSMDriverRemove calls the CHSM'PDriverShutdown routine before
returning.

CMSM Functions 7-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMECBPhysToLogFrags

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

For transmissions, if MM_FRAGS_PHYS_BIT is
set and the adapter is ECB aware, this function
gets the address of the ECB, which contains the
FRAGMENT _LIST_STRUCTURE of the logical
addresses of the fragments in the ECB.

#include <odi.h>
#include <cmsm.h>

ECB *CMSMECBPhysToLogFrags (
ECB *ecb);

ech
Pointer to an ECB structure.

None.

Pointer to an ECB structure containing logical addresses for the ECB
fragments.

You cannot assume that the fragment pointers have a one-to-one

correspondence. Because the physical pointers point to fragments that are
physically contiguous, there can be more fragments in the physical list than in

the logical list.

The ECBSECB_PreviousLinlandECB_ESKields must not be changed.

7-20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

The ECB containing a FRAGMENT_LIST_STRUCTURE of logical

addresses acquired with this function is not returned directly to the system by
the HSM. The TSM returns it to the system when one of the Send Complete
APIs has been called for the ECB passed in as the input parameter for this
function. Once a Send Complete API has been called, the HSM no longer has
ownership of either ECB and must not reference or modify either ECB.

FRAGMENT_LIST_STRUCT Structure

typedef struct FRAGMENT_LIST_STRUCT_

{
UINT32 FragmentCount;

FRAGMENT_STRUCT FragmentStruct;
) FRAGMENT_LIST_STRUCT;

Field Descriptions:

FragmentCount
The number of fragments.

FragmentStruct
Specifies a fragment structure.

ST'IAN 200 - TT'TA dads

CMSM Functions 7-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMEnablePolling

Used during Driverlnit to enable the operating
system to periodically call DriverPoll if the CHSM’s
board service routine is poll-driven.

Syntax

#include <cmsm.h>

ODISTAT CMSMEnablePolling (
const DRIVER_DATA *driverData);

Input Parameters

driverData
Pointer to the CHSM’s driver adapter data space.

Output Parameters

None.
Return Values
ODISTAT_SUCCESSFUL The requested operation was
completed successfully.
ODISTAT_BAD_PARAMETER The DriverPollPtr field of

DriverParameterBlock is set to NULL.

Remarks
TheDriverPoll routine polls the adapter to determine if any send or receive
events have occurred. An implied input from BréverPollPtr field of the
driver parameter block points to the function to be called.

Importantv This routine will not relinquish control to other procedures during execution.

B 722 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

See Also

CMSMGetPollSupportLevel
CMSMSetHardwarelnterrupt

CMSM Functions 7-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMFree

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Must be used by the CHSM before it permanently
shuts down, to return any memory allocated with
CMSMAIlloc or CMSMiInitAlloc .

#include <cmsm.h>

void CMSMFree (
const DRIVER_DATA *driverData,
void *dataPtr);

driverData

Pointer to the CHSM's driver adapter data space. This parameter must
contain NULL if memory was allocated usi@VSMInitAlloc .

dataPtr
Pointer to the data allocated usi@lylISMAIlloc or CMSMInitAlloc .

None.

None.

CMSMFree must be called at process time.

7-24 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Example
The following code is used DriverShutdown.

if (shutdownType == PERMANENT_SHUTDOWN) {
if (driverData->xyzBuffers) {
CMSMFree(driverData, driverData->xyzBuffers);
driverData->xyzBuffers = 0;

}
DMACIleanup((UINT32)configTable->MLIDCFG_DMALIine0);

ST'IAN 200 - TT'TA dads

CMSM Functions 7-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMFreePages

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Returns the system, page-aligned memory buffers
allocated by CMSMAllocPages .

#include <cmsm.h>

void CMSMFreePages (
const DRIVER_DATA *driverData,
void *dataPtr);

driverData
Pointer space.

dataPtr
Pointer to the memory allocated usi@lylSMAIllocPages

None.

None.

CMSMFreePagesmust be called at process time.

If the CHSM allocates memory usi@MSMAllocPages, this function must
be called before the CHSM is permanently shut down.

7-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

CMSMGetAlignment

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Called to obtain the alignment requirements of the
underlying platform.

#include <odi.h>
#include <cmsm.h>

UINT32 CMSMGetAlignment (
UINT32 type);

type
0 - alignment requirement
1 - best case alignment
Other - undefined

None.

ST'IAN 200 - TT'TA dads

Power of 2 byte boundary data alignment requirement.

If typeequals 0, this function returns the worst-case data alignment
requirement of the data object involved in the 1/O transfer. This arbitrary type
allows the platform to function without exceptions or corrupted data.

All operations and "real world" use of these operations should be considered in
determining this value. That is, if DMAIing into an arbitrary memory location
can cause data corruption due to noncoherent caching, then this function should
return a value equal to at least the cache line size. Without this function, you

CMSM Functions 7-27

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

7-28

cannot write platform-independent DMA code, since the code cannot
determine what characteristics it must meet.

If typeis equal to 1, this function returns the data alignment requirement for the
platform to function at its best performance.

The value returned faypeequal to 0 should always be less than or equal to the
value returned fotypeequal to 1.

For most Intel processor based platfortypeequal to 0 should return a 0 and
typeequal to 1 should return the bus width of the processor (4 for a 386 or 486).
An HP PA-RISC machine should return 32 for biyghe equal to 0 antlype

equal to 1, due to the requirements of the memory cache.

Before using this function, compile your CHSM using the #define for your
hardware type. #defines are found in the file: PORTABLE.H.

Example:

- #define IAPX386

« #define MC680X0

» #define MC88000 (Motorola RISC)

« #define RX000 (MIPS)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

CMSMGetBusInfo

Returns the size of the bus addresses associated
with busTag.

Syntax

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetBuslInfo (
void *busTag,
UINT32 *physicalMemAddrSize,
UINT32 *ioAddrSize);

Input Parameters

busTag

Architecture-dependent value, returneddiMSMSearchAdapter or
CMSMScanBusinfo, that identifies a specific bus.

Output Parameters

physicalMemAddrSize

ST'IAN 200 - TT'TA dads

The size in bits of a physical address on the bus specifieddlyag

ioAddrSize
The size in bits of an I/O address on the bus specifidtibyag

Return Values

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_ITEM_NOT_PRESENT The specified bus does not exist.

CMSM Functions 7-29

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMGetBusSpecificlnfo

Syntax

Input Parameters

Output Parameters

Returns supplementary information about the
specified bus.

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetBusSpecificnfo (
VOID *busTag,
UINT32 size
VOID *busSpecificinfo);

busTag
Architecture-dependent value, returneddiMSMSearchAdapter or
CMSMScanBusinfo, that identifies a specific bus.

size
The size of the caller’s buffer, pointed to limysSpecificinfo

busSpecificinfo
Pointer to the buffer whose size is an input parameter.

7-30 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Return Values

ODI_NBI_SUCCESSFUL The operation was completed successfully.
ODI_NBI_UNSUPPORTED_OPERATION The bus has no supplementary information to
return.
ODI_NBI_PARAMETER_ERROR An input parameter was invalid.
Remarks

The following information is returned for the specified bus:

PnP ISA Bus
size 48
busSpecificinfo (as follows)

struct ISAInfoStructure

{
UINT32 PnPISABIOSPresentFlag;
UINT16 PnPISABIOSMajorVer;
UINT16 PnPISABIOSMinorVer;
UINT16 PnPISABIOSRevision;
UINT32 PnPISACMPresentFlag;
UINT32 PnPISACMType;
UINT16 PnPISACMTypeMajorVer;
UINT16 PnPISACMMinorVer;
UINT16 PnPISACMRevision;
UINT32 NetFrameFlag;
UINT32 NonATCompatibleFlag;
UINT32 HardwareLoaderID;
UINT32 ISAInfoReserved];
UINT32 ISAInfoReserved?;
UINT32 ISAInfoReserved3;

ST'IAN 200 - TT'TA dads

CMSM Functions 7-31

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

PC Card and CardBus Buses

The following CardBus definition applies only to hardware usihg the
common silicon method defined by tBardBus PC Card/PCI Common
Silicon Requiremeniguideline. For CardBus adapters using the common
silicon method, refer to the definition for the PCI Bus.

size 40
busSpecificinfo (as follows)

struct PCCardInfoStructure

{
UINT32 CSPresentFlag;
UINT32 CSType;
UINT16 CSVendorMajorVer;
UINT16 CSVendorMinorVer;
UINT8 *CSVendorNamePtr;
UINT16 CSinterfaceLevelMajorVer;
UINT16 CSinterfaceLevelMinorVer;
UINT32 CSNumberOfSockets;
UINT32 PCCardinfoReservedO;
UINT32 PCCardinfoReserved1l;
UINT32 PCCardinfoReserved?2;
UINT32 PCCardIinfoReserveds3;

Spec vl.11 - Doc v1.13

B 732 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

PCI Bus
size 32
busSpecificinfo (as follows)

struct PClInfoStructure

{
UINT32 PCIBIOSPresentFlag;
UINT16 PClinterfaceLevelMajorVer;
UINT16 PClinterfaceLevelMinorVer;
UINT32 PCIHardwareMechanism;
UINT32 LastPCIBusInSystem;
UINT32 PClinfoReservedO;
UINT32 PClIinfoReservedil;
UINT32 PClIinfoReserved2;
UINT32 PClinfoReserveds3;

ST'IAN 200 - TT'TA dads

CMSM Functions 7-33

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMGetBusType

Syntax

Input Parameters

Output Parameters

7-34

Note"’
\4

Returns a value that indicates the bus type of the
bus specified by busTag.

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetBusType (
void *busTag,
UINT32 *busType);

busTag

Architecture-dependent value, returneddiMSMSearchAdapter or
CMSMScanBusinfo, that identifies a specific bus.

busType (Defined in odi_nbi.h)

A value that indicates the type of bus.
The ODI_BUSTYPE_CARDBUS type value is used only for hardware not using
the common silicon method defined by the CardBus PC Card/PCI Common

Silicon Requirements guideline. For CardBus adapters using the common
silicon method refer to the ODI_BUSTYPE_PCI type value.

The following bus type values are the defined:

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Type Value Bus
ODI_BUSTYPE_ISA ISA/ISA PnP bus
ODI_BUSTYPE_MCA Micro Channel bus
ODI_BUSTYPE_EISA EISA bus

ODI_BUSTYPE_PCMCIA PCMCIA bus
ODI_BUSTYPE_PCI PCI bus
ODI_BUSTYPE_NUBUS NuBus bus
ODI_BUSTYPE_OFM Open Firmware motherboard
ODI_BUSTYPE_VESA VESA Local bus
ODI_BUSTYPE_CARDBUS CardBus bus

Return Values

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.
ODI_NBI_PARAMETER_ERROR busTag is invalid.

Remarks

This function returns a value indicating the bus type of the specified bus. All
instances of a particular bus type return the same value. For example, all EISA
buses return ODI_BUSTYPE_EISA.

CMSM Functions 7-35

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMGetCardConfiginfo

Syntax

Retrieves and returns configuration information for
bus architectures that keep information on a per
device basis.

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetCardConfiginfo (

void *busTag,
UINT32 uniqueldentifier,
UINT32 size,

UINT32 parm1l,
UINT32 parm2,
void *configInfo);

Input Parameters

7-36

busTag
Architecture-dependent value, returnedd@MSMSearchAdapter, that
identifies a specific bus.
uniqueldentifier
Architecture-dependent value returned@yiSMGetUniqueldentifier
or CMSMSearchAdapter that identifies a specific device or function.
size
Number of bytes to be returned into the configuration buffer.
parml

A bus architecture-dependent value that further specifies what information
is to be returned, independent of the particular platform (because it is
platform independent) and independent of what adapter is described by
this information.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

parm2

Architecture-dependent value that further specifies what information is to
be returned, independent of the particular platform (because it is platform
independent) and independent of what adapter is described by this

information.

Output Parameters

Return Values

Remarks

configinfo

A pointer to a buffer used to receive the returned information. The caller

needs to be sure that the buffer is at Isestbytes long.

ODI_NBI_SUCCESSFUL

ODI_NBI_PARAMETER_ERROR

ODI_NBI_UNSUPPORTED_OPERATION

ODI_NBI_ITEM_NOT_PRESENT

ODI_NBI_FAIL

ODI_NBI_BUS_SPECIFIC_ERROR

The requested operation was
completed successfully.

One of the parameters was invalid.

busTag denotes a bus type that has
no configuration information.

The uniqueldentifier that was passed
in has no card present.

All of the input parameters appeared
to be valid, but the operation could not
be completed.

A bus specific error occurred.

Call CMSMGetCardConfiginfo only if busTagidentifies a bus whose

architecture keeps configuration information on a per-device basis. It is the
caller’s responsibility to know how much and what sort of information is
returned, so thatonfiginfois set pointing to a sufficiently large space and the

resulting information can be interpreted.

parmlandparm2are defined on a per bus architecture basis. In other words,
their meanings must be the same on all implementations of a particular bus, but
will vary from one bus to another. One or both of these parameters can be

unused, and if unused, must be set to 0.

CMSM Functions 7-37

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001

January 29, 1998

ST'IAN 200 - TT'TA dads

The parameter values for the specified bus types are as follows:

EISA Bus
size 320
parml EISA configuration block number
parm2 n/a
configinfo Filled in with EISA configuration information for the specified
uniqueldentifier.

For a definition of the information returned, see H8A Specification

™

‘\! Micro Channel Bus

~

> size 8

8 parml n/a

Q parm2 n/a

1 configinfo Filled in with 1/O port values from POSO - POS7 (100h - 107h)

~ for the uniqueldentifier specified.

~

:' For a definition of the information returned, seePeesonal System/2
Hardware Interface Technical Reference

O

QO

Q PCI Bus

) _
size 256
parm n/a
parm2 n/a
configinfo Filled in with PCI configuration information for the specified

uniqueldentifier.
For a definition of the information returned, see®& Local Bus
Specification
_—

| 7-38 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

PNP ISA

size 512
parml n/a
parm2 n/a
configinfo Filled in with Plug and Play configuration information for the

specified uniqueldentifier. The
CMSM_PNP_ISA_CONFIG_INFO structure defines the
information returned as follows:

typedef struct _CMSM_PNP_ISA_CONFIG_INFO_
{
UINT32 CPNPBusID;
UINT32 CPNPDevicelD;
UINT32 CPNPSerialNumber;
UINT32 CPNPLogicallD;
UINT32 CPNPFlags;
UINTS8 CPNPCSN;
UINTS8 CPNPLogicalDevNum;
UINT16 CPNPReadDataPort;
UINT16 CPNPNumMemWindows;
UINT32 CPNPMemBase[CMAX_MEM_REGS];
UINT32 CPNPMemLengthlCMAX_MEM_REGS];
UINT16 CPNPMemAttrib[CMAX_MEM_REGS];
UINT16 CPNPNumlIOPorts;
UINT16 CPNPIOPortBase[CMAX_IO_PORTS];
UINTS8 CPNPIOPortLength[CMAX_10_PORTS];
UINT16 CPNPNumIRQs;
UINTS8 CPNPIRQRegisters[CMAX_IRQS];
UINT8 CPNPIRQALtrib[CMAX_IRQS];
UINT16 CPNPNumDMAS;
UINT8 CPNPDMALIstfCMAX_DMAS];
UINT16 CPNPDMAALttrib[CMAX_DMAS];
UINT8 CPNPVendorDefined[CMAX_VDS];
} CMSM_PNP_ISA_CONFIG_INFO;

CMSM Functions 7-39

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

PC Card (PCMCIA) Bus

size The size of the buffer needed to contain the information defined by parm2.

parml The size of the information requested from the Card Services API,
GetConfigurationinfo . The valid values are 37 or 42.

Note: If this call returns ODI_NBI_PARAMETER_ERROR, it may be because
42 bytes were requested, but the version of Card Services only supports 37
bytes.

parm?2 The order and type of information to be returned in the configinfo buffer. The
following values are valid for parm2:

ODI_DEFAULT_INFO

The configinfo buffer will contain the following default information:

e 37 or 42 bytes of information returned by the Card Services API,
GetConfigurationinfo

« Attribute memory space equal to the amount of space remaining in
the configinfo buffer

ODI_IO_MEMORY_WINDOWS

If the size of the information returned by the Card Services API,
GetConfigurationinfo, is 42 bytes, the configinfo buffer will contain:

¢ The 42 bytes of information returned by the Card Services API,
GetConfigurationinfo

¢ If there are I/O windows or memory windows, the window information
is placed in the configinfo buffer as 18 byte blocks (one 18 byte block
for each window). The first thirteen bytes of information is returned by
the Card Services API, GetFirstWindow or GetNextWindow .

For memory windows, the remaining five bytes of information is
returned by the Card Services API, GetMemPage .

For I/O windows, the remaining five bytes are zero.

¢ Attribute memory space equal to the amount of space remaining in the
configlnfo buffer.

7-40 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

configinfo

CardBus Bus

Note"’
v

size

parml

parm2

configinfo

If the size of the information returned by the Card Services API,
GetConfigurationinfo , is 37 bytes, the configinfo buffer will contain:

« The 37 bytes of information returned by the Card Services API,
GetConfigurationinfo

« Attribute memory space equal to the amount of space remaining in
the configinfo buffer.

The information returned is determined by the parmZ2 input parameter.

For a definition of the information returned, $&@ Card Standards

The following CardBus definition applies only to hardware not using the
common silicon method defined by the CardBus PC Card/PCI Common Silicon
Requirements guideline. For CardBus adapters using the common silicon
method, refer to the definition for the PCI Bus.

The size of the buffer needed to contain the information defined by parm1,
parm2, and the desired amount of CIS memory.

The size of the information requested from the Card Services API,
GetConfigurationinfo . The valid values are 37 or 42.

Note: If this call returns ODI_NBI_PARAMETER_ERROR, it may be because
42 bytes were requested, but the version of Card Services only supports 37
bytes.

The size of the PCI configuration space requested. The maximum size
available is 256 bytes.
The configinfo buffer will contain:

¢ The number of bytes specified by parm1 of information returned by
the Card Services API GetConfigurationInfo

« The number of bytes specified by parm2 of PCI configuration space.

¢ CIS memory space equal to the amount of space remaining in the
configlnfo buffer.

For a definition of the information returned, $8€ Card Standardand the
PCI Local Bus Specification.

CMSM Functions 7-41

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMGetConfiginfo

Syntax

Allows a C HSM to get the configuration
information for the C MSM, including module and
ODI specification versions.

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMGetConfiglnfo(
void *configInfo,
UINT32 *nBytes);

Input Parameters

nBytes
Pointer to the requested number of bytes to be returned into the buffer.

Output Parameters

7-42

configinfo

A pointer to a buffer used to receive the returned configuration
information. The caller needs to be sure that the buffer is at least nBytes
bytes long.

nBytes
Pointer to the number of bytes returned in the configuration buffer.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Return Values

ODISTAT_SUCCESSFUL The configuration information of
nBytes was successfully returned in
the buffer.

ODISTAT_BAD_PARAMETER The nBytesrequested was larger than

the actual configuration information
available. The number of bytes of the
configuration table actually returned
in the buffer is indicated by the output
parameter nBytes.

Remarks

The configuration information is returned in the format defined by
CMSM_CONFIG_TABLE.

See Also

<CTSM>GetConfiginfo

CMSM Functions 7-43

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMGetCurrentTime

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Determines the elapsed time (using the current
relative time) for some of the CHSM-related
activities.

#include <odi.h>
#include <cmsm.h>

UINT32 CMSMGetCurrentTime (void);

None.

None.

A 32-bit value in 1/18 second clock ticks.

The value returned at the start of an operation subtracted from the current time
is the elapsed time in 1/18th-second clock ticks. (This timer requires over 7
years to roll over.) For finer resolution, US&SMGetMicroTimer .

7-44 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Example

See Also

UINT32 timel, time2, elapsedTime;

elapsedTime = 0;

timel = CMSMGetCurrentTime ();

[* wait for 1 second */

while (elapsedTime < 18)

{
time2 = CMSMGetCurrentTime();
elapsedTime = time2 - timel,;

CMSMGetMicroTimer

Part Number: 107-000053-001
January 29, 1998

CMSM Functions 7-45

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMGetHINFromHINName

Syntax

Gets the Hardware Instance Number (HIN)
associated with a HIN name.

#include <odi.h>
#include <chsm.h>
#include <odi_nbi.h>

ODI_NBI CMSMGetHINFromHINName (
MEON_STRING *hinName,
UINT16 *hin);

Input Parameters

hinName

Pointer to a NULL terminated string which represents the HIN name. The
string (including the termination) can not exceed
MAX_HIN_NAME_SIZE.

Output Parameters

hin
HIN associated with the HIN name.

Return Values

7-46

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PARAMETER_ERROR The specified HIN name is
invalid.

ODI_NBI_UNSUPPORTED_OPERATION This function is not available.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Remarks

The HIN name is compared with existing HIN names in the system and the
corresponding HIN is returned.

See Also

CMSMGetHINFromHINName

ST'IAN 200 - TT'TA dads

CMSM Functions 7-47

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMGetHINNameFromHIN

Syntax

Gets the name associated with a Hardware
Instance Number (HIN).

#include <odi.h>
#include <chsm.h>
#include <odi_nbi.h>

ODI_NBI CMSMGetHINNameFromHIN (
UINT16 hin,
MEON_STRING *hinName);

Input Parameters

hin
The HIN for which the name is being requested.

Input/Output Parameters

hinName

Pointer to a buffer (provided by the caller) of MAX_HIN_NAME_SIZE
that receives the NULL terminated HIN name string.

Return Values

7-48

ODI_NBI_SUCCESSFUL The requested operation was completed
successfully.

ODI_NBI_INSTANCE_NONEXIST The specified HIN is invalid.
ODI_NBI_NO_INSTANCENAME_AVAIL No name is associated with the specified HIN.

ODI_NBI_UNSUPPORTED_OPERATION This function is not available.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Remarks
The HIN name may be used in displaying hardware instance information to a
user.
The HIN name is returned in uppercase and is not translatable.

See Also

CMSMGetHINNameFromHIN

ST'IAN 200 - TT'TA dads

CMSM Functions 7-49

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMGetIinstanceNumber

Syntax

Input Parameters

Output Parameters

Retrieves the instance number of the specified
device or function on the specified bus.

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetInstanceNumber (
VOID *busTag
UINT32 uniqueldentifier,
UINT16 *instanceNumber);

busTag
Architecture-dependent value, returnedd@MSMSearchAdapter, that
identifies a specific bus.

uniqueldentifier

Architecture-dependent value returned@ySMGetUniqueldentifier,
or CMSMSearchAdapter that uniquely identifies a specificed device
function.

instanceNumber

Address to return the instance number of the device or function. Instance
numbers are unique across all buses on the system.

7-50 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Return Values

ODI_NBI_SUCCESSFUL The operation was completed
successfully.

ODI_NBI_PARAMETER_ERROR An input parameter was invalid.

Remarks

There is a one-to-one correspondence between the bus tag and the unique
identifier pairs and the instance number. You can think of an instance
number as a logical slot number. If an adapter contains just one function,
the instance number is equivalent to the adapter’s physical slot number.
Instance numbers are unique across all buses and devices on the system.
They are generated or determined by the NBI and are consistent across
system boots.

ST'IAN 200 - TT'TA dads

CMSM Functions 7-51

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMGetinstanceNumberMapping

Retrieves the bus tag and unique identifier
associated with the specifed instance number.

Syntax

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetInstanceNumberMapping (
UINT16 instanceNumber,
VOID **busTag
UINT32 *uniqueldentifier);

Input Parameters

instanceNumber
The instance number of the device or function.

Output Parameters

busTag
Address to put the instance’s bus tag

uniqueldentifier
Address to put the unique identifier.

Return Values

ODI_NBI_SUCCESSFUL The operation was completed successfully.
ODI_NBI_PARAMETER_ERROR An input parameter was invalid.

7-52 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Remarks

CMSMGetinstanceNumberMapping is the inverse of
CMSMGetlnstanceNumber. It retrieves the bus tag and unique identifier
associated witht the specified instance number.

There is a one-to-one correspondence between bus tag and unique identifier
pairs and instance number. You can think of an instance number as a logical
slot number. If an adapter contains just one function, the instance number is
equivalent to the adapters physical slot number. Instance numbers are unique
across all buses and devices on the system. They are generated or determined
by the NBI and are consistent across system boots.

ST'IAN 200 - TT'TA dads

CMSM Functions 7-53

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMGetMicroTimer

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Returns a counter that is incremented once per
microsecond.

#include <odi.h>
#include <cmsm.h>

UINT32 CMSMGetMicroTimer (void);

None.

None.

A 32-bit, one-microsecond clock value.

CMSMGetMicroTimer reads a time counter and returns the value. Elapsed
time can be calculated by executing this function twice and subtracting the first
returned value from the second.

7-54 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

CMSMGetPhysical

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Note"’
\4

Converts a logical address to a physical one.

#include <cmsm.h>

void *CMSMGetPhysical (
void *logicalAddr);

logicalAddr

Pointer to the logical address to be converted into a physical address.

None.

Returns a physical address.

If the MM_FRAGS_PHYS_BIBit of theMLIDCFG_ModeFlagdield is set,
this call is needed only &triverInit time to pass the control information in
memory to the adapter. This is because ECB fragment pointers are set to
physical addresses.

No buffer length is associated with the addresses.

CMSM Functions 7-55

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMGetPhysList

Syntax

Input Parameters

Output Parameters

Obtains the physical address list equivalent of the
input LogicalAddress list.

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMGetPhysList(
UINT32inputFragCount,
FRAGMENT_STRUCT*inputFragList,
UINT32*outputFragCount,
FRAGMENT_STRUCT*outputFragList
DRIVER_DATA*driverData);

inputFragCount

The number of fragments inputFragList
inputFragList

Pointer to the input fragment list.

driverData
Pointer to the CHSM’s driver adapter data space.

outputFragCount
The number of fragments outputFragList

outputFragList
Pointer to the output fragment list.

7-56 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL Output list was successfully
generated.

ODISTAT_FAIL Output list failed because the
maximum number of fragments was
exceeded.

This function assumes that the pages containing the logical addresses are
locked in memory.

This function generates an output physical address fragment list equivalent to
the input logical address fragment list. However, a one-to-one correspondence
between the input list and the output list is not guaranteed due to potentially
non-contiguous logical memory. As a result, the number and the size of the
fragments in the output list may differ from those in the input list.

The input list must ndte greater than 16 fragments, but the output buffer must
be large enough to accommodate 16 fragments.

CMSM Functions 7-57

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMGetPollSupportLevel

Allows a polled driver/adapter to ascertain the level
polling supported by the operating system.

Syntax
#include <odi.h>
#include <cmsm.h>

UINT32 GetPollSupportLevel (void);

Input Parameters

None.

Output Parameters

None.

Return Values

0 The environment does not support polling.
Polling procedures will never be called. The
adapter should use interrupts only.

1 Limited support for polling. Polling procedures
will be called infrequently. The adapter should
use interrupts.

2 Polling is fully supported. However, interrupt
backup is still recommended due to periods
where polling is infrequent.

3 Polling is fully supported. No interrupt backup
is required.

7-58 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Remarks
The CHSM use&etPollSupportLevelto ascertain whether the adapter driver
should be purely interrupt driven, purely poll driven, or a mixture of interrupt
and polling with preference given to polling.

Call this routine only at process time. This routine runs to completion.

ST'IAN 200 - TT'TA dads

CMSM Functions 7-59

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMGetUnigueldentifier

Syntax

Input Parameters

Output Parameters

Returns a value which uniquely identifies the
device or function of an adapter for the specified
input parameters.

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetUniqueldentifier (
void *busTag,
UINT32 *parameters,
UINT32 parameterCount,
UINT32 *uniqueldentifier);

busTag
Architecture-dependent value, returnedd@MSMSearchAdapter, that
identifies a specific bus.

parameters
A bus-architecture-dependent array of UNIT32 parameters that are needed
to generate a unique identifier. These parameters specify values such as
the slot and the function.

parameterCount
The number of elements in the parameter array being passed in.

uniqueldentifier

Architecture-dependent value that uniquely identifies a specific device on
an adapter.

7-60 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Return Values

Remarks

ODI_NBI_SUCCESSFUL The device or function was found
and uniqueldentifier was retuned.

ODI_NBI_PARAMETER_ERROR An input parameter was invalid.

ODI_NBI_UNSUPPORTED_OPERATION busTag specifies a bus type that has

no configuration information.

This function allows physical parameters to be used in identifying adapters
placed in physical slots. It also allows the functions on the adapter to be
converted to system architecture-dependent values required in operating the
adapter. Unique identifiers are interpreted only by other NBI functions. The
caller views each as a magic cookie with no predefined format.
CMSMGetUniqueldentifierParameters does the inverse of this function.

The parameter values for each bus type are as follows:

ISA Bus

N/A
MCA Bus

parameterCount 1

parameters[0] Physical slot number
EISA Bus

parameterCount 1

parameters[0] Physical slot number

PC Card (PCMCIA) Bus
parameterCount 1

parameters[0] For single function cards, the physical socket
number (1-based). For multiple function cards,
the function number (1-based) is in the least
significant byte, and the physical socket number is
in the next byte.

CMSM Functions 7-61

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

g 762

PCI Bus
parameterCount 2

parameters [0] Zero (PCI BIOS version 2.0), physical slot number
(PCI BIOS version 2.1)

parameter[1] Bus/device/function number combination equivalent
to the value returned from the PCI BIG®dDevice
function.
PnP ISA Bus (ODI_BUSTYPE_ISA)

parameterCount 2

parameter[0] Card Select NumbdCSN) is in the least significant
byte and the Logical Device Number is in the next
byte.
31 16 15 8 7 0
0 ‘ Logical Device Number CSN
parameter[1] Read Data Port
31 16 15 0
0 ‘ Read Data Port

CardBus Bus

Note‘VvI The following CardBus definition applies only to hardware not using the
common silicon method defined by the CardBus PC Card/PCI Common Silicon
Requirements guideline. For CardBus adapters using the common silicon

method, refer to the definition for the PCI Bus.

parameterCount 2

parameters[0] For single function cards, the physical socket number
(1-based). For multiple function cards, the function
number (1-based) is in the least significant byte, and
the physical socket number is in the next byte.

parameter[1] Bus/device/function number combination equivalent
to the value returned from the PCI BIG®BdDevice
function.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

CMSMGetUniqueldentifierParameters

Returns the bus-specific information about the
device or the function represented by the given
unique identifier.

Syntax

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetGetUniqueldentifierParameters (
VOID *busTag,
UINT32 uniqueldentifier,
UINT32 parameterCount,
UINT32 *parameters);

Input Parameters

busTag
Architecture-dependent value, returneddiMSMSearchAdapter,
which specifies the bus on which the operation is to be performed.
uniqueldentifier

Architecture-dependent value; returned by
CMSMGetlinstanceNumberMapping, CMSMGetUniqueldentifier , or
CMSMSearchAdapter; that uniquely identifies a specific device or
function.

parameterCount

The number of elements in the parameter array to be filled in.

Output Parameters

parameters

An array of UINT32 values to be filled in with the bus architecture-
dependent parameters represented by the specifed unique identifier. (See
CMSMGetUniqueldentifier for the format.)

CMSM Functions 7-63

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Return Values

ODI_NBI_SUCCESSFUL The operation was completed successfully.

ODI_NBI_UNSUPPORTED_OPERATION The bus has no supplementary information to
return.

ODI_NBI_PARAMETER_ERROR An input parameter was invalid.

Remarks

This function is called for a bus which stores bus-specific information.

Spec vl.11 - Doc v1.13

j /64 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

CMSMHardwareFailure

Called to report a critical or fatal hardware error.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMHardwareFailure (
DRIVER_DATA *driverData,
UINT32 failureType,
MEON_STRING *failMsgString);

Input Parameters

driverData
Pointer to the C HSM's driver adapter data space.

failureType
NOTIFY_CRITICAL

The CHSM encountered an adapter hardware problem and failed to
recover using the available hardware reset capabilities; however, the
system may be able to restore the hardware to a functional state.

NOTIFY_FATAL

The CHSM was able to detect a hardware failure, but cannot recover
from it.

NOTIFY_DEGRADED
The CHSM has experienced a hardware failure, but is still functional.

failMsgString

Pointer to a NULL terminated string describing the failure. The C MSM
will print this string.

CMSM Functions 7-65

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Output Parameters

Return Values

Remarks

Spec vl.11 - Doc v1.13

None.

ODISTAT_SUCCESSFUL The operation completed successfully.

The C HSM calls this routine to report hardware errors.

NOTIFY_FATAL should be reported if the C HSM was able to detect a
hardware failure, but cannot recover from it.

NOTIFY_CRITICAL should be reported if the C HSM has encountered an
adapter hardware problem and failed to recover using the available hardware
reset capabilities, but the system may be able to restore the hardware to a
functional state, using platform or media specific recovery procedures. For
example, on some platforms it may be possible to power cycle the adapter.

NOTIFY_DEGRADED should be reported if the hardware has experienced a
failure, but is still functional.

| 7-66 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

CMSMiIincrCounter

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

See Also

Increments the counter pointed to by
STAT _TABLE_ENTRY by 1.

#include <odi.h>
#include <cmsm.h>

void CMSMiIncrCounter (
STAT_TABLE_ENTRY *statTableEntryPtr);

statTableEntryPtr

Pointer to the statistics table entry whose counter is to be incremented by 1.

None.

None.

This function is intended to simplify the process of incrementing a 64-bit
counter, but it can also be used for 32-bit counters.

CMSMAddToCounter

For more information on STAT_TABLE_ENTRY, see the statistics table
information in Chapter 3, "CHSM Data Structures and Variables".

CMSM Functions 7-67

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMinitAlloc

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Used by CHSMs if they must allocate memory prior
to calling CMSMRegisterHardwareOptions

#include <odi.h>
#include <cmsm.h>

void * CMSMinitAlloc (
UINT32 nbytes);

nbytes
Number of bytes of memory to allocate.

None.

If successfuCMSMiInitAlloc returns a pointer to the allocated space.
Otherwise, it returns a NULL.

CHSMs must use theMSMinitAlloc routine if they must allocate memory
prior to callingCMSMRegisterHardwareOptions. TheCMSMFree routine
releases the buffer any time af@vISMRegisterHardwareOptions is called.

If DriverNeedsBelow16Megf the driver parameter block is initialized to 1
(see Chapter 3, "CHSM Data Structures and Variables"), the CMSM attempts
to allocate memory below the 16MB boundary.

7-68 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

CMSMinitParser

Initializes the parser.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <parser.h>

ODISTAT CMSMiInitParser(
DRIVER_PARM_BLOCK *hsmParmBlock)

Input Parameters

hsmParmBlock
Pointer to the HSMs Parameter Block.

Output Parameters

None.
Return Values

ODISTAT_SUCCESSFUL The operation completed successfully.

Remarks

The C HSM is required to call this routine at the beginnir@roferinit , after

it has set the pointer to tithsmStackn DriverlnitParmPointer and before it
makes any C MSM or C TSM API calls. (See the "Initialization" section in
Chapter 5, "CHSM Functions" for more details.)

This function must be called only once for each logical board.

CMSM Functions 7-69

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

See Also

CMSMParseSingleParameter
CMSMParseDriverParameters

Spec vl.11 - Doc v1.13

g 7/-70 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

CMSMNESLDeRegisterConsumer

Deregisters a consumer of a specific event.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <nesl_str.h>

UINT32 CMSMNESLDeRegisterConsumer (
NESL_ECB *consumer)

Input Parameters

consumer

Pointer to the NESL_ECB structure passed to
CMSMNESLRegisterConsumet

Output Parameters

None.

Return Values

NESL_OK Deregistration succeeded.

NESL_EVENT_NOT_REGISTERED The specified NESL_ECB structure
is not registered.

NESL_CONSUMER_NOT_FOUND The consumer is NULL or can notbe
located.

Remarks

Called from foreground with interrupts enabled. See Appendix E for a detailed
description of NESL support.

CMSM Functions 7-71

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

See Also

CMSMNESLRegisterConsumer

Spec vl.11 - Doc v1.13

B 772 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

CMSMNESLDeRegisterProducer

Deregisters the producer of a specified event. If the
producer is the last producer of the specified event,
all the remaining consumers of the event are
placed onto an orphaned consumer's list.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <nesl_str.h>

UINT32 CMSMNESLDeRegisterProducer (
NESL_ECB *producer)

Input Parameters

producer

Pointer to the NESL_ECB structure passed to
CMSMNESLRegisterProducer.

Output Parameters

ST'IAN 200 - TT'TA dads

None.

CMSM Functions 7-73

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Return Values

NESL _OK Deregistration was successful.
NESL_EVENT_NOT_REGISTERED The event cannot be located.

NESL_PRODUCER_NOT_FOUND The producer is NULL or could not
be located.

Remarks
Called in the foreground with interrupts enabled. See Appendix E for a detailed
description of NESL support.
™
™ See Also
~
> CMSMNESLRegisterProducer
Q
o
Q
1
~
~
H
>
&)
QO
Q
0]
|

B /74 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

CMSMNESLProduceEvent

Called by an event producer to notify registered
consumers that the event has occurred. If the event
IS consumable, one of the consumers can
consume the event, and the event notification will
stop.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <nesl_str.h>

UINT32 CMSMNESLProduceEvent (
NESL_ECB *producerNecb,
NESL_ECB **consumerNecb,
EPB *eventParmBlock);

Input Parameters

producerNecb
Pointer to the NESL_ECB structure passed to
CMSMNESLRegisterProducer.
eventParmBlock
Pointer to the Event Parameter Block.

Input/Output Parameters

consumerNecb

Pointer to the location of the pointer to the consumer of the event. Null if
the producer does not care who the consumer is.

CMSM Functions 7-75

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Return Values

NESL_PRODUCER_NOT_FOUND The producer is NULL.

NESL_EVENT_CONSUMED Event is consumable and is
consumed. ConsumerNecb is set to
the consumer's NESL_ECB
structure if information about the
consumer is available. Otherwise, it
is set to NULL.

NESL_EVENT_NOT_CONSUMED Event is consumable but is not
consumed. ConsumerNecb set to
NULL.

NESL_EVENT_BROADCAST Event has been broadcast to all
consumers. ConsumerNecb not
changed.

Remarks

Producer routines and consumer routines running on asynchronous events
(such as IPX packets or interrupts), must be reentrant.
CMSMNESLProduceEvent will not protect consumer routines from being
reentered.

For example, if the consumer routine reenables interrupts, another
asynchronous event can be issued from a producer and thus re-enter the
consumer.

Itis up to either the producer or the consumer routine to protect itself from
reentrancy issues. Producer and consumer routines must also ensure that they
do not cause stack overflow. See Appendix E for a detailed description of
NESL support.

Spec vl.11 - Doc v1.13

B 7/-76 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

EPB Structure
typedef struct EPB_tag

{
UINT32 EPBMajorVersion;
UINT32 EPBMinorVersion;
void *EPBEventName;
void *EPBEventType;
void *EPBModuleName;
void *EPBDataPtr0;
void *EPBDataPtrl;
UINT32 EPBEventScope;
UINT32 EPBReserved;

} EPB;

Field Descriptions:

EPBMajorVersion
Major version of the Event Parameter Block. The current version is 1 (for
1.00).

EPBMinorVersion
Minor version of the Event Parameter Block. The current version is 00 (for
1.00).

EPBEventName

Event name or class name for the event as registered with NESL,; for
example, Service Suspend or Service Resume. All valid event names must
be registered with Novell Labs.

EPBEventType

Event subclass name for the event. An example of a subclass for Service
Suspend is APM Suspend. All valid event subclass names must be
registered with Novell Labs.

EPBModuleName

Pointer to the module name that generated the event--for example,
NE2000.

EPBDataPtrO
Used to pass a pointer to the configuration table.

EPBDataPtrl
Used for event dependent information.

CMSM Functions 7-77

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

EPBEventScope
The CHSM must set this field to EPB_SPECIFIC_EVENT.

EPBReserved
Reserved by Novell.

See Also

CMSMNESLDeRegisterConsumer
CMSMNESLDeRegisterProducer
CMSMNESLRegisterConsumer
CMSMNESLRegisterProducer
CMSMNESLProduceMLIDEvent

Spec vl.11 - Doc v1.13

B 7/-78 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

CMSMNESLProduceMLIDEvent

Called by an event producer to notify registered
consumers that the event has occurred. If the event
IS consumable, one of the consumers can
consume the event, and the event notification will
stop. This call produces the event for each logical
board associated with driverData.

Syntax

#include <odi.h>

#include <cmsm.h>

#include <nesl_str.h>

UINT32 CMSMNESLProduceMLIDEvent (
NESL_ECB *producerNecb,
NESL_ECB **consumerNecb,
EPB *eventParmBlock

DRIVER_DATA *driverData);

Input Parameters

producerNecb

Pointer to the NESL_ECB structure passed to
CMSMNESLRegisterProducer.

ST'IAN 200 - TT'TA dads

eventParmBlock
Pointer to the Event Parameter Block.

driverData
Pointer to the CHSM’s driver adapter data space.

Input/Output Parameters

consumerNecb

Pointer to the location of where to place the pointer to the consumer of the
event. Null if the producer does not care who the consumer is.

CMSM Functions 7-79

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Return Values

NESL_PRODUCER_NOT_FOUND The producer is NULL.

NESL_EVENT_CONSUMED Event is consumable and is
consumed. ConsumerNecb may be
set to the consumer's NESL_ECB
structure for the consumer of the last
logical board that the event was
generated for, or it may be set to
NULL if the event was consumed,
but no information about the
consumer was available.

NESL_EVENT_NOT_CONSUMED Event is consumable but is not
consumed. ConsumerNech set to
NULL.

NESL_EVENT_BROADCAST Event has been broadcast to all
consumers. ConsumerNecb not
changed.

NESL_INVALID_CONTEXT_HANDLE The logical board(s) identified by
driverData were invalid.

Remarks

Producer routines and consumer routines running on asynchronous events
(such as IPX packets or interrupts), must be reentrant.
CMSMNESLProduceEventwill not protect the consumer routine from being
reentered.

For example, if the consumer routine reenables interrupts, another
asynchronous event can be issued from a producer and thus re-enter the
consumer.

Itis up to either the producer or the consumer routine to protect itself from
reentrancy issues. Producer and consumer routines must also ensure that they
do not cause stack overflow. See Appendix E for a detailed description of
NESL support.

EPB Structure

typedef struct EPB_tag

{
UINT32 EPBMajorVersion;

7-80 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

UINT32 EPBMinorVersion;

void
void
void
void
void

*EPBEventName;
*EPBEventType;
*EPBModuleName;
*EPBDataPtr0;
*EPBDataPtrl,;

UINT32 EPBEventScope;
UINT32 EPBReserved;

} EPB;

Field Descriptions:

EPBMajorVersion
Major version of the Event Parameter Block. The current version is 1 (for
1.00).

EPBMinorVersion
Minor version of the Event Parameter Block. The current version is 00 (for
1.00).

EPBEventName

Event name or class name for the event as registered with NESL; for
example, Service Suspend or Service Resume. All valid event names must
be registered with Novell Labs.

EPBEventType

Event subclass name for the event. An example of a subclass for Service
Suspend is APM Suspend. All valid event subclass names must be
registered with Novell Labs.

EPBmoduleName

Pointer to the module name that generated the event; for example,
NE2000.

EPBDataPtrO
Used to pass a pointer to the configuration table.

EPBDataPtrl
Used for event dependent information.

EPBEventScope
The CHSM must set this field to EPB_SPECIFIC_EVENT.

EPBReserved
Reserved by Novell.

CMSM Functions 7-81

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

See Also

CMSMNESLDeRegisterConsumerCMSMNESLDeRegisterProducer
CMSMNESLRegisterConsumer

CMSMNESLRegisterProducer

CMSMNESLProduceEvent

Spec vl.11 - Doc v1.13

g 782 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

CMSMNESLRegisterConsumer

Registers the consumer of an event. If the producer
of the event is not currently registered, the
consumer is placed onto an orphaned consumer
list.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <nesl_str.h>

UINT32 CMSMNESLRegisterConsumer (
NESL_ECB *consumer)

Input Parameters

consumer
Pointer to a NESL_ECB structure.

Output Parameters

None.
Return Values

NESL_OK Registration was successful.

NESL_EVENT_TABLE_FULL The event was not registered
because the event table is full.

NESL_DUPLICATED_NECB The NESL_ECB structure was
previously registered in the event
table.

NESL_INVALID_NOTIFY_PROC The consumer's notification

procedure is NULL.
NESL_CONSUMER_NOT_FOUND The NESL_ECB pointer is NULL.

CMSM Functions 7-83

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

NESL_FIRST_ALREADY_HOOKED The head of the consumer list has
already been hooked.

Remarks

Called at process time. See Appendix E for a detailed description of NESL
support.

NESL_ECB Structure
typedef struct NECBStruct

{
struct NECBStruct *NecbNext;
UINT16 NecbVersion;
UINT16 NecbOsilLayer;
MEON_STRING *NecbEventName;
UINT32 NecbRefData;
UINT32 (*PnecbNotifyProc)(
struct NECBStruct *consumerNECB,
struct NECBStruct *producerNechb,
void *eventData);
void *NecbOwner;
void *NecbWorkSpace;
void *NecbContext;
}NESL_ECB;

Field descriptions:

NecbNext

Reserved. This field should not be modified by the calling routine while
the NESL_ECB structure is registered.

NecbVersion

This field contains the version number of the NESL_ECB structure. This
field allows the interface to be expanded in the future while still providing
full backward compatibility. The current version is 2.

NecbOsiLayer

Determines the ordering of registered consumers of the same event. The
format of this field is OXLRRR, where L is the number (0-7) corresponding
to the OSl layer and RRR (0-4095) is the relative order with other modules
also registered on that layer. The relative ordering is useful when certain
events require specific consumer ordering.

7-84 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

The definition NESL_HOOK_FIRST can also be used in element
NecbOsiLayerThis definition causes a consumer to be hooked first, no
matter what. If the caller sets the low byteNafcbOsilLayeto this value,
the consumer will be hooked first in the consumer list. Normally, NESL
events will put lower layer identifiers before the hooked lead element. If
another call is made specifying this definition, an error will be returned to
the caller and the element will not be added to the list.
NecbEventName
ASCIIZ name string of the event or class of events. This name has the
maximum length of NESL_MAX_NAME_LENGTH.
NecbRefData

Reserved. Set this field to NULL.

PNecbNotifyProc
Pointer to the event notification callback routine.

UINT32 MyNotifyProc (
NESL_ECB *ConsumerNecb,
NESL_ECB *ProducerNecb,
void *eventData)

ConsumerNecb
Points to the NESL_ECB structure used by consumer during
CMSMNESLRegisterConsumer

ProducerNecb

Points to the NESL_ECB structure used by the producer during
CMSMNESLRegisterProducer.

ST'IAN 200 - TT'TA dads

EventData

If the producer only has one data item, it can be passed to the
consumer as an argument or as an address.

If the producer has more than one data item or if the producer wishes
to guarantee portability, the address of an array of data items should
be passed. The structureesfentDatamust be defined by the

producer and known by the consumer if it is to be interpreted

properly.

For most events this will be a pointer to an Event Parameter Block
(EPB). (See Appendix E, "NESL Support" for more information
about EPBs.)

CMSM Functions 7-85

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Return values from a consumer after an event notification callback:

NESL_EVENT_CONSUMED
Event was consumed by the consumer process.

NESL_EVENT_NOT_CONSUMED
Event was not consumed by the process.

Note V! This is only really applicable if the event is consumable, but a consumer should
always do this to be compatible with both types of events.

NecbOwner
Specifies the owner of the NESL_ECB structure. This field is platform-
specific and platform-dependent. The DOS/MS Windows implementation
requires this field to be set to the owner's module handle information.
NecbWorkSpace
Reserved. This field should not be modified by the calling routine while
the NESL_ECB structure is registered.
NecbContext

This field is available for use by the owner of the NESL_ECB structure. It
will not be modified by anyone else in the system. It may be used by the
owner to pass context or other data to the notification procedure. If the
owner is not using this field, it must be set to NULL.

See Also

CMSMDeRegisterConsumer

Spec vl.11 - Doc v1.13

| 7-86 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

CMSMNESLRegisterProducer

Registers the producer of an event and creates a
consumer list containing the consumers of this

event.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <nesl_str.h>

UINT32 CMSMNESLRegisterProducer (

NESL_ECB *Producer)

Input Parameters

Producer

Pointer to a NESL_ECB structure.

Output Parameters

None.

Return Values

NESL_OK
NESL_REGISTERED_UNIQUE

NESL_REGISTERED_NOT_UNIQUE

Registration was successful.

A previous producer has
registered the event as unique
and this producer tried to register
the event as non-unique.

A previous producer has
registered the event as non-
unique and this producer tried to
register the event as unique.

CMSM Functions 7-87

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001

January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

NESL_REGISTERED_CONSUMABLE

NESL_REGISTERED_BROADCAST

NESL_EVENT_TABLE FULL

NESL_DUPLICATE_NECB

NESL_PRODUCER_NOT FOUND

Remarks

Called at process time.

The Event definition contains the rules necessary concerning process and

A previous producer has
registered the event as
consumable and this producer
tried to register the event as
broadcast.

A previous producer has
registered the event as a
broadcast and this producer tried
to register the event as
consumable.

The event was not registered
because the event table is full.

The NESL_ECB structure was
previously registered in the event
table.

The NESL_ECB structure is
NULL.

interrupt time execution during event notification. See Appendix E for a

detailed description of NESL support.

NESL_ECB Structure
typedef struct NECBStruct

{
struct NECBStruct *NecbNext;
UINT16 NecbhVersion;
UINT16 NecbOsilLayer;
MEON_STRING *NecbEventName;
UINT32 NecbRefData;
UINT32 (*PnecbNotifyProc)(
struct NECBStruct *consumerNECB,
struct NECBStruct *producerNechb,
void *eventData);
void *NecbOwner;
void *NecbWorkSpace;
void *NecbContext;
}NESL_ECB;

7-88 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Field descriptions:

NecbNext
Reserved. This field should not be modified by the calling routine while
the NESL_ECB structure is registered.

NechVersion

The version number of the NESL_ECB structure. This field allows the
interface to be expanded in the future while still providing full backward
compatibility. The current version is 2.

NecbOsiLayer
Reserved. Set this field to NULL.

NecbEventName
ASCIIZ name string of the event or class of events. This name has the
maximum length of NESL_MAX_NAME_LENGTH.

NecbRefData

This is a flag field used to specify whether the event is unique or
consumable. It also indicates the sorting order for calling registered
consumers at event time.

Consumers that are on the orphan consumer list will be sorted when a new
producer is registered. All consumers that are registered after a producer is
registered will be correctly sorted.

NESL_SORT_CONSUMER_BOTTOM_UP

Use bottom-up relative ordering on the consuniée'sbOsiLayefield in
maintaining an ordered list of consumers requiring notification.
NESL CONSUME_EVENT

The event can be consumed by one of the registered consumers. By
default, an event is broadcast to all registered consumers.

This flag will cause a chaining effect among the consumers which will
start with the first registered consumer and proceed to the next until one of
the consumers consumes the event or the end of the consumer list is
reached.

NESL_UNIQUE_PRODUCER

The producer of the event must be unique. If there is another producer
registered with the same event string, then this call will fail. By default,
there can be multiple producers of the same event.

CMSM Functions 7-89

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

This flag is used to prohibit multiple producers provided that this is the
first producer registered.

PNecbNotifyProc
Reserved. Set this field to NULL.

NecbOwner
Specifies the owner of the NESL_ECB structure. This field is platform-
specific and platform-dependent. The DOS/MS Windows implementation
REQUIRES this field to be set to the owner's module handle information.
NecbWorkSpace
Reserved. This field should not be modified by the calling routine while
the NESL_ECB structure is registered.
NecbContext

This field is available for use by the owner of the NESL_ECB structure. It
will not be modified by anyone else in the system. It may be used by the
owner to pass context or other data to the notification procedure. If the
owner is not using this field, it must be set to NULL.

See Also

CMSMNESLDeRegisterProdcer

Spec vl.11 - Doc v1.13

| 7-90 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

CMSMParseDriverParameters

Syntax

Input Parameters

Output Parameters

Return Values

Parses the MLID’s parameters.

#include <odi.h>
#include <cmsm.h>
#include <parser.h>

ODISTAT CMSMParseDriverParameters (
DRIVER_PARM_BLOCK *hsmParmBIlock,
struct _DRIVER_OPTION_ *driverOption)

hsmParmBlock

Pointer to the driver parameter block structure. See Chapter 3, "CHSM
Data Structures and Variables" for a description of
DRIVER_PARM_BLOCK.

driverOption

Pointer to a linked list of DRIVER_OPTION structures, where each
structure describes one of the MLID’s possible parameters.

None.

ODISTAT_SUCCESSFUL All required parameters were found.

ODISTAT_ITEM_NOT_PRESENT One optional parameter was parsed
for and that parameter cannot be
found.

ODISTAT_FAIL A valid value for a required parameter
cannot be found or cannot be
obtained, or the user canceled on the
prompting of a parameter.

CMSM Functions 7-91

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Remarks

Note"’
v

An instance of the DRIVER_OPTION structure is used to describe each
parameter to be parsed. (Refer to Chapter 4, "CMSM/CTSM Structures and
Variables" for details on the DRIVER_OPTION structure.)

DRIVER_OPTION structures are linked together bylthwk field of the
structure. If the parameter to be parsed is a standard parameter (Bd€h as
PORT DMA, MEM, SLOTNODE, CHANNEL FRAME, NAME RETRIES
BELOW16, BUFFERS)6then,Type Flags ParameterQ Parameter] and
Parameter2are the only fields that need to be set. All other fields are ignored.

If the parameter to be parsed is a custom parameter, all fields must be set. The
Flag field is used to determine the interpretatiofiPafameterOParameterl,
andParameter2ithese along with the format specifierRiarseStringcontrol

the parsing of the parameter.

CMSMParseDriverParameters must be called once and only once for each
logical board and cannot be called befo@TSM>RegisterHSM.

Command Line Parameter Types

7-92

CMSMParseDriverParameters can parse for two different types of
command line parameters:

« Custom Parameters
« Standard Parameters

Custom parameters are any special parameters that your particular driver
needs.

Standard parameters are a set of predefined parameters with established
purposes. The parser will populate the MLIDConfiguration table with values
parsed for standard parameters.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

The standard parameters and their required input information are as follows:

Parameter Input Information

INT The first IRQ used by the adapter.

INT1 The second IRQ used by the adapter.

PORT The first I/O base address used by the adapter.

PORT1 The second I/O base address used by the adapter.
DMA The first DMA channel number used by the adapter.
DMA1 The second DMA channel number used by the adapter.
MEM The first memory base address used by the adapter.
MEM1 The second memory base address used by the adapter.
SLOT The system-wide unique Hardware Instance Number

(HIN). It may be the physical slot number on a slot based
bus such as Micro Channel, PCI, PC Card, and EISA,; or it
may be another uniquely assigned number.

NODE The media specific address that the adapter is to use.

CHANNEL The logical channel number that this logical adapter is to
use. For a multiport adapter, the channel number usually is
a port number. For an adapter on a connection oriented
media, the channel number can be used as a connection
ID.

FRAME The name of the frame format that this logical adapter is to
use. Token-Ring drivers can add "MSB'or "LSB" following
the frame type designation. LSB forces canonical addresses
to be passed between the MLID and the upper layers. The
MSB designation forces noncanonical addresses to be
passed (this is the default for Token-Ring media). Ethernet
media cannot use the MSBesignator.

NAME A logical name that can be used with the BIND command
to refer to this logical adapter.
RETRIES This is the number of send retries that the MLID should use

in its attempts to send packets.

CMSM Functions 7-93

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

BELOW16 This keyword must be specified on the load command line

if the driver needs memory allocated below the 16MB

I boundary. This keyword is required only if the MLID is
loaded on a system that initially has less than 16 MB of
memory, but will have more memory added later. In
addition, the driver must also set the
DriverNeedsBelow16Meg field of the DRIVER_PARM
structure to a nonzero value.

BELOW16 is a KEYWORDPARM type field.

BUFFERS16 This keyword is used to override the number of RCBs below
16MB allocated by the CMSM at initialization. The CHSM
must set the DriverNeedsBelow16M field in the
DRIVER_PARM structure for this keyword to be valid. The
RCB allocation routines (CMSMAIlocRCB ,
<CTSM>GetRCB, <CTSM>ProcessGetRCB , etc.) use
these RCBs if the RCB allocated by the LSL is physically
over 16MB. The number of RCBs allocated by default is
eight. If the CHSM preallocates more than eight RCBs at a
time, the user can override this default when loading the
driver by typing BUFFERS16=n. The CMSM wiill force this
value to a multiple of eight, so values other than 8, 16, 32,
... are invalid. No restriction is placed on the maximum
value, except that the CMSM might not be able to allocate
enough memory from the operating system.

Important Do not parse for NODE, FRAME, NAME, RETRIES, BELOW16, or
BUFFERS16; the CMSM/CTSM parses for these parameters.

Spec vl.11 - Doc v1.13

g 794 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

CMSMParseSingleParameter

Parses for a single parameter specified by
driverOption and returns the value in the
driverOption.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <parser.h>

ODISTAT CMSMParseSingleParameter(n
struct _DRIVER_OPTION_ *driverOption); 1%
O
Input Parameters <
~
driverOption H
Pointer to a DRIVER_OPTION structure that describes the parameter to ~
parse for. :
S
Output Parameters o
O
None. <
~
~
(V)

CMSM Functions 7-95

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Return Values

ODISTAT_SUCCESSFUL The parameter was successfully
parsed.

ODISTAT_FAIL The parameter cannot be found
or cannot be obtained, or the
user canceled on the prompting
of a parameter.

ODISTAT_ITEM_NOT_PRESENT The parameter was not present.
ODISTAT_BAD_PARAMETER The parameter was found, but

was not within the range or
value.

Remarks

A DRIVER_OPTION structure is used to describe the parameter to be parsed.
Refer to Chapter 4, "CMSM/CTSM Structures and Variables" for a complete
description of the DRIVER_OPTION structure.

Note V! The DRIVER_OPTION type field is ignored by CMSMParseSingleParameter .
The results are returned only in the DRIVER_OPTION structure.

See Also

CMSMiInitParser
CMSMParseDriverParameters

Spec vl.11 - Doc v1.13

| 7-96 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

CMSMPrintString

Prints the message pointed to by the msg
parameter.

Syntax

#include <odi.h>
#include <cmsm.h>

void CMSMPrintString (
const MLID_CONFIG_TABLE *configTable,
MSG_TYPE msgType;
MEON_STRING *message,
void *parml,
void *parm2);

Input Parameters

configTable

Pointer to the configuration table.
msgType

The type of message pointed torhgg

message
Pointer to the MEON_STRING to be printed.

ST'IAN 200 - TT'TA dads

parml
First optional parameter.

parm2
Second optional parameter.

Output Parameters

None.

CMSM Functions 7-97

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Return Values

None.

Remarks

The CHSM’s initialization routine must calCTSM>RegisterHSM prior to
using this print function.

Theparmlandparm2parameters are used here in the same way they are used
in the C languagprintf routine. If there are no format specifications in the
string, parmlandparm2are not used.

MSG_TYPE Enumeration

typedef enum _MSG_TYPE_

{
MSG_TYPE_INIT_INFO,
MSG_TYPE_INIT_WARNING,
MSG_TYPE_INIT_ERROR,
MSG_TYPE_RUNTIME_INFO,
MSG_TYPE_RUNTIME_WARNING,
MSG_TYPE_RUNTIME_ERROR

} MSG_TYPE;

Example

startTime = driverData->TxStartTime[driverData->TxNextToReturn];
if (startTime) {
if ((CMSMGetCurrentTime() - startTime) > 36) {
[* Transmit Timeout */
[* Send Alert if driverData->BNCFlag != 0 */
CMSMPrintString(configTable,
MSG_TYPE_RUNTIME_WARNING,
MSG(“066: The cable might be disconnected on the
board.\n\r*, 42),0 ,0);

Note\ @AY The MSG function is used in language enabling. For more information on
language enabling, see Appendix A: Language Enabling.

7-98 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

See Also

See ODI Specification Supplemen$tandard MLID Message Definitioffier
a listing of standard messages used by Novell.

ST'IAN 200 - TT'TA dads

CMSM Functions 7-99

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMRdConfigSpacex

Syntax

Input Parameters

Takes a bus identifier and an offset from the bus’s
configuration space and performs the necessary
operations to acquire and return the requested
data.

#include <odi.h>
#include <cmsm.h>

UINT8 CMSMRdConfigSpace8 (
void *busTag,
UINT32 uniqueldentifier,
UINT32 offset);

UINT16 CMSMRdConfigSpacel6 (
void *busTag,
UINT32 uniqueldentifier,
UINT32 offset);

UINT32 CMSMRdConfigSpace32 (
void *busTag,
UINT32 uniqueldentifier,
UINT32 offset);

busTag
Architecture-dependent value, returnedd@MSMSearchAdapter, that
identifies a specific bus.

uniqueldentifier

The unique identifier for the specified adapter or function, as returned by
CMSMGetlinstanceNumberMapping, CMSMGetUniqueldentifier , or
CMSMSearchAdapter.

7-100 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Output Parameters

Return Values

Remarks

See Also

offset

The byte offset in the configuration space of the specified adapter or
function of the item to be read.

None.

An unsigned value of the appropriate size.

This function is provided only for MLIDs that need to interact with the
configuration space. On most busés/SMGetCardConfiginfo will meet
the MLIDs needs.

For most buses, these calls will do nothing. These calls only have meaning on
buses that have a configuration address space that is separated from memory or
1/0 space--for example, a PCI bus.

CMSMGetCardConfiginfo , CMSMW rtConfigSpacex

CMSM Functions 7-101

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMReadPhysicalMemory

Syntax

Input Parameters

Output Parameters

Return Values

Copies a block of memory that the MLID might not
have the right to access into a buffer that the MLID
can access.

#include <odi.h>
#include <cmsm.h>

void CMSMReadPhysicalMemory (
UINT32 nbytes,
void *destAddr,
void *srcBusTag,
const void *physSrcAddr);

nbytes
The number of bytes to read.

srcBusTag

Architecture-dependent value, returneddMSMSearchAdapter, that
identifies a specific bus.

physSrcAddr
Physical source address (where to read data from).

destAddr
Logical destination address (where to transfer data to).

None.

7-102 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Remarks

CMSMReadPhysicalMemoryis called durindriverlnit before
CMSMRegisterHardwareOptions. If the MLID attempts to access shared
RAM before callingCMSMRegisterHardwareOptions, a page fault
exception can occur.

Access to the shared RAM prior to registration does not normally happen
unless the CHSM must obtain additional information, such as interrupt
numbers or the shared RAM buffer size for the configuration table.

The CHSM can use this routine to read information from a shared RAM
physical address before hardware registration.

See Also

CMSMWritePhysicalMemory

ST'IAN 200 - TT'TA dads

CMSM Functions 7-103

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMRegisterHardwareOptions

Used to register hardware resources with the
platform.

Syntax

#include <odi.h>
#include <cmsm.h>

REG_TYPE CMSMRegisterHardwareOptions (
MLID_CONFIG_TABLE *configTable,
DRIVER_DATA **driverData);

Input Parameters

configTable
Pointer to the configuration table of the MLID being registered.

Output Parameters

driverData
Pointer to the CHSM’s driver adapter data space.

7-104 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Return Values

REG_TYPE_NEW_ADAPTER A new adapter was registered and the
CHSM should continue initializing the
adapter. If a new adapter is being added,
the memory associated with the adapter
data space is allocated and control
returns to Driverlnit with driverData
pointing to that adapter data space.

REG_TYPE_NEW_FRAME A new frame type was registered for an
existing adapter and the Driverlnit
routine is basically finished.

REG_TYPE_NEW_CHANNEL A new channel was registered for an
existing multichannel adapter. The
CMSM typically treats the registering of a
new channel as a new adapter. The
CHSM proceeds with hardware
initialization (The driverData parameter
contains a pointer to the CHSM’s driver
adapter data space).

REG_TYPE_FAIL The CMSM was unable to register the
hardware options (typically due to
conflicts with existing hardware).
Driverlnit should immediately return a
nonzero value to the operating system.

Remark

The CHSM'sDriverlnit routine must call this function to register the hardware
options.

When this function returns, the MLIDCFG_MaxFrameSize field in the
configuration table may have been down sized if the CHSM set it to a value
larger than the maximum size supported by the topology.

The MLIDCFG_DBusTag field in the MLID Configuration table must be set
before making this call.

CMSM Functions 7-105

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMRegisterMLID

Registers the MLID with the LSL.

Syntax
#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMRegisterMLID (
const DRIVER_DATA *driverData,
MLID_CONFIG_TABLE *configTable);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space for the MLID being
registered.

configTable
Pointer to the configuration table of the MLID being registered.
Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL The requested operation was
completed successfully.

ODISTAT_OUT_OF_RESOURCES Therequested operation could not be
completed due to depletion of some
system resource.

Remarks

During Driverlnit and after successfully initializing the adapi@iyverinit
should call this routine to register the MLID with the LSL.

7-106 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Example

Note gAY When this routine returns, the configuration table contains a valid board number.
" CHSM s for intelligent bus master adapters can now pass the board number and
frame ID information to the adapter if necessary. The MLIDCFG_MaxFrameSize
field in the configuration table may have been down sized if the CHSM sets the

value larger than the maximum size supported by the topology.

The following is withinDriverlnit .

* Allow CMSM to register the MLID with the LSL */
if ((CMSMRegisterMLID(driverData, configTable)) =
ODISTAT_SUCCESSFUL)

CMSMReturnDriverResources(configTable);
return-1;

CMSM Functions 7-107

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMRegisterResource

Syntax

Registers a resource such as memory, interrupts,
DMA, and 1/O ports with the underlying operating
system.

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMRegisterResource (
const DRIVER_DATA *driverData,
MLID_CONFIG_TABLE *configTable,
EXTRA_CONFIG *extraConfig);

Input Parameters

driverData
Pointer to the CHSM’s driver adapter data space for the MLID that owns
the resource being registered.

configTable
Pointer to the configuration table of the MLID that owns the resource
being registered.

extraConfig
Pointer to the information needed to register the resource(s).

Output Parameters

7-108

None.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Return Values

ODISTAT_SUCCESSFUL Resource registered.
ODISTAT_OUT_OF _RESOURCES Resource in use by another device.

Remarks

This routine allows a CHSM to register a hardware resource that is not listed in
the configuration table because that resource in the configuration table is full.

This routine cannot be called until afttMSMRegisterHardwareOptions

has been called and has returned REG_TYPE_NEW_ADAPTER
REG_TYPE_NEW_CHANNEThis routine must be called before
CMSMSetHardwarelnterrupt if it is being used to add interrupts. The
extraConfigparameter must always remain allocated, so the CMSM will be
responsible for returning the resource if the CHSM gets unloaded.

This routine may only be called at process time.

EXTRA_CONFIG Structure

typedef struct _EXTRA_CONFIG_
{
struct _EXTRA_CONFIG_ *NextLink;
UINT32 (*ISRRoutine0)(void *MagicNumber);
void*ISROReservedO;
void*ISROReservedl;
void*ISROReserved2;
void*ISROReserved3;
UINT32 (*ISRRoutinel)(void *MagicNumber);
void*ISR1ReservedO;
void*ISR1Reservedl;
void*ISR1Reserved2;
void*ISR1Reserved3;
I0_CONFIG IOConfig;
} EXTRA_CONFIG;

ST'IAN 200 - TT'TA dads

CMSM Functions 7-109

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Field Descriptions:

ISRRoutine0
Pointer to the interrupt handler for the specified IRQ. This field must be
filled in if the 10_InterruptOor IO_Interruptifield is specified.
ISROReserved0, ISROReservedl, ISROReserved2, ISROReserved3
These fields are reserved for use by the CMSM and must not be modified
by the CHSM.
ISRRoutinel
This field must be filled in if théO_InterruptOor 10 _Interruptlfield is
specified. This field is a pointer to the interrupt handler for the specified
IRQ.
ISR1Reserved0, ISR1Reservedl, ISR1Reserved?, ISR1Reserved3
These fields are reserved for use by the CMSM and must not be modified
by the CHSM.
I0Config
This field is an 10_CONFIG structure filled in by the caller.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

I0_CONFIG Structure

The 10_CONFIG structure is definedadi.h. The fields of this structure
correspond to the fields in the lower portion of the configuration table and must
be set accordingly. For a description of these fields, see the
MLID_CONFIG_TABLE structure field descriptions in Chapter 3, "CHSM
Data Structures and Variables".

typedef struct 10_CONFIG_

{
struct _|IO_CONFIG_ *IO_DriverLink;

UINT16 I0_SharingFlags;
UINT16 I0_Slot;
UINT16 I0_IOPorto;)
UINT16 I0_IORange0; :%
UINT16 IO_IOPort1; o
UINT16 I0_IORangel; <
void *|O_MemoryAddresso; =~
UINT16 I0_MemorySize0; ~
void *|O_MemoryAddress1; =
UINT16 IO_MemorySizel, !
UINT8 I1O_Interrupt0; o)
UINTS8 I10_Interruptl; o
UINTS I0_DMALineO:; o
UINT8 |IO_DMALine1; E
void *]0_ResourceTag; .
void *|O_Config; (IT)
void *|O_CommandsString;
MEON_STRING IO_LogicalName [18];
void *|O_LinearMemory0;
void *|O_LinearMemory1,;
UINT16 I0_ChannelNumber;
void *|O_DBusTag;
UINT8 IO_DIOConfigMajorVer;
UINT8 IO_DIOConfigMinorVer;

} IO_CONFIG;

CMSM Functions 7-111

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

CMSMReRegisterHardwareOptions

Syntax

Input Parameters

Spec vl.11 - Doc v1.13

Output Parameters

Allows a C HSM to deregister its current hardware
options and register a new set of hardware options.

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMReRegisterHardwareOptions (

DRIVER_DATA *driverData,

IO_CONFIG *newlOConfig,

ECB *pAsyncECB);
driverData

Pointer to the CHSM’s driver adapter data space.

newlOConfig

Pointer to an 10_CONFIG structure that contains the hardware options to
be registered. The fields of an IO_CONFIG structure correspond to the

fields in the MLID_CONFIG_TABLE structure starting with the
MLIDCFG_DriverLink and ending with the
MLIDCFG_DIOConfigMinorVer. This pointer cannot be NULL.

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB®¥)) is called if
CMSMReRegisterHardwareOptionsreturns
ODISTAT_RESPONSE_DELAYED. The ESR is called with
pAsyncECB as a parameter and thAsyncECB ECB_ Status field will

contain the return value. Other ECB fields may be used by the C HSM to

store context or other information that is needed by the ESR.

None.

B 7-112 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Return Values

Remarks

Note"’
v

ODISTAT_SUCCESSFUL

ODISTAT_BAD_PARAMETER

ODISTAT_FAIL

ODISTAT_ITEM_NOT_PRESENT

ODISTAT_OUT_OF_RESOURCES

ODISTAT_RESPONSE_DELAYED

The old hardware options were
deregistered and the new hardware
options were successfully registered.

An input parameter was invalid or the
call was made at interrupt time an the
pAsyncECB parameter was a NULL.

The adapter was not in a shutdown
state before the call was made,
another C MSM API returned
ODISTAT_RESPONSE_DELAYED
and has not completed when this
routine was called, or an unknown
error occurred.

The hardware options to be
deregistered have not previously
been registered.

The new hardware options could not
be registered. This is typically due to
conflicts with resources held by other
hardware devices.

The operation of deregistering and
registering hardware options could
not be completed at the presenttime.
An asynchronous process will be
scheduled to complete the operation
at a later time.

After CMSMRegisterMLID has been called, but before

CMSMReRegisterHardwareOptionsis called, the adapter must be placed in

a shutdown state by calling CMSMShutdownMLID .

CMSMReRegisterHardwareOptionswill deregister the current set of

hardware options held by the CHSM for an adapter as registered through

CMSMRegisterHardwareOptions or through a previous call to
CMSMReRegisterHardwareOptions All hardware options in the

newlOConfig parameter will then be registered for the adapter. Any hardware
options in the newlOConfig parameter that are not to be registered must be set

CMSM Functions 7-113

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

7-114

as not in use as described in the Driver Configuration Table Field Descriptions
section in Chapter 3.

If all hardware options in the newlOConfig parameter were successfully
registeredCMSMReRegisterHardwareOptions will update all

configuration tables of the adapter to reflect the newly registered hardware
options.

If CMSMReRegisterHardwareOptionscannot complete the operation at the
present time, an asynchronous process will be scheduled to complete the
operation later. Once the asynchronous operation is complete, the
pAsyncECB'’s ESR routine will be called to report the final return value of the
operation. The return value will be stored in the pAsyncECB’s ECB_Status
field.

Upon successful return fro@MSMReRegisterHardwareOptions or from

the asynchronous process, the CHSM is responsible for putting the adapter in
a functional state. If an interrupt was registered, the CHSM must call
CMSMSetHardwarelnterrupt .

CMSMReRegisterHardwareOptionsupon successful completion will
produce a NESL Service/Status Change event to inform consumers that the
configuration of the adapter has been updated.

This function updates the following fields in the HSM'’s configuration table(s).

« MLIDCFG_SharingFlags
(with the exception of the MS_SHUTDOWN_BIT)

« MLIDCFG_Slot

+ MLIDCFG_IOPort0

« MLIDCFG_IORange0

« MLIDCFG_IOPort1

« MLIDCFG_IORangel

+ MLIDCFG_MemoryAddress0O

+ MLIDCFG_MemorySize0

« MLIDCFG_MemoryAddressi1

« MLIDCFG_MemorySizel

« MLIDCFG_InterruptO

» MLIDCFG_Interruptl

+ MLIDCFG_DMALIine0

+ MLIDCFG_DMALinel

+ MLIDCFG_LinearMemory0O

e MLIDCFG_LinearMemoryl

+ MLIDCFG_ChannelNumber

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

See Also

Driver Configuration Table Field Descriptions
<CTSM>RegisterHSM
CMSMSetHardwarelnterrupt
CMSMShutDownMLID

CMSM Functions 7-115

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMResetMLID

Syntax

Input Parameters

Output Parameters

Return Values

7-116

Called by the CHSM to reset the MLID.

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMResetMLID (
DRIVER_DATA

driverData

*driverData);

Pointer to the C HSM's driver adapter data space.

None.

ODISTAT_SUCCESSFUL
ODISTAT_BAD_PARAMETER

ODISTAT_FAIL

ODISTAT_RESPONSE_DELAYED

Reset was successful.

An input parameter was invalid or
NULL.

The operation failed. The C HSM
should place itself in a safe state and
clean up resources.

The operation could not be completed
in a timely manner and has been
scheduled to complete later. This is a
result of the C HSM returning
ODISTAT_RESPONSE_DELAYED
when the C MSM called DriverReset .

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

Remarks

If DriverReset needs to be called from with in the C HSM it is done by this
function. The C MSM puts the driver in a safe state and then calls DriverReset.

If the operation is successful the SHUTDOWN flagiM SMStatusFlagsis
cleared by the C MSM. The C MSM also produces a NESL Resume event.

Polling is not re-enabled by this call if it is in a suspend state.

Note‘vvl CMSMResetMLID cannot be called until aft€@MSMRegisterMLID has been
called.

See Also

DriverReset
CMSMShutdownMLID
CMSMResumePolling

ST'IAN 200 - TT'TA dads

CMSM Functions 7-117

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMResumePolling

Syntax

Input Parameters

Output Parameters

Called to re-enable polling after it has been
suspended.

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMResumePolling (
DRIVER_DATA *driverData);

driverData
Pointer to the C HSM's driver adapter data space.

None.

Return ValuesReturn Values

Remarks

ODISTAT_SUCCESSFUL Polling was successfully enabled.

ODISTAT_BAD_COMMAND There was no polling procedure
registered for this MLID.

Turns polling back on after CMSMSuspendPolling has suspended it. This call
is only useful if CMSMSuspendPolling was called previously. When
CMSMEnablePolling is called polling will start up active.

The POLLING_SUSPENDED flag in CMSMStatusFlags is cleared by the C
MSM when CMSMResumePolling is called.

7-118 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

See Also

CMSMSuspendPolling
CMSMEnablePoliing

CMSM Functions 7-119

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMReturnDriverResources

Syntax

Returns the MLID’s resources before exiting.

#include <odi.h>
#include <cmsm.h>

void CMSMReturnDriverResources (
const MLID_CONFIG_TABLE *configTable);

Input Parameters

configTable
Pointer to the configuration table.

Output Parameters

None.

Return Values

Remarks

7-120

None.

If the MLID fails duringDriverlnit , this routine should be called before

exiting Driverlnit to return the resources. If the CHSM detects an error itself,
opposed to having an error reported to it, the CHSM can print an error message
usingCMSMPrintString before calling this function.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Example

[* Set up our interrupt procedure*/
if (CMSMSetHardwarelnterrupt(driverData, configTable) !=
ODISTAT_SUCCESSFUL)

CMSMReturnDriverResources(configTable);
return (-1);

ST'IAN 200 - TT'TA dads

CMSM Functions 7-121

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMReturnMultipleRCBs

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

7-122

Note"’
v

Returns a linked list of RCBs. This routine is called
to discard RCBs, not process them.

#include <cmsm.h>

void CMSMReturnMultipleRCBs (
RCB *rcbp);

rchbp
Pointer to the first RCB on the linked list to be returned.

None.

None.

CMSMReturnMultipleRCBs is executed at process time or privileged time.

This function must only be used to return ECBs allocated using
<CTSM>ProcessGetRCB CMSMAllocateMultipleRCBs,
CMSMAllocateRCB.

Refer to the description of the Receive Control Block (RCBs) in Chapter 4,
"CMSM/CTSM Structures and Variables" for details concerning the link fields in
the RCB.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

See Also

CMSMAllocateRCB
CMSMAllocateMultipleRCBs
CMSMReturnRCB
<CTSM>RcvComplete
<CTSM>ProcessGetRCB

CMSM Functions 7-123

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMReturnRCB

Syntax

Returns an RCB to the LSL. This routine is called
to discard the RCB, not to process it.

#include <cmsm.h>

void CMSMReturnRCB (
const DRIVER_DATA *driverData,
RCB *rcbp);

Input Parameters

driverData
Pointer to the CHSM'’s driver adapter data space for the MLID.

rcbp
Pointer to the unneeded RCB.

Output Parameters

None.

Return Values

Remarks

7-124

None.

CMSMReturnRCB is executed at process or privileged time.

This function must only be used to return RCBs allocated using
<CTSM>ProcessGetRCB and CMSMAllocateRCB.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Example

[* Return any RCBs that we have queued up */
while(driverData->NeedRCBCount = RX_BUFFERS) {
rcb = driverData->RCBTable[driverData->RxNextToReturn++];
driverData->RxNextToReturn &= (RX_BUFFERS - 1);
driverData->NeedRCBCount++;
CMSMReturnRCB(driverData, rcb);

See Also

<CTSM>RcvComplete <CTSM>ProcessGetRCB

ST'IAN 200 - TT'TA dads

CMSM Functions 7-125

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMScanBuslinfo

Specifies the buses that are available on the
system.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <odi_nbi.h>

ODI_NBI CMSMScanBuslInfo (
UINT32 *scanSequence,
void **busTag,
UNIT32 *busType,
MEON_STRING **busName);

Input/Output Parameters

scanSequence

Must be initialized to -1 for the first search. The value returned in this
parameter after each call must be passed back into this parameter in the
subsequent call to this function.

Output Parameters

busTag
Architecture-dependent value that identifies a specific bus.

busType (Defined in odi_nbi.h)
A pointer to a value that specifies the bus type.

Note"vl The ODI_BUSTYPE_CARDBUS type value is used only for hardware not using
the common silicon method defined by the CardBus PC Card/PCI Common
Silicon Requirements guideline. For CardBus adapters using the common

silicon method refer to the ODI_BUSTYPE_PCI type value.

7-126 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Type Value Bus
ODI_BUSTYPE_ISA ISA /ISA PnP bus
ODI_BUSTYPE_MCA Micro Channel bus
ODI_BUSTYPE_EISA EISA bus

ODI_BUSTYPE_PCMCIA PC Card
ODI_BUSTYPE_PCI PCI bus
ODI_BUSTYPE_VESA VESA local bus
ODI_BUSTYPE_NUBUS NuBus bus
ODI_BUSTYPE_OFM Open Firmware Motherboard
ODI_BUSTYPE_CARDBUS CardBus bus

busName

A pointer to a static, NULL-terminated, architecture-dependent string that
is determined by the platformdeveloper. The caller should not modify this
string. To reference this string, make a local copy of it.

Return Values

ODI_NBI_SUCCESSFUL The requested operation was completed
successfully.

ODI_NBI_PARAMETER_ERROR The parameter was invalid.
ODI_NBI_NO_MORE_ITEMS There are no more buses.

Remarks

CMSMScanBuslnfo searches the system for available busses.

CMSM Functions 7-127

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMScheduleAES

Syntax

Called during Driverlnit to enable a call back to a
routine in the CHSM.

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMScheduleAES (
const DRIVER_DATA *driverData,
MLID_AES ECB *mlidAESECB);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space of the MLID that is
registering an AES callback.

mliidAESECB
Pointer to the MLID_AES_ECB structure.

Output Parameters

Return Values

7-128

None.
ODISTAT_SUCCESSFUL Call back was successfully scheduled.
ODISTAT_BAD_PARAMETER Invalid parameter(s) set in

MLID_AES_ECB structure).

ODISTAT_OUT_OF _RESOURCES Resources to the successfully
completed operation were not
available.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Remarks

When this routine is called, the CHSM passes in an MLID_AES_ECB pointer
with the routine to be called and the time interval to wait before calling that
routine.

The CHSM should not call this routine until af@MSMRegisterMLID has
been called.

MLID_AES_ECB Structure

typedef struct _MLID_AES ECB_
{
struct _MLID_AES_ECB_ *NextLink;

void (*DriverAES)(DRIVER_DATA
*MLID_CONFIG_TABLE *);

AES_TYPE AesType;

UINT32 Timelnterval;

void *AesContext;

UINT8 AesReserved[30];
} MLID_AES_ECB;

Field descriptions:

NextLink
Used to link MLID_AES_ECB structures together.

DriverAES
A pointer to the function that is called after the specified time interval.

ST'IAN 200 - TT'TA dads

More than one instance of this function can be active at a time, but each
instance must have a unique name and MLID_AES_ECB structure.

AesType
Used to specify the type of event, whéesTypés one of the following:
AES_TYPE_PRIVILEGED_ONE_SHOT Call only once at privileged
time

AES_TYPE_PRIVILEGED_CONTINUOUS Callthis routine at privileged
time

CMSM Functions 7-129

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

AES_TYPE_PROCESS_ONE_SHOT Call only once at process
time

AES_TYPE_PROCESS_CONTINUOUS Call this routine at process
time

Timelnterval
The time in milliseconds to wait before calliBgiverAES .

AesContext
Reserved for use by the CMSM.

AesReserved
™M Reserved for use by the CMSM.
-~
“i Importantv MLID_AES_ECB must remain allocated until the MLID is removed.
>
o
o
Q
1
~
~
H
>
Q
QO
Q.
0p)
[

| 7-130 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

CMSMSearchAdapter

Syntax

Input Parameters

Note"’
\4

Takes the bus type and address of a product ID and
returns a busTag and a uniqueldentifier for where
the specified product (device or function) is found.

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMSearchAdapter (
UINT32 *scanSequence,
UINT32 busType,

UINT32 productiDLen,
const MEON *productID,
void **busTag,

UINT32 *uniqueldentifier);

busType
A bus type as defined mdi_nbi.h

The ODI_BUSTYPE_CARDBUS type value is used only for hardware not using
the common silicon method defined by the CardBus PC Card/PCI Common
Silicon Requirements guideline. For CardBus adapters using the common
silicon method refer to the ODI_BUSTYPE_PCI type value.

Type Value Bus
ODI_BUSTYPE_ISA ISA /ISA PnP bus
ODI_BUSTYPE_MCA Micro Channel bus
ODI_BUSTYPE_EISA EISA bus
ODI_BUSTYPE_PCMCIA PC CardBus
ODI_BUSTYPE_PCI PCI bus

ODI_BUSTYPE_NUBUS NuBus bus

CMSM Functions 7-131

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

ODI_BUSTYPE_OFM Open Firmware motherboard
ODI_BUSTYPE_CARDBUS CardBus bus

productiDLen
Length of the product ID.

productID

A pointer to a bus architecture-dependent parameter that uniquely
identifies an adapter board/peripheral/system option. For example, for an
EISA bus, this is an EISA product ID as defined inEh8A Specification
document.

Input/Output Parameters

scanSequence

On the first search for each productEganSequenaaust be initialized
to -1. The value returned in this parameter after each call must be passed
back into this parameter in each subsequent call to this function.

Output Parameters

busTag

Architecture-dependent value that specifies the bus where this function
found the first item identified by the product ID.

Note‘VvI The ODI_BUSTYPE_CARDBUS type value is used only for hardware notusing
the common silicon method defined by the CardBus PC Card/PCI Common
Silicon Requirements guideline. For CardBus adapters using the common
silicon method refer to the ODI_BUSTYPE_PCI type value.

uniqueldentifier

Architecture-dependent value that identifies the specific device or
function. This call will return information for each instance of the product
ID and compatible products, including multiple instances on a single card
(each having a different function number). The Hardware Instance
Number (HIN) (used in thslot= command line parameter) can be taken
from thebusTagand theuniqueldentifiempair by calling
CMSMGetInstanceNumber.

7-132 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Return Values

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_ITEM_NOT_PRESENT No device or function matches the
given bus type and product ID
combination.

ST'IAN 200 - TT'TA dads

CMSM Functions 7-133

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Remarks

This function should be used only if the CHSM’s adapter has a unique
productlD associated with it that can be read by the NBI. fioeluctID must

be retrievable according to an accepted standard, such as EISA, PCI, Micro
Channel, PnP ISA, or PC Card.

Spec vl.11 - Doc v1.13

B 7-134 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

CMSMServiceEvents

Syntax

Completes the processing of queued and received
packets.

#include <cmsm.h>

void CMSMServiceEvents (void);

Input Parameters

None.

Output Parameters

Return Values

Remarks

None.

None.

CMSMServiceEventsis called at process or privileged time. If the CHSM has
used<CTSM>SendComplete <CTSM>RcvComplete or
<CTSM>ProcessGetRCB it must usecCMSMServiceEventsbefore it exits
back to the operating system.

CMSM Functions 7-135

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMSetHardwarelnterrupt

Called by the CHSM'’s Driverlnit routine to set up
a hardware interrupt handler.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMSetHardwarelnterrupt (
DRIVER_DATA *driverData,
const MLID_CONFIG_TABLE *configTable);

Input Parameters

driverData
Pointer to the CHSM’s driver adapter data space.

configTable
Pointer to the configuration table.

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL The requested operation was
completed successfully.

ODISTAT_OUT_OF_RESOURCES The requested operation could not be
completed due to depletion of a
system resource.

ODISTAT_BAD_PARAMETER The DriverISRP1rfield in the driver
parameter block was NULL.

7-136 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Remarks

CMSMSetHardwarelnterrupt examines the configuration table to obtain the
number of the interrupt to s&@MSMSetHardwarelnterrupt , then examines
the driver parameter block to obtain the addre€drvleriSR . If the CHSM'’s
MLID configuration table and driver parameter block specify two interrupt
service routinesCMSMSetHardwarelnterrupt will set up both.

Note Vvl Do not call this function unless you are ready to process interrupts. This call may
only be called at process time.

Example

[* Set up our interrupt procedure */

if (CMSMSetHardwarelnterrupt(driverData, configTable) !=
ODISTAT_SUCCESSFUL) {
CMSMReturnDriverResources(configTable);
return (-1);

ST'IAN 200 - TT'TA dads

CMSM Functions 7-137

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMShutdownMLID

Called by the C HSM to shut the MLID down.

Syntax
#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMShutdownMLID (
DRIVER_DATA *driverData,
UINT32 shutdownType);

Input Parameters
driverData
Pointer to the C HSM's driver adapter data space.

shutdownType
SHUTDOWN_PERMANENT
Perform a permanent shutdown.
SHUTDOWN_PARTIAL
Perform a partial shutdown.

Output Parameters

None.

7-138 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Return Values

Remarks

See Also

Note"’
\4

ODISTAT_SUCCESSFUL The driver was shutdown
successfully.

ODISTAT_BAD_PARAMETER An input parameter was invalid or
NULL.

ODISTAT_FAIL The operation failed.

ODISTAT_RESPONSE_DELAYED Under circumstances where shutting
down the MLID cannot be completed
when CMSMShutdownMLID is
called, an asynchronous process
should be called at a later time.

If the DriverShutdown needs to be called from within the C HSM it is done
by this function. The C MSM puts the driver in a safe state and then calls
DriverShutdown. If a partial shutdown was preformed a call to
CMSMResetMLID will bring the driver out of shutdown state

The SHUTDOWN flag ilCMSMStatusFlagsis set by the C MSM when
CMSMShutdownMLID is called. The C MSM also produces a NESL
Suspend event.

If CMSMShutdownMLID returns ODISTAT RESPONSE_DELAYED, we
recommend that you return with the adapter disabled unless it is impossible or
inadvisable.

CMSMShutdownMLID cannot be called until aft&@MSMRegisterMLID
has been called.

DriverShutdown
CMSMResetMLID

CMSM Functions 7-139

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMSuspendPolling

Suspends the calling of the DriverPoll procedure
until CMSMResumePolling is called.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMSuspendPolling (
DRIVER_DATA *driverData);

Input Parameters

driverData
Pointer to the C HSM's driver adapter data space.

Output Parameters

None.

Return Values
ODISTAT_SUCCESSFUL Polling was successfully suspended.
ODISTAT_BAD_COMMAND There was no polling procedure

registered for this MLID.

Remarks

The polling procedure is very expensive, especially in a Multi-Processor
environment. Each time DriverPoll is called the Mutex must be acquired and
both DriverDisablelnterrupts and DriverEnablelnterrupts must be called. This
keeps the Mutex held a high percentage of the time and causes bus traffic. Most
of the time that DriverPoll is called there is no usable work that the driver needs
to do yet while in the poll procedure the driver is locked out from receiving

B 7-140 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

interrupts, DriverSends, etc. U8 SMSuspendPollingto temporarily stop
the driver from being polled when it is known that there is no usable work to do.

The POLLING_SUSPENDED flag in CMSMStatusFlags is set by the C MSM
whenCMSMSuspendPollingis called and cleared by the C MSM when
CMSMResumePollingis called and can be inspected by the C HSMto
determine the current polling status.

Calling CMSMResetMLID does not re-enabled polling.

See Also

CMSMResumePolling

ST'IAN 200 - TT'TA dads

CMSM Functions 7-141

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMTCBPhysToLogFrags

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Gets the address of the ECB whose ECB structure
contains the logical addresses of the fragments in
the TCB for an adapter when the
MM_FRAGS_PHYS_BIT bit is set.

#include <odi.h>
#include <cmsm.h>

ECB *CMSMTCBPhysToLogFrags (
TCB *tcb);

tcb
Pointer to a TCB structure.

None.

Pointer to the ECB structure containing the logical addresses for the TCB
fragments.

You cannot assume that the fragment pointers have a one-to-one
correspondence. Because the physical pointers point to fragments that are
physically contiguous, there can be more fragments in the physical list than in
the logical list.

7-142 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

FRAGMENT_LIST_STRUCT Structure

typedef struct FRAGMENT_LIST_STRUCT_
{
UINT32 FragmentCount;
FRAGMENT_STRUCT FragmentStruct;
) FRAGMENT_LIST_STRUCT;

ST'IAN 200 - TT'TA dads

CMSM Functions 7-143

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

CMSMUpdateConfigTables

Allows a C HSM to tell the tool kit to update all
copies of the configuration table for an adapter.

Syntax
#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMUpdateConfigTables (
DRIVER_DATA *driverData,
MLID_CONFIG_TABLE *configTable);

Input Parameters

driverData
Pointer to the CHSM’s driver adapter data space.

configTable
Pointer to a configuration table.

Output Parameters

None.
Return Values
ODISTAT_SUCCESSFUL All configuration tables for the adapter
were updated.
ODISTAT_BAD_PARAMETER An input parameter was invalid.

Remarks

CMSMUpdateConfigTables copies the following configuration table fields
from the configTable parameter to all configuration tables of a adapter. All
other configuration table fields are ignored.

MLIDCFG_NodeAddress
MLIDCFG_ModeFlags
MLIDCFG_MaxFrameSize

B /-144 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

See Also

MLIDCFG_CardName
MLIDCFG_ShortName
MLIDCFG_TransportTime
MLIDCFG_LineSpeed
MLIDCFG_SGCount
MLIDCFG_PrioritySup
MLIDCFG_Flags
MLIDCFG_SendRetries

MLIDCFG_BestDataSize and MLIDCFG_WorstDataSize are automatically
adjusted by the CTSM based on MLIDCFG_MaxFrameSize.

A CHSM can calCMSMUpdateConfigTablesany time to update an
adapter’s configuration tables. All fields copied from the configTable
parameter must be valid bef@@dSMUpdateConfigTablesis called.

During a driver’s initialization for an adapter,
CMSMRegisterHardwareOptions automatically updates the adapter’s
configuration tables. A call @MSMUpdateConfigTablesis only necessary

if the fields copied from the configTable parameter are modified after the call
to CMSMRegisterHardwareOptions.

CMSMUpdateConfigTables upon successful completion will produce a
NESL Service/Status Change event to inform consumers of the event that the
configuration tables for the adapter have been updated.

CMSMRegisterHardwareOptions

CMSM Functions 7-145

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMWrtConfigSpacex

Takes a value, a bus identifier, and an offset in the
bus’s configuration space and performs whatever
operations are necessary to deliver the value to the
specified location.

Syntax

#include <odi.h>
#include <cmsm.h>

void CMSMWrtConfigSpace8 (
void *busTag,
UINT32 uniqueldentifier,
UINT32 offset,
UINT8 writeVal);

void CMSMWrtConfigSpacel6 (
void *busTag,
UINT32 uniqueldentifier,
UINT32 offset,
UINT16 writeVal);

void CMSMWrtConfigSpace32 (
void *busTag,
UINT32 uniqueldentifier,
UINT32 offset,
UINT32 writeVal);

Input Parameters

busTag

Architecture-dependent value, returneddiMSMSearchAdapter, that
identifies a specific bus.

7-146 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Output Parameters

Return Values

Remarks

See Also

uniqueldentifier

An architecture-dependent value identifying the specific device or
function. Se€CMSMSearchAdapter or CMSMGetUniqueldentifier .

offset

The byte offset in the configuration space of the specified device or
function where the item is to be written to.

writeVal

The appropriate size value to be written to the specified configuration
space address on the specified bus.

None

None

This function is provided only for MLIDs that need to interact with the
configuration space.

For most buses, these calls will do nothing. These calls only have meaning on
buses that have a configuration address space that is separated from memory or
1/0 space--for example, a PCI bus.

CMSMGetCardConfiginfo , CMSMWTrtConfigSpacex

CMSM Functions 7-147

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

CMSMWritePhysicalMemory

Allows the CHSM to write to memory that is not
registered to the CHSM.

Syntax

#include <odi.h>
#include <cmsm.h>

void CMSMWritePhysicalMemory (
UINT32 nbytes,
void *destBusTag,
void *physDestAddr,
const void *srcAddr);

Input Parameters

nbytes
The number of bytes to write.

destBusTag

Architecture-dependent value, returnedd@MSMSearchAdapter, that

identifies a specific bus.

physDestAddr
Physical destination buffer (where to transfer data).

srcAddr
Logical source buffer (where to read data).

Output Parameters

None.

Return Values

None.

7-148 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Remarks

See Also

CMSMWritePhysicalMemory is called duringriverinit before
CMSMRegisterHardwareOptions. If the CHSM attempts to access shared
RAM before callingCMSMRegisterHardwareOptions, a page fault ABEND

will occur. Accesses to the shared RAM prior to registration do not normally
happen unless the CHSM must obtain additional information, such as interrupt
numbers or shared RAM buffer size for the configuration table.

This routine can be used to write information to a shared RAM physical address
before hardware registration.

CMSMReadPhysicalMemory

CMSM Functions 7-149

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

B 7-150 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

chapter 8

Overview

NetWare Bus Interface

One of the goals of this specification is to allow you to write CHSMs that are
portable across different platforms. Some of these platforms may have one or
more buses that are quite different from each other. Therefore, to achieve
platform independence, it is necessary to isolate the CHSM from the details of
the platform’s bus architecture.

This chapter describes bus architecture-dependent functions provided by
Novell or the platform developer to perform operations needed by the CHSM.

If you want your CHSM to be portable, you must follow this specification and
must not access the Programmable Interrupt Controller (PIC), since this piece
of hardware is different on different hardware platforms. Interrupt control
operations should be performed using functions defined in this specification.
Also, the CHSM must not directly write or read data to or from its own adapter,
because this can require different operations on different hardware platforms.
Instead, it must use thex, Outx, Rdx, andWrtx functions defined here.

Some of the functions defined in this specification are not needed by most
CHSMs. If a function is not needed, it should not be used. Defining unneeded
functions increases the likelihood that your CHSM will not work on a
particular platform, since some of the functions are not supported on some
platforms.

NetWare Bus Interface 8-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Bus Architecture
A bus architecture is one or more related address spaces and a set of behaviors
(including asynchronous behaviors) of data within those address spaces. For
example, an IBM PC ISA address space consists of the following:
+ A 16-bit memory address space

+ A 16-bit I/O address space

- A defined set of interrupts with their means of generation and means of
dismissal

- A set of DMA channels with means of starting and completing their
operations.

Multiple Bus Platforms

Figure 8.1 shows an example of a multiple bus platform.

Figure 8-1
Multiple Bus Platform Example

System Bus 1

Bus Adapter

System Bus 2 (EISA Bus)

ISA Bus LAN Adapter

8-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Because of the potentially differing bus architectures on a multiple bus
platform and the intervening bus adapter, you cannot assume that an MLID
executing on the CPU will always be able to directly access the Programmable
Interrupt Controller or the DMA controller the same way it does on an IBM PC.
These controllers may be implemented using hardware completely different
from the IBM PC. You cannot even assume that the MLID will be able to access
the memory addresses it needs to communicate with its adapter. In Figure 8.1
for example, the intervening bus adapter may hav&yiseem Bus giemory
addresses mapped to some other set of addressesSiystieen Bus address
space, or they may not be mapped at all.

The functions in this chapter are defined so that the CHSM can be independent
of the underlying architecture. If you use these functions correctly, your CHSM
should be portable from platform to platform by simply recompiling the code
for the new platform. You can write a CHSM specifically for a particular
platform, but it will not be portable.

A portable CHSM must not attempt to access anything directly outside of its
own data space area. Instead, the CHSM should use the bus architecture-
dependent functions in this chapter to access all hardware devices and their
associated data. These functions include such things as interrupt enabling/
disabling/dismissing and DMA start/cleanup.

Memory Mapping and Address Manipulation

The memory mapping and address manipulation functions in this chapter will
make more sense if you have some idea of their intended use and
implementation. The following examples describe two different types of LAN
adapters (or cards): a shared memory card, and a card that transfers its own
data.

In the case of a shared memory card, the CHSM running on the CPU transfers
the data. The intention is to let the CMSM (usiigpBusMemory) map the
shared memory card’s physical address ranggystem Bus ® a logical

address oisystem Bus.IThis mapping is to remain in effect as long as the
driver is loaded. (This may involve allocating and programming hardware in
the bus adapter or looking up how the hardware was programmed during
system initialization.) The CMSM then converts System Bus fghysical

address to a CPU logical address. The CHSM then uses this CPU logical
address as the base address of the card’s shared memory.

At this point, it might seem like the CHSM should be able to use this address
plus the offsets to access the card’s shared memory. Unfortunately, this will not

NetWare Bus Interface 8-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Byte Order

work on all platforms, and this is the reason forMw@/FastFromBus,
MovFastToBus, MovFromBusx, MovToBusx, Rdx, Wrtx , andSetx

functions. On most platforms, these functions will be implemented as inline
macros.

In the case of a card that transfers its own data, the intention is for the CHSM
to convert logical addresses in system memory to physical addresSgstem

Bus 1 then, to map th8ystem Bus fthysical addresses 8ystem Bus 2

physical addresses. The CHSM then passeSyhtem Bus ghysical

addresses to the card for its use. These mappings are released by the CHSM as
soon as the transmission or the reception is complete.

It is the responsibility of the functions in this chapter to do any byte swapping
that is necessary to get the data to its destination in the correct order. In other
words, if a UINT16 is being read from an ISA adapter in the example in Figure
8.1 and System Bus 1 is a big endian bus, the bytes are to be swapped by the
In16 orRd16routine (unless the bus adapter hardware does it) so that the value
returned by the function is correct.

8-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

DMACIleanup

Cleans up, closes down, and releases the
resources associated with a DMA operation.

Syntax

#include <odi.h>
#include <odi_nbi.h>

void DMACIleanup (
UINT32 dmaChannel);

Input Parameters

dmaChannel

An architecture-dependent value specified by the platform developer and
set by the user in the MLID load command line. It specifies which DMA
channel is to be used.

Output Parameters

None.

Return Values

None.

Remarks

It is the responsibility of the NBI to know what resources are associated with
this operation. If called while the DMA operation is still in progress, this
function must first abort the operation and then do the cleanup.

NetWare Bus Interface 8-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

DMAStart

Syntax

Moves data from one location (on one bus) to
another location (potentially on a different bus)
using the specified DMA channel.

#include <odi.h>
#include <odi_nbi.h>

ODI_NBI DMAStart (
void *destBusTag,
UINT32 destAddrType,
const void *destAddr,
void *srcBusTag,
UINT32 srcAddrType,
const void *srcAddr,
UINT32 len,
UINT32 dmaChannel,
UINT32 dmaModel,
UINT32 dmaMode2);

Input Parameters

8-6

destBusTag
Architecture-dependent value, returnedd@iMSMSearchAdapter, that
identifies a specific bus.

destAddrType

Boolean parameter. False (0) indicates that the destination address is in
memory space; true (nonzero) indicates that the destination address is in I/
O space.

destAddr

The physical memory address in the bus architecture of the adapter to
which the DMA is to occur.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

srcBusTag
Architecture-dependent value, returnedd@MSMSearchAdapter, that
identifies a specific bus.

srcAddrType
Boolean parameter. False (zero) indicates that the source address is in
memory space; true (nonzero) indicates that the source address is in 1/0
space.

srcAddr
The physical memory address in the bus architecture of the adapter from
which the DMA is to occur.

len
The length in bytes to be DMAJ.

dmaChannel

An architecture-dependent value specified by the platform developer and

set by the user in the MLID load command line. It specifies which DMA

channel is to be used. If not set by the user, it should be set to 0.
dmaModelanddmaMode2

These parameters are bus architecture-dependent. Their meaning is
defined on a bus architecture by bus architecture basis. Currently, they are
defined only for the ISA and EISA buses. On these boards, this parameter
specifies the DMA transfer mode for this DMA channel.

Bits 7 - 6

00 demand mode select

01 single mode select

10 block mode select

11 cascade mode select

Bit 5

0 address increment select

1 address decrement select

Bit 4

0 automatic initialization disable
1 automatic initialization enable

NetWare Bus Interface 8-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Automatic initialization refers to the DMA device automatically restoring
the current address and current count from the base address and base count

after the process ends.

Output Parameters

Return Values

Remarks

Note"’
\4

None.

ODI_NBI_SUCCESSFUL

ODI_NBI_PROTECTION_VIOLATION

ODI_NBI_HARDWARE_ERROR

ODI_NBI_PARAMETER_ERROR
ODI_NBI_UNSUPPORTED_OPERATION

The requested operation was
completed successfully.

Memory protection prevented the
completion of the requested
operation.

Hardware error or hardware
limitation prevented the completion
of the requested operation.

One of the parameters was invalid.

The requested operation could not
be completed.

This function is used only in situations where the DMA channel is a system-
wide resource. It is not used where the adapter itself does the DMA.

The NBI deals with alignment issues, hardware mapping issues, and length
issues. Errors are returned only if a hardware failure is detected, the user has
requested an operation that is impossible, or the user does not have permission

to access the memory indicated.

This function seems to allow some unreasonable operations such as DMAing
from 1/0 space to /O space; this specification is not intended to support such

operations. Also, the DMA channels are assumed to be a system-wide resource
and not associated with a particular bus. In fact, any particular DMA controller
will be associated with some particular bus, but it is the responsibility of the NBI
to manage the platform’s DMA controllers and determine (using srcBusTag and
destBusTag) how to perform the requested operation.

8-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

DMAStatus

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Returns the status of the specified DMA channel.

#include <odi.h>
#include <odi_nbi.h>

UINT32 DMAStatus (
UINT32 dmaChannel);

dmaChannel

An architecture-dependent value specified by the platform developer and
set by the user in the MLID load command line. It specifies which DMA
channel is to be used.

None.

Bit 0 Set if the channel has completed DMA operation.
Bit 1 Set if the channel has a pending DMA bus cycle request.

This function can be used by the CHSM to determine the state of the DMA
channel. This function can be used to detect the completion of a DMA transfer

on that channel or if that channel is currently requesting the I/O memory buses.

NetWare Bus Interface 8-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

FreeBusMemory

Syntax

Input Parameters

Frees any hardware resources allocated by the
function MapBusMemory .

#include <odi.h>
#include <odi_nbi.h>

ODI_NBI FreeBusMemory (
void *busTagl,
const void *memAddr,
void *busTag2,
const void *mappedAddr,
UINT32 len);

busTagl
Architecture-dependent value, returneddMSMSearchAdapter, that
identifies the bus that contains the physical memory space.
memAddr
Address of the physical memory spacdo§Tagl

busTag2
Architecture-dependent value, returneddiMSMSearchAdapter, that
identifies the bus that is mapped to the physical memory spacsTdgl
mappedAddr
Pointer to the address of the physical memory spabasifaglused by
busTag2
len
The length of the mapped memory space in bytes.

8-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Output Parameters

Return Values

Remarks

See Also

None.

ODI_NBI_SUCCESSFUL

ODI_NBI_PROTECTION_VIOLATION

ODI_NBI_PARAMETER_ERROR

The requested operation was
completed successfully.

Memory protection prevented the
completion of the requested
operation.

One of the parameters was
invalid.

The parameters passed to this call must be the same parameters that were
passed tdlapBusMemory when the memory was mapped..

A CHSM cannot unmap just a portion of previously mapped memory.

MapBusMemory

NetWare Bus Interface 8-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

InXx

Does whatever operations are necessary to get
and return the requested data, using the bus tag
and 1/0O address space.

Syntax

#include <odi.h>
#include <odi_nbi.h>

UINT8 In8 (
void *busTag,
const void *ioAddr);

UINT16 In16 (
void *busTag,
const void *ioAddr);

UINT32 In32 (
void *busTag,
const void *ioAddr);

Input Parameters

busTag

Architecture-dependent value, returnedd@MSMSearchAdapter, that
identifies a specific bus.

ioAddr

The I/O address in the bus architecture of the adapter from where the input
is to occur.

Output Parameters

None.

8-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Return Values

An unsigned value of the appropriate size.

Remarks

These routines are used only by CHSMs written for adapters intended for bus
architectures that have an 1/0 address space.

NetWare Bus Interface 8-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

INBuff x

Syntax

Input Parameters

Takes a bus identifier (busTag), an 1/0 address in
that bus’s I/O address space, a buffer in the CPU’s
logical address space, and a count of items and
does the necessary operations to get the specified
number of data units (in the specified size) and
puts them in the buffer.

#include <odi.h>
#include <odi_nbi.h>

ODI_NBI InBuff8 (
UINTS8 *buffer,
void *busTag,
const void *ioAddr,
UINT32 count);

ODI_NBI InBuff16 (
UINT16 *buffer,
void *busTag,
const void *ioAddr,
UINT32 count);

ODI_NBI InBuff32 (
UINT32 *buffer,
void *busTag,
const void *ioAddr,
UINT32 count);

buffer

The memory address in logical address space where the data is to be
written.

8-14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

busTag
Architecture-dependent value, returnedd@MSMSearchAdapter, that
identifies a specific bus.

ioAddr
The 1/0 address in the bus architecture of the LAN adapter (or MLID)
from which the input is to be read.

count
The number of items to input.

Output Parameters

Return Values

Remarks

None.

ODI_NBI_SUCCESSFUL The requested operation
was completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection
prevented the completion of
the requested operation.

ODI_NBI_MEMORY_ERROR Memory error occurred
while attempting to perform
the requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was

invalid.

ODI_NBI_UNSUPPORTED_OPERATION The requested operation
could not be completed.

These routines are used by CHSMs that have an 1/O space. A buffer is filled
with data from the specified I/O address with the number of data units
specified. The 1/0 address is not incremented, but the buffer address will fill
forward.

NetWare Bus Interface 8-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

MapBusMemory

Syntax

Takes a bus identifier (busTag1l), a physical
memory address, and a length and makes the
described piece of memory accessible from
another specified bus (busTag?2).

#include <odi.h>
#include <odi_nbi.h>

ODI_NBI MapBusMemory (
void *busTagl,
const void *memAddr,
void *busTag2,
void **mappedAddr,
UINT32 len);

Input Parameters

8-16

busTagl
Architecture-dependent value, returneddSMSearchAdapter,which
specifies the bus on which the memory to be mapped resides.
memAddr
The physical memory address of the memory to be mapped in the bus
architecture specified dyusTagl
busTag2

Architecture-dependent value, returneddSMSearchAdapter,which
specifies the bus on which the memory is to be mapped. The caller sets
busTag2equal to -1 to specify that the target of the mapping is the CPU’s
physical address space, regardless of which bus the CPU is actually
connected to.

len
The minimum length of the space to be mapped in bytes.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Output Parameters

Return Values

Remarks

See Also

mappedAddr

The physical memory address in the bus architecture speciftaasiag2
that can be used frobusTag2to accesbusTagl¥ memAddrPtr

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection prevented the
completion of the requested
operation.

ODI_NBI_HARDWARE_ERROR Hardware error or hardware
limitation prevented the completion
of the requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was invalid.

The purpose of this function is to supply MLIDs for bus master adapters with
a means to get any needed address mapping performed.

When this function returns, the appropriate physical pages have been locked.

FreeBusMemory

NetWare Bus Interface 8-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

MovFastFromBus

Syntax

Input Parameters

Moves the contents of the source buffer on the
adapter to the destination buffer in the CPU’s
logical address space as fast as the platform can
move it.

#include <odi.h>
#include <odi_nbi.h>

ODI_NBI MovFastFromBus (
void *destAddr,
void *srcBusTag,
void *reserved,
const void *srcAddr,
UINT32 count);

destAddr
The memory address in the logical address space of the CPU where the
data is to be written.

srcBusTag
Architecture-dependent value, returneddySMSearchAdapter,which
specifies the bus from which data is to be moved.

reserved
This parameter is reserved and must be set to NULL.

srcAddr
The address of the source based on the information returned by
MapBusMemory.

count
The number of items to be moved.

8-18 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Output Parameters

Return Values

ODI_NBI_SUCCESSFUL

ODI_NBI_PROTECTION_VIOLATION

ODI_NBI_MEMORY_ERROR

ODI_NBI_PARAMETER_ERROR

ODI_NBI_UNSUPPORTED_OPERATION

The requested operation was
completed successfully.

Memory protection prevented
the completion of the requested
operation.

Memory error occurred while
attempting to perform the
requested operation.

One of the parameters was
invalid.

The requested operation could
not be completed.

NetWare Bus Interface 8-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

MovFastToBus

Syntax

Input Parameters

Moves the contents of the source buffer in the CPU
logical address space into the destination buffer on
the adapter as fast as the platform can move it.

#include <odi.h>
#include <odi_nbi.h>

ODI_NBI MovFastToBus (
void *destBusTag,
void “*reserved,
void *destAddr,
const void *srcAddr,
UINT32 count);

destBusTag
Architecture-dependent value, returnediySMSearchAdapter,which
specifies the bus to which data is to be moved.

reserved
This parameter is reserved and must be set to NULL.

destAddr

The address of the destination based on the information returned by
MapBusMemory.

srcAddr

The memory address in the logical address space of the CPU from which
the data is to be read.

count
The number of items to be moved.

8-20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Output Parameters

Return Values

None.

ODI_NBI_SUCCESSFUL

ODI_NBI_PROTECTION_VIOLATION

ODI_NBI_MEMORY_ERROR

ODI_NBI_PARAMETER_ERROR
ODI_NBI_UNSUPPORTED_OPERATION

The requested operation was
completed successfully.

Memory protection prevented the
completion of the requested
operation.

Memory error occurred while
attempting to perform the
requested operation.

One of the parameters was invalid.

The requested operation could not
be completed.

NetWare Bus Interface 8-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

MovFromBus x

Moves the contents of the source buffer on the
adapter to the destination buffer in the CPU's
logical address space.

Syntax

#include <odi.h>
#include <odi_nbi.h>

ODI_NBI MovFromBus8 (
void *destAddr,
void *srcBusTag,
void *reserved,
const void *srcAddr,
UINT32 count);

ODI_NBI MovFromBus16 (
void *destAddr,
void *srcBusTag,
void *reserved,
const void *srcAddr,
UINT32 count);

ODI_NBI MovFromBus32 (
void *destAddr,
void *srcBusTag,
void *reserved,
const void *srcAddr,
UINT32 count);

Input Parameters

destAddr

The memory address in the logical address space of the CPU where the
data is to be written.

8-22 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

srcBusTag
Architecture-dependent value, returneddSMSearchAdapter, which
specifies the bus from which data is to be moved.

reserved
This parameter is reserved and must be set to NULL.

srcAddr

The address of the source, based on the information returned by
MapBusMemory.

count
The number of items to be moved.

Output Parameters

None.
Return Values

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection prevented
the completion of the requested
operation.

ODI_NBI_MEMORY_ERROR Memory error occurred while
attempting to perform the
requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was

invalid.

ODI_NBI_UNSUPPORTED_OPERATION The requested operation could
not be completed.

NetWare Bus Interface 8-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Remarks

8-24

If possible, data will be moved in the size data objects (such as 8, 16, 32)
specified by the name of the routine called. If this is impossible on some
platforms, due to hardware constraints, some adapters will not work on that
platform. The NBI will deal with alignment issues, mapping hardware issues,
and length issues. Errors can be returned only if a hardware failure is detected
or if the user does not have permission to access the memory indicated.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

MovToBus x

Syntax

Moves the contents of the source buffer in the CPU
logical address space into the destination buffer on
the adapter.

#include <odi.h>
#include <odi_nbi.h>

ODI_NBI MovToBus8 (
void *destBusTag,
void *reserved,
void *destAddr,
const void *srcAddr,
UINT32 count);

ODI_NBI MovToBus16 (
void *destBusTag,
void *reserved,
void *destAddr,
const void *srcAddr,
UINT32 count);

ODI_NBI MovToBus32 (
void *destBusTag,
void *reserved,
void *destAddr,
const void *srcAddr,
UINT32 count);

NetWare Bus Interface 8-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Input Parameters

destBusTag
Architecture-dependent value, returneddiSMSearchAdapter, which
specifies the bus to which data is to be moved.

reserved
This parameter is reserved and must be set to NULL.

destAddr

The address of the destination based on the information returned by
MapBusMemory.

srcAddr

The memory address in the logical address space of the CPU from where
the data is to be read.

count
The number of items to be moved.

Output Parameters

None.
Return Values

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection prevented
the completion of the requested
operation.

ODI_NBI_MEMORY_ERROR Memory error occurred while
attempting to perform the
requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was

invalid.

ODI_NBI_UNSUPPORTED_OPERATION The requested operation could
not be completed.

8-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Remarks

If possible, data will be moved in the size data objects (such as 8, 16, 32)
specified by the name of the routine called. If this is impossible on some
platforms, due to hardware constraints, some adapters will not work on that
platform. The NBI will deal with alignment issues, mapping hardware issues,
and length issues. Errors can be returned only if a hardware failure is detected
or if the user does not have permission to access the memory indicated.

NetWare Bus Interface 8-27

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Outx

Takes a bus identifier (busTag), a value, and an
I/O address in that bus’s address space and
performs whatever operations are necessary to
deliver the value to the specified address.

Syntax

#include <odi.h>
#include <odi_nbi.h>

void Out8 (
void *busTag,
const void *ioAddr,
UINT8 outputVal);

void Outl6 (
void *busTag,
const void *ioAddr,
UINT16 outputVal);

void Out32 (
void *busTag,
const void *ioAddr,
UINT32 outputVal);

Input Parameters

busTag
Architecture-dependent value, returneddiySMSearchAdapter,which
specifies the bus to which data is to be moved.

ioAddr

The 1/O address in the bus architecture of the LAN adapter to which the
output is to occur.

8-28 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

outputVal

The value to be sent to the specified /O address on the specified bus. The
type of this value varies depending on which function is called.

Output Parameters

None.

Return Values

None.

Remarks

These routines are used only by CHSMs written for LAN adapters intended for
bus architectures that have an I/O address space.

NetWare Bus Interface 8-29

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

OutBuff x

Syntax

Input Parameters

Takes a bus identifier (busTag), an 1/0 address in
that address space, a buffer in the CPU’s logical
address space and performs whatever operations
are necessary to output the specified number of
data units (in the specified size) from the buffer to
the I/O address.

#include <odi.h>
#include <odi_nbi.h>

ODI_NBI OutBuff8 (
void *busTag,
void *ioAddr,
const void *buffer,
UINT32 count);

ODI_NBI OutBuff16 (
void *busTag,
void *ioAddr,
const void *buffer,
UINT32 count);

ODI_NBI OutBuff32 (
void *busTag,
void *ioAddr,
const void *buffer,
UINT32 count);

busTag

Architecture-dependent value, returneddiySMSearchAdapter,which
specifies the bus to which data is to be moved.

8-30 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ioAddr

The I/O address in the bus architecture of the LAN adapter (or MLID) to

which the output is to occur.

buffer

The memory address in the logical address space of the CPU from which

the output is to occur.

count
The number of items to output.

Output Parameters

None.

Return Values

ODI_NBI_SUCCESSFUL

ODI_NBI_PROTECTION_VIOLATION

ODI_NBI_MEMORY_ERROR

ODI_NBI_PARAMETER_ERROR

ODI_NBI_UNSUPPORTED_OPERATION

Remarks

These routines are used by CHSMs that have an 1/0 space. Data from a buffer
is output to the specified I/O address with the number of data units specified.
The I/O address is not incremented, but the buffer address is incremented.

The requested operation was
completed successfully.

Memory protection prevented
the completion of the requested
operation.

Memory error occurred while
attempting to perform the
requested operation.

One of the parameters was
invalid.

The requested operation could
not be completed.

NetWare Bus Interface 8-31

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Rdx

Syntax

Input Parameters

Takes a bus identifier and a physical memory
address in that bus’s memory address space and
performs whatever operations are necessary to
acquire and return the requested data.

#include <odi.h>
#include <odi_nbi.h>

UINT8 Rd8 (
void *busTag,
void *reserved,
const void *memAddr);

UINT16 Rd16 (
void *busTag,
void *reserved,
const void *memAddr);

UINT32 Rd32 (
void *busTag,
void *reserved,
const void *memAddr);

busTag

Architecture-dependent value, returneddiySMSearchAdapter,which
specifies the bus from which data is to be moved.

reserved
This parameter is reserved and must be set to NULL.

memAddr

The address of the source based on the information returned by
MapBusMemory.

8-32 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Output Parameters

None.

Return Values

An unsigned value of the appropriate size.

NetWare Bus Interface 8-33

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Setx

Fills a buffer with a specified value.

Syntax

#include <odi.h>
#include <odi_nbi.h>

ODI_NBI Set8 (
void *busTag,
void *reserved,
const void *memAddr,
UINT8 value,
UINT32 count);

ODI_NBI Set16 (
void *busTag,
void *reserved,
const void *memAddr,
UINT16 value,
UINT32 count);

ODI_NBI Set32 (
void *busTag,
void *reserved,
const void *memAddr,
UINT32 value,
UINT32 count);

Input Parameters

busTag
Architecture-dependent value, returneddiSMSearchAdapter,which
specifies the bus on which the operation is to be performed.
reserved
This parameter is reserved and must be set to NULL.

8-34 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Output Parameters

Return Values.

Remarks

memAddr

The address of the destination based on the information returned by
MapBusMemory.

value

The value to be duplicated into the specified memory block on the
specified bus. The type of this value varies depending on which function
is called.

count
The number of items to be moved.

None.

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection prevented the
completion of the requested
operation.

ODI_NBI_MEMORY_ERROR Memory error occurred while
attempting to perform the
requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was invalid.

If possible, data will be written in the size units specified by the name of the
routine called. If this is impossible on some platform due to hardware
constraints, some LAN adapters will not be usable on that platform. The NBI
will deal with alignment issues, mapping hardware issues, and length issues.
Errors can be returned only if a hardware failure is detected or the user does not
have permission to access the memory indicated.

NetWare Bus Interface 8-35

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Slow

A 0.5 microsecond NOP.

Syntax

#include <odi.h>
#include <odi_nbi.h>

void Slow (void);

Input Parameters

None.
Output Parameters

None.
Return Values

None.

Remarks

This function will be implemented in a processor speed independent manner, if
possible, to prevent problems between platform models and current (and
future) models. This function is necessary because some hardware restricts
how rapidly two successive accesses can be made, and unfortunately, not all
hardware protects itself against attempts to make successive accesses too
rapidly. This function allows MLIDs written for hardware which has such
problems to work on a wider variety of platforms than would be possible
otherwise.

8-36 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Wrt x

Takes a value, a bus identifier, and a memory
address in that bus’s memory address space and
performs whatever operations are necessary to
deliver the value to the specified address.

Syntax

#include <odi.h>
#include <odi_nbi.h>

void Wrt8 (
void *busTag,
void *reserved,
void *memAddr,
UINT8 writeVal);

void Wrt16 (
void *busTag,
void *reserved,
void *memAddr,
UINT16 writeVal);

void Wrt32 (
void *busTag,
void *reserved,
void *memAddr,
UINT32 writeVal);

Input Parameters

busTag
Architecture-dependent value, returneddSMSearchAdapter,which
specifies the bus to which data is to be moved.

reserved
This parameter is reserved and must be set to NULL.

NetWare Bus Interface 8-37

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

memAddr

The destination address based on the information returned by
MapBusMemory.

writeVal

The value to be sent to the specified memory address on the specified bus.
The type of this value varies depending on which function is called.

Output Parameters

None.

Return Values

None.

8-38 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

AppendixA

Overview

Language Enabling

A language-enabled CHSM allows you to change the language in which the
CHSM’s messages are displayed.

A set of tools is available from Novell that allows you to language enable your
CHSMs. These tools are part of thetWare Client SDIsoftware development

kit. The documentation on using the language enabling tools islitssthg the
Message Enabling Tootlocument of the kit. By using these tools and
following the instructions in the documentation, you should be able to easily
language enable a CHSM.

Language Enabling Procedure

The language enabling tools are designed to be used on a completed CHSM.
In other words, you do not need to do anything special in writing your CHSM
except write your CHSM to this specification. The tools will make the
necessary modifications to your source files for you.

If you are going to language enable your MLID, you should do the following:

1. Make sure you have tiNetWare Client SDIsoftware development kit.

You should review the chapter that describes language enabling before or
soon after you start writing your CHSM, so you will be familiar with the
process when the time comes.

2. Complete your CHSM to this specification.

3. Use the language enabling tools on the completed CHSM to language
enable your CHSM.

Language Enabling A-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

A-2

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Appendix B
Event Control Blocks (ECBSs)

Overview

This appendix describes the Event Control Block (ECB), the ECB structure,
and each of the fields in the ECB structure. This appendix is especially useful
for those developing for ECB aware LAN adapters.

ECB Aware Adapters

This appendix defines the general Event Control Block (ECB) structure and
illustrates its relationship to the RCB and TCB. This appendix does not apply
to most MLIDs written with the CMSM / CTSM interface.

MLIDs written using the CMSM / CTSM interface typically interact with

RCBs and TCBs during packet transactions as shown in Figure B-1.
However, some MLIDs need to bypass these CMSM provided structures in
order to work directly with the underlying general ECB structure. This is
typically the case for intelligent adapters that are designed to be "ECB aware."

An ECB aware adapter/MLID will completely fill in and manage all fields of
the ECB during packet transactions. This shifts much of the overhead involved
in packet reception and transmission to the adapter, which gives the processor
more time to perform other tasks.

The format of the ECB structure is shown below. The same structure is used
for both receiving and transmitting packets.

Event Control Blocks (ECBs) B-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Figure B-1
Packet Transfer through MLID

' Link Support Layer (LSL) '

ECB

Support Modules (CMSM/CTSM)

Hardware Specific Module (CHSM)

Event Control Block Structure

typedef struct FRAGMENT_STRUCT _
{

void *FragmentAddress;
UINT32 FragmentLength;
}IFRAGMENT_STRUCT;

typedef struct ECB_

{
struct _ECB_ *ECB_NextLink;
struct _ECB_ *ECB_PreviousLink;
UINT16 ECB_Status;
void (*ECB_ESR)(struct _ECB_ *);
UINT16 ECB_StackiD;
PROT_ID ECB_ProtocolID;
UINT32 ECB_BoardNumber;
NODE_ADDR ECB_ImmediateAddress;
union
{
B-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Table B-1

UINT8 DWs_i8val[4];

UINT16 DWs_il6val[2];
UINT32 DWs_i32val;
void *DWSs_pval;
} ECB_DriverWorkspace;
union
{
UINT8 PWs_i8val[8];
UINT16 PWs_il6val[4];
UINT32 PWs_i32val[2];
UINT64 PWs_i64val,
void *PWs_pval[2];
} ECB_ProtocolWorkspace;
UINT32 ECB_Datalength;
UINT32 ECB_FragmentCount;
FRAGMENT_STRUCT ECB_Fragment[1];
} ECB,;

Fragment Structure and ECB Field Descriptions

Name Description
FragmentAddress Pointer to a data buffer of FragmentLength bytes.
FragmentLength Length of the buffer (in bytes) pointed to by FragmentAddress. This field can

ECB_NextLink

be 0, in which case the MLID will skip over it when transmitting or receiving
data.

Typically used as a forward link to a list of ECBs. The current owner of the ECB
(such as the protocol stack) uses this field.

Event Control Blocks (ECBs) B-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table B-1

Fragment Structure and ECB Field Descriptions continued

Name Description

ECB_PreviousLink Typically used as a back link to manage a list of ECBs. The current owner of
the ECB uses this field. When an ECB is returned from an MLID containing a
received packet, this field contains the received packet error status defined as

follows:

Bit Value
0x0000 0001
0x0000 0002
0x0000 0004
0x0000 0010
0x0000 0020

0x0000 0040

0x0000 4000
0x0000 8000

Description

CRC error (for example, frame check sequence (FCS) error).
CRC / Frame alignment error.

Runt packet.

Packet larger than allowed by media.

Received packet for a frame type not supported, for example,
logical board not registered for the frame type of the received
packet. A board number associated with the physical adapter is
placed in the LOOKAHEAD structure.

Malformed packet. For example, packet size smaller than
minimum size for media header (for example, incomplete MAC
header). Contents of the length field in an Ethernet 802.3
header is larger than the total packet size.

Do not decompress the received packet.

The address present in ECB_ImmediateAddress is in
noncanonical format.

If no error bits are set, the packet was received without error and the data can
be used. All undefined bits are cleared.

B-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

Table B-1

Fragment Structure and ECB Field Descriptions continued

Name Description
ECB_Status Completion status of an ECB. This field is invalid until the associated event
service routine is called. The following are the possible return values.
ODISTAT_SUCCESSFUL Packet was received successfully.
ODISTAT_RX_OVERFLOW Packet was too big to fit into the fragments
described by the ECB. However, only the
portion of the packet that overflowed the buffer
was lost; the buffer contains as much data as
it could hold.
ODISTAT_CANCELED The ECB was not needed by the MLID. The
MLID signals to the protocol stack that the
ECB was not transmitted.
ODISTAT_MLID_SHUTDOWN The LAN adapter specified in the
ECB_BoardNumber field cannot be found.
This usually means that the MLID has been
removed from memory by shut down
(temporarily or permanently).
ODISTAT_BAD_PARAMETER The ECB contains bad parameters—for
example, the amount of data to transmit
exceeds the maximum possible for the MLID.
The ECB will not have been transmitted.
Note: The return values are ODISTAT cast as UINT16.
ECB_ESR The protocol stack sets this field to point to an appropriate routine that is called

when the send or receive event is complete (either successfully or with an
error). This field must point to a valid handler (*ECB_ESR)(ECB¥)).

Event Control Blocks (ECBs) B-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table B-1

Fragment Structure and ECB Field Descriptions continued

Name

Description

ECB_StackiD

ECB_ProtocollD

When a packet is transmitted, the protocol stack sets this field to the protocol
stack’s assigned Stack ID (SID) before the protocol stack sends the ECB to the
LSL. When a packet is being received, the LSL sets this field to the Stack ID
assigned to the protocol stack that is receiving the packet. If a packet is being
transmitted as a raw send, the protocol stack can set this field to OxFFFF as a
signal to the underlying MLID that this is a raw send. This gives the protocol

stack the ability to specify the complete packet, including all low-level headers.

The following values are valid for the ECB_StackID field:

RAW_SEND_PRIORITY_O OxFFFF No Priority.
RAW_SEND_PRIORITY_1 OxFFFE Scale 1-7: 1 = Lowest Priority.
RAW_SEND_PRIORITY_2 OxFFFD

RAW_SEND_PRIORITY_3 OxFFFC

RAW_SEND_PRIORITY_4 OxFFFB

RAW_SEND_PRIORITY_5 OxFFFA

RAW_SEND_PRIORITY_6 OxFFF9

RAW_SEND_PRIORITY_7 OxFFF8 Scale 1-7: 7 = Highest Priority.

SEND_PRIORITY_O OXFFF7 Scale 1-7: 0 = No Priority.
SEND_PRIORITY_1 OxFFF6 Scale 1-7: 1 = Low Priority.
SEND_PRIORITY_2 OxFFF5

SEND_PRIORITY_3 OxFFF4

SEND_PRIORITY_4 OxFFF3

SEND_PRIORITY_5 OxFFF2

SEND _PRIORITY_6 OxFFF1

SEND_PRIORITY_7 OxFFFO Scale 1-7: 7 = Highest Priority.

The Protocol ID (PID) value for sends and receives.

For send ECBSs, the protocol stack sets this field before calling SendPacketFor
send ECBs, the PID is embedded into the low-level packet header by the
underlying MLID and is used to uniquely identify the packet as the caller's
protocol type.

For receive ECBs, the protocol stack puts the Protocol ID, supplied by the
LOOKAHEAD structure, in this field.

The PID is stored in high-low order.

B-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Table B-1

Fragment Structure and ECB Field Descriptions continued

Name

Description

ECB_BoardNumber

ECB_ImmediateAddress

When an MLID registers with the LSL, the MLID is given a logical board
number. The BoardNumber field of the configuration table contains this board
number.

For send ECBs, the protocol stack puts the target logical board number in this
field.

For receive ECBs, the protocol stack puts the board number, supplied by the
LOOKAHEAD structure, in this field.

If the ECB is a send ECB, the protocol stack sets this field before calling
SendPacketand the immediate address is the destination address of the
packet on the physical network. If the ECB is a receive ECB, the protocol stack
fills in this field with the immediate address supplied in the LOOKAHEAD
structure. This source address is the node on the same physical network that
just sent the packet. If the MLID is utilizing canonical addressing, the
immediate address is in canonical form.

Event Control Blocks (ECBs) B-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table B-1

Fragment Structure and ECB Field Descriptions continued

Name Description

ECB_DriverWorkspace Generally reserved for use by the MLID.

The first byte, offset 0, of the ECB_DriverWorkspace field is used to
indicate the type of received packet and the number of data bytes present
in the packet after an MLID has finished filling the ECB and the ECB is
placed on the LSL event queue.

Bit
0x01

0x02

0x04

0x08

0x10

0x20

0x40

0x80

Description

Multicast : The packet was destined to a subset of group addresses
on the physical network that the MLID has been programmed to
support.

Broadcas t: The packet was destined to all nodes on the physical
network. Note that on receiving a broadcast both b0 and b1 are set
to 1, since a broadcast address is also a group address.

UnicastRemote : The packet was directly destined to another
workstation on the physical network. This bit is generally set only
after the MLID has been entered into promiscuous mode or has
received a packet due to source routing.

MulticastRemote : The packet was destined to a subset of group
addresses on the physical network that the MLID has not been
programmed to support.

SourceRoute : This bit is set in conjunction with other packet type
bits if the packet has source routing information in the packet, in
other words, the RII bit is set. If the source routing module is not
loaded and the length of the source route field is greater than two
bytes (packet from a remote ring) all other bits will be cleared.

GlobalError : The packet contains errors. See the
ECB_PreviousLink field for the specific error. This is an exclusive
bit; if set, all other bits should be 0. This value supersedes
SourceRoute.

MacFrame: The packet is a non-data frame (for example, the MAC
layer frame). This is an exclusive bit if set. All other bits must be zero
(0). Note that MAC frames by definition are not source routable.

Direct: The packet was destined to this station only.

B-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Table B-1

Fragment Structure and ECB Field Descriptions continued

Name

Description

ECB_ProtocolWorkspace

ECB_DatalLength

ECB_FragmentCount

ECB_Fragment[1]

The second byte, offset 1, of the ECB_DriverWorkspace field contains the
number of control bytes present in the 802.2 header.

Bit Value Description

0x00 No 802.2 header present in frame.

0x01 One control byte is present in the 802.2 header
0x02 Two control bytes are present in the 802.2 header
0x04 The received packet is a priority packet.

Bit value 0x04 is only valid for topologies that support a distinction in
priority levels. Bit value 0x04 is not set if the received frame is at the normal
priority level or lower.

The second word, byte offsets 2 and 3, of the ECB_DriverWorkspace field
are filled with the size of the received frame minus the MAC header, which
is the total number of data bytes present in the frame.

Reserved for use by the originating protocol stack and must not be
modified by the LSL or the MLIDs.

If this is a send ECB, the protocol stack sets this field to the total length of
the data in bytes before it calls SendPacket If this is a receive ECB, this
field is set to the length in bytes of the data that is copied into the fragment
structure portion of the ECB.

The number of fragment buffer descriptors immediately following this field.
This value is greater than zero and less than or equal to 16 (0 <
ECB_FragmentCount <= MAX_FRAG_COUNT).

This field specifies a fragment structure.

Event Control Blocks (ECBs) B-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Relationship between Receive ECBs and RCBs

The general receive ECB and the CMSM'’s RCB essentially form a union. That
is, both structures occupy the same memory space. The following shows how
the receive ECB fields are equated to the RCB fields.

Figure B-2

RCB Correspondence to ECB

These Receive ECB Fields Correspond to these RCB Fields

NextLink Driver WS
PreviousLink
Status

ESR

StackID
ProtocollD
BoardNumber Reserved
ImmediateAddress
DriverWorkstation
ProtocolWorkspace
DataLength
FragmentCount FragCount
Fragment
MediaHeader

FragStruct
Data

The ECB fields that correspondR€CBReservedre normally managed by the
CTSM. However, if an adapter is ECB-aware, it can simply treat the structure
as an ECB and take over the management of these fields.

MLIDs written for ECB aware adapters must obtain control blocks by calling
CMSMAllocateRCB. This routine allows the MLID to preallocate RCBs
without the CMSM initializing the fields. When a packet is received, the
adapter copies it into the RCB data buffer, fills in the required fields,

and returns the structure using either <@&rSM>RcvComplete/
CMSMServiceEventscombination or the function
<CTSM>FastRcvComplete

B-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Relationship between Transmit ECBs and TCBs

The general transmit ECB and the CTSM'’s TCB are totally separate structures.
The TCBFragStrucfiield of the TCB, however, points to tireagmentCount

field of the ECB. Knowing this, it is possible to work directly with the
underlying ECB by using both negative and positive offsets from this pointer.

The CMSM provides another more efficient way for ECB aware adapters to
work directly with ECBs. By setting tH2riverSendWantsECBariable of the
driver parameter blocto any nonzero value (see Chapter 3, "CHSM Data
Structures and Variables"), the CHSNUsiverSend routine will be given

ECBs rather than TCBs for packet transmission. The CHSM will then be
responsible for building the proper media header depending on the board
number. The following shows the relationship between the transmit ECB and
TCB.

Figure B-3
Relationship between TCB and ECB

TCB Fields ECB Fields

DirverWs NextLink

Datalen PreviousLink
FragStructPtr — Status
MediaHeaderLen ESR

MediaHeader StackiD
ProtocollD
BoardNumber
ImmediateAddress
DriverWorkspace
ProtocolWorkspace
DatalLength
FragmentCount
Fragment

Data

Event Control Blocks (ECBs) B-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

B-12

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Appendix C o)
Platform Specific Information

Overview

This appendix presents platform-specific information related to writing
MLIDs. Currently, only Intel (80x86 and Pentium) processor specific
information is provided. Information about other platforms will be provided in
the future.

Intel Processors

The following information is specific to Intel 80x86 based processor machines.

Building the CHSM

The following describes the process of creating, compiling, linking, and
loading a CHSM.

Creating the Source Files

C language NetWare drivers are written in ANSI C code. This specification
provides the details for writing the driver.

Compiling the Source Files

The source file€driver>.c) and header filegodi.h, <ctsm>.h, cmsm.h, and
odi_nbi.h)are compiled into an object filgdriver>.OBJ). The driver can

consist of one or more object files. Depending on the target platform, the
developer may have a choice of several compilers or may be restricted to one.

Platform Specific Information C-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Linking the Object Files

The NetWare linker (NLMLINKX) converts thedriver>.0OBJ object file and
any other object files that make up the MLID into a super object file called
<driver>.LAN. NLMLINKX requires a linker definition file to create a
NetWare Loadable Module. The linker definition file is described below.
To use the linker, type:

nimlinkx Driver

(whereDriver is the name of the linker definition file)

Linker Definition File

Each NetWare Loadable Module must have a corresponding definition file
with a ".DEF" extension. This file is needed by the NetWare linker,
NLMLINKX. All definition file information can also be embedded inside a
make file, and the make file can produce the definition file. The definition file
contains information about the loadable module, including a list of NetWare
variables and routines that the loadable module must access.

The following shows a definition file example that can be used to create an

MLID. The file consists of keywords followed by data. The keywords can be
upper or lower case.

Linker Definition File Example

TYPE 1

DESCRIPTION “NetWare CNE2000"

VERSION 5,30,2

OUTPUT <drivername>

INPUT <.0OBJ drivername>

START Driverlnit

EXIT DriverRemove

MESSAGE CNE2000.MSG

MODULE ETHERTSM

REENTRANT

MAP

IMPORT CEtherTSMRegisterHSM
CEtherTSMGetRCB
CEtherTSMRcvComplete

C-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Table C-1

CEtherTSMSendComplete
CEtherTSMGetNextSend
CEtherTSMUpdateMulticast
CMSMAlloc
CMSMDriverRemove
CMSMFree
CMSMParseDriverParameters
CMSMPrintString
CMSMRegisterHardwareOptions
CMSMRegisterMLID
CMSMReturnDriverResources
CMSMScheduleAES
CMSMSetHardwarelnterrupt

Linker Definition File Example Definitions

Name Description

TYPE Extension to append to the output file. The default extension is ".NLM". A value of 1
specifies ".LAN", and a value of 2 specifies ".DSK".

DESCRIPTION Description string in the header of the <driver>.LAN file. This string describes the
loadable module and is from 1 to 127 bytes long. The console commands, MODULES,
CONFIG, and LOAD display this description string on the file server console.
Examples of the description string are shown here:
NetWare NE2000
3Com EtherLink Plus 3C503

OUTPUT Output file name.

INPUT OBJ files to include in the loadable module. It is not necessary to use the filename
extension in this list.

START Name of the loadable module’s initialization routine, in this case, Driverlnit . This is the
procedure the NetWare loader will call when the module is loaded.

EXIT Name of the loadable module’s remove routine, in this case, DriverRemove. The
UNLOAD command uses this routine to unload the module from memory.

REENTRANT Allows the driver to be loaded more than once, but only have the driver's code copied

into memory the first time.

Platform Specific Information C-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table C-1

Linker Definition File Example Definitions continued

Name

Description

MAP

IMPORT

EXPORT

MODULE

CUSTOM

DEBUG

CHECK

MULTIPLE

COPYRIGHT

Tells the linker to create a map file.
NetWare variables and routines the loadable module must access.

A list of variable and function names resident in the loadable module that are available
to other loadable modules.

Loadable modules that must be loaded before the loadable module defined by this file
is loaded. If the necessary loadable modules are not already in memory, the loader will
attempt to find and load them. If it cannot find them, the loader will not load the current
module.

Name of a file that contains custom firmware data. When the linker sees this keyword it
includes the specified file in the output file it is creating.

Tells the linker to include debug information in the output file that it creates. This allows
public labels to be accessible as symbols in NetWare’s resident debugger.

Name of the loadable module’s check procedure. Both the UNLOAD and DOWN
console commands call a loadable module’s check procedure if one exists. An MLID’s
check procedure might check to see if an adapter is currently being accessed and return
a nonzero value to the NetWare operating system if the board is busy. The NetWare
operating system can then display a message warning the console operator that the
board is busy.

Tells the linker that more than one code image of the loadable module can be loaded
into memory concurrently.

Tells the linker to include a copyright string in the output file. A MEON string 1 to 252
bytes long, in double quotes following the keyword COPYRIGHT is displayed whenever
the module is loaded. To start a new line within the displayed string, use "\n". If the
copyright keyword is used but no string is entered, the linker includes the Novell default
copyright message.

Note: You must use NLMLINKX.EXE to use the COPYRIGHT keyword.

C-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Table C-1

Linker Definition File Example Definitions continued

Name Description

VERSION Gives the linker the version of the module that should be placed into the NLM header
version field. The format for this keyword is:

VERSION Major, Minor[, Revision]

The version must be separated by commas. The major version number is one digit, and
the minor version number is two digits. The revision number is optional and is a number
from 1-26 representing a-z.

For example, "VERSION 3,50,2" produces the version field 3.50b in the NLM header
of the output file.

Note that to use the VERSION keyword, you must use NLMLINKX.EXE. The date is
automatically set by the linker to the date that the files are linked.

The CMSM.NLM and <CTSM>.NLM must be loaded (only once) before any CHSMs are
loaded. These can be auto-loaded using the "module” keyword in the linker definition

file.

To load the driver, you could enter a command similar to this:

LOAD <driver>FRAME=ETHERNET_802.3, PORT=300,
NODE=2608C760361, INT=3

The parameters do not have a set order. The commas are optional.

MLID Configuration File

CHSMs that support a large number of custom keywords may have trouble
specifying all parameters on the limited space of the command line. Command
line parameters can be listed in a driver configuration file or load response file.
To use a load response file, type the parameters as they would appear on the
command line in the file and at the command line type:

LOAD <drivername> @<response filename>

If this file exists in the same directory as the driver, the CMSM will open the

file, parse it, and process it along with other parameters on the command line.

Load Keywords and Parameters

This section describes the parameters for the NetWare LOAD command. The
CMSMParseDriverParametersroutine handles the load command

Platform Specific Information C-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

parameters in drivers written using the CMSM. The load parameters and
examples of their use are described below.

Table C-2
Load Keywords and Parameters Descriptions

Name Descriptions

PORT, PORT1 1/0 mapped address base that the user wants the board to use. A port length
can also be included as shown in the following examples.

LOAD <driver> PORT=300
LOAD <driver> PORT=300:A
LOAD <driver> PORT=300:A PORT1=700:8

MEM, MEM1 Beginning address of the shared RAM that the board can use. The size of the
shared memory buffer can also be specified.

LOAD <driver> MEM=C0000
LOAD <driver> MEM=C0000:1000
LOAD <driver> MEM=C0000:1000 MEM1=CCO000

INT, INT1 Interrupt number that the board is expected to use to awaken the interrupt
service routine.

LOAD <driver> INT=3
LOAD <driver> INT=3 INT1=5

DMA, DMA1 If the board supports DMA, this is the direct memory address channel that the
adapter should use for data transfer to memory.

LOAD <driver> DMA=0
LOAD <driver> DMA=0 DMA1=3

SLOT System-wide unique Hardware Instance Number (HIN) that may be the
physical slot number on a slot based bus such as Micxonel, PCI, PC
Card, EISA, or another uniquely assigned number.

LOAD <driver> SLOT=4

RETRIES Number of send retries that the MLID should use in its attempts to send
packets.
RETRIES =n

CHANNEL Channel number (controller number) to use for multichannel adapters. A

multichannel adapter is a board containing more than one adapter.

CHANNEL = number

C-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Table C-2
Load Keywords and Parameters Descriptions continued

Name Descriptions

BELOW16 This keyword must be specified on the load command line if the driver needs
memory allocated below the 16MB boundary. This keyword is required only if
the MLID is loaded on a system that initially has less than 16 MB of memory,
but will have more memory added later using the server's REGISTER
MEMORY command. Iraddition, the driver must also set the
DriverNeedsBelow16Meield of the DRIVER_PARM_BLOCK structure to
a nonzero value.

BELOW16

FRAME String specifying the frame type (see ODI Supplement: Frame Types and
Protocol IDs for a list of frameype strings).

FRAME = type

Token-Ring drivers can add "MSB'or "LSB" following the frame type
designation. LSB forces canonical addresses to be passed between the MLID
and the upper layers. The MSB designation forces noncanonical addresses to
be passed (this is the default for Token-Ring media). Ethernet media cannot
use the MSRiesignator.

BUFFERS16 This keyword is used to override the number of RCBs below 16MB allocated
by the CMSM at initialization. The CHSM must set the
DriverNeedsBelow16Meg field in the DRIVER_PARM_BLOCK structure for
this keyword to be valid. The RCB allocation routines (CMSMAIllocRCB ,
<CTSM>GetRCB, <CTSM>ProcessGetRCB , etc.) use these RCBs if the
RCB allocated by the LSL is physically over 16MB. The number of RCBs
allocated by default is eight. If the CHSM preallocates more than eight RCBs
at a time, the user can override this default when loading the driver by typing
BUFFERS16=n. The CMSM will force this value to a multiple of eight, so values
other than 8, 16, 32 and so on are invalid. No restriction is placed on the
maximum value, except that the CMSM might not be able to allocate enough
memory from the operating system.

Platform Specific Information C-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Table C-2
Load Keywords and Parameters Descriptions continued

Name Descriptions

NODE Node address that the board is to use; this address should override the default
address on the board if one exists.

NODE = nnnnnnnnnnnn

In the case of Token-Ring media, which has a noncanonical physical layer
format, the override node address on the command line can be entered in
either canonical or noncanonical format (see ODI Specification Supplement:
Canonical and Noncanonical Addressing). To indicate the format of the
address, an "L" (LSB) or @M" (MSB) can be appended. For example, to
indicate a node address for Token-Ring media in canonical format enter:

NODE = nnnnnnnnnnnnL

No matter what the format of the node address specified on the command line,
the format of the node address actually placed in the configuration table is
indicated by the MM_NONCANONICAL_BIT bit in the
MLIDCFG_ModeFlagsield.

C-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Appendix D

Overview

Portability Issues

For the CHSM to be portable across processors and operating systems, you
need to do several things. This appendix describes some programming
practices, assumptions, general principles, and other miscellaneous
information to help you in writing a portable driver. This appendix also
describes the macros that you can use to deal with the big /little endian and
alignment issues of portability.

In most cases, it should be possible to port your code from one processor to
another or from one operating system to another by modifying a few #defines
and/or typedef statements in a few header files, and perhaps defining a pragma
or setting a compiler switch.

Portability Rules

The following are rules and guidelines that you should follow to increase the
probability that your code will be portable to other processors and operating
systems. This is not a comprehensive list, therefore, you may need to do
additional things not listed to ensure portability (test on different platforms and
operating systems, learn about the specifics of hardware you are working with,
etc.).

« Adhere strictly to the ANSI C specification.

- Don’tmake assumptions about the size of a given type, especially pointers.

« Be aware that numeric fields composed of more than 1 byte can be in one
of two formats: big endian (high-low) or little endian (low-high). Big
endian numbers contain the most significant byte in the lowest addressed

byte of the field, the next most significant byte in the second lowest
addressed byte, and so on, with the least significant byte appearing last.

Portability Issues D-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Little endian numbers are stored in the opposite order. For example, Intel
80x86 microprocessors store numbers in little endian order.

« Pay attention to alignment constraints when allocating memory and using
pointers. The addresses that certain operands can be assigned to are
restricted on some architectures.

- Be aware that pointers to objects can have the same size but different
formats.

« Do not redefine the NULL symbol. NULL should always be the constant
zero.

- Make file names no more than eight main and three extension characters
long.

- Always dereference the pointer when calling functions passed as
arguments. For example, if "F" is a pointer to a function, use "*F" instead
of "F", because some compilers may not recognize "F".

» In general, do not declare any variable to be any of the C language basic
types ghort long, int, char). Declare variables to be of some abstract type,
and typedef that type to the appropriate base type for each processor/
operating system combination. In some cases, such as counters, it may be
more efficient to usét instead of an abstract type.

« Make sure that all members in any structure that describes data coming in
from or going out to the LAN are given unique, abstract types. Also, make
sure that all references to these members use the appropriate misalignment
correction and byte order correction macros.

+ Isolate processor and operating system code into separate modules and use
conditional compilation to make it easier to port your code.

« Do not modify string constants, because many implementations place the
constants into read-only memory. (This is required by the ANSI C
standard.)

- Encloseffpragmadirectives with#ifdefs in order to document under
which platform they make sense (suggested).

» Protect header files (to ensure portability, do not modify any of the header
files provided by Novell).

D-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Use thesizeofoperator to determine the size of an object, rather than
making an assumption or hard-coding a value.

Use theoffsetofmacro to determine the offset of a member within a
structure, rather than making an assumption or hard-coding a value.

Initialize all data.

Do not depend on parameter passing conventions, especially assumptions
about which parameters will be passed on the stack or in registers.

Do not access arrays based on a knowledge of the storage method. Use the
standard C language access methods instead of computing offsets into the
array.

Do not assume a stack growth direction.

Use thevarargsfeatures to implement functions that require variable
arguments.

Pay attention to word sizes. Objects may be non-intuitive sizes. Pointers
are not always the same sizdrats, the same size as each other, or freely
interconvertible.

Be aware that some machines have more than one possible size for a given
type. The size you get can depend upon both the compiler and
compile-time flags.

Understand that theoid* type is guaranteed to have enough bits of
precision to hold a pointer to any data object.

Be aware that even when, say,ilai andchar* are the same size, they
may have different formats.

Understand that the integeonstantzero may be cast to any pointer type.
The resulting pointer is called a NULL pointer for that type and is different
from any other pointer of that type. A NULL pointer always compares
equal to the constant zero. A NULL pointer might not compare equal with
a variable that has the value zero. NULL pointers are not always stored
with all bits zero. NULL pointers for two different types are sometimes
different. A NULL pointer of one type cast in to a pointer of another type
will be cast in to the NULL pointer for that second type.

Portability Issues D-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Translation Limits

D-4

Watch out for signed characters. Code that assumes signed/unsigned is not
portable.

Avoid assuming ASCII. Characters may hold more than 8 bits.

Do not use code that takes advantage of two’s compliment representation
of numbers in most cases.

Be aware that there may be unused holes in structures. Susipesused
for type cheating. Specifically, a value should not be stored as one type and
retrieved as another.

Be aware that different compilers use different conventions for returning
structures.

Be aware that the address space can have holes. Simply computing the
address of an unallocated element in an array can crash the program.

Be aware that only the == and != comparisons are defined for all pointers
of a given type. It is only portable to use <, <=, >, or >= to compare
pointers when they both point in to (or to the first element after) the same
array. It is likewise only portable to use arithmetic operators on pointers
that both point into the same array or the first element afterwards.

Be aware that side effects within expressions can result in code whose
semantics are compiler-dependent, since the order of evaluation is
explicitly undefined in most places in the C language.

The following are transaction limits that you should follow to ensure
portability between operating systems and processors. The following are
maximum values:

Eight nesting levels of conditional inclusion.

Eight nesting levels fottincludefiles

32 nesting levels of parenthesized expressions within a full expression.
1024 macro identifiers simultaneously.

509 characters in a logical source line.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

« Six significant initial characters in an external identifier.
« 127 members in a single structure or union.

« 31 parameters in one function call.

Coding Assumptions

The following are assumptions that need to be made in writing your code.

« All target architectures will align 8-bit items on 8-bit boundaries, 16-bit
items on 16-bit boundaries, and 32-bit items on 32-bit boundaries.

» All compilers support theolatile data type qualifier.

« The compiler and architecture will align structures to the alignment of the
largest data item within the structure (for example, a structure whose
largest element is a byte can be byte aligned).

Data Packing and Alignment

The ANSI C specification states that you cannot assume that the members of a
structure will be contiguous. The compiler for many processors will insert
padding into a structure to force each member to begin on the alignment value
appropriate for its type. This is done because many processors will cause a
processor exception if an attempt is made to access "misaligned data." This
causes problems because the MAC header cannot be described as a structure
in many media types. In these media, the members of the MAC header
structure are not guaranteed to be properly aligned, either in the structure
definition, which prevents the computer from inserting padding, or in memory,
which prevents processor exceptions. This implies two requirements to the
CHSM developer:

« All members of such structures should be declared as types not used
anywhere except in such structure declarations. This allows these types to
be declared in a header file that is platform dependent. On platforms that
have no alignment restrictions or on platforms with alignment restrictions
and an appropriate compiler switch or pragma, the type can be typedef'd
to its appropriate basic type. On platforms that have alignment restrictions
and no compiler switch or pragma to force packed structures, the member
can be typedef'd to an appropriately-sized arraghair.

Portability Issues D-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

« All accesses to any member of such a structure must be made through a
macro that allows access to unaligned data. The only situation in which
you do not need to use one of these macros is when you are accessing a
single byte in a member whose underlying typehisr. portable.his a
header file included in the toolkit that contains a set of useful macros for
writing CHSMs; it is included bgmsm.h

Portability Macros

D-6

The portability macros are an attempt to create a consistent set of macros that
allow the C language code to be isolated from alignment and endian issues of
a particular machine. The macros are defined icitiem.Hile. The following
routines define the interface for each of the portability macros.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

COPY_FROM_HILO_UINTX

Syntax

Copies data from big endian format to the
processor’s format, swapping and/or aligning data
as needed.

#include <cmsm.h>

COPY_FROM_HILO_UINT16 (dest_addr, src_addr);
COPY_FROM_HILO_UINT32 (dest_addr, src_addr);

Input Parameters

dest_addr
Address to copy data to.

src_addr
Address to copy data from.

Output Parameters

None.

Return Values

Remarks

None.

On a high-low machine, this macro performs a simple byte copy and maintains
byte order. On a low-high machine, this macro swaps bytes.

Portability Issues D-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

COPY_FROM_LOHI_UINTX

Syntax

Copies data from little endian format to the
processor’s format, swapping and/or aligning data
as needed.

#include <cmsm.h>

COPY_FROM_LOHI_UINT16 (dest_addr, src_addr);
COPY_FROM_LOHI_UINT32 (dest_addr, src_addr);

Input Parameters

dest_addr
Address to copy data to.

src_addr
Address to copy data from.

Output Parameters

None.

Return Values

Remarks

None.

On a high-low machine, this macro swaps bytes. On a low-high machine, this
macro performs a simple byte copy and maintains byte order.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

COPY_TO_HILO_UINTx

Syntax

Copies data from the processor’s format to big
endian format, swapping and/or aligning data as
needed.

#include <cmsm.h>

COPY_TO_HILO_UINT16 (destAddr, srcAddr);
COPY_TO_HILO_UINT32 (destAddr, srcAddr);

Input Parameters

destAddr
Address to copy data to.

srcAddr
Address to copy data from.

Output Parameters

None.

Return Values

Remarks

None.

On a high-low machine, this macro performs a simple byte copy and maintains
byte order. On a low-high machine, this macro swaps bytes.

Portability Issues D-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

COPY_TO LOHI_UINTx

Syntax

Copies data from the processor’s format to little
endian format, swapping and/or aligning data as
needed.

#include <cmsm.h>

COPY_TO_LOHI_UINT16 (destAddr, srcAddr);
COPY_TO_LOHI_UINT32 (destAddr, srcAddr);

Input Parameters

destAddr
Address to copy data to.

srcAddr
Address to copy data from.

Output Parameters

None.

Return Values

Remarks

D-10

None.

On a high-low machine, this macro swaps bytes. On a low-high machine, this
macro performs a simple byte copy and maintains byte order.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

COPY_UINTX

Copies unaligned data from one address to
another.

Syntax

#include <cmsm.h>

COPY_UINT16 (destAddr, srcAddr);
COPY_UINT32 (destAddr, srcAddr);

Input Parameters

destAddr
Address where data is copied to.

srcAddr
Address where data is copied from.

Output Parameters

None.

Return Values

None.

Portability Issues D-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

GET_HILO_UINTX

Syntax

Gets avalue inthe processor’s format and converts
it to big endian format.

#include <cmsm.h>

GET_HILO_UINT16 (addr);
GET_HILO_UINT32 (addr);

Input Parameters

addr
Address where data is retrieved.

Output Parameters

None.

Return Values

D-12

A value of appropriate size in big endian format.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

GET_LOHI_UINTX

Gets avalue inthe processor’s format and converts
it to little endian format.

Syntax
#include <cmsm.h>
GET_LOHI_UINT16 (addr);

GET_LOHI_UINT32 (addr);

Input Parameters

addr
Address where data is retrieved.

Output Parameters

None.

Return Values

A Value of appropriate size in little endian format.

Portability Issues D-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

GET_UINTX

Syntax

Receives a value from memory that may be
misaligned. (These macros do not swap the data.)

#include <cmsm.h>

GET_UINT16 (addr);
GET_UINT32 (addr);

Input Parameters

addr
The address of the potentially misaligned data.

Output Parameters

None.

Return Value

D-14

A value of appropriate size.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

HOST _FROM_HILO_UINTX

Converts a value at a single address from host
address to big endian format.

Syntax

#include <cmsm.h>

HOST_FROM_HILO_UINT16 (addr);
HOST_FROM_HILO_UINT32 (addr);

Input Parameters

addr
Address where data is retrieved.

Output Parameters

None.

Return Values

None.

Remarks

On a high-low machine, nothing is done; there is no swapping. On a low-high
machine, bytes are swapped to high-low (big endian).

Portability Issues D-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

HOST_FROM_LOHI_UINTX

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Converts a value at a single address from host
address to little endian format.

#include <cmsm.h>

HOST_FROM_LOHI_UINT16 (addr);
HOST_FROM_LOHI_UINT32 (addr);

addr
Address where data is retrieved.

None.

None.

On a high-low machine, bytes are swapped to high-low. On a low-high
machine, nothing is done; there is no swapping.

D-16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

HOST TO HILO UINTx

Syntax

Converts a value to big endian format when the
source and destination are the same.

#include <cmsm.h>

HOST_TO_HILO_UINT16 (addr);
HOST_TO_HILO_UINT32 (‘addr);

Input Parameters

addr
Address where data is retrieved.

Output Parameters

None.

Return Values

Remarks

None.

On a high-low machine, nothing is done; there is no swapping. On a low-high
machine, bytes are swapped to high-low.

Portability Issues D-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

HOST TO LOHI_UINTx

Syntax

Converts a value to little endian format when the
source and destination are the same.

#include <cmsm.h>

HOST_TO_LOHI_UINT16 (addr);
HOST_TO_LOHI_UINT32 (addr);

Input Parameters

addr
Address where data is retrieved.

Output Parameters

None.

Return Values

Remarks

D-18

None.

On a high-low machine, bytes are swapped to high-low. On a low-high
machine, nothing is done; there is no swapping.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

PUT HILO UINTX

Takes a host-ordered value and stores it in
high-low order.

Syntax

#include <cmsm.h>

PUT_HILO_UINT16 (addr, value);
PUT_HILO_UINT32 (addr, value);

Input Parameters

addr
Address where data is placed.

value
The value placed.

Output Parameters

None.

Return Values

None.

Portability Issues D-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

PUT_LOHI_UINTX

Syntax

Takes a host ordered value and stores it in low-high
order.

#include <cmsm.h>

PUT_LOHI_UINT16 (addr, value);
PUT_LOHI_UINT32 (addr, value);

Input Parameters

addr
Address where data is placed.

value
The value placed.

Output Parameters

None.

Return Values

D-20

None.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

PUT_UINTXx

Stores a value in memory without changing byte
order to a value that may be misaligned. (These
macros do not swap the data.)

Syntax

#include <cmsm.h>

PUT_UINT16 (addr, value);
PUT_UINT32 (addr, value);

Input Parameters

addr
The address of the potentially misaligned data.

value
A constant or a variable.

Output Parameters

None.

Return Values

None.

Portability Issues D-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

UINTx_EQUAL

Compares two groups of bytes for equality.

Syntax

#include <cmsm.h>

UINT16_EQUAL (addrl, addr2);
UINT32_EQUAL (addrl, addr2);

Input Parameters

addrl
Address of bytes to be compared.

addr2
Address of bytes to be compared.

Output Parameters

None.

Return Values

TRUE The two sets of bytes are equal.
FALSE The two sets of bytes are unequal.

D-22 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

VALUE_FROM_HILO UINTx

Converts a value from host-order to high-low order.
Syntax

#include <cmsm.h>

VALUE_FROM_HILO_UINT16 (value);

VALUE_FROM_HILO_UINT32 (value);

Input Parameters

value
Where data is placed.

Output Parameters

None.

Return Values

A value of appropriate size in big endian order.

Portability Issues D-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

VALUE_FROM_LOHI_UINTx

Syntax

Converts a value from host-order to low-high order.

#include <cmsm.h>

VALUE_FROM_LOHI_UINT16 (value);
VALUE_FROM_LOHI_UINT32 (value);

Input Parameters

value
Where data is placed.

Output Parameters

None.

Return Values

D-24

A value of appropriate size in little endian order.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

VALUE_TO_HILO UINTXx

Returns a value in high-low order.
Syntax

#include <cmsm.h>

VALUE_TO_HILO_UINT16 (value);

VALUE_TO_HILO_UINT32 (value);

Input Parameters

value
Where data is retrieved.

Output Parameters

None.

Return Values

A value or appropriate size in big endian format.

Portability Issues D-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

VALUE_TO_LOHI_UINTx

Returns a value in low-high order.

Syntax

#include <cmsm.h>

VALUE_TO_LOHI_UINT16 (value);
VALUE_TO_LOHI_UINT32 (value);

Input Parameters

value
Where data is retrieved.

Output Parameters

None.

Return Values

A value of appropriate size in little endian format.

D-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Appendix E

Overview

Note"’
\4

NESL Support

The NetWare Event Service Layer (NESL) handles event registration and
notification. The NESL is designed around the concept of consumers and
producers. Generally, a producer will produce events, which a consumer
consumes. The NESL provides the following services:

- Registers the event producer

- Deregisters the event producer

« Performs the event notification

» Registers the event consumer

- Deregisters the event consumer

For a given event type, there can be multiple consumers and producers
simultaneously. A client module must register as a producer of an event in
order to produce that event. Likewise, a module must register as a consumer of

an Event Type in order to consume the event.

If a consumer chooses to consume an event, it will notify the producer that the
event is consumed, and event notification will end.

When a producer or consumer is removed from the system, it must deregister
all producer/consumer events it has registered.

Tasks should be designed to run to completion. If consumer and producer
routines are running asynchronous event types (for example, IPX packet
interrupts), the routines must be resident. CMSMNESLProductEvent will not
protect the consumer routine from being reentered.

The NESL maintains a list for each event class. When a producer calls the
NESL to signal that an event has occurred within a class, the NESL notifies

NESL Support E-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

everyone in the consumer list. The order used to call the consumers depends
on the level of the OSI model the consumer belongs to and the calling direction
defined by the event class.

The data definitions for the NESL are located inODI_NESL.H.

Registering and Deregistering Event Producers

Note"’
\4

Event producers useMSMRegisterProducer to register with the NESL as a
producer of an event class. Once it registers, the event producer calls
CMSMNESLProduceEventor CMSMNESLProduceMLIDEvent to

notify event consumers when an event takes place.

Event producers can also register as event consumers.

When an event producer no longer provides events, it calls
CMSMNESLDeRegisterProducerfor that event. For example, when an
event providing module is unloading, its clean-up function must first call
CMSMNESLDeRegisterProducerfor each event it has added. The module
could then complete its unloading process.

Registering and Deregistering Event Consumers

Event consumers must register with the NESL in order to receive notification
when an event occurs. These modulesCHMEMNESLRegisterConsumer
for each event class they wish to be notified of.

When an event consumer no longer requires event notification, or before it
unloads, it must deregister by calli@ISMNESLDeRegisterConsumerfor
each event it registered for.

E-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

NESL Structures

EPB (Event Parameter Block) Structure

typedef struct EPB_tag

{

UINT32 EPBMajorVersion;
UINT32 EPBMinorVersion;

void
void
void
void
void

*EPBEventName;
*EPBEventType;
*EPBModuleName;
*EPBDataPtr0;
*EPBDataPtrl,;

UINT32 EPBEventScope;
UINT32 EPBReserved;

} EPB;

Field Descriptions:

EPBMajorVersion
Major version of the Event Parameter Block. The current version is 1 (for
1.00).

EPBMinorVersion
Minor version of the Event Parameter Block. The current version is O (for
1.00).

EPBEventName
Event Name (class name) for the event as registered with NESL--for
example, Service Suspend or Service Resume. All valid event names must
be registered with Novell Labs.

EPBEventType

Name for the Event Type. An example of an Event Type for Service
Suspend is APM Suspend. All valid Event Type names must be registered
with Novell Labs.

EPBmoduleName

Pointer to the module name that generated the event--for example,
NE2000.

EPBDataPtrO
Used to pass a pointer to the configuration table.

NESL Support E-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

EPBDataPtrl
Used for event dependent information.

EPBEventScope
The CHSM must set this field to EPB_SPECIFIC_EVENT.

EPBReserved
Reserved by Novell.

NESL_ECB Structure

Spec vl.11 - Doc v1.13

J E4

The following defines the NESL_ECB structure.

typedef struct NECBStruct

{
struct NECBStruct *NecbNext;
UINT16 NecbVersion;
UINT16 NecbOsilLayer;
MEON_STRING *NecbEventName;
UINT32 NecbRefData;
UINT32 (*PnecbNotifyProc)(
struct NECBStruct *consumerNECB,
struct NECBStruct *producerNechb,
void *eventData);
void *NecbOwner;
void *NecbWorkSpace;
void *NecbContext;
}NESL_ECB;

Field descriptions:

NecbNext
Reserved. This field should not be modified by the calling routine while
the NESL_ECB structure is registered.

NechVersion

This field contains the version number of the NESL_ECB structure. This
field allows the interface to be expanded in the future while still providing
full backward compatibility. The current version is 2.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

NecbOsiLayer

This field is used by consumers onBroducers do naise this field.
Producers must set this field to NULL when registering.

This field determines the ordering of registered consumers of the same
event. The format of this field is OXLRRR, whérés the number (0-7)
corresponding to the OSl layer and RRR (0-4095) is the relative order with
other modules also registered on that layer. The relative ordering is useful
when certain events require specific consumer ordering.

The definition NESL_HOOK_FIRST can also be used in element
NechOsiLayerThis definition causes a consumer to be hooked first, no
matter what. If the caller sets the low byteNafcbOsilLayeto this value,

the consumer will be hooked first in the consumer list. Normally, NESL
events will put lower layer identifiers before the hooked lead element. If
another call is made specifying this definition, an error will be returned to
the caller and the element will not be added to the list.

NecbEventName

ASCIIZ name string of the event (class). This name has the maximum
length of NESL_MAX_NAME_LENGTH.

NecbRefData

This field is used by producers onfyonsumers do natse this field.
Consumers must set this field to NULL when registering.

This is a flag field used to specify whether the event is unique or
consumable. It also indicates the sorting order for calling registered
consumers at event time.

Consumers that are on the orphan consumer list will be sorted when a new
producer is registered. All consumers that are registered after a producer is
registered will be correctly sorted.

PNecbNotifyProc

This field is used by consumers onBroducers do naise this field.
Producers must set this field to NULL when registering.

This field is a pointer to the event notification callback routine:
UINT32 MyNotifyProc (
NESL_ECB *ConsumerNecb,
NESL_ECB *ProducerNecb,
void *eventData)

ConsumerNecb

Points to the NESL_ECB structure used by consumer during
CMSMNESLRegisterConsumer

NESL Support E-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

ProducerNecb
Points to the NESL_ECB structure used by the producer during
CMSMNESLRegisterProducer.

EventData

If the producer only has one data item, it can be passed to the
consumer as an argument or as an address.

If the producer has more than one data item or if the producer wishes
to guarantee portability, the address of an array of data items should
be passed. The structuressfentDatamust be defined by the

producer and known by the consumer if it is to be interrupted

properly.
For most events this will be a pointer to an Event Parameter Block

(EPB). Refer to the Events and Types section of this Appendix for
more information.

Return from a consumer after an event notification callback:

NESL EVENT_CONSUMED
Event was consumed by the consumer process.

NESL _EVENT_NOT_CONSUMED
Event was not consumed by the process.

Note, this is only really applicable if the event is consumable, but a
consumer should always do this to be compatible with both types of
events. Called from foreground time or from interrupt time with interrupts
enabled or disabled.

NecbOwner

Spec vl.11 - Doc v1.13

Specifies the owner of the NESL_ECB structure. This field is platform-
specific and platform-dependent. The DOS/MS Windows implementation
requires this field to be set to the owner's module handle information.

NecbWorkSpace
Reserved. This field should not be modified by the calling routine while
the NESL_ECB structure is registered.

NecbContext

This field is available for use by the owner of the NESL_ECB structure. It
will not be modified by anyone else in the system. It may be used by the
owner to pass context or other data to the notification procedure. If the
owner is not using this field, it must be set to NULL.

| E-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

Events and Types

Note"’
\v

Event Names

Event Name

Service Suspend

Service Resume

Service/Status Change

Suspend Request

Event names and specific event types are identified with ASCIIZ strings.
Novell has defined four event names along with some specific event types.
However, anyone can define event names or event types by defining unique
names (ASCIIZ strings) for them. The definition of an Event Name must also
include the direction in which the consumers of the event Event Name will be
called (that is, called from the top of the OSI model down or from the bottom
up). Event types that are added to existing event names must fit within the
definition of the event name.

Below is a list of the event names and event types defined by Novell.

Consumers of these events will be called withehentDataparameter pointing to an
Event Parameter Block (EPB).

Description

The Event Name contains any event that suspends a service.
This event is called from the top of the OSI model down.

This Event Name contains event types that indicate the
availability of a new service or the restoration of a previously
available service. This event is called from the bottom of the
OSI model up.

This Event Name contains event types that signal a change in
status or the current level of service. This event is called from
the top of the OSI model down.

ST'IAN 200 - TT'TA dads

This Event Name contains event types that request permission
to suspend service before the service is actually suspended.
This event is called from the top of the OSI model down.

NESL Support E-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Event Types

Service Suspend Types

Type Name
MLID Cable Disconnect

MLID Card Removal

MLID Hardware Failure

Description

This Event Type indicates that the cable has been disconnected
from a given NIC. A pointer to the MLID's configuration table
is passed in the EPBDataPtr0 field of the Event Parameter
Block. This event should be produced by the C HSM
whenever it has detected that the cable has been disconnected.

This Event Type is triggered by the hardware and indicates
that the PC Card has been removed from a socket. A pointer to
the MLID's configuration table is passed in ERRBDataPtr0
field of the Event Parameter Block. Even though this Event
Type puts the MLID into shutdown mode, it does not generate
a shutdown event. This event is generally produced by a
configuration manager loader or other software, not the C
HSM.

This Event Type indicates that a serious hardware failure has
occurred with the NIC. A pointer to the MLID's configuration
table is passed in tHePBDataPtrOfield of the Event
Parameter Block, anBPBDataPtrlis set to one of the
following conditions:

NOTIFY_CRITICAL

The CHSM encountered an adapter hardware problem and
failed to recover using the available hardware reset
capabilities; however, the system may be able to restore the
hardware to a functional state.

NOTIFY_FATAL
The CHSM was able to detect a hardware failure, but
cannot recover from it.

NOTIFY_DEGRADED
The CHSM has experienced a hardware failure, but is still
functional.

This event is normally produced by the CMSM when
CMSMHardwareFailure is called.

E-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

MLID Not In Range

MLID Shutdown

MLID Media Access Denied

Suspend Request

Currently no event types have been defined for this class.

This Wireless Event Type indicates that there is no access
point in range. A pointer to the MLID's configuration table is
passed in thePBDataPtr0field of the Event Parameter
Block. This event is usually produced by the C HSM when it
has determined that there is no access point in range.

This Event Type is triggered through the MLID control
services and indicates that an MLID was shutdown. A pointer
to the MLID's configuration table is passed in the
EPBDataPtrO field of the Event Parameter Block. This event
is also produced by the CMSM when the C HSM calls
CMSMShutdownMLID .

This Event Type indicates that access to the physical medium
was either denied or unsuccessful. A pointer to the MLID's
configuration table is passed in tBPBDataPtrOfield of the
Event Parameter Block. This event is produced by C HSMs
which can determine when access to the physical medium can
not be obtained.

ST'IAN 200 - TT'TA dads

NESL Support E-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

Service Resumed Types

Type Name
MLID Cable Reconnect

MLID Card Insertion Complete

MLID In Range

MLID Reset

Description

This Event Type indicates that the cable has been reconnected
to a given NIC. A pointer to the MLID's configuration table is
passed in thePBDataPtrOfield of the Event Parameter
Block. This event is produced by the C HSM when it detects
that the cable has been reconnected.

This Event Type is triggered when a new logical board is
added to the system and LAN adapter and driver are fully
functional. A pointer to the MLID's configuration table is
passed in the EPBDataPtr0 field of the Event Parameter Block.
This Event Type does not trigger a reset event. This event is
produced by the C HSM durirgriverlnit if the C HSM/
adapter were successfully initialized

This wireless Event Type indicates that there is an access
point in range again. A pointer to the MLID's configuration
table is passed in the EPBDataPtr0 field of the Event
Parameter Block. This event is produced by the C HSM.

This Event Type is trigger by the MLID control services and
indicates that an MLID was just reset. A pointer to the MLID's
configuration table is passed in the EPBDataPtrO field of the
Event Parameter Block. This event is also produced by the
CMSM inside theCMSMResetMLID function.

E-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

Service/Status Changed Types

Type Name
MLID Access Point Change

MLID Speed Change

MLID Config Table Change

MLID DeRegister Resource
Change

MLID ReRegister Hardware
Options

Description

This Event Type indicates that a station has moved from one
access point's range to another and that the new access point
will start serving the station. A pointer to the MLID's
configuration table is passed in the EPBDataPtrO field of the
Event Parameter Block. The C HSM produces this event.

This Event Type indicates that there has been a change in the
communication speed. For example, in the wireless
environment this could be caused by the radio link due to a
change in the quality of the signal. A pointer to the MLID's
configuration table is passed in the EPBDataPtrO field of the
Event Parameter Block. The C HSM produces this event.

This Event Type indicates that the MLID configuration tables
have been updated MSMUpdateConfigTables A
pointer to the MLID's updated configuration table is passed in
the EPBDataPtrOfield of the Event Parameter Block. The C
MSM produces this event inside
CMSMUpdateConfigTables.

This Event Type indicates that a resource registered using
CMSMRegisterResourcehas been deregistered using
CMSMDeRegisterResourceA pointer to the MLID's
configuration table is passed in tBPBDataPtrOfield of the
Event Parameter Block. The C MSM produces this event
insideCMSMDeRegisterResource

This Event Type indicates that hardware resource(s) have been
reregistered usingMSMReRegisterHardwareOptions A
pointer to the MLID's configuration table is passed in the
EPBDataPtr0 field of the Event Parameter Block. The C MSM
produces this event inside
CMSMReRegisterHardwareOptions

ST'IAN 200 - TT'TA dads

NESL Support E-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

CMSM NESL String Exports

The C MSM exports string variables for the Events and Types defined in the
Events and Types section of this appendix. These string variables are as

follows:
Event Name Export
Service Suspend NESL_Service_Suspend
Service Resume NESL_Service_Resume
Service/Status Change NESL_ServiceStatus_Change
Suspend Request NESL_Suspend_Request
Event Type Export
™ MLID Shutdown NESL_MLID_Shutdown
‘\! MLID Card Removal NESL_MLID_Card_Removal
-~ MLID Not In Range NESL_MLID_Out_Range
> MLID Hardware Failure NESL_MLID_HW_Failure
O MLID Cable Disconnect NESL_MLID_Cable_Disconnect
(@) MLID Media Access Denied NESL_MLID_Media_Access_Denied
Q MLID Reset NESL_MLID_Reset
MLID Card Insertion Complete NESL_MLID_Card_Insertion_Complete
' MLID In range NESL_MLID_In_Range
~ MLID Cable Reconnect NESL_MLID_Cable_Reconnect
~ MLID Access Point Change NESL_MLID_Access_Point_Change
- MLID Speed Change NESL_MLID_Speed_Change
:' MLID Config Table Change NESL_MLID_Config_Table_Change
MLID DeRegister Resource Change NESL_MLID_DeRegister_Resource_Change
@] MLID ReRegister Hardware Options Change
QO NESL_MLID_ReRegister_Hardware_Option
Q s_Change
N MLID Power Cycle Hardware NESL_MLID_Power_Cycle_Hardware
_—

j E-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

NESL Return Codes

NESL_OK
NESL_EVENT_CONSUMED
NESL_EVENT_NOT_CONSUMED
NESL_EVENT_BROADCAST
NESL_EVENT_NOT_REGISTERED
NESL_EVENT_TABLE_FULL
NESL_EVENT_IS_CONSUMABLE
NESL_EVENT_IS_NOT_CONSUMABLE
NESL_NO_MORE_EVENTS
NESL_PRODUCER_NOT_FOUND
NESL_CONSUMER_NOT_FOUND
NESL_INVALID_CONTEXT_HANDLE
NESL_INVALID_DESTINATION
NESL_REGISTERED_UNIQUE
NESL_REGISTERED_NOT_UNIQUE
NESL_REGISTERED_CONSUMABLE
NESL_REGISTERED_BROADCAST

NESL_REGISTERED_SORT_TOP_DOWN
NESL_REGISTERED_SORT_BOTTOM_UP

NESL_DUPLICATE_NECB
NESL_INVALID_NOTIFY_PROC

NESL_INVALID_FIRST_ALREADY_HOOKED

The NESL return codes (located in NESL.H) are as follows:

00000000h
00000000h
00000001h
00000002h
00000003h
00000004h
00000005h
00000006h
00000007h
00000008h
00000009h
0000000ah
0000000bh
0000000ch
0000000dh
0000000eh
0000000fh
00000010h
00000011h
00000012h
00000013h
00000014h

NESL Support E-13

Part Number: 107-000053-001
January 29, 1998

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ST'IAN 200 - TT'TA dads

NESL Event Flags

The following are the NESL event flags:

NESL_BROADCAST_EVENT
NESL_SORT_CONSUMER_TOP_DOWN
NESL_SORT_CONSUMER_BOTTOM_UP
NESL_CONSUME_EVENT
NESL_UNIQUE_PRODUCER
NESL_NOT_UNIQUE_PRODUCER

Spec vl.11 - Doc v1.13

00000000h
00000000h
00000001h
00000002h
00000004h
00000000h

j E-14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
[| January 29, 1998

NESL OSI Layer Definitions

The following are the NESL OSI layer definitions:

NESL_APPLICATION_LAYER 7000h
NESL_PRESENTATION_LAYER 6000h
NESL_SESSION_LAYER 5000h
NESL_TRANSPORT_LAYER 4000h
NESL_NETWORK_LAYER 3000h
NESL_DATALINK_LAYER 2000h
NESL_PHYSICAL_LAYER 1000h

ST'IAN 200 - TT'TA dads

NESL Support E-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

B E-16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
[| January 29, 1998

Glossary

Abort

Adapter

Address

To execute an orderly termination of a process whenever the process cannot or
should not complete.

A circuit board driven by software. In the context of this document an adapter
refers to a physical board. See aMi&€C, MLID, Driver.

A unigue group of characters that correspond either to a selected memory
location, an input/output port, or a device on the network. SeeNalde
address

AES--Asynchronous Event Scheduler

An auxiliary service that measures elapsed time and triggers events at the
conclusion of measured time intervals.

API--Application Programming Interface

A defined set of routines that enables two software modules to pass
information between them.

ARP--Address Resolution Protocol

The protocol used by TCP/IP to locate nodes on a network.

Asynchronous process

Bit

Broadcast

A process that does not depend upon occurrence of a timing signal.

A binary digit that can only be 0 or 1.

A simultaneous transmission of data from a single source to all destinations.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Buffer
A data area used for the temporary storage of data being moved between
processes.

Bus
The hardware interface upon which data is transferred.

Byte
A sequence of 8 hits.

CAM--Content Addressable Memory
Memory that resides on the adapter. In the context of this specification, this
memory is used to hold the group addresses that the adapter is to filter.

CHSM--C language Hardware Specific Module
One of three modules comprising the LAN driver toolkit. The developer writes
the CHSM to handle all hardware interactions for a specific physical board.

CMSM--C language Media Support Module
One of three modules comprising the LAN driver toolkit. The CMSM
standardizes and manages the generic details of interfacing ODI MLIDs to the
LSL and the operating system.

CTSM--C language Topology Specific Module
One of three modules comprising the LAN driver toolkit. The <CTSM>.0BJ
manages the operations unique to a specific media type.

Completion code
A code returned by a routine to indicate that the routine has completed either
successfully or unsuccessfully.

Control Block
A data structure that is used by a process to store control information. See also
ECB.

Destination Address
A field that identifies the physical location to which data is to be sent.

Driver
The software module that operates a circuit board. In the context of this
document, driver refers to a software module that drives a network board (or
adapter) and enables a device to communicate over a LAN. Sekdalgter,
NIC, MLID.

-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ECB--Event Control Block
A data structure that contains the information required to coordinate the
scheduling and activation of certain operations. All ODI layers and AES
functions act upoleCBs.

EISA--Extended Industry Standard Architecture
A 32-bit bus standard, a superset of the ISA standard.

EOI--End of Interrupt
A command issued to the programmable interrupt controller (PIC) indicating
an end of interrupt.

ESR--Event Service Routine
An application-defined procedure that is called after an event occurs. An event
can be the completion of a send request, the completion of a listen request, or
the recurrence of an event that rescheduled itself with the AES.

Ethernet
A data-link protocol that specifies how data is placed on and retrieved from a
common transmission medium.

FDDI--Fiber Distributed Data Interface
A cable interface capable of transmitting data at 100 Mbps. FDDI can operate
over fiber lines or twisted-pair cable.

Frame
The unit of transmission on the network. The frame includes the associated
addresses and control information in the Media Access Control (MAC) Layer
and the transmitted data.

HIN--Hardware Instance Number
HIN is used to uniquely identify functions and devices on multiple device

adapters, as well as single device adapters and integrated motherboard devices.

The Hardware Instance Number is a system-wide, bus-independent unique
handle for a device.

Interrupt
A hardware signal that causes the orderly suspension of the currently executing
process in order to execute a special program (or interrupt handler).

IOCTL--1/0O Control
MLID procedures that perform specific actions (for example, add multicast
address, reset, shut down, etc.).

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

IP--Internet Protocol
The protocol used by TCP/IP. IP is connectionless and was designed to handle
a large number of WANs and LANs on an internetwork.

IPX--Internet Packet Exchange
An implementation of the Internetwork Datagram Packet (IDP) protocol from
Xerox. It allows applications running on NetWare workstations to take
advantage of NetWare communications drivers to communicate directly with
other workstations, servers, or devices on the internetwork.

ISA--Industry Standard Architecture
An 8/16-bit bus standard used with Intel’s microprocessors.

ISR--Interrupt Service Routine
Routine that is executed to handle a hardware or software interrupt request.

LAN--Local Area Network
At least two computers (usually located in the same building) connected
together in such a way as to allow them to communicate and share resources.

LSL--Link Support Layer
An ODI layer through which multiple protocol packets are directed from the
MLID to a designated protocol stack, and vice versa. The LSL directs
incoming and outgoing packets.

MAC Header--Media Access Control Header
Controls the transmission of packets through a network. The MAC header
includes source and destination data.

Medium
The physical carrier of a signal.

Micro Channel Architecture
A bus standard defined by IBM.

MLI--Multiple Link Interface
The interface between the MLID and the LSL that allows multiple MLIDs to
exist concurrently.

MLID--Multiple Link Interface Driver
The ODI layer that receives and transmits packets to a hardware device. This
acronym refers to ODI LAN drivers.

-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

MMIO--Memory Mapped I/O
An architecture for input and output that allows I/O ports to be accessed as
though they were memory locations.

MPI10O --Multiple Protocol Interface
The interface between the LSL and a Network Layer protocol stack that allows
different communication protocols to operate concurrently.

Multicast
The simultaneous transmission of data from a single source to a selected group
of destination addresses on the network.

NIC--Network Interface Controller/Card
The physical network board installed in workstations and file servers.

NLM--NetWare Loadable Module
Applications that are loaded dynamically and integrated with all the NetWare
server operating systems starting with NetWare 3

Node
Any network device that transmits and/or receives data. The device must have
a physical board and a unique address. SeeNaise Address.

Node Address
A unique combination of characters that corresponds to a physical board on the
network. Each adapter must have a unique node address.

ODI--Open Data-Link Interface
The model that allows multiple network protocols, physical boards, and frame
types to coexist on a single workstation or server.

OSI--Open Systems Interconnection
A standard communications model that defines communications between
computer systems, specifically ISO standards.

PC Card
Refer to the documenPersonal Computer Memory Card International
Associatior-PC Card (PCMCIA).

Packet
The unit of transmission on the network. The packet includes the associated
addresses and control information.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

Peripheral Component Interconnect—PClI
A 32-bit or 64-bit bus standard with multiplexed address and data lines.

Personal Computer Memory Card International Association—PCMCIA
A 16-bit bus standard. This is also known as PC Card.

PID--Protocol Identification
A value containing a globally administered value (1 to 6 bytes in length) that
reflects the protocol stack in use (for example, EOh=IPX 802.2). The PID
located in every packet is a value that uniquely identifies the packet as
belonging to a specific protocol.

Privileged Time
An execution time that has higher execution priority than process time.

Process Time
An execution time where you can allocate memory and (with certain
exceptions) perform file input and output (1/O).

Protocol
The set of rules and conventions that determines how data is to be transmitted
and received on the network.

Pseudocode
Describes computer program algorithms generically without using the specific
syntax of any programming language.

RAM--Random Access Memory
The computer’s (or physical board’s) storage area into which data can be
entered and retrieved nonsequentially.

RCB--Receive Control Block
A data structure used by the MLID to receive data.

ROM--Read Only Memory
The portion of the computer’s (or physical board’s) storage area that can be
read only (write operations are ignored).

Shared RAM
The RAM on some physical boards that can be accessed by either the computer
or the physical board on which the RAM is installed.

-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Source Address
A field in a frame that identifies the physical location of a node that is sending
the packet.

SPX--Sequenced Packet Exchange
A Session Layer protocol that uses IPX. SPX provides connection oriented
services and guarantees packet delivery.

Stubbed Routine
A routine that contains only an instruction to return to the caller of the routine.

Synchronous Process
A process that depends upon the occurrence of another event such as a timing
signal.

TCB--Transmit Control Block
The data structure used by the MLID to transmit data.

TCP--Transmission Control Protocol
A communication protocol that provides a reliable stream service to transfer
data between nodes on a network.

Token-Ring
A network that utilizes a ring topology and passes a token from one device to
another. A node that is ready to send data can capture the token and send the
data for as long as it holds the token.

TSR--Terminate-and-Stay-Resident
A DOS program or routine that remains in memory after being loaded and
subsequently exited.

Virtual Machine
An illusion of multiple processes, each executing on its own processor with its
own memory. The resources of the physical computer can be used to share the
CPU and make it appear that each process has its own processor. The virtual
machine is created with an interface that appears to be identical to the
underlying hardware.

WAN--Wide Area Network
At least two computers remotely connected together in such a way as to allow
them to communicate over wide distances and to share resources.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Revision History

Note gAY This Revision History covers document changes from Doc Version 1.10 to Doc
" Version 1.13.

The page numbers in items 1 through 32 refer to Doc Vetsidh

The page numbers in items 33 and 34 refer to Doc Velsidh

1. On page 4-22, under Flags, in the KEYWORDPARAM definition, the
following sentence was added:

If KEYWORDPARAM is used, DEFAULTPRESENT and
REQUIREDPARAM are ignored.

2. On page 4-22, under Flags, in the STRINGPARAM definition,
"a %format specifier"
was changed to:
"a %s or %c format specifier".

3. On page 4-24, und®arseString Field under "The following is the
format of the parse string:", the format now reads as follows:

[whitespace]keyword[whitespace]=[whitespace]conversion
specifier[whitespace]

4. On page 5-4@riverPromiscuousChange underinput Parameters,
Bit2 and Bit3 was changed to read as follows:

Bit2 is set if Station Management Frames (SMT) are to be received.
Bit3 is set if Remote Multicast Frames are to be received (see
Remarks section below).

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

5. On the following pages: 7-71, 7-73, 7-75, 7-79, 7-83, 7-87,
#include <odi_nesl.h>

was changed to:
#include <nesl_str.h>

6. On page 7-139, und®eturn Valuesfor CMSMShutdownMLID , the
definition for ODISTAT_RESPONSE_DELAYED was changed to the
following definition:

Under circumstances where shutting down the MLID cannot be
completed when CMSMShutdownMLID is called, an asynchronous
process should be called at a later time.

7. Onpage 7-139, und®&emarks for CMSMShutdownMLID , the
following paragraph was added:

If CMSMShutdownMLID returns ODISTAT_RESPONSE_DELAYED,
we recommend that you return with the adapter disabled unless it is
impossible or inadvisable.

8. On page E-2, und&egistering and Deregistering Event Consumers

CMSMRegisterConsumer

was changed to:

CMSMNESLRegisterConsumer .
9. On page 3-22, the description for MLIDCFG_DBusTag was changed to:

Pointer to an architecture-dependent value, which specifies the bus on
which the adapter is found. The value placed in this field is returned by
CMSMSearchAdapter unless the board is Legacy ISA, in which case
it is set to zero. This field must be set before calling
CMSMRegisterHardwareOptions .

10. On page 7-116, undBeturn Valuesfor CMSMResetMLID, the
description of ODISTAT_FAIL was changed to:

The operation failed. The C HSM should place itself in a safe state and
clean up resources.

10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

11. On page 4-2, und&ata Structures, Event Control Blocks (ECBs) was
deleted and the following items were added:

+ CMSM Configuration Table (CMSM_CONFIG_TABLE)
« CTSM Configuration Table (CTSM_CONFIG_TABLE)
« DRIVER_OPTION Structure

12. On page 4-22, theote after SHARABLE was deleted and the following
text was added:

Interpretation of the Flags Field in the DRIVER_OPTION structure

KEYWORDPARAM, ENUMPARAM, RANGEPARAM, and
STRINGPARAM are mutually exclusive. Only one of these bits can be
set at a time, but it is not required to set any of the bits. If the
ENUMPARAM and RANGEPARAM bits are not set, any value of the
appropriate type may be entered by the user.

OPTIONALPARAM and REQUIREDPARAM are mutually exclusive
and one of the bits is required unless the KEYWORDPARAM bit is
present. KEYWORDPARAM implies that it is an optional parameter.
The DEFAULTPRESENT is valid for RANGEPARAM and
STRINGPARAM. It is also valid if none of the KEYWORDPARAM,
ENUMPARAM, RANGEPARAM, and STRINGPARAM bits are present.
Function of the DEFAULTPRESENT Bit

The DEFAULTPRESENT bit is basically used to determine how
prompting is handled. There are two major cases:

DEFAULTPRESENT and OPTIONALPARAM
DEFAULTPRESENT and REQUIREDPARAM

DEFAULTPRESENT and OPTIONALPARAM

The parameter is not present on the command line: no action is taken
and ODISTAT_ITEM_NOT_PRESENT is returned.

The parameter is present on the command line and the parameter is
valid: the parameter is used as is.

The parameter is present on the command line and the parameter is
invalid: the user is prompted with the default value as the default input.

11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

13.

14.

15.

16.

17.

DEFAULTPRESENT and REQUIREDPARAM

The parameter is not present on the command line: the user is
prompted with the default value as the default input.

The parameter is present on the command line and the parameter is
valid: the parameter is used as is.

The parameter is present on the command line and the parameter is
invalid: The user is prompted with the default value as the default input.

On page 4-25, und@onversion Specifiersthe following sentence was
added to the first paragraph:

The maximum conversion specifiers length is 80 characters including
the NULL termination.

On page 4-26, after the first paragraph that follows Table 4-5, the
following Note was added:

White space is not allowed between conversion specifiers.
On page 4-27, und€onventions the following text was added to [abcd]:

The search terminates when it encounters the first character not in the
search set.

and the following text was to [*abcd]:

The search terminates when it encounters any character in the search
set.

On page 7-91, undReturn Valuesfor CMSMParseDriverParameters
and on page 7-96, undBeturn Values for
CMSMParseSingleParametey the following text was added to the
description for ODISTAT_FAIL:

..., or the user canceled on the prompting of a parameter.

On page 7-105, undRemarks for CMSMRegisterHardwareOptions,
the following text was added:

The MLIDCFG_DBusTagfield in the MLID Configuration Table must be
set before making this call.

12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

18.

19.

20.

21.

22.

On page 7-32, und@C Card and CardBus Bussesthe following text
was added as the first paragraph:

The following CardBus definition applies only to hardware not using the
common silicon method defined by the CardBus PC Card/PCI

Common Silicon Requirements guideline. For CardBus adapters using
the common silicon method, refer to the definition for the PCI Bus.

On pages 7-34, 7-126, and 7-130, ur@etput Parameter, busTypethe
following Note was added:
The ODI_BUSTYPE_CARDBUS type value is used only for hardware
not using the common silicon method defined by the CardBus PC
Card/PCI Common Silicon Requirements guideline. For CardBus
adapters using the common silicon method refer to the
ODI_BUSTYPE_PCI type value.

On pages 7-41 and 7-61, the followNMgte was added to th€ardBus
Bus section:

The following CardBus definitions apply only to hardware not using the
common silicon method defined by the CardBus PC Card/PCI
Common Silicon Requirements guideline. For CardBus adapters using
the common silicon method, refer to the definition for the PCI Bus.

On page 3-3, in tHariver Parameter Block Structure, and on page 3-9,
in Table 3-1, "Driver Parameter Block Field Descriptions",

DriverMessagePtr
was changed to
DriverMessagesPtr.

On page 3-29, iflable 3-5, "MLIDCFG_SharingFlags Bits
Description", in the description for MS_SHUTDOWN_BIT,

"Set to 1 if the adapter..."

was changed to:

"Set to 1 if the logical board...".

13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

23. On page 5-33, under Pseudocode,
"Call <CTSM>SendComplete (config Table, tcbp),"
was changed to:
"Call <CTSM>SendComplete (config Table, tcbp, transmitStatus),"
24. On page 5-28, the first sentence ofhtwte was changed to:
"For transmissions, if the MM_FRAGS_PHYS_BIT ..."
and the last sentence of tNete was changed to:
"These APIs ..." instead of "These macros ..."

25. On page 7-20, und&MSMECBPhysToLogFrags the first sentence of
the description at the top of the page was change to:

For transmissions, if MM_FRAGS_PHYS_BIT ...
and the following sentence was added toRleenarks section:

The ECBs ECB_PreviousLink and ECB_ESR fields must not be
changed.

26. On pages 3-2 and 3-3, in thever Parameter Block Structure, the
following entries were changed:

ODISTAT (*DriverResetPtr) (DRIVER_DATA *,
MLID_CONFIG_TABLE *);

ODISTAT (*DriverShutdownPtr) (DRIVER_DATA *,
MLID_CONFIG_TABLE *, UINT32);

ODISTAT (*DriverPriorityQueuePtr) (ECB*);
to read as follows:

ODISTAT (*DriverResetPtr) (DRIVER_DATA *,
MLID_CONFIG_TABLE *, OPERATION_SCOPE);

ODISTAT (*DriverShutdownPtr) (DRIVER_DATA *,
MLID_CONFIG_TABLE *, UINT32, OPERATION_SCOPE);

14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

27.

28.

29.

30.

31.

ODISTAT (*DriverPriorityQueuePtr) (DRIVER_DATA*,
MLID_CONFIG_TABLE *, ECB*);

On page 7-21, under tRemarks section for
CMSMECBPhysToLogFrags the following paragraph was added:

The ECB containing a FRAGMENT_LIST_STRUCTURE of logical
addresses acquired with this function is not returned directly to the
system by the HSM. The TSM returns it to the system when one of the
Send Complete APIs has been called for the ECB passed in as the
input parameter for this function. Once a Send Complete API has been
called, the HSM no longer has ownership of either ECB and must not
reference or modify either ECB.

On page 3-27, imable 3-4, "MLIDCFG_Flags Bits Description",
under Bit 10, MF_GRP_ADDR_SUP_BIT, the following paragraph was
added:

Bit 9 is not used by ECB aware HSMs. ECB aware HSMs must do their
own filtering of multicast addresses.

On page 3-34, und8pecification Version String
1.10
was changed to:
111
On page 4-10, imable 4.2, "Programmed RCB Field Descriptioty, in
the description foRCBReservedhe following text was added to the first

sentence:

..., except as described in the functions <CTSM>ProcessGetRCB
and <CTSM>FastProcessGetRCB .

On page 5-45, right before ththernet and FDDI heading, the following
new paragraph was added.

ECB aware HSMs must do their own filtering of multicast addresses.

15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

16

32. On page 6-8, in the thifdote underRemarks for
<CTSM>FastProcessGetRCBand on page 6-23, in tiNote under
FDDI:

RProtocolWorkspace
was replaced with:

starting at RCBReserved[28]

33. On page 7-114, change the last sentence of the fourth paragraph to read as
follows:

If an interrupt was registered, the CHSM must call
CMSMSetHardwarelnterrupt .

34. On page 4-23, undBEFAULTPRESENT and OPTIONALPARAM,
change:

no action is taken
to read:

the user is not prompted

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Index

16MB boundary 7-4, 7-10, 7-12, 7-68, 7-94 big endian D-1

A

adapter

base memory address 3-19

initializing 5-8
adapter code space 2-9
adapter data space 2-9, 3-33
adapter multicast filtering 5-44
adapters

getting physical addresses 5-28
ADDR_SIZE parameter xx
address manipulation 8-3
addresses

getting physical 5-28
addressing

multicast 2-11
AES_TYPE enumeration xxi
AES_TYPE enumereration xxi
alignment

requirement

getting 7-27

alignment issues D-5
ANSI C xvii, xxv, D-1
ASCIl D-4
assumptions

coding D-5

B

base memory address
adapter 3-19

board service 5-1
CHSM 2-2
board service routine 5-15
reception event 5-20
setup 5-9
shared interrupt 5-17
transmission complete 5-20
BOOLEAN enumeration xxii
Brouter 2-12
document xxvi, 2-12, 5-55
building CHSM
NetWare/Intel C-1
bus
multiple on platform 8-2
bus address
size
getting 7-29
bus architecture 8-2
bus master adapter 2-5, 5-15
bus type 2-5
Extended Industry Standard Architecture 2-5
Industry Standard Architecture (ISA) 2-5
Micro Channel Architecture 2-5
Peripheral Component Interconnect (PCI) 2-5
values 7-34, 7-126
byte order 8-4

C

callbacks
scheduling 5-9
canonical address 3-26
canonical and noncanonical addressing

17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

document xxvi, 4-6
CEtherTSM file 6-1
CFDDITSM file 6-1
character
keyword 4-25
whitespace 4-24
CHSM 5-1
board service 5-1
building
NetWare/Intel C-1
components 2-1
control function 5-1
data structures 2-4
hardware issues 2-4
design considerations 2-4
initialization 5-1, 5-3
optional support 2-11
packet transmission 5-1
procedures 2-1
board service 2-2
control 2-3
driver remove 2-3
initialization 2-2
packet transmission 2-3
timeout detection 2-3
recommended support 2-11
removal 5-1
revision level 3-17
timeout detection 5-2
variables 2-4
CHSM_COMPLETE enumeration 7-15
CMSM 7-1
data access 4-2
CMSMDefaultVirtualBoard pointer 4-4
CMSMMaxFrameHeaderSize variable 4-5
CMSMPhysNodeAddress variable 4-6
CMSMStatusFlags variable 4-4
CMSMTxFreeCount 4-4
CMSMVirtualBoardLink pointers 4-2
DADSP_TO_CMSMADSP macro 4-2
registering with 5-3
variable 4-1
cmsm.h 4-9,4-12, 7-1

CMSMAddToCounter function 7-2, 7-30, 7-50, 7-52,
7-63
CMSMAIlloc function 7-4
CMSMAllocateRCB function 4-9, 5-15, 5-16, 7-11
CMSMAllocPages function 7-9
CMSMControlComplete function 7-14
CMSMDefaultVirtualBoard pointer 4-4
CMSMDriverRemove function 7-19
CMSMECBPhysToLogFrags function 7-20
CMSMECBPhysToLogFrags macro 5-28
CMSMEnablePolling function 5-9, 7-22
CMSMFree function 7-24
CMSMFreePages function 7-26
CMSMGetAllignment function 7-27
CMSMGetBusType function 7-34
CMSMGetCardConfiginfo function 7-36
CMSMGetCurrentTime function 7-44
CMSMGetMicroTimer function 7-54
CMSMGetPhysical function 7-55
CMSMGetUniquelD function 7-60
CMSMIncrCounter function 7-67
CMSMiInitAlloc function 7-68
CMSMMaxFrameHeaderSize variable 4-5
CMSMNESLRegisterCounsumer function 7-83
CMSMNESLRegisterProducer function 7-87
CMSMParseDriverParameters function 5-6, 7-91
CMSMPhysNodeAddress variable 4-6
CMSMPrintString function 7-97
CMSMRdConfigSpacex function 7-100
CMSMReadPhysicalMemory function 7-102
CMSMRegisterHardwareOptions function 3-11, 5-7,
5-9, 7-104
CMSMRegisterMLID function 5-8, 7-106
CMSMRegisterResource function 7-108
CMSMReturnDriverResources function 5-8, 7-120
CMSMReturnRCB function 7-124
CMSMsScanBusinfo function 7-126
CMSMScheduleAES function 5-9, 7-128
CMSMSearchAdapter function 7-131
CMSMServiceEvents function 7-69, 7-135
CMSMSetHardwarelnterrupt function 5-9, 7-136
CMSMStatusFlags variable 4-4
CMSMTCBPhysToLogFrags macro 5-28, 7-142
CMSMTxFreeCount variable 4-4, 5-8, 5-24

18 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

CMSMVirtualBoardLink pointers 4-2

CMSMWritePhysicalMemory function 7-148

code

portability xxv
code space 2-8

adapter 2-9
CONFIG_TABLE structure 3-11
configuration table 2-9, 3-10

MLID

major version number 3-12
minor version number 3-12

template 3-11
consumer

registering 7-83
control block

event B-2

receive 4-10
control function 5-1
control procedure 5-34

CHSM 2-3
convention, manual xvii
conversion specifier 4-25
COPY_FROM_HILO_UINTx macro D-7
COPY_FROM_LOHI_UINTx macro D-8
COPY_TO_HILO_UINTx macro D-9
COPY_TO_LOHI_UINTx macro D-10
COPY_UNITx macro D-11
CTokenTSM file 6-1

6-1

CTSM 6-1

registering with 5-3
FastProcessGetRCB function 6-7
FastRevComplete function 6-9
FastSendComplete function 6-13
GetHSMIFLevel function 6-17
bus master adapter

GetRCB function 6-20
GetRCB function 4-9, 5-16, 6-18, 6-20
pipeline adapter

GetRCB function 6-20
ProcessGetRCB function 4-9, 5-15, 6-21
RcvComplete function 5-16, 6-24
RcvCompleteStatus function 5-17, 6-26
RegisterHSM function 5-3, 6-28

SendComplete function 5-24, 6-30
UpdateMulticast function 6-32

D

DADSP_TO_CMSMADSP macro 4-2
data access
CMSM 4-2
data flow
receive 1-12
send 1-10
data packing D-5
data space 2-8
adapter 2-9, 3-33
frame 2-9, 3-10
data structure 4-2, 4-6
CHSM 2-4
Receive Control Block (RCB) 4-8
example 4-10
Transmit Control Block (TCB) 4-12
data transfer mode 2-5
data type
definition xvii
design considerations
CHSM 2-4
determining
hardware options 5-4
packet destination 1-4
direct memory access (DMA) 2-5
DMA channel
default 3-21
DMACIeanup function 8-5
DMAStart function 8-6
DMAStatus function 8-9
document
Brouter supplement xxvi, 2-12, 5-55

canonical and noncanonical addressing s xxvi, 4-6

frame types xxvi

hub management interface xxvi, 2-12, 5-34, 5-55

installation information file xxvi
MLID message definition xxvi, 7-99
protocol IDs (PIDs) xxvi
referenced xxvi

19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

source routing xxvi, 2-12
DOS ODI xv
DPB_ReservedO field 3-3
DPB_Reservedl field 3-4
DPB_Reserved2 field 3-4
DPB_Reserved3 field 3-4
DPB_Reserved4 field 3-4
DPB_Reserveds5 field 3-6
DPB_Reserved6 field 3-6
driver firmware 3-47
driver remove

procedure 2-3
DRIVER_DATA structure xviii
DRIVER_OPTION structure 4-19, 5-6
DRIVER_PARM structure 3-2
DriverAdapterDataSpaceSize field 3-4
DriverAdapterPointer field 3-4
DriverAES function 2-3, 5-62
DriverConfigTemplatePtr field 3-4
DriverDataPtr field 3-4
DriverDisablelnterrupt function 5-57
DriverDisablelnterruptPtr field 3-8
DriverEnablelnterrupt function 5-56
DriverEnablelnterruptPtr field 3-8
DriverEndOfChainFlag field 3-5
DriverFirmwareBuffer field 3-4, 3-47, 5-4
DriverFirmwareSize field 3-4, 3-47, 5-4
Driverlnit function 2-2, 3-2, 5-11
DriverInputParmPointer field 3-3
DriverISR function 2-2, 5-9, 5-19
DriverISR2Ptr field 3-8
DriverISRPTtr field 3-6
DriverManagement function 5-54
DriverManagementPtr field 3-8
DriverMaxMulticast field 3-5
DriverMessagePtr field 3-9
DriverModuleHandle field 3-3

DriverPromiscuousChangePtr field 3-7
DriverRemove function 2-3, 5-14
DriverReset function 2-3, 5-36
DriverResetPtr field 3-7
DriverRxLookAheadChange function 5-52
DriverRxLookAheadChangePtr field 3-8
DriverSend function 2-3, 5-29, 5-31, 7-56
DriverSendPtr field 3-7
DriverSendWantsECBs field 3-5, 5-25
DriverShutdown function 2-3, 5-39
DriverShutdownPtr field 3-7
DriverStatisticsChange function 5-50
DriverStatisticsChangePtr field 3-7
DriverStatisticsTablePtr field 3-4
DriverTxTimeoutPtr field 3-7

E

ECB aware 5-16
ECB aware adapter B-1
ECB_BoardNumber field B-7
ECB_DatalLength field B-9
ECB_DriverWorkspace field B-8
ECB_ESR field B-5
ECB_Fragment field B-9
ECB_FragmentCount field B-9
ECB_ImmediateAddress field B-7
ECB_NextLink field B-3
ECB_PreviousLink field B-4
ECB_ProtocolID field B-6
ECB_ProtocolWorkspace field B-9
ECB_StacklID field B-6
ECB_Status field B-5
EISA Specification document 7-132
enumeration

AES_TYPE xxi

DriverMulticastChange function 2-3, 2-11, 5-43 BOOLEAN xxii
DriverMulticastChangePtr field 3-6 CHSM_COMPLETE 7-15
DriverNeedsBelow16Meg field 3-6 definition xxi
DriverParameterSize field 3-3 MSG_TYPE 7-98

DriverPoll function 2-2, 5-9, 5-22 ODI_NBI xxii

DriverPollPtr field 3-6 ODI_STAT xxiii
DriverPromiscuousChange function 2-3, 2-11, 5-46 ODISTAT xxiii

20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

REG_TYPE xxiv FragmentLength field 4-8

EPB structure 7-77, 7-80, E-3 frame data space 2-9, 3-10, 5-7
ETH_RxAbortFrameAlignment field 3-44 frame type 2-9
ETH_TxAbortCarrierSense field 3-44 document xxvi
ETH_TxAbortExcesiveDeferral field 3-44 FreeBusMemory function 8-10

ETH_TxAbortExcessCollision field 3-44
ETH_TxAbortLastCollision field 3-44

ETH_TxOKButDeferred field 3-44 G

ETH_TxOKMultipleCollisionCount field 3-44

ETH_TxOKSingleCollisionCount field 3-43 generic statistics counter

ETHERTSM.NLM file 1-8, 6-1 media specific 3-35

Event Control Block (ECB) 4-6, B-1 GET_HILO_UINTX macro D-12
description B-1 GET_LOHI_UINTx macro D-13
structure B-2 GET_UINTx macro D-14

execution time 2-7 GetBuslInfo function 7-29
privileged time 2-7 GetMLIDConfiguration function 7-58

process time 2-7
Extended Industry Standard Architecture 2-5, 5-18,
7-38 H
EXTRA_CONFIG structure 7-109
hardware options
determinimg 5-4

F registering 5-7
HardwareDriverMLID string 3-12

FastRevCompleteStatus function 6-2, 6-5, 6-11 header file D-2
FDDITSM.NLM file 1-8, 6-1 HOST_FROM_HILO_UINTx macro D-15
FDI_ConfigurationStats field 3-45 HOST_FROM_LOHI_UINTx macro D-16
FDI_DownstreamNode field 3-45 HOST_TO_HILO_UINTx macro D-17
FDI_FrameErrorCount field 3-45 HOST_TO_LOHI_UINTx macro D-18
FDI_FramesLostCount field 3-45 HSM (Hardware Specific Module)
FDI_LCTFailureCount field 3-46 defined 1-7
FDI_LemRejectCount field 3-46 hub management 2-11
FDI_RingManagementCount field 3-46 hub management interface
FDI_UpstreamNode field 3-45 document xxvi, 2-12, 5-34, 5-55
flags field 3-26
flow of data

receive 1-12 I

send 1-10
fragment structure 4-8, B-2 InBuffx function 8-14

example 4-8 Industry Standard Architecture (ISA) bu 2-5, 5-17
FRAGMENT_LIST_STRUCT structure 7-21, 7-143 initialization
FRAGMENT_STRUCT structure 4-8, B-2 CHSM 5-3
FragmentAddress field 4-8, B-3 procedure for CHSM 2-2
fragmented RCB 3-24 installation information file

21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

document xxvi
interrupt
enabling/disabling 2-6, 5-2
vector number 3-20
interrupt service routine (ISR) 2-2
Inx function 8-12
I0_CONFIG structure 7-111
IOCTL (/O control function) 5-34

K

keyword character 4-25

L

language enabling xvi
procedure A-1
Link Support Layer (LSL)
defined 1-4
registering with 5-8
linker definition file 3-1
NetWare/Intel C-2
little endian D-1
loading
MLID modules 3-1
lookahead 3-24
lying send 6-31

M

macros
portability D-6
MAdapterOprTimeStamp field 3-40
MAdapterResetCount field 3-40
major version number
MLID
configuration table 3-12
statistics table 3-36
manual
convention Xxvii
prerequisites xvii

MapBusMemory function 8-16
maximum packet size 3-30
MChecksumErrorCount field 3-40
MCustomCounterPtr field 3-37
media specific counter 3-41
Ethernet 3-43
FDDI 3-45
memory allocation

MLID (Multiple Link Interface Driver) 2-2

memory mapping 8-3
MEON definition xvii
MEON_STRING definition xvii
message
printing 7-97
message enabling
DriverMessagePtr field 3-9
MF_GRP_ADDR_SUP_BIT bit 3-27

MF_HUB_MANAGEMENT _BIT bit 3-27

MF_SOFT_FILT_GRP_BIT bit 3-27
MGenericCountersPtr field 3-36

MHardwareRxMismatchCount field 3-40

Micro Channel Architecture bus 2-5
Micro Channel bus 7-38
shared interrupt 5-17
minor version number
MLID
configuration table 3-12
statistics table 3-36
MLI (Multiple Link Interface)
defined 1-6
MLID
initialization 5-11
portability xxv
MLID (Multiple Link Interface Driver)
defined 1-6
memory allocation 2-2
message definition
document xxvi, 7-99
MLID modules
loading 3-1
MLID_AES_ECB structure 7-129
MLID_AESECB structure 7-129
MLIDCFG_BestDataSize field 3-14
MLIDCFG_BoardInstance field 3-14

22 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001

January 29, 1998

MLIDCFG_BoardNumber field 3-13
MLIDCFG_CardName field 3-15, 5-4
MLIDCFG_ChannelNumber field 3-22
MLIDCFG_CommandsString field 3-21
MLIDCFG_Config field 3-21
MLIDCFG_DBusTag field 3-22
MLIDCFG_DIOConfigMajorVer field 3-22
MLIDCFG_DIOConfigMinorVer field 3-22
MLIDCFG_DMALIneO field 3-21
MLIDCFG_DMALinel field 3-21
MLIDCFG_DriveMajorVer field 3-17
MLIDCFG_DriverLink field 3-18
MLIDCFG_DriverMinorVer field 3-17
MLIDCFG_Flags field 3-17, 3-26
MLIDCFG_FramelD field 3-16
MLIDCFG_FrameTypeString field 3-15
MLIDCFG_InterruptO field 3-20
MLIDCFG_Interruptl field 3-20
MLIDCFG_IOPortO field 3-18
MLIDCFG_IOPortl field 3-19
MLIDCFG_IORangeO field 3-19
MLIDCFG_IORangel field 3-19
MLIDCFG_LinearMemoryO field 3-21
MLIDCFG_LinearMemory1 field 3-22
MLIDCFG_LineSpeed field 3-16
MLIDCFG_LogicalName field 3-21
MLIDCFG_LookAheadSize field 3-16, 4-5
MLIDCFG_MajorVersion field 3-12, 5-4
MLIDCFG_MaxFrameSize field 3-14, 5-3, 5-4, 5-8
MLIDCFG_MemoryAddressoO field 3-19
MLIDCFG_MemoryAddress1 field 3-20
MLIDCFG_MemorySizeO field 3-19
MLIDCFG_MemorySizel field 3-20
MLIDCFG_MinorVersion field 3-12
MLIDCFG_ModeFlags field 3-13, 3-22
MLIDCFG_NodeAddress field 3-13, 4-6
MLIDCFG_PrioritySup field 3-17
MLIDCFG_ReservedO field 3-15
MLIDCFG_Reservedl field 3-17
MLIDCFG_Reserved2 field 3-17
MLIDCFG_ResourceTag field 3-21
MLIDCFG_SendRetries field 3-18
MLIDCFG_SharingFlags field 3-18, 3-29
MLIDCFG_ShortName field 3-15

MLIDCFG_Signature field 3-12
MLIDCFG_Slot field 3-18
MLIDCFG_SourceRouting field 3-16
MLIDCFG_TransportTime field 3-16
MLIDCFG_WorstDataSize field 3-15
MLIDMaximumPacketSize field 3-30
MM_C_HSM_BIT bit 3-24
MM_CSL_BIT bit 3-24
MM_DATA_SZ_ UNKNOWN_BIT bit 3-24
MM_DEPENDABLE_BIT bit 3-23
MM_FRAG_RECEIVES BIT bit 3-24
MM_FRAGS_PHYS_BIT bit 3-25, 5-28
MM_FRAGS_RECEIVES BIT bit 4-8
MM_MULTICAST BIT bit 3-23
MM_NONCANONICAL_BIT bit 3-26
MM_PHYS NODE_ADDR_BIT bit 3-26, 4-6
MM_PREFILLED ECB_BIT bit 3-24
MM_PROMISCUOUS_BIT bit 3-25
MM_RAW_SENDS_BIT bit 3-24
MM_SMP_BIT bit 3-24
MMediaCountersPtr field 3-37
MNOECBAVvailableCount field 3-39
MNumCustomCounters field 3-37
MNumGenericCounters field 3-36
MNumMediaCounters field 3-37
mode flags field 3-23
MODULE_HANDLE structure xx
modules
support

defined 1-7

HSM (Hardware Specific Module) defined 1-9

MSM (Media Support Module) defined 1-8

TSM (Topology Specific Module) defined 1-8
MovFastFromBus function 8-18
MovFastToBus function 8-20
MovFromBusx function 8-22
MovToBusx function 8-25
MPacketRxOverflowCount field 3-39
MPacketRxTooBigCount field 3-39
MPacketRxTooSmallCount field 3-39
MPacketTxTooBigCount field 3-39
MPacketTxTooSmallCount field 3-39
MQDepth field 3-41
MRetryTxCount field 3-40

23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

MS_HAS_CMD_INFO_BIT bit 3-30
MS_NO_DEFAULT_INFO_BIT bit 3-30
MS_SHARE_DMAO_BIT bit 3-29
MS_SHARE_DMA1_BIT bit 3-30
MS_SHARE_IRQO_BIT bit 3-29
MS_SHARE_IRQ1_BIT bit 3-29
MS_SHARE_MEMORYO_BIT hit 3-29
MS_SHARE_MEMORY1_BIT hit 3-29
MS_SHARE_PORTO_BIT bit 3-29
MS_SHARE_PORT1_BIT bit 3-29
MS_SHUTDOWN_BIT bit 3-29
MSG_ID definition xviii
MSG_TYPE enumeration 7-98
MStatTableMajorVer field 3-36
MStatTableMinorVer field 3-36
MTotalGroupAddrRxCount field 3-40
MTotalGroupAddrTxCount field 3-40
MTotalRxMiscCount field 3-39
MTotalRxOKByteCount field 3-40
MTotalRxPacketCount field 3-38
Mtotal TxMiscCount field 3-39
MTotalTxOKByteCount field 3-40
MTotalTxPacketCount field 3-38
multicast addressing 2-11, 3-23
multiple bus platform 8-2
Multiple Protocol Interface (MPI)
defined 1-4

N

NESL_ECB structure 7-84, 7-88, E-4
nesting level D-4
NetWare Bus Interface (NBI) xvi
NetWare Event Service Layer (NESL) 2-12
NetWare/Intel

building CHSM C-1

creating source file C-1

linker definition file C-2
network interface controller 2-4
NODE_ADDR structure xx
NULL D-2,D-3
NULTICAST_TABLE structure xx

O

ODI (Open DataLink Interface) sp 1-1, 1-2
ODI_NBI enumeration xxii

ODI_STAT enumeration xxiii

ODISTAT enumeration xxiii

offsetof macro D-3

operating system/processor information xvi
OutBuffx function 8-30

Outx function 8-28

P

packet
destination
determining 1-4
flow 1-10
packet reception 4-8, 5-15
packet transmission 4-12, 5-1, 5-24
CHSM 2-3
method 5-24
parameter
parsing 7-91
parameter bloack
size 3-3
parameter block 3-1
field description 3-3
structure 3-2
ParseString field 4-24
parsing
string 4-24
parsing parameter 7-91

Peripheral Component Interconnect (PCI) 2-5, 7-38
Peripheral Computer Interconnect (PCI) bus 5-17

physical addresses
getting 5-28
PID_SIZE parameter xx
pipeline adapter 6-20
platform
dependence
NetWare operating system 2-6
multiple bus 8-2

24 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

polling procedure 2-2
portability
alignment D-5
assumptions D-5
data packing D-5
issues xvi, D-1
macros D-6
requirements xxv
rules D-1
portable.h file D-6
pragma D-2
printing
message 7-97
privileged time 2-7
procedure
control 5-34
process time 2-7
producer
registering 7-87
programmable interrupt controller (PIC) 8-1
programmed 1/O 2-5, 5-16
promiscuous mode 2-11, 5-47
bit 3-25
PROT_ID structure xx
protocol stack
defined 1-2
public variable 3-1
PUT_HILO_UINTx macro D-19
PUT_LOHI_UINTx macro D-20
PUT_UINTx macro D-21

R

raw send 3-24, 4-14
RCBDriverWs field 4-10
RCBFragmentCount field 4-10
RCBFrags field 4-11
RCBReserved field 4-10
Rdx function 8-32
Receive Control Block (RCB) 4-10, B-10
definition 4-8
example 4-10
structure 4-10

reception

packet 4-8
reception methods 5-15
reentrancy 2-11
referenced documents xxvi
REG_TYPE enumeration xxiv
registering

with CMSM 5-3

with CTSM 5-3

with LSL 5-8
registering a consumer 7-83
registering a producer 7-87
registering hardware options 5-7
resource

freeing hardware 8-10
retries at sending packet 3-18
revision level

CHSM 3-17
ROUTE.NLM 2-12

S

scheduling

timout callback 5-9
sending packets

number of retries 3-18
Setx function 8-34
shared interrupt 5-17
shared RAM 2-5, 5-16
sharing flags field 3-29
sizeof operator D-3
Slow function 8-36
source file

creating

NetWare/Intel C-1

source routing 2-12

document xxvi, 2-12
specification

prerequisites xvii
specification version number 3-34
specification version string 3-34
speed

topology 3-16

25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

STAT_TABLE structure 3-36 T
STAT_TABLE_ENTRY structure 3-35
statistics counter
custom 3-35
generic 3-35
media specific 3-35
statistics table 3-35
entry 3-35
media specific counter
description 3-41
MLID
major version number 3-36
minor version number 3-36
string parsing 4-24

TCBDataLen field 4-13
TCBDriverWs field 4-13
TCBFragHeader field 4-13
TCBFragmentCount field 4-13
TCBMediaHeader field 4-14
TCBMediaHeaderLen field 4-14
timeout callback
scheduling 5-9
timeout detection 5-2, 5-61
CHSM 2-3
media specific counter
TokenRing 3-41

structure .
. 1-8,6-1
CONFIG_TABLE 3-11 tTOOpEESJSM NLM file 1-8, 6
DRIVER
1
OPTION 4-19 speed 3-16

translation limit D-4
transmission

packet 4-12
Transmit Control Block (TCB) B-11

definition 4-12
TRN_AbortDelimiterCounter field 3-41
TRN_ACErrorCounter field 3-41
TRN_BurstErrorCounter field 3-41
TRN_FrameCopiedErrorCounter field 3-42
TRN_FrequencyErrorCounter field 3-42
TRN_InternalErrorCounter field 3-42
TRN_LastBeaconType field 3-43
TRN_LastRingID field 3-43
TRN_LastRingStatus field 3-42
TRN_LineErrorCounter field 3-42
TRN_LostFrameCounter field 3-43
TRN_TokenErrorCounter field 3-43
TRN_UpstreamNodeAddress field 3-43
typedef

definitions xviii

DRIVER_DATA xviii
DRIVER_OPTION 4-19
DRIVER_PARM 3-2
ECB B-2
EPB 7-77, 7-80, E-3
EXTRA_CONFIG 7-109
fragment 4-8, B-2
FRAGMENT_LIST_STRUCT 7-21, 7-143
FRAGMENT_STRUCT 4-8, B-2
I0_CONFIG 7-111
MLID_AES_ECB 7-129
MLID_AESECB 7-129
MODULE_HANDLE xx
MULTICAST_TABLE xx
NESL_ECB 7-84, 7-88, E-4
NODE_ADDR xx
PROT_ID xx
RCB 4-10
STAT_TABLE 3-36
STAT_TABLE_ENTRY 3-35
support modules

defined 1-7 U
HSM (Hardware Specific Module) defined 1-9
MSM (Media Support Module) defined 1-8

. INT1 finiti ii
TSM (Topology Specific Module) defined 1-8 v 6 definition xvil

UINT32 definition xvii

26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

UINT64 definition xvii
UINTS8 definition xvii
UINTXx_EQUAL macro D-22
UNUSED xvii, 6-20, 6-27

V

VALUE_FROM_HILO_UINTx macro D-23
VALUE_FROM_LOHI_UINTx macro D-24
VALUE_TO_HILO_UINTx macro D-25
VALUE_TO_LOHI_UINTx macro D-26
variable
CHSM 2-4
vector number
interrupt 3-20
version number
MLID
configuration table 3-12
statistics table 3-36
void* D-3

W

whitespace character 4-24
Wrtx function 8-37

27

ST'IAN 200 - TT'TA dads

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

Spec vl.11 - Doc v1.13

28

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

chapter

Trademarks

Novell, Inc. has attempted to supply trademark information about company
names, products, and services mentioned in this manual. The following list of
trademarks was derived from various sources.

Novell Trademarks

Hardware Specific Module, HSM, and CHSM are trademarks of Novell, Inc.
Internetwork Packet Exchange and IPX are trademarks of Novell, Inc.

Link Support Layer and LSL are trademarks of Novell, Inc.

MAC is a trademark of Novell, Inc.

Media Support Module, MSM, and CMSM are trademarks of Novell, Inc.
Multiple Link Interface Driver and MLID are trademarks of Novell, Inc.

Multiple Protocol Interface and MPI are trademarks of Novell, Inc.N-Design
is a registered trademark of Novell, Inc.

N-Design is a registered trademark of Novell, Inc.

NE1000, NE2000, NE2100, NE/2, NE2-32, NTR2000 are trademarks of
Novell, Inc.

NetWare is a registered trademark of Novell, Inc.

NetWare Access Services is a trademark of Novell, Inc.

NetWare Core Protocol and NCP are trademarks of Novell, Inc.
NetWare Directory Services and NDS are trademarks of Novell, Inc.
NetWare DOS Requester and NDR are trademarks of Novell, Inc.
NetWare Express is a trademark of Novell, Inc.

NetWare Management Agent is a trademark of Novell, Inc.
NetWare Loadable Module and NLM are trademarks of Novell, Inc.
NetWare Logotype is a registered trademark of Novell, Inc.
NetWare Requester is a trademark of Novell, Inc.

NetWare Run-time is a trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc.

NetWare System Interface and NSI are trademarks of Novell, Inc.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001
January 29, 1998

ST'IAN 200 - TT'TA dads

Spec vl.11 - Doc v1.13

-30

Novell Embedded Systems Technology and NEST are trademarks of Novell,
Inc.

Novell Labs is a trademark of Novell, Inc.

Open Data-Link Interface and ODI are trademarks of Novell, Inc.

Packet Burst is a trademark of Novell, Inc.

RX-Net is a trademark of Novell, Inc.

SFT is a trademark of Novell, Inc.

Topology Specific Module, TSM, and CTSM are trademarks of Novell, Inc.
Transactional Tracking System and TTS are trademarks of Novell, Inc.
Virtual Loadable Module and VLM are trademarks of Novell, Inc.

Third-Party Trademarks

AMP is a trademark of AMP Inc.
AppleTalk is a registered trademark of Apple Computer, Inc.

IBM is a registered trademark of International Business Machines
Corporation.

IBM Operating System/2 Local Area Network Server (LAN Server) is a
trademark of International Business Machines Corporation.

LAT is a trademark of Digital Equipment Corporation.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)

Part Number: 107-000053-001
January 29, 1998

	disclaimer
	Further, Novell, Inc. makes no representations or warranties with respect to any NetWare software...
	trademarks
	Contents

	1 Introduction to ODI
	2 ODI C Language HSM Overview
	3 CHSM Data Structures and Variables
	4 CMSM/CTSM Structures and Variables
	5 CHSM Functions
	6 CTSM Functions
	7 CMSM Functions
	8 NetWare Bus Interface
	Figures
	Tables
	Preface
	Overview
	Prerequisites to Using this Manual
	Manual Conventions
	Data Type Definitions
	Structure Definitions
	DRIVER_DATA Structure
	MODULE_HANDLE Structure
	GROUP_ADDR_LIST_NODE_ Structure
	NODE_ADDR Structure
	PROT_ID Structure
	CHSM_STACK Structure

	Enumeration Definitions
	AES_TYPE Enumeration
	BOOLEAN Enumeration
	ODI_NBI Enumeration
	ODISTAT Enumeration
	ODI_STAT Enumeration
	REG_TYPE Enumeration
	OPERATION_SCOPE Enumeration

	Portability Requirements
	Referenced Documents
	1 Introduction to ODI

	Overview
	Open Data�Link Interface (ODI)
	Figure�1�1 The ODI Specification Elements
	Protocol Stacks
	Figure�1�2 How ODI Fits into the OSI Model

	The Multiple Protocol Interface (MPI)
	Figure�1�3 The Multiple Protocol Interface (MPI)

	Link Support Layer (LSL)
	Multiple Link Interface Drivers (MLIDs)
	MLID Functionality
	The Multiple Link Interface (MLI)
	Figure�1�4 The Multiple Link Interface (MLI)

	LAN Driver Toolkit
	Figure�1�5 MLID Modules
	C Language Media Support Module (CMSM)
	C Language Topology Specific Module (CTSM)
	C Language Hardware Specific Module (CHSM)

	NetWare Bus Interface (NBI)

	Data Flow
	Send Data Flow
	Figure�1�6 Data Flow from Application to LSL
	Figure�1�7 Data Flow from the LSL to the Board
	Figure�1�8 Data Flow from the Board to the Wire

	Receive Data Flow
	Figure�1�9 Receive Data Flow from Wire to Application
	2 ODI C Language HSM Overview

	Overview
	CHSM Procedures
	Initialization
	Board Service Routine
	Packet Transmission
	Control Procedures
	Timeout Detection
	Driver Removal

	CHSM Data Structures and Variables
	CHSM Design Considerations
	Topology Issues
	Hardware Issues
	Network Interface Controllers
	Data Transfer Mode
	Bus Type

	NetWare Environment Issues
	Interrupt Service Routine

	Execution Times
	Process Time
	Privileged Time
	Table�2�1 Execution Time of MLID Routines�

	Code and Data Space
	Frame Data Space
	Adapter Data Space
	Adapter Code Space
	Figure�2�1 Implementation of Multiple Frame Support

	Special Support
	Reentrancy
	Multicast Addressing
	Promiscuous Mode

	Optional Support
	Hub Management
	Source Routing
	Brouter (Source Route Bridging)

	NESL Support
	3 CHSM Data Structures and Variables
	Overview
	1. CMSM.NLM
	2. <CTSM>.NLM
	3. <C HSM>.LAN

	Driver Parameter Block
	Driver Parameter Block Structure
	Table�3�1 Driver Parameter Block Field Descriptions continued

	Frame Data Space
	Figure�3�1 Frame and Adapter Data Space

	Configuration Table
	Driver Configuration Table Template
	Table�3�2 Driver Configuration Table Field Descriptions continued

	MLIDCFG_ModeFlags Field
	Figure�3�2 MLIDCFG_ModeFlags Field Default Values
	Table�3�3 MLIDCFG_ModeFlags Bits Description continued

	MLIDCFG_Flags Field
	Figure�3�3 MLIDCFG_Flags Field
	Table�3�4 MLIDCFG_Flags Bits Description

	MLIDCFG_SharingFlags Field
	Figure�3�4 MLID_SharingFlags Field Default Values
	Table�3�5 MLIDCFG_SharingFlags Bits Description

	Maximum Packet Size
	Table�3�6 Frame Types Versus Size Fields�
	Example

	Driver Adapter Data Space
	Figure�3�5 Driver Frame and Adapter Data Space
	Specification Version String

	Driver Statistics Table
	STAT_TABLE_ENTRY Structure
	Field Descriptions

	Statistics Table Structure
	Table�3�7 MLID Statistics Table Fields
	Example

	Table�3�8 MLID Statistics Table Generic Counters continued

	MLID Statistics Table Media Specific Counters
	Token�Ring Counters
	Table�3�9 Media Specific Counters for Token-Ring continued
	Ethernet Counters

	Table�3�10 Media Specific Counters for Ethernet continued
	FDDI Counters

	Table�3�11 Media Specific Counters for FDDI continued

	Driver Firmware
	DriverFirmwareSize Value
	DriverFirmwareBuffer Value
	4 CMSM/CTSM Structures and Variables

	Overview
	The CMSM Data Access Function and CMSM Variables
	Data Structures

	CMSM Data Access
	DADSP_TO_CMSMADSP Macro
	CMSMVirtualBoardLink Pointers
	Ethernet Example
	Token�Ring Example
	FDDI Example

	CMSMDefaultVirtualBoard Pointer
	CMSMStatusFlags Variable
	CMSMTxFreeCount Variable
	CMSMPriorityTxFreeCount
	CMSMMaxFrameHeaderSize Variable
	CMSMPhysNodeAddress Variable

	Data Structures
	Figure�4�1 Packet Transfer through the MLID
	Fragment Structure
	Table�4�1 Fragment Structure Field Descriptions

	Receive Control Blocks (RCBs)
	RCB Structure
	Table�4�2 Programmed RCB Field Description

	Transmit Control Blocks (TCBs)
	1. The protocol stack assembles a list of fragment pointers in a transmit ECB.
	2. The protocol stack passes the ECB to the LSL.
	3. The LSL transfers the ECB to the CTSM
	4. The CTSM processes the information and builds a TCB. (The TCB structure consists of the packet...
	5. The CTSM directs the TCB to the appropriate CHSM.
	6. The CHSM collects the header and the packet fragments and transmits the packet.

	TCB Structure
	Table�4�3 TCB Field Descriptions continued

	CMSM_CONFIG_TABLE
	CMSMCFG_TableSize
	CMSMCFG_TableMajorVersion
	CMSMCFG_TableMinorVersion
	CMSMCFG_ModuleMajorVersion
	CMSMCFG_ModuleMinorVersion
	CMSMCFG_ODISpecMajorVersion
	CMSMCFG_ODISpecMinorVersion
	CMSMCFG_Reserved
	CMSMCFG_MaxNumberOfBoards
	CMSMCFG_SystemFlags

	CTSM_CONFIG_TABLE
	CTSMCFG_TableSize
	CTSMCFG_TableMajorVersion
	CTSMCFG_TableMinorVersion
	CTSMCFG_ModuleMajorVersion
	CTSMCFG_ModuleMinorVersion
	CTSMCFG_ODISpecMajorVersion
	CTSMCFG_ODISpecMinorVersion
	CTSMCFG_Reserved
	CTSMCFG_MaxFrameSize
	CTSMCFG_SystemFlags
	DRIVER_OPTION Structure
	Table�4�4 Interpretation of Parameter0, Parameter1, and Parameter2
	Link
	ParseString
	Min
	OptionPtr
	Max
	Range
	Default
	StringDefault
	Type
	Flags
	String
	ParseString Field

	Table�4�5 Input and Results for Each Character Type
	5 CHSM Functions

	Overview
	Initialization
	Registering with the CMSM/CTSM
	Determining Hardware Options
	1. If the CHSM supports an adapter with a product ID that is retrievable according to a standard,...
	2. If the CHSM needs certain parameter values to determine other parameter values, it should call...

	Registering Hardware Options
	Initializing the Adapter
	Registering with the LSL
	Setting up a Board Service Routine
	Scheduling Timeout Callbacks
	Driver Removal

	DriverInit
	The initialization routine is called by the loader when it loads the CHSM.
	Syntax
	Input Parameters
	ModuleHandle
	ScreenHandle
	CommandLine
	ModuleLoadPath
	UninitizedDataLength
	CustomDataFileHandle
	FileRead
	CustomDataOffset
	CustomDataSize
	NumMsgs
	Msgs

	Output Parameters
	Return Values
	Remarks

	DriverRemove
	Causes the CHSM to return its resources prior to being unloaded.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks
	Board Service Routine
	Packet Reception
	Reception Methods
	Reception Method—Option 1
	1. The CHSM calls CMSMAllocateRCB to get an RCB (unless it already has one from Step 5 below). If...
	2. The CHSM copies the received packet into the RCB.
	3. The CHSM calls <CTSM>ProcessGetRCB.
	4. The CTSM checks the frame header information and fills in the remainder of the RCB fields.
	5. The CTSM returns the RCB to the operating system and gets a new RCB for the CHSM. If no RCB is...

	Reception Method—Option 2
	1. The CHSM sets up a lookahead buffer.
	2. The CHSM calls <CTSM>GetRCB with a pointer to the lookahead buffer.
	3. The CTSM filters the packet and frame header and passes the lookahead data to the LSL. If a pr...
	4. The CHSM copies the remainder of the packet into the RCB and calls <CTSM>RcvComplete. If no RC...

	Reception Method—Option 3
	1. The CHSM obtains an ECB by calling CMSMAllocateRCB and queues it until it is needed for a rece...
	2. The firmware filters the frame header information and all fields of the ECB as described in Ap...
	3. The CHSM calls <CTSM>RcvComplete to return the ECB after it is completely filled in.

	Reception Method—Option 4
	1. The CHSM sets up a LookAhead buffer.
	2. The CHSM calls <CTSM>GetRCB with packetSize set to UNUSED before it has received the entire pa...
	3. The CTSM checks the frame header information and passes the LookAhead data to the LSL. (The CT...
	4. The CHSM copies the remainder of the packet into the RCB and calls <CTSM>RCVCompleteStatus. If...

	Using Shared Interrupts
	Table�5�1 DriverEndofChainFlag Values�

	DriverISR
	Called by the CMSM when a hardware interrupt is detected.
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return Values
	Remarks
	Packet Reception Event
	Transmission Complete Event
	1. Return the TCB using <CTSM>SendComplete if the TCB was not returned during DriverSend.
	2. Increment the number of available transmit resources using CMSMTxFreeCount.
	1. Discard the packet.
	2. Return the TCB using <CTSM>SendComplete if the TCB was not returned during DriverSend.
	3. Increment the number of available transmit resources using CMSMTxFreeCount.

	DriverPoll
	Services the adapter.
	Syntax
	Input Parameters
	driverData
	configTable

	Return Values
	Remarks
	Packet Transmission
	Transmission Methods
	Transmission Method—Option 1
	1. The CHSM sets CMSMTxFreeCount to the maximum number of packets that the adapter can buffer (pe...
	2. The CTSM receives an ECB, processes the information, and constructs a TCB. The TCB structure c...
	3. The CTSM decrements CMSMTxFreeCount and calls DriverSend with a pointer to a filled in TCB str...
	4. The CHSM calls <CTSM>SendComplete after the packet has been buffered onto the adapter or after...
	5. The CHSM increments CMSMTxFreeCount after the adapter completes the transmission (typically pe...

	Transmission Method—Option 2
	1. The CHSM sets the DriverSendWantsECBs field in the DRIVER_PARM structure to 1 and sets CMSMTxF...
	2. The CTSM decrements CMSMTxFreeCount and calls DriverSend with a pointer to the configuration t...
	3. The CHSM adds the media header and sends the packet.
	4. The CHSM calls either <CTSM>SendComplete after the packet has been buffered onto the adapter o...
	5. The CHSM increments CMSMTxFreeCount after the adapter completes the transmission (typically pe...

	Priority Transmission Support
	1. During DriverInit, the CHSM sets the following parameters:
	2. The protocol stack sets the ECB_StackID field to a value greater than or equal to 0x0FFF0. The...
	3. The CTSM normally gives the packet to the CHSM directly, as a TCB using the DriverSend functio...
	4. The CHSM calls <CTSM>BuildTransmitControlBlock to build a TCB whenever a priority transmit res...
	5. After the CHSM has transmitted the TCB returned by <CTSM>BuildTransmitControlBlock, the CHSM c...

	Adapters that Need Physical Addresses
	1. For TCBs, fragment pointers all contain physical addresses pointed to locked, contiguous buffers.
	2. For ECB aware adapters and for send ECBs, pointers to the ECB can be converted to a physical a...
	3. <CTSM>ProcessGetRCB returns an RCB with locked, contiguous, physical addresses in the fragment...

	DriverPriorityQueueSupport
	Called by <CTSM> before it queues a priority packet.
	Syntax
	Parameters
	ecb
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks

	DriverSend
	Transfers a frame onto the LAN medium.
	Syntax
	Input Parameters
	driverData
	configTable
	tcb
	paddedLen
	ecbPhysicalPtr

	Output Parameters
	Return Values
	Remarks
	Pseudocode
	Control Procedures
	Table�5�2 Code Path of Control Functions continued

	DriverReset
	Resets and initializes the specified part of the MLID.
	Syntax
	Input Parameters
	driverData
	configTable
	operationScope

	Output Parameters
	Return Values
	Remarks
	OP_SCOPE_ADAPTER

	Pseudocode

	DriverShutdown
	Releases the HSM resources associated with the entity being shutdown. If an adapter is being shut...
	Syntax
	Input Parameters
	driverData
	configTable
	shutdownType
	operationScope

	Output Parameters
	Return Values
	Remarks
	OP_SCOPE_ADAPTER
	SHUTDOWN_PARTIAL
	1. Sets CMSMStatusFlag to SHUTDOWN.
	2. Sets the MS_SHUTDOWN_BIT of the MLIDCFG_SharingFlags field in the configuration table.
	3. Waits for the transmissions in progress to complete
	4. Returns the transmit ECBs.

	SHUTDOWN_PERMANENT
	1. Sets CMSMStatusFlag to SHUTDOWN.
	2. Sets the MS_SHUTDOWN_BIT of the MLIDCFG_SharingFlags field in the configuration table.
	3. Empties the send queue.
	4. Returns all resources not allocated directly by the C HSM.

	OP_SCOPE_LOGICAL _BOARD
	SHUTDOWN_PARTIAL
	SHUTDOWN_PERMANENT

	Pseudocode

	DriverMulticastChange
	Updates the adapter to reflect the changes in the CTSM’s functional address table.
	Syntax
	Input Parameters
	driverData
	configTable
	groupAddrListNode
	numEntries
	funAddrBits

	Output Parameters
	Return Values
	Remarks
	Adapter Multicast Filtering

	Pseudocode

	DriverPromiscuousChange
	Provides a means for the stack monitor function to enable or disable promiscuous reception.
	Syntax
	Input Parameters
	driverData
	configTable
	changeTo
	 (see Remarks section below).

	Output Parameters
	Return Values
	Remarks
	Pseudocode

	DriverStatisticsChange (optional)
	Allows the CMSM to notify MLIDs whenever an application requests IOCTL 1 (get MLID statistics).
	Syntax
	Input Parameters
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks
	See Also

	DriverRxLookAheadChange (optional)
	Allows the CMSM to notify CHSMs after an application invokes IOCTL 9 to set the lookahead size.
	Syntax
	Input Parameters
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks
	See Also

	DriverManagement (optional)
	Processes management requests if an MLID accepts management commands from outside NLMs (such as h...
	Syntax
	Input Parameters
	driverData
	configTable
	ecbp

	Output Parameters
	Return Values
	See Also

	DriverEnableInterrupt
	Called by the CMSM through the driver parameter block to enable the adapter’s interrupt(s) at the...
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return Values
	Remarks

	DriverDisableInterrupt
	Called by the CMSM through the driver parameter block to disable the adapter’s interrupt(s) at th...
	Syntax
	Input Parameters
	driverData
	flag

	Output Parameters
	Return Values
	Remarks
	See Also

	DriverDisableInterrupt2
	Called by the CMSM through the driver parameter block to disable the adapter's interrupt(s) at th...
	Syntax
	Input Parameters
	driverData
	flag

	Output Parameters
	None.

	Return Values
	TRUE
	FALSE

	Remarks
	See Also
	Timeout Detection

	DriverAES
	DriverAES is an event service routine.
	Syntax
	Input Parameters
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks
	Pseudocode
	6 CTSM Functions

	Overview

	<CTSM>BuildTransmitControlBlock
	The C HSM calls this function when it is ready to send a priority packet that has been queued usi...
	Syntax
	Input Parameters
	driverData
	ecb

	Output Parameters
	tcb
	pktSize

	Return Values
	Remarks

	<CTSM>CancelPrioritySend
	The CHSM calls this function to cancel/return an ECB that has not been sent.
	Syntax
	Input Parameters
	driverData
	ecb

	Output Parameters
	Return Values
	Remarks

	<CTSM>FastProcessGetRCB
	Called by the CHSM to process an RCB for a received packet and to preallocate a new nonfragmented...
	Syntax
	Input Parameters
	driverData
	rcb
	pktSize
	rcvStatus
	newRcbSize

	Output Parameters
	Return Values
	Remarks
	See Also

	<CTSM>FastRcvComplete
	Called by the CHSM to direct a completed RCB to the protocol stack.
	Syntax
	Input Parameters
	driverData
	rcb

	Output Parameters
	Return Values
	Remarks
	See Also

	<CTSM>FastRcvCompleteStatus
	Allows the CTSM to fill in the proper packet length fields of the RCB, record the error status, a...
	Syntax
	Input Parameters
	driverData
	rcb
	packetLength
	packetStatus

	Output Parameters
	Return Values
	Remarks
	See Also

	<CTSM>FastSendComplete
	Called by the CHSM’s DriverSend or DriverISR routine to release a TCB after a packet has been tra...
	Syntax
	Input Parameters
	driverData
	tcb
	transmitStatus

	Output Parameters
	Return Values
	Remarks
	See Also

	<CTSM>GetConfigInfo
	Allows a C HSM to get the configuration information for the <CTSM>, including module and ODI spec...
	Syntax
	Input Parameters
	nBytes

	Output Parameters
	configInfo
	nBytes

	Return Valuess
	Remarks

	<CTSM>GetHSMIFLevel
	Gets the interface level between the CHSM and CTSM.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	<CTSM>GetRCB
	Called by the CHSM to pass lookahead data to the CTSM, and to get a fragmented RCB for the remain...
	Syntax
	Input Parameters
	driverData
	lookAheadData
	pktSize
	rcvStatus

	Output Parameters
	startBytes
	numBytes

	Return Values
	Remarks
	Bus Master Adapters
	Pipeline Adapters

	<CTSM>ProcessGetRCB
	Called by the CHSM to process an RCB for a received packet and to preallocate a new nonfragmented...
	Syntax
	Input Parameters
	driverData
	rcb
	pktSize
	rcvStatus
	newRcbSize

	Output Parameters
	Return Values
	Remarks
	Ethernet
	Token�Ring
	FDDI

	See Also

	<CTSM>RcvComplete
	Called by the CHSM to direct a completed RCB to the LSL’s holding queue to await processing.
	Syntax
	Input Parameters
	driverData
	rcb

	Output Parameters
	Return Values
	Remarks

	<CTSM>RcvCompleteStatus
	Allows the CTSM to fill in the packet length of the RCB fields, record the error status, and dire...
	Syntax
	Input Parameters
	driverData
	rcb
	packetLength
	packetStatus

	Output Parameters
	Return Values
	Remarks

	<CTSM>RegisterHSM
	Initially registers the CHSM with the CTSM and CMSM.
	Syntax
	Input Parameters
	DriverParameterBlock

	Output Parameters
	configTable

	Return Values
	Remarks

	<CTSM>SendComplete
	Called by the CHSM’s DriverSend or DriverISR routine to return a TCB after a packet has been tran...
	Syntax
	Input Parameters
	driverData
	tcb
	transmitStatus

	Output Parameter
	Return Values
	Remarks

	<CTSM>UpdateMulticast
	Forces the CTSM to call DriverMulticastChange.
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return Values
	Remarks
	7 CMSM Functions

	Overview

	CMSMAddToCounter
	Adds a user-specified value to the counter pointed to by STAT_TABLE_ENTRY.
	Syntax
	Input Parameters
	StatTableEntryPtr
	value

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMAlloc
	Used by the CHSM to allocate memory at process time.
	Syntax
	Input Parameters
	driverData
	nbytes

	Output Parameters
	Return Values
	Remarks
	Example

	CMSMAllocateMultipleRCBs
	Allocates a block of RCBs for packets to be received by the CHSM.
	Syntax
	Input Parameters
	driverData
	nbytes
	nRCBs
	physicalRCB

	Output Parameters
	nRCBs
	physicalRCB

	Remarks
	See Also

	CMSMAllocPages
	Allocates a system, page-aligned, memory buffer at process time.
	Syntax
	Input Parameters
	driverData
	nbytes

	Output Parameters
	Return Values
	Remarks

	CMSMAllocateRCB
	Allocates an RCB for a packet received by the CHSM, or preallocates an RCB for a packet the CHSM ...
	Syntax
	Input Parameters
	driverData
	nbytes

	Output Parameters
	physicalRCB

	Return Values
	Remarks
	Ethernet
	Token�Ring
	FDDI

	See Also

	CMSMCancelAES
	Called to cancel an AES event.
	Syntax
	Input Parameters
	driverData
	mlidAESECB

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMControlComplete
	Called to notify the CMSM that the previously scheduled event has completed.
	Syntax
	Input Parameters
	driverData
	controlFunction
	completionStatus

	Output Parameters
	Return Values
	Remarks
	CHSM_COMPLETE Enumeration

	See Also

	CMSMDeRegisterResource
	Allows a C HSM to deregister resources registered with CMSMRegisterResource.
	Syntax
	Input Parameters
	driverData
	extraConfig
	pAsyncECB

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMDriverRemove
	Called by the CHSM’s DriverRemove function to deregister the CHSM and return all CHSM resources a...
	Syntax
	Input Parameters
	moduleHandle

	Output Parameters
	Return Values
	Remarks

	CMSMECBPhysToLogFrags
	For transmissions, if MM_FRAGS_PHYS_BIT is set and the adapter is ECB aware, this function gets t...
	Syntax
	Input Parameters
	ecb

	Output Parameters
	Return Values
	Remarks
	FRAGMENT_LIST_STRUCT Structure
	FragmentCount
	FragmentStruct

	CMSMEnablePolling
	Used during DriverInit to enable the operating system to periodically call DriverPoll if the CHSM...
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMFree
	Must be used by the CHSM before it permanently shuts down, to return any memory allocated with CM...
	Syntax
	Input Parameters
	driverData
	dataPtr

	Output Parameters
	Return Values
	Remarks
	Example

	CMSMFreePages
	Returns the system, page-aligned memory buffers allocated by CMSMAllocPages.
	Syntax
	Input Parameters
	driverData
	dataPtr

	Output Parameters
	Return Values
	Remarks

	CMSMGetAlignment
	Called to obtain the alignment requirements of the underlying platform.
	Syntax
	Input Parameters
	type

	Output Parameters
	Return Values
	Remarks

	CMSMGetBusInfo
	Returns the size of the bus addresses associated with busTag.
	Syntax
	Input Parameters
	busTag

	Output Parameters
	physicalMemAddrSize
	ioAddrSize

	Return Values

	CMSMGetBusSpecificInfo
	Returns supplementary information about the specified bus.
	Syntax
	Input Parameters
	busTag
	size

	Output Parameters
	busSpecificInfo

	Return Values
	Remarks

	CMSMGetBusType
	Returns a value that indicates the bus type of the bus specified by busTag.
	Syntax
	Input Parameters
	busTag

	Output Parameters
	busType (Defined in odi_nbi.h)

	Return Values
	Remarks

	CMSMGetCardConfigInfo
	Retrieves and returns configuration information for bus architectures that keep information on a ...
	Syntax
	Input Parameters
	busTag
	uniqueIdentifier
	size
	parm1
	parm2

	Output Parameters
	configInfo

	Return Values
	Remarks
	EISA Bus
	Micro Channel Bus
	PCI Bus
	PNP ISA
	PC Card (PCMCIA) Bus
	CardBus Bus

	CMSMGetConfigInfo
	Allows a C HSM to get the configuration information for the C MSM, including module and ODI speci...
	Syntax
	Input Parameters
	nBytes

	Output Parameters
	configInfo
	nBytes

	Return Values
	Remarks
	See Also

	CMSMGetCurrentTime
	Determines the elapsed time (using the current relative time) for some of the CHSM-related activi...
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks
	Example
	See Also

	CMSMGetHINFromHINName
	Gets the Hardware Instance Number (HIN) associated with a HIN name.
	Syntax
	Input Parameters
	hinName

	Output Parameters
	hin

	Return Values
	Remarks
	See Also

	CMSMGetHINNameFromHIN
	Gets the name associated with a Hardware Instance Number (HIN).
	Syntax
	Input Parameters
	hin

	Input/Output Parameters
	hinName

	Return Values
	Remarks
	See Also

	CMSMGetInstanceNumber
	Retrieves the instance number of the specified device or function on the specified bus.
	Syntax
	Input Parameters
	busTag
	uniqueIdentifier

	Output Parameters
	instanceNumber

	Return Values
	Remarks

	CMSMGetInstanceNumberMapping
	Retrieves the bus tag and unique identifier associated with the specifed instance number.
	Syntax
	Input Parameters
	instanceNumber

	Output Parameters
	busTag
	uniqueIdentifier

	Return Values
	Remarks

	CMSMGetMicroTimer
	Returns a counter that is incremented once per microsecond.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	CMSMGetPhysical
	Converts a logical address to a physical one.
	Syntax
	Input Parameters
	logicalAddr

	Output Parameters
	Return Values
	Remarks

	CMSMGetPhysList
	Obtains the physical address list equivalent of the input LogicalAddress list.
	Syntax
	Input Parameters
	inputFragCount
	inputFragList
	driverData

	Output Parameters
	outputFragCount
	outputFragList

	Return Values
	Remarks

	CMSMGetPollSupportLevel
	Allows a polled driver/adapter to ascertain the level polling supported by the operating system.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	CMSMGetUniqueIdentifier
	Returns a value which uniquely identifies the device or function of an adapter for the specified ...
	Syntax
	Input Parameters
	busTag
	parameters
	parameterCount

	Output Parameters
	uniqueIdentifier

	Return Values
	Remarks
	ISA Bus
	MCA Bus
	EISA Bus
	PC Card (PCMCIA) Bus
	PCI Bus
	PnP ISA Bus�(ODI_BUSTYPE_ISA)
	CardBus Bus

	CMSMGetUniqueIdentifierParameters
	Returns the bus-specific information about the device or the function represented by the given un...
	Syntax
	Input Parameters
	busTag
	uniqueIdentifier
	parameterCount

	Output Parameters
	parameters

	Return Values
	Remarks

	CMSMHardwareFailure
	Called to report a critical or fatal hardware error.
	Syntax
	Input Parameters
	driverData
	failureType
	failMsgString

	Output Parameters
	None.

	Return Values
	Remarks

	CMSMIncrCounter
	Increments the counter pointed to by STAT_TABLE_ENTRY by 1.
	Syntax
	Input Parameters
	statTableEntryPtr

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMInitAlloc
	Used by CHSMs if they must allocate memory prior to calling CMSMRegisterHardwareOptions.
	Syntax
	Input Parameters
	nbytes

	Output Parameters
	Return Values
	Remarks

	CMSMInitParser
	Initializes the parser.
	Syntax
	Input Parameters
	hsmParmBlock

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMNESLDeRegisterConsumer
	Deregisters a consumer of a specific event.
	Syntax
	Input Parameters
	consumer

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMNESLDeRegisterProducer
	Deregisters the producer of a specified event. If the producer is the last producer of the specif...
	Syntax
	Input Parameters
	producer

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMNESLProduceEvent
	Called by an event producer to notify registered consumers that the event has occurred. If the ev...
	Syntax
	Input Parameters
	producerNecb
	eventParmBlock

	Input/Output Parameters
	consumerNecb

	Return Values
	Remarks
	EPB Structure
	EPBMajorVersion
	EPBMinorVersion
	EPBEventName
	EPBEventType
	EPBModuleName
	EPBDataPtr0
	EPBDataPtr1
	EPBEventScope
	EPBReserved

	See Also

	CMSMNESLProduceMLIDEvent
	Called by an event producer to notify registered consumers that the event has occurred. If the ev...
	Syntax
	Input Parameters
	producerNecb
	eventParmBlock
	driverData

	Input/Output Parameters
	consumerNecb

	Return Values
	Remarks
	EPB Structure
	EPBMajorVersion
	EPBMinorVersion
	EPBEventName
	EPBEventType
	EPBmoduleName
	EPBDataPtr0
	EPBDataPtr1
	EPBEventScope
	EPBReserved

	See Also

	CMSMNESLRegisterConsumer
	Registers the consumer of an event. If the producer of the event is not currently registered, the...
	Syntax
	Input Parameters
	consumer

	Output Parameters
	Return Values
	Remarks
	NESL_ECB Structure
	NecbNext
	NecbVersion
	NecbOsiLayer
	NecbEventName
	NecbRefData
	PNecbNotifyProc
	ConsumerNecb
	ProducerNecb
	EventData
	NESL_EVENT_CONSUMED
	NESL_EVENT_NOT_CONSUMED
	NecbOwner
	NecbWorkSpace
	NecbContext

	See Also

	CMSMNESLRegisterProducer
	Registers the producer of an event and creates a consumer list containing the consumers of this e...
	Syntax
	Input Parameters
	Producer

	Output Parameters
	Return Values
	Remarks
	NESL_ECB Structure
	NecbNext
	NecbVersion
	NecbOsiLayer
	NecbEventName
	NecbRefData
	NESL_SORT_CONSUMER_BOTTOM_UP
	NESL_CONSUME_EVENT
	NESL_UNIQUE_PRODUCER
	PNecbNotifyProc
	NecbOwner
	NecbWorkSpace
	NecbContext

	See Also

	CMSMParseDriverParameters
	Parses the MLID’s parameters.
	Syntax
	Input Parameters
	hsmParmBlock
	driverOption

	Output Parameters
	Return Values
	Remarks
	Command Line Parameter Types

	CMSMParseSingleParameter
	Parses for a single parameter specified by driverOption and returns the value in the driverOption.
	Syntax
	Input Parameters
	driverOption

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMPrintString
	Prints the message pointed to by the msg parameter.
	Syntax
	Input Parameters
	configTable
	msgType
	message
	parm1
	parm2

	Output Parameters
	Return Values
	Remarks
	MSG_TYPE Enumeration

	Example
	See Also

	CMSMRdConfigSpacex
	Takes a bus identifier and an offset from the bus’s configuration space and performs the necessar...
	Syntax
	Input Parameters
	busTag
	uniqueIdentifier
	offset

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMReadPhysicalMemory
	Copies a block of memory that the MLID might not have the right to access into a buffer that the ...
	Syntax
	Input Parameters
	nbytes
	srcBusTag
	physSrcAddr

	Output Parameters
	destAddr

	Return Values
	Remarks
	See Also

	CMSMRegisterHardwareOptions
	Used to register hardware resources with the platform.
	Syntax
	Input Parameters
	configTable

	Output Parameters
	driverData

	Return Values
	Remark

	CMSMRegisterMLID
	Registers the MLID with the LSL.
	Syntax
	Input Parameters
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks
	Example

	CMSMRegisterResource
	Registers a resource such as memory, interrupts, DMA, and I/O ports with the underlying operating...
	Syntax
	Input Parameters
	driverData
	configTable
	extraConfig

	Output Parameters
	Return Values
	Remarks
	EXTRA_CONFIG Structure
	ISRRoutine0
	ISR0Reserved0, ISR0Reserved1, ISR0Reserved2, ISR0Reserved3
	ISRRoutine1
	ISR1Reserved0, ISR1Reserved1, ISR1Reserved2, ISR1Reserved3
	IOConfig

	IO_CONFIG Structure

	CMSMReRegisterHardwareOptions
	Allows a C HSM to deregister its current hardware options and register a new set of hardware opti...
	Syntax
	Input Parameters
	driverData
	newIOConfig
	pAsyncECB

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMResetMLID
	Called by the CHSM to reset the MLID.
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMResumePolling
	Called to re-enable polling after it has been suspended.
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return ValuesReturn Values
	Remarks
	See Also

	CMSMReturnDriverResources
	Returns the MLID’s resources before exiting.
	Syntax
	Input Parameters
	configTable

	Output Parameters
	Return Values
	Remarks
	Example

	CMSMReturnMultipleRCBs
	Returns a linked list of RCBs. This routine is called to discard RCBs, not process them.
	Syntax
	Input Parameters
	rcbp

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMReturnRCB
	Returns an RCB to the LSL. This routine is called to discard the RCB, not to process it.
	Syntax
	Input Parameters
	driverData
	rcbp

	Output Parameters
	Return Values
	Remarks
	Example
	See Also

	CMSMScanBusInfo
	Specifies the buses that are available on the system.
	Syntax
	Input/Output Parameters
	scanSequence

	Output Parameters
	busTag
	busType (Defined in odi_nbi.h)
	busName

	Return Values
	Remarks

	CMSMScheduleAES
	Called during DriverInit to enable a call back to a routine in the CHSM.
	Syntax
	Input Parameters
	driverData
	mlidAESECB

	Output Parameters
	Return Values
	Remarks
	MLID_AES_ECB Structure
	NextLink
	DriverAES
	AesType
	TimeInterval
	AesContext
	AesReserved

	CMSMSearchAdapter
	Takes the bus type and address of a product ID and returns a busTag and a uniqueIdentifier for wh...
	Syntax
	Input Parameters
	busType
	productIDLen
	productID

	Input/Output Parameters
	scanSequence

	Output Parameters
	busTag
	The ODI_BUSTYPE_CARDBUS type value is used only for hardware not using the common silicon method ...
	uniqueIdentifier

	Return Values
	Remarks

	CMSMServiceEvents
	Completes the processing of queued and received packets.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	CMSMSetHardwareInterrupt
	Called by the CHSM’s DriverInit routine to set up a hardware interrupt handler.
	Syntax
	Input Parameters
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks
	Example

	CMSMShutdownMLID
	Called by the C HSM to shut the MLID down.
	Syntax
	Input Parameters
	driverData
	shutdownType

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMSuspendPolling
	Suspends the calling of the DriverPoll procedure until CMSMResumePolling is called.
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMTCBPhysToLogFrags
	Gets the address of the ECB whose ECB structure contains the logical addresses of the fragments i...
	Syntax
	Input Parameters
	tcb

	Output Parameters
	Return Values
	Remarks
	FRAGMENT_LIST_STRUCT Structure

	CMSMUpdateConfigTables
	Allows a C HSM to tell the tool kit to update all copies of the configuration table for an adapter.
	Input Parameters
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMWrtConfigSpacex
	Takes a value, a bus identifier, and an offset in the bus’s configuration space and performs what...
	Syntax
	Input Parameters
	busTag
	uniqueIdentifier
	offset
	writeVal

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMWritePhysicalMemory
	Allows the CHSM to write to memory that is not registered to the CHSM.
	Syntax
	Input Parameters
	nbytes
	destBusTag
	physDestAddr
	srcAddr

	Output Parameters
	Return Values
	Remarks
	See Also
	8 NetWare Bus Interface

	Overview
	Bus Architecture
	Multiple Bus Platforms
	Figure�8�1 Multiple Bus Platform Example

	Memory Mapping and Address Manipulation
	Byte Order

	DMACleanup
	Cleans up, closes down, and releases the resources associated with a DMA operation.
	Syntax
	Input Parameters
	dmaChannel

	Output Parameters
	Return Values
	Remarks

	DMAStart
	Moves data from one location (on one bus) to another location (potentially on a different bus) us...
	Syntax
	Input Parameters
	destBusTag
	destAddrType
	destAddr
	srcBusTag
	srcAddrType
	srcAddr
	len
	dmaChannel
	dmaMode1 and dmaMode2

	Output Parameters
	Return Values
	Remarks

	DMAStatus
	Returns the status of the specified DMA channel.
	Syntax
	Input Parameters
	dmaChannel

	Output Parameters
	Return Values
	Remarks

	FreeBusMemory
	Frees any hardware resources allocated by the function MapBusMemory.
	Syntax
	Input Parameters
	busTag1
	memAddr
	busTag2
	mappedAddr
	len

	Output Parameters
	Return Values
	Remarks
	See Also

	Inx
	Does whatever operations are necessary to get and return the requested data, using the bus tag an...
	Syntax
	Input Parameters
	busTag
	ioAddr

	Output Parameters
	Return Values
	Remarks

	InBuffx
	Takes a bus identifier (busTag), an I/O address in that bus’s I/O address space, a buffer in the ...
	Syntax
	Input Parameters
	buffer
	busTag
	ioAddr
	count

	Output Parameters
	Return Values
	Remarks

	MapBusMemory
	Takes a bus identifier (busTag1), a physical memory address, and a length and makes the described...
	Syntax
	Input Parameters
	busTag1
	memAddr
	busTag2
	len

	Output Parameters
	mappedAddr

	Return Values
	Remarks
	See Also

	MovFastFromBus
	Moves the contents of the source buffer on the adapter to the destination buffer in the CPU’s log...
	Syntax
	Input Parameters
	destAddr
	srcBusTag
	reserved
	srcAddr
	count

	Output Parameters
	Return Values

	MovFastToBus
	Moves the contents of the source buffer in the CPU logical address space into the destination buf...
	Syntax
	Input Parameters
	destBusTag
	reserved
	destAddr
	srcAddr
	count

	Output Parameters
	Return Values

	MovFromBusx
	Moves the contents of the source buffer on the adapter to the destination buffer in the CPU’s log...
	Syntax
	Input Parameters
	destAddr
	srcBusTag
	reserved
	srcAddr
	count

	Output Parameters
	Return Values
	Remarks

	MovToBusx
	Moves the contents of the source buffer in the CPU logical address space into the destination buf...
	Syntax
	Input Parameters
	destBusTag
	reserved
	destAddr
	srcAddr
	count

	Output Parameters
	Return Values
	Remarks

	Outx
	Takes a bus identifier (busTag), a value, and an I/O address in that bus’s address space and perf...
	Syntax
	Input Parameters
	busTag
	ioAddr
	outputVal

	Output Parameters
	Return Values
	Remarks

	OutBuffx
	Takes a bus identifier (busTag), an I/O address in that address space, a buffer in the CPU’s logi...
	Syntax
	Input Parameters
	busTag
	ioAddr
	buffer
	count

	Output Parameters
	Return Values
	Remarks

	Rdx
	Takes a bus identifier and a physical memory address in that bus’s memory address space and perfo...
	Syntax
	Input Parameters
	busTag
	reserved
	memAddr

	Output Parameters
	Return Values

	Setx
	Fills a buffer with a specified value.
	Syntax
	Input Parameters
	busTag
	reserved
	memAddr
	value
	count

	Output Parameters
	Return Values.
	Remarks

	Slow
	A 0.5 microsecond NOP.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	Wrtx
	Takes a value, a bus identifier, and a memory address in that bus’s memory address space and perf...
	Syntax
	Input Parameters
	busTag
	reserved
	memAddr
	writeVal

	Output Parameters
	Return Values
	A Language Enabling
	Overview
	Language Enabling Procedure
	1. Make sure you have the NetWare Client SDK software development kit.
	2. Complete your CHSM to this specification.
	3. Use the language enabling tools on the completed CHSM to language enable your CHSM.
	B Event Control Blocks (ECBs)

	Overview
	ECB Aware Adapters
	Figure B-1 Packet Transfer through MLID

	Event Control Block Structure
	Table B�1 Fragment Structure and ECB Field Descriptions continued

	Relationship between Receive ECBs and RCBs
	Figure B-2 RCB Correspondence to ECB

	Relationship between Transmit ECBs and TCBs
	Figure B-3 Relationship between TCB and ECB
	C Platform Specific Information

	Overview
	Intel Processors
	Building the CHSM
	Creating the Source Files
	Compiling the Source Files
	Linking the Object Files
	Linker Definition File
	Linker Definition File Example

	Table C�1 Linker Definition File Example Definitions continued
	MLID Configuration File
	Load Keywords and Parameters

	Table C�2 Load Keywords and Parameters Descriptions continued
	D Portability Issues

	Overview
	Portability Rules
	Translation Limits
	Coding Assumptions
	Data Packing and Alignment
	Portability Macros

	COPY_FROM_HILO_UINTx
	Copies data from big endian format to the processor’s format, swapping and/or aligning data as ne...
	Syntax
	Input Parameters
	dest_addr
	src_addr

	Output Parameters
	Return Values
	Remarks

	COPY_FROM_LOHI_UINTx
	Copies data from little endian format to the processor’s format, swapping and/or aligning data as...
	Syntax
	Input Parameters
	src_addr

	Output Parameters
	Return Values
	Remarks

	COPY_TO_HILO_UINTx
	Copies data from the processor’s format to big endian format, swapping and/or aligning data as ne...
	Syntax
	Input Parameters
	destAddr
	srcAddr

	Output Parameters
	Return Values
	Remarks

	COPY_TO_LOHI_UINTx
	Copies data from the processor’s format to little endian format, swapping and/or aligning data as...
	Syntax
	Input Parameters
	destAddr
	srcAddr

	Output Parameters
	Return Values
	Remarks

	COPY_UINTx
	Copies unaligned data from one address to another.
	Syntax
	Input Parameters
	destAddr
	srcAddr

	Output Parameters
	Return Values

	GET_HILO_UINTx
	Gets a value in the processor’s format and converts it to big endian format.
	Syntax
	Input Parameters
	addr

	Output Parameters
	Return Values

	GET_LOHI_UINTx
	Gets a value in the processor’s format and converts it to little endian format.
	Syntax
	Input Parameters
	Output Parameters
	Return Values

	GET_UINTx
	Receives a value from memory that may be misaligned. (These macros do not swap the data.)
	Syntax
	Input Parameters
	addr

	Output Parameters
	Return Value

	HOST_FROM_HILO_UINTx
	Converts a value at a single address from host address to big endian format.
	Syntax
	Input Parameters
	addr

	Output Parameters
	Return Values
	Remarks

	HOST_FROM_LOHI_UINTx
	Converts a value at a single address from host address to little endian format.
	Syntax
	Input Parameters
	addr

	Output Parameters
	Return Values
	Remarks

	HOST_TO_HILO_UINTx
	Converts a value to big endian format when the source and destination are the same.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	HOST_TO_LOHI_UINTx
	Converts a value to little endian format when the source and destination are the same.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	PUT_HILO_UINTx
	Takes a host-ordered value and stores it in high�low order.
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values

	PUT_LOHI_UINTx
	Takes a host ordered value and stores it in low�high order.
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values

	PUT_UINTx
	Stores a value in memory without changing byte order to a value that may be misaligned. (These ma...
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values

	UINTx_EQUAL
	Compares two groups of bytes for equality.
	Syntax
	Input Parameters
	addr2

	Output Parameters
	Return Values

	VALUE_FROM_HILO_UINTx
	Converts a value from host-order to high�low order.
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values

	VALUE_FROM_LOHI_UINTx
	Converts a value from host-order to low�high order.
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values

	VALUE_TO_HILO_UINTx
	Returns a value in high�low order.
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values

	VALUE_TO_LOHI_UINTx
	Returns a value in low�high order.
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values
	E NESL Support

	Overview
	Registering and Deregistering Event Producers
	Registering and Deregistering Event Consumers
	NESL Structures
	EPB (Event Parameter Block) Structure
	EPBMajorVersion
	EPBMinorVersion
	EPBEventName
	EPBEventType
	EPBmoduleName
	EPBDataPtr0
	EPBDataPtr1
	EPBEventScope
	EPBReserved

	NESL_ECB Structure
	NecbNext
	NecbVersion
	NecbOsiLayer
	NecbEventName
	NecbRefData
	PNecbNotifyProc
	ConsumerNecb
	ProducerNecb
	EventData
	NESL_EVENT_CONSUMED
	NESL_EVENT_NOT_CONSUMED
	NecbOwner
	NecbWorkSpace
	NecbContext

	Events and Types
	Event Names
	Event Types
	Service Suspend Types
	Suspend Request
	Service Resumed Types
	Service/Status Changed Types

	CMSM NESL String Exports
	NESL Return Codes
	NESL Event Flags
	NESL OSI Layer Definitions

	Glossary
	Abort
	Adapter
	Address
	AES--Asynchronous Event Scheduler
	API--Application Programming Interface
	ARP--Address Resolution Protocol
	Asynchronous process
	Bit
	Broadcast
	Buffer
	Bus
	Byte
	CAM--Content Addressable Memory
	CHSM--C language Hardware Specific Module
	CMSM--C language Media Support Module
	CTSM--C language Topology Specific Module
	Completion code
	Control Block
	Destination Address
	Driver
	ECB--Event Control Block
	EISA--Extended Industry Standard Architecture
	EOI--End of Interrupt
	ESR--Event Service Routine
	Ethernet
	FDDI--Fiber Distributed Data Interface
	Frame
	HIN--Hardware Instance Number
	Interrupt
	IOCTL--I/O Control
	IP--Internet Protocol
	IPX--Internet Packet Exchange
	ISA--Industry Standard Architecture
	ISR--Interrupt Service Routine
	LAN--Local Area Network
	LSL--Link Support Layer
	MAC Header--Media Access Control Header
	Medium
	Micro Channel Architecture
	MLI--Multiple Link Interface
	MLID--Multiple Link Interface Driver
	MMIO--Memory Mapped I/O
	MPI‘--Multiple Protocol Interface
	Multicast
	NIC--Network Interface Controller/Card
	NLM--NetWare Loadable Module
	Node
	Node Address
	ODI--Open Data-Link Interface
	OSI--Open Systems Interconnection
	PC Card
	Packet
	Peripheral Component Interconnect—PCI
	Personal Computer Memory Card International Association—PCMCIA
	PID--Protocol Identification
	Privileged Time
	Process Time
	Protocol
	Pseudocode
	RAM--Random Access Memory
	RCB--Receive Control Block
	ROM--Read Only Memory
	Shared RAM
	Source Address
	SPX--Sequenced Packet Exchange
	Stubbed Routine
	Synchronous Process
	TCB--Transmit Control Block
	TCP--Transmission Control Protocol
	Token-Ring
	TSR--Terminate�and�Stay�Resident
	Virtual Machine
	WAN--Wide Area Network
	Revision History
	1. On page 4-22, under Flags, in the KEYWORDPARAM definition, the following sentence was added:
	2. On page 4-22, under Flags, in the STRINGPARAM definition,
	3. On page 4-24, under ParseString Field, under "The following is the format of the parse string:...
	4. On page 5-46, DriverPromiscuousChange, under Input Parameters, Bit2 and Bit3 was changed to re...
	5. On the following pages: 7-71, 7-73, 7-75, 7-79, 7-83, 7-87,
	6. On page 7-139, under Return Values for CMSMShutdownMLID, the definition for ODISTAT_RESPONSE_D...
	7. On page 7-139, under Remarks for CMSMShutdownMLID, the following paragraph was added:
	8. On page E-2, under Registering and Deregistering Event Consumers,
	9. On page 3-22, the description for MLIDCFG_DBusTag was changed to:
	10. On page 7-116, under Return Values for CMSMResetMLID, the description of ODISTAT_FAIL was cha...
	11. On page 4-2, under Data Structures, Event Control Blocks (ECBs) was deleted and the following...
	12. On page 4-22, the Note after SHARABLE was deleted and the following text was added:
	13. On page 4-25, under Conversion Specifiers, the following sentence was added to the first para...
	14. On page 4-26, after the first paragraph that follows Table 4-5, the following Note was added:
	15. On page 4-27, under Conventions, the following text was added to [abcd]:
	16. On page 7-91, under Return Values for CMSMParseDriverParameters, and on page 7-96, under Retu...
	17. On page 7-105, under Remarks for CMSMRegisterHardwareOptions, the following text was added:
	18. On page 7-32, under PC Card and CardBus Busses, the following text was added as the first par...
	19. On pages 7-34, 7-126, and 7-130, under Output Parameter, busType, the following Note was added:
	20. On pages 7-41 and 7-61, the following Note was added to the CardBus Bus section:
	21. On page 3-3, in the Driver Parameter Block Structure, and on page 3-9, in Table 3-1, "Driver ...
	22. On page 3-29, in Table 3-5, "MLIDCFG_SharingFlags Bits Description", in the description for M...
	23. On page 5-33, under Pseudocode,
	24. On page 5-28, the first sentence of the Note was changed to:
	25. On page 7-20, under CMSMECBPhysToLogFrags, the first sentence of the description at the top o...
	26. On pages 3-2 and 3-3, in the Driver Parameter Block Structure, the following entries were cha...
	27. On page 7-21, under the Remarks section for CMSMECBPhysToLogFrags, the following paragraph wa...
	28. On page 3-27, in Table 3-4, "MLIDCFG_Flags Bits Description", under Bit 10, MF_GRP_ADDR_SUP_B...
	29. On page 3-34, under Specification Version String,
	30. On page 4-10, in Table 4.2, "Programmed RCB Field Description", in the description for RCBRes...
	31. On page 5-45, right before the Ethernet and FDDI heading, the following new paragraph was added.
	32. On page 6-8, in the third Note under Remarks for <CTSM>FastProcessGetRCB, and on page 6-23, i...
	33. On page 7-114, change the last sentence of the fourth paragraph to read as follows:
	34. On page 4-23, under DEFAULTPRESENT and OPTIONALPARAM, change:

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	T rademarks

