SPEC VERSION 1.11

Protocol Stacks and MLIDs

(C Language)

ODI Specification

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1.11 - Doc v1.22

disclaimer

trademarks

Novell, Inc. makes no representations or warranties with respect to the contents
or use of this manual, and specifically disclaims any express or implied
warranties of merchantability or fithess for any particular purpose. Further,
Novell, Inc. reserves the right to revise this publication and to make changes to
its content, at any time, without obligation to notify any person or entity of such
revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any
NetWare software, and specifically disclaims any express or implied
warranties of merchantability or fithess for any particular purpose. Further,
Novell, Inc. reserves the right to make changes to any and all parts of NetWare
software, at any time, without any obligation to notify any person or entity of
such changes.

Novell and NetWare are registered trademarks of Novell, Inc. in the United
States and other countries.

The Novell Network Symbol is a trademark of Novell, Inc.
Macintosh is a registered trademark of Apple Computer, Inc.

DynaText is a registered trademark of Electronic Book Technologies, Inc.
Microsoft is a registered trademark of Microsoft Corporation.

Copyright [0 1993-1997 Novell, Inc. All rights reserved. No part of this
publication may be reproduced, photocopied, stored on a retrieval
system, or transmitted without the express written consent of the
publisher.

U.S. Patent Nos. 5,157,663; 5,349,642; and 5,455,932. U.S. and
International Patent Pending.

Novell, Inc.

122 East 1700 South
Provo, UT 84606
U.S.A.

ODI Specification: Protocol Stacks and MLIDs (C Language)
January 6, 1998
100-004006-001

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

C ontents

AEvent Control Blocks (ECBS) viii
BPortability Issues viii

CPlatform Specific Information viii
DODI HEADER FILE ix

Preface
Document Organization. e XVili
Referenced Documents. e XiX
Execution TiImes 0 e e XX
ProcessTime 0 i i XX
Privileged Time e XX
Portability Requirements XXi
Typedef Definitions e XXii
Standard Definitions. e XXii
Definitions for Standard Types 0o XXiv
PROT ID Structure o e i i it e e e XXiv
NODE_ADDR Structure i e e XXiV
ODISTAT Enumeration v .. XXV
SFTHI_STAT Enumeration XXV
CHNPOS Enumeration XXVi
Definition for Statistics Table Entries XXVii
STAT _TABLE_ENTRY Structure XXVii
Definition for API Function Array Passing. Xxviii
INFO BLOCK Structure et e e Xxviii
Definitionsfor LSL. XXViii
LOG_BRD_STAT_TABLE _ENTRY Structure. XXViii
LSL_CONFIG_TABLE Structure Xxviii
LSL_STATS _TABLE Structure XXX
Definitions for Lookahead and Event ControlBlocks XXXi
FRAGMENT _STRUCT Structure XXXI
ECB Structure XXXi
AES ECB Structure e XXXii
LOOKAHEAD Structure v v v v v v e et e e XXXi

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

2Z'TA 200 - TT'TA 2ads

Spec v1l.11 - Doc v1.22

Definitions for Protocol Stack.
PS_CONFIG_TABLE Structure
PS_STATS _TABLE Structure

Definitions for MLID and Misc. Structures
MLID_CONFIG_TABLE Structure
MLID_STATS TABLE Structure
MLID_REG Structure.
PS_BOUND_NODE Structure
PS_CHAINED_RX NODE Structure.
PS_CHAINED_TX NODE Structure
SFTII_EXCHANGE_NODE Structure

Introduction to ODI

ChapterOverview
Open Data-Link Interface (ODI)
Protocol Stacks
Link Support Layer (LSL).
Multiple Link Interface Drivers (MLIDS).
DataFlow
SendDataFlow
Receive DataFlow,

Overview of Protocol Stacks

ChapterOverview e
Protocol Stack
Protocol Stack Multiplexing.
Packet Flow with Multiple Protocol Stacks.
Routing a Packet to the Correct Protocol Stack
Routing a Packet to the Correct Logical Board.
Packet Reception with Multiple Protocol Stacks

Protocol Stack Data Structures

ChapterOverview
Protocol Stack Configuration Table
Protocol Stack Configuration Table Structure Sample Code.
Protocol Stack Configuration Table Field Descriptions.
Protocol Stack Statistics Table.
Protocol Stack Statistics Table Structure Sample Code
Protocol Stack Statistics Table Field Descriptions
STAT_TABLE_ENTRY Structure Sample Code
STAT_TABLE_ENTRY Field Descriptions

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

XXXiii
XXXiii
XXXl

XXXVii
XXXVi

1-1
1-2
1-4
1-5
1-6
1-6
1-8

2-1
2-1
2-1
2-5

2-8
2-9

3-1

3-1
3-2

3-4
3-5

3-7

Protocol Stack Initialization

ChapterOverview. e 4-1
Protocol Stack Initialization Steps.o 4-1
Locatingthe LSL 4-2
Registering Protocol Stacks withthe LSL. 4-2
Determining Which Logical Board(s) to Service. 4-3
Explicit Method 4-3
Dynamic Method 4-3
Adding Protocol IDs 4-4
Multiple Board Support 4-5
Obtaining Protocol ID Values 4-5
Customizing the Protocol Stack. 4-5
Line Speed e 4-6
Measuring Effective Network Performance 4-6
Maximum Packet Size. oo 4-6
Multicast Support 4-7
Receive Lookahead 4-8
Binding to Logical Boardso 4-8
Chaining Prescan and Default Protocol Stacks 4-9
Final Initialization 4-12

Protocol Stack Packet Reception

ChapterOverview. e e e 5-1
Protocol Stack Packet Receive Operation 5-1
Receive Routine Events. 5-2
Protocol Stack Packet ReceptionMethods 5-4
Bound Protocol Stack 5-4
Prescan Protocol Stack, 5-4
Default Protocol Stack. 5-4
Choosing a Packet Reception Method 5-4
Receive Lookahead. 5-5
Receive Handler. e 5-6
LOOKAHEAD Structure o e e s e 5-6
Protocol Receive Handler forBound Stacks 5-16
Protocol Receive Complete Handler for Bound Stacks 5-20
Protocol Receive Handler for Prescan and Default Stacks 5-22
Protocol Receive Complete Handler for Prescan and Default Stacks 5-29

Protocol Stack Packet Transmission

ChapterOverview. e 6-1

Transmit Routine Events e 6-1

Prescan Transmit Protocol Stack Method. 6-2
iii

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Packet Transmission. e 6-2

Supporting Multiple Outstanding Transmit Requests 6-3
Transmittingthe Packet 6-3
Priority Sends e 6-3
Event Control Blocks. 6-4
ECB_ESRField 6-5
ECB StackIDField. 6-5
ECB _BoardNumberField 6-6
ECB ProtocollD Field 6-6
ECB_ImmediateAddress Field 6-7
ECB DatalengthField. 6-7
ECB_FragmentCountField. 6-7
Fragment Descriptors 6-8
TransmitHandler. L 6-9
Protocol Transmit Handler for Prescan Stacks. 6-10
Protocol Transmit Complete Handler 6-13

6 Protocol Stack Control Routines

Chapter Overview e 7-1
Bind 7-3
GetBoundNetworkinfoo L 7-6
GetProtocolStackConfiguration Lo 7-8
GetProtocolStackStatistics. Lo 7-9
GetProtocolStringForBoardo 7-10
MLIDDeRegistered. 7-12
PromiscuousState L 7-14
ProtocolManagement 7-16
unbind L 7-19

8 Overview of the LSL

ChapterOverview e 8-1
Link Support Layer (LSL) e 8-1
CompletionCodes e e 8-2
Specification Version String 8-2

9 LSL Data Structures

ChapterOverview e 9-1
LSL Configuration Table o 9-1
LSL Configuration Table Structure Sample Code 9-1
LSL Statistics Table 9-7
LSL Statistics Table Structure Sample Code. 9-7
(\Y] ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

10 LSL Support Routines

ChapterOverview. e 10-1

LSLAPIServices 10-1

Locatingthe LSL 10-6

CLSL_AddProtocollD e 10-8

CLSL_BindProtocolToBoard 10-10
CLSL_BindStack 10-12
CLSL_CancelAESEvent e 10-14
CLSL CancelEvent. e e e 10-15
CLSL_ControlStackFilter 10-16
CLSL_DeRegisterDefaultChain. 10-18
CLSL_DeRegisterMLID e 10-20
CLSL_DeRegisterPreScanChain 10-21
CLSL_DeRegisterStack. 10-23
CLSL _FastHoldEvent. e 10-25
CLSL_FastSendComplete 10-27
CLSL_GetBoundBoardIinfo 10-29
CLSL_GetintervalMarker e 10-31
CLSL_GetLSLConfiguration e 10-32
CLSL_GetLSLStatistics 10-33
CLSL_GetMaxECBBufferSize 10-34
CLSL_GetMLIDControlEntry o e 10-35
CLSL_GetMultipleECBs. 10-37
CLSL_GetPhysicalAddressOfECB 10-39
CLSL_GetPIDFromStackiDBoard. 10-40
CLSL_GetProtocolControlEntry.o 10-42
CLSL_GetSizedECB 10-44
CLSL_GetStackECB 10-46
CLSL_GetStackIDFromName. e 10-49
CLSL_GetStartofChaino 10-51
CLSL _HoldEvent e e e e 10-53
CLSL_ModifyStackFilter 10-55
CLSL_RegisterDefaultChain 10-58
CLSL_RegisterMLID 10-61
CLSL_RegisterPreScanChain 10-64
CLSL_RegisterStack e 10-69
CLSL_ReSubmitDefault. o 10-72
CLSL_ReSubmitPreScanRx oo 10-75
CLSL_ReSubmitPreScanTx it et 10-77
CLSL_ReturnECB. 10-79
CLSL_ScheduleAESEvent 10-80
CLSL_SendComplete. 10-83
CLSL _SendPacket e e 10-85

\

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

11

12

13

Vi

CLSL_SendProtocolinfoToPartner. 10-87

CLSL_SendProtocolinfoToOtherEngine 10-89
CLSL_ServiceEvents e 10-91
CLSL_UnbindStack e e 10-92

Overview of the MLID

Chapter Overview e 11-1
Multiple Operating System Support 111
NetWare MLID e 11-2
MLID Procedures e e e e e e 11-2
MLID Initialization e 11-3
Board Service Routine 11-4
Packet Transmission. 11-4
ControlRoutines e 11-4
Timeout Detection e 11-5
DriverRemove e e 11-5
MLID Data Structures and Variables. 11-5
MLID Configuration Table 11-5
MLID Statistics Table. 11-5
MLID Functionality 11-6
Reentrancy e 11-6
Multiple Frame Support L 11-7
Other Functionality 11-12
MLID Design Considerations. oo e 11-12
Hardware Issues e e e 11-12

MLID Data Structures

ChapterOverview e 12-1
Frame DataSpace. e e 12-1
MLID Configuration Table 12-2
MLID Configuration Table Structure Sample Code 12-2
MLIDCFG_ModeFlagsField 12-15
MLIDCFG FlagsField 12-18
MLIDCFG_SharingFlags Field 12-20
AdapterData Space e e e 12-24
MLID Statistics Table 12-24
MLID Statistics Table Structure 12-25
Field Descriptions e 12-25
MLID Statistics Table Media Specific Counters 12-32

MLID Initialization

ChapterOverview e 13-1

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

The MLID Initialization Routine 13-1

Initialization Parameters Passed onthe Stack 13-2
Locatingthe LSL e 13-3
Frame and Adapter DataSpaces 13-4
Determining Hardware Options 13-4
Registering Hardware Options 13-7
Initializing the Adapter. 13-7
Registeringwiththe LSL 13-8
Setting up a Board Service Routine. 13-8
Scheduling Timeout Callbacks 13-9

MLID Packet Reception

ChapterOverview. e 14-1
Reception Methods 14-1
Reception Method - Option1 14-2
Reception Method - Option2 14-4
Reception Method -Option 3 14-5
Using Shared Interruptso 14-8

15

16

MLID Packet Transmission

ZZ'IA 90Q - TT'IA 2a8ds

ChapterOverview. e e e 15-1
MLID Packet Transmission Routine. 15-1
Priority Transmission Support. 15-4
MLID Timeout Routine
ChapterOverview. e 16-1
Establishing a Timeout Routine. 16-1
Schedulinga TimeoutCheck 16-1
Determining the Wait Interval, 16-2
Identifying a Timeout Error 16-2
Reinitializing the LAN Adapter. 16-2
MLID Remove Routine
ChapterOverview. e 17-1
Removingthe MLID 17-1
DeRegistering Logical Boardso 17-1
Canceling Timeout Check and Polling Routines 17-2
Shutting Down the LAN Adapter Lo 17-2
Remove Data Spaces. e 17-2

Vil

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

18 MLID Control Routines

Chapter Overview e 18-1
MLID Control Routine Overview 18-1
AddMulticastAddress. e e 18-7
DeleteMulticastAddress e 18-11
GetMLIDConfiguration 18-13
GetMLIDStatistics e e e 18-15
GetMulticastIinfo e 18-17
Index 15 (OxOF) 18-17
MLIDManagement e e e e e 18-20
MLIDReSEt e e e e e 18-22
MLIDShutdown. e e 18-24
PromiscuousChange. 18-26
RegisterMonitor e e 18-30
Index 11 (0x0B) 18-30
RemoveNetworkinterface o 18-34
Index 16 (0X10) 18-34
ResetNetworkinterface.o 18-36
Index 18 (0X12) 18-36
SetLookAheadSize. e 18-38
ShutdownNetworkinterface 18-40

Index 17 (0X11) 18-40

Appendix A Event Control Blocks (ECBSs)

Appendix OVerview L e e A-1
Event Control Blocks. A-1
Event Control Block Structure Sample Code. A-1

Appendix B Portability Issues

Portability Issues Overview B-1
Portability Rules B-1
Translation Limits. B-4
ASSUMPLIONS e e e B-5
Data Packing and Alignment., B-5

Appendix C Platform Specific Information

OVEIVIEW o o o e e e C-1
Intel Processors C-1
Buildingthe CHSM C-1

Viii ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Appendix D ODI HEADER FILE

AppendiX OVerview L e
ODLH . . . e

Glossary

Revision History

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Figures

Figure 1-1

The ODI Specification. 1-2
Figure 1-2

How the ODI Fits into the OSIModel 1-3
Figure 1-3

The Multiple Protocol Interface (MPI) 1-4
Figure 1-4

The Multiple Link Interface (MLI) 1-6
Figure 1-5

Data Flow from ApplicationtoLSL 1-7
Figure 1-6

Data Flow from the LSLtotheBoard 1-7
Figure 1-7

Data Flow from the Board tothe Wire. 1-8
Figure 1-8

Receive Data Flow from Wire to Application 1-9
Figure 1-1

One Protocol Stack Using

Multiple Frame Types 2-2
Figure 1-2

Multiple Protocol Stacks Using

OneFrame Type o o i i i 2-3
Figure 1-3

Multiple Protocol Stacks Using

Multiple FrameTypes 2-4
Figure 1-4

Typical Configuration in

Protocol Stack Multiplexing oo 2-6
Figure 1-5

MLID/Protocol Stack Multiplexing 2-8
Figure 3-1

Receive Prescan and Default Protocol Stack

Chaining Overview 4-10
Figure 3-2

Xi

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

2Z'TA 200 - TT'TA 2ads

Spec v1l.11 - Doc v1.22

Transmit Prescan Protocol Stack

Chaining Overview e 4-11
Figure 10-1

LSLInterfaces e 10-1
Figure 11-1

Implementations of

Multiple Frame Support Using Ethernet 11-10
Figure 11-2

Implementation of

Multiple Boards/Frame Support 11-11
Figure 12-1

MLIDCFG_ModeFlags Field Default Values 12-15
Figure 12-2

MLIDCFG_Flags Field Default Values 12-18
Figure 12-3

MLIDCFG_SharingFlags Field Default Values. 12-20
Xii ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table 2-1

Table 2-2

Table 2-3

Table 3-1

Table 4-1

Table 4-2

Table 4-3

Table 4-4

Table 4-5

Table 5-1

Table 5-2

Table 5-3

Table 5-4

Table 9-1

Table 9-2

Table 9-3

Table 9-4

Table 10-1

Tables

Protocol Stack Statistics Table Field Descriptions 3-2
Protocol Stack Statistics Table Field Descriptions 3-5
Generic Counters Array STAT_TABLE_ENTRY 3-7
Receive and Control Handlers and the Stack ID 4-2
Protocol Stack Receive Routine. 5-2
Receive Handler Event Sequence 5-19
Receive Complete Handler Event Sequence 5-21
Receive Complete Handler Event Sequence 5-28
Receive Complete Handler Event Sequence 5-31
Protocol Stack Transmit Routine 6-1
Transmit Handler Event Sequence. 6-9
Transmit Complete Handler Event Sequence for Bound Stacks 6-14
Transmit Complete Handler Event Sequence for Prescan Stacks 6-14
LSL Configuration Table Field Descriptions. 9-3
LSL Statistics Table Field Descriptions 9-8
LOG_BRD_STAT_TABLE_ENTRY Field Descriptions 9-8
Generic STAT_TABLE_ENTRY Counters Array Fields. 9-10
Xiii

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Finding LSL API Entry PointsforanMLID 10-6
Table 10-2

CLSL_ModifyStackFilter 10-57
Table 12-1

MLID Configuration Table Field Descriptions 12-4
Table 12-2

MLIDCFG_ModeFlags Bits Description 12-15
Table 12-3

MLIDCFG_Flags Bit Description 12-18
Table 12-4

MLIDCFG_SharingFlags Bits Description 12-20
Table 12-5

Frame Types Versus SizeFields 12-22
Table 12-6

MLID Statisitics Table Fields 12-27
Table 12-7

MLID Statistics Table Generic Counters 12-30
Table 12-8

Media Specific Counters for Token-Ring. 12-32
Table 12-9

Media Specific Counters for Ethernet 12-34
Table 12-10

Media Specific Countersfor FDDI 12-36
Table A-1

Fragment Structure and ECB Field Descriptions. A-2
Table C-1

Linker Definition File Example Definitions C-3
Table C-2

Load Keywords and Parameters Descriptions C-6
Xiv ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Preface

This document describes the Open Data-Link Inteffa@@DI)

specification and how to write protocol stacks and network communications
drivers (LAN drivers) for NetWare. ODI allows multiple protocols to operate
in the NetWare 3x(and higher), DOS, 0OS/2, Windows NT, NEST, and other
embedded environments. Writing a LAN driver that conforms to the ODI
specification ensures compatibility with any protocol that is also written to the
ODI specification (for example, TCP/IP, ISO, IPXetc.).

Important Protocol Stack Developers: It is possible for routines that are part of a protocol
v stack to execute asynchronously as a result of various interrupt events. This
fact, along with today’s optimizing compilers, can cause problems with variables
changing value when the compiler did not expect them to. The following are two
possible solutions for this problem.

At a minimum, you must declare a variable volatile if it can be referenced by a
piece of code that can be executed asynchronously. These pieces of code
include event service routines (due to transmit completions), reception
completions, AES event completions, and MLID control functions where an
asynchronous event has completed.

A better solution than declaring variables volatile is to make protocol stacks fully
reentrant. This solution not only solves the volatility problem, but also allows
code to work on multiprocessor platforms. We strongly recommend this
solution, especially since fully reentrant protocol stacks will be required in future
versions of this specification.

Xvii

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'TA 200 - TT TN 28ds

Spec v1l.11 - Doc v1.22

Document Organization

This document describes the ODI architecture, which consists of three main
elements: protocol stacks, the LSL and the LAN driver (also called Multiple
Link Interface Driver or MLID). This document is organized into sections that
discuss each element of the architecture individually. The document contains
five sections: the introduction, one section for each ODI module, and the
appendixes.

« Section | Introduction

Introduces the ODI architecture and discusses the design issues relevant to
the ODI architecture as it applies to the NetWare environment.

« Section Il Protocol Stacks

Explains the architecture of an ODI protocol stack and discusses the
design issues relevant to a stack. This section also discusses protocol stack
data structures, initialization, packet reception and transmission, and
control routines.

« Section Il LSL

Presents a brief overview of the LSL and describes its statistics table. This
section also includes descriptions of the general LSL support routines, the
Multiple Protocol Interface (MPI) support routines, and Multiple Link
Interface (MLI) support routines.

« Section IV MLIDs

Explains the architecture of an ODI MLID and discusses the design issues
relevant to an ODI MLID. This section also discusses MLID data
structures, initialization, packet reception and transmission, and control
routines.

« Section V Appendixes

Xviii ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Referenced Documents

This document refers to the following Novell documents.

Novell ODI Specification: NetWare HSMs (C Language)t number
107-000053-001

ODI Specification Supplementhe MLID Installation Information File
part number 107-000056-001

ODI Specification Supplement: The Hub Management Interfeoe
number 107-000023-001

ODI Specification Supplemen$ource Routingpart number
107-000058-001

ODI Specification Supplemernanonical and Noncanonical Addressjng
part number 107-000059-001

ODI Specification SupplemenErame Types and Protocol H)part
number 107-000055-001

ODI Specification Supplemertandard MLID Message Definitiorzart
number 107-000060-001

XiX

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Execution Times

The two principal execution times are process time and privileged time. You
must be aware of whether a routine is called at process time or at privileged
time. The times at which a routine is called effect the support routines it can
access.

Process Time

At process time you can allocate memory and (with certain exceptions)
perform file input and output (I/O).

Privileged Time

XX

When a routine is called by a privileged process, this routine becomes
privileged. At privileged time, the routine should not allocate memory or
attempt file 1/0, should not suspend its execution, and should not make any
calls to routines that may suspend execution. Privileged time routines must be
highly optimized and should limit their execution time.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Portability Requirements

In writing your driver, if you want it to be portable across different operating
systems and/or processors, you need to adhere to the following rules.

« Write your driver in ANSI C—this is extremely important.

« In general, do not declare any variable to be any of the C language basic
types éhort long, int, char, etc.). Declare variables to be of an abstract
type. Then, typedef that type to the appropriate base type for each
processor/operating system combination.

In some cases, such as counters, it may be more efficientitd irsgead
of an abstract type.

« Make sure that all members in any structure that describes data coming in
from or going out to the LAN are given unique, abstract types.

Appendix B: Portability Issuedescribes the above portability rules and
additional rules and other important information in detail.

XXi

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Typedef Definitions

Note‘VI
\4

The following is a list of typedef definitions for parameters that are used in this
ANSI C implementation of the Open Data Link Interface (ODI) specification.

The structures designated below should be considered as packed structures
when compiling.

Standard Definitions

The following are data type declarations and definitions that are used for
portability.

MEON Declared as an 8-bit unsigned character value which
contains a 7-bit character or a portion of a double-byte
character.

MEON_STRING Declared as a NULL terminated string of MEON.

UINT8 Declared as an 8-bit unsigned integer.
UINT16 Declared as a 16-bit unsigned integer.
UINT32 Declared as a 32-bit unsigned integer.
UINT64 Declared as a 64-bit unsigned integer.
BOOLEAN Declared as an unsigned char:

FALSE = 0x0

TRUE = 0x1

All pointers are void pointers, or are pointers to a typedef. However, no size
definitions may be assumed for them. You cannot assume that pointers are
32-bit values. For example, assuming that a void pointer (PVOID) and UINT32
are the same size is invalid.

All strings are MEON, NULL-terminated strings (ASCIIZ), which can contain
double-byte characters. Double-byte characters imbedded in MEON strings
may be handled by hardware directly on the platform on which this
specification is implemented, but this is not the concern of this specification. In
a platform that uses Unicode strings, Windows NT for example, it is the
responsibility of the application, driver, etc. to present the Unicode string
equivalents of the MEON strings to the platform.

XXil ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Note‘VI
\V

All bit field descriptions are described as numeric values and the use or
interrogation of bit field values is by numeric methods. This eliminates, as far
as possible, the little endian and big endian conflicts.

For example:

#define bit_flag x 0x0040 /* for b6 in a 16-bit
bit field. */

or implementation on the Windows NT platforms, the following definitions are
made:

typedef unsigned char MEON,; /* equivalent UCHAR */
typedef unsigned char UINTS; [* equivalent UCHAR */
typedef unsigned short UINT16; /* equivalent USHORT */
typedef unsigned int UINT32; /* equivalent UINT */
typedef unsigned long UINT32; /* equivalent ULONG */
typedef unsigned char MEON_STRING; /* equivalent UCHAR */
typedef struct _UINT64_/* equivalent for UINT64 on 32-bit platform */
{

UINT32 Low_UINT32;

UINT32 High_UINT32;
} UINT64;

By convention, all MEON_STRINGs are NULL terminated strings—for
example:

MEON_STRING amsg [] = "String";

XXili

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Definitions for Standard Types

PROT_ID Structure

typedef struct PROT _ID_{
UINT8 protocollD [PID_SIZE];
} PROT_ID;

WherePID_SIZEis the number of bytes needed to identify a protocol stack and
is currently defined by the following:

#define PID_SIZE 6

NODE_ADDR Structure

typedef struct NODE_ADDR_ {
UINT8 nodeAddress [ADDR_SIZE];
} NODE_ADDR;

WhereADDR_SIZHs the number of bytes needed to identify an address and
is currently defined by the following:

#define ADDR_SIZE 6

ODISTAT Enumeration

ODISTATenumerates the values returned in the ODI platform by function
calls; these values are used to indicate success or an error.

typedef enum _ODISTAT

{
ODISTAT_SUCCESSFUL=0,
ODISTAT_RESPONSE_DELAYED=1,
ODISTAT_SUCCESS TAKEN= 2,
ODISTAT_BAD_COMMAND=-127,
ODISTAT_BAD_PARAMETER=-126,
ODISTAT_DUPLICATE_ENTRY=-125,
ODISTAT_FAIL=-124,
ODISTAT_ITEM_NOT_PRESENT=-123,
ODISTAT_NO_MORE_ITEMS=-122,

XXV ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ODISTAT_MLID_SHUTDOWN= -121,
ODISTAT_NO_SUCH_HANDLER= -120,
ODISTAT_OUT_OF RESOURCES= -119,
ODISTAT_RX_OVERFLOW= -118,
ODISTAT_IN_CRITICAL_SECTION= -117,
ODISTAT_TRANSMIT_FAILED= -1186,
ODISTAT_PACKET_UNDELIVERABLE= -115,
ODISTAT_CANCELED= -4

} ODISTAT;

Note Vvl ODISTAT_NO_SUCH_DRIVER has been equated to
ODISTAT_MLID_SHUTDOWN:

#define ODISTAT_NO_SUCH_DRIVER ODISTAT_MLID_SHUTDOWN

SFTII_STAT Enumeration

SFTIII_STATenumerates the SFTIII status values returned in the ODI platform
by function calls; these values are used to indicate success or an error.

typedef enum _SFTIII_STAT

{
SFTIII_STAT_SUCCESSFUL= 0,
SFTIII_STAT_MIRROR_NOT_ACTIVE=1,
SFTIII_STAT_NO_PARTNER= 2,
SFTIII_STAT_OUT_OF_RESOURCES= 3,
SFTIII_STAT_NOT_SUPPORTED=-1

} SFTIII_STAT,;

Note‘vvl SFTIII_STAT_NOT_SUPPORTED is assumed to be all bits set. s

XXV

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

CHNPOS Enumeration

XXVi

CHNPOSenumerates the protocol stack chain position for chained protocol
stacks.

typedef enum _CHNPOS

{
CHNPOS_FIRST_MUST,
CHNPOS_FIRST_NEXT,
CHNPOS_LOAD ORDER,
CHNPOS_LAST_NEXT,
CHNPOS_LAST MUST

} CHNPOS;

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Definition for Statistics Table Entries

STAT_TABLE_ENTRY Structure

typedef struct STAT TABLE_ENTRY_

{
UINT32 StatUseFlag;
void *StatCounter;
MEON_STRING *StatString;

} STAT_TABLE_ENTRY;

where the following are the permissil8tatUseFlagralues:

ODI_STAT_UNUSED StatCounter entry not in use.

ODI_STAT_UINT32 StatCounter is a pointer to an UINT32
counter.

ODI_STAT _UINT64 StatCounter is a pointer to an UINT64
counter.

ODI_STAT_MEON_STRING StatCounter is a pointer to a Null
terminated string of MEON.

ODI_STAT _UNTYPED StatCounter is a pointer to a UINT32
length preceded array of UINTS8.
ODI_STAT RESETABLE StatCounter can be reset by an

external entity when needed.

StatStringis a pointer to a NULL terminated MEON string that describes the
statistics counter.

StatCounteiis as defined bgtatUseFlag

XXVil

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Definition for APl Function Array Passing

INFO_BLOCK Structure

typedef struct INFO_BLOCK _

{
UINT32 NumberOfAPIs;
void (**SupportAPIlArray) ();
} INFO_BLOCK;

Definitions for LSL

LOG_BRD_STAT_TABLE_ENTRY Structure

typedef struct LOG_BRD_STAT_TABLE_ENTRY_
{
UINT32 LogBrd_TransmittedPackets;
UINT32 LogBrd_ReceivedPackets;
UINT32 LogBrd_UnclaimedPackets;
UINT32 LogBrd_TxOverloaded;
} LOG_BRD_STAT_TABLE_ENTRY;

LSL_CONFIG_TABLE Structure

typedef struct LSL_CONFIG_TABLE_

{

UINT16 LConfigTableMajorVer;

UINT16 LConfigTableMinorVer;

MEON_STRING *LSLLongName;

MEON_STRING *LSLShortName;

UINT16 LSLMajorVer;

UINT16 LSLMinorVer;

UINT32 LMaxNumberOfBoards;

UINT32 LMaxNumberOfStacks;

UINT32 LConfigTableReservedO;

UINT32 LConfigTableReserved1;

UINT32 LConfigTableReserved?2;

UINTS8 LSLCFG_ODISpecMajorVer;
XXViil ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

UINT8

UINT16
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32

LSLCFG_ODISpecMinorVer;
LConfigTableReserved3;
LSLCFG_SystemFlags;
LSLCFG_SmallECBCount;
LSLCFG_MediumECBCount;
LSLCFG_LargeECBCount;
LSLCFG_XLargeECBCount;
LSLCFG_HugeECBCount;
LSLCFG_SmallECBBelow16Count;
LSLCFG_MediumBelowl6ECBCount;
LSLCFG_LargeBelowl6ECBCount;
LSLCFG_XLargeBelowl6ECBCount;
LSLCFG_HugeBelowl6ECBCount;
LSLCFG_SmallECBMinCount;
LSLCFG_MediumECBMInCount;
LSLCFG_LargeECBMinCount;
LSLCFG_XLargeECBMinCount;
LSLCFG_HugeECBMinCount;
LSLCFG_SmallECBMaxCount;
LSLCFG_MediumECBMaxCount;
LSLCFG_LargeECBMaxCount;
LSLCFG_XLargeECBMaxCount;
LSLCFG_HugeECBMaxCount;
LSLCFG_SmallECBSize;
LSLCFG_MediumECBSize;
LSLCFG_LargeECBSize;
LSLCFG_XLargeECBSize;
LSLCFG_HugeECBSize;

} LSL_CONFIG_TABLE;

XXIiX

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

LSL_STATS_TABLE Structure

XXX

typedef struct LSL_STATS TABLE_

{
UINT16 LStatTableMajorVer;
UINT16 LStatTableMinorVer;
UINT32 LNumGenericCounters;
STAT_TABLE_ENTRY (*LGenericCountersPtr)([];
UINT32 LNumLogicalBoards;

LOG_BRD_STAT_TABLE_ENTRY
(*LogicalBoardStatTablePtr)][];

UINT32 LNumCustomCounters;
STAT_TABLE_ENTRY (*LCustomCountersPtr)[];
} LSL_STATS_TABLE;

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Definitions for Lookahead and Event Control Blocks

FRAGMENT_STRUCT Structure

ECB Structure

typedef struct FRAGMENT_STRUCT _
{

void *FragmentAddress;
UINT32 FragmentLength;
} FRAGMENT_STRUCT;

typedef struct ECB_

{
struct ECB_ *ECB_NextLink;
struct ECB_ *ECB_PreviousLink;
UINT16 ECB_Status;
void (*ECB_ESR)(struct _ECB_ *);
UINT16 ECB_StacklD;
PROT_ID ECB_ProtocollD;
UINT32 ECB_BoardNumber;
NODE_ADDR ECB_ImmediateAddress;
union
{
UINTS8 DWs_i8val[4];

UINT16 DWs_il6val[2];
UINT32 DWs_i32val;

void *DWs_pval,
} ECB_DriverWorkspace;
union
{

UINT8 PWs_i8val[8];

UINT16 PWs_il6val[4];
UINT32 PWs_i32val[2];
UINT64 PWs_i64val;
void *PWs_pval[2];

} ECB_ProtocolWorkspace;
UINT32 ECB_Datalength;

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

XXXi

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

UINT32

ECB_FragmentCount;

FRAGMENT_STRUCT ECB_Fragment[1];

} ECB;

AES_ECB Structure

typedef struct AES ECB_

{

struct AES ECB_ *AES_Link;

UINT32
UINT16
void
UINT32
void
void

} AES_ECB;

LOOKAHEAD Structure

AES_ MSecondValue;
AES_Status;

(*AES_ESR)(struct _AES_ECB_*);

AES Reserved;
*AES_ResourceObj;
*AES_Context;

typedef struct _LOOKAHEAD _

{

ECB *LkAhd_PreFilledECB,;
UINT8 *LkAhd_MediaHeaderPtr;
UINT32 LkAhd_MediaHeaderLen;
UINT8 *LkAhd_DataLookAheadPtr;
UINT32 LkAhd_DatalLookAheadLen;
UINT32 LkAhd_BoardNumber;
UINT32 LkAhd_PktAttr;
UINT32 LkAhd_DestType;
UINT32 LkAhd_FrameDataSize;
UINT16 LkAhd_PadAlignBytes1;
PROT_ID LkAhd_ProtocollD;
UINT16 LkAhd_PadAlignBytes2;
NODE_ADDR LkAhd _ImmediateAddress;
UINT32 LkAhd_FrameDataStartCopyOffset;
UINT32 LkAhd_FrameDataBytesWanted;
ECB *LkAhd_ReturnedECB,;
UINT32 LkAhd_PriorityLevel;

XXXIi ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

void *LkAhd_Reserved;
} LOOKAHEAD;

Definitions for Protocol Stack

PS_CONFIG_TABLE Structure

typedef struct PS CONFIG_TABLE_

{
UINT16 PConfigTableMajorVer;
UINT16 PConfigTableMinorVer;
MEON_STRING *PProtocolLongName;
MEON_STRING *PProtocolShortName;
UINT16 PProtocolMajorVer;
UINT16 PProtocolMinorVer;

} PS_CONFIG_TABLE;

PS_STATS_TABLE Structure

typedef struct PS STATS TABLE_

{
UINT16 PStatTableMajorVer;
UINT16 PStatTableMinorVer;
UINT32 PNumGenericCounters;
STAT_TABLE_ENTRY (*PGenericCountersPtr)][];
UINT32 PNumCustomCounters;

STAT_TABLE_ENTRY (*PCustomCountersPtr)[];
} PS_STATS_TABLE;

XXXili

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Definitions for MLID and Misc. Structures

MLID_CONFIG_TABLE Structure

typedef struct MLID_CONFIG_TABLE

{
MEON

UINT8
UINT8

NODE_ADDR

UINT16
UINT16
UINT16
UINT32
UINT32
UINT32

MLIDCFG_Signature[26];
MLIDCFG_MajorVersion;
MLIDCFG_MinorVersion;

MLIDCFG_NodeAddress;
MLIDCFG_ModeFlags;
MLIDCFG_BoardNumber;
MLIDCFG_BoardInstance;
MLIDCFG_MaxFrameSize;
MLIDCFG_BestDataSize;
MLIDCFG_WorstDataSize;

MEON_STRING *MLIDCFG_CardName;
MEON_STRING *MLIDCFG_ShortName;
MEON_STRING *MLIDCFG_FrameTypeString;

UINT16
UINT16
UINT16
UINT32

UINT16
UINT16
UINT8
UINT8
UINT16
void
UINT8
UINT8
UINT16
UINT16
void
UINT16
UINT16
UINT16

MLIDCFG_Reserved0;
MLIDCFG_FramelD;
MLIDCFG_TransportTime;
(*MLIDCFG_SourceRouting)
(UINT32, void*, void**,BOOLEAN);
MLIDCFG_LineSpeed;
MLIDCFG_LookAheadSize;
MLIDCFG_SGCount;
MLIDCFG_Reservedl;
MLIDCFG_PrioritySup;
*MLIDCFG_Reserved?2;
MLIDCFG_DriverMajorVer;
MLIDCFG_DriverMinorVer;
MLIDCFG_Flags;
MLIDCFG_SendRetries;
*MLIDCFG_DriverLink;
MLIDCFG_SharingFlags;
MLIDCFG_Slot;
MLIDCFG_IOPort0;

XXXIV ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

UINT16 MLIDCFG_IORange0;

UINT16 MLIDCFG_IOPort1;

UINT16 MLIDCFG_IORangel;

void *MLIDCFG_MemoryAddressO;
UINT16 MLIDCFG_MemorySize0;

void *MLIDCFG_MemoryAddressi;
UINT16 MLIDCFG_MemorySizel,;
UINTS8 MLIDCFG_ InterruptO;

UINT8 MLIDCFG_Interruptl;

UINT8 MLIDCFG_DMALIneO;

UINT8 MLIDCFG_DMALinel;

void *MLIDCFG_ResourceTag;

void *MLIDCFG_Config;

void *MLIDCFG_CommandString;
MEON_STRING MLIDCFG_LogicalName[18];
void *MLIDCFG_LinearMemory0;
void *MLIDCFG_LinearMemory1;
UINT16 MLIDCFG_ChannelNumber;
void *MLIDCFG_DBusTag;

UINTS8 MLIDCFG_DIOConfigMajorVer;
UINT8 MLIDCFG_DIOConfigMinorVer;

} MLID_CONFIG_TABLE;

MLID_STATS_TABLE Structure

typedef struct MLID_STATS TABLE_

{

UINT16 MStatTableMajorVer;
UINT16 MStatTableMinorVer;
UINT32 MNumGenericCounters;

STAT_TABLE_ENTRY (*MGenericCountersPtr)[];

UINT32 MNumMediaCounts;

STAT_TABLE_ENTRY (*MMediaCountersPtr)[];

UINT32 MNumCustomCounts;

STAT_TABLE_ENTRY (*MCustomCountersPtr)[];
} MLID_STATS_TABLE;

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

XXXV

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

MLID_REG Structure

typedef struct MLID_REG

{
void (*MLIDSendHandler)(ECB*, void *);
INFO_BLOCK *MLIDControlHandler;
void *MLIDSendContext;
void *MLIDResourceObj;
void *MLIDModuleHandle;
} MLID_REG;

PS_BOUND_NODE Structure

typedef struct _PS BOUND_NODE _

{
MEON_STRING *ProtocolName;
ODISTAT (*ProtocolReceiveHandler)
(LOOKAHEAD?);
INFO_BLOCK *ProtocolControlHandler;
void *ProtocolResourceObj;

} PS_BOUND_NODE;

PS_CHAINED_RX_NODE Structure

typedef struct PS CHAINED _RX_NODE_

{
struct PS CHAINED_RX NODE_ *StackChainLink;
UINT32 StackChainBoardNumber;
CHNPOS StackChainPositionRequested;
ODISTAT (*StackRxChainHandler)(LOOKAHEAD?,

struct _PS_CHAINED_RX_ NODE_ *);
INFO_BLOCK *StackChainControl;

UINT32 StackChainFilter;
void *StackChainContext;
void *StackChainResourceObj;

} PS_CHAINED_RX_NODE;

XXXVi ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

PS_CHAINED_TX_NODE Structure
typedef struct PS CHAINED_TX NODE_

{
struct _PS CHAINED_TX NODE_ *StackChainLink;
UINT32 StackChainBoardNumber;
CHNPOS StackChainPositionRequested;
ODISTAT (*StackTxChainHandler)(ECB*,

struct _PS_CHAINED_TX_NODE_ *);
INFO_BLOCK *StackChainControl;

UINT32 StackChainFilter;
void *StackChainContext;
void *StackChainResourceObj;

} PS_CHAINED_TX_NODE;

SFTII_EXCHANGE_NODE Structure

typedef struct _SFTIII_EXCHANGE_NODE _
{

UINT32SubFunction,

void *Parameterl,

void *Parameter2
} SFTIII_EXCHANGE_NODE;

XXXVil

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

XXXVili

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Introduction to ODI

Overview

This chapter briefly describes the Open Data-Link fatef] (ODI)
specfication It describes tbfunctions of Multiple Lirk Interface Drivers,
protocol stacksand tte LSL. This chapteslso containsabrief description of
daaflow through tle ODI model.

Because tBODI specfication provides fo communi@tions betveenavariety
of protocols and medj& AN drivers ae calledMultiple Link Interface
Driverd] (MLIDs[J). The Link Support Layét (LSLO) handles the transfer
of information betweeMLIDs and protocol stacks.

Note‘vvl The terms MLID and LAN driver can be interchanged.

You should read this chapt&you are notfamiliar with the basic concepts
involved in the ODI spefication.

Open Data-Link Interface (ODI)

ANSI/ANSIC C language MLIDS andrptocolstacks must conform to the
ODI speciication Figure 11 illustrates the elements thatke up tke ODI
specfication.

Introduction to ODI 1-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

Figure 1-1
The ODI Specification

Protocol Stacks

IPX TCP/IP AppleTalk

Protocol stacks

Link Support Layer (LSL)
Ethernet Token-Ring AppleTalk ISDN
ple erface Drive D

L Network boards (or chipsets) "

The ODI specification allows multiple network protocols and adapters
(physical boards) to be used concurrently on the same client or file server. It
provides a flexible, high-performance Data Link Layer interface to Network
Layer protocol stacks. The ODI specification is comprised of the three
elements listed below and illustrated above in Figure 1.1.

« Protocol Stacks
« Link Support Layer (LSL)

« Multiple Link Interface Drivers (MLIDSs)

Protocol Stack Functionality

Network Layer protocol stacks transmit and receive data over a logical or
physical network. They also handle routing, connection services, and APIs, and
provide an interface to allow higher layer protocols or applications access to the
protocol stack’s services. As a general rule, protocol stacks written to the ODI
specification provide OSI (Open Systems Interconnection) Network Layer
functionality; however, they are not limited to this. Figure 1.2 illustrates the
ODI/OSI correspondence.

1-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Figure 1-2

How the ODI Fits into the OSI Model

oSl _|

Model

Application

Presentation

Session
Transport
Protocol
Stack
Network
. Logical Link Control (LLC)
Data LflK coccc0000860000000000000000000600000000000000

Media Access Control (MAC)

ODI Model

The Multiple Protocol Interface (MPI)

Protocol stacks communicate with the LSL through the Multiple Protocol
Interfacé] (MPIO) . The MPI is an interface that resides between the protocol
stack and the LSL (see Figure 1.3). The MPI provides protocol stacks with all
the APIs that are necessary for the protocol stack to communicate over the
network. However, protocol stacks written to the ODI specification 3 and later
also have full access to the NLM APIs documented irNgt¥Vare Loadable

Introduction to ODI 1-3

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Figure 1-3

Module Library Reference—Volumemrotocol stacks also have full access to
the NLM APIs documented iNetWare Loadable Module Library Reference—
Volume II.

The Multiple Protocol Interface (MPI)

TCP/IP AppleTalk

Protocol stacks

Multiple Protocol Interface (MPI)

' Link Support Layer (LSL) '

Link Support Layer (LSL)

Note‘VI
v

The LSL handles the communication between protocol stacks and MLIDs.
Because the ODI allows the physical topology to support many different types
of protocols, the MLID receives packets destined for different protocol stacks
that might be present in the system. For example, one Ethernet network might
support all of the following protocols: IRX, TCP/IP, AppleTalk and LAT

(a Digital Equipment Corporation protocol). The LSL then determines which
protocol stack is to receive the packet. Next, the protocol stack determines what
should be done with the packet or where it should be sent. When the protocol
stack transmits a packet, it hands the packet to the LSL. The LSL then directs
the packet to the appropriate MLID.

The term LAN adapter applies to any network controller that provides access
across a network. This network controller is as likely to be present directly on
the motherboard of a computer in an embedded system as it is on a network
interface card that inserts into a computer bus.

The LSL also tracks the various protocols and MLIDs that are currently loaded
in the system and provides a consistent method of finding and using each of the
loaded modules.

In addition, the LSL performs the following services:

1-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Allows a protocol stack to obtain and ret@vent Control Blocks (ECBS).
(ECBs are control structures that are used to send or receive packets or to
schedule events.)

Queues and recovers ECBs for later use.

Registers and deregisters the protocol stack.

Allows protocol stacks to obtain timing services.

Allows protocol stacks to determine Stack and Protocol IDs.

Allows protocol stacks to obtain MLID statistics.

Allows protocol stacks to bind with MLIDs.

Allows protocol stacks to transmit and receive packets through an MLID.

Maintains lists of all active protocol stacks and MLIDs.

Allows protocol stacks to obtain information about MLIDs and other
protocol stacks.

Allows protocol stacks to change the operational state of MLIDs. (For
example, the protocol stack could cause the MLID to shut down or reset.)

Multiple Link Interface Drivers (MLIDS)

MLID Functionality

MLIDs are device drivers that handle the sending and receiving of packets to
and from a physical or logical topology (for example, Ethernet SNAP is a
logical topology). MLIDs interface with a LAN adapter (also referred to as
Network Interface Card [NIC] or physical board) and handle frame header
appending and stripping. MLIDs also help determine the packet’s frame type.

Each MLID’s interface with the LAN adapter is determined by that adapter’s
hardware.

All MLIDs can handle packets from various protocols because the MLID does
not interpret the packet. Instead, it passes received packets to the Link Support
Layer (LSL) using Event Control Blocks (ECBs). ECBs are data structures that
the MLID uses to send or receive packets or to schedule events.

Introduction to ODI 1-5

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

The Multiple Link Interface (MLI)

The MLID communicates with the LSL through the Multiple Link Interface
(MLIO). The MLI is the interface between the LSL and the MLID (see Figure
1.4). This interface contains the APIs necessary to facilitate communication
between these two modules.

Figure 1-4
The Multiple Link Interface (MLI)

Link Support Layer (LSL)

Multple Link Interface (MLI)

RX-Net Ethernet Token-Ring FDDI

Network boards

Data Flow

When messages are sent and received, the various protocols or layers add and
remove their own information at each layer. The following diagrams illustrate
basic data flow.

Send Data Flow

As Figure 1.6 illustrates, the protocol stack receives data from the application
above it, determines whether the packet must be split into fragments,
determines the size of the fragments, adds the appropriate protocol header to
the data packet, and sends it to the LSL. The LSL isolates the protocol stack
from the topology and LAN medium below it. The protocol stack simply passes
data to the LSL. The LSL directs the packet to the appropriate MLID, which
then takes care of the topology-specific information. This is the reason ODI
protocol stacks are known as being media and frame-type independent.

1-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Figure 1-5
Data Flow from Application to LSL

(Application)

(Stack (IPX) —j e Determines fragment sizes
e Adds protocol header
IPX
Header

s)

As illustrated by Figure 1.7 , the LSL directs the packet to the appropriate
MLID. The MLID then adds the MAC header to the packet and hands the
packet to the LAN adapter.

Figure 1-6
Data Flow from the LSL to the Board

(LSL) Determines which MLID
should receive the packet
IPX and passes it.
Header
MLID)— Adds the Media Access
1] Control (MAC) header

MAC IPX
Header | Header

Board

Introduction to ODI 1-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

In Figure 1.8 the hardware adds the preamble to the packet and places the
packet on the wire.

Figure 1-7
Data Flow from the Board to the Wire

MAC | IPX
Preamble] eader | Header

Hardware adds the preamble and
places the packet on the wire.

—

Board

Wire

Receive Data Flow

Figure 1.9 shows the LAN adapter receiving the packet off the wire and
stripping the preamble from the packet. The LAN adapter then hands the packet
to the MLID, which discards the MAC header from the packet and hands the
packet to the LSL. The LSL directs the packet to the appropriate protocol stack,
which then removes the protocol header from the packet and hands the data to
the application.

1-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Figure 1-8
Receive Data Flow from Wire to Application

(Application J

A
(Stack (IPX) D)
IPX
Header
A
(LSL y,
IPX
Header
A
(MLID 7

MAC 1IPX
Header | Header

Board

* Removes the protocol header

* Sends the data to the
application

Determines which protocol
stack should receive the
packet and passes it.

e Removes the (MAC) header
 Hands the packet to the LSL

Preamble

MAC IPX
Header | Header

Hardware strips the preamble and
gives the packet to the MLID.

P —

Wire

Introduction to ODI 1-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

1-10

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

chapter

1 Overview of Protocol Stacks

Chapter Overview

This chapter provides an overview of protocol stack operation. It covers
protocol stack and MLID multiplexing and introduces the concept of logical
boards. This chapter also introduces packet transmission and reception.

You should read this chapter if you have not previously developed an ODI
protocol stack.

Protocol Stack

Protocol stacks transmit and receive data over a network. They provide the
interface that allows higher layer protocols or applications access to the
protocol stack’s services such as routing and connection.

Protocol Stack Multiplexing
ODI protocol stacks provide maximum flexibility because they are
independent of physical media and frame type. For instance, the following
three scenarios are possible:

« One protocol stack can concurrently use multiple frame types (also called
logical board$

« Multiple protocol stacks can be concurrently used by a frame type

« Or any combination of multiple protocols and multiple frame types is
possible. (See Figures 2-1 through 2-3.)

Overview of Protocol Stacks 1-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2ads

Spec v1l.11 - Doc v1.22

Figure 1-1
One Protocol Stack Using
Multiple Frame Types

Protocol Stack A

Protocol stack
U

Link Support Layer (LSL)

Ethernet

Token=Ring
1802.2% ISNAPY

- -y - -

180224 | SNAP<

DD P e ¥ e

Network boards (or chipsets)

. j Logical Board (or Frame Type)

1-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Figure 1-2
Multiple Protocol Stacks Using
One Frame Type

Protocol Stack B

Protocol Stack A Protocol Stack C

Protocol stacks
]

Link Support Layer (LSL)

Token-Ring

Multiple Link Interface Drivers (MLIDs)

Network board (or chipset)

! = Logical Board (or Frame Type)

————

Overview of Protocol Stacks 1-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Figure 1-3
Multiple Protocol Stacks Using
Multiple FrameTypes

Protocol Stack A Protocol Stack B Protocol Stack C

Protocol stacks
./

Link Support Layer (LSL)

Ethernet Token-Ring
: 1802.2% | 1802.2% | SNAP=

- de ———ge ke R e P

Network boards (or chipsets)

! = Logical Board (or Frame Type)

————a—

1-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Packet Flow with Multiple Protocol Stacks

Protocol stacks are media and frame-type unaware. Therefore, in order for
multiple protocol stacks to communicate with the logical boards, the LSL must
have a unique value identifying each protocol stack and logical board (frame

type).

Routing a Packet to the Correct Protocol Stack
Packet reception is more involved than packet transmission and requires that
the protocol stack bind to a logical board in the system. Binding enables the

LSL to route incoming frames to the protocol stack.

Figure 2-4 illustrates the configuration for the following discussion.

Overview of Protocol Stacks 1-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Figure 1-4
Typical Configuration in
Protocol Stack Multiplexing

Protocol Stack C
PID=000Ch

Protocol Stack B
PID=000Bh

Protocol stacks
<

-
Protocol Stack A
PID=000Ah

Link Support Layer (LSL)

Logical

Logical
Board 1

Board 2

Token-Ring

1802.2% {SNAP*
d d

- g -y g

Multiple Link Interface Drivers (MLIDs)

Network board (or chipset)

E + Logical Board (or Frame Type)

adadad W 2)

1-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

During protocol stack initialization, the stack registers with the LSL. The LSL
assigns a unique value known as a Stack ID (SID) to each protocol stack. When
the LSL binds the protocol stack to a frame type (logical board), the LSL
assigns a predefined Protocol ID (PID) to that protocol stack. The LSL stores
the PID, the SID, and the logical board number of the frame type in a table. The
LSL uses the SID, PID, and logical board number to allow communication
between the protocol stacks and the logical boards.

When a protocol stack sends a request to be transmitted, the MLID transmitting
the request embeds the appropriate PID in the MAC header of the request
packet. The location and format of the PID in the frame header is topology and
frame dependent and does not concern the protocol stack.

When a logical board in the MLID receives a request from the wire, its ISR
(Interrupt Service Routine) fills in the LOOKAHEAD structure’s
LkAhd_BoardNumbefield or Event Control Block (ECB) structure’s
ECB_BoardNumbefield with that logical board number. (An ECB is a buffer
that contains information regarding the packet and fragment descriptors
pertaining to the packet data. For information on the ECBAppendix A:
Event Control Blocks (ECB3)The logical board in the MLID takes the PID
from the MAC header and places it in theAhd_ProtocolIDECB_ProtocollD
field. The MLID hands th€e OOKAHEAD structure, which contains the
prefilled ECB if the MLID uses ECBs, to the LSL. The LSL uses the logical
board number and the PID to index the table and determine the protocol SID of
the stack that is to receive the packet. (See Figure 2-5.)

Overview of Protocol Stacks 1-7

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1.11 - Doc v1.22

Figure 1-5
MLID/Protocol Stack Multiplexing

-
Protocol Stack B
PID=000Bh

-
Protocol Stack A
PID=000Ah

| |
Board # | StackID| PID

Link Support Layer (LSL) 1 %

Board 1

Network board (or chipset)

Routing a Packet to the Correct Logical Board

When a response is transmitted, the LSL is able to check the
ECB_BoardNumbefield (filled out in the process above) to determine the
logical board in the MLID that prepares the packet for transmission.

1-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Packet Reception with Multiple Protocol Stacks

A protocol stack uses the following two system handles to concurrently utilize
and service multiple boards in a system:

« Board Number The board number specifies the logical board and the
frame type.

« Protocol ID (PID) The PID, together with the board number, specifies the
protocol stack that the packet is sent to.

When a protocol stack registers with the LSL, the stack gives the LSL the
address of the stack’s receive handler routine. This routine is usually called at
privileged time.

Protocol Stack Packet Reception Methods
The ODI specification defines these protocol stack reception methods:
« Bound
« Prescan
+ Default

Prescan and default protocol stacks can be chained (see Chapter 4, "Protocol
Stack Initialization™).

Bound Protocol Stacks

Bound protocol stacks are the most common method. A bound protocol stack
requires that frames received from the LSL have a registered Protocol ID (PID)
in theLkAhd_ProtocolID/ECB_Protocollield. (The system administrator
and/or protocol stack registers a PID with the LSL for each protocol stack that
will be used.) The appropriate PIDs for a given protocol are usually different
for each frame type. ThHeDI Specification SupplemenErame Types and
Protocol IDs lists the common IPX protocol stack PID values for most frame

types.

The LSL uses the PID in th&kAhd_ProtocollD/ECB_ ProtocollBield to
locate the appropriate protocol stack to receive the packet. A bound protocol

stack receives only the packets that have the same PID as that registered for that

stack.

Overview of Protocol Stacks 1-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

A registered protocol stack only receives packets whose PID corresponds to a
logical board. Protocol stacks containing a limited number of network layer
protocols that use different PIDs (for example, TCP/IP, ARP, RARP) must be
registered to the LSL as separate and distinct protocols. These protocol stacks
are logically fragmented and each fragment must register with the LSL as a
separate protocol stack. However, these fragments can still be located in the
same piece of software and can specify the same receive handler routine. The
receive handler routine then examinesltkAhd_ProtocollD/

ECB_ProtocollDfield to determine the subprotocol that the frame is intended
for.

The bound protocol stack method allows multiple protocol stacks to service
and share a single LAN adapter. This method also minimizes protocol cross
talk because the packet’s protocol type is not determined by parsing the
protocol header.

Prescan Protocol Stacks

Prescan protocol stacks receive all incoming packets from a particular LAN
adapter before the packet is routed to the appropriate bound protocol stack. If
the prescan stack consumes the packet, it must either resubmit the packet or
discard the packet. Special purpose protocol stacks such as packet filters,
diagnostic utilities, or compression protocol stacks are used as prescan stacks.

If a prescan protocol stack chain exists, other prescan protocol stacks will still
be placed into their requested position in the chain. This allows multiple
prescan protocol stacks in the system.

Default Protocol Stacks

Default protocol stacks receive every frame not claimed by any other protocol
stack (prescan, bound, or other default stacks in the chain). In other words,
these stacks receive all leftover packets.

Default protocol stacks typically provide a Logical Link Control Layer
solution. If a default protocol stack chain exists, other default protocol stacks
will be placed into their requested position in the chain. This allows multiple
default protocol stacks in the system.

Packet Reception Process

In order to receive packets from an MLID, a protocol stack must register with
the LSL and then bind to that MLID. Registration provides the LSL with the

1-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

information required to route packets from MLIDs to protocol stacks. The steps
involved in packet reception are given in Chapter 5, "Protocol Stack Packet
Reception".

Overview of Protocol Stacks 1-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

1-12

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

chapter 2
Protocol Stack Data Structures

Chapter Overview

This chapter presents the structure code and field descriptions of a protocol
stack configuration table and a protocol stack statistics table.

Protocol Stack Configuration Table

Protocol Stack Configuration Table Structure Sample Code

typedef struct PS CONFIG_TABLE_

{
UINT16 PConfigTableMajorVer;
UINT16 PConfigTableMinorVer;
MEON_STRING *PProtocolLongName;
MEON_STRING *PProtocolShortName;
UINT16 PProtocolMajorVer;
UINT16 PProtocolMinorVer;
UINTS8 PConfigTable_ODISpecMajorVersion;
UINT8 PConfigTable_ODISpecMinorVersion;
UINTS8 PConfigTable_ProtocolAPIMajorVersion;
UINTS8 PConfigTable_ProtocolAPIMinorVersion;
UINT32 PConfigTable_SystemFlags;
UINT32 PConfigTable_ProtocolFlags;
UINT32 PConfigTable_ProtocolReserved;

} PS_CONFIG_TABLE;

Protocol Stack Data Structures 2-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2ads

Spec v1l.11 - Doc v1.22

Protocol Stack Configuration Table Field Descriptions

Table 2-1

Protocol Stack Statistics Table Field Descriptions

Field

Description

PConfigTableMajorVer

PConfigTableMinorVer

PProtocolLongName

PProtocolShortName

PProtocolMajorVer

PProtocolMinorVer

PConfigTable_ODISpecMajorVersion

PConfigTable_ODISpecMinorVersion

PConfigTable_ProtocolAPIMajorVersion

PConfigTable_ProtocolAPIMinorVersion

The major version number of the protocol stack configuration
table. Use PSTK_CONFIG_TABLE_MAJOR_VER, defined in
ODI.H.

The minor version number of the protocol stack configuration
table. Use PSTK_CONFIG_TABLE_MINOR_VER, defined in
ODI.H.

Pointer to a NULL terminated MEON string describing the
protocol stack in detail.

Pointer to a NULL terminated MEON string containing the
short name for the protocol stack, which is used to register the
protocol stack. This string cannot have more than 15
characters (not including the NULL terminator).

Decimal value that indicates the major version number of the
protocol stack.

Decimal value that indicates the minor version number of the
protocol stack (0 through 99).

The major version of the ODI Specification that the protocol
stack is written to. For example, if the ODI Specification is
version 1.11, the value of this field is 1. To set this field,
protocol stacks should use ODI_SPEC_MAJOR_VER,
defined in ODI.H.

The minor version of the ODI Specification that the protocol
stack is written to. For example, if the ODI Specification is
version 1.11, the value of this field is 11. To set this field,
protocol stacks should use ODI_SPEC_MINOR_VER, defined
in ODI.H.

The major version of the protocol stack APl interface. For
example, if the API interface is version 1.00, the value of this
field is 1. The protocol stack determines the value of this field.

The minor version of the protocol stack API interface. For
example, if the API interface is version 1.00, the value of this
field is 00. The protocol stack determines the value of this field.

2-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Table 2-1

Protocol Stack Statistics Table Field Descriptions

Field

Description

PConfigTable_SystemFlags

PConfigTable_ProtocolFlags

PConfigTable_ProtocolReserved

The constants for this field are defined in ODI.H as follows:
PSTK_CFG_AUTO_NETWORK_RESOLUTION_BIT

SET if automatic network resolution is on.
PSTK_CFG_AUTO_BIND_ACTIVE_BIT

SET if automatic binding is on.
PSTK_CFG_ROUTER_ACTIVE_BIT

SET if a protocol router is present.
PSTK_CFG_SERVER_BIT

SET if the protocol stack is running in a server environment
(mutually exclusive with PSTK_CFG_CLIENT_BIT).

PSTK_CFG_CLIENT_BIT

SET if the protocol stack is running in a client environment
(mutually exclusive with PSTK_CFG_SERVER_BIT).

Defined by individual protocol stacks.

Reserved for protocol specific use.

Protocol Stack Data Structures 2-3

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Protocol Stack Statistics Table

All protocol stacks must keep a statistics table for the purpose of network
management. The following contains a sample of the statistics table code and
a description of each of the fields in the statistics table.

Protocol Stack Statistics Table Structure Sample Code

typedef struct PS STATS TABLE_

{
UINT16 PStatTableMajorVer;
UINT16 PStatTableMinorVer;
UINT32 PNumGenericCounters;
STAT_TABLE_ENTRY (*PGenericCountersPtr)][];
UINT32 PNumCustomCounters;

STAT_TABLE_ENTRY (*PCustomCountersPtr)[];
} PS_STATS_TABLE;

2-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Protocol Stack Statistics Table Field Descriptions

Table 2-2

Protocol Stack Statistics Table Field Descriptions

Field

Description

PStatTableMajorVer

PStatTableMinorVer

PNumGenericCounters

PGenericCountersPtr

PNumCustomCounters

PCustomCountersPtr

The major version number of the protocol stack
statistics table (2 for this specification).

The minor version number of the protocol stack
statistics table (O for this specification).

The total number of generic STAT_TABLE_ENTRY
counters in this portion of the table. Set this field to
0x0003 for this specification.

Pointer to an array of STAT_TABLE_ENTRY counters
[PNumGenericCounters].

The total number of custom STAT_TABLE _ENTRY
counters in this portion of the table. The value in this
field is protocol stack dependent.

Pointer to an array of STAT_TABLE_ENTRY counters
[PCustomCounters].

Protocol Stack Data Structures 2-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

STAT_TABLE_ENTRY Structure Sample Code

#define
UINT32
MEON_STRING
MEON_STRING
MEON_STRING
STAT_TABLE_ENTRY PGenericCountersf]NUM_GENERIC_COUNTERS] =

{

h

NUM_GENERIC_COUNTERS 3
PTotalTxPackets, PTotalRxPackets, PlgnoredRxPackets;
PTotalTxPacketStr ~ "Total Tx Packets";
PTotalRxPacketStr "Total Rx Packets";
PlgnoredRxPacketStr "Rx Packets Ignored";

{ ODI_STAT_UINT32, &PTotalTxPackets, &PTotalTxPacketsStr},
{ ODI_STAT_UINT32, &PTotalRxPackets, &PTotalRxPacketsStr},
{ ODI_STAT_UINT32, &PlIgnoredRxPackets, &PIgnoredRxPacketsStr },

PS_STATS_TABLE

2-6

Note‘VI
\v

PS_StatsTable = {2,0,NUM_GENERIC_COUNTERS,
PGenericCounters, 0, NULL };

The strings for the protocol stack counters are initialized by language enabling
code.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

STAT_TABLE_ENTRY Field Descriptions

Table 2-3
Generic Counters Array STAT_TABLE_ENTRY

Size Label

Description

UINT32 PTotalTxPackets

UINT32 PTotalRxPackets

UINT32 PlgnoredRxPackets

This field has the total number of
SendPacket requests made to the LSL.

This field contains the total number of
incoming packets that were consumed by
the protocol stacks.

This field has the total number of times the
protocol receive handler was called with
lookahead data and the protocol stack did
not return a receive ECB to the MLID to
receive the packet.

Protocol Stack Data Structures 2-7

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

2-8

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

chapter 3
Protocol Stack Initialization

Chapter Overview

This chapter describes registering and binding prescan, bound, and default
protocol stacks. This chapter also covers the information you need to know in
order to chain protocol stacks.

You should review this chapter before writing the protocol stack initialization
routine.

Protocol Stack Initialization Steps

Protocol stack initialization involves the following general steps:

1.

2.

5.

6.

Locate the LSL.

Register the protocol stack.

Determine which logical board(s) to service.
Obtain the Protocol ID value(s).

Customize the protocol stack.

Bind the protocol stack to the logical board(s).

If your protocol stack is to be resident, it should free all the memory it used to
hold the initialization code and data before turning resident. (The process of
freeing initialization code and data is a design implementation decision.)

Protocol Stack Initialization 3-1

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2ads

Spec v1l.11 - Doc v1.22

Locating the LSL

The LSL module must reside in the system before the user can load any
protocol stacks. On some platforms, such as the NetWare server, the LSL may
already be preloaded. Refer to "Locating the LSL" in Chapter 10, "LSL
Support Routines".

Registering Protocol Stacks with the LSL

After a protocol stack has located the LSL, the protocol stack must register
itself with the LSL. This accomplishes the following items:

» Gives the LSL pointers to the protocol stack’s receive handler and to the
protocol stack’s control handler.

« Assigns a unique Stack ID (SID) to the protocol stack.

The following table illustrates how the receive and control handlers and the SID
are used.

Table 3-1
Receive and Control Handlers and the Stack ID

Actor/Agent Action

LSL 1 Calls the protocol stack’s receive handler whenever a
packet intended for that particular protocol stack is
received.

Applicationsand 2 Call the protocol stack’s control handler to obtain

LSL configuration information and to issue defined control
functions.
LSL 3 Uses the Stack ID (SID) to track the protocol stack. The

LSL assigns the SID when the protocol stack registers.

The bound protocol stack registers by invoking@hé&L RegisterStack
function as defined i€hapter 10: LSL Support Routines

If the protocol stack is using the prescan or default receive methods (see
Chapter 5: Protocol Stack Packet Receptjignmust register using
CLSL_RegisterPrescanChainor CLSL_RegisterDefaultChain,

respectively. The LSL does not assign a Stack ID (SID) to default or prescan

3-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

protocol stacks; however, pointers to the protocol’s receive and control
handlers are still necessary.

Determining Which Logical Board(s) to Service

Explicit Method

Because an ODI system can have multiple LAN adapters and because each
adapter can have multiple frame types enabled, protocol stacks must determine
which boards to bind to and service. For example, a user might have two LAN
adapters with each having enabled four frame types; this translates into eight
logical boards registered with the LSL. The user must then tell the protocol
stack which board(s) to bind to. Protocol stacks can determine which board(s)
to bind to by using either the explicit method or the dynamic method; they
should support both methods.

In the explicit method, the user explicitly specifies which logical boards the
protocol stack binds to. We suggest that for each protocol entry the user specify
a "bind" entry in the appropriate platform configuration file that looks like the
following:

bind "stack name" <MLID Short Name> [Board Number <Protocol ID>]

Note‘VI
v

Dynamic Method

The method of specifying the binding of a protocol stack to a logical board is
entirely up to the protocol stack developer. The line specifying the binding
information can be passed to the protocol stack or some entity to parse and the
resultant binding information as to the stack and which logical board it is bound
to is passed in the CLSL_BindStack or CLSL_BindProtocolToBoard call.

The first thing a protocol stack does is verify whether a specified board exists
and whether a Protocol ID (PID) is available for the protocol that uses that
particular board. The protocol stack can verify that a board exists by calling the
CLSL_GetMLIDControlEntry function. If the board is valid, the protocol
stack determines whether a PID exists for the protocol on that particular board
by callingCLSL_GetPIDFromStackiDBoard. If a PID is not present for that
protocol, the protocol stack adds a PID to use or stops the initialization
procedure.

If no bind information is specified in the appropriate platform’s configuration
file, the protocol stack scans for board(s) to bind to. The protocol stack scans

Protocol Stack Initialization 3-3

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Adding Protocol IDs

through all the possible board numbers, starting with board 0, and calls the
CLSL_GetMLIDControlEntry function, which returns whether or not the
specified board number exists. The protocol stack continues scanning and
calling CLSL_GetMLIDControlEntry until the message
ODISTAT_NO_MORE_ITEMS returned. The protocol stack then knows that
no more boards exist at any higher board numbers. When the protocol stack
encounters an active board, the stack queries the LSL for a PID by calling the
CLSL_GetPIDFromStackiDBoard support function. If the protocol stack
cannot find a board that has a PID for it, the protocol stack adds a PID to use
or stops the initialization procedure.

You should write your protocol stacks so that they are LAN medium and frame
type unaware. Because PID values are determined by the frame type and LAN
medium where they are used, the protocol stack does not interpret the PID.
Usually, the user of your protocol stack will enter your protocol stack’s PID
with the configuration information for each frame type and board combination.
As discussed in the “Explicit Method" and “Dynamic Method” sections
above, the protocol stack obtains the PID by calling
CLSL_GetPIDFromStackiDBoard. Your protocol stack can register an
appropriate PID for each board it binds to. This procedure eases system
configuration for the user because the user does not need to enter any PID
values for your protocol stack.

To add a PID, the protocol stack must know the common PID value for each of
the frames currently defined (for example, ETHERNET_802.2,
TOKEN_RING, NOVELL_RX-NET, FDDI_SNAP, etc.). S&DI

Specification Supplement: Frame Types and ProtocofdbDa list of the

current frame types. Before the protocol stack adds the PID, it determines
whether a PID has previously been registered for that stack on that particular
board. The protocol stack determines this by calling
CLSL_GetPIDFromStackiDBoard. If this call returns a PID, the protocol
stack uses it. If a PID is not returned, the protocol stack looks at the MLID’s
configuration tableMLIDCFG_FramelDfield to determine whether the

protocol stack has a known PID for that frame type. If the protocol stack does
have a known PID for that frame type, the protocol stack calls
CLSL_AddProtocolID . If the protocol stack does not have a known PID for
that frame type (for example, perhaps a new frame type is being used), the
protocol stack returns an error that indicates a PID must be entered with the
configuration information.

3-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

In summary, a protocol stack can add a PID to the LSL for a particular board if
the following two conditions are true:

« A PID for the protocol stack to use with a particular frame type has not
been previously registered (determined by
CLSL_GetPIDFromStackiDBoard).

« The protocol stack is internally aware of a PID for the board’s frame type.
(For example, the IPX PID on frame type ETHERNET_802.2 is usually
OXEO, and the TCP/IP PID on frame type Ethernet_lII is usually 0x800.)

Multiple Board Support

The ODI specification allows a protocol stack to be simultaneously bound to
multiple boards. Whether or not your protocol stack supports multiple boards
is for you to decide.

Obtaining Protocol ID Values

The protocol stack usually obtains a Protocol ID (PID) value when the stack is
determining which board it can bind to. The
CLSL_GetPIDFromStackiDBoard function returns the assigned PID for

that protocol stack on the specified board. A protocol stack only needs the PID
value(s) when it sends packets and when it registers with the LSCl{apter

11: Overview of the MLIP A protocol stack must not interpret the PID in any
way so that LAN medium and frame type independence is maintained. The
protocol stack simply saves the obtained PID(s) for use when transmitting
packets.

Customizing the Protocol Stack

One of the ODI specification’s goals is to keep the protocol stack interface to
the LSL and the underlying MLIDs as general and independent of issues
specific to LAN adapters as possible. However, there are still a number of
issues that must be dealt with during initialization. This means that your
protocol stack must be customized to the particular capabilities of the
underlying MLIDs and the associated LAN adapters.

Protocol Stack Initialization 3-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Line Speed

Most LAN media provide high speed data transfer rates (for example, 2M to
100M bits per second). Protocol stacks that retry transmit operations when they
do not receive an expected acknowledgment within a specific period of time
might have to customize time-out values so they are appropriate to the speed of
the underlying physical LAN medium. Time-out values can usually be small
because transmission and reception acknowledgment on most LAN media is
very fast. However, keep in mind that the underlying medium might have
relatively low data rates (such as 2400 baud). Unless the protocol stacks
increase their internal time-out values when they are using a slow network,
excessive and unneeded transmit retries will occur and adversely affect
operation.

Measuring Effective Network Performance

Protocol stacks can use two fields in the MLID’s configuration table to measure
the effective performance of a particular netwdvcIDCFG_ TransportTime
andMLIDCFG_LineSpee(seeChapter 12: MLID Data Structurdsr more
details regarding these fields).

MLIDCFG_TransportTime Field

The MLIDCFG_TransportTimdield specifies the time required to transmit a
586 byte packet in milliseconds. This field is usually set to a value of 1 or 2 by
higher speed MLIDs. Lower speed LAN media must set this field to a higher
value.

MLIDCFG_LineSpeed Field

TheMLIDCFG_LineSpeetield specifies the effective bits per second data rate
of the underlying LAN medium. This field can be specified either in megabits
per second or kilobits per second.

Maximum Packet Size

Each physical LAN medium has a defined maximum packet size that it can
transmit and receive. Protocol stacks must, therefore, configure themselves for
the maximum amount of packet data that they can send and receive when using
a particular board. The logical board’s MLID configuration table contains three
maximum packet size fieldMLIDCFG_MaxFrameSize,
MLIDCFG_BestDataSizeandMLIDCFG_WorstDataSize.

3-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

MLIDCFG_MaxFrameSize Field

TheMLIDCFG_MaxFrameSizéeld represents the absolute maximum packet
size. The maximum packet size includes all low-level headers with the
exception of the leaders and trailers managed by the hardware.

MLIDCFG_BestDataSize Field

The MLIDCFG_BestDataSizéeld represents the maximum number of data
bytes that the protocol stack can send and receive when it does not use certain
low-level headers (such as the source routing headers in Token-Ring).

MLIDCFG_WorstDataSize Field

Multicast Support

TheMLIDCFG_WorstDataSizéeld represents the maximum number of data
bytes the protocol stack can transmit and receive regardless of any low-level
headers managed by the MLID. Protocol stacks always use the value of
MLIDCFG_WorstDataSizerhen they determine the maximum data packet
they can send and receive. The valu®bfDCFG_WorstDataSizencludes

the protocol stack’s header information.

For example, if th&ILIDCFG_WorstDataSizes set to 1500 bytes and a

protocol stack appends a 16-byte header to all the data it transmits, the effective
maximum amount of data that an application using that particular protocol
stack can transmit and receive is 1500 — 16 = 1484 bytes.

A number of protocol stacks take advantage of multicast transmission, a LAN
medium specific capability. Multicast transmission operates in a similar way to
broadcast transmission—transmitted packets can be targeted to more than one
node. The difference between these is that broadcast packets are received by all
nodes on a network while multicast packets are received by a defined subset of
all nodes. This allows the protocol broadcast information to only preempt the
resources on the nodes that will actually receive the protocol stack’s packets,
significantly reducing the performance impact on the nodes that are not to
receive the broadcast packets.

In order for a LAN adapter to become a member of a multicast group, the
group’s multicast address has to be enabled on the adapter so that any packets
received by it will be passed to the host computer and not discarded at the
hardware level. Protocol stacks determine whether an MLID supports multicast

Protocol Stack Initialization 3-7

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Receive Lookahead

by examining theMLIDCFG_ModeFlagdield in the MLID configuration
table (se€Chapter 12: MLID Data Structurgs

Multicast support and the format of the multicast addresses is LAN medium
dependent, and some LAN media do not support any type of multicast
capability. A protocol stack that utilizes multicasting must determine whether
the MLID is using noncanonical or canonical addressing by examining the
MLID configuration table entrMLIDCFG_ModeFlagqseeChapter 12:

MLID Data Structurel (Canonical addressing is a “generic* form of
addressing that is media independent SB¢ Specification Supplement:
Canonical and Noncanonical Addressifog more information.) If the MLID

is using noncanonical addressing, the protocol stack must determine the LAN
medium type of the underlying LAN adapter and use the appropriate multicast
address. MLIDs have control functions that add and remove multicast
addresses (séghapter 15: MLID Control Routings

If a protocol stack does not know the format of the LAN medium’s multicast
address, or the LAN medium does not support multicasts, the protocol stack
simply uses real broadcasts (OxFF FF FF FF FF FF) instead of multicasts.

Protocol stacks that use multicast addresses should also allow the user to
specify the multicast addresses that the protocol stack will use for a particular
board. This capability is usually accomplished by using a custom keyword at
load time. This allows the protocol stack to use correctly formatted multicast
addresses for LAN mediums other than the ones that the protocol’'s multicast
code was originally written to.

As part of customization, your protocol stack informs the underlying MLID
about the amount of receive lookahead data it must have in order to properly
process received packets. (TdetLookAheadSizeMLID control function is
discussed in detail i@hapter 15: MLID Control Routinet is noted here in
order to specify that your protocol stack sets its needed lookahead size during
this phase of initialization.)

Binding to Logical Boards

One of the last things a protocol stack must do before it becomes fully
operational is to bind to the predetermined board(s). Binding the protocol stack
enables the LSL to route incoming packets destined for that protocol stack to

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

its receive handler. Note, a protocol stack can send packets without being
bound to any board(s).

A protocol stack must be prepared to have its receive handler invoked after
calling theBind support function.

If the protocol stack uses the prescan or default receive methods, this step is not
necessary. Packet reception for these types of protocol stacks begins when the
CLSL_RegisterPreScanChainCLSL_RegisterDefaultCharommands are
issued.

Chaining Prescan and Default Protocol Stacks

Prescan and default protocol stacks can be chained, so the received and
transmitted packets flow through the chained stacks in a prescribed order.
Figure 1.1 illustrates sample receive packet flow through a system with chained
prescan and default stacks.

The LSL adds the chained stacks in the chain position order that the stacks
request. If a stack must be first or must be last in the chain, and another stack
that also must be first or must be last already occupies that position, the attempt
to load the second stack returns an error message.

Protocol Stack Initialization 3-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1.11 - Doc v1.22

Figure 3-1
Receive Prescan and Default Protocol Stack
Chaining Overview

Prescan Stacks Bound Stacks Default Stacks

LSL

Dropped

3-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Figure 3-2
Transmit Prescan Protocol Stack
Chaining Overview

Transmit Stacks (Initiating Send) Prescan Transmit Stacks

)

Protocol Stack Initialization 3-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

2Z'TA 900 - TT'TA 29ds

Spec v1l.11 - Doc v1.22

Note\QAYA If more than one prescan stack is loaded on a machine and each prescan stack
" attaches it's own protocol header to the transmit data, the transmit load order of

the stacks on the transmitting machine will dictate the receive load order of the
stacks on the receiving machine. For example, if on the transmitting machine
you have three prescan stacks loaded in the order A B C, then in order to
process the headers properly, you must load the prescan stacks on the machine
receiving the packets in the order C B A. This is not a problem if both the
transmit and receive PreScan chain stacks are loaded at the same time using
CLSL_RegisterPreScanChain .

Final Initialization

3-12

At this point the protocol stack is fully operational. Whenever possible, we
recommend that your module display, to the user, the logical board(s) that it is
bound to and servicing. The display should include the MLID’s short name and
any other information that the user might find useful.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

chapter 4
Protocol Stack Packet Reception

Chapter Overview

This chapter describes the protocol stack receive routine. It details bound,
prescan, and default protocol stack receive methods. This chapter also
describes how the protocol stack uses the Event Control Block (ECB) when the
stack receives a packet.

Protocol Stack Packet Receive Operation

When a protocol stack registers with the LSL, the protocol stack specifies a
routine for the LSL to call when an MLID receives a packet destined for that
particular protocol stack. This routine is the protocol stack’s receive routine.

Protocol Stack Packet Reception 4-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2ads

Spec v1l.11 - Doc v1.22

Receive Routine Events

Table 4-1

Table 5-1 lists the events that must occur during a protocol stack receive

routine.

Protocol Stack Receive Routine

Actor/Agent

Action

MLID

LSL

Protocol stack

LSL

When a packet is received, a LOOKAHEAD structure is filled out and the MLID
LSL supportroutine CLSL_GetStackECB is called to obtain from a protocol stack
a receive buffer for the packet data. (For more information on
CLSL_GetStackECB , see Chapter 10, "LSL Support Routines”).

Determines whether bound, prescan, or default protocol stacks will be receiving
the packet.

Calls the protocol stack that is to receive the data and passes to the protocol stack
a pointer to the LOOKAHEAD structure describing the received packet.

Determines whether to receive the packet. If the LOOKAHEAD structure has a
prefilled ECB associated with it and the protocol stack utilizes the prefilled ECB
(the protocol stack responds ODISTAT_SUCCESS_TAKEN), step 6 is ignored.

If a protocol stack consumes the prefilled ECB by returning
ODISTAT_SUCCESS_TAKEN with the LkAhd_ReturnedECB field set to NULL, it
returns the prefilled ECB to the LSL using CLSL_ReturnECB , after it has finished
processing it.

Builds an ECB describing a set of receive buffers that the packets are dispersed
into.

Signals to the LSL that this protocol stack will consume the packet.

If the LOOKAHEAD structure has a prefilled ECB associated with it and the
protocol stack utilizes the prefilled ECB, it assumes control of the ECB. The
protocol stack will return the ECB to the LSL using CLSL_ReturnECB after it has
finished processing it and returns the status ODISTAT_SUCCESS_TAKEN
through the LSL to the MLID, and steps 8 and 9 are ignored.

If the LOOKAHEAD structure has a prefilled ECB associated with it and the
protocol stack does not utilize the prefilled ECB (the protocol stack returns an
ECB to be filled), the LSL will disperse the receive packet data from the prefilled
ECB into the receive buffers of the ECB supplied by the protocol stack. The LSL
will then place the ECB returned by the protocol stack onto the LSL hold event
queue, and steps 8 and 9 are ignored. The MLID is returned the status
ODISTAT_SUCCESS_TAKEN.

4-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table 4-1

Protocol Stack Receive Routine

Actor/Agent

Action

MLID

LSL

10.

11.

Note: If an MLID presents a prefilled ECB in the LOOKAHEAD structure, no
further processing for that lookahead indication is required apart from
incrementing appropriate counters dependent on the returned status. For
example, if the status returned is ODISTAT_OUT_OF_RESOURCES, the MLID
counter MNoECBAvailableCount is incremented by the MLID.

If the LOOKAHEAD structure has no prefilled ECB associated with it and the
protocol stack returns an ECB to be filled (ODISTAT_SUCCESSFUL), steps 8
through 11 are executed.

Note: The LkAhd_ReturnedECHeld may be NULL when
ODISTAT_SUCCESSFUL is returned, if the protocol stack was able to retrieve the
necessary information from the LOOKAHEAD data. Returning a NULL ECB
allows the MLID to adjust its statistics accordingly; for instance, if the packet was
not rejected.

If the protocol stack returns ODISTAT_OUT_OF_RESOURCES, the packet is
discarded and step 10 is executed.

Copies the packet data into the provided data buffers.

The ECB is placed onto the LSL hold event queue, CLSL_HoldEvent , or calls
CLSL_FastHoldEvent and skips steps 10 and 11.

Calls CLSL_ServiceEvents .

Dispatches the defined ESR (event service routine), signaling that packet
reception is complete.

Protocol Stack Packet Reception 4-3

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Protocol Stack Packet Reception Methods

The ODI specification defines three methods of packet reception for protocol
stacks:

« bound
+ prescan

« default

Bound Protocol Stack

Bound protocol stacks receive packets with the appropriate Protocol ID (PID)
in theLkAhd_ProtocollD/ECB_Protocollfleld. The PID is obtained from the
low-level frame header. A bound protocol stack can choose to consume or
reject a packet. If the protocol stack rejects the packet and no default protocol
stack exists for this board, the packet is discarded from the system.

Prescan Protocol Stack

Prescan protocol stacks look at all packets received by a particular logical
board (adapter and frame type combination). The protocol stack can consume
select packets and allow others to be passed to the appropriate bound or default
protocol stack.

Default Protocol Stack

Default protocol stacks receive packets not consumed by the prescan and bound
protocol stacks. A default protocol stack can choose to consume or reject a
packet. If the packet is rejected, it is discarded from the system.

Choosing a Packet Reception Method

We strongly discourage you from using the prescan receive or default method
of packet reception for the following two reasons:

« A protocol stack might conflict with another protocol stack using the same
method of packet reception. This would prevent the use of both protocols
with the same board.

4-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

« A protocol stack parses the packet header to determine if the packet is the
correct type. Therefore, a protocol stack might receive a packet that passes
the protocol stack’s acceptance tests, but in reality is not the correct type.
This could cause unpredictable results in the network station.

The prescan receive and default reception methods must only be used for
specialized protocol stacks that must receive packets having a large range of
PIDs. For example, the 802.2 protocol stack must receive packets with any
Destination SAP. Protocol stacks that provide a data-link layer interface to the
network layer protocol stacks are candidates for using prescan receive or
default receive methods. Also, protocol stacks that provide compression
services are candidates for prescan receive and default protocol stacks. A
receive monitor can also be implemented as a prescan receive stack by
registering for all its relevant destination types including packets containing
errors.

Multiple Chained Protocol Stacks

MAC Packet Reception

Multiple chained protocol stacks for each logical board can use the prescan
receive or default reception method. The bound method allows multiple
protocol stacks to receive packets for a board. This method uses the PID found
in every packet to multiplex and demultiplex protocol packets.

To receive MAC frames, bound protocol stacks must register using either the
MACTOK or MACFDI protocol ID. All three reception methods (bound,
prescan, and default) must set their filter mask to include DT_MAC_FRAME.

Receive Lookahead

The receive method known as “receive lookahead" entails passing the
beginning portion of the packet up to the protocol stack. In most cases, this
allows the receive packet data to be dispersed directly into the application
buffers. This is the optimal situation because the receive data only crosses the
host’s bus once, and this method allows unwanted packets to be rejected
without ever leaving the adapter’s buffers.

Protocol Stack Packet Reception 4-5

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

4-6

Receive Handler

Regardless of whether the protocol stack is bound, prescan, or default, the
protocol stack is passed lookahead data whenever its receive handler is
invoked. This data is used to determine into which receive buffers (if any) the
data is placed. (Receive buffers can be fragmented.) If the protocol stack wants
to consume the packet, it must build an ECB that describes the receive buffers
and then returns that ECB to the MLID. The MLID uses the ECB’s description
of the receive buffers to move the data from the network adapter into the
described protocol receive buffers. When the MLID has completed the data
move, it passes the ECB to the LSL for event completion. All protocol stack
receive handlers must not block on the lookahead indication.

Alternatively, if the lookahead has an ECB associated with it
(LkAhd_PrefilledECBs not NULL), the protocol stack can accept the packet
by signaling that it has accepted the packet and taken the associated ECB,
which it returns to the LSL later. If a protocol stack performs this operation, it
must queue the ECB (usi@._SL_HoldEvent) after placing an address to be
called in theECB_ESRKield or in an internal queue for processing at a later
point, since the lookahead indication is usually made at privileged time by an
MLID. If the protocol stack chooses not to use the provided ECB in the
LOOKAHEAD structure and returns its own ECB to be filled, the LSL can
perform the prefilled ECB to stack ECB data copy and, by so doing, simplify
the MLID’s operation.

After placing the ECB on the LSL's hold queue (ustigsL_HoldEvent), the
event is completed when the MLID issues the LSL support command
CLSL_ServiceEvents This calls the ECB’s ESR and allows the protocol stack
to process the packet. (For more information orh8L_ServiceEvents,
CLSL_HoldEvent, andCLSL_FastHoldEvent routines see Chapter 10:,
"LSL Support Routines".)

LOOKAHEAD Structure

The following LOOKAHEAD structure is given to the protocol stack’s receive
handler.

typedef struct _LOOKAHEAD _

{
ECB *LkAhd_PreFilledECB,;
UINT8 *LkAhd_MediaHeaderPtr;
UINT32 LkAhd_MediaHeaderLen;
UINT8 *LkAhd_DataLookAheadPtr;

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

UINT32 LkAhd_DatalL.ookAheadLen;

UINT32 LkAhd_BoardNumber;

UINT32 LkAhd_PktAttr;

UINT32 LkAhd_DestType;

UINT32 LkAhd_FrameDataSize;

UINT16 LkAhd_PadAlignBytes1;
PROT_ID LkAhd_ProtocollD;

UINT16 LkAhd_PadAlignBytes2;
NODE_ADDR LkAhd _ImmediateAddress;
UINT32 LkAhd_FrameDataStartCopyOffset;
UINT32 LkAhd_FrameDataBytesWanted;
ECB *LkAhd_ReturnedECB,;

UINT32 LkAhd_PriorityLevel;

void *LkAhd_Reserved;

} LOOKAHEAD;

Field descriptions:

LkAhd_PreFilledECB

If this field is not NULL, it contains a pointer to a completely filled ECB
(obtained from the LSL), which contains data referenced by the lookahead.
Only theLkAhd_MediaHeaderP&ndLkAhd _MediaHeaderLeirelds are

valid.

The lookahead method allows bus master adapters to provide a received
packet with only one data copy. The protocol stack can elect to accept the
already filled ECB and return the ECB to the LSL at a later point, or it can
provide its own ECB to be filled. THdM_PREFILLED ECB_BIbit is
implemented in the MLID configuration tablelL IDCFG_ModeFlags

field to indicate adapters that always supply prefilled ECBs in the
LkAhd_PreFilledECBield, which allows protocol stacks to optimize their
receive handler at initialization time.

Note‘vvl Only ECBs provided by the LSL can be indicated in this field.

LkAhd_MediaHeaderPtr

Pointer to a buffer containing the complete low-level media header. The
protocol stack typically does not look at the low-level header information.

LkAhd_MediaHeaderLen

Contains the length of the media header pointed to by
LkAhd_MediaHeaderPtr

Protocol Stack Packet Reception 4-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

4-8

LkAhd_DataLookAheadPtr

Pointer to a buffer containing the start of the frame’s data, in other words,
the protocol’'s header and data.

Note \gAY# The LkAhd_MediaHeaderPtr buffer is not guaranteed to immediately
" precede the LkAhd_Datal ookAheadPtr buffer (for example, an 802.3/
802.2 MAC header and the following frame data might not necessarily
be in contiguous memory).

LkAhd_DatalLookAheadLen

Contains the length of the buffer pointed tdAhd _DatalLookAheadPtr

This value is normally the MLID’s currently configured lookahead size.
Adapters that have the received packet available in memory, such as shared
RAM, can set this field to the length of the data paakatlable, because
LkAhd_DataLookAheadPpoints at the packet located in memory. Note,
you need to allow for the case of a packet wrapping over the end of the
shared memory space with the rest of the packet appearing at the start of
the shared memory space, etc.

If the received packet’s data length is less than the MLID’s configured
lookahead size, this field is set to the actual packet data length. A protocol
stack must verify that this field is at least the minimum length required for
the protocol stack. Note, if the contents of this field equal those of
LkAhd_FrameDataSizgou can assume that the packet has been fully
received and the contentsldfAhd _PktAttrare valid.

LkAhd_BoardNumber

Contains the logical board number that received this packet. Remember
that the logical board value specifies a LAN adapter and frame type
combination.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

LkAhd_PktAttr

Contains the attributes of the received packet. The following defines the

packet attribute bits.
Value

PAE_CRC_BIT

PAE_CRC_ALIGN_BIT
PAE_RUNT_PACKET_BIT
PAE_TOO_BIG_BIT

PAE_NOT_ENABLED_BIT

PAE_MALFORMED_BIT

PAE_NO_COMPRESS_BIT

PA_NONCAN_ADDR_BIT

Description

CRC error—for example, frame check
sequence (FCS) error.

CRC and frame alignment error.
Runt packet.
Packet larger than allowed by the media.

Received packet for a frame type not
supported (logical board not registered
for the frame type of the received
packet). A board number associated with
the physical adapter is placed in the
LOOKAHEADstructure.

Malformed packet—for example, the
packet size is smaller than the minimum
size for the media header, such as
incomplete MAC header.

Contents of the length field in an
Ethernet 802.3 header is larger than the
total packet size.

Do not decompress the received packet.
Implies that the address present in

LkAhd_ImmediateAddressin
noncanonical format.

If no error bits are set, the received packet was received without error and
the data contained within can be used. All undefined bits are cleared. If any
error bitis set, thekAhd_DestTyp#eld’s GlobalError bit will also be set.

Protocol Stack Packet Reception 4-9

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

4-10

If the value inLkAhd_FrameDataSizse -1, the error status bits are invalid;
however, the value PA_NONCAN_ADDR_BIT indicates that
noncanonical addressing is still valid.

LkAhd_DestType

Contains bits that indicate the type of received packet. The following are
the bit definitions.

Value Description

DT_MULTICAST Multicast: The packet was destined to
a subset of group addresses on the
physical network that the MLID has
been programmed to support.

DT_BROADCAST Broadcast:The packet was destined
to all nodes on the physical network.
Note: on receiving a broadcast both
b0 and bl are set to 1, since a
broadcast address is also a group
address.

DT_REMOTE_UNICAST UnicastRemoteThe packet was
directly destined to another
workstation on the physical network.
Generally, this bit is set only after the
MLID has been entered into
promiscuous mode or has received a
packet due to source routing.

DT_REMOTE_MULTICAST MulticastRemoteThe packet was
destined to a subset of group
addresses on the physical network
that the MLID has not been
programmed to support. Generally,
this bit is set only after the MLID has
been entered into promiscuous mode.

DT_SOURCE_ROUTE SourceRouteThis bit is set in
conjunction with other packet type
bits if the packet has source routing
information in the packet, in other

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

words, the RII bit is set. If the source
routing module is not loaded and the
length of the source route field is
greater than two bytes (packet from a
remote ring), all other bits will be
cleared.

DT_ERRORED GlobalError: Packet contains errors.
SeeLkAhd_PktAttras to specific
error. This is an exclusive bit. If set,
all other bits must be 0. This value
supersedeSourceRoutand
MacFrame

DT_MAC_FRAME MacFrame:Packet is a non-data
frame(for example, the MAC layer
frame). This is an exclusive bit, if set,
all other bits must be 0. Note, MAC
frames by definition are not source

routable.

DT_DIRECT Direct: The packet was destined to
this station only.

DT_8022_TYPE_| The received packet is an 802.2 Type
| frame.

DT_8022_TYPE_II The received packet is an 802.2 Type
Il frame.

DT_RX_ PRIORITY RxPriorityFrame:The received

packet is a priority packet. This is
only valid for topologies that support
a distinction in priority levels. When
this bit is set, the
LkAhd_PriorityLevefield will

contain the priority level of the frame.
This bit is not set if the received frame
is at the normal priority level or lower.

Note‘vvl For 802.2 frame types, the received packet's DSAP is returned in the last
byte of the LkAhd_ProtocollD field with all other bytes set to 0. For an
ETHERNET_Il frame, neither the 802.2 Type | (0x0000 0100) nor the 802.2

Type Il (0x0000 0200) values are set, which implies a non 802.2 frame.

Protocol Stack Packet Reception 4-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

In promiscuous mode with MAC frames enabled, all MAC frames are
received, including those transmitted by the MLID, generated by the
MLID’s hardware, and transmitted by protocol stacks performing raw
sends. For example, Token-Ring adapters can receive management frames
but not data frames. ThdacFramevalue is set in thekAhd_DestType

field for these frames. The PID associated with MAC layer frames is
MACTOK for Token-Ring management frames &MACFDI for FDDI
management frames. Refer to the “Protocol Stack Packet Reception
Methods” section of this chapter for more information about MAC packet
reception.

All undefined bits are set to 0.

LkAhd_FrameDataSize
Contains the total number of data bytes in the received packet.

Note YA If the content of this field is not UNUSED, the entire received packet
and its error status is available from the adapter.

Not every LAN driver knows the exact size of a received frame when
CLSL_GetStackECBiis called (RX-Net or pipelined LAN adapters are
examples of this). If the size of the received packet or its error status is not
known, the protocol stack will need to check its error status and size when
the packet has been fully received. This condition is indicated by setting
the contents of this field to -1.

TheMM_DATA_SZ_UNKNOWN_BIfit is defined in the MLID
configuration tableMLIDCFG_ModeFlagdield to indicate an adapter
that can setkAhd_FrameDataSiz® -1, which allows protocol stacks to
optimize their receive handler at initialization time.

LkAhd_ProtocollD

Contains the PID value that was embedded in the low-level media header.
This is the protocol’s assigned PID value in the case of a bound stack.

LkAhd_ImmediateAddress

Contains a representation of the address of sending station’s node address,
that was embedded in the low-level media header.

Note \gAY# If the MLID is using canonical addressing, the address in the
" LKkAhd _ImmediateAddress field is in canonical form.

LkAhd_FrameDataStartCopyOffset

4-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Contains the offset from the start of the frame data to start copying data
from. The returned value must not exceed the value presented in the
LkAhd_DataLookAheadLdfield.

LkAhd_FrameDataBytesWanted

Contains the number of bytes of frame data to move into the receive buffers
starting after the number of data bytes skipped, which is returned in
LkAhd_FrameDataStartCopyOffséftthis field contains -1, the entire
packet is copied into the receive buffers. This field is usually set by the
protocol stack when an ECB is returned to be filled.

Note QYA This value can be larger than the number of data bytes in the frame,
" but if it is larger, it is the responsibility of the MLID to ensure that no
errors occur. In other words, if the LkAhd_FrameDataBytesWanted
field value is larger than the number of data bytes copied from the
frame, the data length field (found in the returned ECB structure) will

be adjusted and filled in correctly by the MLID.

LkAhd_ReturnedeCB

If this field is not NULL, it contains a pointer to an ECB provided by the
protocol stack that is to be filled with the packet’s data.

Note \QAVA MLIDs rely on the value returned by CLSL_GetStackECB and this
" field to decide whether a protocol stack excepts the packet and if it
returns an ECB to copy the packet into.

LkAhd_PriorityLevel

This field contains the priority level of the received packet. This field is
only valid if theRxPriorityFramebit in theLkAhd_DestTypéeld is set

and if the priority level is higher than the normal priority level. This value
must not exceed the value in the MLID configuration table’s

MLIDCFG_ PrioritySupfield.

LkAhd_Reserved
Reserved for future use.

The LOOKAHEAD structure is valid only in the context of the receive handler.

The amount of receive lookahead data needed by a protocol’s receive handler
is usually different for each type of protocol stack (prescan, bound, or default).
The protocol stack can configure the amount of receive lookahead data the
MLID provides by invoking th&etLookAheadSizeMLID control function as

part of the protocol’s initializatiorsetLookAheadSizanforms the MLID that

the protocol stack needs the specified number of packet data bytes to properly
determine into which receive buffers a packet is placed. The lookahead size

Protocol Stack Packet Reception 4-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

value can be any value between 0 and 128 bytes inclusive. The requested size
does not include any room for possible media headers, because the LAN driver
will internally adjust the lookahead size value to include the LAN medium’s
worst case low-level media header size. If the requested size is larger than the
current lookahead size, the MLID will use the new value. However, if the
requested size is smaller than the current size, the MLID will not decrease the
current size. (Se€hapter 15: MLID Control Routindsr information

regarding invoking th&etLookAheadSizeMLID control function.)

Protocol stacks must not assume that the lookahead data is valid if the
lookahead field. kAhd_FrameDataSizs -1. The protocol stack must wait

until the filled ECB’s ESR is called. Then, from within the ESR, the protocol
stack must check the received packet’s error status. In other words, do NOT
copy the packet data if the MLID’s lookahead fiekdhd_FrameDataSize is -1,

and do not assume that the data is valid. Do not make any permanent decisions
internal to the protocol stack that cannot be undone later when the ECB’s ESR
is called. This is due to pipelined adapters presenting data to the protocol stacks
before they have finished completely receiving the packet. Hence, pipelined
adapters cannot inform protocol stacks as to the size of the received packet or
whether the packet contains errors—for example, pipelined adapters cannot
inform protocol stacks of CRC errors until after the packet has been fully
received.

An exception to this is when the received packet’s size is less than the protocol
stacks configured lookahead size or is less than the MLID’s configured
lookahead size. Then the packet can be assumed to have been fully received,
and theLkAhd_PktAttrfield contains the status of the received packet. This
condition is reported when the number of data bytes reported for the
LkAhd_DatalLookAheadLdield in the LOOKAHEAD structure ikessthan

the configured lookahead size. For protocol stacks that utilize small packet
reception through the LOOKAHEAD structure, the protocol stacks set their
lookahead requirements to their requirements plus one to ensure that they can
continue this function with pipelined adapters. Also a packet can be assumed
to have been fully received if the LOOKAHEAD structure’s

LkAhd_Datal ookAheadLeandLkAhd_FrameDataSizields are equal.

If the LOOKAHEAD structure has a prefilled ECB associated with it
(LkAhd_PrefilledECBs not NULL), the protocol stack can accept the packet.
The protocol stack accepts the packet by queuing the prefilled ECB and
returningODISTAT_SUCCESS_TAKH®Ithe LSL. (By queuing the prefilled
ECB instead of processing it immediately, the MLID is not required to wait for
the processing to be completed.) OIRISTAT _SUCCESS_TAKEN

returned by the protocol stack receive handler, it is the protocol stack’s

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Note‘VI
\4

responsibility to call the receive complete handler and to return the prefilled
ECB usingCLSL_ReturnECB.

If the protocol stack chooses not to process the prefilled ECB in the
LOOKAHEAD structure and returns its own ECB (a stack ECB) to be filled,
the LSL can perform the prefilled ECB to stack ECB copy of data. This process
simplifies the operation of the MLID—for example, a bus mastering MLID can
provide a lookahead indication and not worry about touching the data again. If
the protocol stack provides a stack ECB, the LSL can fill that ECB from the
prefilled ECB, place the stack ECB on its service events queue for processing,
and return the prefilled ECB to the LSL buffer pool. If the protocol stack rejects
the packet, the protocol stack retu@BISTAT_OUT_OF_RESOURCESd

the LSL returns the prefilled ECB to the LSL buffer pool.

If LkKAhd_PrefilledECB is not NULL, only the LkAhd _MediaHeaderPtr and
LkAhd_MediaHeaderLen fields are valid. All other fields are referenced by their
ECB equivalents—for example, LkAhd_BoardNumber is referenced by
ECB_BoardNumber.

Protocol Stack Packet Reception 4-15

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Protocol Receive Handler for Bound Stacks

The protocol receive handler for bound stacks is
invoked when a packet is received and the LSL
determines that the packet is intended for the
protocol stack.

Syntax

#include <odi.h>

ODISTAT (*StackRxHandler)
(LOOKAHEAD *LkAhead);

Input Parameters

LkAhead
Pointer to the received LOOKAHEAD structure.

Output Parameters

None.

4-16 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

ODISTAT_SUCCESSFUL The protocol stack has returned a pointer in
LkAhd_ReturnedECB to an ECB to be filled with

the packet.
ODISTAT_SUCCESS _ The protocol stack has accepted the packet and has
TAKEN taken the prefilled ECB associated with the
LOOKAHEAD structure.
ODISTAT_OUT_OF _ The protocol stack will not receive the packet, in
RESOURCES other words, rejects the packet.

Remarks

This definition applies to bound stacks. The protocol stack examines the
lookahead data as described by the LOOKAHEAD structure and returns an
ECB when appropriate.

The LOOKAHEAD structure and its fields are only valid in the context of this
function. This routine must complete quickly, since it executes during
privileged time. LAN driver functions must not be invoked inside this function
(for example CLSL_SendPacketmust not be invoked inside this function).

The ECB must have the following fields and descriptors set before it returns:
ECB_ESRECB_FragmentCountind fragment descriptors. You can specify
more than one fragment descriptor. H@&B_FragmentCouriteld must not be

set to 0 and must not exceed 16 (BGB_FragmentCount= 16).

The LOOKAHEAD structure must have thkAhd_FrameDataBytesWanted
LkAhd_FrameDataStartCopyOffseindLkAhd_ReturnedECBelds set with
appropriate values if the receive packet is accepted.

If the protocol stack also requires tREB_Protocoll ECB_BoardNumber
andECB_ImmediateAddred®lds to be filled in, the protocol stack fills it in

with the protocol identifier board number and immediate address supplied in
the LOOKAHEAD structure. If an ECB is returned from this function, the ESR

is called at a later time, which signals that the packet data has been transferred
to the described receive buffers either successfully or with an error.

The protocol receive handler can be invoked multiple times before a previous
ECB'’s ESR will be called. Therefore, the protocol stack allocates and
maintains multiple ECBs.

Protocol Stack Packet Reception 4-17

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

4-18

Note\@gAYA Protocol receive handlers are not called with a LOOKAHEAD structure if the
" structure contains errors unless they register to receive packets with errors.
Pipelined adapters are an exception to this and cannot know the received status
of a packet when the protocol’s receive handler is called, refer to the
LOOKAHEAD structure definitions.

The filter mask for bound protocol stacks defaults to receiving direct, multicast
direct, and broadcast addressed packets when they register. If any other filter
bit is needed or one of the above needs to be cleared, a protocol stack can use
CLSL_ModifyStackFilter . For more information, s68L.SL_RegisterStack

in Chapter 10: LSL Support Routines

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table 4-2

The following table illustrates the event sequence of the receive handler.

Receive Handler Event Sequence

Actor/Agent

Action

MLID 1.

LSL 2.

Protocol Stacks 3.

MLID 4.

LSL's Service 7.

Events Routine

Provides a LOOKAHEAD structure to the LSL (CLSL_GetStackECB).
The LSL determines the correct protocol stack for the received packet.

Use the LOOKAHEAD structure to determine whether to keep or reject the
packet. If the protocol stack requires the ECBProtocollD, BoardNumber, and
ImmediateAddress fields to be filled in, the protocol stack should get these
from the lookahead structure. If an ECB is returned from this function, the
MLID will call the ESR at a later time, signaling that the packet data has been
transferred to the described receive buffers either successfully or with an error.

The receive handler should add the ECB to the protocol stack’s internal work-
to-do queue for processing at non-privileged time. The receive handler routine
should not poll for transmissions or receptions.

If the PreScan Receive stack or the Default Chain stack cannot understand the
MAC header, they should leave the MAC header unchanged and pass it on by
returning ODISTAT_OUT_OF_RESOURCES.

Disperses the receive packet data into the receive buffers supplied by the
protocol stack.

The MLID sets the following fields in the ECB (see Appendix A):
ECB_PreviousLink
ECB_Status
ECB_DriverWorkSpace
ECB_DatalLength

Places the ECB onto the LSL hold event queue, or processes the ECB using
the CLSL_FastHoldEvent routine and step 6 is skipped.

Invokes the LSL's service events routine after the MLID has finished servicing
the network adapter.

Calls each of the previously queued ECB’s event service routine (ESR). (The
protocol stack sets the address of the ESR before the protocol stack returned
an ECB to the MLID.)

Transfers ownership of the ECB and its associated data buffers back to the
protocol stack when the ECB’s ESR is called.

Protocol Stack Packet Reception 4-19

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Protocol Receive Complete Handler for Bound
Stacks

The LSL invokes this event service routine after the
MLID has dispersed the receive packet data (with
or without error) into the provided ECB data buffers
and has given the ECB to the LSL for processing
via CLSL _HoldEvent/CLSL_ServiceEvents or
CLSL_FastHoldEvent .

Syntax
#include <ODI.H>
void (ECB_ESR)(ECB*);

Input Parameters

ECB
Pointer to an ECB.

Output Parameters

None.

Return Values

None.

4-20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Remarks

When this function is called, the LSL transfers ownership of the ECB and its
associated data buffers back to the protocol stack.

When this function is called, the following ECB fields are set by the MLID:

« ECB_Previous Link

ECB_Status
- ECB_DriverWorkspace
- ECB_Datalength

See the ECB field descriptions in Appendix A, "Event Control Blocks
(ECBs)".

Do notpoll for transmissions or receptions when this function is called.

The following table illustrates the event sequence of the receive complete
handler.

Table 4-3
Receive Complete Handler Event Sequence

Actor/Agent Action
Protocol Stacks 1. Increment receive statistics counters.

2. Restore user's ESR to the ECB_ESR field of the ECB structure. (The original
user's ESR should have been stored in the ECB_ProtocolWorkspace field.)

3. Setthe ECB_Status field of the ECB structure to ODISTAT_SUCCESSFUL.

4. If the stack accepted a prefilled ECB, return the prefilled ECB to the LSL by
calling CLSL_ReturnECB.

Protocol Stack Packet Reception 4-21

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Protocol Receive Handler for Prescan and Default

Stacks

Syntax

Input Parameters

The receive handler for prescan and default
protocol stacks is similar to the receive handler for
bound protocol stacks. After the ECB has been
filled (or prefilled), the protocol stack is responsible
for returning its ECB. The stack is also responsible
for calling CLSL_ReSubmitPreScanRx with
prescan stacks, or for calling
CLSL_ReSubmitDefault with default stacks, for
continued processing of the ECB by protocol
stacks further down the chain.

#include <odi.h>

ODISTAT (*StackRxChainHandler)
(LOOKAHEAD *LkAhead,

struct _PS_CHAINED_RX_NODE_
*StackChainNode);

LkAhead
Pointer to the received LOOKAHEAD structure.

StackChainNode

Pointer to the stack chain’s node that was passed when the stack chain

registered for the board that generated this receive packet.

4-22 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

ODISTAT_SUCCESSFUL The protocol stack has returned a pointer to a

ODISTAT_SUCCESS_
TAKEN

ODISTAT_OUT_OF _
RESOURCES

receive ECB that is to be filled with the packet in
the LOOKAHEAD structure’s
LkAhd_ReturnedECBeld.

If the protocol stack was able to get everything it
needed from the look ahead, the
LkAhd_ReturnedECBeld will be set to NULL.

If the LKAhd_PreFilledECHield contains a

pointer to an ECB, the LSL will perform an ECB to
ECB copy and queue the protocol stack ECB on its
hold event queue.

The protocol stack has accepted the packet and has
taken the prefilled LSL ECB associated with the
LOOKAHEAD structure’sLkAhd_PreFilledECB

field.

If ODISTAT_SUCCESS_TAKH®returned, the

LSL assumes that the protocol stack has consumed
the ECB. The protocol stack ESR will not be called,
and the protocol stack is responsible for calling
CLSL_ReturnECB.

Reports an error condition—for example, the LSL
was unable to obtain an ECB for this packet. The
LSL routes the LOOKAHEAD structure to the next
prescan stack, the appropriate bound stack, or the
next default stack in the chain.

Protocol Stack Packet Reception 4-23

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Remarks

4-24

Note‘VI
v

A chained protocol stack must specify in its filter mask the type of packets it
wants to receive when it registers for the board. A stack can receive packets
after binding/registering with a board and can modify its filter to allow it to
specify the type of packets that it wants the LSL to pass to it.

The LSL is responsible for calling the next prescan receive chained stack. The
adding and calling of protocol stacks to the chain is at process time only and is
in load order (first to load is first in chain, second to load is second in chain,
etc.), unless an order position is specified (“must be very first” or “must be very
last”).

If the protocol stack rejects the packet, the LSL routes the LOOKAHEAD
structure to the next stack in the chain.

If the protocol stack wishes to accept the packet (by returning
ODISTAT_SUCCESSFUL), the stack will need to make a copy of the
LOOKAHEAD structure that has been passed to it. This is because sometime
after or during the execution of the stack’s receive complete handler, the stack
will need to behave similarly to the LSL (see “Protocol Receive Complete
Handler for Prescan and Default Stacks" later in this chapter). The stack will
have to provide lookahead information to the next stack in the chain
(CLSL_ReSubmitDefault or CLSL_ReSubmitPreScanRxprocess).

The ECB that is returned should have B@B_ NextLinkand
ECB_PreviousLinfields set to NULLECB_ESRshould be set to the stack’s
receive complete handler.

Prescan and default stacks have no Stack IDs, so assigning a value to the
ECB_StackID field is optional.

Ownership of the LOOKAHEAD structure and its associated data buffer is
passed to the protocol stack when the LSL calls the protocol’s receive handler.
The protocol’s receive handler is called from the context of privileged time—
for example, a hardware interrupt, deferred procedure call (DPC) in Windows
NT, or at process time (due to the resubmit process). The MLID will not have
finished servicing the network adapter but is waiting for an ECB from a
protocol stack to fill or a response to discard the received packet. Protocol
stacks must decide if they want the packet and provide an ECB to fill or must
respond that the LSL must route t®@OKAHEADSstructure.

Also, if the stack wishes to accept the packet, the stack should set the
LOOKAHEAD structure’sLkAhd_FrameDataBytesWantédld to be the

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

number of bytes wanted by the stack. The data pointed to by the
LkAhd_MediaHeaderPfpointer should be copied into a buffer so that it can be
used by stacks further down the chain. Finally, the LOOKAHEAD structure’s
LkAhd_ReturnedECBeld should be set to the address of the ECB that
describes the receive buffers.

After the MLID finishes filling a protocol stack ECB, the protocol stack's ECB
ESR routine (*ECB_ESR)(ECB?)) is called. The MLID is finished servicing

the network adapter and is ready to restore the processor state and exit from its
event handler, (it's interrupt handler). Protocol stacks can queue the event and
process it from a handler that is running at process time, or process the event as
a run-to-completion event aware that this can degrade performance.

If the LOOKAHEAD structurd.KAhd_PreFilledECHield is not NULL, and

the protocol stack does not handle the prefilled ECB immediately, the protocol
stack places the address of its receive handler ESR in the ESR'SESR

field, then call<CLSL_HoldEvent, which queues the ECB for later
processing. The stack then returns ODISTAT_SUCCESS_TAKEN.

If the protocol stack processes the received ECB by queuing it and servicing
the ECB at process time, it can resubmit the ECB for further processing by
other prescan, bound, or default protocol stacks by the appropriate resubmit
function. Packet reception ordering must be maintained. MLID control routines
mustnot be invoked from this routine because they can only be called at
process time. However, the protocol stack can freely make requests to the LSL
(such a€LSL_GetSizedEQBIf the protocol stack consumes an ECB supplied

by the LSL, after it has finished with it, it returns the ECB to the LSL using the
CLSL_ReturnECBupport function.

If the protocol stack has only minor activity to perform on an ECB that is not
time intensive, it could, as an optimization, perform its functions, then pass the
ECB on rather than queuing it and resubmitting it for processing later. This is
usually done in the prescan/default receive complete handler.

Protocol Stack Packet Reception 4-25

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Tasks for Accepting a Packet
Some tasks to perform when accepting a packet might be as follows:

1. Make a copy of the original LOOKAHEAD buffer, which is used when the
CLSL_ResubmitPreScanRx/ CLSL_ResubmitDefaulfpair is called.
The LSL can pass state information in this field if
ODISTAT_OUT_OF_RESOURCES is returned. The LKAhd_Prefilled
ECB must equal NULL if the stack is not dealing with a prefilled ECB.

2. Verify that the packet is wanted. The MLID will still be servicing the
network adapter and will be waiting either for an ECB from the protocol
stack to fill or a response to discard the received packet.

If the protocol stack wants the packet, it must provide an ECB to fill.

If the protocol stack wants to reject the packet, it must return
ODISTAT_OUT_OF_RESOURCES, and the LSL will route the
LOOKAHEAD structure to the next stack in the chain.

Ownership of the LOOKAHEAD structure and its associated data buffer
is passed to the protocol stack when the LSL calls the protocol’s receive
handler. The protocol’s receive handler is called from the context of
privileged time, such as a hardware interrupt, a deferred procedure call
(DPC) in Windows NT, or a resubmit process at process time.

If the packet is wanted, get a pointer to an ECB from the LSL by calling
CLSL_GetSizedECR If the pointer to the ECB is NULL, return
ODISTAT_OUT_OF_RESOURCES.

3. Copy the lookahead media header information into a buffer so that it can
be used later by the stack’s receive complete ESR.

4. If the stack is dealing with a prefilled ECB, set the
ECB_ProtocolWorkspadgeld to point to the chained stack ECB returned
by CLSL_GetSizedECRB Since copying the prefilled ECB to the stack
ECB is time intensive, it must be done at process time by adding the
prefilled ECB to the work queue usi@i SL_FastHoldEvent. Then,
return ODISTAT_SUCCESS_TAKEN.

Note‘vvl Once ODISTAT_SUCCESS_TAKEN has been returned to the LSL, the
lookahead indication is no longer valid. Therefore, make sure that the
ECB_ESR field in the chained stack contains the proper pointer to the

stack’s receive complete ESR.

4-26 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

)]

10.

. Set the LOOKAHEAD structurelskAhd_FrameDataBytesWantédld

to be equal to the number of bytes wanted by the stack.

If required by the stack, set the ECBEB_BoardNumber
ECB_ImmediateAddreseCB_ProtocollD andECB_Datal engtliields
to either the values found in th© OKAHEADstructure or the values
needed by the stack.

. Verify that the packet has been fully received. If the packet has not totally

arrived, hold off on doing any processing of the packet until the stack’s
receive complete handler is called.

Set the ECB’€CB_NextLinkandECB_ PreviousLinKields to equal

NULL. Set theECB_ Statudield to equalODISTAT_SUCCESSFUBSet
theECB_ESHield equal to the stack’s receive complete handler function.
Verify that theECB_FragmentCourfield is properly set.

. Set thd_kAhd_FrameDataStartCopyOffdid in theLOOKAHEAD

structure to the offset value required for the stack to process the packet.
Then, assign the pointer to the ECB to tI@dOKAHEADSstructure’s
LkAhd_ReturnedECBeld and returrODISTAT _SUCCESSFUL

After the MLID finishes filling the protocol stack’s ECB, the protocol
stack’s ECB ESR routine is called. The MLID is now finished servicing
the network adapter and is ready to restore the processor state and exit
from it's event handler (its interrupt handler).

Protocol Stack Packet Reception 4-27

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Prescan and Default Stacks Receive Complete Handler Event Sequence

The following table illustrates the event sequence of the receive handler.

Table 4-4
Receive Complete Handler Event Sequence

Actor/Agent

MLID 1. Provides a LOOKAHEAD structure to the LSL using CLSL_GetStackECB .

LSL 2. The LSL determines the correct protocol stack for the received packet.

Protocol Stack 3. Uses the LOOKAHEAD structure to determine whether to keep or reject a
packet.

MLID 4. Disperses the receive packet data into the receive buffers supplied by the
protocol stack.

5. Places the ECB onto the LSL hold event queue using CLSL_HoldEvent , or
processes the ECB using the CLSL_FastHoldEvent routine and step 6 is
skipped.

6. Invokes the LSLs service events routine after the MLID has finished servicing
the network adapter.

LSLs Service 7. Calls each of the previously queued ECB’s event service routine (ESR). (The
Events Routine protocol stack sets the address of the ESR before the protocol stack returned

an ECB to the MLID.)

8. Transfers ownership of the ECB and its associated data buffers back to the
protocol stack when the ECB’s ESR ((*ECB_ESR)(ECBY¥)) is called.

4-28 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Protocol Receive Complete Handler for Prescan
and Default Stacks

The LSL invokes this event service routine function
after the MLID has dispersed the receive packet’s
data (either with or without error) into the previously
provided ECB’s data buffers and has placed the
ECB on the LSLs holding queue or called directly
via CLSL_FastHoldEvent.

Synax

#include <odi.h>

void (*ECB_ESR)(ECB *);

Input Parameters

ECB
Pointer to an ECB.

Output Parameters

None.

Return Values

None.

Protocol Stack Packet Reception 4-29

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Remarks

When this function is called, the LSL transfers ownership of the ECB and its
associated data buffers back to the protocol stack.

Steps Performed by a Prescan and Default Receive Complete Handler

The receive complete handler for a prescan stack or a default stack must
perform the following steps:

1. Increment the receive statistics counters.

2. If the stack contains a header, adjustlt®®OKAHEADstructure’s
LkAhd_Datal ookAheadPpointer to point to the data that follows the
header.

Next, adjust the OOKAHEADstructure’d kAhd_FrameDataSiZeeld to
be equal to the frame data size minus the size of the stack’s header.

3. If the stack has a header and received a prefilled ECB, adjust the ECB’s
ECB_Fragment[n].FragmentAddre$ield so that the header is skipped
and only the data that belongs to the next stack is present.

Next, adjust the ECB'ECB_Fragment[n].FragmentLengfield to be
equal to the length of the fragment minus the length of the stack’s header.

Finally, adjust the ECB’ECB_Datal engtliield to be equal to the data
length minus the length of the stack’s header.

4. If the stack does not consume the packet, it notifies the next stack in the
chain that a packet has arrived. CAUISL_ReSubmitPreScanRx/
CLSL_ReSubmitDefault.

a. If ODISTAT _SUCCESSFUL is returned, take the ECB found in the
LOOKAHEAD structure’d kAhd_ReturnedECHReld and copy into it
LkAhd_FrameDataBytesWantbgites of the data pointed to by the
LOOKAHEAD structure’'s LkAhd_Datal ookAheadPtr pointer. Then,
using the LOOKAHEAD structureskAhd_ReturnedECBeld as a
parameter, issue a call@.SL_FastHoldEvent.

b. If ODISTAT _SUCCESS_TAKEN is returned, the next protocol stack in
the chain wants the packet and has taken the prefilled LSL ECB
associated with the LOOKAHEAD structure.

4-30 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

c. If ODISTAT_OUT_OF_RESOURCHESeturned, the Link Support
Layer was unable to find another stack that wanted the packet.

5. The stack that retur@DISTAT _SUCCESS_TAKHHNgiven the
ownership and responsibility of the ECB and its associated data buffers. If
the next stack in the chain does not re@DISTAT _SUCCESS_ TAKEN
it is the responsibility of the current stack to €lISL_ReturnECB

After this function has been called, the following ECB fields and values have
been set by the MLID:

« ECB_PreviousLink

- ECB_Status

- ECB_DriverWorkspace
- ECB_Datalength

For a description of these fields, see the ECB field descriptions in Appendix A,
"Event Control Blocks (ECBs)".

Do not poll for transmits or receives when this function is called.

Table 4-5
Receive Complete Handler Event Sequence

Actor/Agent Action
Protocol Stacks 1. Increments the receive statistics counters.
2. Notify the next stack in the chain that a packet has arrived.

3. If the current stack is responsible for returning the ECB to the LSL, call
CLSL_ReturnECB .

Protocol Stack Packet Reception 4-31

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

4-32

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

chapter 5
Protocol Stack Packet Transmission

Chapter Overview

In the ODI specification, packet transmission is an asynchronous operation that
entails building an ECB and calling ti& SL_SendPacketprotocol support
routine (see Chapter 10: LSL Support Routines). Packets sent through the LSL
are connectionless and, if the conditions warrant, are neither guaranteed to
reach their destination nor placed onto the LAN medium. Protocol stacks
typically do not need to use checksums because the underlying MLID and LAN
adapters guarantee a high degree of data integrity; however, your protocol stack
can use checksums if you desire.

Note V! Some protocol stacks must provide guaranteed packet delivery to the upper
layers. If this is the case, your protocol stack must contain the necessary
timeouts, retries, and packet acknowledgments to create a guaranteed delivery
system.

Transmit Routine Events

The events listed in Table 1.1 must occur during a protocol stack transmit
routine.

Table 5-1
Protocol Stack Transmit Routine

Actor/Agent Action
Protocol stack 1. Hands the ECB to the LSL for transmission.
LSL 2. If the ECB contains a valid BoardNumber, the underlying MLID transmit

handler is called with a pointer to the ECB, or the LSL send packet routine
returns the ODISTAT_ITEM_NOT_PRESENT status to the protocol stack and
returns ownership of the ECB back to the protocol stack.

3. Passes ownership of the ECB and its associated packet data buffers to the
MLID.

Protocol Stack Packet Transmission 5-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2ads

Spec v1l.11 - Doc v1.22

Table 5-1
Protocol Stack Transmit Routine

Actor/Agent Action

MLID 4. Transmits the packet.

5. Shows the transmitted packet to any transmit monitor, if one is registered,
including the media headers generated by the MLID, regardless of whether the
packet transmission was completed successfully or with an error.

6. Passes ownership of the ECB and its associated packet data buffers to the
LSL, regardless of whether the packet transmission was completed
successfully or with an error.

LSL 7. Calls the event service routine specified in the ECB.

Note: The ECB and its associated data buffers must not be modified until
ownership is returned to the protocol stack that originated the transmit request.

Prescan Transmit Protocol Stack Method

The ODI specification defines the prescan transmit protocol stack method for
protocol stack packet transmission.

Prescan transmit protocol stacks are given the transmit ECB before it is given
to the MLID by the LSL. The protocol stack can consume select packets and
allow others to be passed to the appropriate MLID. The prescan transmit
protocol stack can alter the data to be transmitted—for example, compressing
a packet, but it must treat the original ECB and its data as read-only. In other
words, when the original ECB is returned to the originating protocol stack, it
must be in its original state. The prescan transmit protocol stack can also
discard or pass the data to the next chained prescan transmit protocol stack.
Multiple chained protocol stacks for each logical board can use the prescan
transmit method.

Packet Transmission

A protocol stack can usually transmit packets at any time.

Important A protocol stack must not poll for a transmit complete or a receive packet inside
v an event service routine (ESR). Polling for a transmit complete or a receive
packet inside of an ESR without following the above rule can create a dead-lock.
A protocol stack must also not issue transmit requests inside its packet

5-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

lookahead receive handler routine (see Chapter 5: Protocol Stack Packet
Reception).

Supporting Multiple Outstanding Transmit Requests

The underlying MLIDs generally support multiple outstanding transmit
requests from protocol stacks. While the adapter transmits one packet onto the
LAN medium, the MLID loads the next transmit packet’s data onto the LAN
adapter. The number of transmits an MLID can give an adapter before the
MLID must queue the ECBs varies, because this number is hardware
dependent.

When the protocol stack must transmit bursts of packets, it achieves its best
performance by passing multiple transmit requests to an underlying MLID. In
theory, an MLID can handle any number of outstanding transmit requests.

For example, on Ethernet, three outstanding requests are adequate, and an
MLID that handles more than three active transmit requests generally does not
have higher throughput. (Three active transmit requests saturate most Ethernet
LAN adapters). In other words, a protocol stack should be able to have at least
three transmits outstanding on a particular board.

Note: The number of active requests that an MLID can handle depends on the
adapter, the media, and the bus that the adapter was designed for.

Transmitting the Packet

Priority Sends

The protocol stack must provide data buffers and an ECB describing the data
to be sent to send a packet. The protocol stack can specify from one to sixteen
data buffers per transmit request. The underlying MLID will then combine the
buffers to form a single data packet.

The MLID sets theMILIDCFG_ PrioritySupfield in the MLID configuration
table to indicate the number of priority levels available. The MLID indicates
that priority support is active by setting or clearing the MF_PRIORITY_BIT in
theMLIDCFG_Flagsfield of the MLID configuration table. The MLID can set
or reset the MF_PRIORITY_BIT as the MLID changes from the Priority
Queue Support Enabled state to the Disabled state.

Protocol Stack Packet Transmission 5-3

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

The protocol sets theCB_StacklICfield to a value greater than or equal to
OxFFFO. The values have the following meanings:

OXFFFF Raw send packets. No priority.
OXFFFE-OXFFF8 Raw send packets. Priority level 1-7.
OXFFF7 Non-raw send packets. No priority.
OXxFFF6-0xFFFO Non-raw send packets. Priority level 1-7.

Priority levels are defined as follows:
0 = no priority
7 = highest priority

To extract the priority level, NEG (1s complement)E@&B _StacklOield, and
AND it with 0x07. The result will be a number from 1 to 7.

The MLID will normally send the packet directly. If the MLID is busy and the
ECB is a priority transmit ECB, the MLID will either queue it in a priority
gueue for transmission as soon as possible, or transmit the packet through a
priority channel.

After the MLID has transmitted the priority ECB, the MLID calls the transmit
monitor (if it is registered), increments the necessary counters, and calls
CLSL_SendCompileteto return the ECB to its original owner.

Event Control Blocks

An event control block (ECB) is a general purpose request control block used
for transmit and receive events in the ODI specification. The
ECB_ProtocolWorkspackeld can be used for any purpose by the protocol
stack, because tHeCB_ProtocolWorkspackeld is not modified by the LSL

or the MLIDs. (Seéppendix A: Event Control Blocks (ECBs) a more

detailed discussion of ECBs.)

You must set the following ECB fields and descriptors before the protocol stack
gives the ECB to the LSL for transmission:

. ECB_ESR

5-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ECB_ESR Field

ECB_StackID Field

Raw Sends

. ECB_StackiD
« ECB_BoardNumber
« ECB_ProtocollD
« ECB_ImmediateAddress
- ECB_Datalength
- ECB_FragmentCount
« Fragment descriptors
These fields are treated as read-only by the LSL and MLIDs. Therefore, you do

not need to re-initialize each field after a transmit operation unless that field’s
value needs to be changed.

The ECB_ESRield contains a pointer to a routine the LSL calls when the
underlying MLID has finished with the ECB and its data buffers. (See the
“Transmit Complete” section later in this chapter.)

TheECB_StacklOield is initialized with the protocol’s assigned Stack ID (see
CLSL_GetStackIDFromName). Raw sends and priority sends are indicated
in this field.

The ODI specification defines an optional capability (raw send) in MLIDs that
allows protocol stacks to specify the complete low-level header when sending
a packet. Because raw sends force a protocol stack to be LAN medium and
frame type aware, protocol stacks generally do not use raw sends unless
absolutely necessary.

Because a raw send is an optional capability, some MLIDs do not support it. To

determine if a particular board supports raw sends, the protocol stack checks
MM_RAW_SENDS_BIif theMLIDCFG_ModeFlagdield. If this bit is set,

Protocol Stack Packet Transmission 5-5

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

the MLID supports raw sends (séetMLIDConfiguration for more
information).

A protocol stack signals a raw send to the MLID by placing OyHE€e
ECB_StackIDfield in Appendix A: Event Control Blocks (ECBs) more
information), instead of its Stack ID (SID) in tR€B_StacklICfield. The
underlying MLID checks this field for OxFiFwherey is a value fron® to F

(see page 6-4). If this value is present in the field, the MLID skips over the code
used to build the low-level header. The first fragment of the ECB must then
contain all of the low-level header information.

The first data fragment must contain the complete MAC header, including the
source address for the media in use. However, in some cases this address is not
used; some adapters automatically insert the source node address in the
low-level header. If an adapter supports raw sends, it should not overwrite the
source address provided in the MAC header with its node address.

The protocol stack must be completely aware of frame characteristics. Usually,
however, minimum packet length padding and evenization are handled by the
MLID, even for raw sends.

ECB_BoardNumber Field

The ECB_BoardNumbefield specifies the logical board used to transmit the
packet. The board number specifies the physical adapter and the low-level
frame format (frame type) used.

ECB_ProtocollD Field

The ECB_ProtocollDfield specifies the Protocol ID (PID) value embedded

into the frame header. This value stamps the packet as a particular protocol type
(for example, IPX, TCP/IP, etc.). (S€&SL_GetPIDFromStackiDBoard

for more information.)

For example, the 802.2 frank®CB_ ProtocollDfield contains the Destination
Service Access Point (DSAP). The Source SAP (SSAP) is set equal to the
Destination SAP (DSAP or Protocol ID) when the MLID builds the frame
header. The MLID also sets the 802.2 control byte equal to 0x03 (UlI).

In order to allow a protocol stack to specify the complete 802.2 header (for
example, DSAP, SSAP, Control 0, Control 1), MLIDs that support the 802.2
frame allow a special flag in the trans®&&B_ ProtocollDfield. When this flag

5-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

is present, the MLID uses the specified 802.2 header instead of setting SSAP
equal to DSAP an@ontrol equal to 0x03 (the usual method).

If an explicit 802.2 header needs to be specified, séi@ ProtocollDfield
to the following values:

Byte 0 x This byte is normally 0. However, if a nonzero number is
specified, the MLID will look for the explicit header
information. x = a zero-based number of bytes in the explicit
number (for example, 0x00 signifies DSAP, 0x02 signifies
DSAP, SSAP, or Control 0 802.2 Type | header, and 0x03
signifies DSAP, SSAP, Control 0, Control 1 802.2 Type I
header). A value dcd, where 0x40 < < 0x7F, indicates that the
values in this field contain a management ID—for example,
HUBMGR

Bytes1-5 These bytes are set by the protocol stack for an explicit 802.2
header (se®DI Specification: Frame Types and Protocol)Ds
Unused bytes are set to 0.

ECB_ImmediateAddress Field

Note‘VI
v

TheECB_ImmediateAddredeld contains the destination address that

specifies the node on the local network where the packet is sent. This can be a
direct, multicast, or broadcast address. If your protocol stack must receive its
own sends, it must emulate loopback capabilities. (If the MLID is using
canonical addressing, the destination address must also be in canonical form.)

The address OxFF FF FF FF FF FF always indicates a broadcast packet. (All
adapters on the physical network will receive the packet.)

ECB_Datalength Field

The ECB_Datal engtliield holds the total length of the packet in bytes. This
is the length of the data portion of the packet.

ECB_FragmentCount Field

The ECB_FragmentCourifteld specifies the number of fragment descriptor
data structures that follow tl€CB_FragmentCourfteld. This field must
contain a value greater than 0 and less than or equal to 16 (0 <
ECB_FragmentCouri6).

Protocol Stack Packet Transmission 5-7

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Fragment Descriptors

5-8

Each fragment descriptor contains the location and length of a contiguous
section of RAM memory. The protocol stack can specify a maximum of sixteen
fragment descriptors. The MLID combines the fragments together to form one
contiguous packet.

Note‘vvl The length field of a fragment descriptor can be 0.

A frame containing only an 802.2 Type Il header can be transmitted by setting
the length fields of the fragment descriptors for the ECB containing the
transmit information to 0. ThRECB_FragmentCourfteld must be equal to at
least 1. Th&aCB_ProtocollDfield contains the entire explicit 802.2 Type I
header.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Transmit Handler

Table 5-2

The interface to the Transmit Handler is defined by each protocol stack.

Table 6-2 describes the events that occur to transmit a packet transmission.

Transmit Handler Event Sequence.

Actor/Agent Action
Protocol stack 1. Gives the ECB to the MLID by calling CLSL_SendPacket .
LSL 2. Determines which MLID to give the packet to via the board number.
MLID 3. Transmits the ECB.
4. Presents the transmitted packet to any transmit monitor, if one is registered.
5. Returns the ECB to the LSL via CLSL_SendComplete .
LSL 6. Places the ECB into a temporary event queue.
MLID 7. Calls the LSLs CLSL_ServiceEvents routine after the MLID has finished
servicing the hardware.
LSLs Service 8. Removes each ECB from the queue in turn and calls the ESR defined in the
ECB_ESR field.
Events Routine 9. The ESRis the protocol stack’s transmit complete handler. The MLID can

invoke the protocol stack’s transmit complete handler before the call to
CLSL_SendPacket returns. This is called a lying send.

Note‘VI
v

If CLSL_FastSendComplete is called, the LSL can call the ESR in the ECB
directly, depending on the platform. However, this does not affect protocol stack
or MLID operations.

Protocol Stack Packet Transmission 5-9

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Protocol Transmit Handler for Prescan Stacks

Syntax
#include <odi.h>

ODISTAT (*StackTxChainHandler)
(ECB *TransmitECB,

struct _PS_CHAINED_TX_NODE_
*StackChainNode);

Input Parameters

TransmitECB
Pointer to the transmit ECB.

StackChainNode

Pointer to the stack chain’s node passed when the stack chain registered
with the board that will transmit this packet.

Return Values

ODISTAT_SUCCESSFUL The protocol stack wants the packet and is
responsible for returning the ECB to the LSL or
calling the LSL later (asynchronously) for
further processing of the ECB.

ODISTAT_FAIL The protocol stack does not want the packet and
returns a pointer to an ECB. The LSL routes the
ECB structure to the next stack in the chain. The
pointer to the ECB is unchanged.

Remarks

The LSL is responsible for calling the next prescan transmit chained protocol
stack. The adding to the chain and calling of protocol stacks is in load order
(first to load is first in chain, second to load is second in chain, etc.) unless an
order position is specified— "must be very first" or "must be very last".
Register/DeRegister Protocol Stack can be made at process time only.

5-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Note‘VI
v

On transmission the prescan transmit stack is called with a pointer to a transmit
ECB.

Ownership of the ECB and its associated data buffer is passed to the protocol
stack when the LSL calls the protocol’s transmit handler. The protocol’s
transmit handler can be called either at process or privileged time.

Protocol stacks can queue an event and process it from a handler that is running
at process time, or process the event as a run-to-completion event—be aware
that this can degrade performance.

The network hardware can be fully functional at this point; hence, packet
transmission ordering must be maintained. MLID control routines nutgte
invoked from this routine, because they can only be called at process time.
However, the protocol stack can freely make requests to the LSL (such as
CLSL_GetSizedECB) to obtain another ECB buffer. If the protocol stack
consumes the ECB after it has finished with it, it returns the ECB to the LSL
using theCLSL_ReturnECB support function.

If the protocol stack processes the transmit ECB by queuing it and servicing the
ECB at process time, it can resubmit the ECB for further processing by other
transmit prescan protocol stacks by the appropriate resubmit function (see
CLSL_ReSubmitPreScanRx CLSL_ReSubmitPreScanTx and
CLSL_ReSubmitDefault for more information). If the protocol stack has only
minor activity to perform on an ECB, which is not time intensive, it can, as an
optimization, perform its functions even at privileged (interrupt or deferred
procedure call in Windows NT) time and then pass on the ECB rather than
gueue it and resubmit the ECB for processing later.

Transmitting prescan protocol stacks must treat ECBs that have data to be
modified as read-only. The protocol stack must make a copy of the ECB and
process the copy. For example, the protocol stack would install its Event
Service Routine (ESR) in the copy of the ECB. The reason for this is the
originating protocol stack, for instance a bound stack, can manipulate data in
the original ECB when its ESR is called. If the prescan stack manipulates the
data (for example, compression), the data will be incomprehensible to the
original stack. Hence, when the prescan stack’s Transmit Complete ESR is
called, it in turn calls the Transmit Complete ESR in the original ECB with a
pointer to the original ECB.

Data transmitted by prescan stacks are still limited by the transmitting MLID
configuration table’s MLIDCFG_WorstDataSize field. Also calling the LSL
function CLSL_SendPacket from a transmit prescan stack can cause the
prescan stack’s protocol transmit handler to be called from itself.

Protocol Stack Packet Transmission 5-11

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

5-12

The Prescan Transmit Handler should add the ECB to the protocol stack’s
internal work-to-do queue for processing at non-privileged time.

If the PreScan Receive stack or the Default Chain stack cannot understand the
MAC header, they should leave the MAC header unchanged and pass it on.

Do not use this function to poll for transmissions or receptions.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Protocol Transmit Complete Handler

Called when a previous transmit request has
completed successfully or with an error.

Syntax
#include <odi.h>

void (*ECB_ESR)(ECB *);

Input Parameters

ECB
Pointer to the completed ECB.
Output Parameters

None.

Return Values

None.

Remarks

When this routine is invoked, the LSL returns ownership of the ECB and its
data buffers to the protocol stack.

This routine must complete quickly because it is usually invoked from a board
service routine during privileged context time—for example, interrupt handler,
deferred procedure call (DPC) in Windows NT. Transmit requests can be issued
from this routine, but a protocol stack must not poll for a transmit to complete.
Do not poll when calling this function.

The ECB_Statudield is set to one or more of the following.

Note QA
" The ODISTAT type is cast to UINT16 for the ECB_Status field.

Protocol Stack Packet Transmission 5-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

ODISTAT_SUCCESSFUL The MLID determined that the transmit was
successful. Because the transmit was
connectionless, this completion code does not
mean that the destination received the packet.

ODISTAT_MLID_SHUTDOWN The LAN adapter specified in the
ECB_BoardNumbefield cannot be found. This
usually means that the MLID has been removed
from memory by shut down (temporarily or
permanently).

ODISTAT_BAD_PARAMETERThe ECB contains bad parameters—for
example, the amount of data to transmit exceeds
the maximum possible for the MLID. The ECB
will not have been transmitted.

ODISTAT_CANCELED The ECB is being returned without being
transmitted. This usually occurs if the ECB was
held in an MLID’s queues, then the MLID clears
its queues due to a shut down request.

The following tables describe the events that occur during the transmit
complete handler.

Table 5-3
Transmit Complete Handler Event Sequence for Bound Stacks

Actor/Agent Action

Protocol stack 1. Increment counters.
2. Restore the original ECBs ESR to the ECB_ESR field.

3. Call ECB_ESR using the ECB from the transmit complete handler.

Table 5-4
Transmit Complete Handler Event Sequence for Prescan Stacks

Actor/Agent Action

Protocol stack 1. Retrieve the pointer to the original Tx ECB.

5-14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table 5-4
Transmit Complete Handler Event Sequence for Prescan Stacks

Actor/Agent Action

2. Increment counters.
3. Setthe original Tx ECB_Status to the current ECB_Status.
4. Call the original Tx ECB ESR using the original Tx ECB as the parameter.

5. Call CLSLReturnECB to return the current ECB.

Protocol Stack Packet Transmission 5-15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

5-16

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

chapter 6
Protocol Stack Control Routines

Chapter Overview

The ODI specification requires protocol stacks to provide control functions to
the LSL for use by applications and other protocol stacks. When a protocol
stack registers with the LSL, the LSL passes a pointer to the protocol stack’s
information block (INFO_BLOCK) for control functions. Applications and
other protocol stacks use these pointers as entry points to get configuration
information and statistics about specific protocols (see
CLSL_GetProtocolControlEntry).

All reserved and unsupported control functions must have pointers in the
information block (INFO_BLOCK), which, when called, will return
ODISTAT_BAD_COMMAND as the completion code.

The following functions are currently defined for these entry points:

Bind

GetBoundNetworkInfo
GetProtocolStackConfiguration
GetProtocolStackStatistics
GetProtocolStringForBoard
MLIDDeRegistered
PromiscuousStatus
ProtocolManagement

UnBind

ZZ'IA 90Q - TT'IA 2ads

Protocol Stack Control Routines 6-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

The functions above are accessed through the information block using indexes.
The location of the various protocol stack control functions in the information
block are as follows:

Index

0

© 0o ~NOoO ok~ WN PP

Function
GetProtocolStackConfiguration
GetProtocolStackStatistics
Bind

UnBind

MLIDDeRegistered
PromiscuousState
Reserved
GetProtocolStringForBoard
ProtocolManagement
GetBoundNetworkInfo

Note‘vvl Access to the Protocol Stack APIs, independent of the link method (dynamic or static),
in the information bock can be accomplished by using the macro definitions in ODI.H.
The macros are listed below. TimfoBlockparameter is returned by

CLSL_GetProtocolControlEntry . Refer to the API definitions for details on the rest
of the parameters.

PStkCntl_GetConfig(infoBlock, stackldentifier)
PStkCntl_GetStats(infoBlock, stackldentifier)

PStkCntl_Bind(infoBlock, boardNumber, userParmsString, stackldentifier)
PStkCntl_MLIDDeReg(infoBlock, boardNumber, stackldentifier)
PStkCntl_Unbind(infoBlock, boardNumber, userParmString, stackldentifier)
PStkCntl_PromiscState(infoBlock, boardNumber, promiscuousMask,

stackldentifier)

PStkCntl_GetProtocolString(infoBlock, boardNumber, printString,

stackldentifier)

PStkCntl_ProtManage(infoBlock, ManagementECB, stackldentifier)
PStkCntl_GetBoundNetinfo(infoBlock, boardNumber, networkAddress,

stackldentifier)

6-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Bind

Index 2

Syntax

Input Parameters

Output Parameters

Provides a consistent method of binding a protocol
stack with an MLID.

#include <odi.h>

ODISTAT Bind (
UINT32 BoardNumber,
MEON_STRING *UserParmString,
void *Stackldentifier);

BoardNumber
The board number for the protocol stack to bind to.

UserParmString
Pointer to an optional user specified MEON parameter string that is
implementation dependent; NULL if unused.

Stackldentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (in
other words, the content of t&¢ackldentifieparameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

None.

Protocol Stack Control Routines 6-3

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Return Values

ODISTAT_SUCCESSFUL The protocol stack was successfully bound to an
MLID.

ODISTAT_BAD_PARAMETER The MLID corresponding to the requested board
number or the protocol stack corresponding to
the specifiedstackldentifiedoes not exist.

ODISTAT_DUPLICATE_ENTRY The protocol stack is already bound to this
MLID.

ODISTAT_FAIL The protocol stack failed to bind to the specified
MLID.

ODISTAT_ITEM_NOT_PRESENMNo Protocol ID (PID) has been registered for use
by this protocol stack with the specified board’s
frame type. In other words. you must register a
PID by calling CLSL_AddProtocollD for the
board’s frame type that is used with this stack.

ODISTAT_OUT_OF_RESOURCHSe call could not allocate enough memory.

Remarks
All protocol stacks must support this function.

The protocol stack is expected to issueGh&L_BindStack or
CLSL_BindProtocolToBoard call to the LSL as well as perform any other
maintenance commands required to bind to an MLID.

This function is invoked when the user issues the “bind“ command to a
protocol stack to bind to a logical board, for example:

bind <MLID Short Name> [Board Number <Protocol ID>]

Note‘vvl The method of specifying the binding of a protocol stack to a logical board is
entirely up to the protocol stack developer. The line specifying the binding
information can be passed to the protocol stack or some entity to parse and the

resultant binding information as to the stack and which logical board it is bound
to is passed in the CLSL_BindStack or CLSL_BindProtocolToBoard call.

The first thing a protocol stack does is verify whether a specified board exists
and whether a Protocol ID (PID) is available for the protocol that uses that
particular board. The protocol stack can verify that a specified board exists by

6-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

calling theCLSL_GetMLIDControlEntry function. If the board is valid, the
protocol stack determines whether a PID exists for the protocol on that
particular board by callin@LSL_GetPIDFromStackiDBoard. If a PID is

not present for that protocol, the protocol stack adds a PID to use or stops the
initialization procedure.

ZZ'IA 90Q - TT'IA 2a8ds

Protocol Stack Control Routines 6-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

GetBoundNetworkInfo

Syntax

Input Parameters

Output Parameters

Index 9

Gets the bound network address for a board /
protocol stack combination.

#include <odi.h>

ODISTAT GetBoundNetworkiInfo (

UINT32 BoardNumber,

NETWORK_ADDRESS_ INFO *networkAddress

void *Stackldentifier);
boardNumber

The board number the protocol stack is to return the network address for.

networkAddress
Pointer to a buffer where the bound network address for the protocol is
returned.

Stackldentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (in
other words, the content of t&gackldentifieparameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

networkAddress
NULL is placed at the start of the buffer if no address is returned.

6-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

ODISTAT_SUCCESSFUL The network address was successfully returned.

Note: ODISTAT _ SUCCESSFUL is returned even if the
addressType and size fields are zero, and the address field is
NULL; this implies that there is no network address for the board
and protocol combination.

ODISTAT_BAD_PARAMETER The MLID corresponding to the requested board number or the
protocol stack corresponding to the specified Stackldentifier.
Remarks

The protocol stack will fill in the NETOWRK_ADDRESS _INFO structure
addressTypéeld with it's assigned transport address type, the size field with

the length of the address, and the address field with the bound network address.

IPX returns all 12 bytes, network:node:socket. IP returns 4 bytes, network
address only (no socket).

The following Transport Address types have been assigned:

IPX 1
IP 2
DDP 3
NETBEUI 4

The networkAddress structure is defined in ODI.H as follows:

typedef struct. NETWORK_ADDRESS_INFO _

{
UINT32 addressType;
UINT32 size;
UINT8 address[32];

INETWORK_ADDRESS_INFO;

Protocol Stack Control Routines 6-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

GetProtocolStackConfiguration

Index O

Returns a pointer to the protocol stack’s
configuration table.

Syntax
#include <odi.h>

PS_CONFIG_TABLE *GetProtocolStackConfiguration (
void *Stackldentifier);

Input Parameters

Stackldentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (in
other words, the content of ti&ackldentifieparameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

None.

Return Values

ConfigTable Returns a pointer to the protocol stack configuration table.
NULL Stackldentifielis invalid

Remarks
All protocol stacks must support this function. (8mpter 3: Protocol Stack
Data Structuredor the format of the protocol stack’s configuration table.)
6-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

GetProtocolStackStatistics

Index 1

Syntax

Input Parameters

Returns a pointer to the protocol stack’s statistics
table.

#include <odi.h>

PS_STATS_TABLE *GetProtocolStackStatistics (
void *Stackldentifier);

Stackldentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (in
other words, the content of tis¢ackldentifiepparameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

Return Values

Remarks

None.
StatsTable Returns a pointer to the protocol stack statistics table.
NULL Stackldentifielis invalid

All protocol stacks must support this function. (8fapter 3: Protocol Stack
Data Structuredor the format of the protocol stack’s statistics table.)

Protocol Stack Control Routines 6-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

GetProtocolStringForBoard

Index 7

Syntax

Input Parameters

Output Parameters

Obtains a unique ID string for a board and protocol
stack combination.

#include <odi.h>

ODISTAT GetProtocolStringForBoard (
UINT32 BoardNumber,
MEON_STRING *PrintString,
void *Stackldentifier);

BoardNumber
The board number of the protocol stack to return a unique ID string for.

PrintString
Pointer to a buffer where a unique ID string for a protocol stack is returned.

Stackldentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (in
other words, the content of ti&tackldentifieparameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

PrintString

Zero is placed at the start of the buffer if no string is returned. The
maximum number of MEONSs, including the NULL terminator, is 255.

6-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

ODISTAT_SUCCESSFUL ID string was successfully obtained.

ODISTAT_BAD_PARAMETERhe MLID corresponding to the requested board
number or the protocol stack corresponding to
the specifiedstackldentifiedoes not exist.

Remarks

For example, an IPX protocol stack might return a string similar to “Network
FADE2200" for the board on which the protocol stack is functioning. In this
string, the IPX’s network number, “FADE2200", is being used with that
particular board. A TCP/IP protocol stack might return a string similar to
“128.34.31.01".

Note V! ODISTAT_SUCCESSFUL is returned even if a NULL is placed in the buffer
pointed to by PrintString, this implies that there is no unique ID string for a board
and protocol stack combination.

ZZ'IA 90Q - TT'IA 2a8ds

Protocol Stack Control Routines 6-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

MLIDDeRegistered
Index 4

Informs the protocol stacks that the specified board
Is no longer available.

Syntax
#include <odi.h>

void MLIDDeRegistered (
UINT32 BoardNumber,
void *Stackldentifier);

Input Parameters

BoardNumber
The number of the board that has deregistered from the LSL.

Stackldentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (in
other words, the content of t&gackldentifieparameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Spec v1l.11 - Doc v1.22

Output Parameters

None.

Return Values

None.

j 6-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

Remarks

The LSL invokeMLIDDeRegistered whenever the logical board that a
protocol stack is using has deregistered. The protocol stack can use this
information in any way it chooses and can even discard it. However, the

specified board will not be available for packet transmission or reception.

Note V! When this function is called, a Prescan TX, RX, or default chain stack, must
remove its node from the appropriate chain before this call returns.

Protocol Stack Control Routines 6-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

PromiscuousState

Index 5

Syntax

Allows MLIDs to notify protocol stacks through the
LSL that their promiscuous modes have changed.

#include <odi.h>

ODISTAT PromiscuousState (
UINT32 BoardNumber,
UINT32 PromiscuousMask,
void *Stackldentifier);

Input Parameters

BoardNumber
The number of the board whose promiscuous mode has changed.

PromiscuousMask

The current state of the promiscuous modes bit mask as defined for MLID
control functionPromiscuousChange

Stackldentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (in
other words, the content of t&tackldentifieparameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

6-14

None.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL Protocol stack notified of promiscuous mode
changes.

ODISTAT_BAD_PARAMETERhe MLID corresponding to the requested board
number or the protocol stack corresponding to
the specifiedstackldentifiedoes not exist.

ODISTAT_BAD_COMMAND PromiscuousStatus function is not supported by
the protocol stack.

This function is useful in allowing specialized protocol stacks (for example,
bridges) to be notified of a change in the promiscuous state of an MLID they
are using and to take appropriate steps.

The implementation of this function is optional. If this function is not
implemented, a function which returns ODISTAT_BAD_COMMAND must be
used in place of theromiscuousStatefunction.

Protocol Stack Control Routines 6-15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

ProtocolManagement

Index 8 (0x08)

Syntax

Provides a generic way to define protocol
dependent functions.

#include <odi.h>
ODISTAT ProtocolManagement (
ECB *ManagementECB,
void *Stackldentifier);

Input Parameters

ManagementECB

Pointer to the ECB that contains the management information. The first
byte of theECB_ProtocollDfield must be greater than 0x40 and less than
OX7F.

Stackldentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (in
other words, the content of t&¢ackldentifieparameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

6-16

None.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL The command was successfully executed. The
ECB is returned to the caller.

ODISTAT_RESPONSE_DELAYED The requested operation was successfully
started, but will complete asynchronously.
The ECB is not returned. The
ManagmentECB event service routine will
be called with the completion code when the
command has finished execution.

ODISTAT_BAD PARAMETER The first byte of theECB_ProtocollDfield
is not greater than 0x40 or less than Ox7F.
ODISTAT_BAD_COMMAND Protocol management functions are not
supported.
ODISTAT_NO_SUCH_HANDLER The Protocol ID value is not supported.

This control function is a generic interface between protocols and protocol
dependent management functions.

The implementation of this function is optional. If this function is not
implemented, a function which returns ODISTAT_BAD_COMMAND must be
used in place of the ProtocolManagement function.

The management ECB is in the form of an ECB; however, all fields below the
ECB_ProtocollDfield can be redefined by the protocol.

ZZ'IA 90Q - TT'IA 2a8ds

TheECB_ProtocollDfield is defined as a 6-byte string that uniquely identifies
the protocol. The first character of the string must be greater than or equal to
0x41 (A) and less than or equal to Ox7E (~). The remaining characters are
defined by the protocol.

If the first character of thECB_ProtocollDfield is not greater than or equal to
0x41 (A) and less than or equal to Ox7E (~), ODISTAT_BAD_PARAMETER
should be returned as the completion code.

If the protocol does not recognize the value inBG#_ProtocollDfield,
ODISTAT_NO_SUCH_HANDLER should be returned as the completion
code.

Protocol Stack Control Routines 6-17

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

6-18

If the protocol must respond asynchronously to the management request, it
should queue the ECB internally, and ODISTAT_RESPONSE_DELAYED
should be returned as the completion code.

When the queued request is completed, the protocol should place the ECB on
the LSL hold event queue by calli@.SL_HoldEvent. The LSL will then
process the ECB during the next cal@bSL_ServiceEvents

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Unbind

Index 3
Unbinds a protocol stack from an adapter/frame
type (logical board) combination.

Syntax

Input Parameters

Output Parameters

#include <odi.h>

ODISTAT Unbind (
UINT32 BoardNumber
MEON_STRING *UserParmString,
void *Stackldentifier);

BoardNumber
The board number for the protocol stack to unbind from.

UserParmString
Pointer to an optional user specified MEON parameter string that is
implementation dependent; NULL if unused.

Stackldentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (in
other words, the content of t&¢ackldentifieparameter is less than the
maximum number of bound protocol stacks supported—
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

None.

Protocol Stack Control Routines 6-19

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Return Values

ODISTAT_SUCCESSFUL The protocol stack was successfully
unbound from an adapter/frame type
(logical board) combination.

ODISTAT_BAD_PARAMETER The MLID corresponding to the requested
board number or the protocol stack
corresponding to the specified
Stackldentifiedoes not exist.

ODISTAT_ITEM_NOT_PRESENThe specified binding does not exist.

N Remarks
N
hi All protocol stacks must support this function.
>
O Protocol stacks should place themselves in a safe state and then call
@) CLSL_UnbindStack.
Q o _ y
. After this routine successfully returns, packet reception between the specified
protocol stack and the logical board is disabled.
\\l
h! CLSL_DeRegisterStackperforms this operation implicitly.
H
>
o
Q
Q
0p)
—

g 6-20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

chapter 7
Overview of the LSL

Chapter Overview

This chapte providesa lrief overview of the Link Support Layer (LSL) and its
functions It also documents the completion codes the LSL returns in the
support routines.

Link Suppo rt Layer (LSL)

The LSL handleshe communication betwagrotocol stacks and MLIDs.
Because taODI allows the physicd topology b support many dierert types
of protocolsevery MLID sends andeceives packets of ffierent frame types
that are destined forffiérent protocol stacks. The L&cts as a demultipter,
or switchboard, and determines the protocol stackbID that recives the
packet.

The LSL also tracks thearious protocols and MLIDs thateszurrently loaded
in the system andrpvides a consistent methodfwfding and using each of the
loaded modules.

In addition, the L& performs tle following services:

All owsa protocol stacto obtain anl return Bvent Control Blocks (ECBS).
(ECBsare contrbstructures that are usexidendor recéve packets antb
schedulesvents.)

Queuesandrecovers ECBs folater use.

All ows protocol stacks to obtain timing services.

All ows protocol stacks to determine $tadDs (SIDs)and Protocol IDs
(PIDs).

All ows protocol stacks to obtain MLID statistics.

Overview of the LSL 8-1

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

Allows protocol stacks to bind with MLIDs.
Allows protocol stacks to transmit and receive packets through an MLID.
Maintains lists of all active stacks and MLIDs.

Allows protocol stacks to obtain information about MLIDs and other
protocol stacks.

Allows protocol stacks to change the operational state of MLIDs. (For
example, the protocol stack can cause the MLID to shut down or reset.)

Completion Codes

This following are the completion codes returned by the LSL:

ODISTAT_SUCCESSFUL
ODISTAT_RESPONSE_DELAYED
ODISTAT_SUCCESS_TAKEN
ODISTAT_BAD_COMMAND
ODISTAT_BAD_PARAMETER
ODISTAT_DUPLICATE_ENTRY
ODISTAT_FAIL
ODISTAT_ITEM_NOT_PRESENT
ODISTAT_NO_MORE_ITEMS
ODISTAT_MLID_SHUTDOWN
ODISTAT_NO_SUCH_HANDLER
ODISTAT_OUT_OF RESOURCES
ODISTAT_RX_OVERFLOW
ODISTAT_IN_CRITICAL_SECTION
ODISTAT_TRANSMIT_FAILED
ODISTAT_PACKET_UNDELIVERABLE
ODISTAT_CANCELED

Specification Version String

8-2

In order to identify which version of this specification an LSL conforms to, a
version string (the “specification version string“) is embedded within the LSL.
The specification version string number (1. for this specification) is the actual

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

version number of the specification. The following is the specification version
string for this specification; it is located in the LSL where the global variable
declarations are made:

MEON_STRING CODISPEC[] = “ODI_CSPEC_VERSION: 1.11";

Overview of the LSL 8-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

8-4

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

chapter 8
LSL Data Structures

Chapter Overview

This chapterdeseibesthe Link Support Layer (LSL) corfiguration ard
statistics talds and eachfahefields in these structures.

LSL Configuration Table

The following describes the LSL céiguration table irdetail; spedfically, it
includes a sample of the diguration tabé code and a description beach é
the corfiguration &ble fields.

LSL Configuration

typedef str
{
UINT16
UINT16
MEON_STRING
MEON_STRING
UINT16
UINT16
UINT32
UINT32
UINT32
UINT32
UINT32
UINT8
UINT8
UINT16
UINT32

Table Structure Sample Code

uct_LSL_CONFIG_TABLE_

LConfigTableM ajorVer;
LConfigTableM i norVer;
*LSLLongName;
*LSLShortName;
LSLMajorVer;
LSLMinorVer;
LMaxNumberOfBoards;
LMaxNumberOfSt acks;
LConfigTableR eserved0;
LConfigTableR eservedi,
LConfigTableR eserved?;
LSLCFG_ODISpecMajorVer;
LSLCFG_ODISpecMinorVer;
LConfigTableR eserved3;
LSLCFG_SystemFlags;

LSL Data Structures 9-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32

Spec v1l.11 - Doc v1.22

LSLCFG_SmallECBCount;
LSLCFG_MediumECBCount;
LSLCFG_LargeECBCount;
LSLCFG_XLargeECBCount;
LSLCFG_HugeECBCount;
LSLCFG_SmallECBBelow16Count;
LSLCFG_MediumECBBelow16Count;
LSLCFG_LargeECBBelowl16Count;
LSLCFG_XLargeECBBelow16Count;
LSLCFG_HugeECBBelow16Count;
LSLCFG_SmallECBMinCount;
LSLCFG_MediumECBMInCount;
LSLCFG_LargeECBMinCount;
LSLCFG_XLargeECBMinCount;
LSLCFG_HugeECBMinCount;
LSLCFG_SmallECBMaxCount;
LSLCFG_MediumECBMaxCount;
LSLCFG_LargeECBMaxCount;
LSLCFG_XLargeECBMaxCount;
LSLCFG_HugeECBMaxCount;
LSLCFG_SmallECBSize;
LSLCFG_MediumECBSize;
LSLCFG_LargeECBSize;
LSLCFG_XLargeECBSize;
LSLCFG_HugeECBSize;

} LSL_CONFIG_TABLE;

B 92 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Table 9-1

LSL Configuration Table Field Descriptions

Field

Description

LConfigTableMajorVer

LConfigTableMinorVer

LSLLongName

LSLShortName

LSLMajorVer

LSLMinorVer

LMaxNumberOfBoards

LMaxNumberOfStacks

LConfigTableReserved0
LConfigTableReservedl
LConfigTableReserved2

LSLCFG_ODISpecMajorVer

LSLCFG_ODISpecMinorVer

LconfigTableReserved3

This field has the major version number of the LSL configuration

table. Use CLSL_CFG_TABLE_MAJOR _VER, defined in ODI.H.

This field has the minor version number of the LSL configuration

table. Use CLSL_CFG_TABLE_MINOR _VER, defined in ODI.H.

Pointer to a NULL terminated MEON string containing the LSL
long name.

Pointer to a NULL terminated MEON string containing the LSL
short name.

This field has the major version number of the LSL. The number
in this field is a decimal number.

This field has the minor version number of the LSL (0 through 99).
The number in this field is a decimal number.

This field contains the maximum number of logical boards that the
LSL can handle.

This field contains the maximum number of bound protocol stacks
that the LSL can to handle.

This field is reserved for future use.

This field is reserved for future use.

This field is reserved for future use.

This field contains the major version of the ODI Specification that
this version of the C LSL is written too. For example, if the version
of the ODI specification is 1.11, the value of this field is 1.

This field contains the minor version of the ODI Specification that
this version of the C LSL is written too. For example, if the version

of the ODI specification is 1.11, the value of this field is 11.

This field is reserved.

LSL Data Structures 9-3

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Table 9-1

LSL Configuration Table Field Descriptions

Field

Description

LSLCFG_SystemFlags

The bits in this field are defined below:

CLSL_CFG_SERVER_BIT
When set to 1 this bit indicates the C LSL is running in a
server environment. This bit is mutually exclusive with
CLSL_CFG_CLIENT_BIT.

CLSL_CFG_CLIENT_BIT
When set to 1 this bit indicates the C LSL is running in a
client environment. This bit is mutually exclusive with
CLSL_CFG_SERVER_BIT

This field contains the current number of ECBs that have been
allocated for the small ECB pool. The maximum value for this
count is defined by LSLCFG_SmallECBMaxCount . The
minimum value is defined by LSLCFG_SmallECBMinCount .

This field contains the current number of ECBs that have been
allocated for the medium ECB pool. The maximum value for this
count is defined by LSLCFG_MediumECBMaxCount . The
minimum value is defined by LSLCFG_MediumECBMinCount

This field contains the current number of ECBs that have been
allocated for the large ECB pool. The maximum value for this
count is defined by LSLCFG_LargeECBMaxCount . The
minimum value is defined by LSLCFG_LargeECBMinCount

This field contains the current number of ECBs that have been
allocated for the extra large ECB pool. The maximum value for
this count is defined by LSLCFG_XLargeECBMaxCount . The
minimum value is defined by LSLCFG_XLargeECBMinCount

This field contains the current number of ECBs that have been
allocated for the huge ECB pool. The maximum value for this
count is defined by LSLCFG_HugeECBMaxCount . The
minimum value is defined by LSLCFG_HugeECBMinCount

This field contains the current number of ECBs below 16 meg that
have been allocated for the small ECB pool. The maximum value
for this count is defined by LSLCFG_SmallECBMaxCount . The
initial value is zero.

N
N
- LSLCFG_SmallECBCount
>
Q
o
Q LSLCFG_MediumECBCount
1
H
h'
™~ LSLCFG_LargeECBCount
>
Q
Q
Q
0 LSLCFG_XLargeECBCount
LSLCFG_HugeECBCount
LSLCFG_SmallECBBelow16Count
_—

B 94 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Table 9-1

LSL Configuration Table Field Descriptions

Field

Description

LSLCFG_MediumECBBelow16Count

LSLCFG_LargeECBBelow16Count

LSLCFG_XLargeECBBelow16Count

LSLCFG_HugeECBBelow16Count

LSLCFG_SmallECBMinCount

LSLCFG_MediumECBMiInCount

LSLCFG_LargeECBMinCount

LSLCFG_XLargeECBMinCount

LSLCFG_HugeECBMinCount
LSLCFG_SmallECBMaxCount

LSLCFG_MediumECBMaxCount

LSLCFG_LargeECBMaxCount

LSLCFG_XLargeECBMaxCount

LSLCFG_HugeECBMaxCount

This field contains the current number of ECBs below 16 meg that
have been allocated for the medium ECB below 16 meg pool. The
maximum value for this count is defined by
LSLCFG_MediumECBMaxCount . The initial value is zero.

This field contains the current number of ECBs below 16 meg that
have been allocated for the large ECB below 16 meg pool. The
maximum value for this count is defined by
LSLCFG_LargeECBMaxCount . The initial value is zero.

This field contains the current number of ECBs below 16 meg that
have been allocated for the extra large ECB below 16 meg pool.
The maximum value for this count is defined by
LSLCFG_XLargeECBMaxCount . The initial value is zero.

This field contains the current number of ECBs below 16 meg that
have been allocated for the huge ECB below 16 meg pool. The
maximum value for this count is defined by
LSLCFG_HugeECBMaxCount . The initial value is zero.

The minimum number of ECBs allocated for the small EBC pool.

The minimum number of ECBs allocated for the medium EBC
pool.

The minimum number of ECBs allocated for the large EBC pool.

The minimum number of ECBs allocated for the extra large EBC
pool.

The minimum number of ECBs allocated for the huge EBC pool.

The maximum number of ECBs allocated for the small EBC pool.

The maximum number of ECBs allocated for the medium EBC
pool.

The maximum number of ECBs allocated for the large EBC pool.

The maximum number of ECBs allocated for the extra large EBC
pool.

The maximum number of ECBs allocated for the huge EBC pool.

LSL Data Structures 9-5

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Table 9-1
LSL Configuration Table Field Descriptions

Field Description

LSLCFG_SmallECBSize This field contains the maximum data size of the ECBs contained
in the small ECB pool.

LSLCFG_MediumECBSize This field contains the maximum data size of the ECBs contained
in the medium ECB pool.

LSLCFG_LargeECBSize This field contains the maximum data size of the ECBs contained
in the large ECB pool.
LSLCFG_XLargeECBSize This field contains the maximum data size of the ECBs contained
N in the extra large ECB pool.
N
hi LSLCFG_HugeECBSize This field contains the maximum data size of the ECBs contained
S in the huge ECB pool.
Q
o
1
\\l
h'
H
>
o
Q
Q
0p)
[

g 96 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

LSL Statistics Table

The following describes the LSL statistics table in detail; specifically, it
includes a sample of the LSL statistics table code and a description of each of
the statistics table fields.

The LSL keeps a statistics table for the purpose of network management.

LSL Statistics Table Structure Sample Code

typedef struct LOG_BRD_STAT_TABLE_ENTRY_

{
UINT32 LogBrd_TransmittedPackets; (0p)
UINT32 LogBrd_ReceivedPackets; o
UINT32 LogBrd_UnclaimedPackets; 2
UINT32 LogBrd_TxOverloaded;

} LOG_BRD_STAT_TABLE_ENTRY; E

LOG_BRD_STAT_TABLE_ENTRY ':

LogicalBoardStatTablePtr[MaxNumberOfLogicalBoards]; :

typedef struct LSL_STATS TABLE_ v

{ o
UINT16 LStatTableMajorVer; o
UINT16 LStatTableMinorVer; E
UINT32 LNumGenericCounters; .
STAT_TABLE_ENTRY (*LGenericCountersPtr)][]; %
UINT32 LNumLogicalBoards;

LOG_BRD_STAT_TABLE_ENTRY
(*LogicalBoardStatTablePtr)][];

UINT32 LNumCustomCounters;

STAT_TABLE_ENTRY (*LCustomCountersPtr)([];

LSL Data Structures 9-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

} LSL_STATS_TABLE;

Table 9-2
LSL Statistics Table Field Descriptions

Field Description

LStatTableMajorVer This field has the major version number of the statistics table (2 for this
specification).

LStatTableMinorVer This field has the minor version number of the statistics table (O for this
specification).

LNumGenericCounters This field has the total number of generic STAT_TABLE_ENTRY counters in
this portion of this table. This field is set to OXO00A for this specification.

N LGenericCountersPtr Pointer to an array of STAT_TABLE_ENTRY counters
N
. [LNumGenericCounters].
H
> LNumLogicalBoards This field has the number of logical boards whose specific statistics are
O pointed to. Normally this value is the maximum number of boards the LSL
o can handle.
Q LogicalBoardStatTablePtr Pointer to an array of LOG_BRD _STAT_TABLE_ENTRY counters
1 [LNumLogicalBoards].
:: LNumCustomCounters This field contains the total number of custom STAT_TABLE_ENTRY
. counters in this portion of this table.
H
> LCustomCountersPtr Pointer to an array of STAT_TABLE_ENTRY counters [LCustomCounters].
o
Q : .
Q The following describes theOG_BRD_STAT_TABLE_ENTR¥Ids.
(’) Table 9-3
LOG_BRD_STAT_TABLE_ENTRY Field Descriptions
Size Label Description

UINT32 LogBrd_TransmittedPackets Number packets that requested transmission by the LSL.

UINT32 LogBrd_ReceivedPackets Number packets received by the LSL.

UINT32 LogBrd_UnclaimedPackets = Number packets not claimed by any protocol stack.

UINT32 LogBrd_TxOverloaded This field is incremented when LSL MLID transmit checking
detects that a device is overloaded and is consuming too many
system resources, such as when MQDepth is too high.

[

g 98 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

Example

#define NUM_GENERIC_COUNTERS 10

UINT32 LTotalTxPackets, LGetECBRequests,
LGetECBFailures, LAESEventCount,
LPostponedEvents, LCancelEventFailures,
LValidBuffersReused, LReserved,
LTotalRxPackets, LUnclaimedPackets;

STAT_TABLE_ENTRY LGenericCounters [NUM_GENERIC_COUNTERS] =
{

{ ODI_STAT_UINT32, <otalTxPackets, NULL },

{ ODI_STAT_UINT32, &LGetECBRequests, NULL },

{ ODI_STAT_UINT32, &LGetECBFailures, NULL },

{ ODI_STAT_UINT32, &LAESEventCount, NULL },

{ ODI_STAT_UINT32, NULL, NULL},

{ ODI_STAT_UINT32, &LCancelEventFailures, NULL },

{ ODI_STAT_UINT32, NULL, NULL},

{ ODI_STAT_UINT32, NULL, NULL},

{ ODI_STAT_UINT32, <otalRxPackets, NULL },

{ ODI_STAT_UINT32, &LUnclaimedPackets, NULL },

h

LSL_STATS_TABLE LSL_StatsTable = {2, 0,
NUM_GENERIC_COUNTERS,
LGenericCounters, MaxNumberOfLogicalBoards,
LogicalBoardStatTablePtr, 0, NULL };

LSL Data Structures 9-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Table 9-4

Generic STAT_TABLE_ENTRY Counters Array Fields

Size Label Description
UINT32 LTotalTxPackets Total number of packets that requested transmission (whether they
were actually transmitted or not).
UINT32 LGetECBRequests Total number of transmit and receive ECB requests.
UINT32 LGetECBFailures Number of get ECB requests that failed because of unavailable
resources.
o UINT32 LAESEventsCount Number of completed AES events.
(\! [| UINT32 LReservedl This field is reserved.
H
> UINT32 LCancelEventFailures Number of cancel events that failed.
8 [| UINT32 LReserved2 This field is reserved.
Q UINT32 LReserved This field is reserved.
1
~ UINT32 LTotalRxPackets This field has the total number of CLSL_GetStackECB requests made
-~ to the LSL.
™~ UINT32 LUnclaimedPackets Number of incoming packets that were not claimed by any protocol
> stack.
o
Q
Q
0p)
[
g 9-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

TheLSLAPI_ARRAY function can be accessed through the LSL information
block (INFO_BLOCK) using indexes. The location of the various LSL API
services in the information block are as follows:

#define LSL_NUM_API 491
void (*LSLAPI_Array[])(void)=
{

(void (*)(void)) CLSL_GetSizedECB,

(void (*)(void)) CLSL_ReturnECB,

(void (*)(void)) CLSL_CancelEvent,

(void (*)(void)) CLSL_ScheduleAESEvent,
(void (*)(void)) CLSL_CancelAESEvent,

(void (*)(void)) CLSL_GetIntervalMarker,
(void (*)(void)) CLSL_RegisterStack

(void (*)(void)) CLSL_DeRegisterStack,

(void (*)(void)) CLSL_Reserved,

(void (*)(void)) CLSL_Reserved,

(void (*)(void)) CLSL_Reserved,

(void (*)(void)) CLSL_GetStackECB,

(void (*)(void)) CLSL_SendPacket,

(void (*)(void)) CLSL_FastSendComplete,
(void (*)(void)) CLSL_SendComplete,

(void (*)(void)) CLSL_RegisterMLID,

(void (*)(void)) CLSL_GetStackIDFromName,
(void (*)(void)) CLSL_GetPIDFromStackiDBoard,
(void (*)(void)) CLSL_GetMLIDControlEntry
(void (*)(void)) CLSL_GetProtocolControlEntry,
(void (*)(void)) CLSL_GetLSL Statistics,

(void (*)(void)) CLSL_BindStack,

(void (*)(void)) CLSL_UnbindStack,

(void (*)(void)) CLSL_AddProtocollD,

(void (*)(void)) CLSL_GetBoundBoardInfo,
(void (*)(void)) CLSL_GetLSLConfiguration,
(void (*)(void)) CLSL_DeRegisterMLID,

(void (*)(void)) CLSL_RegisterDefaultChain,
(void (*)(void)) CLSL_RegisterPreScanChain,
(void (*)(void)) CLSL_Reserved,

(void (*)(void)) CLSL_DeRegisterDefaultChain,
(void (*)(void)) CLSL_DeRegisterPreScanChain,
(void (*)(void)) CLSL_Reserved,

(void (*)(void)) CLSL_GetStartOfChain,

(void (*)(void)) CLSL_ReSubmitDefault,

(void (*)(void)) CLSL_ReSubmitPreScanRXx,
(void (*)(void)) CLSL_ReSubmitPreScanTx,
(void (*)(void)) CLSL_HoldEvent,

(void (*)(void)) CLSL_FastHoldEvent,

(void (*)(void)) CLSL_GetMaxECBBufferSize,
(void (*)(void)) CLSL_Reserved,

ZZ'IA 90Q - TT'IA 2a8ds

LSL Data Structures 9-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

(void (*)(void)) CLSL_ServiceEvents,

(void (*)(void)) CLSL_ModifyStackFilter,

(void (*)(void)) CLSL_ControlStackFilter,

(void (*)(void)) CLSL_SendProtocolinfoToOtherEngine,
(void (*)(void)) CLSL_SendProtocolinfoToPartner,
(void (*)(void)) CLSL_BindProtocolToBoard,

(void (*)(void)) CLSL_GetMultipleECBs,

(void (*)(void)) CLSL_GetPhysicalAddressOfECB

kh

INFO_BLOCK LSLAPIInfoBlock = {
LSL_NUM_API,
(void(**)(void))&LSLAPI_Array };

linker takes care of these items. With dynamic linking formats (for example, NLM
and ELF) the LSL functions can be called directly by name. Only platforms that
do not allow for dynamic linking in this manner must locate the LSL entry points
through the underlying platform—for example, entry points are located in
Windows NT by a call to the resource manager.

Note‘vvl For platforms with dynamic linkers, the above steps are unnecessary since the

9-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

chapter 9
LSL Support Routines

Chapter Overview

This chapter desibesthe Link Support Layer(SL) support routines that
comprise the Multiple Protocol Interface (MPI) and the Multiple Link Interface
(MLI). Figure 1.1isa block diagreillustrating these interfaces. The routines
inthis chapter arevailable b both protocol stacks and MLIDs.

Figure 10-1
LSL Interfaces

IPX TCP/IP AppleTalk

Protocol stacks

Multiple Protocol Interface (MPI)

Link Support Layer (LSL)

Multiple Link Interface (MPI)

Ethernet Token-Ring AppleTalk ISDN

LSL API Services

The LSL containginumber of services that aaeailable to protocol stasland
MLIDs. You can ivoke these servicd®y calling the LSL support entry point

LSL Support Routines 10-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

obtained when the protocol stack or MLID locates the LSL. This chapter
defines the following functions available from the LSL:

CLSL_AddProtocollD
CLSL_BindProtocolToBoard
CLSL_BindStack
CLSL_CancelAESEvent
CLSL_CancelEvent
CLSL_ControlStackFilter
CLSL_DeRegisterDefaultChain
CLSL_DeRegisterMLID
CLSL_DeRegisterPreScanChain
CLSL_DeRegisterStack
CLSL_FastHoldEvent
CLSL_FastSendComplete
CLSL_GetBoundBoardinfo
CLSL_GetIntervalMarker
CLSL_GetLSLConfiguration
CLSL_GetLSLStatistics
CLSL_GetMaxECBBufferSize
CLSL_GetMLIDControlEntry
CLSL_GetMultipleECBs

| CLSL_GetPhysicalAddressOfECB
CLSL_GetPIDFromStackiDBoard
CLSL_GetProtocolControlEntry
CLSL_GetSizedeCB
CLSL_GetStackECB
CLSL_GetStackiIDFromName
CLSL_GetStartofChain
CLSL_HoldEvent
CLSL_ModifyStackFilter
CLSL_RegisterDefaultChain
CLSL_RegisterMLID
CLSL_RegisterPreScanChain
CLSL_RegisterStack
CLSL_ReSubmitDefault
CLSL_ReSubmitPreScanRx
CLSL_ReSubmitPreScanTx

Spec v1l.11 - Doc v1.22

| 10-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

CLSL_ReturnECB
CLSL_ScheduleAESEvent
CLSL_SendComplete
CLSL_SendPacket

CLSL_SendProtocolinfoToOtherEngi(idetWare Server only)
CLSL_SendProtocolinfoToPartnéNetWare Server only)

CLSL_ServiceEvents
CLSL_UnbindStack

The functions above are accessed through the information block using indexes.
The location of the various CLSL functions in the information block are as
follows:

Index
0

© 00 ~NO Ol h WN -

NNNNRRRRRRRRR R
WNPFP OWOO®OWNOOUMNWNIEREO

ODI Specification: Protocol Stacks and MLIDs (C Language)

Function
CLSL_GetSizedECB
CLSL_ReturnECB
CLSL_CancelEvent
CLSL_ScheduleAESEvent
CLSL_CancelAESEvent
CLSL_GetIntervalMarker
CLSL_RegisterStack
CLSL_DeRegisterStack
Reserved
Reserved
Reserved
CLSL_GetStackeCB
CLSL_SendPacket
CLSL_FastSendComplete
CLSL_SendComplete
CLSL_RegisterMLID
CLSL_GetStackIDFromName
CLSL_GetPIDFromStackiDBoard
CLSL_GetMLIDControlEntry
CLSL_GetProtocolControlEntry
CLSL_GetLSLStatistics
CLSL_BindStack
CLSL_UnbindStack
CLSL_AddProtocollD

LSL Support Routines 10-3

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

24 CLSL_GetBoundBoardinfo

25 CLSL_GetLSLConfiguration

26 CLSL_DeRegisterMLID

27 CLSL_RegisterDefaultChain

28 CLSL_RegisterPreScanChain

29 Reserved

30 CLSL_DeRegisterDefaultChain

31 CLSL_DeRegisterPreScanChain

32 Reserved

33 CLSL_GetStartofChain

34 CLSL_ReSubmitDefault

35 CLSL_ReSubmitPreScanRx

36 CLSL_ResubmitPreScanTx

37 CLSL_HoldEvent

38 CLSL_FastHoldEvent

39 CLSL_GetMaxECBBufferSize

40 Reserved

41 CLSL_ServiceEvents

42 CLSL_ModifyStackFilter

43 CLSL_ControlStackFilter

44 CLSL_SendProtocolinfoToOtherEngine (Server
only)

45 CLSL_SendProtocolinfoToPartner (Server only)

46 CLSL_BindProtocolToBoard

a7 CLSL_GetMultipleECBs

48 CLSL_GetPhysicalAddressOfECB

Note QYA Access to the CLSL APIs, independent of the link method (dynamic or static), in
the information block can be accomplished by using the macro definitions in
ODI.H. The macros are listed below. The infoblock parameter is returned by
CLSL_InitEntryPoint. Refer to the API definitions for details on the rest of the
parameters.

CLSLEntry_GetSizedECB (infoBlock, ecbDataSize, pResourceObj, Below16Meg)
CLSLEntry_ReturnECB (infoBlock, returnedECB)

CLSLEntry_CancelEvent (infoBlock, ecbBuffer)

CLSLEntry_ScheduleAESEvent (infoBlock, timerAESECB)
CLSLEntry_CancelAESEvent (infoBlock, timerAESECB)
CLSLEntry_GetlIntervalMarker (infoBlock)

CLSLEntry_RegisterStack (infoBlock, protocolNode, protocolNumber)
CLSLEntry_DeRegisterStack (infoBlock, protocolNumber)

10-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSLEntry_GetStackECB (infoBlock, lookAheadBuf)

CLSLEntry_SendPacket (infoBlock, sendECB)

CLSLEntry_FastSendComplete (infoBlock, sendECB)

CLSLEntry_SendComplete (infoBlock, sendECB)

CLSLEnNtry_RegisterMLID (infoBlock, mlidHandlers, mlidConfigTable, boardNumber)

CLSLEntry_GetStackIDFromName (infoBlock, name, protocolNumber)

CLSLEntry_GetPIDFromStackiDBoard (infoBlock, protocolNumber, boardNumber,
errorStatus)

CLSLEntry_GetMLIDControlEntry (infoBlock, boardNumber, errorStatus)

CLSLEnNtry_GetProtocolControlEntry (infoBlock, protocolNumber, errorStatus)

CLSLEnNtry_GetLSLStatistics (infoBlock)

CLSLEntry_BindStack (infoBlock, protocolNumber, boardNumber)

CLSLEntry_UnbindStack (infoBlock, protocolNumber, boardNumber)

CLSLEntry_AddProtocollD (infoBlock, protocollD, protocolName, frameTypeString)

CLSLEnNtry_GetBoundBoardInfo (infoBlock, boardNumber, stackBuffer)

CLSLEntry_GetLSLConfiguration (infoBlock)

CLSLEntry_DeRegisterMLID (infoBlock, boardNumber)

CLSLEntry_RegisterDefaultChain (infoBlock, stackChainNode)

CLSLEntry_RegisterPreScanChain (infoBlock, pStkChnPreRxNode, pStkChnTxNode)

CLSLEntry_DeRegisterDefaultChain (infoBlock, stackChainNode)

CLSLEntry_DeRegisterPreScanChain (infoBlock, pStkChainRxNode, pStkChainTxNode)

CLSLEntry_GetStartofChain (infoBlock, boardNumber, defaultChainStartNode,
preScanRxChainStartNode, preScanTxChainStartNode)

CLSLEntry_ReSubmitDefault (infoBlock, stackChainNode, LookAheadBuf)

CLSLEntry_ReSubmitPreScanRx (infoBlock, stackChainNode, lookAheadBuf)

CLSLEntry_ResubmitPreScanTx (infoBlock, stackChainNode, transmitECB)

CLSLEntry_HoldEvent (infoBlock, holdECB)

CLSLEntry_FastHoldEvent (infoBlock, ecbBuffer)

CLSLEntry_GetMaxECBBufferSize (infoBlock)

CLSLEntry_ServiceEvents (infoBlock)

CLSLEntry_ModifyStackFilter (infoBlock, stackldentifier, boardNumber, newMask,

pCurrentMask)

CLSLEnNtry_ControlStackFilter (infoBlock, boardNumber, function, mask,
parameterl, parameter2)

CLSLEntry_SendProtocolinfoToOtherEngine (infoBlock, protocolNumber,
protocolinfo, length, infoSendCallBack)

CLSLEntry_SendProtocolinfoToPartner (infoBlock, protocolNumber, protocolinfo,

length, infoSendCallBack)

CLSLEntry_BindProtocolToBoard (infoBlock, protocolNumber, boardNumber,
userParmsString)

CLSLEnNtry_GetMultipleECBs (infoBlock, ecbDataSize, pResourceObj, nECBS)

CLSLEntry_GetPhysicalAddressOfECB (info Block, ecb)

LSL Support Routines 10-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Locating the LSL

The LSL module must reside in the system before the user can load any
Protocol Stack or MLID. On some platforms, such as the NetWare server, the
LSL may already be preloaded.

The following is the process usually used to boot an ODI system:

LSL.xxx ;Load Link Support Layer
CNE2000.xxx ;Load MLID(s)
IPX.XXX ;Load protocol suites

NW_whatever.xxx;Load Redirector/Shell/IFS etc.
MLIDs and Protocol Stacks must first obtain the LSL API entry points in order
to initialize. Table 10-1 outlines the procedure to find these entry points.

Table 10-1
Finding LSL API Entry Points for an MLID

Actor/Agent Action
MLID 1. The method used is platform dependent and implementation
dependant.

2. Returns an error to the operating system if the MLID fails to
find the API entry points.

LSL 3. Returns a pointer to the LSL's initialization entry point.
MLID 4. Calls the LSL’s initialization entry point.
LSL 5. Returns a pointer to the start of the LSL's API array and the

number of elements in the array.

Note‘vvl For platforms with dynamic linkers, the above steps are unnecessary since the
linker takes care of these items. With dynamic linking formats (for example, NLM
and ELF) the LSL functions can be called directly by name. Only platforms that

do not allow for dynamic linking in this manner must locate the LSL entry points
through the underlying platform—for example, entry points are located in
Windows NT by a call to the resource manager.

The MLID or protocol stack calls the LSL initialization entry point to get the
LSL Services entry points for the MLID and the protocol stack.

INFO_BLOCK* CLSL_InitEntryPoint (void);

10-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Note‘VI
\v

CLSL_InitEntryPoint in the above code returns a pointer to the LSL API
INFO_BLOCK structure, which is defined as follows:

typedef struct INFO_BLOCK _

{
UINT32 NumberOfAPIs;
void (**SupportAPIlArray) ();
} INFO_BLOCK;

Field descriptions:

NumberofAPIs
The number of elements in tBeipportAPIArray

(**SupportAPlArray)()

Pointer to an array of function pointers whose functions return voids.

In Windows NT, a call to the resource manager is used to obtain the LSLs entry
points.

LSL Support Routines 10-7

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

CLSL_AddProtocollD

Index 23 (0x17)

Syntax

Allows a protocol stack to register a Protocol ID
(PID) for a given frame type and protocol stack
combination.

#include <odi.h>

ODISTAT CLSL_AddProtocollD (
PROT_ID *ProtocollD,
MEON_STRING *ProtocolName,
MEON_STRING *FrameTypeString);

Input Parameters

ProtocollD
Pointer to a byte area of sid¢D_SIZEcontaining the PID.

ProtocolName

Pointer to a NULL terminated MEON string containing the short name for
the protocol stack that receives frames with the appropriate PID.

FrameTypeString

Pointer to a NULL terminated MEON string containing the name of the
frame type that is to receive the frames with the specified PID; in other
words, the contents &rameTypeStringave a value identifying the frame
type—for example, ETHERNET _II.

Output Parameters

10-8

None.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

ODISTAT_SUCCESSFUL The specified PID was successfully
registered with the LSL.

ODISTAT_BAD_PARAMETER The length of the specified protocol short
name is equal to O, is larger than the
maximum length allowed, or the frame
type identified by the FramelD has not
been registered with the LSL. In other
words, no board has registered with the
LSL using that frame type.

ODISTAT_DUPLICATE_ENTRY A PID for the specified frame type has
already been registered with the LSL,
possibly by this protocol stack, or has been
registered for another protocol stack,
which has yet to register with the LSL.

ODISTAT_NO_MORE_ITEMS The specified PID and frame type
combination could not be registered with
the LSL for the named protocol stack,
because the combination is already in use
by a differently named protocol stack or
the named protocol stack and frame type
combination already has a different PID
registered for it.

ODISTAT_OUT_OF_RESOURCHSe LSL has no resources to register
another PID for the specified frame type.

Remarks
A protocol stack invokes theLSL_GetPIDFromStackiDBoarfdinction

before it calls this function, because a PID might have been previously
registered for the specified protocol and frame type combination.

LSL Support Routines 10-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

CLSL_BindProtocolToBoard

Index 46 (Ox2E)

Syntax

Input Parameters

Output Parameters

Binds a protocol stack to an adapter and frame
type (logical board) combination, which enables
packet reception.

#include <odi.h>

ODISTAT CLSL_BindProtocolToBoard (
UINT32 ProtocolNumber,
UINT32 BoardNumber
MEON_STRING *UserParmsString);

ProtocolNumber
The Stack ID (SID).

BoardNumber
The board number for the protocol stack to bind to.

UserParmString

Pointer to an optional user specified MEON parameter string that is

implementation dependent; NULL if unused.

None.

10-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL The protocol stack was successfully
bound to the board.

ODISTAT_BAD_PARAMETER The MLID corresponding to the requested
board number or the protocol stack
corresponding to the specified SID does

not exist.
ODISTAT_DUPLICATE_ENTRY The specified binding already exists.
ODISTAT_FAIL The protocol stack failed to bind to the

specified MLID.

ODISTAT_ITEM_NOT_PRESENTWNo Protocol ID (PID) has been registered
for use by this protocol stack with the
specified board’s frame type; in other
words, a PID must be registered by calling
CLSL_AddProtocollD for the board’s
frame type.

ODISTAT_OUT_OF_RESOURCHSe call could not allocate enough
memory.

When this routine returns successfully, the specified binding has occurred. The
bound protocol stack will receive the packets that contain the registered
Protocol ID for that stack and that are received by the specified board.

ZZ'IA 90Q - TT'IA 2a8ds

This function differs fronCLSL_BindStack, because it obtains the protocol
stack control service point and executes the protocol stack’s bind control
service. This function allows a configuration entity to bind a protocol stack to
a board in an easy manner.

We recommend that you use this function to bind a protocol stack to a board
because of its ease of use, and because this function is NetWare SFTIII aware
in NetWare SFTIII environments (it manages primary/secondary server issues
of the function transparent to the user). In other words, when a protocol is
bound to a board on the primary server, the SFTIII environment automatically
causes the same operation to occur on the secondary server.

LSL Support Routines 10-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

CLSL_BindStack

Index 21 (0x15)

Syntax

Input Parameters

Output Parameters

Binds a protocol stack to an adapter and frame
type (logical board) combination. This allows
received packets to be passed from the logical
board to the protocol stack’s receive handler by
way of the LSL.

#include <odi.h>

ODISTAT CLSL_BindStack (
UINT32 ProtocolNumber,
UINT32 BoardNumber);

ProtocolNumber
The Stack ID (SID).

BoardNumber
The board number for the protocol stack to bind to.

None.

10-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL The protocol stack was successfully bound to the
board.

ODISTAT_BAD_PARAMETERhe MLID corresponding to the requested board
number or the protocol stack corresponding to
the specified SID does not exist.

ODISTAT_DUPLICATE_ The specified binding already exists.
ENTRY

ODISTAT_FAIL The protocol stack failed to bind to the specified
MLID.

ODISTAT_ITEM_NOT_ No Protocol ID (PID) has been registered for use

PRESENT by this protocol stack with the specified board’s

frame type. In other words. you must register a
PID by callingCLSL_AddProtocollD for the
board’s frame type.

ODISTAT_OUT_OF_ The call could not allocate enough memory.
RESOURCES

When this routine returns successfully, the specified binding has occurred. The
bound protocol stack will receive the packets that contain the registered
Protocol ID for that stack and that are received by the specified board.

This function differs fromCLSL_BindProtocolToBoard, in that it does not
obtain the protocol control service point but is expected to be called from the
protocol’s control service functioBind.

LSL Support Routines 10-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

CLSL_CancelAESEvent
Index 4 (0x04)

Cancels a previously scheduled AES event.

Syntax
#include <odi.h>

ODISTAT CLSL_CancelAESEvent (
AES_ECB *TimerAESECB);

Input Parameters

TimerAESECB
A pointer to the AES ECB to be canceled.

Output Parameters

None.
Return Values
ODISTAT_SUCCESSFUL The specified AES event was canceled.
ODISTAT_ITEM_NOT_PRESENT The specified AES ECB is not currently
scheduled.
ODISTAT_BAD_PARAMETER The resource tag for the AES ECB is invalid.

Remarks

This function removes a scheduled ECB from the LSL's event queue. If the
AES ECB was canceled, tB€CB_Statudield is set td/ODISTAT _CANCELED
and cast as a UINT16. The defined ESR is not called.

10-14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_CancelEvent
Index 02 (0x02)

Cancels a previously scheduled event.

Syntax
#include <odi.h>

ODISTAT CLSL_CancelEvent (
ECB *ECBBuffer);

Input Parameters

ECBBuffer
Pointer to the ECB to be canceled.

Output Parameters None.

Return Values

ODISTAT_SUCCESSFUL The specified event was canceled.

ODISTAT_ITEM_NOT_ The specified ECB is not currently scheduled.
PRESENT

ZZ'IA 90Q - TT'IA 2a8ds

Remarks

This function removes an ECB from the LSL’s event queue. If the ECB was
canceled, th&CB_Statudield is set tc(ODISTAT_CANCELERnNd is cast as
a UINT16. The defined ESR is not called.

LSL Support Routines 10-15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_ControlStackFilter
Index 43 (0x2B)

This routine allows an MLID or some other agent to
call all stacks that have at least one of the mask bits
set in the Mask parameter with a notification of a
change of state of the MLID and that match the
protocol stack’s filter mask settings. These stacks
must also be bound/registered to the board
number specified to be notified.

Syntax
#include <odi.h>

ODISTAT CLSL_ControlStackFilter (
UINT32 BoardNumber,
UINT32 Function,
UINT32 Mask,
void *Parameterl,
void *Parameter2);

Input Parameters

BoardNumber

Spec v1l.11 - Doc v1.22

The logical board number notifying the filtering of packets to protocol
stacks, which are bound/registered with this logical board (bound and
chained protocol stacks).

Function
The control handler function number to be called.

Mask
The filter mask for all stacks to be called.

Parameterl
A possible parameter to pass through to a control handler function.

| 10-16 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

Parameter2
A possible parameter to pass through to a control handler function.

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL All stacks bound/registered with the logical
board with their corresponding mask bit set have
been notified.

ODISTAT_ITEM_NOT_PRESENT The specified board does not exist.

Remarks

One example of this function’s use is when an MLID enters promiscuous mode,
it can use this routine to call all protocol stacks who need to know that the
MLID is now in promiscuous mode.

the logical board is operating on; in other words, this function updates other
protocol stacks that are operating on logical boards that have the same name
and instance as the logical board specified by BoardNumber. Also, see the
discussion of CLSL_ModifyStackFilter later in this chapter.

Note‘vvl This function updates all stacks associated with the physical LAN adapter that

LSL Support Routines 10-17

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

CLSL_DeRegisterDefaultChain

Index 30 (Ox1E)

Deregisters a default protocol stack from the
specified board.

Syntax

#include <odi.h>

ODISTAT CLSL_DeRegisterDefaultChain (
PS_CHAINED_RX_NODE *StackChainNode);

Input Parameters

StackChainNode
Pointer to the node structure defining this chained stack.

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL The protocol stack was successfully
deregistered.

ODISTAT_BAD_PARAMETERere is no MLID registered for the board
number provided ilstackChainNode

ODISTAT _ITEM_NOT _ There is no default chain stack registered for this
PRESENT MLID with the providedStackChainNode

10-18 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Remarks

After this call, the protocol stack will not receive any more incoming packets
from the specified board (unless the protocol stack has an outstanding call to
CLSL_RegisterPrescanChainor CLSL_RegisterStack/CLSL_BindStaclk
CLSL_BindProtocolToBoard) and must calCLSL_RegisterDefaultChain

again to start receiving packets.

ZZ'IA 90Q - TT'IA 2a8ds

LSL Support Routines 10-19

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

CLSL_DeRegisterMLID

Index 26 (Ox1A)

Syntax

Input Parameters

Output Parameters

Return Values

Called by the MLID to notify the LSL of a board
whose number is no longer available to the system.

#include <odi.h>

ODISTAT CLSL_DeRegisterMLID (
UINT32 BoardNumber);

BoardNumber
The board number to deregister.

None.

ODISTAT_SUCCESSFUL The MLID has been successfully deregistered.
ODISTAT_BAD_PARAMETERhe board number is invalid.

Remarks

Once the LSL has been notified that a board is no longer available, the LSL
calls all protocol stacks using that board to notify them of the deregistration.

The MLID frees all LSL transmit control blocks and receive control blocks
(ECBSs) before invoking this function. Remember to check internal send/
receive queues for ECBs.

10-20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_DeRegisterPreScanChain

Index 31 (Ox1F)

Syntax

Input Parameters

Output Parameters

Deregisters a prescan receive and/or a prescan
transmit protocol stack from the specified board.

#include <odi.h>

ODISTAT CLSL_DeRegisterPreScanChain (
PS_CHAINED_RX_NODE *PStkChainRxNode,
PS_CHAINED_TX_NODE *PStkChainTxNode);

PStkChainRxNode

Pointer to the node structure defining the prescan receive chained stack. If
NULL, no prescan receive stack is being deregistered.

PStkChainTxNode

Pointer to the node structure defining the prescan transmit chained stack.
If NULL, no prescan transmit stack is being deregistered.

None.

LSL Support Routines 10-21

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Return Values

ODISTAT_SUCCESSFUL The protocol stack was successfully
deregistered.

ODISTAT_BAD_PARAMETER There is no MLID registered for the board
number provided i?StkChainRxNoder
PStkChainTxNode

ODISTAT_ITEM_NOT_PRESENT There is no prescan receive stack or there is no
prescan transmit stack registered for this MLID
with the provided®StkChainRxNoder
PStkChainTxNode

Remarks

After this call, the protocol stack will not receive any more incoming and/or
outgoing packets (unless the protocol stack has an outstanding
CLSL_RegisterDefaultChain or CLSL_RegisterStackCLSL_BindStack/
CLSL_BindProtocolToBoard). The protocol stack must make a call to
CLSL_RegisterPreScanChainto again start receiving packets.

When deregistering both a receive and transmit protocol stack, the receive stack
is deregistered first.

The operation to deregister both the receive and transmit prescan chained
stacks is executed monoatomically.

Spec v1l.11 - Doc v1.22

B 10-22 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

CLSL_DeRegisterStack
Index 07 (0x07)

Removes a protocol stack from the LSLs list of
bound protocol stacks.

Syntax
#include <odi.h>

ODISTAT CLSL_DeRegisterStack (
UINT32 ProtocolNumber);

Input Parameters

ProtocolNumber
The Stack ID (SID).

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL The protocol stack was successfully
deregistered.

ODISTAT_ITEM_NOT_PRESENT Either the protocol stack is not registered, or the
ProtocolNumbeiis greater than the maximum
number of stacks supported by the LSL.

LSL Support Routines 10-23

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Remarks

10-24

After this call, the protocol stack will not receive any more incoming packets
(unless the protocol stack has an outstan@ingL_ RegisterDefaultChainor
CLSL_RegisterPreScanChain. The protocol stack must make the
CLSL_RegisterStack/CLSL_BindStackKCLSL_BindProtocolToBoard

calls to again start receiving packets.

This command implicitly unbinds the protocol stack from all the MLIDs to
which it was bound.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_FastHoldEvent

Index 38 (0x26)

Syntax

Input Parameters

Note‘vl
v

Output Parameters

This routine may improve the performance of
drivers that call CLSL_ServiceEvents
immediately after calling CLSL_HoldEvent .
CLSL_FastHoldEvent may dispatch the ECB
directly to the protocol stack.

#include <odi.h>

void CLSL_FastHoldEvent (
ECB *ECBBuffer);

ECBBuffer
Pointer to an ECB to be processed immediately.

If the ECB is a receive ECB, the following fields of the ECB must be set before
calling this routine:

ECB_PreviousLink

ECB_Status

ECB_DriverWorkSpace
ECB_DatalLength

ECB_FragmentCount

ECB_Fragment (addresses and lengths)

Any other fields (for example, ECB_ProtocollD) that the protocol stack requires
must be filled in by the protocol stack from the LOOKAHEAD structure before
returning the ECB buffer to be filled during the call to CLSL_GetStackECB .

None.

LSL Support Routines 10-25

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Return Values

Remarks

10-26

Note‘VI
\v

None.

This process can cause the board’s receive handling routine to be called.

Normally, the ECB is placed on the LSL's event queue for processing using
CLSL_HoldEventWhen the adapter finishes servicing its hardware, it calls
CLSL_ServiceEvents inform the LSL to process any ECBs the adapter has
placed thereCLSL_FastHoldEvenhay allow intelligent adapters that have
finished servicing the adapter hardware by the time the ECB is presented to the
LSL to reduce latency by passing the ECB directly to the protocol stack for
processing.

The event service routine that is called@lySL_FastHoldEvent must not
poll.

This functionality is not possible on any multi-processor capable platforms.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_FastSendComplete

Index 13 (0x0D)

Syntax

Input Parameters

This routine improves the performance of drivers
that call CLSL_ServiceEvents immediately after
calling CLSL_SendComplete .
CLSL_FastSendComplete dispatches the ECB
directly to the protocol stack.

#include <odi.h>

void CLSL_FastSendComplete (
ECB *SendECB);

SendECB
Pointer to a transmit ECB, which is to be processed immediately.

Output Parameters

Return Values

None.

None.

LSL Support Routines 10-27

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Remarks

10-28

Note‘VI
v

This process can cause the board’s send handling routine to be called .

Normally, the ECB is placed on the LSL's event queue for processing using
CLSL_SendComplete When the adapter finishes servicing its hardware, it
callsCLSL_ServiceEventsto inform the LSL to process any ECBs the adapter
has placed ther€LSL_FastSendCompleteallows intelligent adapters that

have finished servicing the adapter hardware by the time the ECB is presented
to the LSL to reduce latency by passing the ECB directly to the protocol stack
for processing.

The event service routine that is calledih&L FastSendCompletemust not
poll.

Passing the ECB directly to the protocol stack may not be possible on multi-
processor platforms.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_GetBoundBoardInfo
Index 24 (0x18)

Allows a protocol stack to check the LSL to
determine the registered protocol stacks and
Protocol IDs that are bound or the boards that the
protocol stacks are registered for.

Syntax
#include <odi.h>

ODISTAT CLSL_GetBoundBoardinfo (
UINT32 BoardNumber,
UINT32*StackBuffer);

Input Parameters

BoardNumber

The value of the logical board that is checked to determine the protocol
stacks bound to it.

Input/Output Parameters

StackBuffer

Pointer to a array of UINT32 sized buffers where the number of bound
stacks and their Stack IDs (SIDs) are returned.

On entry, the first entry in the stack buffer contains the total size of the
stack buffer in bytes.

Note QYA This buffer must be large enough to contain the maximum number
" of stacks (the maximum number of stacks is available from the LSL
configuration table) and a count field (buffer size = max stacks + 1).
On exit, the first entry in the buffer contains the number of bound stacks to
the specified board, followed by the bound stacks’ SIDs.

LSL Support Routines 10-29

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Return Values

10-30

ODISTAT_SUCCESSFUL The command was successfully completed.
ODISTAT_NO_MORE_ The board number does not exist and there are

ITEMS no boards at higher values.
ODISTAT_ITEM_NOT_ The board number does not exist but there might
PRESENT be boards at higher values.

ODISTAT_OUT_OF _ The stack buffer provided is insufficient for the
RESOURCES parameters to be returned. The first entry in the

stack buffer contains the number of bytes
required for the count of bound protocol stacks
and their SIDs that the MLID wants to return.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_GetintervalMarker
Index 05 (0x05)

Returns a timing marker in milliseconds.

Syntax
#include <odi.h>

UINT32 CLSL_GetintervalMarker (void);

Input Parameters

None.

Output Parameters

None.

Return Values

Milliseconds A time value in milliseconds.

Remarks

ZZ'IA 90Q - TT'IA 2a8ds

The timing marker is used for machine-independent time measurement. The
actual value returned has no relation to any real-world absolute time. However,
when time marker values are compared with each other, the difference is
elapsed time in milliseconds.

Note‘vvl This function is intended for use in the timing of low resolution events only.

LSL Support Routines 10-31

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

CLSL_GetLSLConfiguration

Index 25 (0x19)

Syntax

Returns a pointer to the LSL configuration table

#include <odi.h>

LSL_CONFIG_TABLE *CLSL_GetLSLConfiguration (void);

Input Parameters

None.

Output Parameters

None.

Return Values

Remarks

See Also

10-32

ConfigTable Pointer to the LSL configuration table.

The LSL configuration table is normally used to obtain the LSL’s current
version number. The version number can be used to determine if certain LSL
features are present.

SeeChapter 9: LSL Data Structurdésr more on the LSL configuration table.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_GetLSL Statistics

Index 20 (0x14)

Returns a pointer to the LSL statistics table.

Syntax
#include <odi.h>

LSL_STATS_TABLE *CLSL_GetLSLStatistics (void);

Input Parameters

None.
Output Parameters
None.
Return Values
StatsTable Pointer to the LSL statistics table.

See Also

SeeChapter 9: LSL Data Structurdsr a description of the LSL statistics
table.

LSL Support Routines 10-33

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

CLSL_GetMaxECBBufferSize

Index 39 (0x27)

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Returns the maximum LSL ECB buffer size.

#include <odi.h>

UINT32 CLSL_GetMaxECBBufferSize (void);

None.

None.

ECBBufferSize
The maximum LSL ECB buffer size.

0x00000000
No LSL ECB buffers defined.

This size is the maximum amount of buffer space available, including one
fragment to store data in after the ECB’s defined fields have taken up their
required space. In other words, the returned value allows for the fields defined
in the ECB structure.

10-34 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

CLSL_GetMLIDControlEntry

Index 18 (0x12)

Syntax

Input Parameters

Output Parameters

Returns a pointer to the specified MLID’s
information block, which describes the control
handler routines.

#include <odi.h>

INFO_BLOCK *CLSL_GetMLIDControlEntry (
UINT32 BoardNumber,
ODISTAT *ErrorStatus);

BoardNumber

The logical board number whose information block is desired.

ErrorStatus

If the returned value is a NULL pointérorStatusis one of the
following:

ODISTAT_NO_MORE_ITEMS

The board number does not exist and there are no boards at higher values.

ODISTAT_ITEM_NOT_PRESENT

The board number does not exist but there might be boards at higher

values.

LSL Support Routines 10-35

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Return Values

APIlInfoBlock A pointer to the MLID’s information block, which describes
the array of MLID control handler routines.

NULL An error condition that is indicated b¥rfrorStatus.

Remarks

The MLID control handler routines can &adled directly by a protocol or
an application to obtain configuration information and to issue defined
commands.

N

N See Also

H

> | See Chapter 18, "MLID Control Routines" for the defined MLID control

Q functions.

o

Q

1

H

h'

H

>

o

Q

Q

0p)

—

B 10-36 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

CLSL_GetMultipleECBs

Index 47 (Ox2F)

Syntax

Input Parameters

Note‘VI
v

Output Parameters

Returns a pointer to the first ECB on the linked list.
MLIDs and protocol stacks use this call to get
linked lists of transmit buffers and receive buffers.

#include <odi.h>

ECB *CLSL_GetMultipleECBS (
UINT32 ECBDataSize,
void *pResourceObj,
UINT32 *nECBs);

ECBDataSize

The amount of data space required (in bytes) for the linked list of transmit
and receive buffers.

The size of the ECB is not included in ECBDataSize. The LSL adds the size
of the ECB structure when generating an ECB of ECBDataSize.

pResourceObj

Pointer to a platform specific object used for resource management. This
value is a pass-through value, and is not interpreted.

nECBs
Pointer to the number of ECBs requested.

nECBs
Pointer to the number of ECBs allocated.

LSL Support Routines 10-37

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Return State

Remarks

10-38

Note‘VI
\v

Pointer to the first ECB on the linked list. NULL if no ECBs are available.

If the number of ECBs requested is larger than the number of ECBs available,
this procedure allocates all available ECBs and returns a pointer to the first
ECB on the list.

On returnnECBspoints to the number of ECBs allocated. If no ECBs are
available hECBspoints to a value of zero.

All pointers are logical pointers, and the returned linked list of ECBs is linked
according to the ECB structure.

Communications buffers are critical. Protocol stacks must use only a minimal
number of buffers concurrently and must return the buffers when they are
finished with them, using CLSL_ReturnECB .

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_ GetPhysicalAddressOfECB

Index 48 (0x030)
Gets the physical address of an LSL ECB.

Syntax
#include <odi.h>

ECB *CLSL_GetPhysicalAddressOfECB
(ECB *ech);

Input Parameters

ech
Pointer (logical address) to an LSL ECB.

Output Parameters

None.

Return Values

Pointer (physical address) of the ECB structure.

ZZ'IA 90Q - TT'IA 2a8ds

Remarks

This function can be only be used for ECBs obtained via
CLSL_GetSizedECBor CLSL_GetMultipleECBs.

LSL Support Routines 10-39

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

CLSL_GetPIDFromStackIDBoard

Index 17 (0x11)

Syntax

Input Parameters

Output Parameters

Returns a pointer to a Protocol ID (PID) that
corresponds to a protocol and frame type
combination.

#include <odi.h>

PROT_ID *CLSL_GetPIDFromStackiDBoard (
UINT32 ProtocolNumber,
UINT32 BoardNumber,
ODISTAT *ErrorStatus);

ProtocolNumber
The Stack ID (SID).

BoardNumber
The board number.

ErrorStatus
If the returned value is a NULL pointdtrrorStatusis one of the
following:

ODISTAT_BAD_PARAMETER
The SID or the board number does not exist.

ODISTAT_ITEM_NOT_PRESENT

A Protocol ID has not been registered for the specified board and frame
type combination.

10-40 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

ProtocollD A pointer to a byte area &fID_SIZEsize, which contains
the PID.
NULL An error condition that is indicated BrrorStatus

Remarks

Protocol stacks use the returned PID to fill in #@&B_ProtocollDfield of all
send ECBs. The returned PID is the value assigned to the protocol for the frame
type (for example, ETHERNET _II) that is represented by the board number.

If a PID is not present, a protocol stack can add its own Protocol ID using
CLSL_AddProtocollD (seeChapter 10: LSL Support Routines

ZZ'IA 90Q - TT'IA 2a8ds

LSL Support Routines 10-41

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

CLSL_GetProtocolControlEntry

Index 19 (0x13)

Syntax

Input Parameters

Output Parameters

Returns a pointer to the specified protocol stack’s
information block, which describes the control
handler routines.

#include <odi.h>

INFO_BLOCK *CLSL_GetProtocolControlEntry (
UINT32 ProtocolNumber,
ODISTAT *ErrorStatus);

ProtocolNumber
The Stack ID (SID) whose information block is desired.

ErrorStatus

If the returned value is a NULL pointdrrorStatusis one of the
following:

ODISTAT_NO_MORE_ITEMS
The SID does not exist and there are no others at higher values.

ODISTAT_ITEM_NOT_PRESENT
The SID does not exist but there might be others at higher values.

10-42 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

APIlInfoBlock A pointer to protocol stack’s information block, which
describes the array of protocol stack control handler
routines.

NULL An error condition that is indicated BrrorStatus

Remarks

The protocol control handler routine can be called directly by a protocol or an
application to obtain configuration information and to issue defined
commands. (Se€hapter 7: Protocol Stack Control Routinfes the defined
protocol control functions.)

routine contained a board number parameter, which was used to get the
non-chained default or prescan receive protocol stack’s control handler routines
(for example, it was used before the introduction of chained protocol stacks).
Users must now use the CLSL_GetStartofChain command to get the control
handler routines for default, prescan receive, and prescan transmit protocol
stacks.

Note‘vvl In previous assembly versions of the ODI specification, the corresponding

ZZ'IA 90Q - TT'IA 2a8ds

LSL Support Routines 10-43

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

CLSL_GetSizedECB

Index 00 (0x00)

Syntax

Input Parameters

Note‘VI
\v

Output Parameters

Called by the MLID or protocol stack for several
purposes, such as obtaining transmit or receive
buffers; returns a pointer to an ECB.

#include <odi.h>

ECB *CLSL_GetSizedECB (
UINT32 ECBDataSize,
void *pResourceObj,
BOOLEAN Belowl1l6Meg);

ECBDataSize

The amount of data space required (in bytes) for the transmit and receive
buffers.

The size of the ECB is not included in ECBDataSize. The LSL adds the size
of the ECB structure when generating an ECB of ECBDataSize.

pResourceObj
Pointer to a platform specific object used for resource management. This
is a pass through value and is not interpreted.

Belowl6Meg

If set to TRUE, memory for the ECB is allocated from memory below the
16MB boundary. Normally, protocol stacks call with this value set to
FALSE.

None.

10-44 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

ECBBuffer A pointer to an ECB.

NULL An error condition indicating that there are no free ECBs
available.

Remarks

You must keep in mind that communications buffers are a critical resource, and
a protocol stack must not use a large number of buffers concurrently.

The protocol stack returns the buffer us@igSL_ReturnECB when the
protocol stack has finished with the buffer.

Note‘vvl All buffers allocated by this function are physically and logically contiguous.
An ECB allocated by this function contains only one fragment. The address and

the buffer size in the FRAGMENT_STRUCT element of the ECB fragment list
must not be altered by the caller.

ZZ'IA 90Q - TT'IA 2a8ds

LSL Support Routines 10-45

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

CLSL_GetStackECB

Index 11 (0Ox0B)

Syntax

Input Parameters

Output Parameters

Called by the MLID to obtain communication
buffers from a protocol stack through the LSL.

#include <odi.h>

ODISTAT CLSL_GetStackECB (
LOOKAHEAD *LookAheadBuf);

LookAheadBuf

Pointer to a LOOKAHEAD structure, which defines the received packet.
See the "Receive Lookahead" section in Chapter 5, "Protocol Stack Packet
Reception".

None.

10-46 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL The protocol stack has returned a pointer in the
LOOKAHEAD structure’s ECB field to a
receive ECB to be filled with the packet.

If the protocol stack was able to get everything it
needed from the LOOKAHEAD, the
LkAhd_ReturnedECB field will be setto NULL,
indicating that additional data does not need to

be copied.
ODISTAT_SUCCESS_ The protocol stack has accepted the packet and
TAKEN has taken the prefilled LSL ECB associated with

the LOOKAHEAD structure’s

LkAhd_PreFilledECHield.
ODISTAT_OUT_OF_ The LSL was unable to obtain an ECB for this
RESOURCES packet.

On entry,CLSL_GetStackECB requires a pointer to the LOOKAHEAD
structure. The returned ECB’s fragment count and fragment descriptor fields
describe the buffers into which the packet is placed.

Regardless of whether the protocol stack is bound, prescan, or default, the
protocol stack is passed LOOKAHEAD data whenever its receive handler is
invoked. This data is used to determine into which receive buffers (if any) the
data is placed. (Receive buffers can be fragmented.) If the protocol stack
determines that it will consume the packet, it must build an ECB that describes
the receive buffers and then return that ECB to the MLID through the LSL. The
MLID uses the ECB’s description of the receive buffers to move the data from
the LAN adapter into the described protocol receive buffers. When the MLID
has completed the data move, it passes the ECB to the LSL for event
completion.

ZZ'IA 90Q - TT'IA 2a8ds

Alternatively, if the LOOKAHEAD structure has an LSL ECB associated with
it (LkAhd_PreFilledECBs not NULL), the protocol stack can accept the
packet by signaling that it has accepted the packet and taken the associated
ECB, which it returns to the LSL later. If a protocol stack performs this
operation, it must queue the ECB for processing at a later point, since the
LOOKAHEAD indication is usually made at privileged time by an MLID. If

LSL Support Routines 10-47

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

10-48

Note‘VI
\4

the protocol stack chooses not to make use of the provided ECB in the
LOOKAHEAD structure and returns its own ECB to be filled, the LSL
performs the prefilled ECB to stack ECB copy of data, and by so doing,
simplifies the operation of the MLID.

MLIDs that provide a prefilled ECB in the LOOKAHEAD structure do not need
to return the ECB to the LSL, since the LSL always returns the prefilled ECB to
its buffer pool before returning to the caller of this function. When prefilled ECBs
are used, the return value is ODISTAT_SUCCESS_TAKEN or
ODISTAT_OUT_OF_RESOURCES.

If the protocol stack requires the EEBotocollD, BoardNumberand
ImmediateAddresields to be filled in, the protocol stack must get them from
the LOOKAHEAD structure and place them in the relevent ECB fields.

When ODISTAT_SUCCESSFUL is returned, tHeAhd_ReturnedECBnay
contain a NULL ECB. This allows an MLID to correctly maintain its statistics.
This may occur if the protocol stack was able to retrieve all the necessary
information from the LOOKAHEAD data.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_GetStackIDFromName
Index 16 (0x10)

Allows a protocol stack or an application to obtain
its own or any other Stack ID (SID).

Syntax
#include <odi.h>

ODISTAT CLSL_GetStackIDFromName (
MEON_STRING *Name,
UINT32 *ProtocolNumber);

Input Parameters

Name

Pointer to a NULL terminated MEON string containing the short name of
the protocol stack.

Output Parameters

ProtocolNumber

Pointer to a UINT32 buffer where this function returns the SID if
successful.

ZZ'IA 90Q - TT'IA 2a8ds

LSL Support Routines 10-49

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values
ODISTAT_SUCCESSFUL Function completed successfully; a SID has
been returned.

ODISTAT_BAD_PARAMETERne length of the stack name given is greater
than the maximum allowed or is equal to O.

ODISTAT_ITEM_NOT_ The named protocol stack is not presently
PRESENT registered.

Remarks

The stack name is not case sensitive.

Spec v1l.11 - Doc v1.22

| 10-50 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

CLSL_GetStartofChain

Index 33 (0x21)

Syntax

Input Parameters

Output Parameters

Returns pointers to pointers to the start of the
chains for the prescan transmit, prescan receive,
and default stack chains for the specified board.

#include <odi.h>

ODISTAT CLSL_GetStartofChain (
UINT32 BoardNumber,

PS_CHAINED_RX NODE
**DefaultChainStartNode,

PS_CHAINED_RX NODE
**PreScanRxChainStartNode,

PS_CHAINED_TX_NODE
*PreScanTxChainStartNode);

BoardNumber

The board number for which to obtain the start of the chained protocol
stacks.

ZZ'IA 90Q - TT'IA 2a8ds

DefaultChainStartNode

Pointer to a pointer to the start of the default stack chain for the specified
board number.

PreScanRxChainStartNode

Pointer to a pointer to the start of the prescan receive stack chain for the
specified board number.

PreScanTxChainStartNode

Pointer to a pointer to the start of the prescan transmit stack chain for the
specified board number.

LSL Support Routines 10-51

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Return Values

ODISTAT_SUCCESSFUL Command successfully executed.
ODISTAT_BAD_PARAMETERvalid board number.

Remarks

If there are no stacks in the relevant chain, the pointer returned points to a
NULL.

Spec v1l.11 - Doc v1.22

| 10-52 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

CLSL_HoldEvent

Index 37 (0x25)

Syntax

Allows a protocol stack or MLID to place a
previously allocated ECB buffer on the LSLs event
gueue to be processed at service events time.

#include <odi.h>

void CLSL_HoldEvent (
ECB *HoldECB);

Input Parameters

HoldECB

Pointer to an ECB to place on the LSL's event queue for processing when
CLSL_ServiceEventsis executed.

If the ECB is a receive ECB, the following fields of the ECB must be set
before calling this routine:

MLID
ECB_PreviousLink
ECB_Status
ECB_DriverWorkSpace
ECB_DatalLength
Protocol Stack
ECB_FragmentCount
ECB_Fragment Addresses and Lengths

Note V! If the protocol stack gets the ECB from the LSL (CLSL_GetSizedECB), the
protocol stack must not modify ECB_FragmentCount or ECB_Fragment
Addresses and Lengths.

Any other fields (for examplé&CB_ProtocollD, ECB_BoardNumber
ECB_ImmediateAddresthat the protocol stack requires must be filled in
by the protocol stack from the LOOKAHEAD structure before returning
the ECB buffer to be filled during the call@.SL_GetStackECB.

LSL Support Routines 10-53

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Output Parameters

None.

Return Values

An ECB is always successfully placed on the LSL's event queue.

Spec v1l.11 - Doc v1.22

B 10-54 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

CLSL_ModifyStackFilter

Index 43 (0Ox2A)

Syntax

Input Parameters

Output Parameters

Return Values

Allows a stack of any type to modify its filter mask.

#include <odi.h>

ODISTAT CLSL_ModifyStackFilter (
void *Stackldentifier,
UINT32 BoardNumber,
UINT32 NewMask,
UINT32 *pCurrentMask);

Stackldentifier

Pointer is either a Stack ID (SID) identifying a bound protocol stack (in
other words, value is less than the maximum number of bound protocol
stacks supported), or the pointer is a pointer to a stack chain node.

BoardNumber

The logical board number where the filtering of packets to the supplied
SID is modified.

NewMask

The new filter mask for the stack and board combination (O for query).
Table 10-2 gives the bit definitions.

pCurrentMask

Returns a pointer to the current filter mask setting. Table 10-2 gives the bit

definitions.

ODISTAT_SUCCESSFUL

LSL Support Routines 10-55

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

The new filter mask is set for the stack and board combination, and/or if
query, the current filter mask for the stack/board combination is returned.

ODISTAT_BAD_PARAMETER
Either the specified SID or the board does not exist.

ODISTAT _ITEM_NOT_PRESENT
The stack and board combination does not exist.

Remarks

When a bound stack registers with the LSL, it defaults to only receiving direct,
supported multicast, and broadcast addressed packets. A chained protocol
stack must specify the type of packets it wants to receive in its filter mask when
it registers for a board.

A stack, after binding/registering with a board, can modify its filter to allow it
to specify the type of packets that it now wishes to have passed to it by the LSL.
Normally, bound protocol stacks use the default setting for the mask with the
filter functions being used by chained protocol stacks for bridging, traffic
monitoring, etc.

Note V! A chained protocol stack can be configured as a network monitor by filtering for
all direct, remote, and error packets.

Spec v1l.11 - Doc v1.22

| 10-56 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

Table 10-2
CLSL_ModifyStackFilter

Name

DT_MULTICAST

DT_BROADCAST

DT_REMOTE_UNICAST

DT_REMOTE_MULTICAST

DT_SOURCE_ROUTE

DT_ERROR

DT_MAC_FRAME

DT_DIRECT

DT_RX_PRIORITY

Description

Receive supported, group addressed packets such as
multicast addressed packets that the MLID is configured to
receive.

Receive broadcast packets.

Receive directed packets whose addresses do not match that
of the MLID’s node address—for example, if this bit is set and
the MLID is in promiscuous mode, it passes received,
directed packets destined for another workstation (the group
address bit is not set in the destination address of the
packet's MAC header). Note, routing of receive packets can
occur if source routing is enabled.

Receive unsupported, group addressed packets that the
MLID is not configured to receive—for example, multicast
packets.

Receive source routed packets.

Receive packets that the MLID is configured to receive and
that contain errors.

Receive frame packets that are non-data frames. Note, MAC
frames do not curtain source routing information.

Receive directed packets.

Receive priority packets.

LSL Support Routines 10-57

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

CLSL_RegisterDefaultChain

Index 27 (0x1B)

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Registers a default protocol stack for the specified
board.

#include <odi.h>

ODISTAT CLSL_RegisterDefaultChain (
PS_CHAINED_RX_NODE *StackChainNode);

StackChainNode
Pointer to the node for the chained protocol stack.

None.

ODISTAT_SUCCESSFUL The protocol stack was successfully
registered.

ODISTAT_BAD_PARAMETERither the specified board does not exist or an

invalid stack chain position was requested.

ODISTAT _DUPLICATE_ Requested chain position already occupied.

ENTRY

After this call, the protocol stack will receive incoming packets from the
specified board.

10-58 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

On reception, the default chain stack is called with a pointer to a
LOOKAHEAD structure.

PS_CHAINED_RX_NODE Structure

typedef struct PS CHAINED RX_ NODE_

{

struct PS CHAINED_RX_NODE_ *StackChainLink;

UINT32 StackChainBoardNumber;

CHNPOS StackChainPositionRequested;

ODISTAT (*StackRxChainHandler)(LOOKAHEAD?,
struct _PS_CHAINED_RX_NODE_ *);

INFO_BLOCK *StackChainControl;

UINT32 StackChainFilter;

void *StackChainContext;

void *StackChainResourceObj;

} PS_CHAINED_RX_NODE;

Field Descriptions

StackChainLink

Pointer to the next node in the chain, which is filled in by the LSL—NULL
terminated.

StackChainBoardNumber
Logical board number to register for.

StackChainPositionRequested
Position in chain desired.
StackChainPositionRequestisddefined by the following values:

CHNPOS_FIRST_MUST
Load at very first position in chain.

CHNPOS_FIRST_NEXT

Load at next available position at front of chain.

CHNPOS_LOAD_ORDER
Chain position dependent on load order.

LSL Support Routines 10-59

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

10-60

CHNPOS_LAST_NEXT
Load at next available position at end of chain.

CHNPOS_LAST_MUST
Load at very end of chain.

StackRxChainHandler
Pointer to the default stack’s receive handler. See “Protocol Receive
Handler for Prescan and Default StacksCimapter 5: Protocol Stack
Packet Reception

StackChainControl
Pointer to the default stack’s information block for control handler
routines.

StackChainFilter

The filter mask for the stack and board combination. Refer to
CLSL_ModifyStackFilter for a description of the operation and values
for this filter mask.

StackChainContext

Pointer to context used by the chained stack; in other words, a pointer to
any context that the chained protocol stack desires when using the chained
receive node structure.

StackChainResourceObj

Pointer to a platform specific object used for resource management. This
value is a pass through value and is not interpreted.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_RegisterMLID
Index 15 (OxOF)

Called by the driver initialization procedure to
register a logical board with the LSL.

Syntax
#include <odi.h>

ODISTAT CLSL_RegisterMLID (
MLID_REG *MLIDHandlers,
MLID_CONFIG_TABLE *MLIDConfigTable,
UINT32 *BoardNumber);

Input Parameters

MLIDHandlers
Pointer to MLID’s registration structure containing pointers to the MLID
transmit and control handling interfaces.

MLIDConfigTable

Pointer to the MLID configuration table that is attempting to register with
the LSL. This table is complete, except for values returned by the LSL. In
other words, it haMLIDCFG_MaxFrameSizeMLIDCFG_FramelD
pointers to names, etc. filled except for the logical board number, which is
returned by this call.

BoardNumber

Pointer to the logical board number returned for this MLID.

Output Parameters

None.

LSL Support Routines 10-61

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

10-62

Return Values

Remarks

MLID_REG Structure

ODISTAT_SUCCESSFUL The MLID was successfully registered with the

LSL.
ODISTAT_OUT_OF_ There is no more room to register another MLID
RESOURCES with the LSL.

The MLID uses the logical board number returned by the LSL when referring
itself to the LSL and any other entity of the ODI specification—for example,
protocol stacks.

typedef struct MLID_REG

{
void (*MLIDSendHandler)(ECB*, void *);
INFO_BLOCK *MLIDControlHandler;
void *MLIDSendContext;
void *MLIDResourceObj;
void *MLIDModuleHandle;
} MLID_REG;

Field Descriptions

MLIDSendHandler
Pointer to the MLID’s transmit function.
Note: MLIDSendHandler is called with a transmit ECB and a pointer to
theMLIDSendContext that it provided to the LSL when it registered
successfully with the LSL.

MLIDControlHandler
Pointer to the MLID’s information block (INFO_BLOCK) for it’s control
functions.

MLIDSendContext

Pointer to a MLID defined context to be passed to the MLID when it's send
handler is called.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

MLIDResourceObj
Pointer to a platform specific object that is used for resource management.
This value is a pass through value and is not interpreted.
MLIDModuleHandle

Pointer to the module handle provided by the loader to the MLID when the
loader loaded the MLID.

ZZ'IA 90Q - TT'IA 2a8ds

LSL Support Routines 10-63

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

CLSL_RegisterPreScanChain

Index 28 (0x1C)

Registers a prescan receive protocol stack and/or
a prescan transmit protocol stack for the specified
board.

Syntax
#include <odi.h>

ODISTAT CLSL_RegisterPreScanChain (
PS_CHAINED_RX_NODE *PStkChnPreRxNode,
PS_CHAINED_TX_NODE *PStkChnPreTxNode);

Input Parameters

*PStkChnPreRxNode

Pointer to the node for the chained received protocol stack. If NULL, no
prescan receive chain stack is being registered.

*PStkChnPreTxNode

Pointer to the node for the chained transmit protocol stack. If NULL, no
prescan transmit chain stack is being registered.

Output Parameters

None.

10-64 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

ODISTAT_SUCCESSFUL The protocol stack was successfully registered.

ODISTAT_BAD_PARAMETERither the specified board does not exist or an
invalid stack chain position was requested.

ODISTAT_DUPLICATE_ Requested chain position already occupied.
ENTRY

Importantv If any value other than ODISTAT_SUCCESSFUL is returned, neither input stack

Remarks

is registered; either both input stacks register or neither one does.

The operation to register both the receive and transmit prescan chained stacks
is executed monoatomically.

When deregistering both a receive and transmit protocol stack, the receive stack
is deregistered first.

The mechanism for denoting whether the chained receive protocol stack
accepts or rejects a received packet is defined by the protocol receive handler.
For information on the protocol receive handler, see “Protocol Receive
Handler for Prescan and Default StacksCimapter 5: Protocol Stack Packet
Reception

The mechanism for denoting whether the chained transmit protocol stack
accepts or rejects an ECB is defined by the protocol transmit handler. For
information on the protocol transmit handler, see “Protocol Transmit Handler
for Prescan and Default Stacks“@mapter 6: Protocol Stack Packet
Transmission

PS_CHAINED_RX_NODE Structure

typedef struct PS CHAINED RX_ NODE_

{
struct _PS_CHAINED_RX_NODE_ *StackChainLink;
UINT32 StackChainBoardNumber;
CHNPOS StackChainPositionRequested;
ODISTAT (*StackRxChainHandler)(LOOKAHEAD?,

struct _PS_CHAINED_RX_NODE_ *);

LSL Support Routines 10-65

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

INFO_BLOCK *StackChainControl;

UINT32 StackChainFilter;
void *StackChainContext;
void *StackChainResourceObj;

} PS_CHAINED_RX_NODE;

Field Descriptions

StackChainLink

Pointer to the next node in the chain. This field is filled in by the LSL and
is NULL terminated.

StackChainBoardNumber
Logical board number to register for.

StackChainPositionRequested
Position in chain desired.
StackChainPositionRequestisddefined by the following values:

CHNPOS_FIRST_MUST
Load at very first position in chain.

CHNPOS_FIRST_NEXT
Load at next available position at front of chain.

CHNPOS_LOAD_ORDER
Chain position dependent on load order.

CHNPOS_LAST_NEXT
Load at next available position at end of chain.

CHNPOS_LAST_MUST
Load at very end of chain.

StackRxChainHandler

Pointer to the prescan stack’s receive handlerChapter 5: Protocol
Stack Packet Receptidor information on the receive handler.

StackChainControl

Pointer to the prescan receive information block for control handler
routines.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

StackChainFilter

The filter mask for the stack and board combination. Refer to
CLSL_ModifyStackFilter for a description of the operation and values
for this filter mask.

StackChainContext

Pointer to context used by the chained stack; in other words, a pointer to
any context that the chained protocol stack desires when using the chained
receive node structure.

StackChainResourceObj

Pointer to a platform specific object used for resource management. This
value is a pass through value and is not interpreted.

)]

PS_CHAINED_TX_NODE Structure "%
typedef struct PS CHAINED_TX_ NODE_ O

{ N
struct PS CHAINED_TX NODE_ *StackChainLink; .

UINT32 StackChainBoardNumber; ':
CHNPOS StackChainPositionRequested; :

ODISTAT (*StackTxChainHandler)(ECB*,

struct _PS_CHAINED_TX_ NODE_ *); g

INFO_BLOCK *StackChainControl; o
UINT32 StackChainFilter; <

void *StackChainContext; ~

void *StackChainResourceObj; [\)

N

} PS_CHAINED_TX_NODE;

Field Descriptions

StackChainLink

Pointer to the next node in the chain. This field is filled in by the LSL and
is NULL terminated.

StackChainBoardNumber

Logical board number to register for.

StackChainPositionRequested
Position in chain desired.
StackChainPositionRequestisddefined by the following values:

LSL Support Routines 10-67

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

CHNPOS_FIRST_MUST
Load at very first position in chain.

CHNPOS_FIRST_NEXT
Load at next available position at front of chain.

CHNPOS_LOAD_ORDER
Chain position dependent on load order.

CHNPOS_LAST_NEXT
Load at next available position at end of chain.

CHNPOS_LAST_MUST
Load at very end of chain.

StackTxChainHandler

Pointer the prescan stack’s transmit handler. C3egpter 6: Protocol
Stack Packet Transmissifor information on packet transmission.

StackChainControl

Pointer to the prescan transmit information block for control handler
routines.

StackChainFilter
This field is not used for prescan transmit chained protocol stacks.

StackChainContext

Pointer to context used by the chained stack; in other words, a pointer to
any context that the chained protocol stack desires when using the chained
transmit node structure.

StackChainResourceObj

Pointer to a platform specific object used for resource management. This
value is a pass through value and is not interpreted.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_RegisterStack
Index 06 (0x06)

Registers a bound protocol stack with the LSL and
returns an LSL assigned handle for the stack (the
Stack ID or SID).

Syntax
#include <odi.h>

ODISTAT CLSL_RegisterStack (
PS_BOUND_NODE *ProtocolNode,
UINT32 *ProtocolNumber);

Input Parameters

ProtocolNode

Pointer to a bound protocol stack node structure.
Input/Output Parameters

ProtocolNumber

On entry, pointer to a buffer used to return the SID for the bound protocol
stack.

On exit, pointer to the SID.

LSL Support Routines 10-69

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Return Values

Remarks

ODISTAT_SUCCESSFUL The protocol stack was successfully
registered.

ODISTAT_BAD_PARAMETERhe stack name length is greater than the
maximum allowed or is equal to 0.

ODISTAT_DUPLICATE_ The specified stack is already registered.
ENTRY

ODISTAT_OUT_OF_ The maximum number of stacks is already
RESOURCES registered.

The protocol stack will not start receiving packets from the MLID until is has
been bound to the MLID by a call @_SL_BindStack or
CLSL_BindProtocolToBoard.

When a bound stack registers with the LSL, its filter mask defaults to only
receiving direct, supported multicast, and broadcast addressed packets. A
bound stack can, after registering, modify its filter to allow it to specify the type
of packets that it now wishes to have passed to it by the LSL. Normally, bound
protocol stacks use the default setting for the mask with the filter functions
being used by chained protocol stacks for bridging, traffic monitoring, etc.

PS_BOUND_NODE Structure

typedef struct _PS_BOUND_NODE_
{
MEON_STRING*ProtocolName;
ODISTAT (*ProtocolReceiveHandler)(LOOKAHEADY);
INFO_BLOCK *ProtocolControlHandler;
void *ProtocolResourceObj;
} PS_BOUND_NODE;

10-70 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Field Descriptions

ProtocolName

Pointer to a NULL terminated MEON string containing the short name for
the protocol stack that is to receive the frames with the appropriate
Protocol ID.

ProtocolReceiveHandler

Pointer the protocol stack’s receive handler.

ProtocolControlHandler
Pointer to the protocol stack’s information block for control handler
routines.

ProtocolResourceObj

Pointer to a platform specific object used for resource management. This
value is a pass through value and is not interpreted.

LSL Support Routines 10-71

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

CLSL_ReSubmitDefault

Index 34 (0x22)

Syntax

Allows default chained protocol stacks to pass
received packets back to the LSL for further
processing. The packets were originally queued
and later processed at process time by a chained
protocol stack. The LSL will pass these packets to
the next protocol stack in the chain.

#include <odi.h>

ODISTAT CLSL_ReSubmitDefault (
PS_CHAINED_RX NODE *StackChainNode,
LOOKAHEAD *LookAheadBuf);

Input Parameters

StackChainNode

Pointer provided by the LSL to the node structure, which defines this
chained stack.

LookAheadBuf
Pointer to a LOOKAHEAD structure, which defines the received packet.

Output Parameters

10-72

None.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

ODISTAT_SUCCESSFUL

ODISTAT_SUCCESS_TAKEN

ODISTAT_OUT_OF RESOURCES

The protocol stack has returned a pointer to a
receive ECB to be filled with the packet in the
LOOKAHEAD structure’s
LkAhd_ReturnedECB field.

If the protocol stack was able to get everything
it needed from the LOOKAHEAD, the
LkAhd_ReturnedECB field will be set to NULL,
indicating that additional data does not need to
be copied.

The protocol stack accepted the packet and
has taken the prefilled LSL ECB associated
with the LOOKAHEAD structure’s
LkAhd_PreFilledECB field.

Reports an error condition—for example, the
LSL was unable to obtain an ECB for this
packet. The default stack that performs a
CLSL_ReSubmitDefault function copies the
contents of its LOOKAHEAD structure
LkAhd_FrameDataStartCopyOffset field to the
original callers LOOKAHEAD structure
LkAhd_FrameDataStartCopyOffset field. This
is because the LSL passes state information in
the above field that it uses in the processing of
this received packet.

LSL Support Routines 10-73

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Remarks

The chained stack node passed to this routine is that of the chained stack calling
this routine. The LSL calls the next appropriate stack in the chain to continue
processing of this packet.

Spec v1l.11 - Doc v1.22

B 10-74 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

CLSL_ReSubmitPreScanRx

Index 35 (0x23)

Syntax

Input Parameters

Output Parameters

Allows prescan receive chained protocol stacks to
pass received packets back to the LSL for further
processing. The packets were originally queued
and later processed at process time by a chained
protocol stack. The LSL will pass these packets to
the next protocol stack in the chain.

#include <odi.h>

ODISTAT CLSL_ReSubmitPreScanRx (
PS_CHAINED_RX NODE *StackChainNode,
LOOKAHEAD *LookAheadBuf);

StackChainNode

Pointer provided by the LSL to the node structure that defines this chained
stack.

LookAheadBuf
Pointer to a LOOKAHEAD structure that defines the received packet.

None.

LSL Support Routines 10-75

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Return Values

ODISTAT_SUCCESSFUL The protocol stack has returned a pointer to a

ODISTAT_SUCCESS_
TAKEN

ODISTAT_OUT_OF _
RESOURCES

Remarks

The chained stack node passed to this routine is that of the chained stack calling

receive ECB to be filled with the packet in the
LOOKAHEAD structure’s
LkAhd_ReturnedECBReld.

If the protocol stack was able to get everything it
needed from the LOOKAHEAD, the
LkAhd_ReturnedECB field will be setto NULL,
indicating that additional data does not need to
be copied.

The protocol stack has accepted the packet and
has taken the prefilled LSL ECB associated with
the LOOKAHEAD structure’s
LkAhd_PreFilledECHield.

Reports an error condition, such as the LSL was
unable to obtain an ECB for this packet. The
prescan receive stack that performs a
CLSL_ReSubmitPreScanRxfunction copies

the contents of its LOOKAHEAD structure
LkAhd_FrameDataStartCopyOffset field to the
original callers LOOKAHEAD structure
LkAhd_FrameDataStartCopyOffditld, since

the LSL will pass state information in the above
field that it uses in the processing of this received
packet.

this routine. The LSL calls the next appropriate stack in the chain to further

process this packet.

10-76 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_ReSubmitPreScanTx

Index 36 (0x24)

Syntax

Input Parameters

Output Parameters

Allows prescan transmit chained protocol stacks to
pass transmit ECBs back to the LSL for further
processing. The ECBs were originally queued and
later processed at process time by a prescan
transmit chain stack. The LSL will pass these ECBs
to the next protocol stack in the chain.

#include <odi.h>

ODISTAT CLSL_ReSubmitPreScanTx (
PS_CHAINED_TX_ NODE *StackChainNode,
ECB *TransmitECB);

StackChainNode

Pointer provided by the LSL to the node structure defining this chained
stack.

TransmitECB
Pointer to a transmit ECB.

None.

LSL Support Routines 10-77

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Return Values

ODISTAT_SUCCESSFUL Command executed successfully.

ODISTAT_BAD_PARAMETERhe board number defined by the node
structure and pointed to I8tackChainNode
does not exist.

Remarks

The chained stack node passed to this routine is that of the chained stack calling
this routine. The LSL will call the next appropriate stack in the chain to further
process this packet.

Spec v1l.11 - Doc v1.22

| 10-78 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

CLSL_ReturnECB

Index 01 (0Ox01)

Syntax

Input Parameters

Output Parameters

Return Values

Enables a protocol stack to return a previously
allocated LSL ECB buffer to the LSLs buffer pool.

#include <odi.h>

ODISTAT CLSL_ReturnECB (
ECB *ReturnedECB);

ReturnedECB
Pointer to an ECB to return to the LSL.

None.

ODISTAT_SUCCESSFUL The ECB was successfully returned to the LSL.

ODISTAT_BAD_PARAMETThe ECB did not originate from the LSL.
ER

LSL Support Routines 10-79

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

CLSL_ScheduleAESEvent

Index 03 (0x03)

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Schedules an asynchronous event scheduler
(AES) event.

#include <odi.h>

ODISTAT CLSL_ScheduleAESEvent (
AES_ECB *TimerAESECB);

TimerAESECB
Pointer to an AES ECB to be scheduled.

None.

ODISTAT_SUCCESSFUL The specified AES event was
scheduled.

ODISTAT_BAD_PARAMETER The resource tag for the AES ECB
was invalid.

The defined event service routine (ESR) is called after the specified number of
milliseconds. The ESR can reschedule itself after it régess MSecondValue
thus creating a simple polling function.

An AES ECB that is already in use by the LSL AES system must not be passed
again toCLSL_ScheduleAESEvent To reset the AES event time, use

10-80 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

AES_ECB Structure

CLSL_CancelAESEventand then issue a ndBLSL_ScheduleAESEvent
call.

On entry to théAES_ESRroutine:

AES_ESR (AES_ECB *TimerAESECB);

typedef struct AES ECB_

{
struct AES ECB_ *AES_Link;
UINT32 AES_MSecondValue;
UINT16 AES_Status;
void (*AES_ESR)(struct _AES_ECB_
*);
UINT32 AES_Reserved;
void *AES_ResourceObj;
void *AES_ Context;
} AES_ECB;

Field Descriptions

AES_Link
This field is used by the LSL for list management.

AES_MSecondValue

This field specifies the number of milliseconds to wait before invoking the
definedAES_ESRroutine. This field must be initialized each time the
AES_ECHBs passed t€LSL_ScheduleAESEvent

ZZ'IA 90Q - TT'IA 2a8ds

AES_Status
This field is set to 0 when tHeES_ESRs invoked.

AES_ESR

This field specifies a routine that is invoked after a specified time. This
field must point to a valid routine and only needs to be initialized once. The
ESR must complete quickly because it is executing in the context of a
timer interrupt.

AES_ Reserved

This field is reserved for use by the LSL.

LSL Support Routines 10-81

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

AES_ResourceObj

Pointer to a platform specific object used for resource management. This
is a pass through value and is not interpreted.

AES_Context

This optional field specifies a pointer to context parameters that can be
passed to the AES ESR routine upon completion of the AES event.

Spec v1l.11 - Doc v1.22

B 10-82 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

CLSL_SendComplete

Index 14 (OxOE)

Syntax

Input Parameters

Output Parameters

Return Values

Remarks

Must be called by the MLID every time a packet is
transmitted with an ECB.

#include <odi.h>

void CLSL_SendComplete (
ECB *SendECB);

SendECB
Pointer to an ECB associated with a completed send event.

None.

None.

The MLID must call this routine any time the driver is finished using a send
ECB (also called a Transmit Control Block). The MLID is usually done with
the send ECB after it sends the data to the network interface card.

After making this call, the MLID must callLSL_ServiceEventsto process
the send.

The MLID sets the completion code in tB€B_ Statu$ield before making this
call.

LSL Support Routines 10-83

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

The completion codes for tHeCB_Statudield are as follows:

ODISTAT_SUCCESSFUL

ODISTAT_MLID_SHUTDOWN

ODISTAT_BAD_PARAMETER

ODISTAT_CANCELED

The MLID determined that the transmit was
successful. Because the transmit was
connectionless, this completion code does
not mean that the destination received the
packet.

The MLID specified in the
ECB_BoardNumber field cannot be found.
This usually means that the MLID has been
removed from memory or is shut down
(temporarily or permanently).

The ECB contains bad parameters—for
example, the amount of data to transmit
exceeds the maximum possible for the
MLID. Note, the ECB will not have been
transmitted.

The ECB is being returned without being
transmitted. This usually occurs if the ECB
was held in an MLID’s queues, then the
MLID clears its queues due to a shut down
request. This can also occur if the MLID was
unable to transmit the packet.

Note‘vvl The ODISTAT type is cast to a UINT16 for the ECB_Status field.

See Also

CLSL_SendPacket

10-84 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_SendPacket
Index 12 (0x0C)

Sends a packet, as described by an ECB, to the
specified MLID for transmission.

Syntax
#include <odi.h>

ODISTAT CLSL_SendPacket (
ECB *SendECB);

Input Parameters

SendECB
Pointer to an ECB to be sent.

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL The ECB has been handed to the MLID.

ODISTAT _ITEM_NOT_PRESENT The board number in the ECB_BoardNumberfield does not
correspond to a registered MLID.

ODISTAT_FAIL The ECB was invalid or already in use elsewhere in the
system.

Remarks

When the MLID has transmitted the packet and is finished with the ECB, it
callsCLSL_SendCompleteto return the ECB.

If the MLID calls CLSL_SendCompletebefore this function returns, the
ECB’s ESR ((*ECB_ESR)(ECB*)) can be invoked.

LSL Support Routines 10-85

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

See Appendix A, "Event Control Blocks (ECBs)" for the ECB requirements.

See Also

CLSL_SendComplete

Spec v1l.11 - Doc v1.22

B 10-86 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

CLSL_SendProtocolinfoToPartner
Index 44 (0x2C) NetWare Server only

Called (when using SFTIII) whenever protocol
information needs to be sent to the other IOEngine,
such as after a bind or unbind operation.

Syntax
#include <odi.h>

SFTII_STAT CLSL_SendProtocolinfoToPartner (
UINT32 ProtocolNumber,
UINT8 *Protocolinfo,
UINT32 Length,
void (*InfoSendCallBack)
(UINT32 Reserved, UINT8 *Protocolinfo
)i

Input Parameters

ProtocolNumber
The Stack ID (SID).

Protocollnfo

ZZ'IA 90Q - TT'IA 2a8ds

Pointer to information to be sent.

Length
Number of bytes (UINT8) pointed to lBrotocolinfa

InfoSendCallBack

Pointer to a function that is called when the information pointed to by
Protocolinfohas been sent.

Note YA nformation sent does not imply that the destination received the
information.

Output Parameters

None.

LSL Support Routines 10-87

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

Return Values

Remarks

10-88

SFTII_STAT_SUCCESSFUL Operation completed successfully.
SFTII_STAT_MIRROR_NOT_ Engine not mirrored.

ACTIVE

SFTII_STAT_NO_PARTNER Engine does not have a partner.
SFTIII_STAT_NOT_ Function not supported.
SUPPORTED

The operating system will signal your protocol stack at certain times to give all
needed protocol information to the other IOEngine.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_SendProtocolinfoToOtherEngine
Index 45 (0x2D) NetWare Server only

Called (when using SFTIII) whenever protocol
information needs to be sent to the other engine,
such as after a bind or unbind operation.

Syntax
#include <odi.h>

SFTII_STAT CLSL_SendProtocolinfoToOtherEngine (
UINT32 ProtocolNumber,
UINT8 *Protocolinfo,
UINT32 Length,
void (*InfoSendCallBack) (UINT8

*Protocolinfo));
Input Parameters

ProtocolNumber
The Stack ID (SID).

Protocollnfo
Pointer to information to be sent.

ZZ'IA 90Q - TT'IA 2a8ds

Length
Number of bytes (UINT8) pointed to lBrotocolinfa

InfoSendCallBack

Pointer to a function to be called when the information pointed to by
Protocolinfohas been sent.

Output Parameters

None.

LSL Support Routines 10-89

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

Return Values

Remarks

10-90

SFTIII_STAT_
SUCCESSFUL

SFTIII_STAT_MIRROR_
NOT_ACTIVE

SFTIII_STAT_NO_
PARTNER

SFTIII_STAT_OUT_OF_
RESOURCES

SFTIII_STAT_NOT_
SUPPORTED

Operation completed successfully. Because the
transmit was connectionless, this completion
code does not mean that the destination received
the packet.

Mirrored server engine not active.
Engine does not have a partner.

No memory available to queue request.

Function not supported.

The operating system signals your protocol stack at certain times to give all
needed protocol information to the other engine.

Note V! CLSL_SendProtocolinfoToOtherEngine and CLSL_SendProtocollnfoToPartner
are available in all three server types (IOEngine, MSEngine, and server). If this
APl is unsupported, the engine will return with all bits set.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CLSL_ServiceEvents
Index 41 (0x29)

Causes the LSL to service any events placed on its
hold queue by CLSL_HoldEvent .

Syntax
#include <odi.h>

void CLSL_ServiceEvents (void);

Remarks

)]
Input Parameters 1%
None. o
<
~
Output Parameters .
~
None. \
Return Values g
O
None. <
~
N
N

CLSL_ServiceEventsprocesses all of the ECBs on its hold queue by calling
the ESR ((*ECB_ESR)(ECB¥)) routine for each ECB, as defined in the ECB’s
ECB_ESRKield. These ESR routines must not poll for transmit or receive
events.

LSL Support Routines 10-91

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

CLSL_UnbindStack

Index 22 (0x16)

Unbinds a protocol stack from an adapter and
frame type (logical board) combination.

Syntax
#include <odi.h>

ODISTAT CLSL_UnbindStack (
UINT32 ProtocolNumber,
UINT32 BoardNumber);

Input Parameters

ProtocolNumber
The Stack ID (SID).

BoardNumber
The board number.

Output Parameters

None.

Return Values
ODISTAT_SUCCESSFUL The protocol stack was unbound from an adapter
and frame type (logical board) combination.
ODISTAT_BAD_PARAMETER The specified SID or the board number is invalid.
ODISTAT_ITEM_NOT_PRESENT The specified binding does not exist.

10-92 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Remarks

After this routine successfully returns, packet reception between the specified
protocol stack and logical board is disabled (unless the protocol stack has an
outstandingCLSL_RegisterPrescanChainor

CLSL_RegisterDefaultChain).

ZZ'IA 90Q - TT'IA 2a8ds

LSL Support Routines 10-93

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

| 10-94 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

chapter 1 O
Overview of the MLID

Chapter Overview

This chapter desidyesthe procedures arfdncionality that the MLID
provides. Hwever, depending on the handare and topologyfoyour LAN
adapte, your MLID might not ned to meet albf the requirements discussed
in this chapte.

You should read this chapti&you have rever written an OD MLID before.

Note V! As an alternative to writing a complete MLID, you may want to write a C
‘ language Hardware Specific Module (CHSM) by getting the LAN Driver
Developer’s Guide kit. This kit provides many of the pieces of the MLID and only
requires you to write the HSM, which, depending upon your needs, may be
easier to do than writing a complete MLID.

Multiple Operating System Suppo rt

ML ID development depends on the operating sysiader which the MLD
will run. An MLID developed to the N&Yare operatingystem mushe
developeddifferentlythan an MLD developedto the DOS, OS/2r Windows
NT operating systems.

If you wish to a@velop a singe MLID that runs under multiple operating
systemswe stongly recommend that (insteaf writing an MLID) you
develop a C language Hasgre Spedic Module (CHSN) using tte LAN
Driver Developets Guidekit to hdp you.

Overview of the MLID 11-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

NetWare MLID

MLIDs handle the sending and receiving of packets on the network. MLIDs
drive a LAN adapter (also referred to as Network Interface Card or NIC) and
handle frame header appending and stripping. They also help determine the
packet’s frame type.

The requirements of your LAN adapter dictate how you write your MLID.

MLID Procedures

11-2

The ODI specification defines the following procedures:
« MLID initialization routine (required)

» Board service routine (one or both are required)
Interrupt Service Routine (ISR)

Driver polling routine
» Packet transmission routine(required)
The MLID also supports the following control procedures:

« Control procedures for ODI IOCTLs

AddMulticastAddress (required if hardware supports multicast
addressing

DeleteMulticastAddress (required if hardware supports multicast
addressing

GetMLIDConfiguration (required)
GetMLIDStatistics (required)
DriverPromiscuousChange(recommended)
SetLookAheadSize (required
DriverManagement (optional)

MLIDReset (required)

MLIDShutdown (required)

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

GetMulticastInfo (required if hardware supports multicast addressing)
RegisterMonitor (required)

RemoveNetworklinterface (required)

ShutdownNetworkinterface (required)

ResetNetworklinterface (required)

- Timeout detection (some LAN adapters do not need to provide these
procedures)

Interrupt call back routine (optional)

AES call back routine (optional)

« MLID removal routine (required)
The specific hardware requirements of a LAN adapter can require that you
write additional procedures; however, the procedures listed above represent the
generic code elements found in every MLID.
A brief description of each procedure is presented throughout the rest of this
chapter. These descriptions are high-level generalizations only and are not true
in every case, nor do they describe every possible case. More detailed

descriptions of each procedure is provided in chapters 12 through 15 of this
specification.

MLID Initialization

In general terms, the MLID’s initialization routine must perform the following
actions:

« Allocate memory for the MLID’s variables and structures.

« Parse the standard LOAD command line options.

« Process custom command line parameters and custom firmware.
« Register the hardware configuration with the operating system.

« Initialize the LAN adapter.

« Register the MLID with the LSL.

Overview of the MLID 11-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

- Provide a hook for the MLID’s board service routine by allocating an
interrupt or by establishing a polling procedure.

« Schedule callback events for timeout detection and recovery.

Board Service Routine

The board service routine generally needs to detect and handle the following
events on the LAN adapter:

+ Received packet

« Packet receiving error

+ Completed transmission

« Packet transmission error

The MLID can be natified of these events by an interrupt service routine (ISR),
a polling procedure, or a polling procedure with interrupt backup.

Packet Transmission

Note‘VI
\v

Control Routines

The MLID’s packet transmission routine is called whenever a packet needs to
be transmitted onto the wire. The MLID must build the necessary frame and
media headers and then send the packet.

The MLID’s transmit handler is passed both the transmit ECB and a pointer to
its send context, which it provided to the LSL when it registered. For more
information, see CLSL_RegisterMLID in Chapter 10: LSL Support Routines s

Among the control procedures that the MLID must provide are control
procedures to support multicast addressing (if the hardware supports it) and
procedures to reset and shut down the hardware. The MLID can also supply a
control procedure to support promiscuous mode.

MLIDs that support the hub management interface implement the driver
management support routine.

114 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Timeout Detection

The MLID can schedule an AES event that it uses at specified intervals. For
example, the MLID might need to be called regularly to inspect the LAN
adapter and determine if the adapter has failed to complete a transmission. If a
timeout error had occurred, the procedure discards the packet being sent, resets
the board, and begins transmitting the next packet in the send queue.

Driver Remove

Every MLID must have a remove procedure that allows the user to unload the
MLID from the operating system. This procedure must shut down the LAN
adapter and return any resources that the MLID allocated from the operating
system.

MLID Data Structures and Variables

In addition to the procedures discussed above, the MLID must also contain
certain data structures and variables. The following are the primary structures:

« MLID configuration table

« MLID statistics table

MLID Configuration Table

The MLID configuration table is a data structure that defines the configuration
of the LAN adapter and MLID. The fields in this table are referred to by the
LSL, Protocol Stack, MLID, and other components in the system. The
requirements for MLID configuration tables are described in detail in Chapter
12, "MLID Data Structures".

MLID Statistics Table

The MLID statistics table is a data structure that contains data on the operation
of the LAN adapter and the MLID. Chapter 12, "MLID Data Structures"
contains a detailed description of this data structure.

Overview of the MLID 11-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Networtk management and ohter components in the system reference the
information in the MLID statistics table via ti@etMLIDStatistics control
procedure.

MLID Functionality

We strongly recommend that your MLID provides the following functionality.
« Reentrancy

« Multiple frame support (supports all frame types defined by a specific
topology)

« Source routing support when supported by the topology
« Promiscuous mode support
« Multicast addressing support

Note V! n some instances this specification makes recommendations on how to
implement certain functionality, but these are only recommendations and it is up
to you to implement the functionality the way you choose.

Reentrancy

We strongly recommend that your MLID support reentrancy. When you link
your LAN driver, you can declare your driver reentrant. This allows the
operating system to use a single code image of the MLID to run multiple LAN
adapters (of the same type) or to run multiple frame types (logical boards) on
the same LAN adapter. A non-reentrant driver requires the operating system to
load an additional code image of the driver each time it uses another LAN
adapter or supports another logical board.

11-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

To illustrate the advantage of reentrant code, consider the following example.
Suppose you want to configure a server to drive two Novell CNTR2000 cards.
You enter the following commands at the server console:

load cntr2000
load cntr2000

If you have written reentrant code, the ficdd command loads the code
image of the driver into the server's memory and then calls the MLID’s
initialization routine The secorldad command merely calls the MLID’s
initialization routine again. If you have not written reentrant code, two copies
of the CNTR2000 LAN driver are loaded into memory.

Multiple Frame Support

If the LAN adapter runs on a topology that supports multiple frame types, we
strongly recommend that the MLID support all the frame types for that
particular topology. You can implement multiple frame support by using
logical boards.

Multiple Frame Support and Logical Boards

To illustrate how logical boards are used, consider the preceding example of
loading a CNTR2000 twice. When you enter liveed command the second
time, you are indicating one of two things:

« You want the MLID to run a second LAN adapter.

« You want the MLID to run a second frame type on the LAN adapter that is
already loaded.

Whichever is the case, your MLID creates a “logical board" in response to this
command. (A fuller description of logical boards is provided below.) The
operating system does not concern itself with distinguishing between logical
boards that have exclusive use of a LAN adapter and logical boards that share
the same LAN adapter with other logical boards. Only the MLID makes this
distinction.

Multiple Frame Support in Reentrant Code

If you are writing reentrant code, each logical board uses the same code image
of the MLID that was loaded into the operating system with theldiast

Overview of the MLID 11-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Adapter Data Space

Note‘VI
\v

Frame Data Space

Note‘VI
v

command. However, the MLID must maintain a separate adapter data space for
each physical board or each separate channel (see the MLID configuration
table for more information) and a separate frame data space for each logical
board.

When a second load command is issued, an ambiguous situation arises. The
MLID resolves this ambiguity by asking the following question:

Do you want to add another frame type for a previously loaded board?

If your response to the operating system’s question is no, the MLID must
allocate an adapter data space to drive a second adapter. The adapter data space
is a structure that contains the hardware specific information that the MLID
needs to drive the LAN adapter (interrupt number, beginning memory address,
etc.). The statistics table required by the ODI specification is contained in this
adapter data space. The MLID allocates one adapter data space for each LAN
adapter, regardless of the number of logical boards (frame types) it supports.

The MLID must create an adapter data space for every LAN adapter of the same
type that is loaded.

Every logical board has a frame data space associated with it. The frame data
space is a structure that contains the frame-specific information the MLID
needs to support that frame type. The MLID allocates a frame data space for
each logical board. The MLID then copies the configuration table template for
that logical board into its frame data space.

The MLID must create a frame data space for every frame type that is loaded.

Implementing Multiple Frame Support

11-8

Figure 1.1 illustrates how you might implement multiple frame support in a
CNEZ2000 driver. In order to use the first CNE2000 adapter, you would enter:

load cne2000

In response to this command, the MLID creates logical board 1, which uses
Frame Data Space 1 and Adapter Data Space A to run Adapter A. By default,

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Frame Data Space 1 contains the information necessary to support Ethernet
802.2.

Now suppose you wanted to use a second CNE2000 adapter that supported
both SNAP and 802.2 frames. You start by entering the following command:

load cne2000 frame=ETHERNET_SNAP
Afterwards, you are asked the following question:

Doyouwanttoadd anotherframetype forapreviously
loaded board?

In order to use the second CNE2000 adapter, you need toeifiités causes

the MLID to create Logical Board 2, which uses Frame Data Space 2 and
Adapter Data Space B to run Adapter B. The following command then tells the
MLID that Frame Data Space 2 will support Ethernet SNAP:

frame=ETHERNET_SNAP

In order for Adapter B to also support 802.2, you need to load the CNE2000
driver a third time:

load cne2000 frame=ETHERNET_802.2
This time, however, you entgrin response to the following question:

Doyouwanttoadd anotherframetype forapreviously
loaded board?

The operating system then lets you indicate the LAN adapter that you want to
add additional frame support to. If you were to specify Adapter B, the MLID
would create logical board 3, which uses Frame Data Space 3 and Adapter Data
Space B to communicate with Adapter B.

Overview of the MLID 11-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1.11 - Doc v1.22

Figure 11-1
Implementations of

Multiple Frame Support Using Ethernet

LAN Adapters

Brand Z

f

Brand Y

f

Brand X i—

11-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

Data and Code
Spaces

Frame Data
Space 3
Frame Data
Space 2
Frame Data
Space 1

Adapter Data
Space Z

Driver Z Executable Code
Image
Adapter Code Space

Frame Data
Space 1

Adapter Data
Space Y

Driver Y Executable Code
Image
Adapter Code Space

Frame Data
Space 2
Frame Data
Space 1

Adapter Data
Space X

Driver X Executable Code
Image
Adapter Code Space

100-004006-001
January 6, 1998

Logical Boards

ODI Specification: Protocol Stacks and MLIDs (C Language)

Figure 1.2 shows that when the boards are not all the same type, each board
has its own executable code image and adapter data space.

Figure 11-2
Implementation of
Multiple Boards/Frame Support

Data and Code
Spaces

Configuration Table Z
Frame Data Space Z
Configuration Table Z
Frame Data Space Z

Original
Configuration Table Z
Frame Data Space Z

Statistics Table Z
NICInstance Structure
Y4

Physical Boards

Logical Boards

Brand Z

f

Driver Z Executable Code
Image

Original
Configuration Table Y
Frame Data Space Y

Statistics Table Y
NICInstance Structure
Y

Brand Y

f

Driver Y Executable Code
Image

Configuration Table X
Frame Data Space X
Original
Brand X Configuration Table X
Frame Data Space X

Statistics Table X
NICInstance Structure
X

Driver X Executable Code

Image
\ & J

Overview of the MLID 11-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ITIA 28ds

cc'IN J0d

Spec v1l.11 - Doc v1.22

Other Functionality

An MLID can support source routing (Token-Ring and FDDI topologies only,
not Ethernet), promiscuous mode, and multicast addressing. We recommend
that your MLID support all of these options, if the LAN adapter is capable of
supporting them.

Source Routing Support

The ODI Specification Supplement: Source Routiegcribes how to add and
configure source routing in the MLID.

Promiscuous Mode Support

When MLIDs operate ipromiscuous modéehey pass all packets they receive
to the upper layers. This includes bad packets, if possible. Because various
monitoring functions operate in promiscuous mode, we strongly recommend
that your MLID support promiscuous mode if your adapter is capable of such
support. The MLID enables or disables promiscuous mode upon request by
using thePromiscuousChangecontrol routine described in Chapter 15,

"MLID Control Routines".

Multicast Addressing Support

If your LAN adapter is capable of supporting multicast addressing, your MLID
must support it. Th&ddMulticastAddress, GetMulticastinfo, and
DeleteMulticastAddresscontrol routines implement multicast support. These
control procedures are discussed in more detail in Chapter 15, "MLID Control
Routines".

MLID Design Considerations

The following section discusses hardware and coding issues you must consider
when developing the MLID.

Hardware Issues

Every type of LAN adapter, such as the CNTR2000 and CNE2000, have
different hardware and data transfer characteristics. A thorough understanding
of your LAN adapter and LAN topology will allow you to create a more
efficient driver. Keep in mind that the board and chip manufacturer’s support

11-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Data Transfer Mode

Bus Type

engineers can provide you with up-to-date information regarding their
hardware.

The LAN adapter’s mode of data transfer is a primary consideration in MLID
development. To achieve the highest performance, you must select support

procedures matched to the data transfer mode. The data transfer modes are:

+ Programmed I/O
+ Shared RAM (Memory Mapped 1/O)
+ Direct Memory Access (DMA)

» Bus Master

You must also consider the LAN adapter’s bus type and size. The MLID’s
initialization process must register its bus type with the LSL. The following are
common bus types:

« Industry Standard Architecture (ISA)

» Micro Channel Architecture

« Extended Industry Standard Architecture (EISA)

» Personal Computer Memory Card International Association (PCMCIA)

« Peripheral Component Interconnect (PCI)

Overview of the MLID 11-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

11-14

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

chapter

1 1 MLID Data Structures

Chapter Overview

This chapter describelse data structures dwariables that the MLID must
define. All the datatructures digned in this chapter must be presenthe
OSDATA segment d the MLID.

Frame Data Space

The OO specficationrequires thatevery MLID have a coffiguration table as
part d the frame data spacThe MLID keepsacopyof the coffiguration table
templagin the OPATA segment. Tke MLID uses the cofiguration tabéin
the OPATA segment as the working dbguration table for the default logical
board ad asatemplate for the cdiguration tables it must cogdpr each
loadel logical board. When #2nMLID allocatesthe frane data spagefor each
logicalboard (frameype) that loads, it copies the dmuration tabktemplate
for that logical board into that logical bo&drane data space. Because
external processes igalso access this table, the ODI sfieation defines this
tablés format stricy.

MLID Data Structures 12-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

MLID Configuration Table

The MLID configuration table contains information about the MLID and its
configuration. The MLID must define one configuration structure for each
logical board number assigned by the LSL. Variables in this structure include
the interrupt number, port I/O address, node address, and other MLID specific
parameters.

The MLID must define the configuration table to contain the LAN adapter’s
default configuration and any other information about that configuration. The
table must be defined by the fields described in this chapter, with each entry
filled in accordingly. Certain variables in the configuration table are specific to
your MLID. Other variables are specific to the LAN adapter the MLID is
running.

Note‘vvl All data strings in the configuration table consist of NULL terminated MEON
strings.

Note‘vvl Protocol stacks and other system modules treat the MLID configuration table as
read only!

MLID Configuration Table Structure Sample Code

typedef struct _MLID_CONFIG_TABLE _

{
MEON MLIDCFG_Signature[26];
UINTS8 MLIDCFG_MajorVersion;
UINT8 MLIDCFG_MinorVersion;
NODE_ADDR MLIDCFG_NodeAddress;
UINT16 MLIDCFG_ModeFlags;
UINT16 MLIDCFG_BoardNumber;
UINT16 MLIDCFG_BoardInstance;
UINT32 MLIDCFG_MaxFrameSize;
UINT32 MLIDCFG_BestDataSize;
UINT32 MLIDCFG_WorstDataSize;
MEON_STRING *MLIDCFG_CardName;
MEON_STRING *MLIDCFG_ShortName;
MEON_STRING *MLIDCFG_FrameTypeString;
UINT16 MLIDCFG_Reserved0;
UINT16 MLIDCFG_FramelD;

12-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

UINT16 MLIDCFG_TransportTime;

UINT32
(*MLIDCFG_SourceRouting)(UINT32,

void*, void**,boolean);

ZZ'IA 90Q - TT'IA 2a8ds

UINT16 MLIDCFG_LineSpeed;
UINT16 MLIDCFG_LookAheadSize;
UINT8 MLIDCFG_SGCount;
UINT8 MLIDCFG_Reservedl;
UINT16 MLIDCFG_PrioritySup;
void MLIDCFG_Reserved?;
UINTS8 MLIDCFG_DriverMajorVer;
UINT8 MLIDCFG_DriverMinorVer;
UINT16 MLIDCFG_Flags;

UINT16 MLIDCFG_SendRetries;
void *MLIDCFG_DriverLink;
UINT16 MLIDCFG_SharingFlags;
UINT16 MLIDCFG_Slot;

UINT16 MLIDCFG_IOPort0;
UINT16 MLIDCFG_IORangeO0;
UINT16 MLIDCFG_IOPortl;
UINT16 MLIDCFG_IORangel;

void *MLIDCFG_MemoryAddressO;
UINT16 MLIDCFG_MemorySize0;
void *MLIDCFG_MemoryAddressl;
UINT16 MLIDCFG_MemorySizel,;
UINTS8 MLIDCFG_ InterruptO;
UINTS8 MLIDCFG_Interruptl,;
UINT8 MLIDCFG_DMALIneO;
UINT8 MLIDCFG_DMALinel;
void *MLIDCFG_ResourceTag;

void *MLIDCFG_ Config;

void *MLIDCFG_CommandString;
MEON_STRING MLIDCFG_LogicalName[18];
void *MLIDCFG_LinearMemory0;
void *MLIDCFG_LinearMemory1;
UINT16 MLIDCFG_ChannelNumber;
void *MLIDCFG_DBusTag;

UINT8 MLIDCFG_DIOConfigMajorVer;

MLID Data Structures 12-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

UINT8

MLIDCFG_DIOConfigMinorVer;

} MLID_CONFIG_TABLE

Table 12-1
MLID Configuration Table Field Descriptions

Description

Name Type
MLIDCFG_Signature MEON [26]
MLIDCFG_MajorVersion UINT8
MLIDCFG_MinorVersion UINT8
MLIDCFG_NodeAddress NODE_ADDR
MLIDCFG_ModeFlags UINT16
MLIDCFG_BoardNumber UINT16
MLIDCFG_BoardInstance UINT16

This field contains a string that indicates the start
of the configuration table. The string is
“HardwareDriverMLID" followed by exactly eight
spaces. It must be included in the table.

This field must be set to the major version number
of the configuration table. The current major
version number is 1.

This field must be set to the minor version number
of the configuration table. The current minor
version number is 21.

This field holds the card’s node address. The MLID
sets this field during its initialization routine. (See
ODI Specification Supplement. Canonical and
Noncanonical Addressing for information
regarding octet bit reversal.)

See MLIDCFG_ModeFlagsfield description (Table
12-2). Unused bits are reserved and set to 0.

During initialization, the MLID sets this field to the
board number that is returned by the
CLSLRegisterMLID .

The MLID sets this field to the physical board
instance. For example, if two CNE2000 boards
were installed in the system, the first CNE2000
driver loaded would have this field set to 1; the
second CNE2000 driver would have this field set to
2.

Note: Each controller on a multi-channel adapter is
treated as a separate adapter if access to the
controller is independent of the other controllers.

12-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table 12-1
MLID Configuration Table Field Descriptions

Name Type

Description

MLIDCFG_MaxFrameSize UINT32

MLIDCFG_BestDataSize UINT32

MLIDCFG_WorstDataSize UINT32

This value defines the largest possible packet size
that can be transmitted and/or received by the
driver and physical card combination. This value
includes all headers.

Ethernet drivers set this field to 1514 decimal.
Since Token-Ring drivers can send and receive a
number of different packet sizes, a Token-Ring
driver must determine during its Driverinit routine
the appropriate packet size and place that value in
this field. Token-Ring drivers support 4K
(4096+74+48 = 4218) packet sizes whenever it is
possible and practical. The value in this field
cannot be less than 618 decimal. See Table 12-5
for more details.

The MLID sets this field after returning from
Driverinit. The MLID subtracts the length of the
smallest media header(s) from the value in the
MLIDCFG_MaxFrameSize field.

For example, an Ethernet MLIDs sets this field to
1500 decimal (1514 - 14 [MAC] = 1500) if the MLID
is running the Ethernet_II packet type. If a Token-
Ring MLID sets this field, it sets this field to
MLIDCFG_MaxFrameSize - 14 [MAC] - 3 [802.2
Ul] if the MLID’s packet type is Token-Ring. See
Table 12-5 for more details.

The MLID sets this field after returning from
Driverlnit. The MLID subtracts the length of the
largest media headers(s) from the
MLIDCFG_MaxFrameSize field.

Note, protocol stacks use the value in this field to
determine the largest packet size this driver can
send or receive.

For example, of a Token-Ring MLID sets this field,
it sets this field to MLIDCFG_MaxFrameSize - 14
[MAC] - 30 [source routing] - 4 [802.2 UI] if the
MLID’s frame type is Token-Ring. An Ethernet_lI
MLID sets this field to 1500. See Table 12-5 for
more detalils.

MLID Data Structures 12-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Table 12-1
MLID Configuration Table Field Descriptions

Name Type

Description

MLIDCFG_CardName MEON_STRING *

MLIDCFG_ShortName MEON_STRING *

This field holds a pointer to a NULL terminated
MEON string that is identical to the description
string in the linker definition file. For example,
"Novell Ethernet NE2000". (See Appendix C,
Platform Specific Information).

This field holds a pointer to a NULL terminated
MEON string that contains a shortened version of
the long name. This string cannot contain more
than 8 MEON characters. The string is usually the
MLID's file name. For example, "CNE2000".

This field holds a pointer to a NULL terminated
MEON string describing the frame and media type
being used by this MLID. (See ODI! Specification
Supplement: Frame Types and Protocol IDs for
possible frame types.)

This field is reserved for future use and must be set
to 0.

This field contains the frame type ID being used by
this MLID.

For more information on frame types, see OD/
Specification Supplement: Frame Types and
Protocol IDs.

This field indicates the number of milliseconds it
takes the adapter to transmit a 586-byte packet.
Most MLIDs set this field to 1. This field cannot be
setto 0.

If the MLID is used with a slow asynchronous line,
the value is set accordingly to a representative
value.

N

N .

hi MLIDCFG_FrameTypeString MEON_STRING *

>

O

o

. MLIDCFG_Reserved0 UINT16

\\'

~ MLIDCFG_FramelD UINT16

H

>

o

Q

Q

(I) MLIDCFG_TransportTime UINT16
]

12-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

Table 12-1
MLID Configuration Table Field Descriptions

Name Type

Description

MLIDCFG_SourceRouting UINT32 (*)
(UINT32,
void *,
void **,
boolean)

MLIDCFG_LineSpeed UINT16

This field contains a pointer used by a Token-Ring
or FDDI MLID and a source routing module, such
as SROUTE.NLM. See the ODI Specification
Supplement: Source Routing for a discussion of
dynamic source routing.

Note: This function should use the ANSI C calling
convention.

This field holds the data rate used by the physical
card’s media. This value is normally specified in
megabits per second (Mbps). If the line speed is
less than 1 Mbps or if it is a fractional number, the
value of this field can be defined in kilobits per
second (Kbps) by setting the most significant bit to
1.

If the line speed can be selected, as with
Token-Ring, the MLID must determine the selected
line speed and place that value in this field. Below
are some common values:

Ethernet 10 Mbps 0x000A
Token-Ring 4 Mbps 0x0004
Token-Ring 16 Mbps 0x0010
FDDI 100 Mbps 0x0064
ISDN 64 Kbps 0x8040

For example, if the speed of the line MLID is
10 Mbps (Ethernet for example) put 10 (decimal)
in this field.

MLID Data Structures 12-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Table 12-1
MLID Configuration Table Field Descriptions

Name Type

Description

MLIDCFG_LookAheadSize UINT16

MLIDCFG_SGCount UINT8
MLIDCFG_Reservedl UINTS8
MLIDCFG_PrioritySup UINT16
MLIDCFG_Reserved2 void *

This field holds the configured lookahead size as
set by protocol stacks. The MLID sets this to a
default value of 18 bytes. However, a protocol stack
can dynamically override this value using the
SetLookAheadSize MLID control function. The
maximum value is 128 bytes when receiving a
packet, the MLID uses this value and the maximum
possible media header when determining the
amount of lookahead data the MLID must pass to
the CLSL_GetStackECB routine for every packet
that the MLID receives. The value in this field can
be changed at any time. Therefore, the MLID must
reference this field for every packet that the MLID
receives.

Note: Once set, this value never decreases. See
SetLookAheadSize in Chapter 15 of this
document.

The maximum number of Scatter/Gather elements
that the adapter is capable of handling. Thisis only
valid if the MM_FRAGS_PHYS_BIT in
MLIDCFG_ModeFlags is set by the MLID. The
minimum value for this field is 2 (1 MAC header
fragment and 1 data header fragment). The
maximum value for this field is 17 (1 MAC header
fragment and 16 ECB data fragments).

This field is reserved for future use and must be set
to 0.

This field contains the number of priority levels that
the MLID supports. This field has a maximum of 7
priorities (1-7). Zero (0) indicates a non-priority
packet. The MLID can set this field to O through 7.
Seven (7) is the highest priority.

This field is reserved for future use and must be set
to 0.

12-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table 12-1
MLID Configuration Table Field Descriptions

Description

Name Type
MLIDCFG_DriverMajorVer UINT8
MLIDCFG_DriverMinorVer UINT8
MLIDCFG_Flags UINT16
MLIDCFG_SendRetries UINT16
MLIDCFG_DriverLink void *

This field defines the current revision level of the
MLID and matches the revision level found in the
linker definition file and displayed by the MLID. For
example, if the MLID’s current major version is 2,
this field’s value is 2.

This field defines the current revision level of the
MLID and matches the revision level found in the
linker definition file and displayed by the MLID.

For example, if the MLID’s current minor version is
.32, this field’s value is 32. (If the current major and
minor version level displayed by the MLID is 2.32,
these fields reflect that version of 2.32.)

See the MLIDCFG_Flags field description (Table
12-3).

This field is set by the MLID and reflects whether
the MLID supports hub management and whether
the adapter has specialized hardware to support
group addressing—for example, CAM. Unused bits
must be set to 0. See Table 12-3 for more
information.

This field is initialized by the MLID to an
appropriate value that represents the number of
times the MLID will retry a transmission operation
with an error before giving up. See the "RETRIES
Load" key word in Appendix C, 'Platform Specific
Information’.

This field is set to NULL and is not modified by the
MLID.

MLID Data Structures 12-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Table 12-1
MLID Configuration Table Field Descriptions

Name Type

Description

MLIDCFG_SharingFlags UINT16

MLIDCFG_Slot UINT16

MLIDCFG_IOPort0 UINT16

The MLID sets this variable. See the
MLIDCFG_SharingFlags field description (Table
12-4).

This field informs the system the hardware
resources that a driver/physical card can share
with other driver/physical cards. If the MLID
supports shareable interrupts, the MLID must set
the MS_SHARE_IRQx_BIT bit. The first bitis used
to indicate when the MLID is shutdown. The MLID
is responsible for setting and clearing this bit. The
bit definitions for this field are listed in Table 12-4.

For Micro Channel, EISA, PCI, PC Card, and other
buses which allow for the identification of the
location of an adapter, this field contains the
Hardware Instance Number (HIN). The HIN is a
system -wide, unique handle for a device, which is
returned by GetlinstanceNumber after calling
SearchAdapter . This value normally corresponds
to the number silk screened on the mother board or
stamped on the chassis of the compter. The
instances are assinged a unique value in the
following cases:

Integrated Motherboard Devices
PCI BIOS v2.0 Devices
PCI BIOS v2.1 Adapter
(with Multiple Devices or Functions)
PnP ISA Devices
Confilcts Between Physical Slot Numbers

If this field is not used, it must be set to
UNUSED_SLOT.

Primary base I/0 port. This field is initialized to the
default I/O port base address. The user can
override this value input from a configuration entry
that is operating system dependent. If the MLID is
self-configurable, it determines the appropriate
value for the physical card and place that value into
this field before before registering the hardware
options and returning from initialization. If the MLID
does not use /O ports, this field is set to NULL.

12-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table 12-1
MLID Configuration Table Field Descriptions

Name Type

Description

MLIDCFG_IORange0 UINT16

MLIDCFG_IOPortl UINT16

MLIDCFG_IORangel UINT16

MLIDCFG_MemoryAddressO void *

MLIDCFG_MemorySize0 UINT16

This field defines the number of UINT8 1/O ports
decoded by the physical card at
MLIDCFG_IOPort0. Set this field to
UNUSED_I0_RANGE if the physical card does
not use I/O ports.

This field allows the MLID to define two 1/O port
base addresses. The definition is the same as
MLIDCFG_IOPort0. Set this to
UNUSED_IO_PORT if the physical card does not
have a second range of I/O ports.

The number of UINT8 I/O ports starting at
MLIDCFG_1OPortl. If this field is not used, set it to
UNUSED_IO_RANGE.

This field is initialized to the adapter’s default base
memory address. If the adapter does not use, or
define, shared RAM or ROM, set this field to
UNUSED_MEMORY_ADDRESS. This value is an
absolute physical address. On Intel processors, for
example, if a physical adapter’s RAM is located at
C000:0, the value in this field will be C0000. The
MLID sets this variable, but it can be changed by
the configuration.

If MS_MEM_PAGE_BIT in
MLIDCFG_SharingFlags is set, this field defines
the number of pages of memory decoded at
MLIDCFG_MemoryAddress0. If
MS_MEM_PAGE_BIT in MLIDCFG_SharingFlags
is clear, this field defines the number of paragraphs
(16 bytes) of memory decoded at
MLIDCFG_MemoryAddress0. If
MLIDCFG_MemoryAddress0 is not defined, set
this field to UNUSED_MEMORY_SIZE.

Note: The size of a page of memory is determined
by the processor for which this code is complied
on, such as Intel 4K, PowerPC 4K, Alpha 8K.

MLID Data Structures 12-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Table 12-1
MLID Configuration Table Field Descriptions

Name Type

Description

MLIDCFG_MemoryAddressl void *

MLIDCFG_MemorySizel UINT16
MLIDCFG_InterruptO UINT8
MLIDCFG_Interruptl UINT8

This field allows the MLID to define a second
memory address range used by the MLID’s
adapter. For example,
MLIDCFG_MemoryAddress1 could define the
starting address of the adapter’s RAM, and this
field could define the starting address of the
adapter's ROM. Set this field to
UNUSED_MEMORY_ADDRESS if the adapter
does not define a second memory range.

If MS_MEM_PAGE_BIT in
MLIDCGFG_SharingFlags is set, this field defines
the number of pages of memory decoded at
MLIDCFG_MemoryAddress1. If
MS_MEM_PAGE_BIT in MLIDCFG_SharingFlags
is clear, this field defines the number of paragraphs
(16 bytes) of memory decoded at
MLIDCFG_MemoryAddress1. If
MLIDCFG_MemoryAddress1 is not defined, set
this field to UNUSED_MEMORY_SIZE.

Note: The size of a page of memory is determined
by the processor for which this code is complied
on, such as Intel 4K, PowerPC 4K, Alpha 8K.

Primary interrupt vector number. This field is
initialized to the physical adapter’s default interrupt
request line (IRQ). If the adapter does not use an
interrupt line, set this field to
UNUSED_INTERRUPT. If the MLID’s adapter
supports IRQ 2 or 9, the MLID sets the value to be
consistent with the adapter’'s documentation. This
field is set to the adapter’s default base interrupt
vector number. For example, if the adapter’s
documentation specifies the default jumper setting
as IRQ2, set this field to 2. If the default jumper
setting is IRQ9, set this field to 9.

Secondary interrupt vector number. This field is set
to the adapter’'s second interrupt vector number.
Set this field to UNUSED_INTERRUPT if it is not
used.

12-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table 12-1
MLID Configuration Table Field Descriptions

Name Type Description

MLIDCFG_DMALIine0 UINT8 This field is initialized to the adapter’s default DMA
channel number. If the adapter does not use a
DMA channel, set this field to
UNUSED_DMA_LINE.

MLIDCFG_DMALinel UINT8 This field is used by the MLID if the MLID’s adapter
uses a second DMA channel. Set this field to
UNUSED_DMA_LINE if it is not used.

MLIDCFG_ResourceTag void * This field contains a pointer to a resource tag.

MLIDCFG_Config void * This field contains a pointer to the LSLs copy of the

MLIDCFG_CommandsString void *

MLIDCFG_LogicalName[18] MEON_STRING

MLIDCFG_LinearMemoryO void *

configuration table. The MLID does not use this
field.

Pointer to a structure containing two fields. The first
field is a forward link to the next structure. The
second field is a pointer to a NULL-terminated
string containing the parameters entered on the
command line. Normally, there is only one node in
the linked list, but if there are more than one, the
command line will be the concatenation of all of
them. Bits 9 and 10 of the MLID_SharingFlags field
are used in conjunction with this field. The MLID
sets this field.

MLIDs do not use this field. It contains the NULL
terminated logical name of the LAN MLID if a name
exists.

The operating system fills in this field with the
linear address of MLIDCFG_MemoryAddress0
during the MLID’s initialization routine.

Do not convert MLIDCFG_MemoryAddress0to the
logical address using the operating system
conversion routines.

MLID Data Structures 12-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Table 12-1
MLID Configuration Table Field Descriptions

Name Type

Description

MLIDCFG_LinearMemory1l void *

MLIDCFG_ChannelNumber UINT16

MLIDCFG_DBusTag void *

MLIDCFG_DIOConfigMajorVer UINT8

MLIDCFG_DIOConfigMinorVer UINT8

The operating system fills in this field with the
linear address of MLIDCFG_MemoryAddress1
during the MLID’s initialization routine.

Do not use the operating system conversion
routines to convert MLIDCFG_MemoryAddress1
to the logical address.

This field is used in multichannel adapters. It holds
the channel number of the NIC to use. Set this field
to 0 if multichannel adapters are not in use.

Pointer to an architecture dependent value which
specifies the bus on which the adapter is found.
The MLID must enter the value returned by
SearchAdapter in this field.

The major version of the I0_CONFIG_TABLE
structure (the bottom half of the
MLID_CONFIG_TABLE structure). The MLID sets
this field to 1.

The minor version of the IO_CONFIG_TABLE
structure (the bottom half of the
MLID_CONFIG_TABLE structure). The MLID sets
this field to 0.

Spec v1l.11 - Doc v1.22

12-14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

MLIDCFG_ModeFlags Field

Replace with new sentence.

Figure 12-1
MLIDCFG_ModeFlags Field Default Values

151413121110 9 8 7 6 5 4 3 2 1 0
0 0]0

2 MM_DEPENDABLE_BIT The function of this bit has been rendered obsolete by recent
changes to NetWare (specifically, the NetWare Link Services
Protocol). Therefore, we recommend that this bit always be set to 0.
Previously, this bit was used to limit the frequency of IPX RIP/SAP
updates when operating over reliable delivery, low bandwidth, Wide
Area Network (WAN) data links. When set to 1 by a WAN MLID, this
bit caused IPX to suppress the normal, periodic, RIP/SAP updates,
unless the route or service databases had changed. However, use
of this bit to suppress updates sometimes resulted in IPX route or
service loss.

)
o
. D)
Table 12-2 explains...... o

Table 12-2 <<
MLIDCFG_ModeFlags Bits Description ~

Bit# N D t

| ame escription H

0 Reserved This bit is reserved and must be set to zero. 1
1 Reserved This bit is reserved and must be set to zero. g
o

<
~
N
N

3 MM_MULTICAST_BIT Set this bit if the MLID and physical board support multicasting.
Multicast support is required for all media that have multicast
capability.

MLID Data Structures 12-15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table 12-2
MLIDCFG_ModeFlags Bits Description

Bit #

Name

Description

4

10

Spec v1l.11 - Doc v1.22

11

12

13

14

MM_CSL_COMPLIANT _
BIT

MM_PREFILLED_ECB_
BIT

MM_RAW_SENDS_BIT

MM_DATA_SZ_UNKNOWN _
BIT

MM_SMP_BIT
Reserved

MM_FRAG_RECEIVES_
BIT

MM_C_HSM_BIT

MM_FRAGS_PHYS_BIT

MM_PROMISCUOUS_BIT

MM_NONCANONICAL_BIT

The MLID sets this bit if the supported data link protocol requires
connection management through the Call Support Layer (CSL)
interface. Typical Wide Area Network (WAN) data link protocols,
such as Frame Relay, PPP, and X.25 are connection oriented and
rely upon network layer protocol (IPX, IP, etc.) interaction to
establish, maintain, and terminate connections to remote peers.
The CSL provides extensions to ODI that allow this connection
management interaction between network and data link layer
protocols. This bit must not be set by connectionless data link
protocols, such as Token-Ring and Ethernet. For more information
on the CSL interface, see the WAN ODI Specification.

Set this bit if the MLID always supplies prefilled (LSL) ECBs in the
LOOKAHEAD structure’s LkAhd_PreFilledECB field.

The MLID sets this bit to 1 if it supports raw send.

Set this bit if the MLID is capable of setting the
LkAhd_FrameDataSize field in the LOOKAHEAD structure to a -1,
frame size and/or receive status unknown—for example, pipelined
LAN adapter.

Set this bit if the MLID supports symmetrical multiprocessing.

Reserved.

Set this bitto zero. This field is used only if the MLID was developed
with Novell's LAN Driver Developer’s Kit for HSMs.

Set this bit to zero. This field is used only if the MLID was developed
with Novell's LAN Driver Developer’s Kit for HSMs.

Set this bit to zero. This field is used only if the MLID was developed
with Novell's LAN Driver Developer’s Kit for HSMs.

The MLID sets this bit if it supports promiscuous mode.

See Bit 15.

12-16

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Table 12-2
MLIDCFG_ModeFlags Bits Description

Bit #

Name

Description

15

MM_PHYS_NODE_ADDR_
BIT

The MLID sets or clears bits 14 and 15 to indicate whether the
MLID’s configuration table NodeAddress field contains a canonical
or noncanonical address.

Bit 14 indicates when the configuration table is using the
noncanonical format.

Bit 15 indicates whether the MLID supports the use of a
PhysicalNodeAddress.

The following are the bit 15 and 14 combinations:

00 = MLIDCFG_NodeAddress format is unspecified. The node
address is assumed to be in the physical layer’s native format;
octet bit reversal is not supported.

01 = This is an illegal value and must not occur.

10 = MLIDCFG_NodeAddress is canonical and octet bit reversal is
supported.

11 = MLIDCFG_NodeAddress is noncanonical and octet bit reversal
is supported.

MLID Data Structures 12-17

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

MLIDCFG_Flags Field

Figure 12-2
MLIDCFG_Flags Field Default Values

1514131211109 8 7 6 5 4 3 210
01010 010(0|0

Table 12-3 describes......

Table 12-3
MLIDCFG_Flags Bit Description

Bit# Name Description

8 MF_HUB_MANAGEMENT_ Set to 1 if the MLID supports hub management.
BIT

9 MF_SOFT_FILT_GRP_BIT See description below for bit 10.
10 MF_GRP_ADDR_SUP_BIT Bits 9 and 10 indicate different support mechanisms for multicast

filtering. These bits are only valid if bit 3 of the MModeFlags is set,
indicating that the MLID supports multicast addressing.

Spec v1l.11 - Doc v1.22

The MLID sets bit 10 if it has specialized adapter hardware (such as
hardware that utilizes CAM memory).

If an MLID that usually defaults to functional addressing also
supports group addressing sets bit 10, it receives both functional
addresses and group addresses.

The state of bit 9 is defined only if bit 10 is set. Bit 9 is set if the
adapter completely filters group addresses and the MLID does not
need to perform any checking. The MLID can dynamically set and
clear bit 9. For example, if the adapter utilizes CAM memory, but has
temporarily run out memory, the MLID must temporarily filter the
group addresses. In this case, the MLID must reset bit 9.

12-18 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

Table 12-3
MLIDCFG_Flags Bit Description

Bit# Name Description

9/10 Bits 9 and 10 combinations are as follows:

00= The format of the multicast address defaults to that of the
topology:

Ethernet => Group Addressing (Multicast Addressing)

Token-Ring => Group Addressing and Functional
Addressing

FDDI => Group Addressing
01= lllegal value which must not occur.

10= Filter group address in MLID. Group addressing is
supported by the specialized adapter hardware.

11= Adapter filtered group address. MLID software checking is
not required. Group addressing is supported by the
specialized adapter hardware.

See also ODI Specification Supplement: Canonical and
Noncanonical Addressing for information regarding octet bit reversal

11 MF_RECONFIG_BIT This bit indicates to an MLID that indirect (such as file based)
configuration information for the associated interface instance may
have changed. This bit can be set by any caller prior to calling the
MLIDReset function. Itis to be examined by the MLIDReset and
cleared upon completion of the reset processing. This bit has no
meaning for MLIDs which do not support use of indirect (such as file
based) configuration information.

ZZ'IA 90Q - TT'IA 2a8ds

12 MF_PRIORITYSUP_BIT The MLID sets this bit during initialization if the MLID has set the
MLIDCFG_PrioritySup field to something other than 0.

Note: The MLID may temporarily clear this bit to disable priority
support.

MLID Data Structures 12-19

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

MLIDCFG_SharingFlags Field

Figure 12-3
MLIDCFG_SharingFlags Field Default Values

Table 12-4

1514131211109 8 7 6 5 4 3 210

0

0

00

MLIDCFG_SharingFlags Bits Description

Bit# Name Description

0 MS_SHUTDOWN_BIT Setto 1 if the logical board is currently shut down. This bit must
also be set during Driverlnit until the driver/adapter is fully
functional and ready to send and receive packets.

1 MS_SHARE_PORTO_BIT Set to 1 if the adapter can share 1/0 port 0.

2 MS_SHARE_PORT1 BIT Set to 1 if the adapter can share 1/O port 1.

3 MS_SHARE_MEMORYO_BIT Setto 1 if the adapter can share memory range 0.

4 MS_SHARE_MEMORY1_BIT Setto 1 if the adapter can share memory range 1.

5 MS_SHARE_IRQO_BIT Set to 1 if the adapter can share interrupt O

6 MS_SHARE_IRQ1 BIT Set to 1 if the adapter can share interrupt 1.

7 MS_SHARE_DMAO_BIT Set to 1 if the adapter can share DMA channel 0.

8 MS_SHARE_DMA1 BIT Set to 1 if the adapter can share DMA channel 1.

9 MS_NO_DEFAULT_INFO_BIT If this bit is set and bit 10 is not set, some install programs will
merge the contents of the user's command line with the
system’s IOCONFIG structure. If it is not set, then only the
system’s IOCONFIG structure will be used to create the
command line. The MLID sets this bit if the command line
passed to Driverlnit is not empty.

12-20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Table 12-4
MLIDCFG_SharingFlags Bits Description

Bit# Name Description

10 MS_HAS_CMD_INFO_BIT If this bit is zero, the command line used by some install
programs will be created using the system’s IOCONFIG
structure and possibly (as controlled by bit 9) the content of the
users command line. This command line will include an entry
for every field that is used in the IOCONFIG structure. Setting
this bit prevents the install program from creating a command
line using the IOCONFIG structure; instead, it simply uses the
user’s command line and ignores the state of bit 9.

15 MS_MEM_PAGE_BIT When set this bit signifies that the values in fields
MLIDCFG_MemorySize0 and MLIDCFG_MemorySizel
contain the number of pages of memory used by the adapter.
For example, Intel platforms allow 4K pages with a maximum of
256 megabytes of shared memory address used by an adapter.

When clear this bit signifies that the values in fields
MLIDCFG_MemorySize0 and MLIDCFG_MemorySizel
contain the number of paragraphs (16 bytes) of memory used
by the adapter.

All other values, except for combinations of the above values, are invalid unless
stated otherwise.

MLID Data Structures 12-21

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Table 12-5
Frame Types Versus Size Fields

Frame Type MLIDCFG_MaxFrameSize
(the lesser of the two

MLIDCFG_BestDataSize

MLIDCFG_WorstDataSize

values)
Ethernet Maximum ECB buffer
802.3 size or 1514
Ethernet Maximum ECB buffer
802.2 size orl514
Ethernet Il Maximum ECB buffer
size or 1514
Ethernet Maximum ECB buffer
SNAP size or 1514

Token-Ring Maximum ECB buffer
802.2 size or the maximum size
the adapter can handle

Token-Ring Maximum ECB buffer
SNAP size or the maximum size
the adapter can handle

FDDI 802.2 Maximum ECB buffer
size or 4491

FDDI SNAP Maximum ECB buffer
size or 4491

MLIDCFG_MaxFrameSize - 14

MLIDCFG_MaxFrameSize - 17

MLIDCFG_MaxFrameSize - 14

MLIDCFG_MaxFrameSize - 22

MLIDCFG_MaxFrameSize - 17

MLIDCFG_MaxFrameSize - 22

MLIDCFG_MaxFrameSize - 16

MLIDCFG_MaxFrameSize - 21

MLIDCFG_MaxFrameSize - 14

MLIDCFG_MaxFrameSize - 18

MLIDCFG_MaxFrameSize - 14

MLIDCFG_MaxFrameSize - 22

MLIDCFG_MaxFrameSize - 48

MLIDCFG_MaxFrameSize - 52

MLIDCFG_MaxFrameSize - 47

MLIDCFG_MaxFrameSize - 51

12-22

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Example

If the maximum ECB buffer size equals 4096 bytes and the Token-Ring adapter
can handle 8192 bytes, then the Token-Ring 802.2 values are calculated as
follows:

+ MLIDCFG_BestDataSize

The maximum packet size minus the headers if the source routing header
is not included.

= MLIDCFG_MaxFrameSizé4096) - MAC header (14) - 802.2 Type |
LLC header (3)

=4079

« MLIDCFG_WorstDataSize

The maximum packet size minus the headers if the source routing header
is included.

= MLIDCFG_MaxFrameSizé4096) - MAC header (14) - 802.2 Type Il
LLC header (4) - Source Routing header (30)

=4048

MLID Data Structures 12-23

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Adapter Data Space

The MLID must allocate and initialize a structure called
DriverAdapterDataSpaceTemplafEhis structure must contain the data that is
specific to a particular LAN adapter. You must determine what
hardware-specific fields the MLID needs in this structure in order to drive its
particular LAN adapter. But keep in mind that this structure must also contain
the MLID statistics table.

MLID Statistics Table

12-24

This section describes the MLID statistics table in detail for MLIDs that
interface directly to the LSL. This section includes a sample of the statistics
table code and a description of each of the statistics table’s fields.

All MLIDs must keep a statistics table for the purpose of network management.
The following is the format of an MLID statistics table.

Importantv A protocol stack treats this table as read only!

The statistics table contains various diagnostic counters. All statistics counters
listed must be present in the table, but only those marked “mandatory” need to
be supported. These counters can be grouped into the following categories.

» Generic Statistics Counters
Standard Counters

Media Specific Counters

« Custom Statistics Counters

beginning value.

Note"’ When the statistics counters reach their maximum value, they wrap back to their

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

MLID Statistics Table Structure

typedef struct STAT _TABLE_ENTRY_

{
UINT32 StatUseFlag;
void *StatCounter;
MEON_STRING *StatString;

} STAT_TABLE_ENTRY;

Field Descriptions

StatUseFlag
Values are defined as follows:

ODI_STAT_UNUSED StatCounter entry not in use.

ODI_STAT_UINT32 StatCounter is a pointer to an UINT32
counter.

ODI_STAT_UINT64 StatCounter is a pointer to an UINT64
counter.

ODI_STAT _MEON_STRING StatCounter is a pointer to a Null

terminated string of MEON. The
maximum string length is 256, including
the NULL termination.

ODI_STAT_UNTYPED StatCounteris a pointer to a UINT8 array
preceded by its length (UINT32). This
value is generally used for debugging and
is displayed in hexadecimal bytes.

StatString
Pointer to a NULL terminated MEON string that describes the statistics
counter.

StatCounter
Defined byStatUseFlag

MLID Data Structures 12-25

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Statistics Table Structure

typedef struct _MLID_STATS_TABLE

{
UINT16 MStatTableMajorVer;
UINT16 MStatTableMinorVer;
UINT32 MNumGenericCounters;
STAT_TABLE_ENTRY (*MGenericCountsPtr)[];
UINT32 MNumMediaCounters;
STAT_TABLE_ENTRY (*MMediaCountsPtr)[];
UINT32 MNumCustomCounters;

STAT_TABLE_ENTRY (*MCustomCountsPtr)[];
} MLID_STATS_TABLE;

Spec v1l.11 - Doc v1.22

12-26 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

Table 12-6
MLID Statisitics Table Fields

Name Type

Description

MStatTableMajorVer UINT16

MStatTableMinorVer UINT16

MNumGenericCounters UINT32

MGenericCountsPtr STAT_TABLE_ENTRY*

MNumMediaCounters UINT32

MMediaCountsPtr STAT_TABLE_ENTRY*

MNumCustomCounters UINT32

MCustomCountersPtr STAT_TABLE_ENTRY*

This field contains the major version number of the
statistics table. The current major number is 4.

This field contains the minor version number of the

statistics table. The current minor version number is 0.

This field has the total number of generic
STAT_TABLE_ENTRY counters in this portion of this
table. This field is set to 20 for this specification.

Pointer to an array of STAT_TABLE_ENTRY counters
[MNumGenericCounters].

This field has the total number of media specific
STAT_TABLE_ENTRY counters in this portion of this
table. This field is set to the following values:

Token-Ring 13

Ethernet 8

FDDI 10

Pointer to an array of STAT_TABLE_ENTRY counters
[MNumMediaCounters].

The total number of custom STAT_TABLE _ENTRY
counters in this portion of this table. This field is
variable (dependent on the MLID).

Pointer to an array of STAT_TABLE_ENTRY counters
[MCustomCounters].

MLID Data Structures 12-27

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Example

#define NUM_GENERIC_COUNTERS 20

UINT32 MTotalTxPacketCount,
MTotalRxPacketCount,
MNoECBAvailableCount,
MPacketTxTooBigCount,

MPacketTxTooSmallCount,
MPacketRxOverflowCount,
MPacketRxTooBigCount,
MPacketRxTooSmallCount,
MTotalTxMiscCount,
MTotalRxMiscCount,
MRetryTxCount,
MChecksumErrorCount,
MHardwareRxMismatchCount,
MTotalTxOKByteCount,
MTotalRxOKByteCount,
MTotalGroupAddrTxCount,
MTotalGroupAddrRxCount,

MAdapterResetCount,

MAdapterOprTimeStamp,

MQDepth;
MEON_STRING MTotalTxPacketStr[] “Total Tx Packet Count”;
MEON_STRING MTotalRxPacketStr[] “Total Rx Packet Count”;
MEON_STRING MNoECBAvailableStr(] “No ECB Available Count”;
MEON_STRING MPacketTxTooBigStr[] “Packet Tx Too Big Count”;

MEON_STRING MPacketTxTooSmallStr[] “Packet Tx Too Small Count”;
MEON_STRING MPacketRxOverflowStr[] “Packet Rx Overflow Count”;

MEON_STRING MPacketRxTooBigStr[] “Packet Rx Too Big Count";
MEON_STRING MPacketRxTooSmallStr[] “Packet Rx Too Small Count";
MEON_STRING MTotalTxMiscStr[] “Total Tx Misc Count";
MEON_STRING MTotalRxMiscStr[] “Total Rx Misc Count";
MEON_STRING MRetryTxStr[] “Retry Tx Count";
MEON_STRING MChecksumErrorStr[] “Checksum Error Count";
MEON_STRING MHardwareMismatchStr[] “Hardware Mismatch Count";
MEON_STRING MTotalTxOKByteStr[] “Total Tx OK Byte Count";
MEON_STRING MTotalRxOKByteStr[] “Total Rx OK Byte Count";

MEON_STRING MTotalGroupAddrTxStr[] “Total Group AddrTx Count";
MEON_STRING MTotalGroupAddrRxStr[] “Total Group Addr Rx Count";

MEON_STRING MAdapterResetStr[] “Adapter Reset Count";
MEON_STRING MAdapterOprTimeStampStr[]“Adapter Opr Time Stamp";
MEON_STRING MQDepthStr[] “Tx Queue Depth";

12-28 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

STAT_TABLE_ENTRY MGenericCounters [NUM_GENERIC_COUNTERS] =

{
{ ODI_STAT_UINT32, &MTotalTxPacketCount, = &MTotalTxPacketStr },
{ ODI_STAT_UINT32, &MTotalRxPacketCount, = &MTotalRxPacketStr },
{ ODI_STAT_UINT32, &MNoECBAvailableCount, &MNoECBAvailableStr },
{ ODI_STAT_UINT32, &MPacketTxTooBigCount, &MPacketTxTooBigStr },
{ODI_STAT_UINT32, &MPacketTxTooSmallCount, &MPacketTxTooSmallStr},
{ODI_STAT_UINT32, &MPacketRxOverflowCount, &RMPacketRxOverflowStr},
{ ODI_STAT_UINT32, &MPacketRxTooBigCount, &MPacketRxTooBigStr },
{ODI_STAT_UINT32, &MPacketRxTooSmallCount, &MPacketRxTooSmallStr},
{ ODI_STAT_UINT32, &MTotalTxMiscCount, &MTotalTxMiscStr },
{ ODI_STAT_UINT32, &MTotalRxMiscCount, &MTotalRxMiscStr },
{ ODI_STAT_UINT32, &MRetryTxCount, &M&MRetryTxStr },
{ ODI_STAT_UINT32, &MChecksumErrorCount, = &MChecksumErrorStr },
{ODI_STAT_UINT32, &MHardwareRxMismatchCount, &MHardwareMismatchStr},
{ ODI_STAT_UINT64, &MTotalTxOKByteCount, = &MTotalTxOKByteStr },
{ ODI_STAT_UINT64, &MTotalRxOKByteCount, = &MTotalRxOKByteStr },
{ODI_STAT_UINT32, &MTotalGroupAddrTxCount, &MTotalGroupAddrTxStr},
{ODI_STAT_UINT32, &MTotalGroupAddrRxCount, &MTotalGroupAddrRxStr},
{ ODI_STAT_UINT32, &MAdapterResetCount, &MAdapterResetStr },
{ODI_STAT_UINT32, &MAdapterOprTimeStamp, &MAdapterOprTimeStampStr},
{ ODI_STAT_UINT32, &MQDepth, &MQDepthStr }

h

MLID_STATS_TABLE MLID_StatsTable = {4, O,
NUM_GENERIC_COUNTERS, MGenericCounters, 0,
NULL, O, NULL};

MLID Data Structures 12-29

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Table 12-7

MLID Statistics Table Generic Counters

Name

Type

Description

MTotalTxPacketCount

MTotalRxPacketCount

MNoECBAvailableCount

MPacketTxTooBigCount

MPacketTxTooSmallCount

MPacketRxOverflowCount

MPacketRxTooBigCount

MPacketRxTooSmallCount

MTotalTxMiscCount

MTotalRxMiscCount

MRetryTxCount

MChecksumErrorCount

UINT32

UINT32

UINT32

UINT32

UINT32

UINT32

UINT32

UINT32

UINT32

UINT32

UINT32

UINT32

Number of packets successfully transmitted onto the media.
Mandatory.

Number of packets reported as successfully received without
errors. This counter is independent of whether the packet is
accepted. Mandatory.

Number of times an incoming packet was discarded due to lack
of host receive buffers or the host not wanting the packet.
Mandatory.

Number of times a send packet was too big for transmission.
Mandatory.

Number of requested packets for transmission that were
normally too small to be transmitted. The packets might still
have been sent if the MLID does padding. Optional

Number of times the adapter’s receive buffer pool was
exhausted, which caused subsequent incoming packets to be
discarded. Optional.

Number of times a packet was received that was too large to fit
into preallocated receive buffers provided by the host or too
large for media definitions. Mandatory.

Number of times a packet was received that was too small for
media definitions. Optional.

This counter is incremented if the MLID failed to transmit and
has no appropriate generic counter to increment. Mandatory.

This counter is incremented if the MLID receives a packet with
errors and has no appropriate generic counter to increment.
Mandatory.

Number of times the MLID retried a transmit operation because
of a failure. Optional.

Number of times the MLID received a packet with corrupt data
(for example, CRC errors). Optional.

12-30

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Table 12-7

MLID Statistics Table Generic Counters

Name Type Description

MHardwareRxMismatchCount UINT32 Number of times the MLID received a packet that did not pass
the length consistency checks. Optional.

MTotalTxOKByteCount UINT64 Number of bytes (including low-level headers) the MLID
successfully transmitted onto the media. Mandatory.

MTotalRxOKByteCount UINT64 Number of bytes (including low-level headers) the MLID
successfully received. Mandatory.

MTotalGroupAddrTxCount UINT32 Number of packets the MLID transmitted with a group
destination address. Mandatory.

MTotalGroupAddrRxCount UINT32 Number of packets the MLID received with a group destination
address. Mandatory.

MAdapterResetCount UINT32 Number of times the adapter was reset due to an internal failure
or a call to the MLIDReset function. Mandatory.

MAdapterOprTimeStamp UINT32 This counter contains the time, (platform dependent clock, for
example number of ticks), the adapter last changed operational
state, such as Loaded, MLID Shutdown and Reset Control
Service functions. Mandatory

MQDepth UINT32 Number of Transmit ECBs that are queued for the adapter. The

MLID maintains this field. Mandatory.

ZZ'IA 90Q - TT'IA 2a8ds

MLID Data Structures 12-31

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

MLID Statistics Table Media Specific Counters

The statistics table must contain the media specific counters defined in this

section for the topology.

Token-Ring

Table 12-8
Media Specific Counters for Token-Ring

Media specific counters arr@&TAT_TABLE_ENTRMr Token-Ring are as

follows:

Size

Label

Description

UINT32

UINT32

UINT32

UINT32

UINT32

UINT32

TRN_ACErrorCounter

TRN_AbortDelimiterCounter

TRN_BurstErrorCounter

TRN_FrameCopiedErrorCounter

TRN_FrequencyErrorCounter

TRN_ InternalErrorCounter

This counter is incremented when a station receives an AMP
or SMP frame in which A = C =0, and then receives another
SMP frame with A = C = 0 without first receiving an AMP
frame. Mandatory.

This counter is incremented when a station transmits an
abort delimiter while transmitting. Mandatory.

This counter is incremented when a station detects the
absence of transitions for five half-bit times (burst-five error).
Note that only one station detects a burst-five error, because
the first station to detect it converts it to a burst-four.
Mandatory.

This counter is incremented when a station recognizes a
frame addressed to its specific address and detects that the
FS field bits are set to 1, indicating a possible line hit or
duplicate address. Mandatory.

This counter is incremented when the frequency of the
incoming signal differs by more than that specified in Section
7 (IEEE Std 802.5-1989) from the expected frequency.
Mandatory.

This counter is incremented when a station recognizes a
recoverable internal error. This can be used for detecting a
station in marginal operating condition. Mandatory.

12-32

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Table 12-8

Media Specific Counters for Token-Ring

Size Label

Description

UINT32 TRN_LastRingStatus

UINT32 TRN_LineErrorCounter

UINT32 TRN_LostFrameCounter

UINT32 TRN_TokenErrorCounter

UINT64 TRN_UpstreamNodeAddress

UINT32 TRN_LastRingID

This value contains the last ring status reported by the
adapter with the following bit definitions:

Bit 15 Signal loss

Bit 14 Hard error

Bit 13 Soft error

Bit 12 Transmit beacon

Bit 11 Lobe wire fault

Bit 10 Auto-removal error 1

Bit 9 Reserved

Bit 8 Remove received
Bit 7 Counter overflow
Bit 6 Single station

Bit 5 Ring recovery

Bit 4-0 Reserved

Mandatory.

This counter is incremented when a frame or token is copied
or repeated by a station. The E bit is 0 in the frame or token
and one of the following conditions exists:

1. The frame or token contains a non-data bit (J or K bit)
between the SD and the ED of the frame or token.

2. The frame contains a FCS error in a frame.

Mandatory.

This counter is incremented when a station is transmitting
and its TRR timer expires. This counts how often frames
transmitted by a particular station fails to return to it, thus
causing the active monitor to issue a new token. Mandatory.

This counter is incremented when a station acting as the
active monitor recognizes an error condition that needs a
token transmitted. This occurs when the TVX timer expires.
Mandatory.

This contains the upstream neighbor node address, right
justified with leading zeros. Mandatory.

This contains the value of the local ring. Mandatory.

MLID Data Structures 12-33

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Table 12-8
Media Specific Counters for Token-Ring

Spec v1l.11 - Doc v1.22

Size Label Description
UINT32 TRN_LastBeaconType This contains the value of the last beacon type. Mandatory.
Ethernet

Media specific counters arr&TAT_TABLE_ENTRMr Ethernet are as
follows:

Table 12-9
Media Specific Counters for Ethernet

Size Label Description

UINT32 ETH_TxOKSingleCollisionsCount This counter contains a count of frames that are involved
in a single collision and are subsequently transmitted
successfully. This counter is incremented when the result
of a transmission is reported as successful and the
attempt value is 2. Mandatory.

UINT32 ETH_TxOKMultipleCollisionsCount This counter contains a count of frames that are involved
in more than one collision and are subsequentially
transmitted successfully. This counter is incremented
when the result of a transmission is reported as
successful and the attempt value is greater than 2 and
less than or equal to the attempt limit of the network
controller used by the MLID. (The attempt limit is
specified by MLIDCFG_SendRetries .) Mandatory.

UINT32 ETH_TxOKButDeferred This counter contains a count of frames whose
transmission was delayed on its first attempt because the
medium was busy. Mandatory.

UINT32 ETH_TxAbortLateCollision This counter contains a count of the times that a collision
has been detected later than 512 bit times into the
transmitted packet. A late collision is counted twice, both
as a collision and as a late collision. Mandatory.

UINT32 ETH_TxAbortExcessCollision This counter contains a count of frames that, due to
excessive collisions, did not transmit successfully. This
counter is incremented when the value of attempts
during a transmission equals the attempt limit specified
by MLIDCFG_SendRetries . Mandatory.

12-34 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table 12-9
Media Specific Counters for Ethernet

Size Label

Description

UINT32 ETH_TxAbortCarrierSense

UINT32 ETH_TxAbortExcessiveDeferral

UINT32 ETH_RxAbortFrameAlignment

This counter contains a count of frames that the
carrierSense variable was not asserted or was
deasserted during the transmission of a frame without
collision. Mandatory.

This counter contains a count of frames that were
deferred for an excessive period of time. This counter
must only be incremented once per LLC transmission.
Mandatory.

This counter contains a count of frames that are not an
integral number of bytes in length and do not pass the
FCS check. Mandatory.

MLID Data Structures 12-35

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

FDDI

Media specific counters arr&§TAT_TABLE_ENTRMr FDDI are as follows:

Table 12-10
Media Specific Counters for FDDI

Size Label

Description

UINT32 FDI_ConfigurationState

UINT64 FDI_UpstreamNode

UINT64 FDI_DownstreamNode

UINT32 FDI_FrameErrorCount

UINT32 FDI_FramesLostCount

(ANSI fddiSMTCFState) This field contains attachment
configuration for the station or concentrator.

0= Isolated
1= local_a
2= local_b
3= local_ab
4= local_s
5= wrap_a
6= wrap_b
7= wrap_ab
8= wrap_s
9= c_wrap_a
10= c_wrap_b
11 = c_wrap_s
12 = through
Mandatory .

(ANSI fddiMACUpstreamNbr) This counter contains the MAC'’s
upstream neighbor’s long individual MAC address; 0 if unknown.
Mandatory.

(ANSI fddiMACDownstreamNbr) This field contains the MAC's
downstream neighbor’s long individual MAC address; O if
unknown. Mandatory.

This field contains a count of the number of frames that were
detected in error by this MAC that had not been detected in error
by another MAC. Mandatory.

This field contains a count of the number of instances that this
MAC detected a format error during frame reception such that the
frame was stripped. Mandatory.

12-36 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Table 12-10
Media Specific Counters for FDDI

Size Label Description

UINT32 FDI_RingManagementState This field indicates the current state of the ring management state

machine.
0 = Isolated
1 =Non_Op
2 =Ring_Op
3 = Detect

4 = Non_Op_Dup
5 = Ring_Op_Dup
6 = Directed

7 = Trace

Mandatory.

UINT32 FDI_LCTFailureCount This counter contains the count of consecutive times the link
confidence test (LCT) has failed during connection management.
Mandatory.

UINT32 FDI_LemRejectCount This counter contains a link error monitoring count of the times
that a link has been rejected. Mandatory .

UINT32 FDI_LemCount This counter contains the aggregate link error monitor error count;
this field is set to 0 only on station power-up. Mandatory.

UINT32 FDI_LConnectionState This field contains the state of this port's PCM state machine.

0 = Off

1 = Break

2 =Trace

3 = Connect

4 = Next

5 = Signal

6 = Join

7 = Verify

8 = Active

9 = Maintenance

ZZ'IA 90Q - TT'IA 2a8ds

Mandatory.

MLID Data Structures 12-37

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

12-38 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

chapter

1 2 MLID Initialization

Chapter Overview

This chapteexplains the issuesnolved inthe initiaization andegistraion of

the MLID, including the following topics:

Determiring hardvare options
Parsing the command line
Allocating frame and adapter gedépace

Settng up tle board service routine

The MLID Initialization Routine

When the MLID is loaded, #iMLID initialization routine is called.

The MLID initialization routine mustlo the fdlowing tasks.

Locate the LSL

Allocate tre frameand adapter data spaces

Parse tle LOAD command line

Pracess the custom comnitine keywords and custorfirmware
Register hadware options

Initialize the adapter hardware

Register the MLID with the LSL

Set up a boarservice routine

Stat timeout checks

If the MLID is unsuccessful in these initializat tasks, it shdd return
ODISTAT _FAIL.

MLID Initialization 13-1

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

Initialization Parameters Passed on the Stack

The initialization routine is called as follows:.

Syntax

ODISTAT Driverlnit (
MODULE_HANDLE *ModuleHandle,
SCREEN_HANDLE *ScreenHandle,
MEON_STRING *CommandLine,
MEON_STRING *ModuleLoadPath,
UINT32UninitizedDatalLength,
void*CustomDataFileHandle,
UINT32(* FileRead)(void *FileHandle,UINT32 FileOffset,
void *FileBuffer,UINT32 FileSize),

UINT32 CustomDataOffset,
UINT32 CustomDataSize,
UINT32 NumMsgs,

MEON_STRING **Msgs);

Input Parameters

ModuleHandle
Identifies your initialization routine. Your initialization routine must
provide this handle when calling many of the operating system support
routines for MLIDs.

ScreenHandle
Your initialization routine must use this handle during the
OutputToScreenfunction to perform any screen 1/O.

CommandLine

Pointer to the command line that was used to load the driver. This
parameter is used when parsing for the hardware configuration
information from the command line.

ModuleLoadPath
Path used to load the MLID, including the module name.

UninitizedDatalLength
Used by the operating system to determine the data image length.

CustomDataFileHandle

The custom data file is appended to the end of your MLID. Because the
MLID was opened during loading, this handle points to a structure that the

13-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Output Parameters

Return Values

Locating the LSL

operating system uses to read the custom data file. This value is provided
as a parameter to FileRead.

FileRead
Pointer to a read function thBativerinit can use to read auxiliary files.

CustomDataOffset

The starting offset of the custom data inside the file. This value is provided
as a parameter to FileRead.

CustomDataSize

The length of the custom data file. This value is provided as a parameter to
FileRead.

NumMsgs
Number of message strings in your module.

Msgs

Pointer to an array of pointers of MEON_STRING that is used by the
message enabling macros for handling messages.

None.

ODISTAT_SUCCESSFUL The MLID initialized successfully.

ODISTAT_FAIL The MLID failed to initialize successfully.

The LSL module must reside in the system before the any MLIDs can be
loaded. An MLID must first obtain the LSL API entry points to initialize. (See
“Locating the LSL” in Chapter 10, “LSL Support Routines”.)

MLID Initialization 13-3

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Frame and Adapter Data Spaces

Each time the operating system calls the initialization routine, the MLID
creates a logical board. The initialization routine must allocate the frame data
space for the logical board to use, and the MLID must create a copy of the
configuration table in this space. If the MLID is being loaded for the first time
for a given adapter, the initialization routine must also allocate the adapter data
space for the adapter.

Determining Hardware Options

The MLID must determine the hardware configuration of the LAN adapter.
This includes parameters such as:

+ Base port for programmed I/O adapters

+ Memory decode addresses for shared RAM adapters
+ Interrupt numbers

« DMA channels

For machines with bus types that support standard retrievable product IDs
(such as EISA, PCI, Micro Channel, PnP ISA, and PC Card), the MLID can get
hardware configuration information directly from the system using NBI calls
once the Hardware Instance Number (HIN) has been identified.

For EISA and Micro Channel busses, it is possible to uniquely identify an
adapter by its physical slot number. However, this is not possible for new buses
such as PCl and PnP ISA. These busses can have multiple functions or multiple
devices present on a single adapter, and in the cases of some bus configurations,
such as PCIBIOS v2.0 and PnP ISA, the buses have no physical slot correlation
scheme.

The slot parameter is used to contain the Hardware Instance Number (HIN).
The HIN is a system-wide, bus-independent, unique handle for a device. The
HIN enables the MLID to identify functions and devices on multiple device
adapters as well as single device adapters and integrated motherboard devices.

For single device adapters such as EISA, Micro Channel, and PCI BIOS v2.1,
the HIN is the physical slot number unless there is a physical slot conflict, such
as with multi-bus systems.

In the following cases, the hardware instances are assigned unique values:

13-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

« Integrated motherboard devices

« PCI BIOS v2.0 devices

« PCI BIOS v2.1 multiple device adapters
» PnP ISA devices

» Physical slot number conflicts

To identify the required hardware parametBrsyerinit must perform the
following steps (where appropriate for the hardware).

If the MLID supports an adapter with a product ID that is retrievable according
to a standard (such as EISA, PCI, Micro Channel, or PC Card), the MLID must
perform the following steps:

1. Scan for the adapter for each supported bus type 8smghAdapter
SearchAdapter gets the bus tag and the unique identifier for each
hardware instance found.

2. CallGetinstanceNumberonce for each hardware instance found.
GetlnstanceNumberuses the bus tag and the unique identifier to get the
HIN for each adapter. The MLID uses this HIN when parsing to determine
which hardware instance the MLID is being loaded for. The MLID then
places the selected HIN in tMLIDCFG_Slotfield of the configuration
table.

3. CallGetinstanceNumberMappingwith the configuration table
MLIDCFG_Sloftfield as an input parameter. The corresponding bus tag
and unique identifier will be returned. The bus tag returned from
GetlnstanceNumberMapping must be placed in the
MLIDCFG_DBusTadield of the configuration table.

4. CallGetCardConfiginfo to get the adapter's configuration and fill out the
I/O portion of the configuration table. (The bus tag and the unique
identifier for the selected HIN are used as input parameters for
GetCardConfiginfo.

MLID Initialization 13-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

13-6

If the MLID supports a bus adapter whose product ID is not retrievable
according to a standard (such as Legacy ISA), the MLID must parse the
command line to get the hardware configuration information, using the
following steps:

Note V! If the MLID needs to get more than one parameter to determine the value(s) of
other parameters, it should parse the command line more than once.

1. Parse the command line for sthndardkeywords.

2. Parse the command line for alistomkeywords.

Note Vvl In an advanced installation environment, custom keywords should be
restricted to ensure optimal performance of automatic driver selection
and loading.

Note Vvl For family drivers that support adapters of more than one bus type
(including legacy ISA), the custom keyword, ISA, should be used to

differentiate between a legacy ISA bus hardware instance and an
advanced bus hardware instance, such as EISA, Micro Channel, PCI,
PnP ISA, and PC Card.

3. After parsing the command line, fill in the I/O portion of the configuration
table in the frame data space for the logical board MIW®CFG_ Slot
field of the configuration table will contain the selected adapter HIN, and
the MLIDCFG_DBusTadield will contain the busTag.

4. When the MLID has all the needed information for the configuration table,
Driverlnit callsRegisterHardwareOptions

Important If the MLID needs to access shared memory before registering the
hardware options, it must use ReadPhysicalMemory .

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Registering Hardware Options

The MLID callsRegisterHardwareOptionsto register with the operating
system. This routine reports to the MLID whether a new adapter or a new frame
format for an existing adapter is being loaded. If a new adapter is being
registered, the MLID allocates the adapter data space and copies the MLID's
DRIVER_DATA to that area. This routine also notifies the MLID of any
conflicts with existing hardware in the system.

The MLID must be able to process the following three conditions on return
from RegisterHardwareOptions

- Ifthe return value indicates that a new adapter was successfully registered,
the MLID must proceed with the hardware initialization.

- If the return value indicates that a new frame type for an existing adapter
was successfully registered, the initialization is complete.

« If the returned value indicates that the MLID was unable to register the
hardware optiondriverlnit should clean up and return with an error
code.

Initializing the Adapter

Importantv

At this point, the MLID initializes the adapter hardware.

When the MLID initializes the adapter hardware, it must include all software
controlled configuration of hardware, and may also include hardware tests and
diagnostics such as RAM testirgriverReset can be called to do this part of
theDriverlnit procedure since it performs all of the steps necessary to
initialize hardware.

During initialization, the MLID may adjust MLIDCFG_MaxFrameSize down
if necessary.

If firmware is to be installed on the adapter, it must be done when the MLID
is initializing the adapter.

If an error occurs during hardware initializati@viverlnit should generate an
error message, return the allocated resources, and return ODISTAT_FAIL to
the operating.

When hardware initialization is successful, the MLID must do the following
tasks:

+ Set the MLIDCFG_SharingFlags MS_SHUTDOWN_BIT to zero

MLID Initialization 13-7

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

« CallNESLProduceMLIDEvent to produce a NESL Service Resume
MLID Card Insertion Complete event

+ Return ODISTAT_SUCCESSFUL to the operating system

Registering with the LSL

Driverlnit callsCLSL_RegisterMLID to register the MLID with the LSL.

During registration, the MLID passes the LSL a pointer to the MLID’s
registration structure, which contains pointers to the MLID’s transmit and
control handling interfaces.

When registration is successful, the LSL assigns a logical board number to the
adapter, and the MLID places it in the configuration table.

At this point, MLIDs for intelligent bus master adapters can pass the board
number and the frame ID information to the adapter.

Setting up a Board Service Routine

13-8

At this point, the MLID registers its board service routine(s) with the operating
system.

If the adapter is interrupt driven, it must be ready to process interrupts before it
calls the operating system.

Polling MLIDs can us&etPollSupportLevelto determine the level of polling
support provided on the platform.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Scheduling Timeout Callbacks

If an adapter is interrupt driven, the MLID can schedule a timer event to
determine when a board is unable to complete a transmission.

To schedule a timer event, the MLID must €IlISL_ScheduleAESEvent
which schedules periodic calls to the MLIDsiverAES routine. However,
the MLID cannot calCLSL_ScheduleAESEventuntil after it has called
CLSL_RegisterMLID .

If an adapter is ndhterrupt driven, the MLID should use polling routines to
determine when a board is unable to complete a transmission.

MLID Initialization 13-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

13-10

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

chapter

13 MLID Packet Reception

Chapter Overview

This chapter is arkef overview of thevarious MLID reception methods
available, and desibes how to providea LOOKAHEAD buffer.

You should eview thischapter before writing the MLIB board service
routine.

Reception Methods

Whenaphysicalboad gets a packetdm the netwvork, the board sgice
routine processes the packet.

Usually, the boardservice routie requests an ECBom the LSL andills it in
with information about thincoming packet. TBMLID then passes the
addres®f the ECB to the LB, and the LSL transfers the information to the
appropria¢ protocol stack.

The boad service routie mayalso recéve transnmssioncompkte interrupts.
In which case the boad service routine must be ablehandlethe additional
overhed involved in completing and re-issuing the transmission requests.

There ae several diferent methodsised for packet reception. The method
selected is typically dependent on the adaptata transfer method.

MLID Packet Reception 14-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

Reception Method - Option 1

Note‘VI
\v

Note‘VI
v

Option 1 is the simplest and most preferred reception method for host DMA
adapters and bus master adapters.

For Reception Method - Option 1, the MLID must perform the following tasks:

1. Save the processor state and disable the system interrupts if they are not

already disabled.

. Start an internal critical section.

. Enable the system interrupts so that external processes can execute. To do

this, the MLID must perform the following tasks:

a. If the adapter is interrupt driven, disable the physical board's interrupts
and dismiss the interrupt using the appropriate operating system call.

b. Enable system interrupts.

. Get an ECB from the LSL usir@l. SL_GETSizedECB.

. If an ECB is returned, fill in the ECB. ReferAppendix A, “Event

Control Blocks (ECBs)” for detailed descriptions of the ECB fields.

If an ECB is not available, discard the packet and increment the
appropriate statistics counters.

The data buffer described by the ECB can be fragmented.

If the packet contains errors, set the GlobalError bit in the
ECB_DriverWorkspace field of the ECB structure and fill out the
appropriate error bit in the ECB_PreviousLink field.

. Filter the packet and the frame header, and set up a LOOKAHEAD buffer.

See the “Receive Lookahead” section in Chapter 5 “Protocol Stack Packet
Reception”.

The LkAhd_PreFilledECB field in the LOOKAHEAD buffer is set to point to
the ECB.

If the packet contains errors, set the GlobalError bit in the LKAhd_DestType
field of the LOOKAHEAD structure and fill out the appropriate error bit in
the LkAhd_PktAttr field.

7. CallCLSL_GetStackECB with a pointer to the LOOKAHEAD buffer.

14-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

10.

11.

12.

Increment the appropriate statistic counters.

. Check whether the adapter has received another packet. If the adapter has

received another packet, initiate the packet reception process again.

Set the interrupts to their original state by taking the following steps in the
order given:

a. Disable system interrupts.
b. If the adapter is interrupt driven, enable the physical board's interrupts.

c. Enable the system interrupts.

Terminate the internal critical section and €al5EL_ServiceEvents.
CLSL_ServiceEventsmust be called before exiting the procedure to
process ECBs in the hold queue.

Return control to the calling routine by restoring the registers and doing an

IRET or another return as required by the platform that the MLID is
executing on.

MLID Packet Reception 14-3

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Reception Method - Option 2

Option 2 is the preferred reception method for shared RAM adapters and
programmed 1/O adapters.

Option 2 uses a LOOKAHEAD process, where the frame header information
is confirmed before the packet is transferred from the adapter to the ECB.

The adapter's data transfer mode determines how the LOOKAHEAD process
is handled.

For shared RAM adapters, the LOOKAHEAD buffer starts at the beginning
offset of the packet in shared RAM.

For programmed I/O adapters, the LOOKAHEAD buffer must be the size (in
bytes) of the maximum frame header size plus the value in the
MLIDCFG_LookAheadSizield of the MLID configuration table.

For Reception Method - Option 2, the MLID must perform the following tasks:

1. Save the processor state and disable the system interrupts if they are not
already disabled.

2. Start an internal critical section.

3. Enable the system interrupts so that external processes can execute. To do
this, the MLID must perform the following tasks:

a. If the adapter is interrupt driven, disable the physical board's interrupts
and dismiss the interrupt using the appropriate operating system call.

b. Enable system interrupts.

4. Filter the packet and the frame header, and set up a LOOKAHEAD buffer.
See the “Receive Lookahead” section in Chapter 5 “Protocol Stack Packet
Reception”.

Note \QAYA If the packet contains errors, set the GlobalError bit in the LkAhd_DestType field
of the LOOKAHEAD structure and fill out the appropriate error bit in the
LkAhd_PktAttr field.

5. CallCLSL_GetStackECB with a pointer to the LOOKAHEAD buffer.

If a protocol stack wants the packél,SL_GetStackECB returns an
ECB.

14-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

If an ECB is not availablé€;LSL_GetStackECB discards the packet and
increments the appropriate statistics counters.

6. Fillinthe ECB. Refer td\ppendix A, “Event Control Blocks (ECBs)” for
detailed descriptions of the ECB fields.

7. Increment the appropriate statistics counters.

Note‘vvl The data buffer described by the ECB can be fragmented.

If the packet contains errors, set the GlobalError bit in the
ECB_DriverWorkspace field of the ECB structure and fill out the
appropriate error bit in the ECB_PreviousLink field.

8. CallCLSL_HoldEvent. This call places the specified ECB on the LSL's
holding queue for processing.

9. Increment the appropriate statistic counters.

10. Determine if the adapter has received another packet. If the adapter has
received another packet, initiate the packet reception process again.

11. Setthe interrupts to their original state by taking the following steps in the
order given:

a. Disable system interrupts.
b. If the adapter is interrupt driven, enable the physical board's interrupts.

c. Enable the system interrupts.

12. Terminate the internal critical section and €4l5L_ServiceEvents.
CLSL_ServiceEventsmust be called before exiting the procedure to
process ECBs in the hold queue.

13. Return control to the calling routine by restoring the registers and doing an

IRET or another return as required by the platform that the MLID is
executing on.

Reception Method - Option 3

Pipelined adapters can be configured to interrupt before they receive the
complete packet.

MLID Packet Reception 14-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

At driver initialization time, the adapter must be configured to wait until it has
received at least the maximum header size plus the value in the
MLIDCFG_LookAheadSizield of the MLID configuration table before it
interrupts.

For Reception Method - Option 3, the MLID must perform the following tasks:

1. Save the processor state and disable the system interrupts if they are not
already disabled.

2. Start an internal critical section.

3. Enable the system interrupts so that external processes can execute. To do
this, the MLID must perform the following tasks:

a. If the adapter is interrupt driven, disable the physical board's interrupts
and dismiss the interrupt using the appropriate operating system call.

b. Enable system interrupts.

4. Setup a LOOKAHEAD buffer. See the “Receive Lookahead” section in
Chapter 5 “Protocol Stack Packet Reception”.

UNUSED. This indicates that the entire packet has not been received and that

Note‘Vl The LkAhd_FrameDataSize field in the LOOKAHEAD buffer must be set to
its error status is unknown at this time.

5. CallCLSL_GetStackECB with a pointer to the LOOKAHEAD buffer.

If a protocol stack wants the packél.SL_GetStackECB returns an
ECB.

If an ECB is not availablé€;LSL_GetStackECB discards the packet and
increments the appropriate statistics counters.

6. Fillinthe ECB and callLSL_HoldEvent/CLSL_ServiceEvents Refer
to Appendix A, “Event Control Blocks (ECBs)” for detailed descriptions
of the ECB fields.

7. Increment the appropriate statistic counters.

Note‘vvl The data buffer described by the ECB can be fragmented.

If the packet contains errors, set the GlobalError bit in the
ECB_DriverWorkspace field of the ECB structure and fill out the
appropriate error bit in the ECB_PreviousLink field.

14-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

10.

11.

12.

13.

CallCLSL_HoldEvent to place the specified ECB on the LSL's holding
gueue for processing.

Increments the appropriate statistic counters.

Determine whether the adapter has received another packet. If the adapter
has received another packet, initiate the packet reception process again.

Set the interrupts to their original state by taking the following steps in the
order given:

a. Disable system interrupts.
b. If the adapter is interrupt driven, enable the physical board's interrupts.

c. Enable the system interrupts.

Terminate the internal critical section and €AlEL_ServiceEvents.
CLSL_ServiceEventsmust be called before exiting the procedure to
process ECBs in the hold queue.

Return control to the calling routine by restoring the registers and doing an

IRET or another return as required by the platform that the MLID is
executing on.

MLID Packet Reception 14-7

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Using Shared Interrupts

14-8

MLIDs can support shared interrupts, provided that they are also supported by
the host bus and the adapters that will share the interrupt.

Interrupts can be shared if the bus is operating in level-triggered mode, or if
external logic exists on the adapters sharing the interrupt.

The following list describes how some buses handle interrupts:

« PCI and Micro Channel buses always use level-triggered interrupts and
can support shared interrupts.

« ISA buses normally use edge-triggered interrupts and will not support
shared interrupts unless external logic exists on the adapters for sharing
interrupts.

« EISA buses normally use edge-triggered interrupts, but each interrupt can
be individually configured to the level-triggered mode to support shared
interrupts.

« Other buses vary in their use of edge and level triggered interrupts.
- The MLID must indicate that the adapters are sharing interrupts by setting

the appropriate bit in thelLIDCFG_SharingFlagdield of the
configuration table.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

chapter

14 MLID Packet Transmission

Chapter Overview

This chapter is arkef overview of the MLID Padket Transmission routine.

You should eview thischapter before writing an MLIPacketTransmission
routine.

MLID Packet Transmission Routine

The MLID transmits paets through taphysicalboard. Whae a packet is
ready to be serthe potocolstadk prepares an\ert Control Block(ECB) and
calls the LSL's send packet routi@ (SL _SendPacket). The LSL inspects
theECB board number and calls the associated MLID send hafitihe send
handle ently pointis exchanged with he LSL during initialization time.)

Generaly, to preparea packet for transmission when callegithe LSL, the
MLID must perform the fotlwing stepshowever, the steps antheirorderare
dependent on the operating system ptatfo

1. Start a internal critical section.

2. Enable tle system interrupts so thizexternal processes carecute To do
this, the MLID must perform the folbwing tasks in the ordegiven:

a. Disable systam intermpts.
b. If the adapteis interrupt diven, disable the physi¢doard's interrupts

c. Enable system interrupts.

3. Determine if the handare is busy with a transmission. If it isjueue the
send.

MLID Packet Transmission 15-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

15-2

4. When the hardware is not busy with a transmission, set the busy flag and
inspect the ECB for raw sends.

5. Determine whether the packet is a raw send.
a. If the packet is a raw send, do not generate the media header.

b. If the packet is not a raw send, generate a media header.

6. Begin transmission of the header and data by sending a request to the
hardware.

7. Increment the appropriate counter(s).

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Note‘VI
v

8.

10.

11.

12.

13.

14.

The MLID must perform one of the following tasks, depending on whether
the transmission is a lying send or a non-lying send:

Lying send

Immediately following the send request to the hardware, set the
ECB_Statusield to 0 as if the send had completed successfully.

Non-lying send

After the send operation has completed, seEBB_Statudield to 0 if the

send was successful or to an error code if the send was unsuccessful. (This
usually takes place in the board service routine after receiving a send
complete interrupt.)

If a transmit monitor is registered, pass the completed TCB to the transmit
monitor for inspection.

Return the ECB by callingLSL_SendComplete

Check the MLID internal queue for pending transmissions. If any are
found, start sending them.

Set the interrupts to their original state by taking the following steps in the
order given:

a. Disable system interrupts.
b. If the adapter is interrupt driven, enable the physical board's interrupts.

c. Enable the system interrupts.

Terminate the internal critical section and €al5EL_ServiceEvents.
CLSL_ServiceEventsmust be called before exiting the procedure to
process ECBs in the hold queue.

Return control to the calling routine.

The entity that made the transmit request should not poll for completion; instead,
the entity should wait for the transmit request ESR in the transmit ECB to be
called. Polling for completion of a transmit request can cause a dead-lock and
system failure.

MLID Packet Transmission 15-3

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Priority Transmission Support

15-4

The following algorithm is used for priority transmission support.

1.

DuringDriverlnit , the CHSM must set the following parameters:

The MF_PRIORITY_BIT in theMLIDCFG_Flagsfield of the MLID
configuration table.

The MLIDCFG_PrioritySupfield of the MLID configuration table to
indicate the number of levels available.

The MLID can set or reset the MF_PRIORITYSUP_BIT as the MLID
changes the priority queue support state from enabled to disabled. The
MF_PRIORITYSUP_BIT is checked on a per queued packet basis.

. The protocol stack must set tB€B_ StacklIield to a value greater than

or equal to OXOFFFO. Refer fgppendix A, "Event Control Blocks
(ECBs)" for the valid values for tHeCB_ StacklICfield:

The MLID must follow the steps given in the previous section of this
chapter for the MLID Packet Transmission routine, with the exception that
step five must include a check for priority packets and take the appropriate
action.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

chapter

15 MLID Timeout Routine

Chapter Overview

This chapter iyes a overview of an MLID Timeout routine. This chapter
discusss:

« Scheduling tetimeout check
« Determining the wait interal
« lIdentifying a timeout erm

« Ranitializing the LAN adapter

You should eview thischapter before writing the MLID timeout routine.

Establishing a Timeout Routine

Depending on thhardvare capabities of the LAN adapte, the MLID might

need to establishtimeout check p*dead man timer” thaegularly checks the

LAN adapter tadetermine if the AN adapter is blockely an utinished
transmission. If a transmission has failed to complete after a reasonable period
of time, thetimeout procedure should perform the daling tasks:

» Reinitialize tre LAN adapter

« Increment statistics counters

Scheduling a Timeout Che ck

You can establishatimer functionfor your MLID’s timeout check using
CLSL_ScheduleAESEventThis calldoes not create a perpettiaier.
CLSL_ScheduleAESEventmust be calledgain to reschedeithe next check
each time the MLD’s timeout procedure tsalled.

MLID Timeout Routine 16-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

Determining the Wait Interval

You might need to experiment with the interval you set between timeout checks
to determine the optimal wait interval. This value is affected by the LAN
adapter’s hardware, the network topology, and the network load. Generally, you
will start working with an interval of 1 or 2 seconds.

Identifying a Timeout Error

Immediately after the MLID sends a packet, the send procedure should save a
time stamp for later inspection. The timeout procedure compares the time
stamp with the current time. If the difference between the two values is less
than the established wait interval, the timeout procedure simply reschedules
itself. If the wait interval has expired and the LAN adapter is still trying to
transmit, a timeout condition has occurred.

Reinitializing the LAN Adapter

16-2

After identifying a timeout condition, the MLID should try to reinitialize the
LAN adapter without destroying the send event in progress. If the maximum
number of retries allowed for the LAN adapter has not been exceeded, the
MLID should increment the retry counter and tell the LAN adapter to resend
the packet.

If the maximum number of retries has been exceeded, the MLID increments the
transmission error statistics counter, resets and clears the transmission bits and
the buffers on the adapter, and then sends the next packet on the send queue (if
one is waiting to be sent).

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

1 6 MLID Remove Routine

Chapter Overview

This chapter discusses the MLID Rara procedureThe MLID renove
procedueis aroutine thaallowsthe operating systeno tlynamically unload
the MLID.

This chapterdiscussesiow the MLID shauld be shut down. In particular, it
covers deregistering, canagy events, shutting alvn the LAN adapte and
removing the data spaces.

You shoudl read this chapter befee yau write the MLID timeout and emoval
routines.

Removing the MLID

Thisroutine is called whesver the MLID is unloadedIt givesthe MLID a
chanced clean up and return resources befa@dpremoved.

DeRegistering Logical Boa rds

When unloading the MLID, the reme procedue must deegister all d the
MLID’s logicalboards with te LSL by callingCLSL_DeRegisterMLID. In
addition, the rerve procedure musteregister the hardware optiottse MLID
registered with tk operating system.

MLID Remove Routine 17-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

Canceling Timeout Check and Polling Routines

The MLID must be sure to cancel any Timeout Check routines it may have
scheduled before returning from this procedure by calling
CLSL_CancelAESEvent If the MLID’s remove procedure does not cancel all
AES events, the operating system will try to call the MLIDs AES procedure at
a memory address that is no longer valid. If the MLID is Polled it needs to
deregister the polling routine with the operating system.

Shutting Down the LAN Adapter

The remove procedure must disable the LAN adapter. If the MLID is driving
an interrupt-driven LAN adapter or using interrupt backup for a polling
procedure, the remove procedure must also deregister the interrupt with the
operating system.

Remove Data Spaces

17-2

The MLID must also free all the memory that has been allocated for each
adapter data space and frame data space. However, the MLID should be careful
not to try to remove any adapter data space or frame data space for a logical
board that has been completely shut down by the MLID Shutdown control
routine.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

chapter 1 7
MLID Control Routines

Chapter Overview

This chapter describeke control routines that ODI requiregMLID to
provide.

MLID Control Routine Overvi ew

The ODI speciication requires MLIDs to provide control functito the LSL

for useby protocol stackand applications. Wimean MLID registers with the
LSL, the LSL passes a pointer to the MLID information block
(INFO_BLOCK for contol functions. Applications and protocol stacks use
these pointers as entryipts to get cofigurdion information andtstisics
about an MLID (se€LSL_GetMLIDCont rolEntry).

All reseved and unsupported control functions must ave pointers in the
information block (NFO_BLOCK), which, when calledwill return
ODISTAT_BAD_COMMAND asthe completion code.

MLID Control Routines 18-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

18-2

The following functions are currently defined for these entry points:

AddMulticastAddress
DeleteMulticastAddress
GetMLIDConfiguration
GetMLIDStatistics
GetMulticastinfo
MLIDManagement
MLIDShutdown
MLIDReset
PromiscuousChange
RegisterMonitor
RemoveNetworkinterface
ShutdownNetworklinterface
ResetNetworkinterface
SetLookAheadSize

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

The functions above are accessed through the MLID information block
(INFO_BLOCK) using indexes. The location of the various MLID control
functions in the information block are as follows:

IndexFunction

GetMLIDConfiguration
GetMLIDStatistics
AddMulticastAddress
DeleteMulticastAddress
Reserved
MLIDShutdown
MLIDReset

Reserved

Reserved
SetLookAheadSize

10 PromiscuousChange
11 RegisterMonitor

12 Reserved

13 Reserved

14 MLIDManagement

15 GetMulticastinfo

16 RemoveNetworkinterface
17 ShutdownNetworkinterface
18 ResetNetworkinterface

©Coo~NOOULS WNEFO

the information block can be accomplished by using the macro definitions in
ODI.H. The macros are listed below. The infoBlock parameter is returned by
CLSL_GetMLIDControlEntry . Refer to the API definitions for details on the rest
of the parameters.

Note‘vvl Access to the MLID APIs, independent of the link method (dynamic or static), in

MLIDCntl_GetConfig (infoBlock, boardNumber, boardConfig, pAsyncECB)
MLIDCntl_GetStats (infoBlock, boardNumber, boardStats, pAsyncECB)
MLIDCntl_AddMulti (infoBlock, boardNumber, addMulticastAddr, pAsyncECB)
MLIDCntl_DelMulti (infoBlock, boardNumber, delMulticastAddr, pAsyncECB)
MLIDCntl_Shutdown (infoBlock, boardNumber, shutdownType, pAsyncECB)
MLIDCntl_Reset (infoBlock, boardNumber, pAsyncECB)
MLIDCntl_PromisChange (infoBlock, boardNumber, PromiscuousState,
PromiscuousMode, pAsyncECB)
MLIDCntl_RegMon (infoBlock, boardNumber, txMonRoputine, pAsyncECB,
monitorState)
MLIDCntl_Management (infoBlock, boardNumber, managementECB)
MLIDCntl_GetMulticastinfo (infoBlock, boardNumber, multicastinfoECB)
MLIDCntl_RemoveNetworkinterface (infoBlock, boardNumber, pAsyncECB)
MLIDCntl_ShutdownNetworkinterface (infoBlock, boardNumber, pAsyncECB)
MLIDCntl_ResetNetworkinterface (infoBlock, boardNumber, pAsyncECB)

MLID Control Routines 18-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

18-4

Adhere to the following procedures for MLID control services that complete
asynchronously and for which an asynchronous ECB has been provided.

If the MLID can not finish the request in a reasonable amount of time (less than
a millisecond), it does the following:

1. Queue the provided asynchronous ECB.
2. ReturnODISTAT_RESPONSE_DELAYED

3. Start servicing requests and schedule an AES event instead of polling
hardware for completion.

If another application calls the same MLID control service with an ECB,
before the MLID has finished with the first one, the MLID should delay
until the first request has completed and then initiate the request.

Note\QAYA If an ECB has been provided, the ESR is only called if
ODISTAT_RESPONSE_DELAYED is returned.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

MLID Control Service Completed
For the following control services:
+ GetMLIDConfiguration
+ GetMLIDStatistics
+ GetMLIDMulticastinfo
« MLIDShutdown
« MLIDReset
- AddMulticastAddress
» DeleteMulticastAddress
» SetLookAheadSize
« PromiscuousChange
» RegisterMonitor
« MLID Management
- RemoveNetworkinterface
» ShutdownNetworklInterface

+ ResetNetworkinterface

MLID Control Routines 18-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

18-6

The MLID does the following for each ECB queued for this control service.
1. Unlink the ECB from the MLID queue.
2. Fill in theECB_Statudield with the appropriat®DISTATreturn status.

3. If GetMLIDConfiguration is used:

Fill the ECB_PreviousLinKield with the pointer to the MLID
configuration table; NULL if error.

If GetMLIDStatistics is used:

Fill the ECB_PreviousLinKield with the pointer to the MLID
statistics table; NULL if error.

If PromiscuousChangs used:

Fill the ECB_PreviousLinkield with the current promiscuous mode.

4. Call the ECB’s Event Service Routif(BECB_ESR) (ECB*)).

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

AddMulticastAddress

Index 2 (0x02)

Syntax

Input Parameters

Output Parameters

Adds the specified node address to the multicast
(group) address table.

#include <odi.h>

ODISTAT AddMulticastAddress (
UINT32 BoardNumber,
NODE_ADDR *AddMulticastAddr,
ECB *pAsyncECB);

BoardNumber
The board number, which indicates the MLID to add the multicast (group)
address for.

AddMulticastAddr
Pointer to arADDR_SIZEsize byte area, which contains the multicast
(group) addres#ADDR_SIZHs defined in ODI.H.

pAsyncECB

Pointer to an ECB whose ESRECB_ESR)(ECB*)) is to be called if the
MLID control service performs asynchronously (returns

ODISTAT _RESPONSE_DELAYEDNULL, itis assumed that the caller
does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYHR#I still be returned if the MLID
control service is performed asynchronously.

None.

MLID Control Routines 18-7

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Return Values

Remarks

ODISTAT_SUCCESSFUL Multicasting was successfully enabled.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete in
a reasonable amount of time and will complete
asynchronously.

ODISTAT_OUT_OF_RESOURCES The MLID has insufficient resources to enable
the multicast (group) address.

ODISTAT_BAD_PARAMETER The requested multicast (group) address is not
valid for the MLID’s media type, or the specified
board number is invalid.

ODISTAT_BAD_COMMAND Multicast (group) addressing is not supported by
the MLID and/or the underlying hardware
device.

ODISTAT_MLID_SHUTDOWN The MLID is temporarily shutdown.

Protocol stacks that enable multicast reception should first check
MM_MULTICAST_BITin the MLID configuration table’s
MLIDCFG_ModeFlagdield. Some LAN media (for example, RX-Net) do not
support multicasting. When an underlying MLID/adapter does not support
multicasting, the protocol stack should use broadcast transmission instead.

(The destination address is OxFF FF FF FF FF FF for a broadcast transmission.)

The MLID keeps a count of the number of times the specified address is added.

When the address is deletedgleteMulticastAddress the count is

decremented. When the count is 0, the address is disabled. This behavior allows

two or more protocols to safely use the same multicast (group) address.

The MLID manages enabled multicast (group) addresses according to the

physical adapter. The format of a multicast (group) address is LAN medium
dependent. The two most common formats are for Ethernet (Ethernet_IlI/IEEE
802.3) and Token-Ring (802.5), which are summarized below. Proprietary
LAN media that support multicasting can have alternate address encoding

methods. Therefore, a protocol stack should allow a multicast (group) address

that can be configured by the user. This allows the protocol stack to work
correctly on proprietary LAN media.

18-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Examples

Note‘VI

\v

Note‘VI
v

unctional addresses should never be sent on the medium with more than one
function bit set. If more than one function bit is set, the address will not work on
all media. For example, Token-Ring accepts a functional address that has more
than one function bit set but PCN_II does not.

f a Token-Ring based adapter is operating in canonical mode (that is, bit 14 is
clear and bit 15 is set in the MLIDCFG_ModeFlags field), the Token-Ring MLID
accepts functional addresses in canonical format, that is, instead of C0-00,
it accepts 03-00

Maximum Number of Multicast (Group) Addresses

The number of multicast (group) addresses supported by an underlying MLID/
LAN medium is not specified by ODI. In the case of Token-Ring, the maximum
number supported is specified by the definition of the address, with 28 being
the maximum. Ethernet, however, has an almost infinite number of functional
addresses. The maximum number supported is defined in ODI.H as
MAXMULTICASTS.

Group Addressing Hardware

Most adapters for Ethernet, FDDI, etc. create a multicast (group) address hash
table to filter incoming packets destined to a multicast group. Hashing is not
usually a guaranteed filter; therefore, more than one multicast (group) address
might be received by the adapter. This causes the underlying MLID to receive
unwanted multicast packets. The MLID will complete the filtering so that only
addresses enabled through this command are actually passed to protocol stacks.

A class of adapters have been developed that contain specialized hardware to
support multicast (group) addressing—for example, Content Addressable
Memory (CAM) memory, which ensures that only supported multicast (group)
addresses get passed up from the hardware to the software of the MLID for
processing. The MLID configuration tabié SOFT_GRP_BI&nd
MF_MF_GRP_ADDR_SUP_BIhits of theMLIDCFG_Flagsfield allow for

such adapters. They allow for this hardware support to be recognized and for it
to indicate when multicast (group) addresses need to be checked by software.
SeeChapter 12: MLID Data Structurdsr the MLID’s configuration table and

a discussion of the format of these bits.

MLID Control Routines 18-9

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

18-10

Note‘VI
\v

Ethernet Multicasts

Ethernet multicast (group) addresses must have bit 0 of byte 0 set to 1 (for
example, x1 xx xx xx xx xx). The address is value based; each value is unique
and separate from other values.

Most Ethernet adapters create a multicast hash table to filter incoming packets
destined to a multicast group. Hashing is not usually a guaranteed filter;
therefore, more than one multicast (group) address might be received by the
adapter. This causes the underlying MLID to receive unwanted multicast
packets. The MLID will complete the filtering so that only addresses enabled
through this command are actually passed to protocol stacks.

Token-Ring Multicasts

Token-Ring multicast addresses in an ODI system can be Token-Ring
functional addresses or group addresses as defined by the Token-Ring
topology. These addresses are bit based. Each bit position in the address
signifies a unique address, and more than one address can be specified by
simply setting multiple bits. Addresses always begin with C0-00, which leaves
32 bits (4 bytes) for functional addresses. However, four of the 32 possible bits
are reserved by IBM, which leaves 28 unique multicast (group) addresses
available.

More than one multicast (group) address can be added when you invoke the
AddMulticastAddress command. For example, if CO 00 00 01 00 00 and CO
00 00 02 00 00 need to be enabkddMulticastAddress can be called twice
(once for each address) or simply called once with CO 00 00 03 00 00. Both
methods are equivalent. Token-Ring MLIDs keep a use count for each
functional address bit.

The media specification produced by the standards committees should be referenced for
complete descriptions on multicast addresses.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

DeleteMulticastAddress

Index 3 (0x03)

Syntax

Input Parameters

Output Parameters

Disables reception of a previously enabled
multicast (group) address.

#include <odi.h>

ODISTAT DeleteMulticastAddress (
UINT32 BoardNumber,
NODE_ADDR *DelMulticastAddr,
ECB *pAsyncECB);

BoardNumber
The board number describing which MLID to delete the multicast (group)
address for.

DelMulticastAddr
Pointer to alADDR_SIZEsize byte area containing the multicast (group)
address. ADDR_SIZHs defined in ODI.H.

pAsyncECB

Pointer to an ECB whose EJRECB_ESR)(ECB?)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYEDNULL, itis assumed that the caller
does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYHR#I still be returned if the MLID
control service is performed asynchronously.

None.

MLID Control Routines 18-11

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Return Values

Remarks

18-12

ODISTAT_SUCCESSFUL One instance of the address was successfully
deleted.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete in
a reasonable amount of time and will complete
asynchronously.

ODISTAT_BAD_PARAMETER The requested multicast (group) address is not
valid for the MLID’s media type, or the specified
board number is invalid.

ODISTAT_ITEM_NOT_PRESENT The specified address is not presently enabled in
the MLID.

ODISTAT_BAD_COMMAND Multicast (group) addressing is not supported by
the MLID and/or the underlying hardware
device.

ODISTAT_MLID_SHUTDOWN The MLID is temporarily shutdown.

This command decrements the MLID’s use count for the specified address.
When the use count becomes 0, response of that address is disabled. (See
AddMulticastAddress for a discussion of multicast (group) address formats.)

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

GetMLIDConfiguration
Index O (0x00)

Returns a pointer to a pointer to the MLID
configuration table for the specified logical board.

Syntax
#include <odi.h>

ODISTAT GetMLIDConfiguration (
UINT32 BoardNumber,
MLID_CONFIG_TABLE **BoardConfig,
ECB *pAsyncECB);

Input Parameters

BoardNumber
The board number to obtain the MLID configuration table for.

pAsyncECB

Pointer to an ECB whose EJRECB_ESR)(ECBY)) is called if the

MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYEDJ NULL, it is assumed that the

caller does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYHR#I still be returned if the MLID

control service is performed asynchronously.

Output Parameters

BoardConfig

Pointer to a buffer where a pointer to the specified board’s MLID
configuration table can be returned.

MLID Control Routines 18-13

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Return Values

Remarks

18-14

ODISTAT_SUCCESSFUL The pointer to the specified board’s MLID
configuration table was successfully returned.

ODISTAT_RESPONSE_DELAYED The MLID control service could not be
completed in a reasonable amount of time and
will complete asynchronously.

ODISTAT_BAD_PARAMETER The specified board number is invalid.

This command is supported by all MLIDs. A separate configuration table is
maintained by the MLID for each adapter and frame type combination. (See
Chapter 12: MLID Data Structurdsr the format of the MLID configuration
table.)

This control service usually completes synchronously.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

GetMLIDStatistics
Index 1 (0x01)

Returns a pointer to a pointer to the MLID statistics
table for the specified board.

Syntax
#include <odi.h>

ODISTAT GetMLIDStatistics (
UINT32 BoardNumber,
MLID_STATS TABLE **BoardStats,
ECB *pAsyncECB);

Input Parameters

BoardNumber
The board number to obtain the MLID statistics table for.

pAsyncECB

Pointer to an ECB whose EJRECB_ESR)(ECBY)) is called if the

MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYEDJ NULL, it is assumed that the

caller does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYHR#I still be returned if the MLID

control service is performed asynchronously.

Output Parameters

BoardStats

Pointer to a buffer where a pointer to the specified board’s statistics table
can be returned.

MLID Control Routines 18-15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Return Values

ODISTAT_SUCCESSFUL The pointer to the specified board’s MLID
statistics table was successfully returned.

ODISTAT_RESPONSE_DELAYED The MLID control service could not be
completed in a reasonable amount of time and
will complete asynchronously.

ODISTAT_MLID_SHUTDOWN The MLID is temporarily shutdown.

Remarks

18-16

All MLIDs support this command. The MLID maintains one statistics table for
each physical adapter. Each frame type (logical board) present for that physical
adapter uses the same table. The board number can be any of the logical board
values present for a physical adapter. Regardless of the logical board number,
GetMLIDStatistics returns the same table for each logical board associated
with the MLID. (SeeChapter 12: MLID Data Structurdsr the format of the

MLID statistics table.)

Usually, this control service completes synchronously.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

GetMulticastinfo
Index 15 (OxOF)

Allows management entities to get group
addresses or functional addresses that the MLID is
using.

Syntax

#include <odi.h>
ODISTAT GetMulticastinfo (
UINT32 BoardNumber,
ECB *MulticastInfoECB);

Input Parameters

BoardNumber
The logical board number.

Output Parameters

MulticastinfoECB

Pointer to an ECB in which to return Group (Multicast) and/or Functional
address information. The MulticastinfoECB contains a single fragment
into which to copy Group address (Multicast) information:

On Entry:

ECB_FragmentCount
Is equal to 1.

ECB_Fragment.FragmentAddress
Points to the buffer to copy Group address structures.

ECB_Fragment.FragmentLength
The size of the buffer to copy Group address structures.

MLID Control Routines 18-17

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

On Exit:

ECB_ImmediateAddress

Contains the Functional address currently used by the MLID, zero if the
MLID does not use Functional Addresses (eg. Ethernet, FDDI), or the
Function Address is currently unused.

ECB_Datal ength

Contains the number of bytes transferred into the buffer indicated by
ECB_Fragment.FragmentAddresH the MLID does not use Group
addresses theCB_Datal engtliield will be set to zero.

This field will contain the size of the buffer required to return the Multicast
address information, if the buffer is insufficient in size, that is when
ODISTAT_OUT_OF_RESOURCES is returned.

ECB_Fragment.FragmentAddress

Points to a buffer containing a series of Group address structures used by
the MLID. If the MLID does not use Group addresses the
ECB_Datalengtlield will be set to zero. The MLID returns in the buffer

a series of repeating structures defined as follows:

typedef struct _ GROUP_ADDR_LIST_NODE_ {
NODE_ADDR GRP_ADDR,;

UINT16 GRP_ADDR_COUNT;

} GROUP_ADDR_LIST_NODE;

GRP_ADDR
Multicast address in the MLID configuration
table. A value of zero indicates an entry
that has never been used.

GRP_ADDR_COUNT
Thiscountisthenumberoftimestheaddress
has been added. A value of zero indicates
that the address is currently inactive.

ECB_Fragment.FragmentLength
Unchanged.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

ODISTAT_SUCCESSFUL The command was successfully executed. The
ECB is returned to the caller.

ODISTAT_RESPONSE_DELAYED The requested operation was successfully
started, but will complete asynchronously. The
MulticastinfoECB event service routine will be
called with the completion code when the
command has finished execution.

ODISTAT_BAD_COMMAND GetMulticastinfo functions are not supported
by the MLID.

ODISTAT_OUT_OF_RESOURCES The buffer presented in MulticastinfoECB to
transfer the Group (Multicast) addresses used by
the MLID into was insufficient. The field
MulticastinfoECB.ECB_DatalLength contains
the size the buffer should be to transfer Group
(Multicast) addresses used by the MLID.

ODISTAT_MLID_SHUTDOWN The MLID is temporarily shutdown.

Remarks

The MulticastinfoECB ESR(*ECB_ESR)(ECB*)) will only be called if the
function returns ODISTAT _RESPONSE_DELAYED, any other return code
implies that the processing of the ECB is complete and the ECB contains valid
information, eg. ODISTAT_OUT_OF_RESOURCES returned implies
ECB_Datal ength contains the size of the buffer required to return appropriate
information.

If this function is not implemented, a function which returns
ODISTAT_BAD_COMMAND must be placed here in lieu of the
GetMulticastinfo function.

The list of Group (Multicast) address returned are in canonical/noncanonical
format as described by the MLID ConfiguratistiD_ModeFlagdfields’s bit
14 and 15.

MLID Control Routines 18-19

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

MLIDManagement

Index 14 (OxOE)

Syntax

Input Parameters

Output Parameters

Allows various management entities to access
management information—for example, hub
management, SMT management for FDDI,
protocol stacks off-loading routing duties to
intelligent adapters, etc.

#include <odi.h>

ODISTAT MLIDManagement (
UINT32 BoardNumber,
ECB *ManagementECB);

BoardNumber
The logical board number.

ManagementECB

Pointer to an ECB containing management information. The first byte of
the ECB_ProtocollDfield is greater than 0x40 and less than Ox7F.

None.

18-20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL
ODISTAT_RESPONSE_

DELAYED

ODISTAT_BAD_COMMAND

ODISTAT_BAD_PARAMETER

ODISTAT_NO_SUCH_HANDLER

ODISTAT_FAIL

Command was executed successfully.

Command will complete asynchronously. The
management ECB event service routine will be
called with the completion code when the
command has finished execution.

Management functions are not supported by the
MLID.

First byte of theCB_ProtocollDfield

containing the management handle provided in
the management ECB is not greater than 0x40
and less than 0x7F, or the specified board
number is invalid.

Management entity for the management handle
provided in the managemeB&CB_ProtocollD
field does not exist.

The command was recognized, but could not be
executed.

The MLID management ECB ESRECB_ESR)(ECB*)) could be called
before returning from this function.

MLID Control Routines 18-21

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

MLIDReset

Index 6 (0x06)

Syntax

Input Parameters

Output Parameters

Causes the MLID to totally reinitialize the physical
adapter. This command also brings an MLID back
into active operation if it was temporarily shut
down.

#include <odi.h>

ODISTAT MLIDReset (
UINT32 BoardNumber,
ECB *pAsyncECB);

BoardNumber
The logical board number.

pAsyncECB

Pointer to an ECB whose EJRECB_ESR)(ECBY)) is called if the
MLID control service performs asynchronously (returns

ODISTAT_RESPONSE_DELAYEDNULL, it is assumed that the caller
does not need to be informed of completion of the request; however,

ODISTAT_RESPONSE_DELAYHRHI still be returned if the MLID
control service is performed asynchronously.

None.

18-22 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL The physical card has been reactivated.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete in
a reasonable amount of time and will complete

asynchronously.

ODISTAT_FAIL The MLID was unable to reset its hardware. This
can indicate a hardware failure or system
corruption.

ODISTAT_BAD_COMMAND The MLID does not support this command.

ODISTAT_BAD_PARAMETER The specified board number is invalid.

TheMS_SHUTDOWN_BIbit in each logical board’s configuration table
MLIDCFG_SharingFlagdield will be reset to 0 when this function returns
successfully.

This function leaves previously enabled multicast (group) addresses enabled.

MLID Control Routines 18-23

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

MLIDShutdown

Index 5 (0x05)

Syntax

Allows an application to shut down a physical
adapter.

#include <odi.h>

ODISTAT MLIDShutdown (
UINT32 BoardNumber,
UINT32 ShutDownType,
ECB *pAsyncECB);

Input Parameters

18-24

BoardNumber
The logical board number.

ShutDownType
The form of shut down desired:
SHUTDOWN_PERMANENT

Shut down hardware and deregister with the LSL (permanent
shutdown).

SHUTDOWN_PARTIAL
Shut down hardware only (temporary shutdown).

pAsyncECB

Pointer to an ECB whose EJRECB_ESR)(ECBY)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYEDNULL, it is assumed that the caller
does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYHRHI still be returned if the MLID
control service is performed asynchronously.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Output Parameters

Return Values

None.

ODISTAT_SUCCESSFUL The MLID was successfully shutdown.
ODISTAT_RESPONSE_DELAYED The MLID control service could not complete in

a reasonable amount of time and will complete
asynchronously.

ODISTAT_FAIL The MLID was unable to shut down its

hardware. This can indicate a hardware failure or
system corruption.

ODISTAT_BAD_COMMAND The MLID does not support this command.
ODISTAT_BAD_PARAMETER The specified board number is invalid.

Remarks

If the MLID is permanently shutdown, a subsequent caltdDReset will
not be successful. Permanent shutdowns are normally used only to completely
disable the hardware and return any interrupt vectors and system resources.

MLIDs that are temporarily shutdown can be brought back into operation by
invoking theMLIDReset control command.

All the adapter’s logical boards that share the same physical adapter and are
represented by the logical board numbeviiiDCFG_BoardNumber are
affected by this command. All logical board MLID configuration tables that are
affected by this command will haiS_SHUTDOWN_BI$et in the
MLIDCFG_SharingFlagdield.

Any outstanding protocol transmit and receive ECBs will be returned before
this command is completed.

MLID Control Routines 18-25

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

PromiscuousChange

Index 10 (Ox0A)

Syntax

Used by protocol stacks to enable or disable
promiscuous mode on the MLID’s adapter.

#include <odi.h>

ODISTAT PromiscuousChange (
UINT32 BoardNumber,
UINT32 PromiscuousState,
UINT32 *PromiscuousMode,
ECB *pAsyncECB);

Input Parameters

18-26

BoardNumber
The logical board number.

PromiscuousState
Promiscuous state is set or reset according to the following values:
Prom_State_ Off Disable promiscuous mode
Prom_State_On Enable promiscuous mode

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

PromiscuousMode

Pointer to the promiscuous mode mask, which indicates the type of frames

the MLID is to promiscuously receive. The following defines the

promiscuous mode mask:

PROM_MODE_QUERY

PROM_MODE_MAC
PROM_MODE_NON_MAC
PROM_MODE_MACANDNON

PROM_MODE_SMT

PROM_MODE_RMC

Query as to promiscuous
mode

MAC frames
NonMAC frames
Both MAC & nonMAC frames

All Station Management
Frames SMT for FDDI

Remote multicast frames are
to be received.

pAsyncECB

Pointer to an ECB whose ESRECB_ESR)(ECB*)) is to be called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYEDNULL, it is assumed that the caller
does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYHRHI still be returned if the MLID
control service is performed asynchronously.

Output Parameters

PromiscuousMode

Pointer to the current promiscuous mode mask for the MLID at the
completion of this function. Sd&romiscuousModabove for definitions
of the promiscuous mode mask values.

MLID Control Routines 18-27

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

18-28

Return Values

ODISTAT_SUCCESSFUL Command was executed successfully.
ODISTAT _RESPONSE_DELAYED The MLID control service could not complete in

a reasonable amount of time and will complete

asynchronously.
ODISTAT_BAD_COMMAND Promiscuous mode is not supported by the
MLID.
ODISTAT_BAD PARAMETER The specified board number is invalid.
ODISTAT_NO_SUCH_DRIVER This usually means the driver is temporarily
shutdown.

Remarks

A protocol stack can enable promiscuous mode multiple times without error.
The current value dPromiscuousModdetermines the type of frames that are
promiscuously receivedromiscuousStatdetermines whether promiscuous
mode is enabled or disabled, unaffecting the cuPemtiscuousMode

settings. If the LAN medium or adapter does not distinguish between MAC and
nonMAC frames (for example, Ethernet does not differentiate between MAC
or nonMAC frames), both MAC and nonMAC frames are assumed for the
PromiscuousModenask.

Setting the Remote Multicast Frames bit causes the MLID to activate all
multicast frame reception. For example, if an adapter utilizes a hash table for
filtering active multicast frame, then the adapter sets the hash table to accept all
multicast frames. Filtering of active multicast entries will be disabled while this
bit is set. MLIDS that can filter must also disabled filtering while this bit is set.
Protocols that enable the MLID to receive remote multicast frames must also
remember to set the RxPkt_RemoteMulticast_Bit in their stack filter to receive
remote multicast frames.

Multiple Bits may be set, each bit adds to the type of frames that are to be
received.

The driver must keep a counter for each promiscuous mode. Each time it is
enabled, the counter(s) should be incremented, and each time it is disabled,
they should be decremented. When the counters reach 0, promiscuous mode
should be disabled on the adapter.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

All packets are presented to the LSL.

Note V! MLIDs that support promiscuous mode set the MM_PROMISCUOUS_BIT in
the MLIDCFG_ModeFlags field of the MLID’s configuration table. Pad bytes are
passed up.

All adapters that have promiscuous mode enabled should be able to pass up bad
packets, if possible.

All adapters that have promiscuous mode and raw send ability should not affect
the source address of a raw send transmit when in promiscuous mode; in other
words, you should not insert the adapters node address as the source address in
the media layer header but transmit the provided media layer header unaltered.

MLID Control Routines 18-29

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

RegisterMonitor

Index 11 (0Ox0B)

Invoked by protocol stacks to monitor the packets
the adapter is transmitting.

Syntax
#include <odi.h>

ODISTAT RegisterMonitor (
UINT32 BoardNumber,
void (*TxMonRoutine)(CTCB?),
ECB *pAsyncECB,
BOOLEAN MonitorState);

Input Parameters

BoardNumber
The logical board number.

TxMonRoutine
Pointer to the transmit monitor routine.

pAsyncECB

Pointer to an ECB whose EJRECB_ESR)(ECBY)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYEDNULL, itis assumed that the caller
does not need to be informed of completion of the request; however,
ODISTAT_RESPONSE_DELAYHEI still be returned if the MLID
control service is performed asynchronously.

MonitorState

Boolean value to enable or disable the monitor transmit routine.

TRUE Enable monitor transmit routine.
FALSE Disable monitor transmit routine.

18-30 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Output Parameters

Return Values

Remarks

None.

ODISTAT_SUCCESSFUL The commands completed successfully.

ODISTAT _RESPONSE_DELAYED The MLID control service could not complete in
a reasonable amount of time and will complete

asynchronously.
ODISTAT_OUT_OF _RESOURCES The monitor is already attached.
ODISTAT_BAD_COMMAND This function is not supported.

ODISTAT_NO_SUCH_HANDLER The value of the pointeff@MonRoutine from
an attempt to disable the monitor differs from
that used when enabling the monitor transmit
routine. In other words,the value for
TxMonRoutine ensures that only the entity that
enabled the monitor can disable it.

ODISTAT _BAD_PARAMETER The specified board number is invalid.
ODISTAT_MLID_SHUTDOWN The MLID is temporarily shutdown.

If a transmit monitor is registered, packets are passed to the monitor regardless
of whether the MLID is in promiscuous mode or not. In other words,
promiscuous mode has no effect on a transmit monitor.

The transmit monitor is registered on a per logical board basis.

MLID Control Routines 18-31

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Transmit Monitor

Syntax

The transmit monitor is passed a pointer to a CTCB . The transmit monitor can
copy part or all of the packet described by the CTCB but cannot modify it.

void TxMonRoutine(CTCB *TxMon_CTCB);

Input Parameters

TxMon_CTCB
Pointer to a CTCB.

Output Parameters

None.

Return Values

Remarks

18-32

None.

The transmit monitor differs from the prescan transmit chain stack in that the
transmit monitor presents the MAC layer header generated for the transmit
packet to whoever is registered as a transmit monitor. A prescan transmit chain
stack is only presented with the data that is to be transmitted.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

CTCB Structure
typedef struct _CTCB_FRAGMENT_BLOCKSTRUCT_

UINT32 CTCB_FragmentCount;
FRAGMENT_STRUCT CTCB_Fragment[1];
}CTCB_FRAGMENT_BLOCK;

typedef struct _CTCB_
{
void *CTCB_Reserved;
UINT32 CTCB_BoardNumber;
UINT32 CTCB_DriverWS[3];
UINT32 CTCB_Datalen;
CTCB_FRAGMENT_STRUCT *CTCB_FragBlockPtr;
UINT32 CTCB_MediaHeaderLen;
UINT8 CTCB_MediaHeader[MAX_MEDIA_HEADER_SIZE];
1CTCB;

The CTCB will always contain logical addresses when presented to the
transmit monitor.

MLID Control Routines 18-33

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

RemoveNetworklnterface

Index 16 (0X10)

Syntax

Allows an application to remove (unload) a logical
board.

#include <odi.h>

ODISTAT RemoveNetworkInterface
(UINT32 boardNumber,
ECB *pAsyncECB);

Input Parameters

boardNumber
The logical board number.

pAsyncECB

Pointer to an ECB whose EJRECB_ESR)(ECBY)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the
caller does not need to be informed of the completion of the request;
however, ODISTAT _RESPONSE_DELAYED will still be returned if the
MLID control service is performed asynchronously.

Output Parameters

18-34

None.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL The logical board was successfully removed.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete in
a reasonable amount of time and will be
completed asynchronously.

ODISTAT_FAIL The MLID was unable to remove the logical
board.
ODISTAT_BAD_COMMAND The MLID does not support this command.

ODISTAT_BAD_PARAMETER The specified board number is invalid.

This function permanently removes the logical board associated with
boardNumber

MLID Control Routines 18-35

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

ResetNetworklnterface

Index 18 (0X12)

Allows an application to reset a logical board.

Syntax
#include <odi.h>

ODISTAT ResetNetworkinterface
(UINT32 boardNumber,
ECB *pAsyncECB);

Input Parameters

boardNumber
The logical board number.

pAsyncECB

Pointer to an ECB whose EJRECB_ESR)(ECB?*)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the
caller does not need to be informed of the completion of the request;
however, ODISTAT_RESPONSE_DELAYED will still be returned if the
MLID control service is performed asynchronously.

Output Parameters

None.

18-36 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL The logical board was successfully reset.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete in
a reasonable amount of time and will be
completed asynchronously.

ODISTAT_FAIL The MLID was unable to reset the logical board.
ODISTAT_BAD_COMMAND The MLID does not support this command.
ODISTAT_BAD_PARAMETER The specified board number is invalid.

This function resets the logical board associated wadrdNumber For most
LAN drivers this is a NOP.

MLID Control Routines 18-37

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

SetLookAheadSize

Index 9 (0x09)

Syntax

Input Parameters

Output Parameters

Tells the MLID the amount of lookahead data that
is needed by the caller to properly process
received packets.

#include <odi.h>

ODISTAT SetLookAheadSize (
UINT32 BoardNumber,
UINT32 RequestedSize,
ECB *pAsyncECB);

BoardNumber
The logical board number.

RequestedSize
The requested lookahead size.

pAsyncECB

Pointer to an ECB whose ESRECB_ESR)(ECB*)) is to be called if the

MLID control service performs asynchronously (returns

ODISTAT_RESPONSE_DELAYEDNULL, it is assumed that the caller
does not need to be informed of completion of the request; however,

ODISTAT_RESPONSE_DELAYHRH still be returned if the MLID
control service is performed asynchronously.

None.

18-38 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL The lookahead size was updated.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete in
a reasonable amount of time and will complete
asynchronously.

ODISTAT_BAD_PARAMETER The requested lookahead size exceeded bounds
or the specified board number is invalid.

ODISTAT_MLID_SHUTDOWN The MLID is temporarily shutdown.

As part of a protocol stack’s initialization, this function should be invoked to
properly configure the MLID specified MLIDCFG_BoardNumber for the

amount of lookahead data a protocol stack needs for packet reception. The
lookahead data value must be between 0 and 128 bytes. If the requested size is
less than the MLID’s current lookahead size value, the MLID will use the larger
value. In other words, it is impossible to adjust the size downward.

MLID Control Routines 18-39

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

ShutdownNetworkinterface

Index 17 (0X11)

Syntax

Allows an application to perform a partial shutdown
of a logical board.

#include <odi.h>

ODISTAT ShutdownNetworklInterface
(UINT32 boardNumber,
ECB *pAsyncECB);

Input Parameters

boardNumber
The logical board number.

pAsyncECB

Pointer to an ECB whose EJRECB_ESR)(ECBY)) is called if the
MLID control service performs asynchronously (returns
ODISTAT_RESPONSE_DELAYED). If NULL, it is assumed that the
caller does not need to be informed of the completion of the request;
however, ODISTAT _RESPONSE_DELAYED will still be returned if the
MLID control service is performed asynchronously.

Output Parameters

18-40

None.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Return Values

Remarks

ODISTAT_SUCCESSFUL The logical board was successfully shutdown.

ODISTAT_RESPONSE_DELAYED The MLID control service could not complete in
a reasonable amount of time and will be
completed asynchronously.

ODISTAT_FAIL The MLID was unable to shutdown the logical
board.
ODISTAT_BAD_COMMAND The MLID does not support this command.

ODISTAT_BAD_PARAMETER The specified board number is invalid.

This function performs a partial shutdown of the logical board associated with
boardNumber

MLID Control Routines 18-41

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

18-42

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Appendix

A Event Control Blocks (ECBs)

Appendix Overview

This appendix describes the Event Control Block (ECB), the ECB structure,
and each of the fields in the ECB structure. This appendix is especially useful
for those developing for ECB aware LAN adapters.

Event Control Blocks

The ODI system uses Event Control Blocks (ECBs) for two purposes:
« To describe the protocol data during packet transmission
« To describe the protocol buffers during packet reception

The format of the ECB is the same regardless of whether it is a send or a receive
ECB.

This appendix includes the ECB structure in sample code and a table that
describes the fields of the ECB.

Event Control Block Structure Sample Code

typedef struct _FRAGMENT_STRUCT_
{
void *FragmentAddress;
UINT32 FragmentLength;
} FRAGMENT_STRUCT;

typedef struct ECB_

{
struct ECB_*ECB_NextLink;

Event Control Blocks (ECBs) A-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2ads

struct ECB_*ECB_PreviousLink;

UINT16 ECB_Status;

void (*ECB_ESR)(struct _ECB_ *);
UINT16 ECB_StacklD;

PROT_ID ECB_ProtocollD;

UINT32 ECB_BoardNumber;
NODE_ADDR ECB_ImmediateAddress;
union

{

UINT8 DWs_i8val[4];
UINT16 DWs_il6val[2];
UINT32 DWs_i32val;
void *DWs_pval,
} ECB_DriverWorkspace;
union
{
UINTS8 PWs_i8val[8];
UINT16 PWs_il6val[4];
UINT32 PWs_i32val[2];
UINT64 PWs_i64val;
void *PWs_pval[2];
} ECB_ProtocolWorkspace;
UINT32 ECB_Datalength;
UINT32 ECB_FragmentCount;
FRAGMENT_STRUCT ECB_Fragment[1];
} ECB;

Spec v1l.11 - Doc v1.22

Table A-1
Fragment Structure and ECB Field Descriptions

Name Description

FragmentAddress This field specifies a pointer to a data buffer of FragmentLength bytes.

FragmentLength This field specifies the length of the buffer in bytes pointed to by
FragmentAddress. This field can be 0, in which case the MLID will skip over it
when transmitting or receiving data.

I A2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

Table A-1

Fragment Structure and ECB Field Descriptions

Name

Description

ECB_NextLink

This field is typically used as a forward link to a list of ECBs. The current owner

of the ECB (the protocol stack, in this case) uses this field.

ECB_PreviousLink

This field is typically used as a back link to manage a list of ECBs. The current

owner of the ECB uses this field. When an ECB is returned from an MLID
containing a received packet, this field contains the received packet error

status defined as follows:
Bit Value

PAE_CRC_BIT

PAE_CRC_ALIGN_BIT
PAE_RUNT_PACKET BIT
PAE_TOO_BIG_BIT

PAE_NOT_ENABLED_BIT

PAE_MALFORMED_BIT

PAE_NO_COMPRES_BIT

PAE_NONCAN_ADDR_BIT

If no error bits are set, the packet was received without error and the data can

Description

CRC error (for example, Frame Check
Sequence (FCS) error).

CRC / Frame Alignment error.
Runt packet.
Packet larger than allowed by media.

Received packet for a frame type not
supported, for example, Logical Board not
registered for the frame type of the received
packet. A board number associated with the
physical adapter is placed in the lookahead
structure.

Malformed packet. For example, packet size
smaller than minimum size for Media Header
(for example, incomplete MAC Header).
Contents of the length field in an Ethernet
802.3 header is larger than the total packet
size.

Do not decompress the received packet.

The Address present in
ECB_ImmediateAddress is in noncanonical
format.

be used. All undefined bits are cleared.

Event Control Blocks (ECBs) A-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Table A-1

Fragment Structure and ECB Field Descriptions

Name Description

ECB_Status This field indicates the completion status of an ECB. This field is invalid until
the associated event service routine is called. The following are the possible
return values.

ODISTAT_SUCCESSFUL Packet was received successfully.
ODISTAT_RX_OVERFLOW Packet was too big to fit into the fragments
described by the ECB. However, only the
portion of the packet that overflowed the
buffer was lost; the buffer contains as much
data as it could hold.
ODISTAT_CANCELED The ECB was not needed by the MLID. The
MLID signals to the protocol stack that the
ECB was not transmitted.
ODISTAT_MLID_SHUTDOWN The LAN adapter specified in the
ECB_BoardNumber field cannot be found.
This usually means that the MLID has been
shut down (temporarily or permanently).
ODISTAT_BAD_PARAMETER The ECB contains bad parameters—for
example, the amount of data to transmit
exceeds the maximum possible for the MLID.
The ECB will not have been transmitted.
Note: The return values are ODISTAT cast as UINT16.

ECB_ESR The protocol stack sets this field to point to an appropriate routine that is to be
called when the send or receive event is complete (either successfully or with
an error). This field must point to a valid handler (*\ECB_ESR)(ECB*)).

A-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Table A-1

Fragment Structure and ECB Field Descriptions

Name

Description

ECB_StackID

When a packet is transmitted, the protocol stack sets this field to the protocol
stack’s assigned Stack ID (SID) before the protocol stack sends the ECB to the
LSL. When a packet is being received, the LSL sets this field to the Stack ID
assigned to the protocol stack that is receiving the packet. If a packet is being
transmitted as a raw send, the protocol stack can set this field to OxFFFF as a
signal to the underlying MLID that this is a raw send. This gives the protocol

stack the ability to specify the complete packet, including all low-level headers.

The following values are valid for the ECB_StackID field.
RAW_SEND_PRIORITY_O OxFFFF 0 = No Priority
RAW_SEND_PRIORITY_1 OxFFFE 1 = Lowest Priority
RAW_SEND_PRIORITY_2 OxFFFD

RAW_SEND_PRIORITY_3 OxFFFC

RAW_SEND_PRIORITY_4 OxFFFB

RAW_SEND_PRIORITY_5 OxFFFA

RAW_SEND_PRIORITY_6 OxFFF9

RAW_SEND_PRIORITY_7 OxFFF8 7 = Highest Priority
SEND_PRIORITY_O OxFFF7 0 = No Priority
SEND_PRIORITY_1 OxFFF6 1 = Lowest Priority
SEND_PRIORITY_2 OxFFF5

SEND_PRIORITY_3 OxFFF4

SEND_PRIORITY_4 OxFFF3

SEND_PRIORITY_5 OxFFF2

SEND_PRIORITY_6 OxFFF1

SEND_PRIORITY_7 OXFFFO 7 = Highest Priority

Event Control Blocks (ECBs) A-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Table A-1

Fragment Structure and ECB Field Descriptions

Name

Description

ECB_ProtocollD

This field contains the Protocol ID (PID) value for sends and receives. If the
ECB is a send ECB, the protocol stack sets this field before calling SendPacket
In a send ECB, the PID is embedded into the low-level packet header by the
underlying MLID and is used to uniquely identify the packet as the caller’s
protocol type.

For receive ECBS, the protocol stack fills in this field with the protocol ID
supplied in the LOOKAHEAD structure. The PID is stored in high-low order.

ECB_BoardNumber

When an MLID registers with the LSL, the MLID is given a logical board
number. The BoardNumber field of the configuration table contains that board
number. On sends, a protocol stack fills in this field to indicate the target logical
board.

For receive ECBSs, the protocol stack fills in this field with the board number
supplied in the LOOKAHEAD structure.

ECB_ImmediateAddress

If the ECB is a send ECB, the protocol stack sets this field before calling
SendPacket The immediate address is the destination address of the packet
on the physical network. If the ECB is a receive ECB, the protocol stack fills in
this field with the immediate address supplied in the LOOKAHEAD structure.
This source address is the node on the same physical network that just sent
the packet. If the MLID is utilizing canonical addressing, the immediate
address is in canonical form.

Spec v1l.11 - Doc v1.22

B A6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Table A-1

Fragment Structure and ECB Field Descriptions

Name

Description

ECB_DriverWorkspace

This field is generally reserved for use by the MLID. Protocol stacks should not
modify this field unless the protocol stack currently owns the ECB.

The first byte, offset 0 of the DriverWorkspace field, is used to indicate the type
of received packet and the number of data bytes present in the packet after an
MLID has finished filling the ECB and the ECB is placed on the LSL event

gueue.
Value

ECB_MULTICAST

ECB_BROADCAST

ECB_UNICASTREMOTE

ECB_MULTICASTREMOTE

ECB_SOURCE_ROUTE

Description

Multicast : The packet was destined to a subset
of group addresses on the physical network
that the MLID has been programmed to
support.

Broadcas t: The packet was destined to all
nodes on the physical network. Note: on
receiving a broadcast both b0 and b1 are set to
1, since a broadcast address is also a group
address.

UnicastRemote : The packet was directly
destined to another workstation on the physical
network. Note, this bit set generally only occurs
after the MLID has been entered into
promiscuous mode or has received a packet
due to source routing.

MulticastRemote : The packet was destined to
a subset of group addresses on the physical
network that the MLID has not been
programmed to support. Generally, this bit is
set only after the MLID has been entered into
promiscuous mode.

SourceRoute : This bitis set in conjunction with
other packet type bits if the packet has source
routing information in the packet, in other
words, the RII bit is set. If the source routing
module is not loaded and the length of the
source route field is greater than two bytes
(packet from a remote ring), all other bits will be
cleared.

Event Control Blocks (ECBs) A-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Table A-1

Fragment Structure and ECB Field Descriptions

Name

Description

ECB_GLOBALERROR

ECB_MACFRAME

ECB_UNICASTDIRECT

GlobalError : The packet contains errors. See
the ECB_PreviousLinkfield as to specific error.
This is an exclusive bit, if set all other bits
should be 0. This value supersedes
SourceRoute.

MacFrame : The packet is a non-data frame (for
example, the MAC layer frame). This is an
exclusive bit if set, all other bits must be 0.
Note: MAC frames by definition are not source
routable.

Direct : The packet was destined to this station
only.

Spec v1l.11 - Doc v1.22

The MLID supports 802.2 Type Il. The number of control bytes present in the
802.2 header is presented in the second byte, for example, offset 1, of the

DriverWorkspace field:

Bit Value
ECB_TYPE._|I
ECB_TYPE._II

ECB_RX_PRIORITY

Description

1 control byte is present in the 802.2 header
2 control bytes are present in the 802.2 header

RxPriorityFrame: The received packet is a priority
packet. This is only valid for topologies that support a
distinction in priority levels.

When this bit is set the LKAhd_PeriorityLevel field in

the LOOKAHEAD structure contains the priority level.
If the protocol stack needs the priority level when the
ECB is returned it must save it at LOOKAHEAD time.

This bitis not set if the received frame is at the normal
priority level or lower.

If ECB_TYPE_l or ECB_TYPE_ll is not set, no 802.2 header is in the frame.

The second word, offsets 2 and 3 for example, of the DriverWorkspacefield are
filled with the size of the received frame minus the MAC header, for example,
the total number of data bytes present in the frame.

ECB_ProtocolWorkspace

This field is reserved for use by the originating protocol stack and must not be
modified by the LSL or the MLIDs.

B A8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table A-1
Fragment Structure and ECB Field Descriptions

Name Description

ECB_DatalLength If this is a send ECB, the protocol stack sets this field to the total length of the
data in bytes before it calls SendPacket

If this is a receive ECB, this field is set to the length in bytes of the data that is
copied into the fragment structure portion of the ECB.

ECB_FragmentCount This field contains the number of fragment buffer descriptors immediately
following this field. This value cannot be larger than 16, for example, range 0 <
ECB_FragmentCount <= MAX_FRAG_COUNT.

ECB_Fragment[1] This field specifies a fragment structure.

ZZ'IA 90Q - TT'IA 2a8ds

Event Control Blocks (ECBs) A-9

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

I A-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

Appendix B

Portability Issues

Portability Issues Overview

Portability Rules

For your code to be portable across processors and operating systems, you nheed
to do several things. This appendix describes some programming practices,
assumptions, general principles, and other miscellaneous information to help
you in writing a portable driver.

In most cases, it should be possible to port your code from one processor to
another or from one operating system to another by modifying a few #defines
and/or typedef statements in a few header files, and perhaps defining a pragma
or setting a compiler switch.

The following are rules and guidelines that you should follow to increase the
probability that your code will be portable to other processors and operating
systems. This is not a comprehensive list, therefore, you may need to do
additional things not listed to ensure portability (test on different platforms and
operating systems, learn about the specifics of hardware you are working with,
etc.).

« Adhere strictly to the ANSI C specification.
- Don’'t make assumptions about the size of a given type, especially pointers.

» Be aware that numeric fields composed of more than 1 byte can be in one
of two formats: big endian (high-low) or little endian (low-high). Big
endian numbers contain the most significant byte in the lowest addressed
byte of the field, the next most significant byte in the second lowest
addressed byte, and so on, with the least significant byte appearing last.
Little endian numbers are stored in the opposite order. For example, Intel
microprocessors store numbers in little endian order.

Portability Issues B-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2ads

Spec v1l.11 - Doc v1.22

- Pay attention to alignment constraints when allocating memory and using
pointers. The addresses that certain operands may be assigned to are
restricted on some architectures.

- Be aware that pointers to objects may have the same size but different
formats.

» Do not redefine the NULL symbol. NULL should always be the constant
zero.

- Make file names no more than eight main and three extension characters
long.

« Always dereference the pointer when calling functions passed as
arguments. For example, if “F* is a pointer to a function, use “*F” instead
of “F“, because some compilers may not recognize “F".

« In general, do not declare any variable to be any of the C language basic
types éhort, long, int, char, etc.). Declare variables to be of some abstract
type, and typedef that type to the appropriate base type for each processor/
operating system combination.

In some cases, such as counters, it may be more efficient itat usstead of
an abstract type.

« Make sure that all members in any structure that describes data coming in
from or going out to the LAN are given unique, abstract types. Also, make
sure that all references to these members use the appropriate misalignment
correction and byte order correction macros.

+ Isolate processor and operating system code into separate modules and use
conditional compilation to make it easier to port your code.

« Do not modify string constants, because many implementations place the
constants into read-only memory. (This is required by the ANSI C
standard.)

« Encloseffpragmadirectives with#ifdefs in order to document under
which platform they make sense (suggested).

» Protect header files (suggested).

+ Use thesizeofoperator to determine the size of an object, rather than
making an assumption or hard-coding a value.

B-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Use theoffsetofmacro to determine the offset of a member within a
structure, rather than making an assumption or hard-coding a value.

Initialize all data.

Do not depend on parameter passing conventions; especially assumptions
about which parameters will be passed on the stack or in registers.

Do not access arrays based on a knowledge of the storage method. Use the
standard C language access methods instead of computing offsets into the
array; .

Do not assume a stack growth direction.

Use thevarargsfeatures to implement functions that require variable
arguments.

Pay attention to word sizes. Objects may be non-intuitive sizes. Pointers
are not always the same sizeargs, the same size as each other, or freely
interconvertible.

Be aware that some machines have more than one possible size for a given
type. The size you get can depend upon both the compiler and
compile-time flags.

Understand that theoid* type is guaranteed to have enough bits of
precision to hold a pointer to any data object.

Be aware that even when, say,ji@ri andchar* are the same size, they
may have different formats.

Understand that the integewnstanizero may be cast to any pointer type.
The resulting pointer is called a NULL pointer for that type, and is
different from any other pointer of that type. A NULL pointer always
compares equal to the constant zero. A NULL pointer might not compare
equal with a variable that has the value zero. NULL pointers are not always
stored with all bits zero. NULL pointers for two different types are
sometimes different. A NULL pointer of one type cast in to a pointer of
another type will be cast in to the NULL pointer for that second type.

Watch out for signed characters. Code that assumes signed/unsigned is not
portable.

Avoid assuming ASCII. Characters may hold more than 8 bits.

Portability Issues B-3

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

- Do not use code that takes advantage of two’s compliment representation
of numbers in most cases.

- Be aware that there may be unused holes in structures. Susipesused
for type cheating. Specifically, a value should not be stored as one type and
retrieved as another.

- Be aware that different compilers use different conventions for returning
structures.

- Be aware that the address space may have holes. Simply computing the
address of an unallocated element in an array may crash the program.

« Be aware that only the == and != comparisons are defined for all pointers
of a given type. It is only portable to use <, <=, >, or >=to compare
pointers when they both point in to (or to the first element after) the same
array. It is likewise only portable to use arithmetic operators on pointers
that both point into the same array or the first element afterwards.

+ Be aware that side effects within expressions can result in code whose

semantics are compiler-dependent, since the order of evaluation is
explicitly undefined in most places in the C language.

Translation Limits
The following are transaction limits that you should follow to ensure
portability between operating systems and processors. The following are
maximum values.
« Eight nesting levels of conditional inclusion.
« Eight nesting levels fatincluded files
+ 32 nesting levels of parenthesized expressions within a full expression.
« 1024 macro identifiers simultaneously.
« 509 characters in a logical source line.

+ Six significant initial characters in an external identifier.

« 127 members in a single structure or union.

B-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

« 31 parameters in one function call.

Assumptions
The following are assumptions that need to be made in writing your code.

« All target architectures will align 8-bit items on 8-bit boundaries, 16-bit
items on 16-bit boundaries, and 32-bit items on 32-bit boundaries.

« All compilers support theolatile data type qualifier.

« The compiler and architecture will align structures to the alignment of the
largest data item within the structure (for example, a structure whose
largest element is a byte can be byte aligned).

Data Packing and Alignment

The ANSI C specification states that a programmer cannot assume that the
members of a structure will be contiguous. The compiler for many processors
will insert padding into a structure to force each member to begin on the
alignment value appropriate for its type. This is done because many processors
will cause a processor exception if an attempt is made to access “misaligned
data.” This causes problems because the MAC header cannot be described as
a structure in many media types. In these media, the members of the MAC
header structure are not guaranteed to be properly aligned, either in the
structure definition, which prevents the computer from inserting padding, or in
memory, which prevents processor exceptions. This implies that all members
of such structures should be declared as types not used anywhere except in
such structure declarations. This allows these types to be declared in a header
file that is platform dependent. On platforms that have no alignment
restrictions or on platforms with alignment restrictions and an appropriate
compiler switch or pragma, the type can be typedef’d to its appropriate basic
type. On platforms that have alignment restrictions and no compiler switch or
pragma to force packed structures, the member can be typedefd to an
appropriately-sized array ghar.

Portability Issues B-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

B-6

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Appendix C o]
Platform Specific Information

Overview

This appendix presents platform-specific information related to writing
MLIDs. Currently, only Intel (80x86 and Pentium) processor specific
information is provided. Information about other platforms will be provided in
the future.

Intel Processors

The following information is specific to Intel 80x86 based processor machines.

Building the CHSM

The following describes the process of creating, compiling, linking, and
loading an MLID.

Creating the Source Files

C language NetWare drivers are written in ANSI C code. This specification
provides the details for writing the driver.

Compiling the Source Files

The source file{driver>.c) and header fileodi.h, <ctsm>.h, cmsm.h, and
odi_nbi.h)are compiled into an object filgdriver>.0OBJ). The driver can

consist of one or more object files. Depending on the target platform, the
developer may have a choice of several compilers or may be restricted to one.

Platform Specific Information C-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2ads

Spec v1l.11 - Doc v1.22

Linking the Object Files

The NetWare linker (NLMLINKX) converts thedriver>.0OBJ object file and
any other object files that make up the MLID into a super object file called
<driver>.LAN. NLMLINKX requires a linker definition file to create a
NetWare Loadable Module. The linker definition file is described below.
To use the linker, type:

nimlinkx Driver

(whereDriver is the name of the linker definition file)

Linker Definition File

Each NetWare Loadable Module must have a corresponding definition file
with a ".DEF" extension. This file is needed by the NetWare linker,
NLMLINKX. All definition file information can also be embedded inside a
make file, and the make file can produce the definition file. The definition file
contains information about the loadable module, including a list of NetWare
variables and routines that the loadable module must access.

The following shows a definition file example that can be used to create an

MLID. The file consists of keywords followed by data. The keywords can be
upper or lower case.

Linker Definition File Example

TYPE 1

DESCRIPTION “NetWare CNE2000"

VERSION 5,30,2

OUTPUT <drivername>

INPUT <.0OBJ drivername>

START Driverlnit

EXIT DriverRemove

MESSAGE CNE2000.MSG

MODULE ETHERTSM

REENTRANT

MAP

IMPORT CEtherTSMRegisterHSM
CEtherTSMGetRCB
CEtherTSMRcvComplete

C-2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table C-1

CEtherTSMSendComplete
CEtherTSMGetNextSend
CEtherTSMUpdateMulticast
CMSMAlloc
CMSMDriverRemove
CMSMFree
CMSMParseDriverParameters
CMSMPrintString
CMSMRegisterHardwareOptions
CMSMRegisterMLID
CMSMReturnDriverResources
CMSMScheduleAES
CMSMSetHardwarelnterrupt

Linker Definition File Example Definitions

Name Description

TYPE Extension to append to the output file. The default extension is ".NLM". A value of 1
specifies ".LAN", and a value of 2 specifies ".DSK".

DESCRIPTION Description string in the header of the <driver>.LAN file. This string describes the
loadable module and is from 1 to 127 bytes long. The console commands, MODULES,
CONFIG, and LOAD display this description string on the file server console.
Example of the description string: Novell Ethernet NE2000

OUTPUT Output file name.

INPUT OBJ files to include in the loadable module. It is not necessary to use the filename
extension in this list.

START Name of the loadable module’s initialization routine, in this case, Driverlnit . This is the
procedure the NetWare loader will call when the module is loaded.

EXIT Name of the loadable module’s remove routine, in this case, DriverRemove. The
UNLOAD command uses this routine to unload the module from memory.

REENTRANT Allows the driver to be loaded more than once, but only have the driver’s code copied
into memory the first time.

MAP Tells the linker to create a map file.

Platform Specific Information C-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Table C-1

Linker Definition File Example Definitions continued

Name

Description

IMPORT

EXPORT

MODULE

CUSTOM

DEBUG

CHECK

MULTIPLE

COPYRIGHT

NetWare variables and routines the loadable module must access.

A list of variable and function names resident in the loadable module that are available
to other loadable modules.

Loadable modules that must be loaded before the loadable module defined by this file
is loaded. If the necessary loadable modules are not already in memory, the loader will
attempt to find and load them. If it cannot find them, the loader will not load the current
module.

Name of a file that contains custom firmware data. When the linker sees this keyword it
includes the specified file in the output file it is creating.

Tells the linker to include debug information in the output file that it creates. This allows
public labels to be accessible as symbols in some debuggers.

Name of the loadable module’s check procedure. Both the UNLOAD and DOWN
console commands call a loadable module’s check procedure if one exists. An MLID’s
check procedure might check to see if an adapter is currently being accessed and return
a nonzero value to the NetWare operating system if the board is busy. The NetWare
operating system can then display a message warning the console operator that the
board is busy.

Tells the linker that more than one code image of the loadable module can be loaded
into memory concurrently.

Tells the linker to include a copyright string in the output file. A MEON string 1 to 252
bytes long, in double quotes following the keyword COPYRIGHT is displayed whenever
the module is loaded. To start a new line within the displayed string, use "\n". If the
copyright keyword is used but no string is entered, the linker includes the Novell default
copyright message.

Note: You must use NLMLINKX.EXE to use the COPYRIGHT keyword.

C-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table C-1

Linker Definition File Example Definitions continued

Name

Description

VERSION

Gives the linker the version of the module that should be placed into the NLM header
version field. The format for this keyword is:

VERSION Major, Minor[, Revision]

The version must be separated by commas. The major version number is one digit, and
the minor version number is two digits. The revision number is optional and is a number
from 1-26 representing a-z.

For example, "VERSION 3,50,2" produces the version field 3.50b in the NLM header
of the output file.

Note that to use the VERSION keyword, you must use NLMLINKX.EXE. The date is
automatically set by the linker to the date that the files are linked.

The CMSM.NLM and <CTSM>.NLM must be loaded (only once) before any CHSMs are
loaded. These can be auto-loaded using the "module" keyword in the linker definition
file.

To load the driver, you could enter a command similar to this:

LOAD <driver>FRAME=ETHERNET_802.3, PORT=300,
NODE=2608C760361, INT=3

The parameters do not have a set order. The commas are optional.

MLID Configuration File

MLIDs that support a large number of custom keywords may have trouble
specifying all parameters on the limited space of the command line. Command
line parameters can be listed in a driver configuration file or load response file.
To use a load response file, type the parameters as they would appear on the
command line in the file and at the command line type:

LOAD <drivername> @<response filename>

If this file exists in the same directory as the driver, the MLID will open the

file, parse it, and process it along with other parameters on the command line.

Platform Specific Information C-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Load Keywords and Parameters

Table C-2

This section describes the parameters for the NetWare LOAD command. The

load parameters and examples of their use are described below.

Load Keywords and Parameters Descriptions

Name Descriptions

PORT, PORT1 I/O mapped address base that the user wants the board to use. A port length
can also be included as shown in the following examples.
LOAD <driver> PORT=300
LOAD <driver> PORT=300:A
LOAD <driver> PORT=300:A PORT1=700:8

MEM, MEM1 Beginning address of the shared RAM that the board can use. The size of the
shared memory buffer can also be specified.
LOAD <driver> MEM=C0000
LOAD <driver> MEM=C0000:1000
LOAD <driver> MEM=C0000:1000 MEM1=CC000

INT, INT1 Interrupt number that the board is expected to use to awaken the interrupt
service routine.
LOAD <driver> INT=3
LOAD <driver> INT=3 INT1=5

DMA, DMA1 If the board supports DMA, this is the direct memory address channel that the
adapter should use for data transfer to memory.
LOAD <driver> DMA=0
LOAD <driver> DMA=0 DMA1=3

SLOT System-wide unique Hardware Instance Number (HIN) that may be the
physical slot number on a slot based bus such as Iglawonel, PCI, PC
Card, EISA, or another uniquely assigned number.
LOAD <driver> SLOT=4

RETRIES Number of send retries that the MLID should use in its attempts to send
packets.
RETRIES =n

C-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Table C-2

Load Keywords and Parameters Descriptions continued

Name

Descriptions

CHANNEL

FRAME

NODE

Channel number (controller number) to use for multichannel adapters. A
multichannel adapter is a board containing more than one adapter.

CHANNEL = number

String specifying the frame type (see ODI Supplement: Frame Types and
Protocol IDs for a list of frameype strings).

FRAME = type

Token-Ring drivers can add "MSB'br "LSB" following the frame type
designation. LSB forces canonical addresses to be passed between the MLID
and the upper layers. The MSB designation forces noncanonical addresses to
be passed (this is the default for Token-Ring media). Ethernet media cannot
use the MSRlesignator.

Node address that the board is to use; this address should override the default
address on the board if one exists.

NODE = nnnnnnnnnnnn

In the case of Token-Ring media, which has a noncanonical physical layer
format, the override node address on the command line can be entered in
either canonical or noncanonical format (see ODI Specification Supplement:
Canonical and Noncanonical Addressing). To indicate the format of the
address, an "L" (LSB) or dM" (MSB) can be appended. For example, to
indicate a node address for Token-Ring media in canonical format enter:

NODE = nnnnnnnnnnnnL

No matter what the format of the node address specified on the command line,
the format of the node address actually placed in the configuration table is
indicated by the MM_NONCANONICAL_BIT bit in the
MLIDCFG_ModeFlagsield.

Platform Specific Information C-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

C-8

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Appendix

D ODI HEADER FILE

Appendix Overview

ODI.H

~
X

L I D T I B R S I N

This appendix contains the contents of the ODI header file which contains

structures and defines needed by the MLI or MPI interface.

*

Copyright Unpublished Work of Novell, Inc. All Rights Reserved

THIS WORK IS AN UNPUBLISHED WORK AND CONTAINS CONFIDENTIAL,
PROPRIETARY AND TRADE SECRET INFORMATION OF NOVELL, INC.
ACCESS TO THIS WORK IS RESTRICTED TO (I) NOVELL EMPLOYEES

WHO HAVE A NEED TO KNOW TO PERFORM TASKS WITHIN THE SCOPE

OF THEIR ASSIGNMENTS AND (ii) ENTITIES OTHER THAN NOVELL

WHO HAVE ENTERED INTO APPROPRIATE LICENSE AGREEMENTS.

NO PART OF THIS WORK MAY BE USED, PRACTICED, PERFORMED, COPIED,
DISTRIBUTED, REVISED, MODIFIED, TRANSLATED, ABRIDGED,
CONDENSED, EXPANDED, COLLECTED, COMPILED, LINKED, RECAST,
TRANSFORMED OR ADAPTED WITHOUT THE PRIOR WRITTEN CONSENT OF
NOVELL. ANY USE OR EXPLOITATION OF THIS WORK WITHOUTAUTHORIZATION
COULD SUBJECT THE PERPETRATOR TO CRIMINAL AND CIVIL LIABILITY.

*

/
*

* Program Name:C ODI Header File
*

* Filename:ODI.H

*

* ODI Spec Ver:1.11
*

* Description: This file is the main source for the C ODI SPECIFICATION.
* Any structures needed by the MLI or MPI interface are defined here.

*

/

ODI Header File D-1

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2ads

Spec v1l.11 - Doc v1.22

#ifndef
#define

_ODI_Include_
_ODI_Include_

/* C ODI Specification Version Numbers */

#define
#define

ODI_SPEC_MAJOR_VER1
ODI_SPEC_MINOR_VER11

[*State Definitions TRUE / FALSE*/

#ifndef
#ifndef
#ifndef
#define
#endif
#endif
#endif
#ifdef
#define
#else
#define
#endif

#ifdef
#undef
#endif

#ifdef
#undef
#endif

#ifdef
#undef
#endif

#ifdef
#undef
#endif

#define
#define
#define
#define

D-2

OS_NT
0S_WIN95

_cdecl

_cdecl

OS_WIN95
CALLCNV _cdecl

CALLCNV

TRUE
TRUE

FALSE
FALSE

UNUSED
UNUSED

BOOLEAN
BOOLEAN

FALSE 0x0

TRUE ox1

UNUSED -1

BOOLEAN unsigned char

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

/
C ODI Type Definitions

The following are typedef definitions for parameters used by the
ANSI C ODI Interface. The conditional declarations define both a
preprocessor symbol as itself and a typedefof the same name.
The purpose behind this is to protect the typedef against multiple
declarations. The definition of a preprocessor definition as

itself is allowed by the ANSI language specification.

* * * * * * * * * /

#ifndef MEON

#define MEON MEON
typedef unsigned charMEON;
#endif

[* Definition for MEON Strings, NB. MEON_STRING is really used as mnemonic.*/

#ifndef MEON_STRING
#define MEON_STRING MEON_STRINGtypedefunsigned charMEON_STRING;
/* by convention MEON_STRINGS
NULL terminated */
#endif

#ifndef UINT8

#define UINTS8 UINT8

typedef unsigned char UINTS;
#endif

#ifndef UINT16

#define UINT16 UINT16

typedef unsigned short UINT16;
#endif

#ifndef UINT32

#define UINT32 UINT32

typedef unsigned int UINT32;
#endif

#ifndef UINT64
#define UINT64 UINT64
typedef struct_ UINT64_
{
UINT32 Low_UINT32;
UINT32 High_UINT32;
} UINT64;

ODI Header File D-3

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

#endif

#ifndef VOID

#define VOID VOID
typedef void VOID;
#endif

/* declare the pointer for the ODI definitions */

#ifndef PMEON

#define PMEON PMEON
typedef MEON *PMEON;
#endif

#ifndef PUINT8

#define PUINT8 PUINT8
typedef UINT8 *PUINTS;
#endif

#ifndef PUINT16

#define PUINT16 PUINT16
typedef UINT16* PUINTL16;
#endif

#ifndef PUINT32

#define PUINT32 PUINT32
typedef UINT32* PUINT32;
#endif

#ifndef PUINT64

#define PUINT64 PUINT64
typedef UINT64* PUINT64;
#endif

#ifndef PVOID

#define PVOID PVOID
typedef VOID* PVOID;
#endif

D-4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

/* Well Defined Sizes */

#define PID_SIZE 0x06/* Number of Octets in Protocol Identifier */
#define ADDR_SIZE 0x06/* Number of Octets in Address */

/* define assumed Maximum Media Header Size that we'll encounter */
k%

;* ;ssume that it will be Token-Ring (with SRT)*/

%%

;* ,/AC, FC, Dest[6], Source[6], SRFields[30], 802.2UI[3], SNAP[5] = 52*/
% *

i#define M{AX_MEDIA_HEADER_SIZESZL

#define DefaultNumECBs 0x00
#define DefaultECBSize 1518L/* not including ECB Structure */
#define MInECBSize (512+74+MAX_MEDIA_HEADER_SIZE)L
/* Max. ECB size < 64K*/

#define MAXLOOKAHEADSIZE 128L/* Max. LookAhead Data Size */

#define MAXSTACKNAMELENGTH 65L
#define MAXNAMELENGTH 64L
#define MAXMULTICASTS 16L /* MAXIMUM number of Multicast addresses*/
#define MAX_FRAG_COUNT 16L /* MAXIMUM number of Fragment Count */
typedef struct PROT_ID_
{
UINT8 protocollID[PID_SIZE];
}
PROT_ID;

typedef struct NODE_ADDR_

{

UINT8 nodeAddress[ADDR_SIZE];
}
NODE_ADDR;

ODI Header File D-5

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

/* Chained Protocol Stack position values */

typedef enum_CHNPOS _

{

CHNPOS_FIRST_MUST =0, /* Load at very first position*/
CHNPOS_FIRST_NEXT =1, /* Load at next front position*/
CHNPOS_LOAD_ORDER =2, /* Load dependent on load order */
CHNPOS_LAST_NEXT =3, /* Load next end position*/
CHNPOS_LAST_MUST =4 /* Load at very end of chain*/

} CHNPOS;

#define CHNPOS_MAX_POSIT 0x0004 /* Maximum possible Chain position */
#define CHAINTYPE_TX 0x0000 /* Transmit type Chain Protocol Stack */
#define CHAINTYPE_RX 0x0001 /* Receive type Chain Protocol Stack */

/*SFT Il Status values*/

typedef enum_SFTII_STAT {

SFTIII_STAT_SUCCESSFUL =0,
SFTIII_STAT_MIRROR_NOT_ACTIVE =1,
SFTIII_STAT_NO_PARTNER =2,
SFTIII_STAT_OUT_OF RESOURCES =3,
SFTIII_STAT_NOT_SUPPORTED =-1

}SETII_STAT;

/* Look Ahead Definitions */
/* MLIDCFG_LookAheadSize Values*/

#define DEFAULT_LOOK_AHEAD_SIZE 0x12/* Default of 18 look ahead bytes*/
#define MAX_LOOK_AHEAD_SIZE 0x80/* Maximum 128 look ahead bytes*/

/* Rx Packet Attributes(ie. LKAhd_PktAttr) */

#define PAE_CRC_BIT 0x00000001 /* CRC Error */

#define PAE_CRC_ALIGN_BIT 0x00000002 [* CRC/Frame Alignment Error */

#define PAE_RUNT_PACKET_BIT 0x00000004 /* Runt Packet */

#define PAE_TOO_BIG_BIT 0x00000010 [* Packet Too Large for Media */

#define PAE_NOT_ENABLED_BIT 0x00000020 /* Unsupported Frame */

#define PAE_MALFORMED_BIT 0x00000040 [* Malformed Packet */

#define PA_NO_COMPRESS_BIT 0x00004000 /* Do not compress received
packet*/

#define PA_NONCAN_ADDR_BIT 0x00008000 /¥ Set if Addr.in ImmediateAddress
field is noncanonical*/

D-6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

#define PAE_ERROR_MASK(PAE_CRC_BIT | PAE_CRC_ALIGN_BIT |
PAE_RUNT_PACKET_BIT |\

PAE_TOO_BIG_BIT |

PAE_NOT_ENABLED_BIT | PAE_MALFORMED_BIT)

/* Rx Packet Destination Address Types(LkAhd_DestType, Modify Stack Filter) */
/* Low order 16 bits of the Rx Packet Destination Address Types are copied in
ECB_DriverWorkspace.DWs_il6val[0] */

#define DT_MULTICAST 0x00000001 /* Multicast Dest.
address (Group Address)
*/

#define DT_BROADCAST 0x00000002 [* Broadcast Dest.
address */

#define DT_REMOTE_UNICAST 0x00000004 /* Remote Unicast Dest.
address */

#define DT_REMOTE_MULTICAST0x00000008 /* Unsupported
Multicast address */

#define DT_SOURCE_ROUTE 0x00000010 /*Source Routed
packet*/

#define DT_ERRORED 0x00000020 /* Global Error,
exculsive bit. */

#define DT_MAC_FRAME 0x00000040 [*MAC/SMT frames. (ie.

NON-DATA Frame)
*/
#define DT_DIRECT 0x00000080 /* Unicast for this
workstation */

#define DT_8022_TYPE_|I 0x00000100 [*Setifpacketis802.2
Type I*/
#define DT_8022_TYPE_Il 0x00000200 [*Set if

packetis 802.2 Type Il
*/
#define DT_8022_BYTES_BITS0x00000300
#define DT_RX_PRIORITY 0x00000400 /* Set if packet has priority
value other than base
values*/
#define DT_PROMISCUOUS (DT_ERRORED | DT_DIRECT | DT_MULTICAST |
DT_BROADCAST |\
DT_REMOTE_UNICAST |
DT_REMOTE_MULTICAST | DT_SOURCE_ROUTE |\
DT_MAC_FRAME |
DT_RX_PRIORITY)

/* mask off allowable Destination Address Types */

ODI Header File D-7

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

#define DT_MASK(DT_MULTICAST | DT_BROADCAST |
DT_REMOTE_UNICAST |\

DT_REMOTE_MULTICAST | DT_SOURCE_ROUTE | DT_ERRORED |\
DT_MAC_FRAME |

DT_DIRECT | DT_RX_PRIORITY)

/* ECB Definitions */

/* Stack ID Definitions */

#define ECB_RAWSEND OxFFFF/* Raw Send, ie. ECB includes MAC Header */

[*implies MLID should not */
/* build MAC Header for this Tx.*/

/* Receive ECB_DriverWorkspace.DWs_il16val[0] */

#define ECB_MULTICAST 0x0001 /*MulticastDest.address (Group
Address) */

#define ECB_BROADCAST 0x0002 /* Broadcast Dest. address */

#define ECB_UNICASTREMOTE 0x0004 /* Remote Unicast Dest. address

*/
#define ECB_MULTICASTREMOTEO0x0008/* Unsupported Multicast address */
#define ECB_SOURCE_ROUTE 0x0010 [* Source Routed packet*/
#define ECB_GLOBALERROR 0x0020 /* Set if packet contains errors
(exculsive)*/

/* NB. If set all other bits should be reset.*/
#define ECB_MACFRAME 0x0040 /* Packet is not a data packet. */

/* NB. If set all other bits should be reset. */
#define ECB_UNICASTDIRECTOx0080/* Unicast for this workstation */

#define ECB_MASKOxFFFF /* mask off allowable Destination Address Types */

#define ECB_TYPE_| 0x0100 /* Set if packet is 802.2 Type |
*/

#define ECB_TYPE_II 0x0200 /*Setif packetis 802.2 Typelll
*/

#define ECB_RX_PRIORITY 0x0400 /* Set if packet has priority
value other base
values*/

#define ECB_PROMISCUOUS(ECB_ERRORED | ECB_MULTICAST | ECB_BROADCAST |
ECB_UNICASTREMOTE |\

D-8 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ECB_MULTICASTREMOTE | ECB_SOURCE_ROUTE | ECB_MAC_FRAME | ECB_RX_PRIORITY)

/* PromiscuousChange state and mode values.*/
#define PROM_STATE_OFF 0x00
#define PROM_STATE_ON 0x01
#define PROM_MODE_QUERY 0x00

#define PROM_MODE_MAC 0x01
#define PROM_MODE_NON_MAC 0x02
#define PROM_MODE_MACANDNONOx03
#define PROM_MODE_SMT 0x04
#define PROM_MODE_RMC 0x08

/* Operation Scope Definitions */

typedef enum
{

OP_SCOPE_ADAPTER= 0,
OP_SCOPE_LOGICAL_BOARD =1
} OPERATION_SCORPE;

_OPERATION_SCOPE_

/* System Return Code Definitions */

typedef enum

{

ODISTAT_SUCCESSFUL= 0,
ODISTAT_RESPONSE_DELAYED= 1,
ODISTAT_SUCCESS_TAKEN= 2,
ODISTAT_BAD_COMMAND= -127,
ODISTAT_BAD_PARAMETER=-126,
ODISTAT_DUPLICATE_ENTRY= -125,
ODISTAT_FAIL=-124,
ODISTAT_ITEM_NOT_PRESENT=-123,
ODISTAT_NO_MORE_ITEMS=-122,
ODISTAT_MLID_SHUTDOWN=-121,
ODISTAT_NO_SUCH_HANDLER=-120,
ODISTAT_OUT_OF_RESOURCES= -119,
ODISTAT_RX_OVERFLOW=-118,
ODISTAT_IN_CRITICAL_SECTION=-117,
ODISTAT_TRANSMIT_FAILED= -116,
ODISTAT_PACKET_UNDELIVERABLE= -115,
ODISTAT_CANCELED= -4

JODISTAT;

ODISTAT

/* Disable Promiscuous Mode*/
/* Enable Promiscuous Mode */
/* Query as to promiscuous mode
*/
/* MAC frames*/
/* Non-MAC frames*/
/* Both MAC and Non-MAC frames*/
[* FDDI SMT Type MAC frames. */
/* Remote Multicast frames */

#define ODISTAT_NO_SUCH_DRIVERODISTAT_MLID_SHUTDOWN

ODI Header File D-9

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

/* MLID Configuration Table Bit Defintions. */

/* MLID 'Flags' Bit Definitions. */

#define MF_HUB_MANAGEMENT _BIT
#define MF_SOFT_FILT_GRP_BIT
#define MF_GRP_ADDR_SUP_BIT
#define MF_MULTICAST_TYPE_BITS
#define MF_RECONFIG_BIT

#define MF_PRIORITYSUP_BIT

/* MLID 'ModeFlags' Bit Definitions. */

#define MM_REAL_DRV_BIT 0x0001
#define MM_USES_DMA BIT 0x0002
#define MM_DEPENDABLE_BIT 0x0004

0x0100
0x0200
0x0400
0x0600
0x0800
0x1000

/*Should only be set if MM_POINT_TO_POINT_BIT*

[*set, for hardware that is normally*/
/*dependable but is not 100% guaranteed*/
#define MM_MULTICAST_BIT 0x0008

I*#redef'ed defineMM_POINT_TO_POINT_BITOx0010*/

[* Set if point-to-point link,dynamic */

/* call setup and tear down, eg. X.25%*/
#define MM_CSL_COMPLIANT_BIT
#define MM_PREFILLED_ECB_BIT
#define MM_RAW_SENDS_BIT

#define MM_DATA_SZ_UNKNOWN_BIT
#define MM_SMP_BIT

#define MM_FRAG_RECEIVES_BIT

#define MM_C_HSM_BIT
#define MM_FRAGS_PHYS_BIT

#define MM_PROMISCUOUS_BIT
#define MM_NONCANONICAL_BIT
#define MM_PHYS_NODE_ADDR_BIT

#define MM_CANONICAL_BITS

0x0010 /* Setif MLID is CSL compliant*/
0x0020 /*MLID supplies prefilled ECBs*/
0x0040
0x0080
0x0100 /* Set if MLID is SMP enabled.*/
0x0400 /* MLID can handle Fragmented
Receive ECB. */
0x0800 /* Set if HSM written in C. */
0x1000 /* Set if HSM wants Frags with
Physical Addresses.*/
0x2000 /* Set if supports Promiscuous
Mode. */
0x4000 /* Set if Config Node Address
Non-Canonical. */
0x8000 /*Setif MLID utilizes Physical
Node Address. */
0xC000

D-10 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

/* MLID 'SharingFlags' Bit Defintions */

#define MS_SHUTDOWN_BIT 0x0001
#define MS_SHARE_PORTO_BIT 0x0002
#define MS_SHARE_PORT1_BIT 0x0004
#define MS_SHARE_MEMORYO_BIT 0x0008
#define MS_SHARE_MEMORY1_BIT 0x0010
#define MS_SHARE_IRQO_BIT 0x0020
#define MS_SHARE_IRQ1_BIT 0x0040
#define MS_SHARE_DMAO_BIT 0x0080
#define MS_SHARE_DMA1_BIT 0x0100
#define MS_HAS_CMD_INFO_BIT 0x0200
#define MS_NO_DEFAULT_INFO_BIT 0x0400
#define MS_MEM_PAGE_BIT 0x8000

/* MLID 'LineSpeed' Bit Definitions. */
#define MLS_MASK OX7FFF
#define MLS_KILO_IND_BIT 0x8000

/* MLID unused resource definitions. */

#define UNUSED_SLOT OXFFFF
#define UNUSED_IO_PORT 0
#define UNUSED_IO_RANGE 0
#define UNUSED_MEMORY_ADDRESS 0
#define UNUSED_MEMORY_SIZE 0
#define UNUSED_INTERRUPT OXFF
#define UNUSED_DMA_LINE OXFF

#define UNASSIGNED_BOARD_NUMBER OxFFFF

/* STAT_TABLE_ENTRY Definitons. */

#define ODI_STAT_UNUSED OxFFFFFFFF/* Statistics Table Entry not in use.*/

#define ODI_STAT_UINT32 0x00000000/* Statistics Table Entry UINT32 Counter.
*/

#define ODI_STAT_UINT64 0x00000001/*Statistics Table Entry UINT64 Counter.
*/

#define ODI_STAT_MEON_STRINGO0x00000002/* Statistics Table Entry Counter is a

MEON_STRING. */

#define ODI_STAT_UNTYPED 0x00000003/* Statistics Table Entry Counter is a
UINT32 */

/* length preceded array UINT8*/

#define ODI_STAT_RESETABLEOx80000000/* Statistics Table Entry Counter is
resetable */

/* by external entity.This define is only used */

/* by management agents and other modules that */

[* are using STAT_TABLE definintions from this */

/* header file.ODI_STAT_RESETABLE is not a */

ODI Header File D-11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

/* part of the ODI Specification and is not allowed */
/* for MLID stats counters.ODI considers */

/* 0x80000000 a reserved bit to avoid conflicts */

/* with other modules in the system. */

#ifdef OS_NT

/* Set PRAGMA to pack these structures */
#pragmapack(1)

#endif

typedef struct STAT_TABLE_ENTRY_

{
UINT32StatUseFlag;
void*StatCounter;
MEON_STRING*StatString;
}

StatTableEntry, *PStatTableEntry, STAT_TABLE_ENTRY;

[* StatUseFlagDetermines how StatCounter is defined. */

[* *StatCounterpointer as defined by the StatUseFlag.*/

[* *StatCounterpointer to a UINT32 or UINT64 counter.*/

[* *StatStringpointer to a MEON String, describing the statistics counter.*/

[* Definitions for Information Block for passing API's, eg. Function Lists */

typedef struct INFO_BLOCK _

{
UINT32NumberOfAPIs;

void(**SupportAPIArray)();
}

INFO_BLOCK, *PINFO_BLOCK;
/* Definitions for Link Support Layer (LSL) */

typedef struct LOG_BRD_STAT_TABLE_ENTRY_

{
UINT32 LogBrd_TransmittedPackets;
UINT32 LogBrd_ReceivedPackets;
UINT32 LogBrd_UnclaimedPackets;
UINT32 LogBrd_TxOverloaded;

}

LogBrdStatTableEntry, *PLogBrdStatTableEntry, LOG_BRD_STAT_TABLE_ENTRY;

D-12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

/

C LSL Configuration Table Definitions.

* * * *

* * * * * /

#define CLSL_CFG_TABLE_MAJOR_VER 2
#define CLSL_CFG_TABLE_MINOR_VER 1

/

C LSL Configuration Table System Flags definitions.

* *

* * * /

#define CLSL_CFG_SERVER_BIT0x40000000
#define CLSL_CFG_CLIENT_BIT0x80000000

I‘ * * * *

* * * * *

C LSL Configuration Table Structure definition.

* * * *

* * * * * /

typedef struct LSL_CONFIG_TABLE_

{
UINT16

UINT16
MEON_STRING
MEON_STRING
UINT16
UINT16
UINT32
UINT32
UINT32
UINT32
UINT32
UINT8
UINT8
UINT16
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32
UINT32

LConfigTableMajorVer;
LConfigTableMinorVer;
*LSLLongName;
*LSLShortName;
LSLMajorVer;
LSLMinorVer;
LMaxNumberOfBoards;
LMaxNumberOfStacks;
LConfigTableReservedO;
LConfigTableReservedl;
LConfigTableReserved2;
LSLCFG_ODISpecMajorVer;
LSLCFG_ODISpecMinorVer;
LConfigTableReserveds;
LSLCFG_SystemFlags;
LSLCFG_SmallECBCount;
LSLCFG_MediumECBCount;
LSLCFG_LargeECBCount;
LSLCFG_XLargeECBCount;
LSLCFG_HugeECBCount;
LSLCFG_SmallECBBelow16Count;
LSLCFG_MediumECBBelow16Count;
LSLCFG_LargeECBBelow16Count;
LSLCFG_XLargeECBBelowl16Count;
LSLCFG_HugeECBBelow16Count;
LSLCFG_SmallECBMinCount;
LSLCFG_MediumECBMinCount;
LSLCFG_LargeECBMinCount;

ODI Header File D-13

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

UINT32 LSLCFG_XLargeECBMinCount;

UINT32 LSLCFG_HugeECBMinCount;
UINT32 LSLCFG_SmallECBMaxCount;
UINT32 LSLCFG_MediumECBMaxCount;
UINT32 LSLCFG_LargeECBMaxCount;
UINT32 LSLCFG_XLargeECBMaxCount;
UINT32 LSLCFG_HugeECBMaxCount;
UINT32 LSLCFG_SmallECBSize;
UINT32 LSLCFG_MediumECBSize;
UINT32 LSLCFG_LargeECBSize;
UINT32 LSLCFG_XLargeECBSize;
UINT32 LSLCFG_HugeECBSize;

}
LSL_ConfigTable, *PLSL_ConfigTable, LSL_CONFIG_TABLE;

/ * * * * * * * * * *

C LSL Statistics Table Structure definition.

typedef struct LSL_STATS_TABLE_
{

UINT16 LStatTableMajorVer;

UINT16 LStatTableMinorVer;

UINT32 LNumGenericCounters;
STAT_TABLE_ENTRY (*LGenericCountersPtr)[];
UINT32 LNumLogicalBoards;
LOG_BRD_STAT_TABLE_ENTRY (*LogicalBoardStatTablePtr)[];
UINT32 LNumCustomCounters;
STAT_TABLE_ENTRY (*LCustomCountersPtr)[];

}
LSL_StatsTable, *PLSL_StatsTable, LSL_STATS_TABLE;

#define NUM_GENERIC_LSL_COUNTERS 10

#define LSL_TOTAL_TX_PACKET_COUNT 0

#define LSL_GET_ECB_REQUESTS 1
#define LSL_GET_ECB_FAILURES 2

#define LSL_AES_EVENTS_COUNT 3
#define LSL_POSTPONED_EVENTS 4

#define LSL_CANCEL_EVENT_FAILURES 5
#define LSL_VALID_BUFFERS_REUSED 6
#define LSL_RESERVED 7
#define LSL_TOTAL_RX_PACKETS 8
#define LSL_UNCLAIMED_PACKETS 9

[* Definitions for LookAhead and Event Control Blocks (ECB). */

D-14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

typedef struct FRAGMENT_STRUCT_
{

void*FragmentAddress;
UINT32FragmentLength;

}
FRAGMENTSTRUCT, FRAGMENT_STRUCT, *PFRAGMENTSTRUCT;

/ * * * * * * * * * * *

With compilers that implement strict alignement the location of
were padding is assumed in the structure has been indicated below.

/
typedef struct _ECB_

{
struct _ECB_*ECB_NextLink;
struct _ECB_*ECB_PreviousLink;
UINT16 ECB_Status;
[*UINT8 ECB_Pad1[2];*//* Compiler padding */
void (_cdecl *ECB_ESR)(struct _ECB_ *);
UINT16 ECB_StackiD;
PROT_ID ECB_ProtocollD;
UINT32 ECB_BoardNumber;
NODE_ADDRECB_ImmediateAddress;
[FUINT8 ECB_Pad2[2];*//* Compiler padding */
union {
UINT8DWSs_i8val[4];
UINT16DWs_il6val[2];
UINT32DWs_i32val;
void*DWs_pval;
} ECB_DriverWorkspace;
union {
UINT8PWSs_i8val[8];
UINT16PWs_il6val[4];
UINT32PWs_i32val[2];
UINT64PWs_i64val,
void*PWs_pval[2];
} ECB_ProtocolWorkspace;
UINT32 ECB_Datalength;
UINT32E CB_FragmentCount;
FRAGMENT_STRUCTECB_Fragment[1];
}
ECB, *PECB,;

ODI Header File D-15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

#define MAX_ECB_FRAGS 16
#define RAW_SEND OXFFFF /*If in ECB.ECB_StackID raw send (Old

Def.) */
#define RAW_SEND_PRIORITY_O00xFFFF /* Same as old Def. No Priority */
#define RAW_SEND_PRIORITY_10xFFFE /* Scale 1-7; 1 being lowest */
#define RAW_SEND_PRIORITY_20xFFFD
#define RAW_SEND_PRIORITY_30xFFFC
#define RAW_SEND_PRIORITY_40xFFFB
#define RAW_SEND_PRIORITY_50xFFFA
#define RAW_SEND_PRIORITY_60xFFF9
#define RAW_SEND_PRIORITY_70xFFF8 /* Scale 1-7 7 being Highest Priority */
#define SEND_PRIORITY_O0 OxFFF7 /* Scale 1-7 0 No Priority */
#define SEND_PRIORITY_1 OxFFF6 /* Scale 1-7 1 being low priority */
#define SEND_PRIORITY_2 OxFFF5
#define SEND_PRIORITY_3 OxFFF4
#define SEND_PRIORITY_4 OxFFF3
#define SEND_PRIORITY_5 OxFFF2
#define SEND_PRIORITY_6 OxFFF1
#define SEND_PRIORITY_7 OxFFFO /* Scale 1-7 7 being Highest Priority. */
#define NON_STACKED_BIT 0x8000 /* Used to filter non-stack IDs */
#define NON_STACKID_RAW_SEND_MASK

Ox80F8 /* Used to filter raw send packets */

/
CTCB is used at the MLI interface

typedef struct _CTCB_FRAGMENT_BLOCK_STRUCT_
{
UINT32CTCB_FragmentCount;
FRAGMENT_STRUCT CTCB_Fragment[1];
} CTCB_FRAGMENT_BLOCK;

typedef struct _CTCB_

{
void *CTCB_Reserved;
UINT32 CTCB_BoardNumber;
UINT32 CTCB_DriverWsJ[3];
UINT32 CTCB_Datalen;

CTCB_FRAGMENT_BLOCK*CTCB_FragBlockPtr;
UINT32CTCB_MediaHeaderLen;
UINT8

CTCB_MediaHeader[MAX_MEDIA_HEADER_SIZE];

} CTCB;

| D-16 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

/

With compilers that implement strict alignement the location of
were padding is assumed in the structure has been indicated below.

/

typedef struct AES_ECB_

{

struct AES_ECB_*AES_Link;
UINT32AES_MSecondValue;
UINT16AES_Status;
[FUINTBAES_Pad1[2];*//* Compiler padding */
void (_cdecl *AES_ESR)(struct _AES_ECB_ *);
UINT32AES_Reserved,;
void *AES_ResourceObj;
void *AES_Context;

}
AESECB, *PAESECB, AES_ECB;

typedef struct LOOKAHEAD _

{
ECB*LkAhd_PreFilledECB;
UINT8*LkAhd_MediaHeaderPtr;
UINT32LKkAhd_MediaHeaderLen;
UINT8*LkAhd_Datal ookAheadPtr;
UINT32LKkAhd_DatalLookAheadLen;
UINT32LkAhd_BoardNumber;
UINT32LKAhd_PktAttr;
UINT32LkAhd_DestType;
UINT32LKAhd_FrameDataSize;
UINT16LKAhd_PadAlignBytes1;
PROT_IDLkAhd_ProtocollD;
UINT16LkAhd_PadAlignBytes2;
NODE_ADDR LkAhd_ImmediateAddress;
UINT32LkAhd_FrameDataStartCopyOffset;
UINT32LKkAhd_FrameDataBytesWanted;
ECB*LkAhd_ReturnedECB;
UINT32LKAhd_PriorityLevel;
void*LkAhd_Reserved;

}
LOOKAHEAD, *PLOOKAHEAD;

ODI Header File D-17

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

/* Definitions for Protocol Stack Configuration And Statistics Tables */

/ * * * * * * * * * * *

C Protocol Stack Configuration Table Definitions.

* * * * * * * * * * /

#define PSTK_CONFIG_TABLE_MAJOR_VER 2
#define PSTK_CONFIG_TABLE_MINOR_VER 1

/ * * * * * * * * * * *

C Protocol Stack Configuration Table System Flags definitions.
/

#define PSTK_CFG_AUTO_NETWORK_RESOLUTION_BIT0x08000000

#define PSTK_CFG_AUTO_BIND_ACTIVE_BIT 0x10000000
#define PSTK_CFG_ROUTER_ACTIVE_BIT 0x20000000
#define PSTK_CFG_SERVER_BIT 0x40000000
#define PSTK_CFG_CLIENT BIT 0x80000000

/
C Protocol Stack Configuration Table Structure definition.

* * * * * * * * * * /

typedef struct PS_CONFIG_TABLE_

{
UINT16PConfigTableMajorVer;
UINT16PConfigTableMinorVer;
MEON_STRING*PProtocolLongName;
MEON_STRING*PProtocolShortName;
UINT16PProtocolMajorVer;
UINT16PProtocolMinorVer;
UINT8 PConfigTable_ODISpecMajorVersion;
UINT8 PConfigTable_ODISpecMinorVersion;
UINT8 PConfigTable_ProtocolAPIMajorVersion;
UINT8 PConfigTable_ProtocolAPIMinorVersion;
UINT32 PConfigTable_SystemFlags;
UINT32 PConfigTable_ProtocolFlags;
UINT32 PConfigTable_ProtocolReserved;

}
PS_ConfigTable, *PPS_ConfigTable, PS_CONFIG_TABLE;

D-18 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

typedef struct PS_STATS_TABLE_

{
UINT16PStatTableMajorVer;/* Config Table Version 2.00 */
UINT16PStatTableMinorVer;/* For the CODI 1.10 Spec */
UINT32PNumGenericCounters;
STAT_TABLE_ENTRY (*PGenericCountersPtr)[];
UINT32PNumCustomCounters;
STAT_TABLE_ENTRY (*PCustomCountersPtr)(];

}
PS_StatsTable, *PPS_StatsTable, PS_STATS_TABLE;

#define NUM_GENERIC_PS_COUNTERS 3

#define PS_TOTAL_TX_PACKETS 0
#define PS_TOTAL_RX_PACKETS 1
#define PS_IGNORED_RX_PACKETS 2

/
Network Address Information structure used by protocol stack IOCTL 9.
/

typedef struct. NETWORK_ADDRESS_INFO _
{

UINT32 addressType;

UINT32 size;

UINT8 address[32];
} NETWORK_ADDRESS_INFO;

/ * * * * * * * * *

With compilers that implement strict alignement the location of
were padding is assumed in the structure has been indicated below.

* * * * * * * * /

typedefstruct _Lan_Memory_Configuration_
{

void* MemoryAddress;

UINT16 MemorySize;

/*UINT8 Lan_Mem_Pad1[2];*/ /* Compiler padding */
} Lan_Memory_Configuration;

ODI Header File D-19

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

1* */
/* Definitions for MLID Configuration, Statistics Tables and Misc. structures
*/

I * g

Spec v1l.11 - Doc v1.22

| D-20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

/

With compilers that implement strict alignement the location of
were padding is assumed in the structure has been indicated below.

/

typedef struct _MLID_CONFIG_TABLE_

{
MEON MLIDCFG_Signature[26];
UINT8 MLID MLIDCFG_MajorVersion;/* Config Table Version
1.21%
UINT8 MLIDCFG_MinorVersion; [*forthe CODI1.11Spec
*/
NODE_ADDR MLIDCFG_NodeAddress;
UINT16 MLIDCFG_ModeFlags;
UINT16 MLIDCFG_BoardNumber;
UINT16 MLIDCFG_Boardinstance;
UINT32 MLIDCFG_MaxFrameSize;
UINT32 MLIDCFG_BestDataSize;
UINT32 MLIDCFG_WorstDataSize;
MEON_STRING* MLIDCFG_CardName;
MEON_STRING* MLIDCFG_ShortName;
MEON_STRING* MLIDCFG_FrameTypeString;
UINT16 MLIDCFG_ReservedO;
UINT16 MLIDCFG_FramelD;
UINT16 MLIDCFG_TransportTime;
[*UINT8 MLIDCFG_Pad1[2];*/ [* Compiler padding */
UINT32 (_cdecl *MLIDCFG_SourceRouting)(UINT32, void*,
void**, BOOLEAN);
UINT16 MLIDCFG_LineSpeed;
UINT16 MLIDCFG_LookAheadSize;
UINT8 MLIDCFG_SGCount;
UINT8 MLIDCFG_Reservedl;
UINT16 MLIDCFG_PrioritySup;
void *MLIDCFG_Reserved?;
UINT8 MLIDCFG_DriverMajorVer;
UINTS8 MLIDCFG_DriverMinorVer;
UINT16 MLIDCFG_Flags;
UINT16 MLIDCFG_SendRetries;
[*UINT8 MLIDCFG_Pad2[2];*//* Compiler padding */
void *MLIDCFG_DriverLink;
UINT16 MLIDCFG_SharingFlags;
UINT16 MLIDCFG_Slot;
UINT16 MLIDCFG_IOPort0;
UINT16 MLIDCFG_IORange0;
UINT16 MLIDCFG_IOPort1;
UINT16 MLIDCFG_IORangel;

ODI Header File D-21

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

Lan_Memory_ConfigurationLAN_MEMORY_CONFIGURATION[Z2];

#define MLIDCFG_MemoryAddressO LAN_MEMORY_CONFIGURATION[0].MemoryAddress
#define MLIDCFG_MemorySizeO LAN_MEMORY_CONFIGURATION[0].MemorySize
#define MLIDCFG_MemoryAddressl LAN_MEMORY_CONFIGURATION[1].MemoryAddress
#define MLIDCFG_MemorySizel LAN_MEMORY_CONFIGURATION[1].MemorySize

UINT8 MLIDCFG_ InterruptO;
UINT8 MLIDCFG_Interruptl;

UINT8 MLIDCFG_DMALIne0;
UINT8 MLIDCFG_DMALinel,;

void *MLIDCFG_ResourceTag;
void *MLIDCFG_Config;
void *MLIDCFG_CommandString;

MEON_STRINGMLID
CFG_LogicalName[18];

[*UINT8 MLIDCFG_Pad3[2];*//* Compiler padding */

void *MLIDCFG_LinearMemory0;

void *MLIDCFG_LinearMemory1;

UINT16 MLIDCFG_ChannelNumber;

[*UINT8 MLIDCFG_Pad4[2];*//* Compiler padding */

void *MLIDCFG_DBusTag;

UINT8 MLIDCFG_DIOConfigMajorVer;

UINT8 MLIDCFG_DIOConfigMinorVer;

[*UINT8 MLIDCFG_Pad5[2];*//* Compiler padding */
}
MLID_ConfigTable, *PMLID_ConfigTable, MLID_CONFIG_TABLE;

typedef struct_IO_CONFIG_

{
struct _IO_CONFIG_ *IO_DriverLink;
UINT16 I0_SharingFlags;
UINT16 10O_Slot;
UINT16 I1O_IOPortO;
UINT16 I0_IORange0;
UINT16 10_IOPortl;
UINT16 I0_IORangel;
Lan_Memory_Configuration
LAN_MEMORY_CONFIGURATIONI2];

#define 10_MemoryAddress 0 LAN_MEMORY_CONFIGURATION[0].MemoryAddress
#define 10_MemorySize 0 LAN_MEMORY_CONFIGURATION[0].MemorySize
#define 10_MemoryAddress 1 LAN_MEMORY_CONFIGURATION[1].MemoryAddress
#define 10_MemorySize 1 LAN_MEMORY_CONFIGURATION[1].MemorySize

UINT8 10_InterruptO;
UINT8 10_Interruptl,;
UINT8 10_DMALIne0;

D-22 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

}

UINT8IO_DMALinel;

struct ResourceTagStructure*|O_ResourceTag;
void *|O_Config;

void *|O_CommandsString;
MEON_STRINGIO_LogicalName[18];
FUINT8IO_Pad1[2];*//* Compiler padding */
void *|O_LinearMemoryO0;

void *|O_LinearMemory1;

UINT16 I0_ChannelNumber;
[*UINT8IO_Pad2[2];*//* Compiler padding */
void *|O_DBusTag;

UINT8 10_DIOConfigMajorVer;

UINT8 10_DIOConfigMinorVer;
[FUINT8IO_Pad3[2];*//* Compiler padding */

I0_CONFIG;

typedef

{

}

struct_MLID_STATS_TABLE_

UINT16 MStatTableMajorVer;
UINT16 MStatTableMinorVer;
UINT32 MNumGenericCounters;
STAT_TABLE_ENTRY (*MGenericCountsPtr)[];
UINT32 MNumMediaCounters;
STAT_TABLE_ENTRY (*MMediaCountsPtr)[];
UINT32 MNumCustomCounters;

STAT_TABLE_ENTRY (*MCustomCountersPtr)[];

MLID_StatsTable, *PMLID_StatsTable, MLID_STATS_TABLE;

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

NUM_GENERIC_MLID_COUNTERS 20
MLID_TOTAL_TX_PACKET_COUNT 0
MLID_TOTAL_RX_PACKET COUNT 1
MLID_NO_ECB_AVAILABLE_COUNT 2
MLID_PACKET TX_TOO_BIG_COUNT 3
MLID_PACKET TX_TOO_SMALL_COUNT 4

MLID_PACKET_RX_OVERFLOW_COUNT 5
MLID_PACKET_RX_TOO_BIG_COUNT 6
MLID_PACKET_RX_TOO_SMALL_COUNT 7
MLID_PACKET_TX_MISC_ERROR_COUNT 8
MLID_PACKET_RX_MISC_ERROR_COUNT 9
MLID_RETRY_TX_COUNT 10
MLID_CHECKSUM_ERROR_COUNT 11
MLID_HARDWARE_RX_MISMATCH_COUNT 12
MLID_TOTAL_TX_OK_BYTE_COUNT 13
MLID_TOTAL_RX_OK_BYTE_COUNT 14

ODI Header File D-23

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define

#define
#define
#define
#define
#define
#define
#define
#define

#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

D-24

MLID_TOTAL_GROUP_ADDR_TX_COUNT 15
MLID_TOTAL_GROUP_ADDR_RX_COUNT 16
MLID_ADAPTER_RESET_COUNT 17
MLID_ADAPTER_OPR_TIME_STAMP 18
MLID_Q_DEPTH 19
NUM_TOKEN_SPECIFIC_COUNTERS 13
TRN_AC_ERROR_COUNT 0
TRN_ABORT_DELIMITER_COUNTER 1
TRN_BURST_ERROR_COUNTER 2
TRN_FRAME_COPIED_ERROR_COUNTER 3
TRN_FREQUENCY_ERROR_COUNTER 4
TRN_INTERNAL_ERROR_COUNTER 5
TRN_LAST_RING_STATUS 6
TRN_LINE_ERROR_COUNTER 7
TRN_LOST_FRAME_COUNTER 8
TRN_TOKEN_ERROR_COUNTER 9
TRN_UPSTREAM_NODE_ADDRESS 10
TRN_LAST_RING_ID 11
TRN_LAST_BEACON_TYPE 12

NUM_ETHERNET_SPECIFIC_COUNTERS 8

ETH_TX_OK_SINGLE_COLLISIONS_COUNT 0
ETH_TX_OK_MULTIPLE_COLLISIONS_COUNT1
ETH_TX_OK_BUT DEFERRED 2
ETH_TX_ABORT_LATE_COLLISION 3
ETH_TX_ABORT_EXCESS_COLLISION 4
ETH_TX_ABORT_CARRIER_SENSE 5
ETH_TX_ABORT EXCESSIVE_DEFERRAL 6
ETH_RX_ABORT_FRAME_ALIGNMENT 7

NUM_FDDI_SPECIFIC_COUNTERS 10

FDDI_CONFIGURATION_STATE 0
FDDI_UPSTREAM_NODE 1
FDDI_DOWNSTREAM_NODE 2
FDDI_FRAME_ERROR_COUNT 3
FDDI_FRAMES_LOST_COUNT 4
FDDI_RING_MANAGEMENT_STATE 5
FDDI_LCT_FAILURE_COUNT 6
FDDI_LEM_REJECT_COUNT 7
FDDI_LEM_COUNT 8
FDDI_L_CONNECTION_STATE 9

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

typedef struct MLID_REG

{
void (*MLIDSendHandler)(ECB*, void*);
INFO_BLOCK*MLID ControlHandler;
void *MLID SendContext;
void *MLID ModuleHandle;
}

MLID_Reg, *PMLID_Reg, MLID_REG;
/* Definitions for Bound Protocol Stacks */

typedef struct PS_BOUND_NODE_

{
MEON_STRING *ProtocolName;
ODISTAT(CALLCNV *ProtocolReceiveHandler)(LOOKAHEADY);
INFO_BLOCK *ProtocolControlHandler;
void *ProtocolResourceObj;
}

PS_BoundNode, *PPS_BoundNode, PS_BOUND_NODE;

/* Definitions for PreScan Rx and Default Chained Protocol Stacks */

typedef struct _PS_CHAINED_RX_NODE_

{

struct_PS_CHAINED_RX_NODE_*StackChainLink;
UINT32 StackChainBoardNumber;
CHNPOS StackChainPositionRequested;
ODISTAT (CALLCNV *StackRxChainHandler)(LOOKAHEAD*, struct

_PS_CHAINED_RX_NODE_ *);

INFO_BLOCK *StackChainControl;
UINT32 StackChainFilter;
void *StackChainContext;
void *StackChainResourceObj;

}
PS_ChainedRxNode, *PPS_ChainedRxNode, PS_CHAINED_RX_NODE;

/* Definitions for PreScan Tx Chained Protocol Stacks */

typedef struct _PS_CHAINED_TX_NODE_
{
struct_PS_CHAINED_TX_NODE_*StackChainLink;
UINT32 StackChainBoardNumber;
CHNPOS StackChainPositionRequested;
ODISTAT (CALLCNV *StackTxChainHandler)(ECB?*, struct
_PS_CHAINED_TX_NODE_ %);
INFO_BLOCK*StackChainControl;
UINT32 StackChainFilter;

ODI Header File D-25

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

void *StackChainContext;
void *StackChainResourceObj;

}
PS_ChainedTxNode, *PPS_ChainedTxNode, PS_CHAINED_TX_ NODE;

[*Definitions for SFT Il Exchange Protocol Control Service */

typedef struct_ SFTIII_EXCHANGE_NODE_

{
UINT32 SubFunction;
void* Parameteri;
void* Parameter2;

} SFTIlIExchangeNode, SFTIHI_EXCHANGE_NODE;

#ifdef OS_NT

/* Reset PRAGMA to normal after packing above structures */

#pragmapack()
#endif
[*========[Function Prototypes] */

ODISTAT CLSL_AddProtocolID(PROT_ID*ProtocollD,

MEON_STRING *ProtocolName,
MEON_STRING *FrameName);

ODISTAT CLSL_BindProtocolToBoard(UINT32ProtocolNumber,
UINT32 BoardNumber,
MEON_STRING *UserParmsString);

ODISTAT CLSL_BindStack(UINT32ProtocolNumber,
UINT32BoardNumbery);

ODISTAT CLSL_CancelAESEvent(AES_ECB*TimerAESECB);
ODISTAT CLSL_CancelEvent(ECB*ECBBUuffer);
ODISTAT CLSL_ControlStackFilter(UINT32 BoardNumber,
UINT32 Function,
UINT32 Mask,
void *Parameterl,

void *Parameter2);

ODISTAT CLSL_Dummy(void);

| D-26 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

ODISTAT CLSL_DeRegisterDefaultChain(PS_CHAINED_RX_NODE *StackChainNode);
ODISTAT CLSL_DeRegisterMLID(UINT32BoardNumber);
ODISTAT CLSL_DeRegisterPreScanChain(PS_CHAINED_RX_NODE *PStkChainRxNode,
PS_CHAINED_TX_NODE *PStkChainTxNode);
ODISTAT CLSL_DeRegisterStack(UINT32ProtocolNumber);
voidCLSL _FastHoldEvent(ECB*ECBBuffer);
void CLSL_FastSendComplete(ECB*SendECB));
ODISTAT CLSL_GetBoundBoardinfo (UINT32BoardNumber,

UINT32 *StackBuffer);
UINT32CLSL_GetIntervalMarker(void);
LSL_CONFIG_TABLE*CLSL_GetLSLConfiguration(void);
LSL_STATS_TABLE*CLSL_GetLSL Statistics(void);

UINT32CLSL_GetMaxECBBufferSize(void);

INFO_BLOCK*CLSL_GetMLIDControlEntry(UINT32 BoardNumber,
ODISTAT *ErrorStatus);

PROT_ID* CLSL_GetPIDFromStackiDBoard(UINT32ProtocolNumber,
UINT32 BoardNumber,
ODISTAT *ErrorStatus);

ZZ'IA 90Q - TT'IA 2a8ds

INFO_BLOCK *CLSL_GetProtocolControlEntry(UINT32ProtocolNumber,
ODISTAT *ErrorStatus);

ECB *CLSL_GetSizedECB(UINT32ECBDataSize,
void *pResourceObj,
BOOLEAN Belowl6Meg);

ECB * CLSL_GetMultipleECBs(UINT32ECBDataSize,
void *pResourceObj,
UINT32 *nECBS);

ODISTAT CLSL_GetStackECB(LOOKAHEAD*LookAheadBuf);

ODISTAT CLSL_GetStackIDFromName(MEON_STRING*Name,
UINT32 *ProtocolNumber);

ODI Header File D-27

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

ODISTAT CLSL_GetStartofChain(UINT32 BoardNumber,

PS_CHAINED_RX_NODE **DefaultChainStartNode,
PS_CHAINED_RX_NODE *PreScanRxChainStartNode,
PS_CHAINED_TX_NODE **PreScanTxChainStartNode);

voidCLSL_HoldEvent(ECB*HoldECB);

ODISTAT CLSL_ModifyStackFilter(void*Stackldentifier,
UINT32 BoardNumber,
UINT32 NewMask,
UINT32 *pCurrentMask);

ODISTAT CLSL_RegisterDefaultChain(PS_CHAINED_RX_NODE*StackChainNode);
ODISTAT CLSL_RegisterMLID (MLID_REG*MLIDHandlers,

MLID_CONFIG_TABLE *MLIDConfigTable,
UINT32 *BoardNumber);

ODISTAT CLSL_RegisterPreScanChain(PS_CHAINED_RX_NODE*PStkChnPreRxNode,
PS_CHAINED_TX_NODE*PStkChnPreTxNode);

ODISTAT CLSL_RegisterStack(PS_BOUND_NODE*ProtocolNode,
UINT32 *ProtocolNumber);

ODISTAT CLSL_ReSubmitDefault(PS_CHAINED_RX_NODE*StackChainnode,
LOOKAHEAD*LookAheadBuf);

ODISTAT CLSL_ReSubmitPreScanRx(PS_CHAINED_RX_NODE*StackChainnode,
LOOKAHEAD*LookAheadBuf);

ODISTAT CLSL_ReSubmitPreScanTx(PS_CHAINED_TX_NODE*StackChainnode,
ECB *TransmitECB);

ODISTAT _cdecl
CLSL_ReturnECB(ECB*ReturnedECB);

ODISTAT CLSL_ScheduleAESEvent(AES_ECB*TimerAESECB);
void CLSL_SendComplete(ECB*SendECB);
ODISTAT CLSL_SendPacket(ECB*SendECB);
SFTIHI_STATCLSL_SendProtocolinfoToPartner(UINT32ProtocolNumber,
UINT8 *Protocollinfo,
UINT32 Length,

void (*InfoSendCallBack)
(UINT32 Reserved,

| D-28 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
[| January 6, 1998

UINT8 *Protocolinfo));

SFTIHI_STATCLSL_SendProtocolinfoToOtherEngine(UINT32ProtocolNumber,
UINT8 *Protocollnfo,
UINT32 Length,
void (*InfoSendCallBack)
void CLSL_ServiceEvents(void);

ODISTAT CLSL_UnbindStack(UINT32ProtocolNumber,
UINT32 BoardNumber);

void CLSL_Reserved(void);

[*========] Macro Defintions] */

[*Macro Definitions to ease access to Control Procedures for U)
Protocol Stacks and MLIDs o
*/ D)
P
. <
[*Protocol Stack Control Functions*/ ~
#define PSTK_NUM_API 10L ':
#define PSTK_GET_CONFIGURATION 0x0000 1
#define PSTK_GET_STATISTICS 0x0001 D
#define PSTK_BIND 0x0002 o
#define PSTK_UNBIND 0x0003 o
#define PSTK_MLID_DEREGISTER 0x0004
#define PSTK_PROMISCUOUS_STATE 0x0005 <
#define PSTK_RESERVED 0x0006 H
#define PSTK_GET_PROTOCOL_STRG 0x0007 N
#define PSTK_PROT_MANAGE 0x0008 N

#define PSTK_GET_BOUND_NETWORK_INFOO0x0009
[*w is ptr. to INFO_BLOCK defining API Array for Protocol Stack Control*/

#define PStkCntl_GetConfig(w, x)\
((PS_CONFIG_TABLE* (CALLCNV *)(void*))\
w->SupportAPIArray[PSTK_GET_CONFIGURATION])(x)

#define PStkCntl_GetStats(w, x)\
((PS_STATS_TABLE* (CALLCNV *)(void*)) \
w->SupportAPIArray[PSTK_GET_STATISTICS])(X)

#define PStkCntl_Bind(w, X, y, Z)\
((ODISTAT (CALLCNV *)(UINT32, MEON_STRING?*, void*))\
w->SupportAPIArray[PSTK_BIND])(X, Y, 2)

ODI Header File D-29

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

#define

#define

#define

#define

#define

#define

PStkCntl_MLIDDeReg(w, X, y)\
((void (CALLCNV *)(UINT32, void*))\
w->SupportAPIArray[PSTK_MLID_DEREGISTER])(X, y)

PStkCntl_Unbind(w, X, y,)\
((ODISTAT (CALLCNV *)(UINT32, MEON_STRING*, void*))\
w->SupportAPIArray[PSTK_UNBIND])(X, Y, z)

PStkCntl_PromiscState(w, X, y, zZ)\
((ODISTAT (CALLCNYV *)(UINT32, UINT32, void*))\
w->SupportAPIArray[PSTK_PROMISCUOUS_STATE])(X, v, 2)

PStkCntl_GetProtocolString(w, X, y, z)\
((ODISTAT (CALLCNV *)(UINT32, MEON_STRING?*, void*))\
w->SupportAPIArray[PSTK_GET_PROTOCOL_STRG])(X, VY,)

PStkCntl_ProtManage(w, X, y)\
((ODISTAT (CALLCNYV *)(ECB *, void*))\
w->SupportAPIArray[PSTK_PROT_MANAGE])(X, ¥)

PSTKCntl_GetBoundNetInfo (w, X, y, z) \
((ODISTAT (CALLCNV*)(UINT32, NETWORK_ADDRESS_INFO*, void*)) \
w->SupportAPIArray[PSTK_GET_GOUND_NET_INFO]))(x, Y, 2)

/*MLID Control Functions*/

#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

D-30

MLID_NUM_API 19L

MLID_GET_CONFIGURATION 0x0000 /* 0 - GetMLIDConfiguration */
MLID_GET_STATISTICS 0x0001 /* 1 - GetMLIDStatistics */
MLID_ADD_MULTICAST 0x0002 /* 2 - AddMulticastAddress */
MLID_DELETE_MULTICAST 0x0003 /* 3 - DeleteMulticastAddress */
MLID_RESERVED 0x0004 /* 4 - Reserved */
MLID_SHUTDOWN 0x0005 /* 5 - MLIDShutdown */
MLID_RESET 0x0006 /* 6 - MLIDReset */
MLID_RESERVED1 0x0007 [* 7 - Reservedl */
MLID_RESERVED?2 0x0008 [* 8 - Reserved?2 */
MLID_SET_LOOK_AHEAD 0x0009 /* 9 - SetLookAheadSize */

MLID_PROMISCUOUS_CHANGE O0x000A /* 10 - PromiscuousChange */
MLID_REGISTER_TX_MONITOR 0x000B /* 11 - RegisterMonitor */

MLID_RESERVED3 0x000C /* 12 - Reserved3 */
MLID_RESERVED4 0x000D /* 13 - Reserved4 */
MLID_MANAGEMENT OXxO000E /* 14 - MLIDManagement */

MLID_GET_MULTICAST_INFO 0X000F /* 15 - GetMulticastinfo */
MLID_REMOVE_NETWORK_INTERFACEOx0010 /* 16 - RemoveNetworkinterface

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

#define

#define

MLID_SHUTDOWN_NETWORK_INTERFACEOx0011/* 17 -

MLID_RESET_NETWORK_INTERFACE 0x0012

/* Shutdown type defines */

#define
#define

SHUTDOWN_PERMANENT 0x0000
SHUTDOWN_PARTIAL 0x0001

[*w is ptr. to INFO_BLOCK defining API Array for MLID Control*/

#define MLIDCntl_GetConfig(w, X, y, Z)\

((ODISTAT (CALLCNYV *)(UINT32, MLID_CONFIG_TABLE**, ECB*))\
w->SupportAPIArray[MLID_GET_CONFIGURATION])(X, y, 2)

#define MLIDCntl_GetStats(w, X, y, Z)\

((ODISTAT (CALLCNV *)(UINT32, MLID_STATS_TABLE**,

w->SupportAPIArray[MLID_GET_STATISTICS])(x, Y, 2)

#define MLIDCntl_AddMulti(w, x, y, zZ)\

((ODISTAT (CALLCNV *)(UINT32, NODE_ADDR*, ECB*))\
w->SupportAPIArray[MLID_ADD_MULTICAST])(X, Y, z)

#define MLIDCntl_DelMulti(w, x, y, z)\

#define

#define

#define

#define

((ODISTAT (CALLCNYV *)(UINT32, NODE_ADDR*, ECB*))\
w->SupportAPIArray[MLID_DELETE_MULTICAST])(X, Y, 2)

MLIDCntl_Shutdown(w, X, y, z)\
((ODISTAT (CALLCNYV *)(UINT32, UINT32, ECB*))\
w->SupportAPIArray[MLID_SHUTDOWN])(x, Y, 2)

MLIDCntl_Reset(w, x, y)\
((ODISTAT (CALLCNYV *)(UINT32, ECB*))\
w->SupportAPIArray[MLID_RESET])(X, y)

MLIDCntl_SetLookAhead(w, X, y, z)\
((ODISTAT (CALLCNYV *)(UINT32, UINT32, ECB*))\
w->SupportAPIArray[MLID_SET_LOOK_AHEAD])(X, v, z)

MLIDCntl_PromisChange(w, X, y, z, aa)\

*

ShutdownNetworklInterfac
e*

/* 18 -
ResetNetworkInterface

*/

ECBH)\

ZZ'IA 90Q - TT'IA 2a8ds

((ODISTAT (CALLCNV *)(UINT32, UINT32, UINT32*, ECB*))\

w->SupportAPIArray[MLID_PROMISCUOUS_CHANGE])(x,

Yy, Z, aa)

ODI Header File D-31

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Spec v1l.11 - Doc v1.22

#define

#define

#define

#define

#define

typedef

#define MLIDCntl_RegMon(w, X, y, z, aa)\

((ODISTAT (CALLCNV *)(UINT32, void*, ECB*, BOOLEAN))\
w->SupportAPIArray[MLID_REGISTER_TX_MONITOR])(x, Yy, z, aa)

MLIDCntl_Management(w, X, y)\
((ODISTAT (CALLCNYV *)(UINT32, ECB*))\

w->SupportAPIArray[MLID_MANAGEMENT])(X, y)

MLIDCntl_GetMulticastinfo(w, X, y) \
((ODISTAT (CALLCNV *)(UINT32, ECB¥)\

w->SupportAPIArray[MLID_GET_MULTICAST_INFO])(X, Y)

MLIDCntl_RemoveNetworkinterface(w, X, y)\
((ODISTAT (CALLCNYV *)(UINT32, ECB*))\

W->SupportAPIArray[MLID_REMOVE_NETWORK_INTERFACE])(X, y)

MLIDCntl_ShutdownNetworklInterface(w, x, y)\
((ODISTAT (CALLCNV *)(UINT32, ECB*))\

W->SupportAPIArray[MLID_SHUTDOWN_NETWORK_INTERFACE])(X, y)

MLIDCntl_ResetNetworkinterface(w, X, y)\
((ODISTAT (CALLCNV *)(UINT32, ECB*)\

w->SupportAPIArray[MLID_RESET_NETWORK_INTERFACE])(X, Y)

struct_GROUP_ADDR_LIST_NODE_ {
NODE_ADDRGRP_ADDR;
UINT16GRP_ADDR_COUNT;

} GROUP_ADDR_LIST_NODE;

/*LSL Function Indexes */

#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

D-32

LSL_NUM_API 49L

CLSL_GET_SIZED_ECB 0x0000
CLSL_RETURN_ECB 0x0001
CLSL_CANCEL_EVENT 0x0002
CLSL_SCHEDULE_AES_EVENT 0x0003
CLSL_CANCEL_AES_EVENT 0x0004
CLSL_GET_INTERVAL_MARKER 0x0005
CLSL_REGISTER_STACK 0x0006
CLSL_DEREGISTER_STACK 0x0007
CLSL_RESERVED 0x0008
CLSL_RESERVED1 0x0009
CLSL_RESERVED?2 0x000A
CLSL_GET_STACK_ECB 0x000B

/* 0 - CLSL_GetSizedECB */
/*1 - CLSL_ReturnECB */
/* 2 - CLSL_CancelEvent */
/* 3 - CLSL_ScheduleAESEvent */
/* 4 - CLSL_CancelAESEvent */
/* 5 - CLSL_GetlIntervalMarker */
[* 6 - CLSL_RegisterStack */
[* 7 - CLSL_DeRegisterStack */
/* 8 - Reserved */
[*9 - Reservedl */
/* 10 - Reserved2 */
[* 11 - CLSL_GetStackECB */

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

#define
#define
#define
#define

#define

#define

#define

#define

#define
#define
#define
#define
#define
#define
#define

#define

#define

#define

#define

#define

#define
#define
#define

#define

CLSL_SEND_PACKET 0x000C /* 12 - CLSL_SendPacket */
CLSL_FAST_SEND_COMPLETE 0x000D /* 13- CLSL_FastSendComplete */
CLSL_SEND_COMPLETE OX000E /* 14 - CLSL_SendComplete */
CLSL_REGISTER_MLID OX000F /* 15 - CLSL_RegisterMLID */

CLSL_GET_STACK_ID_FROM_NAME
0x0010 /* 16 - CLSL_GetStackIDFromName */

CLSL_GET_PID_FROM_STACK_ID_BOARD
0x0011 /* 17 - CLSL_GetPIDFromStackiDBoard */

CLSL_GET_MLID_CONTROL_ENTRY
0x0012 /* 18 - CLSL_GetMLIDControlEntry */

CLSL_GET_PROTOCOL_CONTROL_ENTRY
0x0013 /* 19 - CLSL_GetProtocolControlEntry */

CLSL_GET_LSL_STATISTICS 0x0014 /* 20 - CLSL_GetLSLStatistics */

CLSL_BIND_STACK 0x0015 /* 21 - CLSL_BindStack */
CLSL_UNBIND_STACK 0x0016 /* 22 - CLSL_UnbindStack */
CLSL_ADD_PROTOCOL_ID 0x0017 /* 23 - CLSL_AddProtocollD */

CLSL_GET_BOUND_BOARD_INFO
0x0018 /* 24 - CLSL_GetBoundBoardinfo */
CLSL_GET_LSL_CONFIGURATION 0x0019 [*25-CLSL_GetLSLConfiguration
*/
CLSL_DEREGISTER_MLID Ox001A /* 26 - CLSL_DeRegisterMLID */

CLSL_REGISTER_DEFAULT_CHAIN
0x001B /* 27 - CLSL_RegisterDefaultChain */

CLSL_REGISTER_PRESCAN_CHAIN
0x001C /* 28 - CLSL_RegisterPreScanChain */

CLSL_RESERVED3 0x001D /* 29 - Reserved3 */

CLSL_DEREGISTER_DEFAULT_CHAIN
Ox001E /* 30 - DeRegisterDefaultChain */

CLSL_DEREGISTER_PRESCAN_CHAIN
0x001F /* 31 - DeRegisterPreScanChain */

CLSL_RESERVED4 0x0020 /* 32 - Reserved4 */
CLSL_GET_START_OF_CHAIN 0x0021 /* 33 - CLSL_GetStartofChain */
CLSL_RESUBMIT_DEFAULT 0x0022 /* 34 - CLSL_ReSubmitDefault */

CLSL_RESUBMIT_PRESCAN_RX
0x0023 /* 35- CLSL_ReSubmitPreScanRx */

ODI Header File D-33

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

#define CLSL_RESUBMIT_PRESCAN_TX

0x0024 /* 36 - CLSL_ResubmitPreScanTx */
#define CLSL_HOLD_EVENT 0x0025 /* 37 - CLSL_HoldEvent */
#define CLSL_FAST_HOLD_EVENT 0x0026 /* 38 - CLSL_FastHoldEvent */

#define CLSL_GET_MAX_ECB_BUFFER_SIZE
0x0027 /* 39 - CLSL_GetMaxECBBufferSize */

#define CLSL_RESERVED5 0x0028 /* 40 - Reserved5 */
#define CLSL_SERVICE_EVENTS 0x0029 /* 41 - CLSL_ServiceEvents */

#define CLSL_MODIFY_STACK_FILTER
0x002A [* 42 - CLSL_ModifyStackFilter */

#define CLSL_CONTROL_STACK_FILTER
0x002B /* 43 - CLSL_ControlStackFilter */

#define CLSL_SEND_PROTOCOL_INFO_TO_OTHER_ENGINE
0x002C /*44-CLSL_SendProtocolinfoToOtherEngine (Server
ONLY) */

#define CLSL_SEND_PROTOCOL_INFO_TO_PARTNER
0x002D /* 45 - CLSL_SendProtocolinfoToPartner
(Server ONLY) */

#define CLSL_BIND_PROTOCOL_TO_BOARD
Ox002E /* 46 - CLSL_BindProtocolToBoard */

#define CLSL_GET_MULTIPLE_ECBS Ox002F /* 47 - CLSL_GetMultipleECBs */

#define CLSL_GET_PHYSICAL_ADDRESS_OF_ECB 0x0030
/*48 CLSL_GetPhysicalAddressOfECB */

/* w is ptr. to INFO_BLOCK defining API Array for C LSL APlIs */

#define CLSLEntry_GetSizedECB(w, X, y, 2)\
((ECB* (CALLCNYV *)(UINT32, void*, BOOLEAN))\
w->SupportAPIArray[CLSL_GET_SIZED_ECB])(x, Y, 2)

#define CLSLEntry_ReturnECB(w, x)\
((ODISTAT (_cdecl *)(ECB*))\
w->SupportAPIArray[CLSL_RETURN_ECB])(X)

#define CLSLEntry_CancelEvent(w, x)\
((ODISTAT (CALLCNV *)(ECB*)\
w->SupportAPIArray[CLSL_CANCEL_EVENT])(x)

D-34 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

CLSLEntry_ScheduleAESEvent(w, x)\
((void (CALLCNYV *)(AES_ECB*)\
w->SupportAPIArray[CLSL_SCHEDULE_AES_EVENT])(x)

CLSLEntry_CancelAESEvent(w, x)\
((ODISTAT (CALLCNYV *)(AES_ECB*))\
w->SupportAPIArray[CLSL_CANCEL_AES_EVENT])(X)

CLSLEntry_GetintervalMarker(w)\
((UINT32 (CALLCNYV *)(void))\
w->SupportAPIArray[CLSL_GET_INTERVAL_MARKER])()

CLSLEntry_RegisterStack(w, x, y)\
((ODISTAT (CALLCNYV *)(PS_BOUND_NODE*, UINT32*))\
w->SupportAPIArray[CLSL_REGISTER_STACK])(X, ¥)

CLSLEntry_DeRegisterStack(w, x)\
((ODISTAT (CALLCNV *)(UINT32))\
w->SupportAPIArray[CLSL_DEREGISTER_STACK])(x)

CLSLEntry_GetStackECB(w, x)\
((ODISTAT (CALLCNV *)(LOOKAHEAD*))\
w->SupportAPIArray[CLSL_GET_STACK_ECB])(x)

CLSLEntry_SendPacket(w, x)\
((ODISTAT (CALLCNYV *)(ECB*))\
w->SupportAPIArray[CLSL_SEND_PACKET])(x)

CLSLEntry_FastSendComplete(w, x)\
((void (CALLCNYV *)(ECB*))\
w->SupportAPIArray[CLSL_FAST_SEND_COMPLETE])(X)

CLSLEntry_SendComplete(w, x)\
((void (CALLCNYV *)(ECB*))\
w->SupportAPIArray[CLSL_SEND_COMPLETE])(x)

CLSLEntry_RegisterMLID(w, X, Y, Z)\

((ODISTAT (CALLCNV *)(MLID_REG*, MLID_CONFIG_TABLE*, UINT32*))\

w->SupportAPIArray[CLSL_REGISTER_MLID])(x, Y, z)

CLSLEntry_GetStackIDFromName (w, X, y)\
((ODISTAT (CALLCNV *)(MEON_STRING*, UINT324))\

w->SupportAPIArray[CLSL_GET_STACK_ID_FROM_NAME])(X, Y)

CLSLEntry_GetPIDFromStackiDBoard(w, X, y, z)\
((PROT_ID* (CALLCNV *)(UINT32,UINT32,0DISTAT*))\

w->SupportAPIArray[CLSL_GET_PID_FROM_STACK_ID_BOARD])(x, Y, 2)

ODI Header File D-35

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

#define

#define

#define

#define

#define

#define

#define

#define

#define

#define

D-36

CLSLEntry_GetMLIDControlEntry(w, X, y)\
((INFO_BLOCK?* (CALLCNV *)(UINT32, ODISTAT*))\
w->SupportAPIArray[CLSL_GET_MLID_CONTROL_ENTRY])(X, y)

CLSLEntry_GetProtocolControlEntry(w, x, y)\
((INFO_BLOCK* (CALLCNV *) (UINT32, ODISTAT*))\
w->SupportAPIArray[CLSL_GET_PROTOCOL_CONTROL_ENTRY])(X, Y)

CLSLEntry_GetLSLStatistics(w)\
((LSL_STATS_TABLE* (CALLCNYV *)(void))\
w->SupportAPIArray[CLSL_GET_LSL_STATISTICS])()

CLSLEntry_BindStack(w, x, y)\
((ODISTAT (CALLCNV *)(UINT32, UINT32))\
w->SupportAPIArray[CLSL_BIND_STACK])(x, y)

CLSLEntry_UnbindStack(w, x, y)\
((ODISTAT (CALLCNV *)(UINT32, UINT32))\
w->SupportAPIArray[CLSL_GET_UNBIND_STACK])(X, y)

#define CLSLEntry_AddProtocollD(w, X, y, zZ)\
((ODISTAT (CALLCNYV *)(PROT_ID*, MEON_STRING*, MEON_STRING*))\
w->SupportAPIArray[CLSL_ADD_PROTOCOL_ID])(x, v, 2)

CLSLEntry_GetBoundBoardInfo(w, X, y)\
((ODISTAT (CALLCNV *)(UINT32, UINT32*)\
w->SupportAPIArray[CLSL_GET_BOUND_BOARD_INFO])(X, Y)

CLSLEntry_GetLSLConfiguration(w) \
((LSL_CONFIG_TABLE* (CALLCNYV *)(void))\
w->SupportAPIArray[CLSL_GET_LSL_CONFIGURATION])()

CLSLEntry_DeRegisterMLID(w, x)\
((ODISTAT (CALLCNV *)(UINT32))\
w->SupportAPIArray[CLSL_DEREGISTER_MLID])(x)

CLSLEntry_RegisterDefaultChain(w, x)\
((ODISTAT (CALLCNYV *)(PS_CHAINED_RX_NODE*)\
w->SupportAPIArray[CLSL_REGISTER_DEFAULT_CHAIN])(x)

#define CLSLEntry_RegisterPreScanChain(w, x, y)\
((ODISTAT (CALLCNYV *)(PS_CHAINED_RX_NODE?*, PS_CHAINED_TX_NODE*)\
w->SupportAPIArray[CLSL_REGISTER_PRE_SCAN_CHAIN])(X, Y)

CLSLEntry_DeRegisterDefaultChain(w, x)\

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

((ODISTAT (CALLCNV *)(PS_CHAINED_RX_NODE*))\
W->SupportAPIArray[CLSL_DEREGISTER_DEFAULT_CHAIN])(X)

#define CLSLEntry_DeRegisterPreScanChain(w, X, y)\

((ODISTAT (CALLCNV *)(PS_CHAINED_RX_NODE*, PS_CHAINED_TX_NODE*)\

w->SupportAPIArray[CLSL_DEREGISTER_PRE_SCAN_CHAIN])(x, y)

#define CLSLEntry_GetStartofChain(w, X, y, z, aa)\
((ODISTAT (CALLCNV *)(UINT32, PS_CHAINED_RX_NODE**\
PS_CHAINED_RX_NODE**,PS_CHAINED_TX_NODE**))\
w->SupportAPIArray[CLSL_GET_START_OF_CHAIN])(x, Y, z, aa)

#define CLSLEntry_ReSubmitDefault(w, X, y)\
((ODISTAT(CALLCNYV *)(PS_CHAINED_RX_NODE*, LOOKAHEAD*))\
w->SupportAPIArray[CLSL_RESUBMIT_DEFAULTI)(X, y)

#define CLSLEntry_ReSubmitPreScanRx(w, X, y)\
((ODISTAT (CALLCNYV *)(PS_CHAINED_RX_NODE*, LOOKAHEAD*))\
w->SupportAPIArray[CLSL_RESUBMIT_PRESCAN_RX])(X, y)

#define CLSLEntry_ResubmitPreScanTx(w, X, y)\
((ODISTAT (CALLCNV *)(PS_CHAINED_TX_NODE*, ECB*))\
w->SupportAPIArray[CLSL_RESUBMIT_PRESCAN_TX])(x, y)

#define CLSLEntry_HoldEvent(w, x)\
((void (CALLCNYV *)(ECB*))\
w->SupportAPIArray[CLSL_HOLD_EVENT])(X)

#define CLSLEntry_FastHoldEvent(w, x)\
((void (CALLCNYV *)(ECB*))\
w->SupportAPIArray[CLSL_FAST_HOLD_EVENT])(x)

#define CLSLEntry_GetMaxECBBufferSize(w)\
((UINT32 (CALLCNYV *)(void))\
w->SupportAPIArray[CLSL_GET_MAX_ECB_BUFFER_SIZE])()

#define CLSLEntry_ServiceEvents(w)\
((void (CALLCNYV *)(void))\
w->SupportAPIArray[CLSL_SERVICE_EVENTS])()

#define CLSLEntry_ModifyStackFilter(w, x, y, z, aa)\
((ODISTAT (CALLCNYV *)(void*, UINT32, UINT32, UINT32*))\
w->SupportAPIArray[CLSL_MODIFY_STACK_FILTER])(X, vy, z, aa)

#define CLSLEntry_ControlStackFilter(w, x, y, z, aa, bb)\
((ODISTAT (CALLCNV *)(UINT32, UINT32, UINT32, void*, void*))\
w->SupportAPIArray[CLSL_CONTROL_STACK_FILTER])(x, v, z, aa, bb)

ODI Header File D-37

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

#define

#define
#define

N #define
N

H

> .
O #define
o

Q

1 #endif

\\l

h'

H

>

O

()

Q
0]

_—
g D-38

CLSLEntry_SendProtocolinfoToOtherEngine(w, X, y, z, aa)\

((SFTIN_STAT (CALLCNV *)(UINT32, UINT8*, UINT32, \
void(*InfoSendCallBack)(UINT8*)))\
w->SupportAPIArray[CLSL_SEND_PROTOCOL_INFO_TO_OTHER_ENGINE])(x.y,

aa)

CLSLEntry_SendProtocolinfoToPartner(w, X, y, z, aa)\
((SFTIN_STAT (CALLCNV *)(UINT32, UINT8*, UINT32,\
void(*InfoSendCallBack)(UINT32, UINT8*)))\
w->SupportAPIArray[CLSL_SEND_PROTOCOL_INFO_TO_PARTNERI])(X, Y, z, aa)

CLSLEntry_BindProtocolToBoard(w, X, y, z)\
((ODISTAT (CALLCNV *)(UINT32, UINT32, MEON_STRING*))\
w->SupportAPIArray[CLSL_BIND_PROTOCOL_TO_BOARDI])(X, v, 2)

CLSLEntry_GetMultipleECBs(w, X, y ,Z)\
((ECB* (CALLCNV *)(UINT32, void*, UINT32*))\
w->SupportAPIArray[CLSL_GET_MULTIPLE_ECBS])(X, vy, 2)

CLSLEntry_GetPhysicalAddressOfECB (w, x)/
((void (CALLCNYV *)(ECB*))/
w->SupportAPIArray[CLSL_GET_PHYSICAL_ADDRESS_OF_ECB])(x)

[* _ODI_Include_ */

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Glossary

Abort
To execute an orderly termination of a process whenever the process cannot or
should not complete.

Adapter
A circuit board driven by software. In the context of this document an adapter
refers to a physical board. See &€, MLID, Driver.

Address

A unique group of characters that correspond either to a selected memory
location, an input/output port, or a device on the network. Seé\alde
address

AES--Asynchronous Event Scheduler
An auxiliary service that measures elapsed time and triggers events at the
conclusion of measured time intervals.

API--Application Programming Interface
A defined set of routines that enables two software modules to pass
information between them.

ARP--Address Resolution Protocol
The protocol used by TCP/IP to locate nodes on a network.

Asynchronous process
A process that does not depend upon occurrence of a timing signal.

Bit
A binary digit that can only be 0 or 1.

Broadcast

A simultaneous transmission of data from a single source to all destinations.

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2ads

Spec v1l.11 - Doc v1.22

Buffer
A data area used for the temporary storage of data being moved between
processes.

Bus
The hardware interface upon which data is transferred.

Byte
A sequence of 8 bits.

CAM--Content Addressable Memory
Memory that resides on the adapter. In the context of this specification, this
memory is used to hold the group addresses that the adapter is to filter.

CHSM--C language Hardware Specific Module
One of three modules comprising the LAN driver toolkit. The developer writes
the CHSM to handle all hardware interactions for a specific physical board.

CMSM--C language Media Support Module
One of three modules comprising the LAN driver toolkit. The CMSM
standardizes and manages the generic details of interfacing ODI MLIDs to the
LSL and the operating system.

CTSM--C language Topology Specific Module
One of three modules comprising the LAN driver toolkit. The <CTSM>.0BJ
manages the operations unique to a specific media type.

Completion code
A code returned by a routine to indicate that the routine has completed either
successfully or unsuccessfully.

Control Block
A data structure that is used by a process to store control information. See also
ECB.

Destination Address
A field that identifies the physical location to which data is to be sent.

Driver

The software module that operates a circuit board. In the context of this
document, driver refers to a software module that drives a network board (or
adapter) and enables a device to communicate over a LAN. Seidalster,

NIC, MLID.

2 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ECB--Event Control Block
A data structure that contains the information required to coordinate the
scheduling and activation of certain operations. All ODI layers and AES
functions act upo&CBs.

EISA--Extended Industry Standard Architecture
A 32-bit bus standard, a superset of the ISA standard.

EOI--End of Interrupt
A command issued to the programmable interrupt controller (PIC) indicating
an end of interrupt.

ESR--Event Service Routine
An application-defined procedure that is called after an event occurs. An event
can be the completion of a send request, the completion of a listen request, or
the recurrence of an event that rescheduled itself with the AES.

Ethernet
A data-link protocol that specifies how data is placed on and retrieved from a
common transmission medium.

FDDI--Fiber Distributed Data Interface
A cable interface capable of transmitting data at 100 Mbps. FDDI can operate
over fiber lines or twisted-pair cable.

Frame
The unit of transmission on the network. The frame includes the associated
addresses and control information in the Media Access Control (MAC) Layer
and the transmitted data.

Interrupt

A hardware signal that causes the orderly suspension of the currently executing
process in order to execute a special program (or interrupt handler).

IOCTL--I/O Control
MLID procedures that perform specific actions (for example, add multicast
address, reset, shut down, etc.).

IP--Internet Protocol
The protocol used by TCP/IP. IP is connectionless and was designed to handle
a large number of WANs and LANs on an internetwork.

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

IPX--Internet Packet Exchange
An implementation of the Internetwork Datagram Packet (IDP) protocol from
Xerox. It allows applications running on NetWare workstations to take
advantage of NetWare communications drivers to communicate directly with
other workstations, servers, or devices on the internetwork.

ISA--Industry Standard Architecture
An 8/16-bit bus standard used with Intel’s microprocessors.

ISR--Interrupt Service Routine
Routine that is executed to handle a hardware or software interrupt request.

LAN--Local Area Network
At least two computers (usually located in the same building) connected
together in such a way as to allow them to communicate and share resources.

LSL--Link Support Layer
An ODI layer through which multiple protocol packets are directed from the
MLID to a designated protocol stack, and vice versa. The LSL directs
incoming and outgoing packets.

MAC Header--Media Access Control Header
Controls the transmission of packets through a network. The MAC header
includes source and destination data.

Medium
The physical carrier of a signal.

Micro Channel Architecture
A bus standard defined by IBM.

MLI--Multiple Link Interface
The interface between the MLID and the LSL that allows multiple MLIDs to
exist concurrently.

MLID--Multiple Link Interface Driver
The ODI layer that receives and transmits packets to a hardware device. This
acronym refers to ODI LAN drivers.

MMIO--Memory Mapped I/O
An architecture for input and output that allows 1/0O ports to be accessed as
though they were memory locations.

4 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

MPIO --Multiple Protocol Interface
The interface between the LSL and a Network Layer protocol stack that allows
different communication protocols to operate concurrently.

Multicast
The simultaneous transmission of data from a single source to a selected group
of destination addresses on the network.

NIC--Network Interface Controller/Card
The physical network board installed in workstations and file servers.

NLM--NetWare Loadable Module
Applications that are loaded dynamically and integrated with all the NetWare
server operating systems starting with NetWare 3

Node
Any network device that transmits and/or receives data. The device must have
a physical board and a unique address. Seé\Nalde Address.

Node Address
A unigue combination of characters that corresponds to a physical board on the
network. Each adapter must have a unique node address.

ODI--Open Data-Link Interface
The model that allows multiple network protocols, physical boards, and frame
types to coexist on a single workstation or server.

OSI--Open Systems Interconnection
A standard communications model that defines communications between
computer systems.

Packet
The unit of transmission on the network. The packet includes the associated
addresses and control information.

Peripheral Component Interconnect—PClI
A 32-bit or 64-bit bus standard with multiplexed address and data lines.

Personal Computer Memory Card International Association—PCMCIA
A 16-bit bus standard.

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

PID--Protocol Identification
A value containing a globally administered value (1 to 6 bytes in length) that
reflects the protocol stack in use (for example, EOh=IPX 802.2). The PID
located in every packet is a value that uniquely identifies the packet as
belonging to a specific protocol.

Privileged Time
An execution time that has higher execution priority than process time.

Process Time
An execution time where you can allocate memory and (with certain
exceptions) perform file input and output (1/O).

Protocol
The set of rules and conventions that determines how data is to be transmitted
and received on the network.

Pseudocode
Describes computer program algorithms generically without using the specific
syntax of any programming language.

RAM--Random Access Memory
The computer’s (or physical board’s) storage area into which data can be
entered and retrieved nonsequentially.

RCB--Receive Control Block
A data structure used by the MLID to receive data.

ROM--Read Only Memory
The portion of the computer’s (or physical board’s) storage area that can be
read only (write operations are ignored).

Shared RAM
The RAM on some physical boards that can be accessed by either the computer
or the physical board on which the RAM is installed.

Source Address
A field in a frame that identifies the physical location of a node that is sending
the packet.

SPX--Sequenced Packet Exchange
A Session Layer protocol that uses IPX. SPX provides connection oriented
services and guarantees packet delivery.

6 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Stubbed Routine
A routine that contains only an instruction to return to the caller of the routine.

Synchronous Process
A process that depends upon the occurrence of another event such as a timing
signal.

TCB--Transmit Control Block
The data structure used by the MLID to transmit data.

TCP--Transmission Control Protocol
A communication protocol that provides a reliable stream service to transfer
data between nodes on a network.

Token-Ring
A network that utilizes a ring topology and passes a token from one device to
another. A node that is ready to send data can capture the token and send the
data for as long as it holds the token.

TSR--Terminate-and-Stay-Resident
A DOS program or routine that remains in memory after being loaded and
subsequently exited.

Virtual Machine
An illusion of multiple processes, each executing on its own processor with its
own memory. The resources of the physical computer can be used to share the
CPU and make it appear that each process has its own processor. The virtual
machine is created with an interface that appears to be identical to the
underlying hardware.

WAN--Wide Area Network
At least two computers remotely connected together in such a way as to allow
them to communicate over wide distances and to share resources.

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Revision History

Note‘VI
\v

Note‘VI
\v

This Revision History covers document changes from Doc Version 1.20 to Doc
Version 1.21 and from Doc Version 1.21 to Doc Version 1.22.

Items 1 through 27 are Doc Version 1.21 changes.
Items 28 through 32 are Doc Version 1.22 changes.
All page numbers refer to the current Doc Version: Doc Version 1.22.

1. The following new function was added to Chapter 7:

GetBoundNetworkInfo

Index 9

Gets the bound network address for a board / protocol stack combination.

Syntax

#include <odi.h>

ODISTAT GetBoundNetworklInfo (
UINT32 BoardNumber,
NETWORK_ADDRESS INFO *networkAddress
void *Stackldentifier);

Input Parameters

boardNumber

The board number the protocol stack is to return the network address

for.

networkAddress

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2ads

Spec v1l.11 - Doc v1.22

10

Pointer to a buffer where the bound network address for the protocol
is returned.

Stackldentifier
Pointer is either a Stack ID (SID) identifying a bound protocol stack
(in other words, the content of the Stackldentifier parameter is less
than the maximum number of bound protocol stacks supported
LSL_ConfigTable.LMaxNumberOfStacks), or the pointer is a pointer
to a stack chain node.

Output Parameters

networkAddress
NULL is placed at the start of the buffer if no address is returned.

Return Values

ODISTAT_SUCCESSFUL The network address was successfully returned.

Note: ODISTAT_SUCCESSFUL is returned even
if the addressType and size fields are zero, and the
address field is NULL; this implies that there is no
network address for the board and protocol
combination.

ODISTAT_BAD_PARAMETER The MLID corresponding to the requested board
number or the protocol stack corresponding to the
specified Stackldentifier.

Remarks

The protocol stack will fill in the NETOWRK_ADDRESS_INFO structure
addressType field with it's assigned transport address type, the size field with
the length of the address, and the address field with the bound network address.
IPX returns all 12 bytes, network:node:socket. IP returns 4 bytes, network
address only (no socket).

The following Transport Address types have been assigned:

IPX 1
P 2
DDP 3
NETBEUI 4

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

The networkAddress structure is defined in ODI.H as follows:
typedef struct. NETWORK_ADDRESS_INFO _
{
UINT32addressType;
UINT32size;
UINT8address[32];
INETWORK_ADDRESS_INFO;

2. On page 7-1GetBoundNetworkinfo was added to the list of currently
defined functions.

3. On page 7-1SFTllIExchange andProtocolManagementwere deleted
from the list of currently defined functions.

4. On page 7-2, the code sample was replaced with the following code
sample:

PStkCntl_GetConfig(infoBlock, stackldentifier)
PStkCntl_GetStats(infoBlock, stackldentifier)

PStkCntl_Bind(infoBlock, boardNumber, userParmsString, stackldentifier)
PStkCntl_MLIDDeReg(infoBlock, boardNumber, stackldentifier)
PStkCntl_Unbind(infoBlock, boardNumber, userParmString, stackldentifier)
PStkCntl_PromiscState(infoBlock, boardNumber, promiscuousMask,
stackldentifier)

PStkCntl_GetProtocolString(infoBlock, boardNumber, printString,
stackldentifier)

PStkCntl_ProtManage(infoBlock, ManagementECB, stackldentifier)
PStkCntl_GetBoundNetinfo(infoBlock, boardNumber, networkAddress,
stackldentifier)

5. The functionSFTIIIExchange, was deleted from Chapter 7.

6. On page 12-20, ifable 12-4, "MLIDCFG_SharingFlags Bits
Descriptions", in the description for MS_SHUTDOWN_BIT, the word
"adapter" was changed to "logical board".

7. On page 18-4, the followingote was added:

If an ECB has been provided, the ESR is only called if
ODISTAT_RESPONSE_DELAYED is returned.

8. On page A-8, iTable A-1, under Bit Value, the second occurrence of
"ECB_TYPE_I" was changed to "ECB_TYPE_II".

11

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

9. On page D-11, the #define value for MS_MEM_PAGE_BIT was changed
from 0x0800 to 0x8000.

10. On page D-16, the following two #defines were added:

#define NON_STACKED_BIT 0x8000 /* Used to filter non-stack IDs */
#define NON_STACKID_RAW_SEND_MASK 0x80F8/*Used tofilter raw send packets
*/

11. On page D-19, the following structure was added:

/ * * *% * *% *% * *kkkkkkk * *% *%

Network Address Information structure used by protocol stack IOCTL 9.

* *% * * *kk * * *% * *% *% * /

typedef struct. NETWORK_ADDRESS_INFO _
{

UINT32 addressType;
UINT32 size;
UINT8 address[32];

} NETWORK_ADDRESS_INFO;

12. On page D-29, under "/*Protocol Stack Control Functions*/", the
following #define was deleted:

#define PSTK_SFTIIIExchange 0x0006

13. On page D-29, under "/*Protocol Stack Control Functions*/", the
following two #defines were added:

#define PSTK_RESERVED 0x0006
#define PSTK_GET_BOUND_NETWORK_INFO 0x0009

14. On page D-30, the following #define was deleted:
#define PStkCntl_SFTIIIExchange
15. On page D-30, the following #define was added:

#define PSTKCntl_GetBoundNetinfo (w, X, y, z) \
((ODISTAT (CALLCNV*)(UINT32, NETWORK_ADDRESS_INFO*, void*)) \
w->SupportAPIArray[PSTK_GET_GOUND_NET_INFO])(x, Y, 2)

16. On page 6-7, under tB®CB_Datal engtliield, the word "date" was
changed to "data".

12 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

17. On page 9-11, the value of the #define for LSL_NUM_API was changed
from 48L to 49L.

18. On page 9-12, the following entry was added as the last item to the
LSLAPI_Array:

(void (*))CLSL_GetPhysicalAddressOfECB

19. On page 10-2, the following entry was added to the list of functions
available from the LSL:

CLSL_GetPhysicalAddressOfECB

20. On page 10-4, the following entry was added to the list of functions
indexed in the information block:

48 CLSL_GetPhysicalAddressOfECB
21. On page 10-5, the following entry was added to the list of macros:
CLSLEntry_GetPhysicalAddressOfECB (info block, ecb)

22. The following new APl was added to Chapter 10:

CLSL_GetPhysicalAddressOfECB

Index 48 (0x030)

Gets the physical address of an LSL ECB.
Syntax

#include <odi.h>

ECB *CLSL_GetPhysicalAddressOfECB
(ECB *ech);

Input Parameters

ech
Pointer (logical address) to an LSL ECB.

Output Parameters

13

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

None.
Return Values

Pointer (physical address) of the ECB structure.
Remarks

This function can only be used for ECBs obtainedGli&L_GetSizedECB
or CLSL_GetMultipleECBs.

23. On page D-28, the entry for
ODISTAT CLSL_ReturnECB(ECB*ReturnedECB);
was changed to:
ODISTAT cdecl CLSL_ReturnECB(ECB*ReturnedECB);

24. On page D-32, under "/* LSL Function Indexes */", the value of the
#define for LSL_NUM_API was changed from 48L to 49L.

25. On page D-34, right after "#define CLSL_GET_MULTIPLE_ECBS" the
following entry was added:

#define CLSL_GET_PHYSICAL_ADDRESS_OF_ECB 0x0030 /*
48 CLSL_GetPhysicalAddressOfECB */

26. On page D-34, under "#define CLSLEntry_ReturnECB (w, x)/",
CALLCNV *
was changed to:
_cdecl *
27. On page D-38, the following entry was added as the last #define:

#define CLSLEntry_GetPhysicalAddressOfECB (w, x)/
((void (CALLCNYV *)(ECB*))/
w->SupportAPIArray[CLSL_GET_PHYSICAL_ADDRESS_OF_ECB])(x)

14 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

28. On page 5-5, right after tivultiple Chained Protocol Stackssection,
the following section was added:

MAC Packet Reception
To receive MAC frames, bound protocol stacks must register using
either the MACTOK or MACFDI protocol ID. All three reception
methods (bound, prescan, and default) must set their filter mask to
include DT_MAC_FRAME.

29. On page 9-9, under STAT_TABLE_ENTRY, the following entries:
{ ODI_STAT_UINT32, &LPostponedEvents, NULL },
{ ODI_STAT_UINT32, &LValidBufferReused, NULL },
{ ODI_STAT_UINT32, &LReserved, NULL },

were changed to:

{ ODI_STAT_UINT32, NULL, NULL},
{ ODI_STAT_UINT32, NULL, NULL},
{ ODI_STAT_UINT32, NULL, NULL},

30. On page 9-10, imable 9-4, "Generic STAT_TABLE_ENTRY
Counters Array Fields, the following entries:

LPostponedEvents
LValidBuffersReused

were changed to:

LReservedl
LReserved2

31. On page 10-36:
See Chapter 15, "MLID Control Routines"
was corrected to read:

See Chapter 18, "MLID Control Routines"

15

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

16

32. On page 12-25, undeteld Descriptions: StatUseFlagthe following
sentence was added to the definition for ODI_STAT_MEON_STRING:

The maximum string length is 256, including the NULL termination.

and the following sentence was added to the definition for
ODI_STAT_UNTYPED:

This value is generally used for debugging and is displayed in
hexadecimal bytes.

33. On page 5-12, in the first paragraph, the following text:

There is no PID associated with MAC layer frames in this
specification. In previous ODI assembly language specifications, the
valuesMACTOK (for Token-Ring management frames) and
MACFDI (for FDDI management frames) were used. These values
are no longer valid.

has been changed to read as follows:

The PID associated with MAC layer frame348CTOK for
Token-Ring management frames aMdCFDI for FDDI

management frames. Refer to the "Protocol Stack Packet Reception
Methods" section of this chapter for more information about MAC
packet reception.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

Index

A

adapter
base memory address 12-11
reinitializing 18-22
shutting down 18-24
adapter data space 12-24
allocating 11-8
defined 11-8
adding
Protocol ID (PID) 4-4
AddMulticastAddress function 18-7
ADDR_SIZE parameter xxiv
AES event
canceling 10-14, 10-39
scheduling 10-80
AES _ECB structure xxxii, 10-81
field descriptions 10-81
alignment issues B-5
ANSI C xxi, B-1
ASCII B-3
assumptions
coding B-5

B

base memory address
adapter 12-11

big endian B-1

Bind function 4-9, 7-3

binding
NET.CFG file entry 4-3
protocol stack

logical board 4-8
protocol stack to adapter 10-10, 10-12
protocol stack to frame type 10-10, 10-12
protocol stack to MLID 7-3
board
service routine
overview 11-4
BoardNumber
filling in 2-7
BOOLEAN enumeration xxii
bound protocol stack 5-4
defined 2-9
receive handler 5-16
registering 10-69
building CHSM
NetWare/Intel C-1
bus type

Extended Industry Standard Architecture 11-13

Industry Standard Architecture (ISA) 11-13
listed 11-13
Micro Channel Architecture 11-13

Peripheral Component Interconnect (PCI) 11-13
Personal Computer Memory Card Internati 11-13

C

canceling
AES events 10-14, 10-39
events 10-15
canonical and noncanonical addressing
document xix, 12-4
chain
protocol stack
default 2-10

17

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

defined 4-9

prescan 2-10
CHNPOS enumeration xxvi
CHSM

building
NetWare/Intel C-1
revision level 12-9

CLSL_AddProtocollD function 10-8
CLSL_BindProtocolToBoard function 10-10
CLSL_BindStack function 10-12
CLSL_CancelAESEvent function 10-14, 10-39
CLSL_CancelEvent function 10-15
CLSL_ControlStackFilter function 10-16
CLSL_DeRegisterDefaultChain function 10-18
CLSL_DeRegisterMLID function 10-20
CLSL_DeRegisterPreScanChain function 10-21
CLSL_DeRegisterStack function 10-23
CLSL_FastHoldEvent function 10-25
CLSL_FastSendComplete function 10-27
CLSL_GetBoundBoardInfo function 10-29
CLSL_GetIntervalMarker function 10-31
CLSL_GetLSLConfiguration function 10-32
CLSL_GetLSLStatistics function 10-33
CLSL_GetMaxECBBufferSize function 10-34
CLSL_GetMLIDControlEntry function 10-35
CLSL_GetPIDFromStackiDBoard function 10-40
CLSL_GetProtocolControlEntry function 10-42
CLSL_GetSizedECB function 10-44
CLSL_GetStackECB function 10-46
CLSL_GetStackIDFromName function 10-49
CLSL_GetStartOfChain function 10-51
CLSL_HoldEvent function 10-53
CLSL_ModifyStackFilter function 10-55
CLSL_RegisterDefaultChain function 10-58
CLSL_RegisterMLID function 10-61
CLSL_RegisterPreScanChain function 10-64
CLSL_RegisterStack function 10-69

CLSL_SendProtocolinfoToOtherEngine func 10-89
CLSL_SendProtocolinfoToPartner function 10-87
CLSL_ServiceEvents function 10-91
CLSL_UnbindStack function 10-92
code
portability xxi, B-1
completion codes
listed 8-2
configuration table
LSL xxviii, 9-1
major version number 9-3
minor version number 9-3
pointer to 10-32
MLID xxxiv, 11-5, 12-2
major version number 12-4
minor version number 12-4
protocol stack xxxiii, 3-1
major version number 3-2
minor version number 3-2
control
routines
MLID
overview 11-4
control block
event xxxi, 6-4, A-1
control procedure
required 11-2
supported 11-2
control routines
MLID 18-1

D

data
transfer mode
methods 11-13

CLSL_ReSubmitDefault function 10-72 data flow 2-5
CLSL_ReSubmitPreScanRx function 10-75 receive 1-8
CLSL_ReSubmitPreScanTx function 10-77 send 1-6
CLSL_ReturnECB function 10-79 data packing B-5
CLSL_ScheduleAESEvent function 10-80 data space
CLSL_SendComplete function 10-83 adapter 12-24
CLSL_SendPacket function 10-85 frame 12-1

18 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

data structures
MLID 11-5
default
protocol stack 5-4
chaining 2-10, 4-9
defined 2-10
deregistering 10-18
receive handler 5-22
registering 10-58
DelelteMulticastAddress function 18-11
deregistering
default protocol stacks 10-18
prescan protocol stacks 10-21
destination
determining packet 8-1
Destination SAP (DSAP) 6-6
Destination Service Access Point (DSAP) 6-6
determining
packet destination 1-4, 8-1
DMA channel
default 12-13
document

ECB_NextLink field A-3
ECB_PreviousLink field A-3
ECB_ProtocollD field 6-6, A-6
ECB_ProtocolWorkspace field A-8
ECB_StacklID field 6-5, A-5
ECB_Status field A-4
enumeration

BOOLEAN xxii

CHNPOS xxvi

ODISTAT xxiv

SFTHI_STAT xxv
ETH_RxAbortFrameAlignment field 12-35
ETH_TxAbortCarrierSense field 12-35
ETH_TxAbortExcesiveDeferral field 12-35
ETH_TxAbortExcessCollision field 12-34
ETH_TxAbortLastCollision field 12-34
ETH_TxOKButDeferred field 12-34
ETH_TxOKMultipleCollisionCount field 12-34
ETH_TxOKSingleCollisionCount field 12-34
Ethernet

group addresses 18-10

multicast addresses 18-10

canonical and noncanonical addressing s xix, 12-4 event

frame types xix, 2-9
hub management interface xix
installation information file xix
MLID message definition Xxix
other xix
protocol IDs (PIDs) xix, 2-9
source routing xix
supplement xix
dynamic method, logical board service 4-3

E

ECB (Event Control Block) 6-4
ECB_BoardNumber field 6-6, A-6
ECB_Datalength field 6-7, A-9
ECB_DriverWorkspace field A-7
ECB_ESR field 6-5, A-4
ECB_Fragment field A-9
ECB_FragmentCount field 6-7, A-9
ECB_ImmediateAddress field 6-7, A-6

canceling 10-15

Event Control Block (ECB) A-1
description A-1
ECB_BoardNumber field 6-6
ECB_DatalLength field 6-7
ECB_ESR field 6-5
ECB_FragmentCount field 6-7
ECB_ImmediateAddress field 6-7
ECB_ProtocollD field 6-6
ECB_StackID field 6-5
maximum buffer size 10-34
structure xxxi, A-1

execution time xx
privileged time xx
process time xx

explicit method, logical board service 4-3

Extended Industry Standard Architecture 11-13

19

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

F

FDI_ConfigurationStats field 12-36
FDI_DownstreamNode field 12-36
FDI_FrameErrorCount field 12-36
FDI_FramesLostCount field 12-36
FDI_LConnectionState field 12-37
FDI_LCTFailureCount field 12-37
FDI_LemCount field 12-37
FDI_LemRejectCount field 12-37
FDI_RingManagementCount field 12-37
FDI_UpstreamNode field 12-36
filter mask
modifying 10-55
flags field 12-20
flow of data
receive 1-8
send 1-6
fragment descriptors 6-8
fragment structure xxxi, A-1
FRAGMENT_STRUCT structure xxxi, A-1
FragmentAddress field A-2
frame
data space 12-1
allocating 11-8
defined 11-8
supporting multiple types 2-1, 11-7, 11-8
type
relation of to logical board 11-7
frame types
document xix, 2-9

G

generic statistics counter
media specific 12-24
standard 12-24

GetMLIDConfiguration function 7-16, 18-13, 18-17,

18-34, 18-36, 18-40
GetMLIDStatistics function 18-15

GetProtocolStackConfiguration function 7-6, 7-8

GetProtocolStackStatistics function 7-9

GetProtocolStringForBoard function 7-10
group addresses

adding 18-7

disabling 18-11

Ethernet 18-10

maximum supported 18-9
group addressing

hardware 18-9

H

handles
system

used by protocol stack in packet recept 2-9

hardware
bus type

listed 11-13

data transfer 11-13
independence 2-1
HardwareDriverMLID string 12-4
header file B-2
hub management 12-18
bit 12-18
hub management interface
document Xix

Industry Standard Architecture (ISA) bu 11-13
INFO_BLOCK structure xxviii, 10-7
field descriptions 10-7
information block xxviii, 10-7
initializing
MLID 11-3
protocol stack 2-7, 4-1
installation information file
document Xxix
interface
Multiple Link Interface (MLI) 10-1
Multiple Protocol Interface (MPI) 10-1
interrupt
vector number 12-12

20 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

L LkAhd_ReturnedECB field 5-13
LMaxNumberOfBoards field 9-3
LMaxNumberOfStacks field 9-3
LNumCustomCounters field 9-8
LNumGenericCounters field 9-8
LNumLogicalBoards field 9-8
LOG_BRD_STAT _TABLE_ENTRY structure xxuviii,
9-7
LogBrd_ReceivedPackets field 9-8
LogBrd_TransmittedPackets field 9-8
LogBrd_UnclaimedPackets field 9-8

LAESEventCount field 9-10
LCancelEventFailures field 9-10
LConfigTableMajorVer field 9-3
LConfigTableMinorVer field 9-3
LConfigTableReservedO field 9-3
LConfigTableReservedl field 9-3
LConfigTableReserved? field 9-3
LCustomCountersPtr field 9-8
LGenericCountersPtr field 9-8

LGetECBFailures field 9-10 Ioglbc(z)a;rd
LGetECBRequests field 9-10 number
N comploton codes. serng it
e registering with LSL 10-61

relation of to frame type 11-7
routing packet to 2-8
servicing 4-3
supporting 2-1
logical board service
dynamic method 4-3
explicit method 4-3
LogicalBoardStatTablePtr field 9-8
lookahead xxxii, 5-6
method 4-8, 5-5
receive handler 5-6
size
setting 18-38
LOOKAHEAD structure xxxii, 5-6
field descriptions 5-7
LReserved field 9-10
LSL_CONFIG_TABLE structure xxviii, 9-1
LSL _STATS_TABLE structure xxx, 9-7
LSLLongName field 9-3
LSLMajorVer field 9-3
LSLMinorVer field 9-3
LSLShortName field 9-3
LStatTableMajorVer field 9-8
LStatTableMinorVer field 9-8
LTotalRxPackets field 9-10
LTotalTxPackets field 9-10
LUnclaimedPackets field 9-10

configuration table xxviii, 9-1
pointer to 10-32

defined 1-4, 8-1

interfaces 10-1

locating 4-2, 10-6

statistics table xxx, 9-7

pointer to 10-33

linker definition file

NetWare/Intel C-2
lins speed

protocol stack 4-6
little endian B-1
LkAhd_BoardNumber field 5-8
LkAhd_DatalLookAheadLen field 5-8
LkAhd_DatalLookAheadPtr field 5-8
LkAhd_DestType field 5-10
LkAhd_FrameDataBytesWanted field 5-13
LkAhd_FrameDataSize field 5-12
LkAhd_FrameDataStartCopyOffset field 5-12
LkAhd_ImmediateAddress field 5-12
LkAhd_MediaHeaderLen field 5-7
LkAhd_MediaHeaderPtr field 5-7
LkAhd_PktAttr field 5-9
LkAhd_PreFilledECB field 5-7
LkAhd_PriorityLevel field 5-13
LkAhd_ProtocolID field 5-12
LkAhd_Reserved field 5-13

21

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

M

MACFDI 5-12, 16
MACTOK 5-12, 16
MAdapterOprTimeStamp field 12-31
MAdapterResetCount field 12-31
major version number
LSL
configuration table 9-3
statistics table 9-8
MLID
configuration table 12-4
statistics table 12-27
protocol stack 3-2
configuration table 3-2
statistics table 3-5
MChecksumErrorCount field 12-30
MCustomCounterPtr field 12-27
media
independence 2-1
media specific counter 12-32
Ethernet 12-34
FDDI 12-36
MEON xxii
MEON_STRING xxii
MF_GRP_ADDR_SUP_BIT bit 12-18
MF_HUB_MANAGEMENT_BIT bit 12-18
MF_SOFT_FILT_GRP_BIT bit 12-18
MGenericCountersPtr field 12-27
MHardwareRxMismatchCount field 12-31
Micro Channel Architecture bus 11-13
minor version number
LSL
configuration table 9-3
statistics table 9-8
MLID
configuration table 12-4
statistics table 12-27
protocol stack 3-2
configuration table 3-2
statistics table 3-5
MLI (Multiple Link Interface)
defined 1-6

MLID (Multiple Link Interface Driver)
configuration table xxxiv, 12-2
control routines

overview 11-4
defined 1-5
message definition

document Xxix

multiple frame support,, see also frame, supporting

multiple types
removing
overview 11-5

statistics table xxxv, 12-24, 12-26

timeout detection 11-5
MLID_CONFIG_TABLE structure xxxiv, 12-2
MLID_REG structure xxxvi, 10-62

field descriptions 10-62
MLID_STATS_TABLE structure xxxv, 12-26
MLIDCFG_BestDataSize field 4-7, 12-5
MLIDCFG_Boardinstance field 12-4
MLIDCFG_BoardNumber field 12-4
MLIDCFG_CardName field 12-6
MLIDCFG_ChannelNumber field 12-14
MLIDCFG_CommandString field 12-13
MLIDCFG_Config field 12-13
MLIDCFG_DBusTag field 12-14
MLIDCFG_DIOConfigMajorVer field 12-14
MLIDCFG_DIOConfigMinorVer field 12-14
MLIDCFG_DMALIneO field 12-13
MLIDCFG_DMALinel field 12-13
MLIDCFG_DriveMajorVer field 12-9
MLIDCFG_DiriverLink field 12-9
MLIDCFG_DriverMinorVer field 12-9
MLIDCFG_Flags field 12-9, 12-20
MLIDCFG_FramelD field 12-6
MLIDCFG_FrameTypeString field 12-6
MLIDCFG_InterruptO field 12-12
MLIDCFG_Interruptl field 12-12
MLIDCFG_IOPortO field 12-10
MLIDCFG_IOPortl field 12-11
MLIDCFG_IORange0 field 12-11
MLIDCFG_IORangel field 12-11
MLIDCFG_LinearMemoryO field 12-13
MLIDCFG_LinearMemory1 field 12-14
MLIDCFG_LineSpeed field 4-6, 12-7

22 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

MLIDCFG_LogicalName field 12-13
MLIDCFG_LookAheadSize field 12-8
MLIDCFG_MajorVersion field 12-4
MLIDCFG_MaxFrameSize field 4-7, 12-5
MLIDCFG_MemoryAddressO field 12-11
MLIDCFG_MemoryAddressl field 12-12
MLIDCFG_MemorySizeO field 12-11
MLIDCFG_MemorySizel field 12-12
MLIDCFG_MinorVersion field 12-4
MLIDCFG_ModeFlags field 6-5, 12-4, 12-15
MLIDCFG_NodeAddress field 12-4
MLIDCFG_PrioritySup field 12-8
MLIDCFG_ReservedO field 12-6
MLIDCFG_Reservedl field 12-8
MLIDCFG_Reserved? field 12-8
MLIDCFG_ResourceTag field 12-13
MLIDCFG_SendRetries field 12-9
MLIDCFG_SharingFlags field 12-10
MLIDCFG_ShortName field 12-6
MLIDCFG_Signature field 12-4
MLIDCFG_Slot field 12-10
MLIDCFG_SourceRouting field 12-7
MLIDCFG_TransportTime field 4-6, 12-6
MLIDCFG_WorstDataSize field 4-7, 12-5
MLIDDeRegistered function 7-12
MLIDManagement function 18-20
MLIDReset function 18-22
MLIDShutdown function 18-24
MM_C_HSM_BIT bit 12-16
MM_CSL_COMPLIANT_BIT bit 12-16
MM_DATA_SZ_UNKNOWN_BIT bit 12-16
MM_DEPENDABLE_BIT bit 12-15
MM_FRAG_RECEIVES BIT bit 12-16
MM_FRAGS_PHYS_BIT bit 12-16
MM_MULTICAST_BIT bit 12-15
MM_PREFILLED_ECB_BIT bit 12-16
MM_RAW_SENDS_BIT bit 6-5, 12-16
MM_SMP_BIT bit 12-16
MMediaCountersPtr field 12-27
MNoECBAvailableCount field 12-30
MNumCustomCounters field 12-27
MNumGenericCounters field 12-27
MNumMediaCounters field 12-27

mode flags field 12-15

modifying

filter mask 10-55
monitoring

packet transmission 18-30
MPacketRxOverflowCount field 12-30
MPacketRxTooBigCount field 12-30
MPacketRxTooSmallCount field 12-30
MPacketTxTooBigCount field 12-30
MPacketTxTooSmallCount field 12-30
MQDepth field 12-31
MRetryTxCount field 12-30
MS_HAS_CMD_INFO_BIT bit 12-21

MS_NO_DEFAULT_INFO_BIT bit 12-20

MS_SHARE_DMAO_BIT bit 12-20
MS_SHARE_DMA1_BIT bit 12-20
MS_SHARE_IRQO_BIT bit 12-20
MS_SHARE_IRQ1_BIT bit 12-20
MS_SHARE_MEMORYO_BIT bit 12-20
MS_SHARE_MEMORY1_BIT bit 12-20
MS_SHARE_PORTO_BIT bit 12-20
MS_SHARE_PORT1_BIT bit 12-20
MS_SHUTDOWN_BIT bit 12-20
MStatTableMajorVer field 12-27
MStatTableMinorVer field 12-27
MTotalGroupAddrRxCount field 12-31
MTotalGroupAddrTxCount field 12-31
MTotalRxMiscCount field 12-30
MTotalRxOKByteCount field 12-31
MTotalRxPacketCount field 12-30
MtotalTxMiscCount field 12-30
MTotalTxOKByteCount field 12-31
MTotalTxPacketCount field 12-30
multicast addresses

adding 18-7

disabling 18-11

Ethernet 18-10

maximum supported 18-9
multicast addressing

hardware 18-9

support

MLID 11-12

multicast support

protocol stack 4-7
multicast transmission

23

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001

January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

NET.CFG file 4-8
multiple
operating systems
supporting 11-1
multiple board support
protocol stacks 4-5
multiple chained protocol stack 5-5
multiple frame support
MLID 11-7
Multiple Link Interface (MLI) 10-1
Multiple Link Interface Driver (MLID)
configuration table 11-5
control routines 18-1
data structures 11-5
definition 11-2
design considerations 11-12
initializing 11-3
multicast addressing support 11-12
multiple frame support 11-7
optional functionality 11-12
portability 11-1
promiscuous mode support 11-12
recommended functionality 11-6
reentrancy 11-6
source routing support 11-12
statistics table 11-5
transmit monitor 18-32
Multiple Protocol Interface (MPI) 10-1
defined 1-3
multiplexing
protocol stacks 2-1
multiprocessing bit 12-16
multiprocessor platform xvii

N

nesting level B-4
NET.CFG file
“bind" entry 4-3
multicast addresses 4-8

linker definition file C-2
NODE_ADDR structure xxiv
NULL B-2, B-3

O

ODI (Open DatalLink Interface) sp 1-1, 1-2
ODI_STAT_UINT32 status xxvii, 12-25
ODI_STAT_UINT64 status xxvii, 12-25
ODI_STAT_UNUSED status xxvii, 12-25
ODISTAT enumeration xxiv
offsetof macro B-3
operating system

supporting multiple 11-1
outstanding transmit requests

number of 6-3

P

packet
destination
determining 1-4, 8-1
flow 1-6, 2-5
reception
priority level 5-11, 5-13
protocol stack
choosing a method 5-4
events 5-2
methods 5-4
methods of 2-9
overview 2-9
process 2-10
system handles 2-9
routing
to logical board 2-8
to protocol stack 2-5
transmission 11-4
monitoring 18-30
protocol stack 6-1

NetWare/Intel packet size
building CHSM C-1 maximum 4-6
creating source file C-1 packets

24 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

protocol stack
steps in accepting 5-26
PConfigTableMajorVer field 3-2

process time xx
promiscuous mode
defined 11-12

PConfigTableMinorVer field 3-2 diabling 18-26
PCustomCountersPtr field 3-5 enabling 18-26
performance support

measuring MLID 11-12

protocol stack 4-6 PromiscuousChange function 18-26

Peripheral Component Interconnect (PCI) 11-13 PromiscuousStatus function 7-14
Personal Computer Memory Card Internati 11-13 PROT_ID structure xxiv
PGenericCountersPtr field 3-5 Protocol ID (PID) 2-7
PID_SIZE parameter xxiv adding 4-4
PlgnoredRxPackets field 3-7 conditions for 4-5
platform defined 2-7

multiprocessor xvii registering 10-8
PNumCustomCounters field 3-5 value
PNumGenericCounters field 3-5 obtaining 4-5

portability
alignment B-5
assumptions B-5
data packing B-5
issues B-1
MLID 11-1
requirements xxi
rules B-1
porting code B-1
PProtocolLongName field 3-2
PProtocolMajorVer field 3-2
PProtocolMinorVer field 3-2
PProtocolShortName field 3-2
pragma B-2
prescan protocol stack 5-4
chaining 2-10, 4-9
defined 2-10
deregistering 10-21
receive handler 5-22
registering 10-64
prescan transmit method
protocol stack 6-2
priority level
packet reception 5-11, 5-13
priority sends 6-3
priority transmits 6-3
privileged time xx

protocol receive complete handler
default stacks 5-29
prescan stacks 5-29
protocol receive handler
bound stack 5-16
default stack 5-22
prescan stack 5-22
protocol stack
accepting packet
general steps 5-26
binding to adapter 10-10, 10-12
binding to frame type 10-10, 10-12
binding to logical board 4-8
bound 5-4
defined 2-9
registering 10-69
chaining 2-10, 4-9
configuration table xxxiii, 3-1
customizing 4-5
default 5-4
defined 2-10
deregistering 10-18
registering 10-58
defined 1-2
independence 2-1
initialization 4-1
initializing 2-7

25

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

line speed 4-6

major version number 3-2
maximum packet size 4-6
measuring performance 4-6
minor version number 3-2
multicast support 4-7
multiple board support 4-5
multiple chained 5-5

multiple frame support,, see also frame, supporting

multiple types
multiplexing 2-1
overview 2-1
packet
reception
methods of 2-9
process 2-10
packet receive events 5-2
packet reception methods 5-4
packet transmission 6-1
prescan 5-4
defined 2-10
deregistering 10-21
registering 10-64
prescan transmit method 6-2
receive lookahead 4-8
registering with LSL 4-2
routing packet to 2-5
send routine event 6-1
statistics table xxxiii, 3-4
transmit routine event 6-1
unbinding from adapter 10-92
unbinding from frame type 10-92
protocol transmit complete handler 6-13
protocol transmit handler
prescan stacks 6-10
PS BOUND_NODE structure xxxvi, 10-70
field descriptions 10-71
PS CHAINED_RX_NODE structure xxxvi, 10-59,
10-65
field descriptions 10-59, 10-66
PS CHAINED_TX_NODE structure xxxvii, 10-67
field descriptions 10-67
PS CONFIG_TABLE structure xxxiii, 3-1
PS STATS_TABLE structure xxxiii, 3-4

PStatTableMajorVer field 3-5
PStatTableMinorVer field 3-5
PTotalRxPackets field 3-7
PTotalTxPackets field 3-7

R

raw send
ECB 6-5
receive complete handler
default stacks 5-29
prescan stacks 5-29
receive handler
receive lookahead 5-6
receive lookahead xxxii, 4-8, 5-5, 5-6
receive handler 5-6
reception
packet
priority level 5-11, 5-13
reentrancy
MLID 11-6
reentrant code
implementing multiple frame support in 11-7
registering
bound protocol stacks 10-69
default protocol stacks 10-58
logical board with LSL 10-61
prescan protocol stacks 10-64
Protocol ID (PID) 10-8
protocol stacks with LSL 4-2
RegisterMonitor function 18-30
removing
MLID
overview 11-5
required control procedures 11-2
resetting adapters 18-22
retries at sending packet 12-9
revision level
CHSM 12-9
routing
packet
to logical board 2-8
to protocol stack 2-5

26 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

S

scheduling
AES events 10-80
sending packets
from LSL to MLID 10-85
number of retries 12-9
sending protocol information to IOEngin 10-87
sending protocol information to other e 10-89
service
dynamic method 4-3
explicit method 4-3
servicing
events in the LSL hold queue 10-91
logical boards 4-3
SetLookAheadSize function 18-38
SFTIN
sending protocol information 10-87, 10-89
SFTIII_EXCHANGE_NODE structure xxxvii
SFTIII_STAT enumeration xxv
shutting down adapters 18-24
sizeof operator B-2
source file
creating
NetWare/Intel C-1
source routing
document xix
source routing support
MLID 11-12
Source SAP (SSAP) 6-6
specification version number 8-2
specification version string 8-2
speed
topology 12-7
Stack ID (SID) 2-7
defined 2-7
STAT _TABLE_ENTRY structure xxvii, 12-25
statistics counter
custom 12-24
generic 12-24
media specific 12-24
standard 12-24
statistics table

LSL xxx, 9-7
major version number 9-8
minor version number 9-8
pointer to 10-33

media specific counter
description 12-32

MLID xxxv, 11-5, 12-24, 12-26
major version number 12-27
minor version number 12-27

protocol stack xxxiii, 3-4
major version number 3-5
minor version number 3-5

structure

AES_ECB xxxii, 10-81

ECB xxxi, A-1

fragment xxxi, A-1
FRAGMENT_STRUCT xxxi, A-1
INFO_BLOCK xxviii, 10-7
LOG_BRD_STAT TABLE_ENTRY xxviii, 9-7
LOOKAHEAD xxxii, 5-6

LSL CONFIG_TABLE xxviii, 9-1

LSL STATS _TABLE xxx, 9-7
MLID_CONFIG_TABLE xxxiv, 12-2
MLID_REG xxxvi, 10-62

MLID_STATS TABLE xxxv, 12-26
NODE_ADDR xxiv

PROT _ID xxiv

PS_BOUND_NODE xxxvi, 10-70
PS_CHAINED_RX_NODE xxxvi, 10-59, 10-65
PS_CHAINED_TX_NODE xxxvii, 10-67
PS_CONFIG_TABLE xxxiii, 3-1
PS_STATS TABLE xxxiii, 3-4
SFTIII_EXCHANGE_NODE xxxvii
STAT_TABLE_ENTRY xxvii, 12-25

supporting

logical boards 2-1
multiple
operating systems 11-1

system

handles
used by protocol stack in packet recept 2-9

27

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2a8ds

Spec v1l.11 - Doc v1.22

T

timeout

MLID

overview 11-5

timeout detection

MLID 11-5
timing marker 10-31
group addresses

TokenRing 18-10
media specific counter

TokenRing 12-32
multicast addresses

TokenRing 18-10
TokenRing 18-10
topology

speed 12-7
translation limit B-4
transmit monitor

MLID 18-32
transmit routine event

protocol stack 6-1
transmits

priority 6-3
transmitting

packets 11-4
TRN_AbortDelimiterCounter field 12-32
TRN_ACErrorCounter field 12-32
TRN_BurstErrorCounter field 12-32
TRN_FrameCopiedErrorCounter field 12-32
TRN_FrequencyErrorCounter field 12-32
TRN_InternalErrorCounter field 12-32
TRN_LastBeaconType field 12-34
TRN_LastRingID field 12-33
TRN_LastRingStatus field 12-33
TRN_LineErrorCounter field 12-33
TRN_LostFrameCounter field 12-33
TRN_TokenErrorCounter field 12-33
TRN_UpstreamNodeAddress field 12-33

U

UINT16 xxii

UINT32 xxii

UINT64 xxii

UINT8 xxii

Unbind function 7-19

unbinding
protocol stack from adapter 7-19, 10-92
protocol stack from frame type 10-92

V

vector number
interrupt 12-12
version number
LSL
configuration table 9-3
statistics table 9-8
MLID
configuration table 12-4
statistics table 12-27
protocol stack
configuration table 3-2
statistics table 3-5
version string
specification 8-2
void* B-3
volatile variable xvii

28 ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)

100-004006-001
January 6, 1998

Trademarks

Novell, Inc. has attempted to supply trademark information about company
names, products, and services mentioned in this manual. The following list of
trademarks was derived from various sources.

Novell Trademarks

Hardware Specific Module, HSM, and CHSM are trademarks of Novell, Inc.
Internetwork Packet Exchange and IPX are trademarks of Novell, Inc.

Link Support Layer and LSL are trademarks of Novell, Inc.

MAC is a trademark of Novell, Inc.

Media Support Module, MSM, and CMSM are trademarks of Novell, Inc.
Multiple Link Interface Driver and MLID are trademarks of Novell, Inc.

Multiple Protocol Interface and MPI are trademarks of Novell, Inc.N-Design
is a registered trademark of Novell, Inc.

N-Design is a registered trademark of Novell, Inc.

NE1000, NE2000, NE2100, NE/2, NE2-32, NTR2000 are trademarks of
Novell, Inc.

NetWare is a registered trademark of Novell, Inc.

NetWare Access Services is a trademark of Novell, Inc.

NetWare Core Protocol and NCP are trademarks of Novell, Inc.
NetWare Directory Services and NDS are trademarks of Novell, Inc.
NetWare DOS Requester and NDR are trademarks of Novell, Inc.
NetWare Express is a trademark of Novell, Inc.

NetWare Management Agent is a trademark of Novell, Inc.
NetWare Loadable Module and NLM are trademarks of Novell, Inc.
NetWare Logotype is a registered trademark of Novell, Inc.
NetWare Requester is a trademark of Novell, Inc.

NetWare Run-time is a trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc.

NetWare System Interface and NSI are trademarks of Novell, Inc.

29

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

ZZ'IA 90Q - TT'IA 2ads

Spec v1l.11 - Doc v1.22

Novell Embedded Systems Technology and NEST are trademarks of Novell,
Inc.

Novell Labs is a trademark of Novell, Inc.

Open Data-Link Interface and ODI are trademarks of Novell, Inc.

Packet Burst is a trademark of Novell, Inc.

RX-Net is a trademark of Novell, Inc.

SFT is a trademark of Novell, Inc.

Topology Specific Module, TSM, and CTSM are trademarks of Novell, Inc.
Transactional Tracking System and TTS are trademarks of Novell, Inc.
Virtual Loadable Module and VLM are trademarks of Novell, Inc.

Third-Party Trademarks

30

AMP is a trademark of AMP Inc.
AppleTalk is a registered trademark of Apple Computer, Inc.

IBM is a registered trademark of International Business Machines
Corporation.

IBM Operating System/2 Local Area Network Server (LAN Server) is a
trademark of International Business Machines Corporation.

LAT is a trademark of Digital Equipment Corporation.

ODI Specification: Protocol Stacks and MLIDs (C Language)

ODI Specification: Protocol Stacks and MLIDs (C Language)
100-004006-001
January 6, 1998

	Contents
	Preface
	Introduction to ODI
	1 Overview of Protocol Stacks
	2 Protocol Stack Data Structures
	3 Protocol Stack Initialization
	4 Protocol Stack Packet Reception
	5 Protocol Stack Packet Transmission
	6 Protocol Stack Control Routines
	7 Overview of the LSL
	8 LSL Data Structures
	9 LSL Support Routines
	10 Overview of the MLID
	11 MLID Data Structures
	12 MLID Initialization
	13 MLID Packet Reception
	14 MLID Packet Transmission
	15 MLID Timeout Routine
	16 MLID Remove Routine
	17 MLID Control Routines
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Glossary
	Revision History
	Index

