
O
D

I
Sp

ec
if

ic
at

io
n

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S P E C V E R S I O N 1 . 1 1

Hardware Specific Modules (HSMs)

(C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

d i s c l a i m e r Novell, Inc. makes no representations or warranties with respect to the contents
or use of this manual, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. reserves the right to revise this publication and to make changes to
its content, at any time, without obligation to notify any person or entity of such
revisions or changes.

Further, Novell, Inc. makes no representations or warranties with respect to any
NetWare software, and specifically disclaims any express or implied
warranties of merchantability or fitness for any particular purpose. Further,
Novell, Inc. reserves the right to make changes to any and all parts of NetWare
software, at any time, without any obligation to notify any person or entity of
such changes.

t r a d e m a r k s Novell and NetWare are registered trademarks of Novell, Inc. in the United
States and other countries.
The Novell Network Symbol is a trademark of Novell, Inc.
Macintosh is a registered trademark of Apple Computer, Inc.

DynaText is a registered trademark of Electronic Book Technologies, Inc.

Microsoft is a registered trademark of Microsoft Corporation.

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
January 29, 1998

Copyright  1993-1997 Novell, Inc. All rights reserved. No part of this
publication may be reproduced, photocopied, stored on a retrieval
system, or transmitted without the express written consent of the
publisher.

U.S. Patent Nos. 5,157,663; 5,349,642; and 5,455,932. U.S. and
International Patent Pending.

Novell, Inc.
122 East 1700 South
Provo, UT 84606
U.S.A.

O

Contents
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Preface

Overview . xv
Prerequisites to Using this Manual . xvii
Manual Conventions . xvii
Data Type Definitions . xvii
Structure Definitions. . xviii

DRIVER_DATA Structure . xviii
MODULE_HANDLE Structure . xx
GROUP_ADDR_LIST_NODE_ Structure xx
NODE_ADDR Structure . xx
PROT_ID Structure . xx
CHSM_STACK Structure . xxi

Enumeration Definitions. . xxi
AES_TYPE Enumeration . xxi
BOOLEAN Enumeration. . xxii
ODI_NBI Enumeration. . xxii
ODISTAT Enumeration . xxiii
ODI_STAT Enumeration . xxiii
REG_TYPE Enumeration . xxiv
OPERATION_SCOPE Enumeration . xxiv

Portability Requirements . xxv
Referenced Documents . xxvi

1 Introduction to ODI

Overview . 1-1
Open Data-Link Interface (ODI) . 1-1

Protocol Stacks . 1-2
The Multiple Protocol Interface (MPI) . 1-4
Link Support Layer (LSL) . 1-4
Multiple Link Interface Drivers (MLIDs) . 1-6

MLID Functionality . 1-6
The Multiple Link Interface (MLI) . 1-6

LAN Driver Toolkit . 1-7
i

DI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

C Language Media Support Module (CMSM) 1-8
C Language Topology Specific Module (CTSM) 1-8
C Language Hardware Specific Module (CHSM). 1-9

NetWare Bus Interface (NBI) . 1-9
Data Flow . 1-10

Send Data Flow . 1-10
Receive Data Flow . 1-12

2 ODI C Language HSM Overview

Overview . 2-1
CHSM Procedures . 2-1

Initialization . 2-2
Board Service Routine . 2-2
Packet Transmission . 2-3
Control Procedures. . 2-3
Timeout Detection . 2-3
Driver Removal . 2-3

CHSM Data Structures and Variables . 2-4
CHSM Design Considerations . 2-4

Topology Issues . 2-4
Hardware Issues . 2-4

Network Interface Controllers. . 2-4
Data Transfer Mode . 2-5
Bus Type . 2-5

NetWare Environment Issues . 2-6
Interrupt Service Routine . 2-6

Execution Times . 2-7
Process Time . 2-7
Privileged Time . 2-7

Code and Data Space . 2-8
Frame Data Space . 2-9
Adapter Data Space . 2-9
Adapter Code Space . 2-9

Special Support . 2-11
Reentrancy . 2-11
Multicast Addressing . 2-11
Promiscuous Mode . 2-11

Optional Support . 2-11
Hub Management. . 2-11
Source Routing . 2-12
Brouter (Source Route Bridging) . 2-12

NESL Support . 2-12
ii ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

3 CHSM Data Structures and Variables

Overview . 3-1
Driver Parameter Block . 3-1

Driver Parameter Block Structure . 3-2
Frame Data Space . 3-10
Configuration Table . 3-10

Driver Configuration Table Template . 3-11
MLIDCFG_ModeFlags Field. . 3-22
MLIDCFG_Flags Field. . 3-26
MLIDCFG_SharingFlags Field . 3-29
Maximum Packet Size. . 3-30

Driver Adapter Data Space . 3-33
Specification Version String . 3-34

Driver Statistics Table . 3-35
STAT_TABLE_ENTRY Structure . 3-35

Field Descriptions . 3-35
Statistics Table Structure . 3-36

Example . 3-37
MLID Statistics Table Media Specific Counters 3-41

Token-Ring Counters . 3-41
Ethernet Counters . 3-43
FDDI Counters. . 3-45

Driver Firmware . 3-47
DriverFirmwareSize Value. . 3-47
DriverFirmwareBuffer Value . 3-47

4 CMSM/CTSM Structures and Variables

Overview . 4-1
CMSM Data Access. . 4-2

DADSP_TO_CMSMADSP Macro . 4-2
CMSMVirtualBoardLink Pointers . 4-2
CMSMDefaultVirtualBoard Pointer . 4-4
CMSMStatusFlags Variable . 4-4
CMSMTxFreeCount Variable . 4-4
CMSMPriorityTxFreeCount . 4-5
CMSMMaxFrameHeaderSize Variable . 4-5
CMSMPhysNodeAddress Variable . 4-6

Data Structures . 4-6
Fragment Structure . 4-8
Receive Control Blocks (RCBs) . 4-8
RCB Structure . 4-10
Transmit Control Blocks (TCBs) . 4-12
iii

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

TCB Structure . 4-12
CMSM_CONFIG_TABLE . 4-15

CTSM_CONFIG_TABLE . 4-17

5 CHSM Functions

Overview . 5-1
Initialization. . 5-3
DriverInit . 5-11
DriverRemove . 5-14
Board Service Routine . 5-15
Packet Reception . 5-15

Reception Methods. . 5-15
Reception Method—Option 1. . 5-15
Reception Method—Option 2. . 5-16
Reception Method—Option 3. . 5-16
Reception Method—Option 4. . 5-17

DriverISR. . 5-19
DriverPoll . 5-22
Packet Transmission . 5-24

Transmission Methods . 5-24
Transmission Method—Option 1 . 5-24
Transmission Method—Option 2 . 5-25

Priority Transmission Support . 5-26
Adapters that Need Physical Addresses 5-28

DriverPriorityQueueSupport . 5-29
DriverSend . 5-31
Control Procedures . 5-34
DriverReset . 5-36
DriverShutdown . 5-39
DriverMulticastChange . 5-43
DriverPromiscuousChange . 5-46
DriverStatisticsChange (optional) . 5-50
DriverRxLookAheadChange (optional) . 5-52
DriverManagement (optional) . 5-54
DriverEnableInterrupt . 5-56
DriverDisableInterrupt . 5-57
DriverDisableInterrupt2 . 5-59
Timeout Detection . 5-61
DriverAES . 5-62

6 CTSM Functions

Overview . 6-1
iv ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

<CTSM>BuildTransmitControlBlock . 6-2
<CTSM>CancelPrioritySend . 6-5
<CTSM>FastProcessGetRCB . 6-7
<CTSM>FastRcvComplete . 6-9
<CTSM>FastRcvCompleteStatus. . 6-11
<CTSM>FastSendComplete . 6-13
<CTSM>GetConfigInfo . 6-15
<CTSM>GetHSMIFLevel . 6-17
<CTSM>GetRCB . 6-18
<CTSM>ProcessGetRCB . 6-21
<CTSM>RcvComplete . 6-24
<CTSM>RcvCompleteStatus . 6-26
<CTSM>RegisterHSM . 6-28
<CTSM>SendComplete. . 6-30
<CTSM>UpdateMulticast . 6-32

7 CMSM Functions

Overview . 7-1
CMSMAddToCounter . 7-2
CMSMAlloc . 7-4
CMSMAllocateMultipleRCBs . 7-6
CMSMAllocPages . 7-9
CMSMAllocateRCB . 7-11
CMSMCancelAES. . 7-13
CMSMControlComplete . 7-14
CMSMDeRegisterResource. . 7-16
CMSMDriverRemove . 7-19
CMSMECBPhysToLogFrags . 7-20
CMSMEnablePolling . 7-22
CMSMFree . 7-24
CMSMFreePages . 7-26
CMSMGetAlignment . 7-27
CMSMGetBusInfo . 7-29
CMSMGetBusSpecificInfo . 7-30
CMSMGetBusType . 7-34
CMSMGetCardConfigInfo . 7-36
CMSMGetConfigInfo . 7-42
 CMSMGetCurrentTime . 7-44
 CMSMGetHINFromHINName . 7-46
CMSMGetHINNameFromHIN. . 7-48
CMSMGetInstanceNumber . 7-50
CMSMGetInstanceNumberMapping . 7-52
CMSMGetMicroTimer . 7-54
v

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMGetPhysical . 7-55
CMSMGetPhysList . 7-56
CMSMGetPollSupportLevel . 7-58
CMSMGetUniqueIdentifier . 7-60
CMSMGetUniqueIdentifierParameters . 7-63
CMSMHardwareFailure . 7-65
CMSMIncrCounter . 7-67
CMSMInitAlloc . 7-68
CMSMInitParser . 7-69
CMSMNESLDeRegisterConsumer. . 7-71
CMSMNESLDeRegisterProducer . 7-73
CMSMNESLProduceEvent . 7-75
CMSMNESLProduceMLIDEvent . 7-79
CMSMNESLRegisterConsumer . 7-83
CMSMNESLRegisterProducer . 7-87
CMSMParseDriverParameters . 7-91
CMSMParseSingleParameter . 7-95
CMSMPrintString. . 7-97
CMSMRdConfigSpacex . 7-100
CMSMReadPhysicalMemory. . 7-102
CMSMRegisterHardwareOptions . 7-104
CMSMRegisterMLID . 7-106
CMSMRegisterResource. . 7-108
CMSMReRegisterHardwareOptions . 7-112
CMSMResetMLID . 7-116
CMSMResumePolling . 7-118
CMSMReturnDriverResources . 7-120
CMSMReturnMultipleRCBs . 7-122
CMSMReturnRCB . 7-124
CMSMScanBusInfo . 7-126
CMSMScheduleAES . 7-128
CMSMSearchAdapter . 7-131
CMSMServiceEvents . 7-135
CMSMSetHardwareInterrupt . 7-136
CMSMShutdownMLID . 7-138
CMSMSuspendPolling . 7-140
CMSMTCBPhysToLogFrags. . 7-142
CMSMUpdateConfigTables . 7-144
CMSMWrtConfigSpacex . 7-146
CMSMWritePhysicalMemory. . 7-148

8 NetWare Bus Interface

Overview . 8-1
vi ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Bus Architecture . 8-2
Multiple Bus Platforms. . 8-2
Memory Mapping and Address Manipulation 8-3
Byte Order . 8-4

DMACleanup . 8-5
DMAStart . 8-6
DMAStatus . 8-9
FreeBusMemory . 8-10
Inx . 8-12
InBuffx . 8-14
MapBusMemory . 8-16
MovFastFromBus . 8-18
MovFastToBus . 8-20
MovFromBusx. . 8-22
MovToBusx . 8-25
Outx . 8-28
OutBuffx . 8-30
Rdx . 8-32
Setx . 8-34
Slow . 8-36
Wrtx . 8-37

Appendix A Language Enabling

Overview . A-1
Language Enabling Procedure . A-1

Appendix B Event Control Blocks (ECBs)

Overview . B-1
ECB Aware Adapters . B-1
Event Control Block Structure . B-2
Relationship between Receive ECBs and RCBs B-10
Relationship between Transmit ECBs and TCBs B-11

Appendix C Platform Specific Information

Overview . C-1
Intel Processors . C-1

Building the CHSM . C-1
Creating the Source Files . C-1
Compiling the Source Files . C-1
Linking the Object Files . C-2
Linker Definition File . C-2
MLID Configuration File . C-5
vii

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Load Keywords and Parameters . C-5

Appendix D Portability Issues

Overview . D-1
Portability Rules . D-1
Translation Limits . D-4
Coding Assumptions . D-5
Data Packing and Alignment . D-5
Portability Macros . D-6
COPY_FROM_HILO_UINTx . D-7
COPY_FROM_LOHI_UINTx . D-8
COPY_TO_HILO_UINTx. . D-9
COPY_TO_LOHI_UINTx. . D-10
COPY_UINTx . D-11
GET_HILO_UINTx . D-12
GET_LOHI_UINTx . D-13
GET_UINTx . D-14
HOST_FROM_HILO_UINTx . D-15
HOST_FROM_LOHI_UINTx . D-16
HOST_TO_HILO_UINTx . D-17
HOST_TO_LOHI_UINTx . D-18
PUT_HILO_UINTx . D-19
PUT_LOHI_UINTx . D-20
PUT_UINTx . D-21
UINTx_EQUAL . D-22
VALUE_FROM_HILO_UINTx . D-23
VALUE_FROM_LOHI_UINTx . D-24
VALUE_TO_HILO_UINTx . D-25
VALUE_TO_LOHI_UINTx . D-26

Appendix E NESL Support

Overview . E-1
Registering and Deregistering Event Producers E-2
Registering and Deregistering Event Consumers E-2
NESL Structures . E-3

EPB (Event Parameter Block) Structure E-3
NESL_ECB Structure . E-4

Events and Types . E-7
Event Names . E-7
Event Types . E-8

Service Suspend Types . E-8
 . E-9
viii ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Suspend Request . E-9
Service Resumed Types. . E-10
Service/Status Changed Types . E-11

CMSM NESL String Exports . E-12
NESL Return Codes . E-13
NESL Event Flags. . E-14
NESL OSI Layer Definitions. . E-15

Glossary

Revision History

Index

Trademarks
ix

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

x ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

O

Figures
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Figure 1-1

The ODI Specification Elements . 1-2
Figure 1-2

How ODI Fits into the OSI Model . 1-3
Figure 1-3

The Multiple Protocol Interface (MPI) . 1-4
Figure 1-4

The Multiple Link Interface (MLI) . 1-7
Figure 1-5

MLID Modules . 1-8
Figure 1-6

Data Flow from Application to LSL . 1-10
Figure 1-7

Data Flow from the LSL to the Board . 1-11
Figure 1-8

Data Flow from the Board to the Wire . 1-11
Figure 1-9

Receive Data Flow from Wire to Application 1-12
Figure 2-1

Implementation of Multiple Frame Support 2-10
Figure 3-1

Frame and Adapter Data Space. . 3-10
Figure 3-2

MLIDCFG_ModeFlags Field Default Values 3-23
Figure 3-3

MLIDCFG_Flags Field. . 3-27
Figure 3-4

MLID_SharingFlags Field Default Values . 3-29
Figure 3-5

Driver Frame and Adapter Data Space . 3-33
Figure 4-1

Packet Transfer through the MLID . 4-7
Figure 8-1

Multiple Bus Platform Example . 8-2
xi

DI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Figure B-1
Packet Transfer through MLID . B-2

Figure B-2
RCB Correspondence to ECB . B-10

Figure B-3
Relationship between TCB and ECB. B-11
xii ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

O

Tables
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Table 2-1
Execution Time of MLID Routines . 2-8

Table 3-1
Driver Parameter Block Field Descriptions 3-3

Table 3-2
Driver Configuration Table Field Descriptions 3-12

Table 3-3
MLIDCFG_ModeFlags Bits Description . 3-23

Table 3-4
MLIDCFG_Flags Bits Description . 3-27

Table 3-5
MLIDCFG_SharingFlags Bits Description . 3-29

Table 3-6
Frame Types Versus Size Fields . 3-31

Table 3-7
MLID Statistics Table Fields. . 3-36

Table 3-8
MLID Statistics Table Generic Counters . 3-38

Table 3-9
Media Specific Counters for Token-Ring . 3-41

Table 3-10
Media Specific Counters for Ethernet . 3-43

Table 3-11
Media Specific Counters for FDDI . 3-45

Table 4-1
Fragment Structure Field Descriptions . 4-8

Table 4-2
Programmed RCB Field Description . 4-10

Table 4-3
TCB Field Descriptions . 4-13

Table 4-4
Interpretation of Parameter0, Parameter1, and Parameter2 4-19

Table 4-5
Input and Results for Each Character Type 4-26

Table 5-1
xiii

DI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

DriverEndofChainFlag Values . 5-18
Table 5-2

Code Path of Control Functions . 5-34
Table B-1

Fragment Structure and ECB Field Descriptions B-3
Table C-1

Linker Definition File Example Definitions C-3
Table C-2

Load Keywords and Parameters Descriptions C-6
xiv ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

Preface
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

age

ink

e

 the

must
Overview

This document provides the information necessary to develop the C langu
Hardware Specific Module (CHSM) portion of a NetWare driver. Drivers
written using the information in this document conform to the Open Data-L
Interface (ODI) specification.

This document is written with the assumption that you are writing a driver in the
C language; however, you can write portions of the driver in assembly language
if you wish.

This specification does not apply to 16-bit DOS ODI platforms.

This document does not describe the full ODI specification, but explains th
development of a driver using the Novell-provided development modules.

This document is organized as follows:

• Chapter 1: Introduction to ODI

Describes the NetWare environment by presenting a brief overview of
ODI architecture and an introduction to the ODI LAN driver structure.

• Chapter 2: ODI C Language HSM Overview

Provides an overview of the driver CHSM and its required functions.

• Chapter 3: CHSM Data Structures and Variables

Describes the data structures and variables that the CHSM developer
define.
xv

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ge
ic

 one

n be

ble
et of
• Chapter 4: CMSM/CTSM Structures and Variables

Describes the data structures and variables provided by the C langua
Media Support Module (CMSM) and the C language Topology Specif
Module (CTSM) for CHSM development.

• Chapter 5: CHSM Functions

Describes the functions that the CHSM developer must provide.

• Chapter 6: CTSM Functions

Describes the CTSM functions available for CHSM development.

• Chapter 7: CMSM Functions

Describes the CMSM functions available for CHSM development.

• Chapter 8: NetWare Bus Interface

Describes the NetWare Bus Interface (NBI) functions needed by the
CHSM to isolate the CHSM from the platform’s bus architecture.

• Appendix A: Language Enabling

Describes how to enable your CHSM to display messages in more than
language.

• Appendix B: Event Control Blocks (ECBs)

Provides information used in writing drivers for ECB aware adapters.

• Appendix C: Platform Specific Information

Contains operating system and processor specific information that ca
used to help in driver development on a particular platform.

• Appendix D: Portability Issues

Describes the rules you must follow to ensure that your driver is porta
to different operating systems and/or processors. Also, describes a s
macros that you can use to help make your driver portable.
xvi ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

age
, and

the
river

ere
it.

al

ter
Prerequisites to Using this Manual

The developer should be experienced with the ANSI C programming langu
and have a sound understanding of reentrant coding, event-driven systems
interrupt-driven device drivers. The developer should also be familiar with
features of the processor(s) used on the computer platform(s) where the d
will be used.

Manual Conventions

All numbers in this document are decimal unless otherwise specified. Wh
bit fields within a byte are specified, bit 0 is assumed to be the low-order b

<" and ">" are used to enclose symbolic names for actual file names. For
example, the developer must replace <CTSM> with the appropriate media
type, depending on which module is used.

UNUSED is used in this specification to symbolize an invalid or unknown
value.

The pseudocode used in this specification is intended to illustrate a gener
flow of events and does not necessarily describe optimized code.

Data Type Definitions

The following data types are defined:

MEON 8-bit unsigned value that contains a single byte charac
or a portion of a double-byte character

MEON_STRING NULL-terminated string of MEON

UINT8 8-bit unsigned integer

UINT16 16-bit unsigned integer

UINT32 32-bit unsigned integer

UINT64 64-bit unsigned integer
xvii

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

e
MSG_ID Integer constant defined by the developer and messag
handling system to identify a string

Structure Definitions

The following are definitions of structures used in this specification.

DRIVER_DATA Structure

typedef struct _DRIVER_DATA_

{

/* Place CHSMs data here */

/* Statistics Table */

MLID_STATS_TABLE StatsTable;

/* Generic Statistics Table Entries */

StatTableEntry for TotalTxPacket

StatTableEntry for TotalRxPacket

StatTableEntry for NoECBAvailable

StatTableEntry for PacketTxTooBig

StatTableEntry for PacketTxTooSmall

StatTableEntry for PacketRxOverflow

StatTableEntry for PacketRxTooBig

StatTableEntry for PacketRxTooSmall

StatTableEntry for PacketTxMiscError

StatTableEntry for PacketRxMiscError

StatTableEntry for RetryTx

StatTableEntry for ChecksumError

StatTableEntry for HardwareRxMismatch

StatTableEntry for TotalTxOKByte

StatTableEntry for TotalRxOKByte

StatTableEntry for TotalGroupAddrTx

StatTableEntry for TotalGroupAddrRx

StatTableEntry for AdapterReset

StatTableEntry for AdapterOprTimeStamp

StatTableEntry for QDepth
xviii ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

/* Media Statistics Table Entries go here */

/* Custom Statistics Table Entries go here */

/* Generic Counters */

UINT32 TotalTxPacketCount;

UINT32 TotalRxPacketCount;

UINT32 NoECBAvailableCount;

UINT32 PacketTxTooBigCount;

UINT32 PacketTxTooSmallCount;

UINT32 PacketRxOverflowCount;

UINT32 PacketRxTooBigCount;

UINT32 PacketTxMiscErrorCount;

UINT32 PacketRxMiscErrorCount;

UINT32 RetryTxCount;

UINT32 ChecksumErrorCount;

UINT32 HardwareRxMismatchCount;

UINT64 TotalTxOKByteCount;

UINT64 TotalRxOKByteCount;

UINT32 TotalGroupAddrTxCount;

UINT32 TotalGroupAddrRxCount;

UINT32 AdapterResetCount;

UINT32 AdapterOprTimeStamp;

UINT32 QDepth;

/* Media Counters go here */

/* Custom Counters go here */

} DRIVER_DATA;

DRIVER_DATA is unique for each CHSM. However, it must contain: the
MLID_STATS_TABLE structure; all generic, media, and custom
STAT_TABLE_ENTRY structures; and all generic, media, and custom counter
variables.
xix

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

nd

 and
MODULE_HANDLE Structure

typedef struct _MODULE_HANDLE_

{

/* platform specific module handle information
defined in cmsm.h */

} MODULE_HANDLE;

GROUP_ADDR_LIST_NODE_ Structure

typedef struct _GROUP_ADDR_LIST_NODE_

{

 NODE_ADDR GRP_ADDR;

 UINT16 GRP_ADDR_COUNT;

} GROUP_ADDR_LIST_NODE;

NODE_ADDR Structure

typedef struct _NODE_ADDR_ {

UINT8 nodeAddress [ADDR_SIZE];

} NODE_ADDR;

Where ADDR_SIZE is the number of bytes needed to identify an address a
is currently defined by the following constant:

#define ADDR_SIZE 6

PROT_ID Structure

typedef struct _PROT_ID_ {

UINT8 protocolID [PID_SIZE];

} PROT_ID;

Where PID_SIZE is the number of bytes needed to identify a protocol stack
is currently defined by the following constant:

#define PID_SIZE 6
xx ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

e
CHSM_STACK Structure

Typedef struct _CHSM_STACK_
{
struct _MODULE_HANDLE_*ModuleHandle;
SCREEN_HANDLE *ScreenHandle;
MEON *CommandLine;
MEON *ModuleLoadPath;
UINT32 UnitializedDataLength;
void *CustomDataFileHandle;
UINT32 (*FileRead)(

void *FileHandle,
UINT32 FileOffset,
void *FileBuffer,
UINT32 FileSize);

UINT32 CustomDataOffset;
UINT32 CustomDataSize;
UINT32 NumMsgs;
MEON **Msgs;
} CHSM_STACK;

Enumeration Definitions

The following enumerations are used throughout this specification to defin
return values.

AES_TYPE Enumeration

typedef enum _AES_TYPE_

{

AES_TYPE_PRIVILEGED_ONE_SHOT,

AES_TYPE_PRIVILEGED_CONTINUOUS,

AES_TYPE_PROCESS_ONE_SHOT,

AES_TYPE_PROCESS_CONTINUOUS

} AES_TYPE;
xxi

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

BOOLEAN Enumeration

typedef enum _BOOLEAN_

{

FALSE,

TRUE

} BOOLEAN;

ODI_NBI Enumeration

typedef enum _ODI_NBI_

{

ODI_NBI_SUCCESSFUL,

ODI_NBI_PROTECTION_VIOLATION,

ODI_NBI_HARDWARE_ERROR,

ODI_NBI_MEMORY_ERROR,

ODI_NBI_PARAMETER_ERROR,

ODI_NBI_UNSUPPORTED_OPERATION,

ODI_NBI_ITEM_NOT_PRESENT,

ODI_NBI_NO_MORE_ITEMS,

ODI_NBI_FAIL

} ODI_NBI;
xxii ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ODISTAT Enumeration

typedef enum _ODISTAT_

{

ODISTAT_SUCCESSFUL =0,

ODISTAT_RESPONSE_DELAYED =1,

ODISTAT_SUCCESS_TAKEN =2,

ODISTAT_BAD_COMMAND =-127,

ODISTAT_BAD_PARAMETER =-126,

ODISTAT_DUPLICATE_ENTRY =-125,

ODISTAT_FAIL =-124,

ODISTAT_ITEM_NOT_PRESENT =-123,

ODISTAT_NO_MORE_ITEMS =-122,

ODISTAT_MLID_SHUTDOWN =-121,

ODISTAT_NO_SUCH_HANDLER =-120,

ODISTAT_OUT_OF_RESOURCES =-119,

ODISTAT_RX_OVERFLOW =-118,

ODISTAT_RX_IN_CRITICAL_SECTION =-117,

ODISTAT_TRANSMIT_FAILED =-116,

ODISTAT_PACKET_UNDELIVERABLE =-115,

ODISTAT_CANCELED =-4

} ODISTAT;

ODI_STAT Enumeration

typedef enum _ODI_STAT_

ODI_STAT_UNUSED =-1,

ODI_STAT_UINT32 =0,

ODI_STAT_UINT64 =1,

ODI_STAT_MEON_STRING =2,

ODI_STAT_UNTYPED =3

} ODI_STAT;
xxiii

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

REG_TYPE Enumeration

typedef enum _REG_TYPE_

{

REG_TYPE_NEW_ADAPTER,

REG_TYPE_NEW_FRAME,

REG_TYPE_NEW_CHANNEL,

REG_TYPE_FAIL

} REG_TYPE;

OPERATION_SCOPE Enumeration

typedef enum _OPERATION_SCOPE

{

OP_SCOPE_ADAPTER,

OP_SCOPE_LOGICAL_BOARD,

} OPERATION_SCOPE;
xxiv ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

/or

uch
fs,

r/
ters,

nd

tion
Portability Requirements

To ensure that a driver is portable across different operating systems and
processors, you must adhere to the following rules:

• Write your driver in ANSI C—this is extremely important.

• In general, do not declare variables with standard C language types s
as short, long, int, char. Declare variables with abstract types or typede
such as BYTE, MEON, UINT32, that are appropriate for the processo
operating system combination. However, in some cases such as coun
it may be more efficient to use int instead of an abstract type.

• Ensure that all members of a structure containing data that is sent to a
from the LAN are given unique, abstract types. Also, ensure that the
references to these members use the appropriate misalignment correc
macros and byte order correction macros described in Appendix D:
Portability Issues.
xxv

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

.

g

Referenced Documents

The following is a list of Novell documents referenced in this specification

• NetWare Client SDK

• ODI Specification Supplement: Brouter Support

• ODI Specification Supplement: Canonical and Noncanonical Addressin

• ODI Specification Supplement: Standard MLID Message Definitions

• ODI Specification Supplement: Frame Types and Protocol IDs

• ODI Specification Supplement: The Hub Management Interface

• ODI Specification Supplement: The MLID Installation Information File

• ODI Specification Supplement: Source Routing

• NetWare Wide Area Network Open Data-Link Interface Specification

• IEEE Std. 803.5 -1989
xxvi ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

c h a p t e r 1 Introduction to ODI
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

el.

iety

s

ion.
Overview

This chapter briefly describes the Open Data-Link Interface (ODI)
specification. It describes the functions of Multiple Link Interface Drivers
(MLIDs), protocol stacks, and the The Link Support Layer (LSL). This
chapter also contains a brief description of data flow through the ODI mod

Because the ODI specification provides for communications between a var
of protocols and media, LAN drivers are called Multiple Link Interface
Drivers (MLIDs). The Link Support Layer (LSL) handles the transfer
of information between MLIDs and protocol stacks.

The terms MLID and LAN driver are interchangeable.

You should read this chapter if you are not familiar with the basic concept
involved in the ODI specification.

Open Data -Link Interface (ODI)

C language HSMs and protocol stacks must conform to the ODI specificat
Figure 1.1 illustrates the elements that make up the ODI specification.
Introduction to ODI 1-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

. It
yer
sted

ey
s to

SI
 are
Figure 1-1

The ODI Specification Elements

The ODI specification allows multiple network protocols and adapters
(physical boards) to be used concurrently on the same client or file server
provides a flexible, high-performance data link layer interface to network la
protocol stacks. The ODI specification is comprised of the three elements li
below and illustrated above in Figure 1-1.

• Protocol Stacks

• Link Support Layer (LSL)

• Multiple Link Interface Drivers (MLIDs)

Protocol Stacks

Network layer protocol stacks transmit and receive data over a logical or
physical network. They handle routing, connection services, and APIs. Th
also provide an interface that allows higher layer protocols and application
access the protocol stack’s services.

As a general rule, protocol stacks written to the ODI specification provide O
(Open Systems Interconnection) network layer functionality; however, they
not limited to this. Figure 1-2 illustrates the ODI/OSI correspondence.

IPX TCP/IP AppleTalk

Link Support Layer (LSL)

Ethernet Token-Ring FDDI Ethernet

Multiple Link Interface Drivers (MLIDs)

Protocol stacks

Network boards (or chipsets)
1-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Figure 1-2

How ODI Fits into the OSI Model

OSI
Model

ODI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

LSLLogical Link Control (LLC)

Media Access Control (MAC) MLID

Adapter

Protocol
Stack
Introduction to ODI 1-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

col
 all
e

The
es

ls:

et.
sends

es
e.
The Multiple Protocol Interface (MPI)

Protocol stacks communicate with the LSL through the Multiple Protocol
Interface (MPI). The MPI is an interface that resides between the proto
stack and the LSL (see Figure 1.3). The MPI provides protocol stacks with
the APIs that are necessary for the protocol stack to communicate over th
network.

Figure 1-3

The Multiple Protocol Interface (MPI)

Link Support Layer (LSL)

The LSL handles the communication between protocol stacks and MLIDs.
ODI specification allows physical topologies to support many different typ
of protocols. Consequently, the MLID may receive packets for any of the
different protocol stacks residing in the system.

For example, an Ethernet network might support all of the following protoco
IPX, TCP/IP, AppleTalk* , and LAT* (a Digital Equipment Corporation
protocol). The LSL determines which protocol stack is to receive the pack
Then, the protocol stack determines where the packet should be sent and
it. The LSL then directs the packet to the appropriate MLID.

The LSL tracks all protocols and MLIDs currently in the system and provid
a consistent method of accessing each protocol module and MLID modul

In addition, the LSL performs the following services:

IPX TCP/IP AppleTalk

Protocol stacks

Link Support Layer (LSL)

Multiple Protocol Interface (MPI)
1-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

s
ule

.

t.)
• Queues and recovers Event Control Blocks (ECBs) for later use. (ECB
are control structures used to send and receive packets and to sched
events.)

• Registers and deregisters protocol stacks.

• Allows protocol stacks to obtain timing services.

• Allows protocol stacks to determine stack IDs and protocol IDs.

• Allows protocol stacks to obtain MLID statistics.

• Allows protocol stacks to bind with MLIDs.

• Allows protocol stacks to transmit and receive packets through MLIDs

• Maintains lists of all active protocol stacks and MLIDs.

• Allows protocol stacks to obtain information about MLIDs and other
protocol stacks.

• Allows protocol stacks to change the operational state of MLIDs. (For
example, the protocol stack can cause the MLID to shut down or rese
Introduction to ODI 1-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 the
me

se
to
send
ntrol

he
Multiple Link Interface Drivers (MLIDs)

MLID Functionality

Multiple Link Interface Drivers (MLIDs) are device drivers that handle the
sending and receiving of packets to and from LAN adapters.

A LAN adapter is any network controller that provides access across a network.
A LAN adapter may be present directly on the motherboard in an embedded
system, or it may be a network interface card inserted into the computer bus.
The MLID interface is determined by the adapter hardware.

The MLID determines the packet’s frame type and then strips or appends
frame header to the packet. (Ethernet and Token Ring are examples of fra
types. Refer to ODI Specification: Frame Types and Protocol IDs for a list of
currently supported frame types and their protocol IDs.)

MLIDs can handle packets from various different types of protocols becau
MLIDs do not interpret packets. MLIDs use Event Control Blocks (ECBs)
pass packets to the LSL. ECBs are data structures that the MLID uses to
and receive packets, and to schedule events. (See Appendix B: "Event Co
Blocks (ECBs)" for complete information on ECBs.) The MLID
communicates with the LSL through the Multiple Link Interface (MLI ).

The Multiple Link Interface (MLI)

The Multiple Link Interface (MLI ) is the communication interface
between the LSL and the MLID (see Figure 1.4). This interface contains t
APIs necessary to facilitate communication between these two modules.
1-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

g
LAN

, and
N
ific
5
Figure 1-4

The Multiple Link Interface (MLI)

LAN Driver Toolkit

Novell has simplified the task of ODI LAN driver development by furnishin
a set of support modules that provide all the tools necessary to interface a
driver to the LSL. These modules are:

• C Language Media Support Module (CMSM)

• C Language Topology Specific Modules (CTSM)

These support modules are a collection of procedures, macros, structures
variables that simplify driver development. When using these modules, LA
driver development is reduced to creating the C language Hardware Spec
Module (CHSM). The CHSM handles all hardware interactions. (Figure 1.
illustrates the relationship of these modules to an MLID.)

NIC NICNIC

Link Support Layer (LSL)

Token-RingEthernet FDDI

Multiple Link Interface Drivers (MLIDs)

Multiple Link Interface (MLI)
Introduction to ODI 1-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ns

ons
gy

Figure 1-5

MLID Modules

C Language Media Support Module (CMSM)

The C Language Media Support Module (CMSM) contains general functio
that are common to all drivers.

C Language Topology Specific Module (CTSM)

The C Language Topology Specific Module (CTSM) manages the operati
for specific topologies. CTSMs provide support for the standardized topolo
types of Ethernet, Token-Ring, and FDDI. Multiple frame type support is
implemented in the CTSM so that all frame types for a given topology are
supported. The possible topology modules are as follows:

• ETHERTSM.NLM

• TOKENTSM.NLM

• FDDITSM.NLM

Source code for each CTSM is provided in the Novell LAN Driver Developer’s
Kit.

LSL
CMSM

Media Support Module

CTSM
Topology Specific Module

CHSM
Hardware Specific Module

MLID

Board
1-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

y

y
the

s:

at

the
re.
Although not recommended, you can create your own proprietary topolog
modules by modifying existing CTSMs, or by creating new modules that
provide the same functionality as the Novell CTSMs. However, all topolog
modules must conform to the functionality defined in this specification, and
modules and the APIs must have unique names.

C Language Hardware Specific Module (CHSM)

You create the C Language Hardware Specific Module (CHSM) for your
specific LAN adapter. A CHSM handles all hardware interactions.

The primary functions of a CHSM are as follows:

• Adapter initialization

• Adapter reset

• Adapter shut down

• Packet reception

• Packet transmission

Additional procedures that a CHSM may provide support for are as follow

• Timeout detection

• Multicast addressing

• Promiscuous mode reception

When you use the LAN driver toolkit to develop an MLID, the CHSM is the
only module that you write.

This document uses the term CHSM to refer to that portion of the MLID th
you develop with this toolkit.

NetWare Bus Interface (NBI)

The NetWare Bus Interface (NBI) is the machine specific code that gives
NetWare Driver a uniform view of the system, regardless of the architectu
The NBI deals with such things as interrupts and stack manipulation.
Introduction to ODI 1-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

d and
te

tion

er to
ack
ses
h
I
Data Flow

When messages are sent and received, the various protocols or layers ad
remove their own information at each layer. The following diagrams illustra
basic data flow.

Send Data Flow

As Figure 1-6 illustrates, the protocol stack receives data from the applica
above it, determines whether the packet must be split into fragments,
determines the size of the fragments, adds the appropriate protocol head
the data packet, and sends it to the LSL. The LSL isolates the protocol st
from the topology and LAN medium below it. The protocol stack simply pas
data to the LSL. The LSL directs the packet to the appropriate MLID, whic
then takes care of the topology-specific information. This is the reason OD
protocol stacks are known as being media and frame type independent.

Figure 1-6

Data Flow from Application to LSL

As illustrated by Figure 1-7, the LSL directs the packet to the appropriate
MLID. The MLID then adds the MAC header to the packet and hands the
packet to the LAN adapter.

Stack (IPX)

LSL

Data

Application

Data

IPX
Header

• Determines fragment sizes
• Adds protocol header
1-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

e
Figure 1-7

Data Flow from the LSL to the Board

In Figure 1.8 the hardware adds the preamble to the packet and places th
packet on the wire.

Figure 1-8

Data Flow from the Board to the Wire

MLID

Board

LSL

MAC
Header DataIPX

Header

DataIPX
Header

Determines which MLID
should receive the packet
and passes it.

Adds the Media Access
Control (MAC) header

Board

MAC
HeaderPreamble DataIPX

Header

Hardware adds the preamble and
places the packet on the wire.

Wire
Introduction to ODI 1-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

cket
the
ack,
ata to
Receive Data Flow

Figure 1.9 shows the LAN adapter receiving the packet off the wire and
stripping the preamble from the packet. The LAN adapter then hands the pa
to the MLID, which discards the MAC header from the packet and hands
packet to the LSL. The LSL directs the packet to the appropriate protocol st
which then removes the protocol header from the packet and hands the d
the application.

Figure 1-9

Receive Data Flow from Wire to Application

MLID

MAC
Header DataIPX

Header

DataIPX
Header

Determines which protocol
stack should receive the
packet and passes it.

• Removes the (MAC) header
• Hands the packet to the LSL

Stack (IPX)

LSL

Data

Application

Data

IPX
Header

• Removes the protocol header
• Sends the data to the

application

Board

Wire

MAC
HeaderPreamble DataIPX

Header

Hardware strips the preamble and
gives the packet to the MLID.
1-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

c h a p t e r 2 ODI C Language HSM Overview
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ns:

es of

er.)
Overview

This chapter provides an overview of the C Language Hardware Specific
Module (CHSM) of an ODI MLID. Specific issues that influence the
development of the CHSM are also addressed.

CHSM Procedures

The CHSM contains procedures that perform the following types of functio

• Initialization

• Board service

• Packet transmission

• Control procedures

• Timeout detection

• Driver removal

You may add additional procedures to support the specific hardware featur
a particular LAN adapter. Additional procedures may be required if Hub
Management or Source Bridge Routing (Brouter) is supported. (Hub
Management and Source Bridge Routing are described later in this chapt
ODI C Language HSM Overview 2-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ase,
uired

 the

ice
Brief descriptions of the required CHSM procedures are provided on the
following pages. These descriptions are general and do not apply in every c
nor do they describe every possible case. Detailed descriptions of the req
procedures (including pseudocode) are provided in Chapter 5, "CHSM
Functions".

Initialization

The CHSM’s initialization function, DriverInit , initializes the LAN adapter
hardware. DriverInit uses CMSM functions and CTSM functions to do the
following tasks:

• Allocate memory for MLID variables and structures

• Parse the standard load command line options

• Process custom command line parameters and custom firmware

• Register the MLID and hardware

• Setup the hardware for the board’s interrupt service routine or polling
procedure

• Schedule callback events for timeout detection and recovery

• Handle any initialization errors

Board Service Routine

The CHSM’s board service routine will generally need to detect and handle
following events:

• Packet reception and reception complete

• Reception error

• Transmission complete

• Transmission error

The MLID can be notified of these events by using either an interrupt serv
routine (DriverISR) or a polling procedure (DriverPoll).
2-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

able

ics
res

ders
nd

r

ntrol

. If

d it.
n
If DriverPoll is used, we recommend that you implement interrupt backup.

Error detection and handling are optional in cases where the hardware is
to handle transmission and reception errors without MLID intervention.
However, the MLID must be notified of errors so it can maintain the statist
table. (The statistics table is described in Chapter 3, "CHSM Data Structu
and Variables.")

Packet Transmission

Before a packet is transmitted, the CTSM builds the frame and media hea
for the packet. Then, the CTSM collects the header and data fragments, a
transmits the packet by calling the CHSM function DriverSend. DriverSend
is called whenever a packet needs to be transmitted.

Control Procedures

The CHSM must provide the control procedures DriverReset and
DriverShutdown to handle the hardware operations involved in resetting o
shutting down the adapter. Additional control procedures must be used to
support multicast addressing and promiscuous mode reception. These co
procedures are DriverMulticastChange and DriverPromiscuousChange.

Timeout Detection

The CHSM may need to be called regularly to inspect the adapter’s status
the CHSM requires this capability, it can enable the DriverAES routine. Once
enabled, the CMSM will call this routine at an interval specified by the
developer.

For example, the MLID might need to periodically inspect the adapter to
determine if it has failed to complete a transmission. If a timeout error has
occurred, the procedure will discard the packet being sent, increment the
appropriate statistics counter(s), reset the board if appropriate, and begin
transmitting the next packet in the send queue.

Driver Removal

Every CHSM must have a removal procedure that allows the user to unloa
This procedure, DriverRemove, must shut down the physical board and retur
ODI C Language HSM Overview 2-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

dle
ust

 also
:

 be

you

and
all resources allocated to the MLID. The CMSM provides routines that han
the return of resources, but the CHSM is responsible for deciding when it m
be done and for calling the appropriate CMSM routines.

CHSM Data Structures and Variables

In addition to the procedures described in the previous section, the CHSM
contains certain data structures and variables. The primary structures are

• Driver parameter block

• Driver configuration table

• Driver statistics table

Chapter 3, "CHSM Data Structures and Variables" provides detailed
descriptions of all the required CHSM data structures and variables.

CHSM Design Considerations

The following sections present the hardware and coding issues that must
considered when creating a CHSM.

Topology Issues

Before writing a CHSM, you must have a thorough understanding of the
topology (such as Ethernet, Token-Ring, FDDI) that the driver and the
hardware operate on. Refer to the specifications for the specific topology
will be using.

Hardware Issues

Before writing a CHSM, you should have a thorough understanding of the
adapter. Knowing the characteristics of the hardware, bus type, and data
transfer mode will allow you to create a more efficient MLID.

Network Interface Controllers

The MLID developer must be familiar with the network interface controller
integrated circuit. Make every effort to obtain and use current data books
2-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

sion
ieve
ized

SM
n it
e
application notes from the manufacturer. In addition, the manufacturer’s
support engineers can provide developers with up-to-date information on
hardware quirks and changes.

Data Transfer Mode

The CMSM and CTSM provide support procedures that are optimized for
specific data transfer modes. CHSM packet reception and packet transmis
routines, in particular, are affected by the adapter’s transfer mode. To ach
the highest performance, you must select support procedures that are optim
for the specific data transfer mode. The data transfer modes are:

• Programmed I/O

• Shared RAM (Memory Mapped I/O)

• Direct Memory Access (DMA)

• Bus Master

Bus Type

You must also consider the bus type and size when creating optimized CH
operations. The initialization process can be affected by the bus type whe
initializes and registers the hardware configuration with the CMSM and th
LSL. Some bus types are:

• Industry Standard Architecture (ISA)

• Plug and Play ISA (PNP ISA)

• Micro Channel Architecture

• Extended Industry Standard Architecture (EISA)

• Peripheral Component Interconnect (PCI)

• PC Card (formally PCMCIA)
ODI C Language HSM Overview 2-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ore,
ting

f the

.

d
NetWare Environment Issues

ODI MLIDs operate as an integral part of the NetWare environment. Theref
you must consider the following operating system characteristics when wri
CHSM code.

Most of the code in the CHSM will run at privileged time (see definition
below). Therefore, CHSM routines must not dominate system resources. I
code is optimized, normal execution will not be a problem. Care should be
taken so that the handling of board error conditions, initialization, and
shutdown adequately allows other processes to access system resources

Interrupt Service Routine

The MLID’s interrupt service routine needs only to service the adapter an
return.

In order to achieve operating system and platform independence, the CHSM
must not enable or disable system interrupts. If during DriverISR or DriverSend,
the interrupts are enabled or disabled, the interrupts must be restored to their
initial state of entry before returning. Enabling or disabling interrupts will
preclude the MLID from working on some platforms.
2-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

t

es

.

Execution Times

The two principal execution times are:

• Process time

• Privileged time

As you write an MLID, you must be aware of whether a routine is called a
process time or at privileged time. Table 2-1 shows when the operating
system(OS) and the CMSM may call MLID routines. Which support routin
the MLID can access depends on the time that the MLID routine is called.

The execution time restrictions for CTSM and CMSM support routines are
documented in Chapter 6, "CTSM Functions" and Chapter 7, "CMSM
Functions".

Process Time

The MLID may do the following operations at process time:

• Memory allocation

• File I/O (with some exceptions)

Privileged Time

When a privileged process calls a routine, the routine becomes privileged
Privileged time routines must be highly optimized and limit their execution
time.

Routines may not do the following operations at privileged time:

• Allocate memory

• Attempt file I/O

• Suspend execution

• Call routines that suspend execution
ODI C Language HSM Overview 2-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

I

r each
each
pe

.

You must also observe privileged time restrictions for routines that are called by
by other MLID routines. For example, after a transmit complete interrupt,
DriverISR typically calls DriverSend to transmit the next packet in the send
queue. Since DriverISR executes at privileged time, DriverSend must also
observe privileged time restrictions.

Code and Data Space

This section describes the organization of the code and data space for OD
MLIDs. Figure 2-1 illustrates the code and data space used for multiple
adapters with multiple frame support.

The CMSM creates the frame data space that represents a logical board fo
installed frame type. The CMSM also creates the adapter data space for
physical board. If an MLID is reentrant, all physical boards of the same ty
use a single adapter code space. (See the reentrancy section later in this
chapter.)

Table 2-1

Execution Time of MLID Routines

Called by the OS or CMSM
at Process Time

Can be called by the OS or
CMSM at Privileged Time

Can be called by the OS or
CMSM at Privileged or
Process Time

DriverInit DriverAES DriverMulticastChange

DriverRemove DriverISR DriverPromiscuousChange

DriverShutdown DriverPoll DriverSend

DriverReset

Note: Functions that can be called at either process or privileged time must
adhere to the restrictions for privileged time functions.
2-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

d to
e
 each

ard.
,
apter
ace.)

f the
code

code
Frame Data Space

The frame data space (see Figure 2-1) contains all the information neede
support a specific frame type, as well as the hardware configuration for th
corresponding board. The MLID allocates a separate frame data space for
installed frame type, which represents a logical board.

From the CHSM’s point of view, the only thing in the frame data space is the
configuration table; therefore, the frame data space is referred to as the
configuration table in this specification. (See Chapter 3, "CHSM Data
Structures and Variables" for details on the frame data space.)

MLIDs must support all frame types for a particular topology. Because all
CTSMs provide full multiple frame support, MLIDs developed with these
modules are guaranteed to support all applicable frame types for the topology.

Adapter Data Space

The adapter data space contains hardware information and statistical
information that the MLID uses to drive and manage a specific physical bo
The CHSM allocates only one adapter data space for each physical board
regardless of the number of frame types supported by that board. (See Ch
3, "CHSM Data Structures and Variables" for details on the adapter data sp

Adapter Code Space

When an adapter supports multiple frame types and/or multiple adapters o
same type, all logical boards associated with those adapters use a single
image of the MLID.

When multiple adapters of different types are loaded, a separate adapter
space is used.
ODI C Language HSM Overview 2-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Figure 2-1

Implementation of Multiple Frame Support

Logical Boards
Data and Code

Spaces

Configuration Table Z
Frame Data Space Z

Configuration Table Z
Frame Data Space Z

Original
Configuration Table Z
Frame Data Space Z

Statistics Table Z
NICInstance Structure

Z

Driver Z Executable Code
Image

Configuration Table X
Frame Data Space X

Original
Configuration Table X
Frame Data Space X

Statistics Table X
NICInstance Structure

X

Driver X Executable Code
Image

Original
Configuration Table Y
Frame Data Space Y

Statistics Table Y
NICInstance Structure

Y

Driver Y Executable Code
Image

802.3

Physical Boards

Brand X

802.2Brand Y

Ell

SNAP

SNAP

802.2

Brand Z
2-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

s
eans

pter

alues.

nce
ver,
not
oaded.

d in

e a

able
t as

ity
ed to
Special Support

Reentrancy

The organization of the code and data spaces, as described in the previou
section, suggests that the CHSM is reentrant. Reentrancy, in this case, m
that the MLID code is written to work with multiple logical boards and with
multiple adapters of the same type.

The CMSM passes pointers to the appropriate frame data space and ada
data space when calling an MLID routine. References to structures and
variables must be made using pointers and offsets rather than hardcoded v

If an MLID is reentrant, the CHSM’s linker definition file must include the
reentrant keyword. This keyword allows a CHSM to be loaded more than o
to support multiple frame types or multiple boards of the same type. Howe
only a single code image of the MLID is loaded. If the reentrant keyword is
used, separate code and data spaces are allocated each time the MLID is l

Multicast Addressing

If the adapter hardware is physically capable of supporting multicast
addressing, the CHSM must implement multicast functionality, as describe
the DriverMulticastChange section of Chapter 5, "CHSM Functions".

Promiscuous Mode

MLIDs that pass all packets being received by the adapter are said to hav
promiscuous reception. Monitoring functions use this mode. We strongly
recommend that the CHSM support promiscuous mode if the adapter is cap
of it. The CHSM must enable or disable promiscuous reception on reques
described in the DriverPromiscuousChange section of Chapter 5, "CHSM
Functions".

Optional Support

Hub Management

The Simple Network Management Protocol (SNMP) and the HUBCON util
can manage 10BaseT repeaters and Token-Ring concentrator hubs attach
or integrated into the server. ODI Specification Supplement: The Hub
ODI C Language HSM Overview 2-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 To
der.

 see

urce

For

d
Management Interface describes how to support management requests from
these two agents in the CHSM.

Source Routing

An MLID can include the capability to pass packets across an IBM bridge.
do this, source routing information must be added to the packet’s MAC hea
The Novell-provided SROUTE.NLM and CTSM modules handle this
procedure with no interaction from the CHSM. For more on source routing,
ODI Specification Supplement: Source Routing

Brouter (Source Route Bridging)

A Token-Ring adapter capable of source route bridging mode (through a so
route accelerator or address filter CAM) can have capabilities added to its
CHSM to allow programs, such as the Multi Protocol Router Plus, to use it.
more information on Brouter, see ODI Specification Supplement: Brouter
Support.

NESL Support

The NetWare Event Service Layer (NESL) handles event registration and
modification. The NESL is designed around the concept of consumers an
producers. Generally, a producer will produce events, which a consumer
consumes. See Appendix E for a detailed description of NESL support.
2-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

c h a p t e r 3 CHSM Data Structures and Variables
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ust

ing

s
n

ions
ock
SM

e
Overview

This chapter describes the data structures and variables that the C HSM m
define when an MLID is written using the support modules.

The modules that make up an MLID are designed to be loaded in the follow
order:

1. CMSM.NLM

2. <CTSM>.NLM

3. <C HSM>.LAN

<CTSM> represents a user-defined topology file name—for example,
ETHERTSM. <C HSM> represents a user-defined name for the hardware
specific module—for example, CNE2000.

Driver Parameter Block

When the CMSM and CTSM are installed, all public variables and function
are exported to the installer and are available to the NLMs. The C HSM ca
gain access to them by declaring them "extern" and including them in the
import list in the linker definition file. The import list tells the linker which
external variables and procedures the C HSM can access.

Since the C HSM is loaded last, it must make its public variables and funct
available to the support modules by putting them in the Driver Parameter Bl
structure. The Driver Parameter Block structure contains the required C H
public variables, tables, pointers, and driver management information. The
Driver Parameter Block fields are accessed by external functions using th
offsets defined in cmsm.h.
CHSM Data Structures and Variables 3-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

er
The C HSM’s DriverInit routine must pass a pointer to the Driver Paramet
Block when it calls <CTSM>RegisterHSM so that external procedures can
access the Driver Parameter Block.

Driver Parameter Block Structure

typedef struct _DRIVER_PARM_BLOCK_
{

UINT32 DriverParameterSize;
C HSM_STACK *DriverInitParmPointer;
MODULE_HANDLE *DriverModuleHandle;
void *DPB_Reserved0;
void *DriverAdapterPointer;
MLID_CONFIG_TABLE*DriverConfigTemplatePtr;
UINT32 DriverFirmwareSize;
void *DriverFirmwareBuffer;
UINT32 DPB_Reserved1;
void *DPB_Reserved2;
void *DPB_Reserved3;
void *DPB_Reserved4;
UINT32 DriverAdapterDataSpaceSize;
DRIVER_DATA *DriverAdapterDataSpacePtr;
UINT32 DriverStatisticsTableOffset;
UINT32 DriverEndOfChainFlag;
UINT32 DriverSendWantsECBs;
UINT32 DriverMaxMulticast;
UINT32 DriverNeedsBelow16Meg;
void *DPB_Reserved5;
void *DPB_Reserved6;
void (*DriverISRPtr) (DRIVER_DATA *);
ODISTAT (*DriverMulticastChangePtr)(DRIVER_DATA*,

MLID_CONFIG_TABLE*, GROUP_ADDR_LIST_NODE*,
UINT32, UINT32);

void (*DriverPollPtr) (DRIVER_DATA *, MLID_CONFIG_TABLE *);
ODISTAT (*DriverResetPtr) (DRIVER_DATA *,

 MLID_CONFIG_TABLE *, OPERATION_SCOPE);
void (*DriverSendPtr) (DRIVER_DATA *,

 MLID_CONFIG_TABLE *, TCB *, UINT32, void *);
ODISTAT (*DriverShutdownPtr) (DRIVER_DATA *,

 MLID_CONFIG_TABLE *, UINT32, OPERATION_SCOPE);
void (*DriverTxTimeoutPtr) (DRIVER_DATA *,

 MLID_CONFIG_TABLE *);
ODISTAT (*DriverPromiscuousChangePtr) (DRIVER_DATA *,

 MLID_CONFIG_TABLE *, UINT32);
ODISTAT (*DriverStatisticsChangePtr) (DRIVER_DATA *,

 MLID_CONFIG_TABLE *);
ODISTAT (*DriverRxLookAheadChangePtr) (DRIVER_DATA *,
3-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 CONFIG_TABLE *);
ODISTAT (*DriverManagementPtr) (DRIVER_DATA *,

 CONFIG_TABLE *, ECB *);
void (*DriverEnableInterruptPtr) (DRIVER_DATA *);
BOOLEAN (*DriverDisableInterruptPtr) (DRIVER_DATA *, BOOLEAN);
void (*DriverISR2Ptr) (DRIVER_DATA *);
MEON ***DriverMessagesPtr;
MEON_STRING *HSMSpecVersionStringPtr;
ODISTAT (*DriverPriorityQueuePtr)
 (DRIVER_DATA*,MLID_CONFIG_TABLE *, ECB*);
BOOLEAN (*DriverDisableInterrupt2Ptr)(DRIVER_DATA*, BOOLEAN);

} DRIVER_PARM_BLOCK;

Table 3-1

Driver Parameter Block Field Descriptions

Head Type Description

DriverParameterSize UINT32 Set this variable to the size of the defined
Driver Parameter Block structure before
calling <CTSM>RegisterHSM . Since the
Driver Parameter Block format is strictly
defined and its size must remain constant,
the CMSM uses this field to screen for
invalid parameter blocks.
<CTSM>RegisterHSM will fail if this value is
incorrect.

DriverInitParmPointer C HSM_STACK * When the DriverInit routine is called, it
passes certain information needed by the
CMSM. DriverInit must set this field to point
to the struct (C HSM_STACK), which
contains information passed into it prior to
calling <CTSM>RegisterHSM .

DriverModuleHandle MODULE_HANDLE * The CMSM sets this value when the
DriverInit routine calls
<CTSM>RegisterHSM . This handle is used
to identify the NLM and is used by the
operating system support routines to access
and manage information about the NLM.
The C HSM’s DriverRemove routine needs
this value when it calls
CMSMDriverRemove .

DPB_Reserved0 void * This field is reserved and must be set to
NULL.
CHSM Data Structures and Variables 3-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

DriverAdapterPointer void * The CMSM sets this value when the
DriverInit routine calls
CMSMRegisterHardwareOptions . This
field is reserved for use by the CMSM.

DriverConfigTemplatePtr MLID_CONFIG_TABLE * Set this variable to point to the MLID’s
configuration table template before calling
<CTSM>RegisterHSM . (The configuration
table is described later in this chapter.)

DriverFirmwareSize UINT32 See the "Driver Firmware" section later in
this chapter.

DriverFirmwareBuffer void * See the "Driver Firmware“ section later in
this chapter.

DPB_Reserved1 UINT32 This field is reserved and must be set to 0.

DPB_Reserved2 void * This field is reserved and must be set to
NULL.

DPB_Reserved3 void * This field is reserved and must be set to
NULL.

DPB_Reserved4 void * This field is reserved and must be set to
NULL.

DriverAdapterDataSpaceSize UINT32 Set this field to the size of the driver adapter
data space template (described later in this
chapter) before calling
<CTSM>RegisterHSM .

DriverAdapterDataSpacePtr DRIVER_DATA * Set this field to point to the driver adapter
data space template (described later in this
chapter) before calling
<CTSM>RegisterHSM .

DriverStatisticsTableOffset UINT32 Set this variable to the offset of the driver
statistics table from the top of the driver
adapter data space template before calling
<CTSM>RegisterHSM . The statistics table
and template are described later in this
chapter.

Table 3-1

Driver Parameter Block Field Descriptions continued

Head Type Description
3-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

DriverEndOfChainFlag UINT32 Set this field to any nonzero value before
calling CMSMRegisterHardwareOptions if
the MLID supports shared interrupts and
wants to be placed at the end of the chain.
Set this field to 0 if the MLID wants to be at
the beginning of the chain. This field is used
only if the MS_SHARE_IRQ0_BIT bit is set
in the MLIDCFG_SharingFlags field of the
configuration table.

DriverSendWantsECBs UINT32 Before calling
CMSMRegisterHardwareOptions , set this
field to 1 if the DriverSend routine needs
ECBs rather than TCBs. Intelligent bus
master adapters that are designed to be
ECB-aware use this field. (For more
information on ECB-aware adapters, see
Appendix B, "Event Control Blocks (ECBs)".)

DriverMaxMulticast UINT32 Before calling
CMSMRegisterHardwareOptions , set this
field to the maximum number of multicast
addresses that the adapter can handle.
ETHERTSM.NLM, TOKENTSM.NLM, and
FDDITSM.NLM can accommodate an
almost unlimited number of multicast
addresses (limited only by available
memory). If a C HSM can handle unlimited
multicast addresses, set this field to -1. (Also
see definitions for
MF_SOFT_FILT_GRP_BIT and
MF_GRP_ADDR_SUP_BIT in the
configuration table MLIDCFG_Flags field
later in this chapter.)

Table 3-1

Driver Parameter Block Field Descriptions continued

Head Type Description
CHSM Data Structures and Variables 3-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

DriverNeedsBelow16Meg UINT32 MLIDs for bus master adapters and DMA
adapters must set this field to 1 before
calling <CTSM>RegisterHSM if the adapter
can only communicate with host memory
below 16 MB. If the system already has
more than 16 MB at the time the MLID loads,
setting this field to 1 informs the CMSM to
only allocate buffers, RCBs, TCBs, and
ECBs below the 16MB boundary.

If the MLID is loaded on a system that
initially has less than 16 MB of memory, but
will have more memory added later using
the server’s "REGISTER MEMORY“
command, you must use the "BELOW16"
keyword on the load command line to force
the CMSM to allocate memory below 16 MB.

DPB_Reserved5 void * This field is reserved and must be set to
NULL.

DPB_Reserved6 void * This field is reserved and must be set to
NULL.

DriverISRPtr void (*fn)() Set this field to point to the C HSM’s
DriverISR routine before calling
CMSMSetHardwareInterrupt . If DriverPoll
is used instead, set this field to NULL.

DriverMulticastChangePtr ODISTAT (*fn)() Set this field to point to the C HSM’s
DriverMulticastChange routine before
calling CMSMRegisterHardwareOptions .
If multicast addressing is not supported, set
this field to NULL.

DriverPollPtr void (*fn)() Set this field to point to the C HSM’s
DriverPoll routine before calling
CMSMEnablePolling . If this routine is not
used, set this field to NULL.

Table 3-1

Driver Parameter Block Field Descriptions continued

Head Type Description
3-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

DriverResetPtr ODISTAT (*fn)() Set this field to point to the C HSM’s
DriverReset routine before calling
CMSMRegisterHardwareOptions .

DriverSendPtr void (*fn)() Set this field to point to the C HSM’s
DriverSend routine before calling
CMSMRegisterHardwareOptions .

DriverShutdownPtr ODISTAT (*fn)() Set this field to point to the C HSM’s
DriverShutdown routine before calling
CMSMRegisterHardwareOptions .

DriverTxTimeoutPtr void (*fn)() If the HSM must access a hardware device
when the TSM has detected a transmit time-
out, set this field to a pointer to the C HSM
DriverTx Time-out routine before Options.
Most C HSMs set this field to NULL.

DriverPromiscuousChangePtr void (*fn)() Set this field to point to the C HSM’s
DriverPromiscuousChange routine before
calling CMSMRegisterHardwareOptions .
If promiscuous mode is not supported, set
this field to NULL.

DriverStatisticsChangePtr ODISTAT (*fn)() Pointer to a DriverStatisticsChange
routine that is called whenever the CMSM’s
control procedure function 1 (get MLID
statistics) is invoked. The
DriverStatisticsChange routine allows C
HSMs with intelligent adapters that keep
track of statistics to update the statistics
table only as needed.

If the adapter supports this feature, this field
must be set before calling
CMSMRegisterHardwareOptions . If not
used, set this field to NULL.

Table 3-1

Driver Parameter Block Field Descriptions continued

Head Type Description
CHSM Data Structures and Variables 3-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

DriverRxLookAheadChangePtr ODISTAT (*fn)() Pointer to a DriverRxLookAheadChange
routine that is called whenever the CMSM’s
control procedure function 9 (set look-ahead
size) is invoked. This routine allows C HSMs
with intelligent adapters to be informed
when they receive
MLIDCFG_LookAheadSize field in the
configuration table and the
CMSMMaxFrameHeaderSize variable
changes rather than constantly checking.

If the adapter supports this feature, this field
must be set before calling
CMSMRegisterHardwareOptions . If not
used, set this field to NULL.

DriverManagementPtr ODISTAT (*fn)() If an MLID accepts management requests
from outside NLMs (HMI or CSL), this field
contains a pointer to the
DriverManagement routine that is called
whenever the CMSM control procedure
management function is called. (See ODI
Supplement: Hub Management Interface for
more information.)

If used, this field must be set before calling
CMSMRegisterHardwareOptions . If not
supported, set this field to NULL.

DriverEnableInterruptPtr void (*fn)() Pointer to a DriverEnableInterrupt routine
that is called by the CMSM to enable
interrupts at the adapter.

DriverDisableInterruptPtr BOOLEAN (*fn)() Pointer to a DriverDisableInterrupt routine
that is called by the CMSM to disable
interrupts at the adapter.

DriverISR2Ptr void (*fn)() If the C HSM uses a secondary interrupt,
this value is a pointer to the C HSM’s
interrupt service routine for the second
interrupt. If the C HSM does not use two
interrupts, set this pointer to NULL.

Table 3-1

Driver Parameter Block Field Descriptions continued

Head Type Description
3-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

DriverMessagesPtr MEON *** Pointer to a pointer to an array of MEON
string pointers that is defined as
"*MEON_STRING DriverMessages", which
is filled in by the C HSM prior to calling
<CTSM>RegisterHSM . DriverMessagesPtr
is used by the message enabling macros for
handling messages. (For more information
on the message handling macros, see
Appendix A, "Language Enabling".)

HSMSpecVersionStringPtr MEON_STRING* Pointer to the version string that describes
the version of the HSM specification that the
HSM is written to. The string is defined by
Novell as "HSM_CSPEC_VERSION: 1.11".

DriverPriorityQueuePtr ODISTAT Pointer to the DriverPriorityQueueSupport
function called by the CTSM to handle HSM
priority packets when the normal send path
is congested. If the C HSM/adapter supports
this feature, this field must be set before
calling CMSMRegisterHardwareOptions .
If not used, set this field to NULL.

DriverDisableInterrupt2Ptr BOOLEAN (*fn)() Pointer to a DriverDisableInterrupt2
routine that is called by the CMSM to disable
the interrupts. This routine is required if the
C HSM supports a secondary interrupt, such
as when DriverISR2Ptr is not set to NULL or
when the MLIDCFG_Interrupt1 field in the
configuration table is not set to
UNUSED_INTERRUPT. If the C HSM does
not support a secondary interrupt, set this
field to NULL.

Table 3-1

Driver Parameter Block Field Descriptions continued

Head Type Description
CHSM Data Structures and Variables 3-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

arate
eated
e
all C

n
 data

rve
 are
Frame Data Space

When DriverInit calls <CTSM>RegisterHSM, the CMSM allocates a frame
data space and creates a copy of a configuration table template in it. A sep
frame data space containing a separate configuration table template is cr
for each installed frame type (illustrated in Figure 3.1). The CMSM and th
CTSM both pass pointers to the appropriate frame data space when they c
HSM procedures. Configuration tables can also be accessed through the
CMSMVirtualBoardLink array.

Figure 3-1

Frame and Adapter Data Space

Configuration Table

The configuration table is a structure defined by the ODI specification. It
contains configuration information about the MLID and the adapter. The C
HSM must provide the template for initializing the fields of the configuratio
table. The CMSM then creates a copy of this template in a separate frame
space for each installed frame type.

The configuration table fields are used primarily during initialization to rese
hardware resources. Fields that can be modified when the MLID is installed

Physical
Boards

Logical
Boards

Adapter Code Space

Configuration Table
Frame Data Space

Configuration Table
Frame Data Space

Adapter Data Space
Hardware Specific Vars

Statistics Table

Data and
Code Spaces

EII

SNAP

802.2

Configuration Table
Frame Data Space
3-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

that
em

 are
set to their default values before the driver parameters are parsed. Fields
cannot be modified when the MLID is installed are set to values that mark th
as invalid (usually 0 or -1, depending on the field).

CMSMParseDriverParameters collects information from the install
command line and the operator console. Once the configuration table fields
entered, the MLID uses CMSMRegisterHardwareOptions to reserve the
hardware resources.

Driver Configuration Table Template

typedef struct _MLID_CONFIG_TABLE_
{

MEON MLIDCFG_Signature[26];
UINT8 MLIDCFG_MajorVersion;
UINT8 MLIDCFG_MinorVersion;
NODE_ADDR MLIDCFG_NodeAddress;
UINT16 MLIDCFG_ModeFlags;
UINT16 MLIDCFG_BoardNumber;
UINT16 MLIDCFG_BoardInstance;
UINT32 MLIDCFG_MaxFrameSize;
UINT32 MLIDCFG_BestDataSize;
UINT32 MLIDCFG_WorstDataSize;
MEON_STRING *MLIDCFG_CardName;
MEON_STRING *MLIDCFG_ShortName;
MEON_STRING *MLIDCFG_FrameTypeString;
UINT16 MLIDCFG_Reserved0;
UINT16 MLIDCFG_FrameID;
UINT16 MLIDCFG_TransportTime;
UINT32 (*MLIDCFG_SourceRouting)

 (UINT32, void*, void**,boolean)
UINT16 MLIDCFG_LineSpeed;
UINT16 MLIDCFG_LookAheadSize;
UINT8 MLIDCFG_SGCount;
UINT8 MLIDCFG_Reserved1;
UINT16 MLIDCFG_PrioritySup;
void *MLIDCFG_Reserved2;
UINT8 MLIDCFG_DriverMajorVer;
UINT8 MLIDCFG_DriverMinorVer;
UINT16 MLIDCFG_Flags;
UINT16 MLIDCFG_SendRetries;
void *MLIDCFG_DriverLink;
UINT16 MLIDCFG_SharingFlags;
UINT16 MLIDCFG_Slot;
UINT16 MLIDCFG_IOPort0;
UINT16 MLIDCFG_IORange0;
CHSM Data Structures and Variables 3-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

UINT16 MLIDCFG_IOPort1;
UINT16 MLIDCFG_IORange1;
void *MLIDCFG_MemoryAddress0;
UINT16 MLIDCFG_MemorySize0;
void *MLIDCFG_MemoryAddress1;
UINT16 MLIDCFG_MemorySize1;
UINT8 MLIDCFG_Interrupt0;
UINT8 MLIDCFG_Interrupt1;
UINT8 MLIDCFG_DMALine0;
UINT8 MLIDCFG_DMALine1;
void *MLIDCFG_ResourceTag;
void *MLIDCFG_Config;
void *MLIDCFG_CommandString;
MEON_STRING MLIDCFG_LogicalName[18];
void *MLIDCFG_LinearMemory0;
void *MLIDCFG_LinearMemory1;
UINT16 MLIDCFG_ChannelNumber;
void *MLIDCFG_DBusTag;
UINT8 MLIDCFG_DIOConfigMajorVer;
UINT8 MLIDCFG_DIOConfigMinorVer;

} MLID_CONFIG_TABLE;

Table 3-2

Driver Configuration Table Field Descriptions

Name Type Description

MLIDCFG_Signature MEON [26] String that indicates the beginning of the configuration
table. The string is "HardwareDriverMLID" followed by
exactly eight spaces. (Required)

MLIDCFG_MajorVersion UINT8 The major version number of the configuration table.
The current major version number is 1. (Required)

MLIDCFG_MinorVersion UINT8 The minor version number of the configuration table.
The current minor version number is 21. (Required)
3-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

MLIDCFG_NodeAddress NODE_ADDR When DriverInit calls <CTSM>RegisterHSM , the
CMSM fills these bytes with 0xFF, then checks the
command line for a node address override. If an
override address is found, the CMSM places the
physical layer format of the address in this field.

After the MLID calls
CMSMRegisterHardwareOptions , it must check this
field for an override.

If these bytes are not all 0xFF, an override occurred
and the C HSM sets the physical board’s address to
the value in this field. If there is not an override, the C
HSM must place the node address that was read from
the hardware into this field.

On Token-Ring adapters, if the MLID has been loaded
as LSB, the CMSM will change
MLIDCFG_NodeAddress to a canonical address.

After the C HSM calls CMSMRegisterMLID , the
CTSM places the physical layer format of the node
address into the CMSMPhysNodeAddress variable
and sets the appropriate MLIDCFG_ModeFlag bits.
This physical address can be in canonical or
noncanonical form. (For more information, refer to
MLIDCFG_ModeFlags, CMSMPhysNodeAddress,
and ODI Specification Supplement: Canonical and
Noncanonical Addressing.)

MLIDCFG_ModeFlags UINT16 See MLIDCFG_ModeFlags field description (Table
3.3).

MLIDCFG_BoardNumber UINT16 The CMSM sets this field to the board number
assigned by the LSL when DriverInit calls
CMSMRegisterMLID .

Table 3-2

Driver Configuration Table Field Descriptions continued

Name Type Description
CHSM Data Structures and Variables 3-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

MLIDCFG_BoardInstance UINT16 The CMSM sets this field when the DriverInit routine
calls CMSMRegisterHardwareOptions . If the C
HSM is driving two adapters, all logical boards
associated with the first adapter will have a value of 1
and all the logical boards associated with the second
adapter will have a value of 2.

Note: Each controller on a multichannel adapter is
treated as a separate adapter.

MLIDCFG_MaxFrameSize UINT32 Largest possible packet size that can be transmitted
or received by the C HSM. This value includes all
headers. The C HSM sets this value.

The CMSM can reduce this value, depending on
platform specifics, when the C HSM’s DriverInit
routine calls <CTSM>RegisterHSM .

The C HSM can reduce this value prior to calling
CMSMRegisterMLID .

Ethernet C HSMs set this field to 1514.

FDDI C HSMs set this value to 4491.

Token-Ring C HSMs must not set this value greater
than the maximum size supported by the Token-Ring
board configuration (4Mbit Token-Ring sets this field
to 4464; 16Mbit Token-Ring may set this field to
17954. See Table 3-6 for more detail.

MLIDCFG_BestDataSize UINT32 The CTSM sets this field during execution of
CMSMRegisterMLID . The CTSM subtracts the length
of the smallest media header(s) from the value in the
MLIDCFG_MaxFrameSize field.

For example, an Ethernet_II MLID sets this field to
1500 decimal (1514 - 14 [MAC] = 1500). A Token-Ring
MLID sets this field to MLIDCFG_MaxFrameSize - 14
[MAC] - 3 [802.2 UI].

Table 3-2

Driver Configuration Table Field Descriptions continued

Name Type Description
3-14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

MLIDCFG_WorstDataSize UINT32 The CTSM sets this field during execution of
CMSMRegisterMLID . The CMSM subtracts the
length of the largest media header(s) from the
MLIDCFG_MaxFrameSize field.

For example, a Token-Ring MLID sets this field to
MLIDCFG_MaxFrameSize - 14 [MAC] - 30 [source
routing] - 4 [802.2 SI]. An Ethernet_II MLID sets this
field to 1500:

MLIDCFG - MAXFRAMESIZE(1514) -
14[MAC] = 1500

MLIDCFG_CardName MEON_STRING * The C HSM may set this field to point to a
NULL-terminated, MEON string that is identical to the
description string in the linker definition file (see
Appendix C: Platform Specific Information).

For example: "Novell Ethernet NE2000", 0

If this field is initialized to NULL, the CMSM will extract
the description string from the NLM header (derived
from the linker definition file) when the C HSM’s
DriverInit routine calls <CTSM>RegisterHSM . This
way, only one description string must be maintained.

MLIDCFG_ShortName MEON_STRING * The C HSM must set this field to point to a
NULL-terminated, MEON string that describes the
adapter in eight bytes or less.

For example: "NE2000", 0

The string is usually the name of the <C HSM>.LAN
file.

MLIDCFG_FrameTypeString MEON_STRING * This field holds a pointer to a NULL-terminated,
MEON string that describes the frame and media type
being used by this MLID. (See ODI Specification
Supplement: Frame Types and Protocol IDs for
possible frame types.) The CMSM sets this field.

MLIDCFG_Reserved0 UINT16 This field is reserved for future use and must be set to
0.

Table 3-2

Driver Configuration Table Field Descriptions continued

Name Type Description
CHSM Data Structures and Variables 3-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

MLIDCFG_FrameID UINT16 The CMSM sets this field when the DriverInit routine
calls CMSMRegisterHardwareOptions . It contains
the frame type ID number.

For more information on frame types, see ODI
Supplement: Frame Types and Protocol IDs.

MLIDCFG_TransportTime UINT16 Number of milliseconds it takes the adapter to
transmit a 586-byte packet. Most C HSMs set this field
to 1. This field cannot be set to 0.

MLIDCFG_SourceRouting UINT32 (*fn()) Pointer to a source routing module, such as
SROUTE.NLM, used by a Token-Ring or FDDI MLID.

CTSMs that do not use source routing set this field to
NULL and do not modify it.

See the ODI Supplement: Source Routing for a
discussion of dynamic source routing.

MLIDCFG_LineSpeed UINT16 The speed of the topology; set by the C HSM. This
value is normally specified in megabits per second
(Mbps). If the line speed is less than 1 Mbps or if it is
a fractional number, the value of this field can be
defined in kilobits per second (Kbps) by setting the
most significant bit to 1. This field is undefined if it is
set to 0.

For example, if the speed of the line MLID is 10 Mbps
(Ethernet for example) put 10 (decimal) in this field.

MLIDCFG_LookAheadSize UINT16 The amount of data required by a protocol stack when
previewing received packets; the default is 18 bytes.
The CTSM sets this variable. The variable,
CMSMMaxFrameHeaderSize (see Chapter 4: CMSM/
CTSM Data Structures and Variables), is equal to this
value plus the maximum media header size. This size
can be dynamically changed; its maximum value is
128 bytes.

Table 3-2

Driver Configuration Table Field Descriptions continued

Name Type Description
3-16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

MLIDCFG_SGCount UINT8 The maximum number of scatter/gather elements the
adapter is capable of handling. The C HSM sets this
variable. This field is only valid if the
MM_FRAGS_PHYS_BIT bit in the
MLIDCFG_ModeFlags field is set. The minimum
value is 2 (1 for the MAC header and 1 for data). The
maximum value is 17 (1 for the MAC header and 16 for
data).

MLIDCFG_Reserved1 UINT8 Reserved; must be set to 0.

MLIDCFG_PrioritySup UINT16 The number of priority levels that the C HSM can
handle. This field has a maximum of 7 priorities (1-7).
Zero indicates no priority packet support. Therefore,
the C HSM can set this field to a value of 0 through 7.

MLIDCFG_Reserved2 void * Reserved; must be set to 0.

MLIDCFG_DriverMajorVer UINT8 The current revision level of the C HSM; matches the
revision level displayed by the C HSM. The C HSM
sets this variable. For example, if the C HSM’s current
major version is 2, this field’s value is 2. If this field is
initialized to NULL, the CMSM extracts the major
version from the NLM header, which is derived from
the linker definition file when the C HSM’s DriverInit
function calls <CTSM>RegisterHSM . This ensures
that only one version must be maintained.

MLIDCFG_DriverMinorVer UINT8 The current revision level of the C HSM; matches the
revision level displayed by the C HSM. The C HSM
sets this variable. For example, if the C HSM’s current
minor version is .32, this field’s value is 32. If this field
is initialized to NULL, the CMSM extracts the minor
version from the NLM header, which is derived from
the linker definition file when the C HSM’s DriverInit
function calls <CTSM>RegisterHSM . This ensures
that only one version must be maintained.

MLIDCFG_Flags UINT16 See the MLIDCFG_Flags field description (Table 3.4).

Table 3-2

Driver Configuration Table Field Descriptions continued

Name Type Description
CHSM Data Structures and Variables 3-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

MLIDCFG_SendRetries UINT16 The number of times the C HSM tries to resend a
packet before aborting the transmission. This count
may be overwritten at load time. The C HSM sets this
variable. (See RETRIES in the "Load Keywords and
Parameters Descriptions" table in Appendix C,
"Platform Specific Information".)

MLIDCFG_DriverLink void * NULL; not modified by the C HSM.

MLIDCFG_SharingFlags UINT16 The C HSM sets this variable. See the
MLIDCFG_SharingFlags field description (Table 3.5).

MLIDCFG_Slot UINT16 For Micro Channel, EISA, PCI, PC Card, and other
buses which allow for the identification of the location
of an adapter, this field contains the Hardware
Instance Number (HIN). The HIN is a system-wide,
unique handle for a device, which is returned by
CMSMGetInstanceNumber after calling
CMSMSearchAdapter . This value normally
corresponds to the number silk-screened on the
motherboard or stamped on the chassis of the
computer. The instances are assigned a unique value
in the following cases:

Integrated motherboard devices
PCI BIOS v2.0 devices
PCI BIOS v2.1 adapters with multiple devices or
functions
PnP ISA devices
Conflicts between physical slot numbers

If this field is not used, it must be set to
UNUSED_SLOT.

MLIDCFG_IOPort0 UINT16 Primary base I/O port. This field is initialized to the
adapter’s default base I/O port. If this field is not used,
it is set to UNUSED_IO_PORT. The C HSM sets this
variable, but it may be changed during a call to
CMSMParseDriverParameters .

Table 3-2

Driver Configuration Table Field Descriptions continued

Name Type Description
3-18 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

MLIDCFG_IORange0 UINT16 Number of UINT8 I/O ports starting at
MLIDCFG_IOPort0. If this field is not used, it is set to
UNUSED_IO_RANGE. The C HSM sets this variable,
but it may be changed during a call to
CMSMParseDriverParameters .

MLIDCFG_IOPort1 UINT16 Secondary base I/O port. This field is initialized to the
adapter’s default base I/O port. If this field is not used,
it is set to UNUSED_IO_PORT. The C HSM sets this
variable, but it may be changed during a call to
CMSMParseDriverParameters .

MLIDCFG_IORange1 UINT16 Number of UINT8 I/O ports starting at
MLIDCFG_IOPort1. If this field is not used, it is set to
UNUSED_IO_RANGE. The C HSM sets this variable,
but it may be changed during a call to
CMSMParseDriverParameters .

MLIDCFG_MemoryAddress0 void * This field is initialized to the adapter’s default base
memory address. If the adapter does not use, or
define, shared RAM or ROM, set this field to
UNUSED_MEMORY_ADDRESS. This value is an
absolute physical address. On Intel processors, for
example, if a physical adapter’s RAM is located at
C000:0, the value in this field will be C0000. The C
HSM sets this variable, but it may be changed during
a call to CMSMParseDriverParameters .

MLIDCFG_MemorySize0 UINT16 If MS_MEM_PAGE_BIT in MLIDCFG_SharingFlags is
set, this field defines the number of pages of memory
decoded at MLIDCFG_MemoryAddress0. If
MS_MEM_PAGE_BIT in MLIDCFG_SharingFlags is
clear, this field defines the number of paragraphs (16
bytes) of memory decoded at
MLIDCFG_MemoryAddress0. If
MLIDCFG_MemoryAddress0 is not defined, set this
field to UNUSED_MEMORY_SIZE.

Note: The size of a page of memory is determined by
the processor for which this code is compiled on, such
as Intel 4K, PowerPC 4K, Alpha 8K.

Table 3-2

Driver Configuration Table Field Descriptions continued

Name Type Description
CHSM Data Structures and Variables 3-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

MLIDCFG_MemoryAddress1 void * This field allows the MLID to define a second memory
address range for use by the MLID’s adapter. For
example, MLIDCFG_MemoryAddress0 could define
the starting address of the adapter’s RAM, and this
field could define the starting address of the adapter’s
ROM. Set this field to
UNUSED_MEMORY_ADDRESS if the adapter does
not define a second memory range. The C HSM sets
this variable, but it may be changed during a call to
CMSMParseDriverParameters .

MLIDCFG_MemorySize1 UINT16 If MS_MEM_PAGE_BIT in MLIDCGFG_SharingFlags
is set, this field defines the number of pages of
memory decoded at MLIDCFG_MemoryAddress1. If
MS_MEM_PAGE_BIT in MLIDCFG_SharingFlags is
clear, this field defines the number of paragraphs (16
bytes) of memory decoded at
MLIDCFG_MemoryAddress1. If
MLIDCFG_MemoryAddress1 is not defined, set this
field to UNUSED_MEMORY_SIZE.

Note: The size of a page of memory is determined by
the processor for which this code is complied on, such
as Intel 4K, PowerPC 4K, Alpha 8K.

MLIDCFG_Interrupt0 UINT8 The adapter’s default base IRQ number. If the adapter
does not use an interrupt line, set this field to
UNUSED_INTERRUPT. If the MLID’s adapter
supports IRQ 2 or 9, the MLID sets the value to be
consistent with the adapter’s documentation. The C
HSM sets this variable, but it may be changed during
a call to CMSMParseDriverParameters .

For example, if the adapter’s documentation specifies
the default jumper setting as IRQ2, set this field to 2.
If the default jumper setting is IRQ9, set this field to 9.

MLIDCFG_Interrupt1 UINT8 The adapter’s second IRQ number. Set this field to
UNUSED_INTERRUPT if unused. The C HSM sets
this variable, but it may be changed during a call to
CMSMParseDriverParameters .

Table 3-2

Driver Configuration Table Field Descriptions continued

Name Type Description
3-20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

MLIDCFG_DMALine0 UINT8 Initialized to the adapter’s default DMA channel
number. If the adapter does not use a DMA channel,
set this field to UNUSED_DMA_LINE (unused). The C
HSM sets this variable, but it may be changed during
a call to CMSMParseDriverParameters .

MLIDCFG_DMALine1 UINT8 Used by the MLID if the MLID’s adapter uses a second
DMA channel. Set this field to UNUSED_DMA_LINE
if it is not needed. The C HSM sets this variable, but it
may be changed during a call to
CMSMParseDriverParameters .

MLIDCFG_ResourceTag void * Pointer to a resource tag; set by the CMSM.

MLIDCFG_Config void * Pointer to the LSL’s copy of the configuration table. C
HSMs do not use this field.

MLIDCFG_CommandString void * This field is set by the C MSM to point to a structure
containing two fields. The first field is a forward link to
the next structure if any. The second field is a pointer
to a null terminated string containing the parameters
entered on the command line. Normally, there is only
one node in the linked list, but if there are more than
one, the command line is the concatenation of all the
nodes. Bits 9 and 10 of the MLIDSharingFlags fields
are used in conjunction with this field.

MLIDCFG_LogicalName[18] MEON_STRING NULL terminated logical name of the MLID if a name
exists. C HSMs do not use this field.

MLIDCFG_LinearMemory0 void * The address in MLIDCFG_MemoryAddress0 is
converted into the correct address for the C HSM and
is stored in this field when
CMSMRegisterHardwareOptions is called. Due to
address mapping on platforms with varying
processors or multiple buses, the address in
MLIDCFG_MemoryAddress0 might not work for the C
HSM. C HSMs must always use the address in this
field to access an adapter’s memory.

Table 3-2

Driver Configuration Table Field Descriptions continued

Name Type Description
CHSM Data Structures and Variables 3-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 this
MLIDCFG_ModeFlags Field

This section describes the bits of the MLIDCFG_ModeFlags field in the
configuration table. Figure 3-2 shows the reserved bits and their values for
field.

MLIDCFG_LinearMemory1 void * The address in MLIDCFG_MemoryAddress1 is
converted into the correct address for the C HSM and
is stored in this field when
CMSMRegisterHardwareOptions is called. Due to
address mapping on platforms with varying
processors or multiple buses, the address in
MLIDCFG_MemoryAddress1 might not work for the C
HSM. C HSMs must always use the address in this
field to access an adapter’s memory.

MLIDCFG_ChannelNumber UINT16 The channel number of the LAN adapter--used with
multichannel adapters only. The channel number can
be specified when the MLID is installed, using the
"channel=#" keyword (where # is any value greater
than 0). Set this field to 0 if multichannel adapters are
not used. The C HSM sets this variable, but it may be
changed during a call to
CMSMParseDriverParameters .

MLIDCFG_DBusTag void * Pointer to an architechure-dependent value, which
specifies the bus on which the adapter is found. The
value placed in this field is returned by
CMSMSearchAdapter unless the board is Legacy
ISA, in which case it is set to zero. This field must be
set before calling CMSMRegisterHardwareOptions .

MLIDCFG_DIOConfigMajorVer UINT8 The current major revision level of the IO_CONFIG
structure (the bottom half of MLID_CONFIG_TABLE
structure). The CMSM sets this variable to 1.

MLIDCFG_DIOConfigMinorVer UINT8 The current minor revision level of the IO_CONFIG
structure (the bottom half of MLID_CONFIG_TABLE
structure). The CMSM sets this variable to 0.

Table 3-2

Driver Configuration Table Field Descriptions continued

Name Type Description
3-22 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Figure 3-2

MLIDCFG_ModeFlags Field Default Values

Table 3-3 describes the non-reserved bit values for the MLIDCFG_ModeFlags
field.

Table 3-3

MLIDCFG_ModeFlags Bits Description

Bit
#

Name Description

2 MM_DEPENDABLE_BIT This bit has been rendered obsolete by the NetWare Link
Services Protocol. We recommend that this bit always be set to
0. Previously, this bit was used to limit the frequency of IPX RIP/
SAP updates when operating over reliable delivery, low
bandwidth, Wide Area Network (WAN) data links. When set to 1
by a WAN C HSM, this bit caused IPX to suppress the normal,
periodic, RIP/SAP updates, unless the route or service
databases had changed. However, use of this bit to suppress
updates sometimes resulted in IPX route or service loss.

3 MM_MULTICAST_BIT The C HSM sets this bit if it supports multicast addressing.
Multicast support is required for all media that have multicast
capability.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0

0

00
CHSM Data Structures and Variables 3-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

4 MM_CSL_COMPLIANT_BIT The C HSM sets this bit if the supported data link protocol
requires connection management through the Call Support
Layer (CSL) interface. Typical Wide Area Network (WAN) data
link protocols, such as Frame Relay, PPP, and X.25, are
connection oriented and rely upon network layer protocol (IPX,
IP) interaction to establish, maintain, and terminate connections
to remote peers. The CSL provides extensions to ODI that allow
this connection management interaction between network and
data link layer protocols. This bit must not be set by
connectionless data link protocols, such as Token-Ring and
Ethernet. For more information on the CSL and WAN C HSM
interfaces, see NetWare Wide Area Network Open Data-Link
Interface Specification.

5 MM_PREFILLED_ECB_BIT Set this bit if the MLID always supplies prefilled LSL ECBs in the
LkAhd_PreFilledECB field of the LOOKAHEAD structure.

6 MM_RAW_SENDS_BIT The CTSM sets this bit to indicate that raw sends are supported.
Refer to the TCB section of Chapter 4: CMSM/CTSM Data
Structures and Variables for more information on raw sends.

7 MM_DATA_SZ_UNKNOWN_BIT Set this bit if the C HSM is capable of setting the
LkAhd_FrameDataSize field of the LOOKAHEAD structure to a
-1 (frame size and/or receive status unknown)—for example,
pipelined LAN adapter.

8 MM_SMP_BIT Set by the CMSM if the CMSM and CTSM support symmetrical
multiprocessing (SMP).

10 MM_FRAG_RECEIVES_BIT The C HSM must set this bit if it can handle fragmented RCBs.
(RCBs are described in Chapter 4, "CMSM/CTSM Data
Structures and Variables".)

11 MM_C_HSM_BIT This bit distinguishes an HSM written to this specification from
one written to the assembly language specification. If this bit is
set, the HSM is written to this specification. If this bit is clear, the
HSM is written to the assembly language specification.

Table 3-3

MLIDCFG_ModeFlags Bits Description continued

Bit
#

Name Description
3-24 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

12 MM_FRAGS_PHYS_BIT The C HSM sets this bit if it expects the following from the CTSM:

1) For TCBs, fragment pointers will all contain physical
addresses pointing to locked, contiguous buffers.

2) For ECB-aware adapters and for send ECBs, pointers to the
ECB can be converted to a physical address and return
physical and logical addresses to the ECB.

3) <CTSM>ProcessGetRCB will return an RCB with locked,
contiguous, physical addresses in the fragment pointer.

For more information on using this bit, see ‘‘Adapters that Need
Physical Addresses“ in Chapter 5, "C HSM Functions".

13 MM_PROMISCUOUS_BIT The C HSM must set this bit if it supports promiscuous mode.

Table 3-3

MLIDCFG_ModeFlags Bits Description continued

Bit
#

Name Description
CHSM Data Structures and Variables 3-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

lized

 this
All bits that are not listed in the above table are reserved and must be initia
to 0.

MLIDCFG_Flags Field

This section describes the bits of the MLIDCFG_Flags field in the
configuration table. Figure 3-3 shows the reserved bits and their values for
field.

14
15

MM_NONCANONICAL_BIT
MM__PHYS_NODE_ADDR_BIT

These bits indicate whether the MLIDCFG_NodeAddress field of
the configuration table contains a canonical or noncanonical
address. The CMSM controls these bits.

Bit 15 indicates whether the node address format can be
configured. If this bit is set, the format can be configured and the
C HSM uses the CMSMPhysNodeAddress variable instead of
the configuration table MLIDCFG_NodeAddress to obtain the
physical layer node address. (For NetWare versions later than
3.11, the CMSM always sets bit 15.)

Bit 14 indicates whether MLIDCFG_NodeAddress contains the
canonical or noncanonical form of the node address. The state
of bit 14 is only defined when bit 15 is set.

The bit 15 and 14 combinations are:

00 MLIDCFG_NodeAddress format is unspecified. The
node address is assumed to be in the physical layer’s
native format; CMSMPhysNodeAddress is not used.

01 This is an illegal value and must not be used.

10 MLIDCFG_NodeAddress is canonical; use
CMSMPhysNodeAddress .

11 MLIDCFG_NodeAddress is noncanonical; use
CMSMPhysNodeAddress .

Also see MLIDCFG_NodeAddress, CMSMPhysNodeAddress ,
and ODI Specification Supplement: Canonical and
Noncanonical Addressing.

Table 3-3

MLIDCFG_ModeFlags Bits Description continued

Bit
#

Name Description
3-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Figure 3-3

MLIDCFG_Flags Field

Table 3-4 describes the non-reserved bit values for the MLIDCFG_Flags field

Table 3-4

MLIDCFG_Flags Bits Description

Bit # Name Description

8 MF_HUB_MANAGEMENT_BIT Set to 1 if the C HSM supports hub management.

9 MF_SOFT_FILT_GRP_BIT See description below for bit 10.

10 MF_GRP_ADDR_SUP_BIT Bits 9 and 10 indicate different support mechanisms for
multicast filtering. These bits are only valid if bit 3 of the
MModeFlags is set, indicating that the C HSM supports
multicast addressing.

The C HSM sets bit 10 if it has specialized adapter hardware
(such as hardware that utilizes CAM memory).

When the C HSM sets bit 10; and its default is functional
addressing, but it also supports group addressing; it receives
both functional addresses and group addresses.

The state of bit 9 is defined only if bit 10 is set. Bit 9 is set if the
adapter completely filters group addresses and the CTSM does
not need to perform any checking. The C HSM can dynamically
set and clear bit 9. For example, if the adapter utilizes CAM
memory, but has temporarily run out memory, the CTSM must
temporarily filter the group addresses. In this case, the C HSM
must reset bit 9.

Bit 9 is not used by ECB aware HSMs. ECB aware HSMs must
do their own filtering of multicast addresses.

15

0

14

0

13

0

12 11 10 9 8 7

0

6

0

5

0

4

0

3

0

2

0

1

0

0

0

CHSM Data Structures and Variables 3-27

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

10/9 Bits 10 and 9 combinations are as follows:

00 The format of the multicast address defaults to that of
the topology:

Ethernet => Group Addressing (Multicast
Addressing)

Token-Ring => Group Addressing and Functional
Addressing

FDDI => Group Addressing

01 Illegal value which must not occur.

10 Group addressing is supported by the specialized
adapter hardware, but the TSM filters the addresses.

11 Group addressing is supported by the specialized
adapter hardware, and the TSM is not required to
filter the addresses.

See also ODI Specification Supplement: Canonical and
Noncanonical Addressing for information regarding octet bit
reversal.

11 MF_RECONFIG_BIT This bit is used by the Novell Driver Developer’s Guide kit. When
set, it indicates to the C HSM that indirect (file based)
configuration information for the associated interface instance
may have changed. This bit can be set by any caller prior to
calling the DriverReset function. It is to be examined by
DriverReset and cleared upon completion. This bit has no
meaning for C HSMs which do not support use of indirect (file
based) configuration information.

12 MF_PRIORITYSUP_BIT The C HSM sets this bit during initialization if the following
conditions are met:

(1) The C HSM has provided a priority queue service support
routine (such as, DriverPriorityQueueSupport).

(2) The C HSM has set the MLIDCFG_PrioritySup field to
something other than 0.

Note: The C HSM may set/clear this bit to enable/disable priority
support as needed.

Table 3-4

MLIDCFG_Flags Bits Description

Bit # Name Description
3-28 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 this
All bits that are not listed in the previous table are reserved and must be
initialized to 0.

MLIDCFG_SharingFlags Field

This section describes the bits of the MLIDCFG_SharingFlags field in the
configuration table. Figure 3-4 shows the reserved bits and their values for
field.

Figure 3-4

MLID_SharingFlags Field Default Values

Table 3-5 describes the non-reserved bit values for the
MLIDCFG_SharingFlags field.

Table 3-5

MLIDCFG_SharingFlags Bits Description

Bit # Name Description

0 MS_SHUTDOWN_BIT Set to 1 if the logical board is currently shut down. This bit should
also be set during DriverInit until the driver/adapter is fully
functional and ready to send and receive packets.

1 MS_SHARE_PORT0_BIT Set to 1 if the adapter can share I/O port 0.

2 MS_SHARE_PORT1_BIT Set to 1 if the adapter can share I/O port 1.

3 MS_SHARE_MEMORY0_BIT Set to 1 if the adapter can share memory range 0.

4 MS_SHARE_MEMORY1_BIT Set to 1 if the adapter can share memory range 1.

5 MS_SHARE_IRQ0_BIT Set to 1 if the adapter can share interrupt 0.

6 MS_SHARE_IRQ1_BIT Set to 1 if the adapter can share interrupt 1.

7 MS_SHARE_DMA0_BIT Set to 1 if the adapter can share DMA channel 0.

15 14

0

13

0

12

0

11

0

10 9 8 7 6 5 4 3 2 1 0
CHSM Data Structures and Variables 3-29

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

lized
All bits that are not listed in the above table are reserved and must be initia
to 0.

Maximum Packet Size

The MLIDCFG_MaxFrameSize field of the configuration table is set to the
LSL’s maximum ECB buffer size during <CTSM>RegisterHSM. The C HSM
can lower this value prior to calling CMSMRegisterMLID . During this
procedure, the CTSM alters the size if the topology requires a smaller
maximum packet size. The CTSM also sets MLIDCFG_BestDataSize and
MLIDCFG_WorstDataSize. After CMSMRegisterMLID returns, MLIDs for

8 MS_SHARE_DMA1_BIT Set to 1 if the adapter can share DMA channel 1.

10 MS_HAS_CMD_INFO_BIT If this bit is zero, the command line used by some install
programs will be created using the system’s IOCONFIG
structure and possibly (as controlled by bit 9) the content of the
users command line. This command line will include an entry for
every field that is used in the IOCONFIG structure. Setting this
bit prevents the install program from creating a command line
using the IOCONFIG structure; instead, it simply uses the user’s
command line and ignores the state of bit 9.

9 MS_NO_DEFAULT_INFO_BIT If this bit is set and bit 10 is not set, some install programs will
merge the contents of the user’s command line with the system’s
IOCONFIG structure. If it is not set, then only the system’s
IOCONFIG structure will be used to create the command line.
The C MSM sets this bit if the command line passed to
DriverInit is not empty.

15 MS_MEM_PAGE_BIT When set, this bit signifies that the values in fields
MLIDCFG_MemorySize0 and MLIDCFG_MemorySize1 contain
the number of pages of memory used by the adapter. For
example, Intel platforms allow 4K pages with a maximum of 256
megabytes of shared memory address used by an adapter.

When clear, this bit signifies that the values in fields
MLIDCFG_MemorySize0 and MLIDCFG_MemorySize1 contain
the number of paragraphs (16 bytes) of memory used by the
adapter.

Table 3-5

MLIDCFG_SharingFlags Bits Description

Bit # Name Description
3-30 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

. The
intelligent adapters can pass the maximum size to the hardware if required
following table shows how these values are determined.

Table 3-6

Frame Types Versus Size Fields

Frame Type MLIDCFG_MaxFrameSize
(the lesser of the two
values)

MLIDCFG_BestDataSize MLIDCFG_WorstDataSize

Ethernet
802.3

Maximum ECB buffer
size or 1514

MLIDCFG_MaxFrameSize - 14 MLIDCFG_MaxFrameSize - 14

Ethernet
802.2

Maximum ECB buffer
size or1514

MLIDCFG_MaxFrameSize - 17 MLIDCFG_MaxFrameSize - 18

Ethernet II Maximum ECB buffer
size or 1514

MLIDCFG_MaxFrameSize - 14 MLIDCFG_MaxFrameSize - 14

Ethernet
SNAP

Maximum ECB buffer
size or 1514

MLIDCFG_MaxFrameSize - 22 MLIDCFG_MaxFrameSize - 22

Token-Ring
802.2

Maximum ECB buffer
size or the maximum size
the adapter can handle

MLIDCFG_MaxFrameSize - 17 MLIDCFG_MaxFrameSize - 48

Token-Ring
SNAP

Maximum ECB buffer
size or the maximum size
the adapter can handle

MLIDCFG_MaxFrameSize - 22 MLIDCFG_MaxFrameSize - 52

FDDI 802.2 Maximum ECB buffer
size or 4491

MLIDCFG_MaxFrameSize - 16 MLIDCFG_MaxFrameSize - 47

FDDI SNAP Maximum ECB buffer
size or 4491

MLIDCFG_MaxFrameSize - 21 MLIDCFG_MaxFrameSize - 51
CHSM Data Structures and Variables 3-31

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

pter
as

ader

ader
Example

If the maximum ECB buffer size equals 4096 bytes and the Token-Ring ada
can handle 8192 bytes, then the Token-Ring 802.2 values are calculated
follows:

• MLIDCFG_BestDataSize

The maximum packet size minus the headers if the source routing he
is not included.

= MLIDCFG_MaxFrameSize (4096) - MAC header (14) - 802.2 Type I
LLC header (3)

= 4079

• MLIDCFG_WorstDataSize

The maximum packet size minus the headers if the source routing he
is included.

= MLIDCFG_MaxFrameSize (4096) - MAC header (14) - 802.2 Type II
LLC header (4) - Source Routing header (30)

= 4048
3-32 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

are-

are-
ble

ATA
ical
s the
Driver Adapter Data Space

The C HSM must define and initialize a structure containing certain hardw
related and statistical information specific to the adapter. This structure is
called DRIVER_DATA and must contain the statistics table and any hardw
specific fields needed in order to drive the physical board. The statistics ta
is defined by the ODI specification.

DRIVER_DATA must contain: the MLID_STATS_TABLE structure, all the
generic, media, and custom STAT_TABLE_ENTRY structures, and all of the
generic, media, and custom counter variables.

When the DriverInit routine calls CMSMRegisterHardwareOptions, the
CMSM allocates the adapter data space and creates a copy of DRIVER_D
in this area. There is only one adapter data space allocated for each phys
board, regardless of the number of frame types supported. Figure 3.2 show
relationship between the frame and adapter data space.

Figure 3-5

Driver Frame and Adapter Data Space

Physical
Boards

Logical
Boards

Adapter Code Space

Configuration Table
Frame Data Space

Configuration Table
Frame Data Space

Adapter Data Space
Hardware Specific Vars

Statistics Table

Data and
Code Spaces

EII

SNAP

802.2

Configuration Table
Frame Data Space
CHSM Data Structures and Variables 3-33

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

o,
e C
is

Specification Version String

In order to identify which version of this specification a C HSM conforms t
a version string (the "specification version string") must be embedded in th
HSM. The specification version string number (1.11 for this specification)
the actual version number of the specification. The following is the
specification version string for this specification; it must be added to the C
HSM where the global variable declarations are made, exactly as shown:

MEON_STRING C HSMSPEC[] = “HSM_CSPEC_VERSION: 1.11";

The pointer in the DriverParameterBlock structure field,
HSMSpecVersionStringPtr, must point to this string.

One space is required between the colon and the 1.
3-34 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ters
t be
Driver Statistics Table

The statistics table contains various diagnostic counters. All statistics coun
listed must be present in the table, but only those marked mandatory mus
supported. These counters can be grouped into the following categories.

• Generic Statistics Counters

• Media Specific Counters

• Custom Statistics Counters

When the statistics counters reach their maximum value, they wrap back to their
beginning value. Each category of counters must be grouped in memory
contiguously as shown in the examples. They must be ordered as described in
the following tables. The CMSM/CTSM fix the string pointers for Generic and
Media Specific counters during CMSMRegisterMLID .

STAT_TABLE_ENTRY Structure

typedef struct _STAT_TABLE_ENTRY_

{

UINT32 StatUseFlag;

void *StatCounter;

MEON_STRING *StatString;

} STAT_TABLE_ENTRY;

Field Descriptions

StatUseFlag

The permissible values of StatUseFlag are defined as:

ODI_STAT_UNUSED StatCounter is not in use.

ODI_STAT_UINT32 StatCounter is a pointer to a UINT32
counter.

ODI_STAT_UINT64 StatCounter is a pointer to a UINT64
counter.

ODI_STAT_MEON_STRING StatCounter is a pointer to MEON
string.
CHSM Data Structures and Variables 3-35

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

StatCounter

As defined by the StatUseFlag.

StatString

Pointer to a NULL-terminated MEON string describing the statistics
counter.

Statistics Table Structure

typedef struct _MLID_STATS_TABLE_

{

UINT16 MStatTableMajorVer;

UINT16 MStatTableMinorVer;

UINT32 MNumGenericCounters;

STAT_TABLE_ENTRY (*MGenericCountsPts)[];

UINT32 MNumMediaCounters;

STAT_TABLE_ENTRY (*MMediaCountsPts)[];

UINT32 MNumCustomCounters;

STAT_TABLE_ENTRY (*MCustomCountersPtr)[];

} MLID_STATS_TABLE;

ODI_STAT_UNTYPED StatCounter is a pointer to a UINT8
array preceded by its length (UINT32).

Table 3-7

MLID Statistics Table Fields

Name Type Description

MStatTableMajorVer UINT16 The major version number of the statistics table. The
current major number is 4.

MStatTableMinorVer UINT16 The minor version number of the statistics table. The
current minor version number is 0.

MNumGenericCounters UINT32 The total number of generic STAT_TABLE_ENTRY
counters in this portion of this table. This field is set
to 20 for this specification.

MGenericCountsPts STAT_TABLE_ENTRY* Pointer to an array of STAT_TABLE_ENTRY counters
[MNumGenericCounters].
3-36 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Example

#define NUM_GENERIC_COUNTERS 20
UINT32 MTotalTxPacketCount,

MTotalRxPacketCount,
MNoECBAvailableCount,
MPacketTxTooBigCount,
MPacketTxTooSmallCount,
MPacketRxOverflowCount,
MPacketRxTooBigCount,
MPacketRxTooSmallCount,
MTotalTxMiscCount,
MTotalRxMiscCount,
MRetryTxCount,
MChecksumErrorCount,
MHardwareRxMismatchCount,
MTotalTxOKByteCount,
MTotalRxOKByteCount,
MTotalGroupAddrTxCount,
MTotalGroupAddrRxCount,
MAdapterResetCount,
MAdapterOprTimeStamp,
MQDepth;

MNumMediaCounters UINT32 The total number of media specific
STAT_TABLE_ENTRY counters in this portion of this
table. This field is set to the following values:

Token-Ring 13

Ethernet 8

FDDI 10

MMediaCountsPts STAT_TABLE_ENTRY* Pointer to an array of STAT_TABLE_ENTRY counters
[MNumMediaCounters].

MNumCustomCounters UINT32 This field contains the total number of custom
STAT_TABLE_ENTRY counters in this portion of this
table. This field is variable (dependent on the C
HSM).

MCustomCountersPtr STAT_TABLE_ENTRY* Pointer to an array of STAT_TABLE_ENTRY counters
[MCustomCounters].

Table 3-7

MLID Statistics Table Fields

Name Type Description
CHSM Data Structures and Variables 3-37

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

STAT_TABLE_ENTRY MGenericCounters [NUM_GENERIC_COUNTERS] =
{

{ ODI_STAT_UINT32, &MTotalTxPacketCount, NULL },
{ ODI_STAT_UINT32, &MTotalRxPacketCount, NULL },
{ ODI_STAT_UINT32, &MNoECBAvailableCount, NULL },
{ ODI_STAT_UINT32, &MPacketTxTooBigCount, NULL },
{ ODI_STAT_UINT32, &MPacketTxTooSmallCount, NULL },
{ ODI_STAT_UINT32, &MPacketRxOverflowCount, NULL },
{ ODI_STAT_UINT32, &MPacketRxTooBigCount, NULL },
{ ODI_STAT_UINT32, &MPacketRxTooSmallCount, NULL },
{ ODI_STAT_UINT32, &MTotalTxMiscCount, NULL },
{ ODI_STAT_UINT32, &MTotalRxMiscCount, NULL },
{ ODI_STAT_UINT32, &MRetryTxCount, NULL },
{ ODI_STAT_UINT32, &MChecksumErrorCount, NULL },
{ ODI_STAT_UINT32, &MHardwareRxMismatchCount, NULL},
{ ODI_STAT_UINT64, &MTotalTxOKByteCount, NULL },
{ ODI_STAT_UINT64, &MTotalRxOKByteCount, NULL },
{ ODI_STAT_UINT32, &MTotalGroupAddrTxCount, NULL },
{ ODI_STAT_UINT32, &MTotalGroupAddrRxCount, NULL },
{ ODI_STAT_UINT32, &MAdapterResetCount, NULL },
{ ODI_STAT_UINT32, &MAdapterOprTimeStamp, NULL },
{ ODI_STAT_UINT32, &MQDepth, NULL },

};

MLID_STATS_TABLE MLID_StatsTable = {4, 0,
NUM_GENERIC_COUNTERS,
MGenericCounters, 0, NULL, 0, NULL};

.

Table 3-8

MLID Statistics Table Generic Counters

Name Type Description

MTotalTxPacketCount UINT32 Number of packets successfully transmitted onto the
media. The CTSM/CMSM increments this counter,
except on ECB-aware adapters where the C HSM
increments this counter. Mandatory.

MTotalRxPacketCount UINT32 Number of packets reported as successfully received
without errors. This counter is independent of whether
the packet is accepted. Mandatory.
3-38 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

MNoECBAvailableCount UINT32 Number of times an incoming packet was discarded due
to lack of host receive buffers or the host not wanting the
packet. The CTSM/CMSM increments this counter,
except on ECB-aware adapters where the C HSM
increments this counter. Mandatory.

MPacketTxTooBigCount UINT32 Number of times a send packet was too big for
transmission. The CTSM/CMSM increments this
counter, except on ECB-aware adapters where the C
HSM increments this counter. Mandatory.

MPacketTxTooSmallCount UINT32 Number of requested packets for transmission that were
normally too small to be transmitted. The packets might
still have been sent if the MLID does padding. Normally
this field will not be used. The CTSM/CMSM increments
this counter, except on ECB-aware adapters where the C
HSM increments this counter. Optional.

MPacketRxOverflowCount UINT32 Number of times the adapter’s receive buffer pool was
exhausted, causing subsequent incoming packets to be
discarded. The C HSM increments this counter.
Optional.

MPacketRxTooBigCount UINT32 Number of times a packet was received that was too
large to fit into preallocated receive buffers provided by
the host, or too large for media definitions. The CTSM/
CMSM increments this counter, except on ECB-aware
adapters where the C HSM increments this counter.
Mandatory.

MPacketRxTooSmallCount UINT32 Number of times a packet was received that was too
small for media definitions. The CTSM/CMSM
increments this counter, except on ECB-aware adapters
where the C HSM increments this counter. Optional.

MTotalTxMiscCount UINT32 Number of times the MLID failed to transmit and has no
appropriate generic counter to increment. The C HSM
increments this counter. Mandatory.

MTotalRxMiscCount UINT32 Number of times the MLID receives a packet with errors
and has no appropriate generic counter to increment.
The C HSM increments this counter. Mandatory.

Table 3-8

MLID Statistics Table Generic Counters continued

Name Type Description
CHSM Data Structures and Variables 3-39

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

MRetryTxCount UINT32 Number of times the MLID retried a transmit operation
because of a failure. The C HSM increments this counter.
Optional.

MChecksumErrorCount UINT32 Number of times the MLID received a packet with corrupt
data—for example, CRC errors. The C HSM increments
this counter. Optional.

MHardwareRxMismatchCount UINT32 Number of times the MLID received a packet that did not
pass the length consistency checks. The CTSM/CMSM
increments this counter, except on ECB-aware adapters
where the C HSM increments this counter. Optional.

MTotalTxOKByteCount UINT64 Number of bytes (including low-level headers) the MLID
successfully transmitted onto the media. The CTSM/
CMSM increments this counter. Mandatory.

MTotalRxOKByteCount UINT64 Number of bytes (including low-level headers) the MLID
successfully received. The CTSM/CMSM increments
this counter. Mandatory.

MTotalGroupAddrTxCount UINT32 Number of packets the MLID transmitted with a group
destination address. The CTSM/CMSM increments this
counter, except on ECB-aware adapters where the C
HSM increments this counter. Mandatory.

MTotalGroupAddrRxCount UINT32 Number of packets the MLID received with a group
destination address. The CTSM/CMSM increments this
counter, except on ECB-aware adapters where the C
HSM increments this counter. Mandatory.

MAdapterResetCount UINT32 Number of times the adapter was reset due to an internal
failure or a call to the MLID’s DriverReset function. The
C HSM increments this counter. Mandatory.

MAdapterOprTimeStamp UINT32 This counter contains the time (platform dependent
clock, such as number of ticks) since the adapter last
changed operational state—for example, load time,
DriverShutdown , DriverReset . Mandatory.

Table 3-8

MLID Statistics Table Generic Counters continued

Name Type Description
3-40 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

gy,
MLID Statistics Table Media Specific Counters

The statistics table must contain the media-specific counters for the topolo
defined in this section.

Media-specific counters must be grouped in memory contiguously and in the
order described in the following tables:

Token-Ring Counters

The following table describes media specific counters array
STAT_TABLE_ENTRY for Token-Ring.

MQDepth UINT32 Number of transmit ECBs that are queued for the
adapter. The CTSM/CMSM increments this counter,
except on ECB-aware adapters where the C HSM
increments this counter. Mandatory.

Table 3-9

Media Specific Counters for Token-Ring

Size Label Description

UINT32 TRN_ACErrorCounter Number of times a station receives an AMP or SMP frame
in which A = C = 0, and then receives another SMP frame
with A = C = 0 without first receiving an AMP frame. The C
HSM increments this counter. Mandatory.

UINT32 TRN_AbortDelimiterCounter Number of times a station transmits an abort delimiter while
transmitting. The C HSM increments this counter.
Mandatory.

UINT32 TRN_BurstErrorCounter Number of times a station detects the absence of transitions
for five half-bit times (burst-five error). Note that only one
station detects a burst-five error, because the first station to
detect it converts it to a burst-four. The C HSM increments
this counter. Mandatory.

Table 3-8

MLID Statistics Table Generic Counters continued

Name Type Description
CHSM Data Structures and Variables 3-41

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

UINT32 TRN_FrameCopiedErrorCounter Number of times a station recognizes a frame addressed to
its specific address and detects that the FS field bits are set
to 1, indicating a possible line hit or duplicate address. The
C HSM increments this counter. Mandatory.

UINT32 TRN_FrequencyErrorCounter Number of times the frequency of the incoming signal differs
from the expected frequency by more than what is specified
in Section 7 of the IEEE Std 802.5-1989. The C HSM
increments this counter. Mandatory.

UINT32 TRN_InternalErrorCounter Number of times a station recognizes a recoverable internal
error. This can be used for detecting a station in marginal
operating condition. The C HSM increments this counter.
Mandatory.

UINT32 TRN_LastRingStatus The last ring status reported by the adapter with the
following bit definitions:

Bit 15 Signal loss
Bit 14 Hard error
Bit 13 Soft error
Bit 12 Transmit beacon
Bit 11 Lobe wire fault
Bit 10 Auto-removal error 1
Bit 9 Reserved
Bit 8 Remove received
Bit 7 Counter overflow
Bit 6 Single station
Bit 5 Ring recovery
Bit 4-0 Reserved

The C HSM maintains this value. Mandatory.

UINT32 TRN_LineErrorCounter Number of times a frame or token is copied or repeated by
a station. The E bit is 0 in the frame or token and one of the
following conditions exists:

1) The frame or token contains a non-data bit (J or K bit)
 between the SD and the ED of the frame or token.

2) The frame contains a FCS error in a frame.

The C HSM increments this counter. Mandatory.

Table 3-9

Media Specific Counters for Token-Ring continued

Size Label Description
3-42 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Ethernet Counters

This section describes the media specific counters array
STAT_TABLE_ENTRY for Ethernet.

UINT32 TRN_LostFrameCounter Number of times a station is transmitting and its TRR timer
expires. This counts how often frames transmitted by a
particular station fail to return to it, thus causing the active
monitor to issue a new token. The C HSM increments this
counter. Mandatory.

UINT32 TRN_TokenErrorCounter Number of times a station acting as the active monitor
recognizes an error condition that needs a token
transmitted. This occurs when the TVX timer expires. The C
HSM increments this counter. Mandatory.

UINT64 TRN_UpstreamNodeAddress The upstream neighbor node address, right justified with
leading zeros. The C HSM maintains this value.
Mandatory.

UINT32 TRN_LastRingID The value of the local ring. The C HSM maintains this value.
Mandatory.

UINT32 TRN_LastBeaconType The value of the last beacon type. The C HSM maintains
this value. Mandatory.

Table 3-10

Media Specific Counters for Ethernet

Size Label Description

UINT32 ETH_TxOKSingleCollisionsCount Count of frames that are involved in a single collision and
are subsequently transmitted successfully. This counter
is incremented when the result of a transmission is
reported as successful and the attempt value is 2. The C
HSM increments this counter. Mandatory.

Table 3-9

Media Specific Counters for Token-Ring continued

Size Label Description
CHSM Data Structures and Variables 3-43

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

UINT32 ETH_TxOKMultipleCollisionsCount Count of frames that are involved in more than one
collision, but are transmitted successfully. This counter is
incremented when the transmission is successful and
the attempt value is greater than 2, but less than or equal
to the attempt limit of the network controller used by the
MLID (the attempt limit is specified by
MLIDCFG_SendRetries). The C HSM increments this
counter. Mandatory.

UINT32 ETH_TxOKButDeferred Count of frames whose transmission was delayed on its
first attempt because the medium was busy. The C HSM
increments this counter. Mandatory.

UINT32 ETH_TxAbortLateCollision Count of the times that a collision has been detected
later than 512 bit times into the transmitted packet. A late
collision is counted twice, both as a collision and as a late
collision. The C HSM increments this counter.
Mandatory.

UINT32 ETH_TxAbortExcessCollision Count of frames that, due to excessive collisions, are not
transmitted successfully. This counter is incremented
when the value of attempts variable equals the attempt
limit (the attempt limit is specified by
MLIDCFG_SendRetries) during a transmission. The C
HSM increments this counter. Mandatory.

UINT32 ETH_TxAbortCarrierSense Count of frames that the carrierSense signal was not
asserted or was deasserted during the transmission of a
frame without collision. The C HSM increments this
counter. Mandatory.

UINT32 ETH_TxAbortExcessiveDeferral Count of frames that were deferred for an excessive
period of time. This counter must only be incremented
once per LLC transmission. The C HSM increments this
counter. Mandatory.

UINT32 ETH_RxAbortFrameAlignment Count of frames that are not an integral number of bytes
in length and do not pass the FCS check. The C HSM
increments this counter. Mandatory.

Table 3-10

Media Specific Counters for Ethernet continued

Size Label Description
3-44 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

RY
FDDI Counters

Table 3-11 describes the media specific counters array STAT_TABLE_ENT
for FDDI.

Table 3-11

Media Specific Counters for FDDI

Size Label Description

UINT32 FDDI_ConfigurationState (ANSI fddiSMTCFState) This field contains attachment
configuration for the station or concentrator.

 0 = Isolated
1 = local_a

 2 = local_b
 3 = local_ab

 4 = local_s
 5 = wrap_a
 6 = wrap_b
 7 = wrap_ab
 8 = wrap_s
 9 = c_wrap_a
10 = c_wrap_b
11 = c_wrap_s
12 = through

The C HSM increments this counter. Mandatory .

UINT64 FDDI_UpstreamNode (ANSI fddiMACUpstreamNbr) This counter contains the MAC’s
upstream neighbor’s long individual MAC address; 0 if
unknown. The C HSM maintains this counter. Mandatory.

UINT64 FDDI_DownstreamNode (ANSI fddiMACDownstreamNbr) This field contains the MAC’s
downstream neighbor’s long individual MAC address; 0 if
unknown. The C HSM maintains this counter. Mandatory.

UINT32 FDDI_FrameErrorCount Count of the number of frames that were detected in error by
this MAC that had not been detected by another MAC. The C
HSM increments this counter. Mandatory.

UINT32 FDDI_FramesLostCount Count of the number of instances that this MAC detected
format errors during frame reception such that the frame was
stripped. The C HSM increments this counter. Mandatory.
CHSM Data Structures and Variables 3-45

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

UINT32 FDDI_RingManagementState This field indicates the current state of the ring management
state machine.

0 = Isolated
1 = Non_Op
2 = Ring_Op
3 = Detect
4 = Non_Op_Dup
5 = Ring_Op_Dup
6 = Directed
7 = Trace

The C HSM maintains this value. Mandatory.

UINT32 FDDI_LCTFailureCount Count of consecutive times the link confidence test (LCT) has
failed during connection management. The C HSM increments
this counter. Mandatory.

UINT32 FDDI_LemRejectCount Link error monitoring count of the times that a link has been
rejected. The C HSM increments this counter. Mandatory .

UINT32 FDDI_LemCount Aggregate link error monitor error count (zero only on station
power up). The C HSM increments this counter. Mandatory .

UINT32 FDDI_ConnectionState The state of this port’s pcm state machine.

0 = off
1 = break
2 = trace
3 = connect
4 = next
5 = signal
6 = join
7 = verify
8 = active
9 = maint

The C HSM maintains this value. Mandatory .

Table 3-11

Media Specific Counters for FDDI continued

Size Label Description
3-46 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ost
l

ed to
can

t
en

the
ffer,

hen

ny
Driver Firmware

C HSMs might need to download firmware for intelligent adapters. Since m
intelligent adapters have a microprocessor on the adapter, such as an Inte
80186, the firmware code must be separately written, assembled, and link
generate a binary file. This section describes how this firmware binary file
be attached to the C HSM at link time, and then transferred to the adapter
during initialization.

To attach a firmware binary file to the C HSM, the linker definition file mus
include the keyword "custom", followed by the name of the binary file. Wh
the MLID is linked, the file is attached to the end of the C HSM code and
becomes part of the NLM.

During the initialization process, the CMSM allocates a buffer and copies
contents of the attached file to that buffer. To gain access to the firmware bu
the C HSM must properly initialize the Driver Parameter Block variables
described below. The CMSM determines the value of these parameters w
the C HSM’s DriverInit routine calls <CTSM>RegisterHSM. The C HSM
can then download the contents of the firmware buffer to the adapter.

DriverFirmwareSize Value

If custom firmware is used, the C HSM initializes this UINT32 variable to a
nonzero value. The CMSM replaces this value with the actual size of the
firmware buffer when DriverInit calls <CTSM>RegisterHSM. If custom
firmware is not used, the C HSM must initialize this variable to 0.

DriverFirmwareBuffer Value

This void pointer value is set to point to the firmware buffer by the CMSM
when DriverInit calls <CTSM>RegisterHSM.
CHSM Data Structures and Variables 3-47

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

3-48 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

c h a p t e r 4 CMSM/CTSM Structures and
Variables
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

s in
,
port

pter:
Overview

This chapter describes the functions, structures, variables, and constants
defined by the CMSM and the CTSM. Some of the variables and structure
this chapter are required for controlling processes, and must be initialized
updated, or managed by the CHSM. Others are available as optional sup
for developers and may be used accordingly.

The following functions, variables, and structures are described in this cha

The CMSM Data Access Function and CMSM Variables

• CMSMVirtualBoardLink

• CMSMDefaultVirtualBoard

• CMSMStatusFlags

• CMSMTxFreeCount

• CMSMPriorityTxFreeCount

• CMSMMaxFrameHeaderSize

• CMSMPhysNodeAddress
CMSM/CTSM Structures and Variables 4-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ace.
HSM

 data
r can

two
d,
Data Structures

• Receive Control Blocks (RCBs)

• Transmit Control Blocks (TCBs)

• CMSM Configuaration Table (CMSM_CONFIG_TABLE)

• CTSM Configuaration Table (CTSM_CONFIG_TABLE)

• DRIVER_OPTION Structure

CMSM Data Access

The CHSM must access several variables located in the CMSM’s data sp
This section describes these variables and the function that enables the C
to access them.

DADSP_TO_CMSMADSP Macro

The DADSP_TO_CMSMADSP (CHSM Driver Adapter Data Space to
CMSM Adapter Data Space) macro takes a pointer to the CHSM’s adapter
space and returns a pointer to the CMSM’s shared data space. This pointe
then be used to access the CMSM variables that follow.

CMSMVirtualBoardLink Pointers

The CMSM maintains a separate configuration table for each frame type
supported by the MLID. CMSMVirtualBoardLink is an array of pointers to
these configuration tables. This array contains four pointers for Ethernet,
for Token-Ring, and two for FDDI. If a particular frame has not been loade
the pointer to the corresponding configuration table is NULL.

The following examples are definitions of CMSMVirtualBoardLink for
Ethernet, Token-Ring, and FDDI.
4-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Ethernet Example

/* ETHERNET 802.2 */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[0]
/* ETHERNET 802.3 */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[1]
/* ETHERNET II */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[2]
/* ETHERNET SNAP */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[3]

Token-Ring Example

/* TOKEN 802.2 */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[0]
/* TOKEN SNAP */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[1]

FDDI Example

/* FDDI 802.2 */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[0]
/* FDDI SNAP */
DADSP_TO_CMSMADSP(driverData)->CMSMVirtualBoardLink[1]
CMSM/CTSM Structures and Variables 4-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

s
t,

n.

 be

ions.
other
CB
CMSMDefaultVirtualBoard Pointer

CMSMDefaultVirtualBoard is a pointer to the configuration table that contain
the identity of the first frame type loaded. If the frame type is not importan
calling CMSMDefaultVirtualBoard will quickly select the first frame type
loaded.

CMSMStatusFlags Variable

The CMSM maintains a UINT32 variable that provides adapter status
information that enables the CHSM to determine if the adapter is shut dow

The CHSM can use CMSMStatusFlags to determine if an adapter is partially
shut down. If bit 0 is set, the adapter is partially shut down and should not
serviced. The CMSM will not call DriverSend to transmit a packet if the
adapter is partially shut down.

CMSMTxFreeCount Variable

During initialization, the CHSM must specify the number of hardware
resources available on the adapter for handling pending packet transmiss
The CTSM uses this value to determine if the adapter is ready to accept an
packet for transmission. The count is also used to determine how many T
structures the CTSM allocates.

Bit 0 SHUTDOWN When set, this bit indicates
that the adapter is shut
down.

Bits 1-3 Reserved Reserved for use by the
CMSM/CTSM.

Bit 4 POLLING_SUSPENDED When set, this bit indicates
that polling has been
suspended.

Bits 5-31 Reserved Reserved for use by the
CMSM/CTSM.
4-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

other

g,
an

ther

nt

ent
, but
y

ns.

,
er
that
For example, if the adapter has a second transmit buffer that can accept an
packet before the current transmission is complete, the CHSM should set
CMSMTxFreeCount to a value of 2. If the adapter supports hardware queuin
the count should represent the number of transmissions that the adapter c
efficiently process. If the adapter has no additional resources available, o
than those used to transmit the current packet, set CMSMTxFreeCount to 1.

The CTSM decrements CMSMTxFreeCount before it calls DriverSend. The
CTSM assumes that the adapter is not ready for another packet if this cou
reaches 0.

The CHSM is responsible for incrementing the count each time one of the
adapter’s transmit resources becomes available. The CHSM must increm
the count not only when the adapter successfully completes a transmission
also when a transmission is aborted due to timeout error or maximum retr
errors.

Example:

++(DADSP_TO_CMSMADSP(driverData)->CMSMTxFreeCount);

CMSMPriorityTxFreeCount

During initialization, the CHSM must specify the number of hardware
resources available on the adapter for handling priority packet transmissio

Example:

DADSP_TO_CMSMADSP(driverData)->CMSMPriorityTxFreeCount = 2;

CMSMMaxFrameHeaderSize Variable

The <CTSM>GetRCB function, which can be used during packet reception
employs a "lookahead" process, where the packet header is placed in a buff
and previewed by the upper layers. This allows the upper layers to verify
they want the packet before the entire packet is read from the adapter.

The CTSM sets CMSMMaxFrameHeaderSize to the number of bytes the
CHSM must transfer to the lookahead buffer. This value is equal to
MLIDCFG_LookAheadSize from the configuration table plus the maximum
CMSM/CTSM Structures and Variables 4-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

.

e

n

res
e

de

nical

 are
 of
media header size. The MLIDCFG_LookAheadSize size can be up to 128 bytes
For example:

MLIDCFG_LookAheadSize = 128

Ethernet Maximum Media Header Size = 22

CMSMMaxFrameHeaderSize = 128 + 22 = 150

The CHSM must read the lookahead buffer size before calling
<CTSM>GetRCB each time, because the size can change dynamically. Th
CHSM can optionally implement DriverRxLookAheadChange to inform
intelligent adapters when the size changes, rather than forcing them to
continually check.

For more information on the lookahead process, see the Packet Receptio
section in Chapter 5, "CHSM Functions" and <CTSM>GetRCB in Chapter 6,
"CTSM Functions". Refer to the DriverRxLookAheadChangePtr field
description of the driver parameter block in Chapter 3, "CHSM Data Structu
and Variables" for more information on implementing this control procedur
for intelligent adapters.

CMSMPhysNodeAddress Variable

CMSMPhysNodeAddress is used to access the physical layer format of the no
address after CMSMRegisterMLID has been called.

If the MM_PHYS_NODE_ADDR_BIT bit of the MLIDCFG_ModeFlags field
is set, the CHSM must use CMSMPhysNodeAddress to get the physical layer
format of the node address instead of the configuration table’s
MLIDCFG_NodeAddress. The CMSM sets the CMSMPhysNodeAddress value
when the CHSM’s initialization routine calls CMSMRegisterMLID .

For additional information, refer to the configuration table
MLIDCFG_NodeAddress and MLIDCFG_ModeFlags descriptions in Chapter
3, "CHSM Data Structures and Variables" and the canonical and noncano
format discussion in ODI Supplement: Canonical and Noncanonical
Addressing.

Data Structures

The structures used to transfer data between the layers of the ODI model
called Event Control Blocks (ECBs). The CMSM defines two specific forms
the ECB structure:
4-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

x B,

tion

SM
he
lso
• Receive Control Blocks (RCBs)

• Transmit Control Blocks (TCBs)

These streamlined forms of the general ECB structure (defined in Appendi
"Event Control Blocks (ECBs)") are provided by the CMSM to simplify
CHSM development. Only the fields relevant to the specific packet transac
in progress are visible to the CHSM.

The following sections describe the RCB and the TCB structures. The CH
must refer to these structures during packet reception and transmission. T
relationship of these CMSM structures with the general ECB structure is a
discussed. (Figure 4-1 illustrates this relationship.)

Specific reception and transmission methods and related CMSM/CTSM
support routines are described in Chapter 5, "CHSM Functions".

Figure 4-1

Packet Transfer through the MLID
CMSM/CTSM Structures and Variables 4-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

t is
 part
nt

r

ows:

 the

to the

cket
 the
alls

ed

ot
Fragment Structure

A fragment is an area in memory which contains part or all of a packet tha
ready for transmission, or it is an area in memory which is ready to contain
or all of a packet on reception. Each such area is described in the fragme
structure (FRAGMENT_STRUCT), and each RCB or TCB contains one o
more fragment structures.

The fragment structure and fragment structure field descriptions are as foll

typedef struct _FRAGMENT_STRUCT_

{

void *FragmentAddress;

UINT32 FragmentLength;

} FRAGMENT_STRUCT;

Receive Control Blocks (RCBs)

Receive Control Blocks (RCBs) are the structures used to transfer data from
CHSM to the CTSM.

Usually, when the adapter receives a packet, the CHSM passes a pointer
lookahead data of the CTSM (see <CTSM>GetRCB in Chapter 5, "CHSM
Functions"). The CTSM filters the lookahead data and then passes the pa
to the LSL, which passes it to the protocol stacks. If a protocol stack wants
packet, an RCB is passed back to the CHSM, which fills out the RCB and c
<CTSM>RcvComplete.

The CHSM receive routine must be designed to handle multiple fragment
receive buffers for lookahead data. The MM_FRAG_RECEIVES_BIT bit of the
MLIDCFG_ModeFlags field in the configuration table must be set if the
CHSM can handle multiple fragmented receive buffers. If the CHSM cann

Table 4-1

Fragment Structure Field Descriptions

Name Type Description

FragmentAddress void * Pointer to the fragment buffer.

FragmentLength UINT32 Length of the buffer pointed to by
FragmentAddress.
4-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ted

t

ort

re
handle multiple fragmented receive buffers, the CHSM must use prealloca
RCBs along with <CTSM>ProcessGetRCB.

The following support routines are available to obtain RCBs.

• CMSMAllocateRCB

• <CTSM>GetRCB

• <CTSM>ProcessGetRCB

• <CTSM>FastProcessGetRCB

The <CTSM>GetRCB routine can provide fragmented RCBs. CHSMs tha
cannot handle fragmented receive buffers should use CMSMAllocateRCB or
<CTSM>ProcessGetRCB to obtain RCBs. Chapter 5, "CHSM Functions"
describes specific reception methods and illustrates the use of these supp
routines.

The following describes the RCB structures and fields. These structures a
defined in the cmsm.h file.

The size of the RCBReserved field is defined to preserve the ECB defined fields.
(See Appendix B.)
CMSM/CTSM Structures and Variables 4-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

RCB Structure

typedef struct _RCB_
{

union { UINT8 RWs_i8val[8];
UINT16 RWs_i16val[4];
UINT32 RWs_i32val[2];
UINT64 RWs_i64val;

} RCBDriverWS;
UINT8 RCBReserved[(See Table 4-2 for equation.)]
UNIT32 RCBFragCount;
FRAGMENT_STRUCT RCBFragStruct;

} RCB;

Table 4-2

Programmed RCB Field Description

Name Type Description

RCBDriverWS UINT32[2] The C HSM can use this field for any purpose,
as long as the C HSM controls the RCB.

For APIs that deal with linked lists of RCBs,
such as CMSMAllocateMultipleRCBs and
CMSMReturnMultipleRCBs , the fields
RCB->RCBDriverWS.RWs_i32val[0] and
RCB->RCBDriverWS.RWs_i32val[1] will
contain pointers to the next RCB on the list.
RCB->RCBDriverWS.RWs_i32val[0] will
contain the logical address of the next RCB,
while RCB->RCBDriverWS.RWs_i32val[1]
will contain the physical address (when
needed). The remaining operation and the
description of the RCB will be unchanged.

RCBReserved UINT8 [(UINT32 &(((ECB*)0)->
ECBFragmentCount -(UINT32)
&(((ECB*)0)-> ECB_Status]

The CHSM should not modify this field,
except as described in the functions
<CTSM>ProcessGetRCB and
<CTSM>FastProcessGetRCB . This field
contains status indicators, protocol
information, and additional data maintained
by the CMSM and the LSL.

RCBFragCount UINT32 The number of data fragment descriptors to
follow (1 through 16).
4-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

RCBFragStruct FRAGMENT_ STRUCT An array of fragment descriptors. Each
descriptor consists of a pointer to a fragment
buffer and the size of that buffer. The CHSM
copies the received packet into these buffers.
There may be up to 16 fragment descriptors,
but there must always be at least one.

Table 4-2

Programmed RCB Field Description

Name Type Description
CMSM/CTSM Structures and Variables 4-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

the

:

CB.

tion.)

s the

ion.
Transmit Control Blocks (TCBs)

Transmit Control Blocks (TCBs) are structures used to transfer data from
CTSM to the CHSM.

When a protocol stack sends a packet, the following tasks are performed

1. The protocol stack assembles a list of fragment pointers in a transmit E

2. The protocol stack passes the ECB to the LSL.

3. The LSL transfers the ECB to the CTSM

4. The CTSM processes the information and builds a TCB. (The TCB
structure consists of the packet header and the data fragment informa

5. The CTSM directs the TCB to the appropriate CHSM.

6. The CHSM collects the header and the packet fragments and transmit
packet.

The following describes the TCB structures used during packet transmiss
The structures are defined in the cmsm.h file.

TCB Structure

typedef struct _TCB_FRAGMENT_BLOCK_STRUCT_

{

UINT32 TCB_FragmentCount;

FRAGMENT_STRUCT TCB_Fragment[1];

} TCB_FRAGMENT_BLOCK;

typedef struct _TCB_

{

void *TCB_Reserved;

UINT32 TCB_BoardNumber;

UINT32 TCB_DriverWS[3];

UINT32 TCB_DataLen;

TCB_FRAGMENT_BLOCK *TCB_FragBlockPtr;

UINT32 TCB_MediaHeaderLen;

union
4-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

{

UINT8 TCB_Media[MAX_MEDIA_HEADER_SIZE];

ETHER_MEDIA_HEADEREtherMedia;

TOKEN_MEDIA_HEADERTokenMedia;

FDDI_MEDIA_HEADERFDDIMedia;

} TCB_MediaHeader;

} TCB;

Table 4-3

TCB Field Descriptions

Name Type Description

TCB_FragmentCount UINT32 The number of data fragment descriptors to
follow. Each descriptor consists of a pointer to
a fragment buffer and the size of that buffer.
The CHSM collects the data from these buffers
when forming a packet for transmission.

TCB_Fragment[1] Fragment_Struct The first fragment structure. The maximum
number of TCB fragment entries allowed is 16.
(See Table 4-1 "Fragment Structure Field
Descriptions".)

TCB_Reserved void* Reserved; must be set to zero.

TCB_Boardnumber UINT32 The logical board that the TCB is being
transmitted on. In general, CHSMs do not use
this field.

TCB_DriverWS UINT32[3] The CHSM can use this field for any purpose,
as long as the CHSM controls the TCB.

TCB_DataLen UINT32 The length of the packet described by the data
fragments plus the media header. This value
will never be 0.

TCB_FragBlockPtr TCB_FRAGMENT_BLOCK * This field contains a pointer to a list of
fragments defined by
TCB_FRAGMENTSTRUCT.
CMSM/CTSM Structures and Variables 4-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Media header structure definitions are as follows:

typedef struct _ETHER_MEDIA_HEADER_

{

NODE_ADDR MH_Destination;

NODE_ADDR MH_Source;

UINT16 MH_Length;

UINT8 MH_DSAP;

UINT8 MH_SSAP;

UINT8 MH_Ctrl0;

UINT8 MH_SNAP[5];

} ETHER_MEDIA_HEADER;

typedef struct _TOKEN_MEDIA_HEADER_

{

UINT8 MH_AccessControl;

UINT8 MH_FrameControl;

NODE_ADDR MH_Destination;

NODE_ADDR MH_Source;

UINT8 MH_DSAP;

UINT8 MH_SSAP;

UINT8 MH_Ctrl0;

UINT8 MH_SNAP [5];

TCB_MediaHeaderLen UINT32 The length of the media header that
immediately follows the TCB in memory. This
value can be odd, even, or 0. A value of 0
indicates a raw send. If the CHSM is handed a
raw send, the originating protocol stack has
already included the media header in the first
data fragment.

TCB_MediaHeader UINT8[MAX_MEDIA_HEADER_SIZE] A buffer containing the media header that was
assembled by the CTSM.

Table 4-3

TCB Field Descriptions continued

Name Type Description
4-14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

es).
} TOKEN_MEDIA_HEADER;

typedef struct _FDDI_MEDIA_HEADER_

{

UINT8 MH_FrameControl;

NODE_ADDR MH_Destination;

NODE_ADDR MH_Source;

UINT8 MH_DSAP;

UINT8 MH_SSAP;

UINT8 MH_Ctrl0;

UINT8 MH_SNAP [5];

} FDDI_MEDIA_HEADER;

CMSM_CONFIG_TABLE

typedef struct _CMSM_CONFIG_TABLE_

{

UINT32 CMSMCFG_TableSize;

UINT8 CMSMCFG_TableMajorVersion;

UINT8 CMSMCFG_TableMinorVersion;

UINT8 CMSMCFG_ModuleMajorVersion;

UINT8 CMSMCFG_ModuleMinorVersion;

UINT8 CMSMCFG_ODISpecMajorVersion;

UINT8 CMSMCFG_ODISpecMinorVersion;

UINT16 CMSMCFG_Reserved;

UINT32 CMSMCFG_MaxNumberOfBoards;

UINT32 CMSMCFG_SystemFlags;

}CMSM_CONFIG_TABLE;

CMSMCFG_TableSize

The actual size of the C MSM configuration table
(CMSM_CONFIG_TABLE). The value of this field should not be
confused with the number of bytes requested or copied (such as nByt

CMSMCFG_TableMajorVersion

This field contains the major version of the configuration table. The
current major version is 1.
CMSM/CTSM Structures and Variables 4-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 C
CMSMCFG_TableMinorVersion

This field contains the minor version of the configuration table. The
current minor version is 0.

CMSMCFG_ModuleMajorVersion

This field contains the major version of the C MSM binary (i.e.,
CMSM.NLM).

CMSMCFG_ModuleMinorVersion

This field contains the minor version of the C MSM binary (i.e.,
CMSM.NLM).

CMSMCFG_ODISpecMajorVersion

This field contains the major version of the ODI Specification that this
version of the C MSM is written too. For example, if the version of the
ODI specification is 1.11, the value of this field is 1.

CMSMCFG_ODISpecMinorVersion

This field contains the minor version of the ODI Specification that this
version of the C MSM is written too. For example, if the version of the
ODI specification is 1.11, the value of this field is 11.

CMSMCFG_Reserved

This field is reserved.

CMSMCFG_MaxNumberOfBoards

The value of this field represents the maximum number of boards the
MSM supports.

CMSMCFG_SystemFlags

The bits in this field are defined below.

Bits 0-29 Reserved

These bits are reserved.

Bit 30 CMSM_CFG_SERVER_BIT

When set to 1 this bit indicates the C MSM is
running in a server environment. This bit is
mutually exclusive with bit 31.

Bit 31 CMSM_CFG_CLIENT_BIT

When set to 1 this bit indicates the C MSM is
running in a client environment. This bit is
mutually exclusive with bit 30.
4-16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

e.,
d

e
CTSM_CONFIG_TABLE
typedef struct _CTSM_CONFIG_TABLE_

{

UINT32 CTSMCFG_TableSize;

UINT8 CTSMCFG_TableMajorVersion;

UINT8 CTSMCFG_TableMinorVersion;

UINT8 CTSMCFG_ModuleMajorVersion;

UINT8 CTSMCFG_ModuleMinorVersion;

UINT8 CTSMCFG_ODISpecMajorVersion;

UINT8 CTSMCFG_ODISpecMinorVersion;

UINT16 CTSMCFG_Reserved;

UINT32 CTSMCFG_MaxFrameSize;

UINT32 CTSMCFG_SystemFlags;

}CTSM_CONFIG_TABLE;

CTSMCFG_TableSize

This field contains the actual size of the C TSM’s configuration table (i.
CTSM_CONFIG_TABLE). The value of this field should not be confuse
with the number of bytes requested or copied (i.e., nBytes).

CTSMCFG_TableMajorVersion

This field contains the major version of the configuration table. The
current major version is 1.

CTSMCFG_TableMinorVersion

This field contains the minor version of the configuration table. The
current minor version is 0.

CTSMCFG_ModuleMajorVersion

This field contains the major version of the <CTSM> binary (e.g.,
ETHERTSM.NLM).

CTSMCFG_ModuleMinorVersion

This field contains the minor version of the <CTSM> binary (i.e.,
ETHERTSM.NLM).

CTSMCFG_ODISpecMajorVersion

This field contains the major version of the ODI Specification that this
version of the <CTSM> is written too. For example, if the version of th
ODI specification is 1.11, the value of this field is 1.
CMSM/CTSM Structures and Variables 4-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

he
CTSMCFG_ODISpecMinorVersion

This field contains the minor version of the ODI Specification that this
version of the <CTSM> is written too. For example, if the version of t
ODI specification is 1.11, the value of this field is 11.

CTSMCFG_Reserved

This field is reserved.

CTSMCFG_MaxFrameSize

The value of this field represents the maximum frame size that the
<CTSM> supports.

CTSMCFG_SystemFlags

The bits in this field are defined below.

Bits 0-29 Reserved

These bits are reserved.

Bit 30 CTSM_CFG_SERVER_BIT

When set to 1 this bit indicates the C TSM is
running in a server environment. This bit is
mutually exclusive with bit 31.

Bit 31 CTSM_CFG_CLIENT_BIT

When set to 1 this bit indicates the C TSM is
running in a client environment. This bit is
mutually exclusive with bit 30.
4-18 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

DRIVER_OPTION Structure

typedef struct _DRIVER_OPTION_

{

struct _DRIVER_OPTION_ *Link;

MEON_STRING *ParseString;

union

{

void *OptionPtr;

int Min

} Parameter0;

union

{

UINT32 Range;

int Max;

} Parameter1;

union

{

int Default;

MEON_STRING *StringDefault;

} Parameter2;

UINT16 Type;

UINT16 Flags;

MEON_STRING String[MAX_PARAM_LEN];

} DRIVER_OPTION;

Field descriptions

On entry to the parser, the value of Parameter0, Parameter1, and Parameter2
is based on whether the Range, Enumeration, or String bit of the Flags field is
set.

Table 4-4

Interpretation of Parameter0, Parameter1, and Parameter2

Flags Field Bit Parameter0 Value Parameter1 Value Parameter2 Value

Range Min Max Default

Enumeration OptionPtr Range N/A

String N/A N/A StringDefault
CMSM/CTSM Structures and Variables 4-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 The
f

 the

ray

the
eric

r

th

Link

Pointer to the next DRIVER_OPTION structure (NULL if it is the last
one).

ParseString

See the "ParseString" heading below.

Min

The lower bound of the range the user can enter.

OptionPtr

Pointer to a structure containing the allowed values for this parameter.
first field of the structure is of type UINT32 and contains the number o
values. The other field of the structure is an array of the type to match
format specifier in the ParseString and Type. The array contains the values
(or pointers to the values for the string type). The first element of the ar
is the default.

When there is an option structure, the value of Parameter2 and the value
of the default bit in the Flags field are ignored.

Max

This UINT32 field specifies the upper bound of the allowed range that
user can enter. On return from the parser, if the parameter is of any num
type, the field contains the value selected/defined by the user. If the
parameter is a keyword, Max is returned with a value of 1. If the paramete
is not a keyword or a numeric type, Max is returned with a value of 0.

Range

This UINT32 field, if used, contains the length or range associated wi
this option. Typically, this field is used in specifying memory decode
ranges and port lengths.

Default

This int field, if used, contains the default value of the parameter. The
Default bit in the Flags field controls whether this field is used or not.

When there is an option structure, the value of Parameter2 is ignored.

None of the above N/A N/A Default

Table 4-4

Interpretation of Parameter0, Parameter1, and Parameter2

Flags Field Bit Parameter0 Value Parameter1 Value Parameter2 Value
4-20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

e

he
StringDefault

This char field, if used, contains the default value of the parameter. Th
Default bit in the Flags field controls whether this field is used or not.

Type

This is a UINT16 field that contains a code indicating the option type. T
following is a list of possible values for this field:

After calling the parser, DRIVER_OPTION records defined as type
PORTPARAM, PORT1PARAM, MEMPARAM, and MEM1PARM will have their
Parameter1 (Range or Maximum) fields overwritten. Before using the record
again (such as loading another frame type), the CHSM must reset the
Parameter1 (Range or Maximum) fields.

0x0000 CUSTOMPARAM

0x0001 INTPARAM

0x0002 INT1PARAM

0x0003 PORTPARAM

0x0004 PORT1PARAM

0x0005 DMAPARAM

0x0006 DMA1PARAM

0x0007 MEMPARAM

0x0008 MEM1PARAM

0x0009 SLOTPARAM

0x000A NODEPARAM

0x000B CHANNELPARAM

0x000C FRAMEPARAM

0x000D Reserved

0x000E NAMEPARAM

0x000F RETRIESPARAM

0x0010 BELOW16PARAM

0x0011 BUFFERS16PARAM

0x0012 to 0xFFFFReserved
CMSM/CTSM Structures and Variables 4-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

he

be

e
Flags

This is a UINT16 field that contains a bitmap indicating the status of t
option. The following is a list of bits in this field:

Interpretation of the Flags Field in the DRIVER_OPTION Structure

KEYWORDPARAM, ENUMPARAM, RANGEPARAM, and
STRINGPARAM are mutually exclusive. Only one of these bits can
set at a time, but it is not required to set any of the bits. If the
ENUMPARAM and RANGEPARAM bits are not set, any value of th
appropriate type may be entered by the user.

OPTIONALPARAM Optional—if not specified on the command line,
the option is ignored.

REQUIREDPARAM Required—if not specified on the command
line, prompt the user.

DEFAULTPRESENT Default—The default value for this parameter is
contained in Parameter2 of the
DRIVER_OPTION structure. When the
ENUMPARAM is set, this bit is ignored.

KEYWORDPARAM Keyword—if this bit is set, the keyword is not
followed by a value. If the keyword is present,
Max is returned with a value of 1. If the keyword
is not present, Max is returned with a value of
0. If KEYWORDPARAM is used,
DEFAULTPRESENT and REQUIREDPARAM
are ignored.

ENUMPARAM Enumeration—if this bit is set:
DRIVER_OPTION. Parameter0 is a pointer to
an OptionsList array containing the list of
allowed values for this parameter.

RANGEPARAM Range—if this bit is set: DRIVER_OPTION.
Min is the minimum allowed value of the range
and DRIVER_OPTION. Max is the maximum
allowed value.

STRINGPARAM String—if this bit is set, the parameter is of type
string. This bit must be set if, and only if, there
is a %s or %c format specifier in ParseString.

SHARABLE Sharable option—such as shared interrupts.
4-22 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

r.

is

is
ut.

pted

 is

is
ut.
OPTIONALPARAM and REQUIREDPARAM are mutually exclusive
and one of the bits is required unless the KEYWORDPARAM bit is
present. KEYWORDPARAM implies that it is an optional paramete

The DEFAULTPRESENT is valid for RANGEPARAM and
STRINGPARAM. It is also valid if none of the KEYWORDPARAM,
ENUMPARAM, RANGEPARAM, and STRINGPARAM bits are
present.

Function of the DEFAULTPRESENT Bit

The DEFAULTPRESENT bit is basically used to determine how
prompting is handled. There are two major cases:

DEFAULTPRESENT and OPTIONALPARAM

DEFAULTPRESENT and REQUIREDPARAM

DEFAULTPRESENT and OPTIONALPARAM

The parameter is not present on the command line; the user is not
prompted and ODISTAT_ITEM_NOT_PRESENT is returned.

The parameter is present on the command line and the parameter
valid: the parameter is used as is.

The parameter is present on the command line and the parameter
invalid: the user is prompted with the default value as the default inp

DEFAULTPRESENT and REQUIREDPARAM

The parameter is not present on the command line: the user is prom
with the default value as the default input.

The parameter is present on the command line and the parameter
valid: the parameter is used as is.

The parameter is present on the command line and the parameter
invalid: The user is prompted with the default value as the default inp
CMSM/CTSM Structures and Variables 4-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

r,
is

e

ns
g

er
 all
String

On entry, this field must contain a pointer to a NULL terminated buffe
which is large enough to contain the largest expected user input to th
parameter. On return from the parser, this buffer contains a NULL
terminated string corresponding to the value selected or entered by th
user.

Double byte charaters are not allowed.

Prompt strings must be limited to 512 bytes.

ParseString Field

The DRIVER_OPTION structure format string controls how the parser sca
and converts the MLID’s parameters. The format string is a character strin
composed of three types of objects:

• Whitespace characters

• Keyword characters

• A format string

The following is the format of the parse string:

[whitespace]keyword[whitespace]=[whitespace]conversion specifier[whitespace]

Whitespace Characters

The whitespace characters are blank, tab (\t), and newline (\n). If the pars
encounters a whitespace character in the format string, it reads and skips
subsequent whitespace characters in the input until it finds an ordinary
character.
4-24 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 the
in the
this

n.

rs
r,

the
d the

 the
 the
Keyword Characters

The keyword characters are the alphanumeric ASCII characters plus the
underscore and period. Any keyword characters found are assumed to be
parameter keyword for this parameter. The parser uses these characters
format string to search the user input and to find the appropriate value for
parameter.

Conversion Specifiers

The conversion specifier directs the parser function to read and convert
characters from the input field into specific value types. The maximum
conversion specifier length is 80 characters including the NULL terminatio

The CMSMParseDriverParameters conversion specifier has the following
format:

% [width] type_character

where:

% is the character used to begin each conversion specifier, and

width is the width specifier (optional). It is the maximum number of characte
to read. If the function encounters a whitespace or unconvertible characte
fewer characters may be read.

Type Characters

The type_character specifier represents the type character. Table 7.2 lists
parser type characters, the input type expected by each type character, an
input storage form.

The information in the table assumes that no width specified is included in
conversion specifier. To see how the addition of the width specifier affects
parser input, see the width specifier section below.
CMSM/CTSM Structures and Variables 4-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 is
ing.

ion

ult is
r by
ore
.

In order to allow the input of string parameters that include white space, it
permissible to have multiple %[width]s conversion specifiers in a parse str
In such a case, only %s, %[search set], and %c conversion specifiers are
allowed.

White space between conversion specifiers is not allowed.

The effect of this is to input as many string fields as there are %s convers
specifiers and concatenate them together with one space char between each. If
there are more %s conversion specifiers than user supplied fields, the res
platform dependant, but will not include anything not entered as a paramete
the user. It is the CHSM’s responsibility to parse the returned string and ign
any fields beyond the end of its parameter.

Table 4-5

Input and Results for Each Character Type

Type Character Expected Input Type of Result

Numbers

d Decimal integer 32-bit integer

D Decimal integer 32-bit integer

u Unsigned decimal integer UINT32

U Unsigned decimal integer UINT32

x Hexadecimal integer UINT32

X Hexadecimal integer UINT32

Characters

s Whitespace-terminated character string MEON_STRING *

c Character MEON
4-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

rent

se

et of

 to

ads
 the
o of

f
Input Fields

The following are considered input fields:

• All characters up to, but not including, the next whitespace character.

• All characters up to the first one that cannot be converted under the cur
conversion specifier.

• Up to n characters, where n is the specified field width.

Conventions

Certain conventions accompany some of these conversion specifiers. The
conventions are described in the following paragraphs.

%[search_set] Conversion The set of characters surrounded by square
brackets can be substituted for the s-type character.

The search_set variable represents a set of characters that define a search s
possible characters making up the string (the input field).

If the first character in the brackets is a carat (^), the search set is inverted
include all ASCII characters except those between the square brackets.

The input field is a string that is not delimited by whitespace. The parser re
the corresponding input field up to the first character that does not appear in
search set (or in the inverted search set). The following is an example of tw
these types of conversion:

Width Specifiers

The width specifier (n), a decimal integer, specifies the maximum number o
characters that can be read from the current input field.

[abcd] Searches for characters a, b, c, and d in the input field. The
search terminates when it encounters the first character not in
the search_set.

[^abcd] Searches for any characters except a, b, c, and d in the input
field. The search terminates when it encounters any character
in the search_set.
CMSM/CTSM Structures and Variables 4-27

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

he
If the input field contains fewer than n characters, the parser reads all the
characters in the field.

If a whitespace or nonconvertible character occurs before n characters are read,
the characters up to that character are read, converted, and stored.

A nonconvertible character is one that cannot be converted according to t
given format (such as a "L" or "q" when the format is decimal).
4-28 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

c h a p t e r 5 CHSM Functions
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

e C
Overview

This chapter describes the routines that are the primary components of th
language Hardware Specific Module (CHSM).

Initialization and Removal

• DriverInit

• DriverRemove

Board Service

• DriverISR

• DriverPoll (optional)

Packet Transmission

• DriverSend

Control Functions

• DriverReset

• DriverShutdown

• DriverMulticastChange

• DriverPromiscuousChange (recommended)

• DriverStatisticsChange (optional)

• DriverRxLookAheadChange (optional)
CHSM Functions 5-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

The

nd
• DriverGetMulticastInfo

• DriverManagement (optional)

• DriverEnableInterrupt

• DriverDisableInterrupt

Timeout Detection

• DriverAES (optional)

The CHSM may require the optional routines, depending on the adapter.
CHSM indicates unsupported, optional routines by placing a 0 in the
corresponding fields of the driver parameter block. Additional procedures
might also be needed for specific hardware requirements.

All functions described on the following pages are calls from the CMSM a
the CTSM to the CHSM.

In order to achieve operating system and platform independence, the CHSM
must not enable or disable system interrupts.
5-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

.
M

he

led.

Initialization

The CHSM’s DriverInit routine controls the complete initialization process
However, specific tasks performed during initialization are handled by CMS
routines or CTSM routines.

The initialization tasks are as follows:

• Allocate the frame and driver data space

• Process custom command line keywords and custom firmware

• Parse the standard load command line options

• Register hardware options

• Initialize the adapter hardware

• Register the MLID with the LSL

• Set up a board service routine

• Schedule timeout callbacks

Registering with the CMSM/CTSM

Before the C HSM calls <CTSM>RegisterHSM or CMSMInitParser ,
DriverInit must take the following steps:

• Copy its incoming parameters into a CHSM_STACK structure. (T
CHSM_STACK structure is defined in cmsm.h and in the "Structure
Definitions" section of the "Preface" of this document).

• Copy the address of the CHSM_STACK structure (chsmStack) into
DriverInitParmPointer.

After it has done this, DriverInit must call CMSMInitParser to initialize the
parser. This must be done before any other CMSM or CTSM APIs are cal

The CHSM sets MLIDCFG_MaxFrameSize to the largest frame size supported
by the adapter. The CHSM sets the MLIDCFG_SharingFlags
MS_SHUTDOWN_BIT to 1. DriverInit calls <CTSM>RegisterHSM with a
CHSM Functions 5-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

he

y of

me

n

re

ine.

e
pointer to the driver parameter block. The CTSM passes the CHSM’s
parameter block pointer along with its own pointer to the CMSM.

The CMSM makes a local copy of both parameter blocks and processes t
information passed from the operating system. If the CHSM has custom
firmware, the CMSM loads the firmware and initializes the
DriverFirmwareSize and DriverFirmwareBuffer fields as described in Chapter
3: CHSM Data Structures and Variables.

The CMSM allocates memory for the frame data space and creates a cop
the CHSM’s configuration table template in that area. If the
MLIDCFG_CardName and MLIDCFG_DriverMajorVer fields of the
configuration table are initialized to 0, the CMSM will fill in these fields and
the MLIDCFG_DriverMinorVer field using information derived from the
linker definition file. If the CHSM has placed nonzero values in the card na
and driver version fields, these fields will not be modified.

Finally, the CMSM may set the MLIDCFG_MaxFrameSize field of the
configuration table to a smaller packet size (depending upon platform
specifics) and then return to DriverInit .

• If the CMSM is unsuccessful in its initialization tasks, it returns a
error code. DriverInit should then return an error code.

• If the CMSM is successful, it returns with
ODISTAT_SUCCESSFUL and configTable pointing to the MLID’s
new frame data space. The CHSM must now gather the hardwa
option information needed for the configuration table and call the
CMSM to parse the MLID parameters entered on the command l

Determining Hardware Options

After <CTSM>RegisterHSM returns successfully, the CHSM must determin
the hardware configuration of the adapter. This includes the following
parameters:

• Base port for programmed I/O adapters

• Memory decode addresses for shared RAM adapters

• Interrupt numbers

• DMA channels
5-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

such

 an
ses

ltiple

 for

2.1,
uch

s:

rd,

air
For machines with bus types that support standard retrievable product IDs,
as EISA, PCI, Micro Channel, PnP ISA, or PC Card; the MLID can get
hardware configuration information directly from the system using CMSM
calls once the Hardware Instance Number (HIN) has been identified.

For EISA buses and Micro Channel buses, it is possible to uniquely identify
adapter by its physical slot number. However, this is not possible for new bu
such as PCI and PnP ISA. These buses can have multiple functions or mu
devices present on a single adapter, and, in the cases of some bus
configurations, such as PCI BIOS v2.0 and PNP ISA, the buses have no
physical slot correlation scheme.

The CHSM now uses the slot parameter to contain the Hardware Instance
Number (HIN). The HIN is a system-wide, bus-independent, unique handle
a device. The HIN enables the CHSM to identify functions and devices on
multiple device adapters as well as single device adapters and integrated
motherboard devices.

For single device adapters such as EISA, Micro Channel, and PCI BIOS v
the HIN is the physical slot number, unless there is a physical slot conflict, s
as with multibus systems.

In the following cases, the hardware instances are assigned unique value

• Integrated motherboard devices

• PCI BIOS v2.0 devices

• PCI BIOS v2.1 multiple device adapters

• PnP ISA devices

• Physical slot number conflicts

To identify the required hardware parameters, DriverInit must perform the
following steps (where appropriate for the hardware):

1. If the CHSM supports an adapter with a product ID that is retrievable
according to a standard, such as EISA, PCI, Micro Channel, or PC Ca
the CHSM should do the following:

• Scan for the adapter for each supported bus type using
CMSMSearchAdapter. CMSMSearchAdapter returns a bus tag
and a unique identifier for each hardware instance found. This p
CHSM Functions 5-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

s

 tag

at is
N
tion

an

eter

ed

ro
of values is used by CMSMGetInstanceNumber, which must be
called once for each hardware instance found. The HIN number
returned by CMSMGetInstanceNumber are placed in the Slot
DRIVER_OPTION structure, and CMSMParseDriverParameters
is called. The selected HIN is put in the MLIDCFG_Slot field of the
configuration table.

• Call CMSMGetInstanceNumberMapping with the configuration
table MLIDCFG_Slot field as an input parameter. The
corresponding bus tag and unique identifier are returned. The bus
returned from CMSMGetInstanceNumberMapping must be
placed in the MLIDCFG_DBusTag field of the configuration table.

• Call CMSMGetCardConfigInfo to get the adapter's configuration
and fill out the I/O portion of the configuration table. (The bus tag
and unique identifier for the selected HIN are used as input
parameters to CMSMGetCardConfigInfo .

If the CHSM supports a bus adapter that does not have a product ID th
retrievable by some standard, it must define a set of DRIVER_OPTIO
structures that will cause the parser to get whatever hardware configura
information the CHSM needs, but cannot get for itself. Legacy ISA is
example of such a bus.

2. If the CHSM needs certain parameter values to determine other param
values, it should call CMSMParseSingleParameter before it calls
<CTSM>RegisterHSM. CMSMParseSingleParameter may be called
multiple times as needed.

CMSMParseDriverParameters must contain the valid hardware
configuration options in the DRIVER_OPTION structure.

CMSMParseDriverParameters or CMSMParseSingleParameter can
be used to process custom command line keywords. However, for
automatic driver selection and loading to function properly in an advanc
installation environment, the use of custom command line keywords
should be restricted.

For family drivers that support adapters of more than one bus type --
including the legacy ISA bus--the custom command line keyword ISA
should be used to differentiate between a legacy ISA bus hardware
instance and an advanced bus hardware instance, such as EISA, Mic
Channel, PCI, PnP ISA, and PC Card.
5-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

r or
er is
e
f

rom

ed

nd
After parsing the parameters, the I/O portion of the logical board’s
configuration table in the frame data space has been filled in by
CMSMParseDriverParameters or the CHSM and now contains the
selected adapter HIN in the MLIDCFG_Slot field, and its busTag in the
MLIDCFG_DBusTag field.

DriverInit must call CMSMParseDriverParameters at least once, but never
more than once.

When the CHSM has obtained all needed information for the configuration
table, DriverInit calls CMSMRegisterHardwareOptions.

If the MLID must access shared memory before registering the hardware
options, it must use CMSMReadPhysicalMemory .

Registering Hardware Options

The CHSM calls CMSMRegisterHardwareOptions to register with the
operating system. This routine reports to the CHSM whether a new adapte
a new frame format for an existing adapter is being loaded. If a new adapt
being registered, the CMSM allocates the driver data space and copies th
MLID’s DRIVER_DATA to that area. This routine also notifies the CHSM o
any conflicts with existing hardware in the system.

There are four possible conditions that the CHSM must handle on return f
CMSMRegisterHardwareOptions.

• If the returned value equals REG_TYPE_NEW_ADAPTER, a new
adapter was successfully registered, and the CHSM must proce
with the hardware initialization (the driverData parameter in
CMSMRegisterHardwareOptions now contains a pointer to the
driver data space).

• If the returned value equals REG_TYPE_NEW_FRAME, a new
frame type for an existing adapter was successfully registered, a
initialization is essentially complete.

• If the returned value equals REG_TYPE_NEW_CHANNEL, a new
channel for an existing multichannel adapter was successfully
registered. The CMSM typically treats the registering of a new
channel as a new adapter. The CHSM must proceed with the
hardware initialization. (The driverData parameter in
CMSMRegisterHardwareOptions now contains a pointer to the
CHSM’s driver adapter data space.)
CHSM Functions 5-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ll

e it

L

o

s
• If the returned value equals REG_TYPE_FAIL, the CMSM was
unable to register the hardware options. DriverInit should return
with an error code.

Initializing the Adapter

At this point the CHSM initializes the adapter hardware. This consists of a
software controlled configuration of the hardware, and may also include
hardware tests and diagnostics such as RAM testing.

The DriverReset routine can be called to handle part of this procedure sinc
performs steps needed to initialize the hardware.

At this point, the CHSM examines MLIDCFG_MaxFrameSize and adjusts it
down if necessary.

DriverInit should set up the correct number of transmit buffers (the maximum
number of simultaneous sends allowed by the hardware) by placing an
appropriate value in CMSMTxFreeCount. A description of this variable is in
Chapter 4, "CMSM/CTSM Data Structures and Variables", and information
about its use is in the packet transmission section of this chapter. If firmware is
to be loaded down to the adapter, it should be done at this point.

If an error occurs during the hardware initialization, DriverInit should print an
appropriate error message, call CMSMReturnDriverResources, and return to
the operating system with a ODISTAT_FAIL value.

If the hardware initializes successfully, the CHSM sets the
MLIDCFG_SharingFlags MS_SHUTDOWN_BIT to zero, produces a NES
Service Resume MLID Card Insertion Complete event, using
CMSMNESLProduceMLIDEvent, and returns ODISTAT_SUCCESSFUL t
the operating system.

Registering with the LSL

DriverInit calls the CMSMRegisterMLID routine to register the MLID with
the LSL. CMSMRegisterMLID registers the MLID by passing the addresse
of the following items to the LSL:

• CMSM Send Routine

• CMSM Control Handler Routine
5-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

aces
rd

ne

id
he

.

er

rd
• Pointer to the CHSM configuration table (returned by
<CTSM>RegisterHSM)

The LSL assigns a logical board number to the adapter, and the CMSM pl
it in the configuration table. The CMSM automatically registers a logical boa
with the LSL during CMSMRegisterHardwareOptions each time a new
frame is added for an existing adapter. If an error occurs, the CMSM routi
returns ODISTAT_OUT_OF_RESOURCES.

If CMSMRegisterMLID is successful, the configuration table contains a val
board number. CHSMs for intelligent bus master adapters can now pass t
board number and frame ID information to the adapter if necessary.

CMSMTxFreeCount and CMSMPriorityTXFreeCount must be set before calling
CMSMRegisterMLID.

Setting up a Board Service Routine

The CHSM registers its board service routine(s) (DriverISR , DriverISR2 , or
DriverPoll) by calling either CMSMSetHardwareInterrupt or
CMSMEnablePolling. The DriverISR description later in this chapter
provides special instructions on setting up and handling shared interrupts

The adapter must be ready to process interrupts before calling
CMSMSetHardwareInterrupt or CMSMEnablePolling . Polling HSMs can use
CMSMGetPollSupportLevel to find out the level of support provided on the
platform.

Scheduling Timeout Callbacks

If the CHSM is running an interrupt driven adapter, it can schedule a timer
event to check if a board is unable to complete a send. To schedule a tim
event, the CHSM calls CMSMScheduleAES, which schedules periodic calls
to the CHSM’s DriverAES routine.

CMSMScheduleAES can not be called until after the CHSM has called
CMSMRegisterMLID .

If the adapter is not interrupt driven, the polling routines can check if a boa
is unable to complete a send.
CHSM Functions 5-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Driver Removal

The operating system calls the MLID’s exit function, DriverRemove, when it
receives the command to unload the MLID.
5-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

rt
DriverInit

The initialization routine is called by the loader
when it loads the CHSM.

Syntax

ODISTAT DriverInit (

MODULE_HANDLE *ModuleHandle,

SCREEN_HANDLE *ScreenHandle,

MEON_STRING *CommandLine,

MEON_STRING *ModuleLoadPath,

UINT32 UninitizedDataLength,

void *CustomDataFileHandle,

UINT32 (* FileRead) (void

 *FileHandle,UINT32 FileOffset,

void *FileBuffer,UINT32

 FileSize),

UINT32 CustomDataOffset,

UINT32 CustomDataSize,

UINT32 NumMsgs,

MEON_STRING **Msgs);

Input Parameters

ModuleHandle

Identifies your initialization routine. Your initialization routine must
provide this handle when calling many of the operating system suppo
routines for MLIDs.

ScreenHandle

Your initialization routine must use this handle during the OutputToScreen
function to perform any screen I/O. This handle is not valid after
initialization.
CHSM Functions 5-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

e
 the
ided

is

er to
CommandLine

Pointer to the command line that was used to load the driver. This
parameter is passed to CMSMParseDriverParameters to get the
hardware configuration information from the command line.

ModuleLoadPath

Path used to load the MLID, including the module name.

UninitizedDataLength

Used by the operating system to determine the data image length.

CustomDataFileHandle

The custom data file is appended to the end of your NLM. Because th
NLM was opened during loading, this handle points to a structure that
operating system uses to read the custom data file. This value is prov
as a parameter to FileRead.

FileRead

Pointer to a read function that DriverInit can use to read auxiliary files.

CustomDataOffset

The starting offset of the custom data inside the .NLM (or .LAN) file. Th
value is provided as a parameter to FileRead.

CustomDataSize

The length of the custom data file. This value is provided as a paramet
FileRead.

NumMsgs

Number of message strings in your module.

Msgs

Pointer to an array of pointers of MEON_STRING that is used by the
message enabling macros for handling messages.

Output Parameters

None.
5-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Return Values

Remarks

When the loader receives the command to load the CHSM, it calls the
DriverInit routine (specified as the "start" routine in the CHSM’s linker
definition file; see Appendix C).

If the initialization was successful DriverInit must produce a NESL Service
Resume Event for MLID Card Insertion Complete.

ODISTAT_SUCCESSFUL The CHSM initialized successfully.

ODISTAT_FAIL The CHSM failed to initialize successfully.
CHSM Functions 5-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

DriverRemove

Causes the CHSM to return its resources prior to
being unloaded.

Syntax

void DriverRemove ();

Input Parameters

None.

Output Parameters

None.

Return Values

None.

Remarks

The DriverRemove routine is called whenever the CHSM is unloaded. The
CHSM’s linker definition file must include the keyword "exit" followed by
DriverRemove .

This routine calls CMSMDriverRemove with the value of
DriverModuleHandle from the driver parameter block.

CMSMDriverRemove triggers a call to DriverShutdown to permanently shutdown
the CHSM. This function does not need to return resources that are returned by
DriverShutdown.
5-14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

it
ice

ble

ter’s

 and

in

der

CB
Board Service Routine

The board service routine detects and handles receive events and transm
complete events. The MLID is notified of these events by an interrupt serv
routine (DriverISR) or a polling routine (DriverPoll).

Packet Reception

This section provides a brief overview of various reception methods availa
to the developer, followed by details of the DriverISR and DriverPoll routines.

Reception Methods

The method of packet reception selected is typically dependent on the adap
data transfer method.

Reception Method—Option 1

This is the simplest and the most preferred reception method for host DMA
bus master adapters. The <CTSM>ProcessGetRCB function in Chapter 6:
CTSM Functions provides a detailed description of this process. The steps
performed in this reception method are outlined below:

1. The CHSM calls CMSMAllocateRCB to get an RCB (unless it already
has one from Step 5 below). If the MM_FRAGS_PHYS_BIT bit of the
MLIDCFG_ModeFlags field is set, this call returns physical addresses
the fragment list.

2. The CHSM copies the received packet into the RCB.

3. The CHSM calls <CTSM>ProcessGetRCB.

4. The CTSM checks the frame header information and fills in the remain
of the RCB fields.

5. The CTSM returns the RCB to the operating system and gets a new R
for the CHSM. If no RCB is available, it returns 0.
CHSM Functions 5-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

I/O
ame
 the

 is

 a

n

head
ed.

 be
od
pter.
 The

 too
Reception Method—Option 2

This is the preferred reception method for shared RAM and programmed
adapters. This method involves using a lookahead process, in which the fr
header information is confirmed before the entire packet is transferred from
adapter into an RCB. During initial development, it might be helpful to use
Option 1 to create a functioning CHSM, and then implement Option 2.

The adapter’s data transfer mode determines how the lookahead process
handled. If a programmed I/O adapter is used, the
CMSMMaxFrameHeaderSize variable is the number of bytes to be read into
lookahead buffer. If the adapter uses a shared RAM transfer mode, the
lookahead buffer is the start of the packet in shared RAM.

The <CTSM>GetRCB function in Chapter 6, "CTSM Functions" provides a
detailed description of this process. The steps performed for this receptio
method are outlined below:

1. The CHSM sets up a lookahead buffer.

2. The CHSM calls <CTSM>GetRCB with a pointer to the lookahead
buffer.

3. The CTSM filters the packet and frame header and passes the looka
data to the LSL. If a protocol stack wants the packet, an RCB is return

4. The CHSM copies the remainder of the packet into the RCB and calls
<CTSM>RcvComplete. If no RCB is returned, the CHSM checks for
another receive packet to send up.

Reception Method—Option 3

This method is recommended for intelligent adapters that are designed to
"ECB aware." (See Appendix B for more information on ECBs.) This meth
dramatically reduces the load on the system by off-loading code to the ada
In this way, the adapter’s firmware handles most of the reception process.
steps performed for this reception method are outlined as follows:

1. The CHSM obtains an ECB by calling CMSMAllocateRCB and queues
it until it is needed for a received packet. Be careful not to preallocate
many ECBs.
5-16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

B

e

d

rted
n be
ists
e

t
ters
2. The firmware filters the frame header information and all fields of the EC
as described in Appendix B, "Event Control Blocks (ECBs)".

3. The CHSM calls <CTSM>RcvComplete to return the ECB after it is
completely filled in.

Reception Method—Option 4

The pipelined adapter can be configured to interrupt prior to receiving a
complete packet. At driver initialization time, the adapter must be able to b
configured to wait until it has received at least the
CMSMMaxFrameHeaderSize before it interrupts.

1. The CHSM sets up a LookAhead buffer.

2. The CHSM calls <CTSM>GetRCB with packetSize set to UNUSED
before it has received the entire packet.

3. The CTSM checks the frame header information and passes the
LookAhead data to the LSL. (The CTSM cannot fill in all the LookAhea
fields with definitive values such as error bits and length fields.)

4. The CHSM copies the remainder of the packet into the RCB and calls
<CTSM>RCVCompleteStatus. If no RCB is returned, the CHSM checks
for another receive packet to send.

Using Shared Interrupts

A CHSM can support shared interrupts, provided that they are also suppo
by the host bus and the adapters that will share the interrupt. Interrupts ca
shared if the bus is operating in level-triggered mode, or if external logic ex
on the adapters sharing the interrupt. The following list describes how som
buses handle interrupts:

• The PCI and Micro Channel buses always use level-triggered
interrupts and can support shared interrupts.

• The ISA bus normally uses edge-triggered interrupts and will no
support shared interrupts unless external logic exists on the adap
for sharing the interrupt.
CHSM Functions 5-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

n

ts.

g the

ck

es
• The EISA bus normally uses edge-triggered interrupts, but each
interrupt can be individually configured to level-triggered mode i
order to support shared interrupts.

• Other buses vary in their use of edge and level triggered interrup

The CHSM must indicate that the adapters are sharing interrupts by settin
MS_SHARE_IRQ0_BIT bit in the MLIDCFG_SharingFlags field of the
configuration table. The CHSM must also initialize the driver parameter blo
variable, DriverEndOfChainFlag, as described in the following table.

The CMSM will call DriverDisableInterrupt and DriverEnableInterrupt to
discover which CHSM(s) need to service their adapters and invoke the on
that do.

Table 5-1

DriverEndofChainFlag Values

If the CHSM: The CHSM must: DriverEndofChainFlag value:

Supports shared
interrupts

Set the MS_SHARE_IRQ0_BIT
bit in the
MLIDCFG_SharingFlags field of
the CHSM’s configuration table.

Zero: The shared interrupt vector is placed
first on the shared interrupt chain. If
another interrupt vector is requested after
the original vector is placed at the head of
the chain, the latter vector will be serviced
first.

Nonzero: The shared interrupt vector is
placed at the end of the shared interrupt
chain by the operating system.

Does not support shared
interrupts

Clear the
MS_SHARE_IRQ0_BIT bit in the
MLIDCFG_SharingFlags field of
the CHSM’s configuration table.

Not used.
5-18 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

eir
de

ing
DriverISR

Called by the CMSM when a hardware interrupt is
detected.

Syntax

void DriverISR (

DRIVER_DATA *driverData);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

Output Parameters

None.

Return Values

None.

Remarks

DriverISR only needs to service the adapter and return.

We recommend that interrupts remain unaltered during DriverISR . If the
DriverISR routine enables or disables interrupts, it must restore them to th
state on entry before returning. Enabling or disabling interrupts will preclu
the MLID from working on some platforms.

The interrupt service routine generally needs to detect and handle the follow
events:

• Packet Reception Event

• Transmission Complete Event
CHSM Functions 5-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 one
 If an
ters

g the

t, it

ing

IFO

ror

t
or

do
The interrupt service routine should continue checking for reception and
transmission events until there are no more to be serviced.

Packet Reception Event

The reception portion of the board service routine services the packet using
of the reception methods described in the previous section of this chapter.
error has occurred the CHSM should increment the appropriate error coun
that it is responsible for and indicate the appropriate status before handin
packet to the CTSM. (See DriverPromiscuousChange later in the chapter.)

The CHSM should maintain the diagnostic counters in the statistics table for
every detectable error condition. This will aid in debugging the CHSM as well as
maintaining it in the future.

Transmission Complete Event

Each time the CHSM detects a successfully completed transmission even
should do the following:

1. Return the TCB using <CTSM>SendComplete if the TCB was not
returned during DriverSend.

2. Increment the number of available transmit resources using
CMSMTxFreeCount.

If the CHSM encounters a transmission error, it should perform the follow
actions:

• Attempt to identify the error. The CHSM should try to pinpoint the
specific cause of the error (excess collisions, cable disconnect, F
underrun).

• Increment diagnostic counters. The CHSM should maintain the
diagnostic counters in the statistics table for every detectable er
condition. The CHSM should also increment the generic statistic
TotalTxMiscCount if a fatal transmission error occurred that is no
counted in any other generic counter. The fatal transmission err
could also be counted using a media specific counter.

• Attempt to send the packet again. In the event the CHSM has
reached the maximum retry limit for sending a packet, it should
the following:
5-20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

1. Discard the packet.

2. Return the TCB using <CTSM>SendComplete if the TCB was not
returned during DriverSend.

3. Increment the number of available transmit resources using
CMSMTxFreeCount.
CHSM Functions 5-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

d.

e

le
DriverPoll

Services the adapter.

Syntax

void DriverPoll (

const DRIVER_DATA *driverData,

const MLID_CONFIG_TABLE *configTable);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table, of the first logical board which the
CHSM registered. The tool kit refers to this as the default virtual boar

Return Values

None.

Remarks

The DriverPoll function is used if the CHSM requires a poll-driven board
service routine. This routine will typically perform functions similar to thos
of the DriverISR function.

DriverPoll is normally not used by an interrupt driven CHSM. However, some
CHSMs might require polling or could require polling in addition to the interrupt
service routine.

To register the polling routine, place a pointer to the routine in the
DriverPollPtr field of the driver parameter block. The CHSM can then enab
polling during initialization by calling CMSMEnablePolling.

We recommend that polled MLIDs have an interrupt backup facility to service
the adapter if polling becomes too infrequent. On some platforms, frequent
polling is not available and servicing the adapter with interrupts is required for
5-22 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

the adapter to function efficiently. Call CMSMGetPollSupportLevel to find out
the level of support provided on the platform.
CHSM Functions 5-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

M,

cts a
 data

value

d.
Packet Transmission

The CHSM routine that handles packet transmission is influenced by the
adapter’s data transfer mode. Transmission methods for different transfer
modes are discussed here, followed by a description of the DriverSend routine.

Transmission Methods

There are two methods for transmitting packets. The method you choose
depends upon the type of adapter you are writing your CHSM for.

Transmission Method—Option 1

This is the method for transmitting packets on programmed I/O, shared RA
host DMA, and bus master adapters.

1. The CHSM sets CMSMTxFreeCount to the maximum number of packets
that the adapter can buffer (performed in DriverInit). If the adapter needs
physical addresses, set the MM_FRAGS_PHYS_BIT bit in the
MLIDCFG_ModeFlags field at DriverInit time.

2. The CTSM receives an ECB, processes the information, and constru
TCB. The TCB structure consists of the assembled packet header and
fragment information. If the Ethernet CTSM is used, paddedLen is set to
the padded length of the packet (see DriverSend for more information).
(This is the value that the adapter sends on the wire, regardless of the
in the TCBDataLen field. In fact, the value in paddedLen is not equal to
TCBDataLen if the packet is Ethernet 802.3 or Ethernet II and was
evenized or if the packet was padded to 60 bytes.)

3. The CTSM decrements CMSMTxFreeCount and calls DriverSend with a
pointer to a filled in TCB structure.

4. The CHSM calls <CTSM>SendComplete after the packet has been
buffered onto the adapter or after the transmission has been complete

5. The CHSM increments CMSMTxFreeCount after the adapter completes
the transmission (typically performed in DriverISR).
5-24 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ent
 the

d.
Transmission Method—Option 2

This method is recommended if the adapter is ECB-aware and has suffici
adapter processor speed. This transmission method dramatically reduces
load on the system by reducing the host’s process time.

1. The CHSM sets the DriverSendWantsECBs field in the DRIVER_PARM
structure to 1 and sets CMSMTxFreeCount to the number of packets that
the adapter can process at one time (performed in DriverInit). If the
adapter needs physical addresses, set the MM_FRAGS_PHYS_BIT bit in
the MLIDCFG_ModeFlags field.

2. The CTSM decrements CMSMTxFreeCount and calls DriverSend with a
pointer to the configuration table and a pointer to the ECB.

3. The CHSM adds the media header and sends the packet.

4. The CHSM calls either <CTSM>SendComplete after the packet has been
buffered onto the adapter or after the transmission has been complete

5. The CHSM increments CMSMTxFreeCount after the adapter completes
the transmission (typically performed in DriverISR).
CHSM Functions 5-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3 M

he

Priority Transmission Support

The following algorithm is used for priority transmission support.

1. During DriverInit , the CHSM sets the following parameters:

u The DriverPriorityQueuePtr variable is set with a pointer to the
function, DriverPriorityQueueSupport .

u The MF_PRIORITY_BIT in the MLIDCFG_Flags field of the MLID
Configuration Table is set.

u The MLIDCFG_PrioritySup field in the MLID Configuration Table is
set to indicate the number of levels available.

The CHSM can set or reset the MF_PRIORITYSUP_BIT as the CHS
changes the Priority Queue Support state from enabled to disabled. T
MF_PRIORITYSUP_BIT is checked on a per queued packet basis.

2. The protocol stack sets the ECB_StackID field to a value greater than or
equal to 0x0FFF0. The following values are valid for the ECB_StackID
field:

RAW_SEND_PRIORITY_0 0xFFFF No Priority.

RAW_SEND_PRIORITY_1 0xFFFE Scale 1-7: 1 = Lowest Priority.

RAW_SEND_PRIORITY_2 0xFFFD

RAW_SEND_PRIORITY_3 0xFFFC

RAW_SEND_PRIORITY_4 0xFFFB

RAW_SEND_PRIORITY_5 0xFFFA

RAW_SEND_PRIORITY_6 0xFFF9

RAW_SEND_PRIORITY_7 0xFFF8 Scale 1-7: 7 = Highest Priority.

SEND_PRIORITY_0 0xFFF7 Scale 1-7: 0 = No Priority.

SEND_PRIORITY_1 0xFFF6 Scale 1-7: 1 = Lowest Priority.

SEND_PRIORITY_2 0xFFF5

SEND_PRIORITY_3 0xFFF4

SEND_PRIORITY_4 0xFFF3

SEND_PRIORITY_5 0xFFF2

SEND_PRIORITY_6 0xFFF1

SEND_PRIORITY_7 0xFFF0 Scale 1-7: 7 = Highest Priority.

3. The CTSM normally gives the packet to the CHSM directly, as a TCB
using the DriverSend function. However, if CMSMTxFreeCount is zero
and the transmit ECB is a priority transmit ECB, the CTSM calls
DriverPriorityQueueSupport , which gives the CHSM a chance to take
5-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 as

it
f

ee

the transmit ECB. The DriverPriorityQueueSupport function, provided
by the CHSM, queues the ECB in the CHSM for transmission as soon
possible, or transmits the packet through a priority channel by first
building a TCB using <CTSM>BuildTransmitControlBlock , or returns
a failure code and does not accept the ECB.

4. The CHSM calls <CTSM>BuildTransmitControlBlock to build a TCB
whenever a priority transmit resource becomes available and a transm
ECB is in the CHSM’s priority queue. The CHSM tracks the number o
available priority TCBs. CMSMPriorityTxFreeCount is set during
DriverInit and must provide the maximum number of priority TCBs,
which must not change without unloading and reloading the CHSM. S
Chapter 4, "CMSM/CTSM Structures & Variables" for more details on
CMSMPriorityTxFreeCount . Non-priority packets use the original
number of TCBs from CMSMTxFreeCount, which is reserved
exclusively for their use. The CHSM must not call
<CTSM>BuildTransmitControlBlock if no priority TCBs are available.

5. After the CHSM has transmitted the TCB returned by
<CTSM>BuildTransmitControlBlock , the CHSM calls
<CTSM>SendComplete or <CTSM>FastSendComplete, which
increments the statistic counters, calls TxMonitor , places the TCB back
on the TCBs Free list, and returns the ECB to its original owner.
CHSM Functions 5-27

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 DMA

o

 be
n be
Adapters that Need Physical Addresses

Some adapters need physical addresses because they are bus master or
adapters. If your adapter needs physical addresses, you can set the
MM_FRAGS_PHYS_BIT bit in the MLIDCFG_ModeFlags field of the
configuration table.

Specifically, set this bit if the CHSM expects the following things from the
CTSM:

1. For TCBs, fragment pointers all contain physical addresses pointed t
locked, contiguous buffers.

2. For ECB aware adapters and for send ECBs, pointers to the ECB can
converted to a physical address, so physical and logical addresses ca
returned to the ECB.

3. <CTSM>ProcessGetRCB returns an RCB with locked, contiguous,
physical addresses in the fragment pointer.

For transmissions, if the MM_FRAGS_PHYS_BIT bit in the
MLIDCFG_ModeFlags field of the configuration table is set and you need to
access the data from the processor—for example, to double copy a small
packet—you can use either CMSMECBPhysToLogFrags or
CMSMTCBPhysToLogFrags . CMSMECBPhysToLogFrags is used if you are
using ECBs and CMSMTCBPhysToLogFrags is used if you are using TCBs.
These APIs are described in Chapter 7, "CMSM Functions".
5-28 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

DriverPriorityQueueSupport

Called by <CTSM> before it queues a priority
packet.

Syntax

ODISTAT DriverPriorityQueueSupport(

DRIVER_DATA *driverData,

MLID_CONFIG_TABLE *configTable,

ECB *ecb);

Parameters

ecb

Pointer to a Transmit ECB.

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table.

Output Parameters

None.
CHSM Functions 5-29

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

B.
vel
turn

T
s
Return Values

Remarks

This function must either transmit the packet immediately or queue the EC
The CHSM must be able to service the priority queue and handle priority le
detection issues. This function should process essential items only and re
as quickly as possible.

The CHSM must set DriverPriorityQueuePtr in the Driver Parameter Block to
point to this function. The CHSM can set or reset MF_PRIORITYSUP_BI
in the MLIDCFG_Flags field of the configuration table as the CHSM change
from supporting to not supporting priority packet states.
MF_PRIORITYSUP_BIT is checked on a per packet basis.

The ECB_DriverWorkSpace field of the ECB cannot be modified by the CHSM.

The addresses in the ECB fragment structure are logical addresses. If the
CHSM needs physical addresses, they will be returned when
<CTSM>BuildTransmitControlBlock is called. If the CHSM is ECB-aware and
needs physical addresses in the ECB’s fragment structure, it must call
<CTSM>BuildTransmitControlBlock.

ODISTAT_SUCCESSFUL The ECB was processed/queued by
the CHSM.

ODISTAT_OUT_OF_RESOURCES The ECB was not processed/queued
by the CHSM. The CTSM will now
queue the ECB and initiate
transmission at a later time.
5-30 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3. If

 the

 of

ve
sfer
DriverSend

Transfers a frame onto the LAN medium.

Syntax

void DriverSend (

const DRIVER_DATA *driverData,

const MLID_CONFIG_TABLE *configTable,

const TCB *tcb,

UINT32 paddedLen,

void *ecbPhysicalPtr);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table.

tcb

Pointer to a TCB or, if the adapter is ECB aware, an ECB.

paddedLen

Padded length of the packet. This parameter is used for Ethernet only
the adapter is ECB aware, the value is zero. This parameter contains
length of the entire frame as it appears on the LAN medium. Ethernet
CHSMs gives this value to the LAN adapter, which defines the number
bytes to transmit. The TCBDataLen field only describes the amount of data
being passed in the TCB. In the case of Ethernet, the frame might ha
been padded or evenized. For example, if the CHSM uses DMA to tran
the TCB data to the LAN adapter’s memory, the TCBDataLen field tells
the LAN adapter how many bytes to transfer.

ecbPhysicalPtr

Pointer to the physical ECB (ECB aware adapters only).
CHSM Functions 5-31

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ld
me
t does
ble,
es
alue

e

to

ot

ed
Output Parameters

None.

Return Values

None.

Remarks

The CTSM calls DriverSend to transmit a frame onto the medium.
DriverSend is provided a pointer to a TCB. Refer to Chapter 3: CHSM Data
Structures and Variables for information on TCBs.

The CHSM can assume that the TCB will be valid for its topology; it shou
not do consistency checking on the TCB fields. The CHSM can also assu
that it has the resources necessary to handle the transmission operation; i
not need to check to see if it has a transmission hardware resource availa
because the CTSM will do flow control for the CHSM. The CTSM determin
how many outstanding transmissions the CHSM can handle by using the v
set in the CMSMTxFreeCount variable during DriverInit.

The DriverSend routine can request ECBs instead of TCBs by initializing th
driver parameter block variable DriverSendWantsECBs to 1 (see Chapter 3,
"CHSM Data Structures and Variables"). If DriverSend uses ECBs for packet
transmission, it is responsible for building the proper media header (refer
Appendix B, "Event Control Blocks (ECBs)" for additional information on
ECB aware adapters). If the CHSM uses ECBs instead of TCBs, it must n
modify the transmit ECB’s ECB_PreviousLink field.

Interrupts are unchanged. We recommend that interrupts remain unchang
during DriverSend.
5-32 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

it
Pseudocode

Copy the MediaHeader from the TCB into a transmit buffer.

Copy the fragmented data from the TCB’s fragment structure into a transm
buffer.

Give the command to send the packet.

IF lying send

Call <CTSM>SendComplete(config Table, tcbp, transmitStatus)

RETURN
CHSM Functions 5-33

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

s
 of
ted
ns

e

e

nd

ds,

ts at

ot
Control Procedures

The ODI specification requires MLIDs to implement the I/O control function
(IOCTLs) listed in the table below. The CMSM and CTSM perform several
the required IOCTL functions without assistance from the CHSM, as indica
in the table. The CHSM is responsible for implementing the control functio
described in this section.

DriverReset and DriverShutdown are mandatory and must be present for th
MLID to function properly. The CHSM should also provide the
DriverMulticastChange and DriverPromiscuousChange functions if the
hardware supports these functions.

The DriverStatisticsChange and DriverRxLookAheadChange functions are
optional. These functions allow MLIDs for intelligent adapters to update th
statistics table or the lookahead size only as needed. Refer to the driver
parameter block field descriptions in Chapter 3, "CHSM Data Structures a
Variables" for additional information on these control functions.

MLIDs that support the hub management interface must implement the
DriverManagement function to handle management requests and comman
as described in the ODI Supplement: Hub Management Interface.

MLIDs whose adapters are able to enable and disable generating interrup
the adapter must implement DriverDisableInterrupt and
DriverEnableInterrupt . MLIDs whose adapter is not able to do this must n
implement these calls and will not be able to execute on some platforms.

Table 5-2

Code Path of Control Functions

Control Function Code Path

0 Get configuration table CMSM

1 Get statistics table CMSM -> DriverStatisticsChange

2 Add Multicast Address CMSM -> CTSM -> DriverMulticastChange
or, if promiscuous mode is enabled:
CMSM -> CTSM -> (DriverMulticastChange and
DriverPromiscuousChange)
5-34 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

3 Delete Multicast Address CMSM -> CTSM -> DriverMulticastChange
or, if promiscuous mode is enabled:
CMSM -> CTSM -> (DriverMulticastChange and
DriverPromiscuousChange)

4 Reserved CMSM

5 Shut down driver CMSM -> CTSM -> DriverShutdown

6 Reset Driver CMSM -> CTSM -> DriverReset

7 Reserved CMSM

8 Reserved CMSM

9 Set receive lookahead size CMSM -> CTSM -> DriverRxLookAheadChange

10 Enable/Disable Promiscuous
Mode

CMSM -> CTSM -> DriverPromiscuousChange

11 RegisterMonitor CMSM -> CTSM

12 Reserved CMSM

13 Reserved CMSM

14 Driver Management CMSM -> DriverManagement

15 Get Multicast Info CMSM -> CTSM

Table 5-2

Code Path of Control Functions continued

Control Function Code Path
CHSM Functions 5-35

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

DriverReset

Resets and initializes the specified part of the
MLID.

Syntax

ODISTAT * DriverReset (

const DRIVER_DATA *driverData,

const MLID_CONFIG_TABLE *configTable

OPERATION_SCOPE operationScope);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table.

operationScope

Indicates the scope of the operation to be performed.

OP_SCOPE_ADAPTER

Resets and initializes the physical adapter.

OP_SCOPE_LOGICAL _BOARD

Performs a logical board reset.

Output Parameters

None.
5-36 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

s

tions,
en

 to
Return Values

Remarks

OP_SCOPE_ADAPTER

When a reset is required, the CTSM waits for transmissions in progress to
complete and then calls DriverReset.

If resetting the adapter clears the hardware’s multicast and/or promiscuou
mode capability, DriverReset must restore this capability to the way it was
before it was called using <CTSM>UpdateMulticast.

From within the CHSM, DriverReset can be called by DriverAES or
DriverInit . It can also be called by DriverISR if the adapter has problems.

If the CMSM calls DriverReset and the CHSM returns successfully, the
CMSM resets the CMSMTxFreeCount variable to the initial value set by the
MLID during initialization. If the CMSM calls DriverReset and the adapter
cannot be reset, the CMSM automatically calls DriverShutdown with
shutdownType equal to SHUTDOWN_PERMANENT.

Hardware features, such as advanced power management and docking sta
require this routine so they can reinitialize the adapter after power has be
removed and is then restored.

This routine can also test the hardware to verify that it is functional. If the
MLID has been temporarily shut down, an application can call this routine
bring the board back into full operation.

ODISTAT_SUCCESSFUL This function completed successfully.

ODISTAT_RESPONSE_DELAYED The function cannot complete
immediately; this is due to the
asynchronous nature of this function.

ODISTAT_FAIL The function was unable to complete
successfully.
CHSM Functions 5-37

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

OP_SCOPE_LOGICAL _BOARD

The meaning of this operation is adapter/media/driver-dependant. This
operation is a NO-OP for most LAN drivers.

f ODISTAT_RESPONSE_DELAYED is returned by DriverReset , due to delays
in completing events performed by this function, the CHSM must call
CMSMControlComplete when the event is complete. If DriverReset must be
called from within the CHSM, use CMSMResetMLID .

DriverReset must not assume that other initialization processes have been
performed on the hardware. DriverReset must be capable of initializing the
hardware completely.

Pseudocode

Increment the reset statistics counter (MAdapterResetCount)

IF OP_SCOPE_ADAPTER

Reset the hardware (includes performing any hardware testing)

CALL <CTSM>UpdateMulticast

ELSE perform logical board reset

IF successful

Return ODISTAT_SUCCESSFUL

ELSE IF the update will complete asynchronously

Return ODISTAT_RESPONSE_DELAYED

/* Call CMSMControlComplete when done. * /

ELSE

Return ODISTAT_FAIL

END IF

RETURN
5-38 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

DriverShutdown

Releases the HSM resources associated with the
entity being shutdown. If an adapter is being
shutdown, it puts the adapter in an inactive state.

Syntax

ODISTAT DriverShutdown (

const DRIVER_DATA *driverData,

const MLID_CONFIG_TABLE *configTable,

UINT32 shutdownType,

OPERATION_SCOPE operationScope);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table.

shutdownType

SHUTDOWN_PERMANENT

Permanent shutdown.

SHUTDOWN_PARTIAL

Partial shutdown.

operationScope

OP_SCOPE_ADAPTER

All the logical boards associated with the CHSM’s driver adapter
data space are to be shut down.

OP_SCOPE_LOGICAL_BOARD

Only the logical board specified by configTable is to shut down.
CHSM Functions 5-39

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Output Parameters

None.

Return Values

Remarks

OP_SCOPE_ADAPTER

SHUTDOWN_PARTIAL

Passing SHUTDOWN_PARTIAL as the shutdownType parameter indicates a
partial shutdown.

In a partial shutdown, the C MSM does the following:

1. Sets CMSMStatusFlag to SHUTDOWN.

2. Sets the MS_SHUTDOWN_BIT of the MLIDCFG_SharingFlags field in
the configuration table.

3. Waits for the transmissions in progress to complete

4. Returns the transmit ECBs.

DriverShutdown must place the hardware into a safe, inactive state.

SHUTDOWN_PERMANENT

Passing SHUTDOWN_PERMANENT as the shutdownType parameter
indicates a permanent shutdown.

ODISTAT_SUCCESSFUL The operation was successful.

ODISTAT_RESPONSE_DELAYED The function cannot complete
immediately; this is due to the
asynchronous nature of this function.

ODISTAT_FAIL The operation failed.
5-40 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

n

s
tely

ted
In a permanent shutdown, the C MSM does the following:

1. Sets CMSMStatusFlag to SHUTDOWN.

2. Sets the MS_SHUTDOWN_BIT of the MLIDCFG_SharingFlags field i
the configuration table.

3. Empties the send queue.

4. Returns all resources not allocated directly by the C HSM.

If the CHSM allocated memory using CMSMAlloc or CMSMInitAlloc , the
CHSM must return the memory using CMSMFree after disabling the
hardware.

If the C HSM can power down or power off the adapter, it may do so at thi
time. The C MSM disables the adapter’s interrupt service routine immedia
after this routine returns.

The CMSM automatically calls DriverShutdown with
SHUTDOWN_PERMANENT and OP_SCOPE_ADAPTER when the
DriverReset routine fails to reset the hardware. DriverShutdown is also called
when the MLID is about to be unloaded or when CMSMShutdownMLID is
called.

OP_SCOPE_LOGICAL _BOARD

SHUTDOWN_PARTIAL

In most cases, C HSMs do not need to do anything. However, some C
HSMs may have house keeping to be done.

SHUTDOWN_PERMANENT

DriverShutdown must release all C HSM-allocated resources associa
with the specified logical board.

If ODISTAT_RESPONSE_DELAYED is returned by DriverShutdown , due to
delays in completing events performed by this function, the CHSM must call
CMSMControlComplete when the event is complete. If DriverReset must be
called from within the CHSM, use CMSMShutdownMLID .
CHSM Functions 5-41

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Pseudocode

If OP_SCOPE_ADAPTER

Disable Hardware

If SHUTDOWN_PERMANENT

Return memory associated with the adapter that
was allocated by the CHSM.

Else /* OP_SCOPE_LOGICAL_BOARD */

If SHUTDOWN_PERMANENT

Return memory associated with the logical
board that was allocated by the CHSM.

If failure

Return ODISTAT_FAIL

Return ODISTAT_SUCCESSFUL

If ODISTAT_RESPONSE_DELAYED is returned as the completion code,
DriverShutdown will execute differently and will require that
CMSMControlComplete be called when the shutdown is complete.
5-42 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

et,
DriverMulticastChange

Updates the adapter to reflect the changes in the
CTSM’s functional address table.

Syntax

ODISTAT DriverMulticastChange (

const DRIVER_DATA *driverData,

const MLID_CONFIG_TABLE *configTable,

const GROUP_ADDR_LIST_NODE*groupAddrListNode,

UINT32 numEntries,

UINT32 funAddrBits);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table.

groupAddrListNode

Pointer to the Group Address List Node table (Ethernet, FDDI, and
sometimes Token-Ring).

numEntries

Number of valid entries in the Group Address List Node table (Ethern
FDDI, and sometimes Token-Ring).

funAddrBits

32-bit functional address (Token-Ring).

Output Parameters

None.
CHSM Functions 5-43

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

e

ever
Return Values

Remarks

CHSMs must support multicast addressing if the hardware allows it. The
following flags and variables must be initialized properly for the adapter’s
multicast mode.

• MM_MULTICAST_BIT bit of the MLIDCFG_ModeFlags field must
be set to indicate whether multicast addressing is supported.

• MF_SOFT_FILT_GRP_BIT and MF_GRP_ADDR_SUP_BIT bits
of the MLIDCFG_Flags field must be set appropriately to reflect th
multicast mechanism or format used by the adapter/MLID.

• The driver parameter block variable, DriverMaxMulticast, must be
set to reflect the maximum number of multicast addresses the
adapter can handle.

The CTSM maintains an internal table of multicast addresses. The CTSM
modules handle the addition and deletion of addresses in this table. When
the table changes, the CTSM calls DriverMulticastChange to update the
adapter’s multicast filtering. The adapter can maintain its own multicast
address table or use a hash table to filter incoming packets.

f ODISTAT_RESPONSE_DELAYED is returned by DriverMulticastChange ,
due to delays in completing events performed by this function, the CHSM must
call CMSMControlComplete when the event is complete.

Adapter Multicast Filtering

Hashing is the most common method used by adapters to filter incoming
packets. When the adapter uses the hashing method, DriverMulticastChange
must recalculate and update the adapter’s hash table. Hashing does not
guarantee 100 percent multicast filtering; therefore, the CTSM looks up

ODISTAT_SUCCESSFUL The multicast/functional address
table was updated successfully.

ODISTAT_RESPONSE_DELAYED The multicast/functional address
table will be updated asynchronously.

ODISTAT_FAIL The multicast/functional address
table was not updated successfully.
5-44 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

cast

s

d the
incoming packets in its multicast address table to ensure that the packet’s
destination address is enabled.

The CTSM verifies that all the addresses it places in its table are valid multi
addresses, so the CHSM does not need to validate them.

In either case, the CHSM routine must read the CTSM’s multicast addres
table.

ECB aware HSMs must do their own filtering of multicast addresses.

Ethernet and FDDI

On entry to this routine, numEntries contains the number of valid entries in the
multicast table. All valid entries will be contiguous, so the CHSM does not
necessarily need to check the MulticastInUse flag. If numEntries is 0, multicast
reception is disabled.

Token-Ring

The CTSM passes the 32-bit functional address in funAddrBits. In this case
numEntries and multicastTable are normally not used. If the Token-Ring
adapter is capable of supporting both functional and group addressing an
MF_SOFT_FILT_GRP_BIT and MF_GRP_ADDR_SUP_BIT bits in
MLIDCFG_Flags are set properly, both group addressing using multicastTable
and functional addressing using funAddrBits may be in use simultaneously.

Pseudocode

The default method (if the MF_SOFT_FILT_GRP_BIT and
MF_GRP_ADDR_SUP_BIT bits of the MLIDCFG_Flags field are 0) for
handling multicast operations is as follows:

Clear the hardware registers that filter incoming packets for multicast
addresses.

Get the current multicast addresses from the CTSM’s multicast table.

Reload the hardware register with new multicast address filtering values.

Return.
CHSM Functions 5-45

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

.

DriverPromiscuousChange

Provides a means for the stack monitor function to
enable or disable promiscuous reception.

Syntax

ODISTAT DriverPromiscuousChange (

const DRIVER_DATA *driverData,

const MLID_CONFIG_TABLE *configTable,

UINT32 changeTo);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table.

changeTo

0 to disable promiscuous mode.

All bits set to receive all packets.

If changeTo is nonzero:

Bit 0 is set if MAC frames are to be received

Bit 1 is set if non-MAC frames are to be received

Bit2 is set if Station Management Frames (SMT) are to be received

Bit 3 is set if Remote Multicast Frames are to be received
(see Remarks section below).

Multiple bits can be set.

Output Parameters

None.
5-46 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

col

f the
at
d, the
ed

 for
cept
 bit
.

e to
Return Values

Remarks

Adapters/MLIDs that can pass all packets to a monitor function in the proto
stack are said to have a promiscuous reception mode.

A monitor function examines packets sent from or received by an adapter. I
MLID supports promiscuous mode, the monitoring function can request th
the adapter enter promiscuous mode. When promiscuous mode is enable
MLID must allow all packets (including bad packets if possible) to be pass
up to the monitor function.

Setting the RemoteMulticastFrames bit causes the CHSM to activate all
multicast frame reception. For example, if an adapter utilizes a hash table
filtering active multicast frames, then the adapter sets the hash table to ac
all multicast frames. Filtering active multicast entries is disabled when this
is set. CHSMs that can filter must disable filtering also when this bit is set

Multiple bits may be set so that each bit adds to the type of frames that ar
be received.

ODISTAT_SUCCESSFUL Promiscuous mode was changed
successfully.

ODISTAT_RESPONSE_DELAYED Promiscuous mode will be changed
asynchronously.

ODISTAT_FAIL Promiscuous mode was not changed
successfully.
CHSM Functions 5-47

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 for

<CTSM>GetRCB and <CTSM>ProcessGetRCB require the MLID to
indicate the status of the packet. The returned values, where appropriate,
Token-Ring, Ethernet, and FDDI are as follows:

0 = good packets

!0 = bad packets

BITS are set as follows for bad packets:

The CHSM must set all bits for ECB-aware adapters.

The CHSM must only set bits 0 and 1 (CRC Error and CRC/Frame Alignment
Error) for RCB-aware adapters.

Enabling promiscuous mode will have a detrimental impact on system
performance.

If the CHSM does not support promiscuous mode, the
MM_PROMISCUOUS_BIT bit of the MLIDCFG_ModeFlags field in the
configuration table must be cleared, and the DriverPromiscuousChangePtr
field in the driver parameter block must be NULL.

f ODISTAT_RESPONSE_DELAYED is returned by
DriverPromiscuousChange , due to delays in completing events performed by
this function, the CHSM must call CMSMControlComplete when the event is
complete.

PAE_CRC_BIT CRC Error (Bit 0)

PAE_CRC_ALIGN_BIT CRC/Frame Alignment Error (Bit 1)

PAE_RUNT_PACKET_BIT Runt Packet

PAE_TOO_BIG_BIT Packet Too Large for Media

PAE_NOT_ENABLED_BIT Unsupported Frame

PAE_MALFORMED_BIT Malformed Packet

PA_NO_COMPRESS_BIT Do not compress received packet

PA_NONCAN_ADDR_BIT Set if address in Immediate Address field is
noncanonical
5-48 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Pseudocode

IF requested to enable promiscuous mode

Send enabling command to hardware

ELSE

Send disabling command to hardware

ENDIF
CHSM Functions 5-49

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

DriverStatisticsChange (optional)

Allows the CMSM to notify MLIDs whenever an
application requests IOCTL 1 (get MLID statistics).

Syntax

ODISTAT DriverStatisticsChange (

const DRIVER_DATA *driverData,

const MLID_CONFIG_TABLE *configTable);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table.

Output Parameters

None.
5-50 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

rds,
ver
Return Values

Remarks

Because some intelligent adapters maintain statistical information on boa
this optional routine enables MLIDs to update the statistics table in the dri
data space before the CMSM passes it up to the requesting application.

If ODISTAT_RESPONSE_DELAYED is returned by DriverStatisticsChange ,
due to delays in completing events performed by this function, the CHSM must
call CMSMControlComplete when the event is complete.

See Also

DriverStatisticsChangePtr field of DriverParameterBlock.

ODISTAT_SUCCESSFUL The statistics table was successfully
updated.

ODISTAT_RESPONSE_DELAYED The function cannot complete
immediately; this is due to the
asynchronous nature of this function.

ODISTAT_FAIL The statistics table was not
successfully updated.
CHSM Functions 5-51

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

the
DriverRxLookAheadChange (optional)

Allows the CMSM to notify CHSMs after an
application invokes IOCTL 9 to set the lookahead
size.

Syntax

ODISTAT DriverRXLookAheadChange (

const DRIVER_DATA *driverData,

const MLID_CONFIG_TABLE *configTable);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table.

Output Parameters

None.

Return Values

Remarks

This routine changes the CMSMMaxFrameHeaderSize variable and
the MLIDCFG_LookAheadSize field in the configuration table. MLIDs use
this routine to inform adapters when the size changes rather than forcing

ODISTAT_SUCCESSFUL The requested operation was completed
successfully.

ODISTAT_RESPONSE_DELAYED The function cannot complete
immediately; this is due to the
asynchronous nature of this function.
5-52 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

adapter to check the value. Non-intelligent adapters usually use
CMSMMaxFrameHeaderSize and MLIDCFG_LookAheadSize directly.

If ODISTAT_RESPONSE_DELAYED is returned by
DriverRxLookAheadChange , due to delays in completing events performed by
this function, the CHSM must call CMSMControlComplete when the event is
complete.

See Also

DriverRxLookAheadChangePtr field of DriverParameterBlock,
MLIDCFG_LookAheadSize in the configuration table, the
CMSMMaxFrameHeaderSize variable, and the <CTSM>GetRCB function.
CHSM Functions 5-53

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

DriverManagement (optional)

Processes management requests if an MLID
accepts management commands from outside
NLMs (such as hub management interface,
Brouter, or CSL).

Syntax

ODISTAT DriverManagement (

const DRIVER_DATA *driverData,

const MLID_CONFIG_TABLE *configTable,

ECB *ecbp);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table.

ecbp

Pointer to the management ECB containing the request (see Appendix B:
Event Control Blocks). The first byte of the ECB_ProtocolID field is
greater than 0x40 and less that 0x7F.

Output Parameters

None.
5-54 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Return Values

If ODISTAT_RESPONSE_DELAYED is returned by DriverManagement , due to
delays in completing events performed by this function, the CHSM must call
CMSMControlComplete when the event is complete.

See Also

Refer to ODI Supplement: The Hub Management Interface for a hub
management implementation of this function. See also the
DriverManagementPtr field of the driver parameter block in Chapter 3,
"CHSM Data Structures and Variables".

For more information on Brouter, see ODI Supplement: Brouter Support.

ODISTAT_SUCCESSFUL The requested operation was completed
successfully.

ODISTAT_RESPONSE_DELAYED The function cannot complete
immediately; this is due to the
asynchronous nature of this function.

ODISTAT_NO_SUCH_HANDLER The ECB requested an operation that is
not available.
CHSM Functions 5-55

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

DriverEnableInterrupt

Called by the CMSM through the driver parameter
block to enable the adapter’s interrupt(s) at the
adapter.

Syntax

void DriverEnableInterrupt (

const DRIVER_DATA *driverData);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

Output Parameters

None.

Return Values

None.

Remarks

This function re-enables the adapter’s interrupt; it should undo whatever
DriverDisableInterrupt does.

It is critical that this function performs the necessary operations to enable the
adapter’s interrupt(s) as quickly as possible and then returns.
5-56 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

SM
this
DriverDisableInterrupt

Called by the CMSM through the driver parameter
block to disable the adapter’s interrupt(s) at the
adapter.

Syntax

BOOLEAN DriverDisableInterrupt (

const DRIVER_DATA *driverData,

BOOLEAN flag);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

flag

TRUE if the function is to return a value.
FALSE if the function is not to return a value.

Output Parameters

None.

Return Values

Remarks

This function must be present and return its specified return value. If the CH
can disable the adapter’s ability to generate interrupts, it must do so with
function.

TRUE The adapter generated the interrupt, for the primary
interrupt.

FALSE The adapter did not generate the interrupt, for the primary
interrupt.
CHSM Functions 5-57

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

e
If DriverDisableInterrupt is called from the context of an interrupt, the
CHSM must return to the CMSM whether it generated the interrupt for the
primary interrupt or not.

If DriverDisableInterrupt is called with the flag parameter set to FALSE, th
return value must be FALSE.

It is critical that this function performs the necessary operations to disable the
adapter’s interrupt(s) as quickly as possible and then returns.

See Also

DriveDisableInterrupt2
5-58 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

.

DriverDisableInterrupt2

Called by the CMSM through the driver parameter
block to disable the adapter's interrupt(s) at the
adapter.

Syntax

BOOLEAN DriverDisableInterrupt2

(const DRIVER_DATA *driverData,

 BOOLEAN flag);

Input Parameters

driverData

 Pointer to the CHSM's driver adapter data space.

flag

 TRUE if the function is to return a value.

 FALSE if the function is not to return a value.

Output Parameters

None.

Return Values

TRUE

The adapter generated the interrupt for the secondary interrupt.

FALSE

The adpater did not generate the interrupt for the secondary interrupt
CHSM Functions 5-59

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

SM
R)

M
rn
t or
E,
Remarks

This function must be present and return its specified return value if the CH
uses a secondary interrupt for which a second interrupt service routine (IS
has been provided (see DriverISR2Ptr in DRIVER_PARM_BLOCK and
MLIDCFG_Interrupt1 in the MLID_CONFIG_TABLE). If the CHSM can
disable the adapter's ability to generate interrupts, it must do so with this
function.

If DriverDisableInterrupt2 is called from the context of an interrupt, the CMS
calls DriverDisableInterrupt2 with flag set to TRUE and the CHSM must retu
to the CMSM whether it generated the interrupt for the secondary interrup
not. If DriverDisableInterrupt2 is called with the flag parameter set to FALS
the return value must be FALSE.

It is critical that this function performs the necessary operations to disable the
adapter's interrupt(s) as quicky as posible and then return.

See Also

 DriverDisableInterrupt
5-60 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

fter

ged

 that
Timeout Detection

The DriverAES routine may be used when the CHSM needs to be called a
a specified interval or at periodic intervals. Typically, this routine allows an
adapter to complete a time-consuming operation, such as a reset, or to
determine if an adapter has failed to complete a packet transmission. This
routine can also set up timed functions.

Execution time constraints determine whether the routine is called at privile
or nonprivileged time. At privileged time, the CHSM can only use operating
system routines that are called at privileged time. If any routines are used
must be called during process time only, DriverAES should be set up to be
invoked at nonprivileged time.
CHSM Functions 5-61

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

sly
ace.
DriverAES

DriverAES is an event service routine.

Syntax

void DriverAES (

const DRIVER_DATA *driverData,

const MLID_CONFIG_TABLE *configTable);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table.

Output Parameters

None.

Return Values

None.

Remarks

DriverAES is typically enabled during initialization) by calling
CMSMScheduleAES (see Chapter 7, "CMSM Functions").

Once scheduled, the CMSM invokes this routine either once or continuou
with a pointer to the configuration table and a pointer to the driver data sp

You can use as many AES routines as you want, as long as the function names
are different.
5-62 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Pseudocode

The actual content of DriverAES is entirely up to the developer. The following
pseudocode illustrates the use of DriverAES to identify a send timeout error.

<DriverAES > (const DRIVER_DATA *driverData, const

MLID_CONFIG_TABLE *configTable);

IF Transmit is in Progress

IF Elapsed Transmit Time > Maximum Time for Transmit

Increment appropriate error counter

Reset the adapter

Reset CMSMTxFreeCount

ENDIF

ENDIF

RETURN
CHSM Functions 5-63

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

5-64 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

c h a p t e r 6 CTSM Functions
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

r

ons
ted

d
te

wn.
Overview

This chapter describes the topology specific functions provided as tools fo
CHSM developers.

The C Language Topology Specific Module (CTSM) manages the operati
that are unique to a specific media type. Multiple frame support is implemen
in the CTSM so all frame types for a given media are supported.

In this specification, topology specific functions and variables are indicate
with "<CTSM>". The developer must replace "<CTSM>" with the appropria
media type, depending on which module is used. Since the MLID must be
compiled with case sensitivity on, the names must be used exactly as sho

ETHERTSM.NLM → replace <CTSM> with CEtherTSM

TOKENTSM.NLM → replace <CTSM> with CTokenTSM

FDDITSM.NLM → replace <CTSM> with CFDDITSM
CTSM Functions 6-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

d

<CTSM>BuildTransmitControlBlock

The C HSM calls this function when it is ready to
send a priority packet that has been queued using
DriverPriorityQueueSupport . The C HSM calls
this function to convert an ECB to a TCB. ECB-
aware C HSMs must call this function if they need
physical addresses in the ECB fragment structure.

Syntax

#include <odi.h>
#include <<ctsm>.h>

ODISTAT <CTSM>BuildTransmitControlBlock(

DRIVER_DATA *driverData,

ECB *ecb,

TCB **tcb

UINT32 *pktSize);

Input Parameters

driverData

CHSM adapter data space.

ecb

Pointer to a Transmit ECB.

Output Parameters

tcb

Pointer to a pointer to the TCB to send. If the CHSM is ECB-aware an
has the MLIDCFG_ModeFlags MM_FRAGS_PHYS_BIT set, this field
will have a pointer to an ECB with physical addresses in the fragment
structure.
6-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

This
LAN

le, if

for
of

ed.

pktSize

Padded length of the packet. This parameter is used for Ethernet only.
parameter contains the length of the entire frame as it appears on the
medium. Ethernet CHSMs give this value to the LAN adapter, which
defines the number of bytes to transmit. The TCBDataLen field only
describes the amount of data being passed in the TCB. In the case of
Ethernet, the frame might have been padded or evenized. For examp
the CHSM uses DMA to transfer the TCB data to the LAN adapter’s
memory, the TCBDataLen field tells the LAN adapter how many bytes to
transfer.

Return Values

Remarks

The CHSM should be aware of the number of TCBs available to the MLID
priority sends. The CTSM allocates a number of TCBs based on the sum
CMSMTxFreeCount and CMSMPriorityTxFreeCount . The CHSM must
not have more outstanding priority TCBs than was set by the CHSM using
CMSMPriorityTxFreeCount during DriverInit . If the CHSM makes this call
when no TCBs are available, ODISTAT_OUT_OF_RESOURCES is return

The CHSM does not need to do size checking on the resultant TCB. If the
packet generated is too large for the media, this function returns
ODISTAT_PACKET_UNDELIVERABLE after it returns the ECB to the LSL.
It does not return a TCB to the CHSM.

ODISTAT_SUCCESSFUL TCB pointer is valid. The CHSM should
transmit the TCB.

ODISTAT_OUT_OF_RESOURCES A TCB was not available. The CHSM must not
call this routine with more outstanding TCBs
than it set in the CMSMPriorityTxFreeCount
variable. The ECB is returned to the CHSM.
The CHSM must either call this function again
after a TCB resource is available, or return the
ECB via <CTSM>CancelPrioritySend .

ODISTAT_PACKET_UNDELIVERABLE A TCB was available, but the ECB created a
packet that was too large for the media. The
ECB was returned to the LSL and a TCB was
not allocated.
CTSM Functions 6-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

uld

then
l
The CHSM must not change the CMSMTxFreeCount for any TCB obtained
for a priority transmit. An internal counter for priority support resources sho
be maintained by the CHSM.

If the CHSM needs to cancel the TCB after this function has been called,
it should set the status field in the TCB to ODISTAT_CANCELED and cal
<CTSM>SendComplete or <CTSM>FastSendComplete.
6-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

<CTSM>CancelPrioritySend

The CHSM calls this function to cancel/return an
ECB that has not been sent.

Syntax

#include <odi.h>
#include <<ctsm>.h>

void <CTSM>CancelPrioritySend

(DRIVER_DATA *driverData,

ECB *ecb,);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

ecb

Pointer to a transmit ECB.

Output Parameters

None.

Return Values

None.
CTSM Functions 6-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

lly
Remarks

The CHSM calls this function when it is canceling an ECB that was origina
accepted to be transmitted via DriverPriorityQueueSupport .

Call this function only if canceling the ECB. If the CHSM has called
<CTSM>BuildTransmitControlBlock , it should set the ECB_Staus field to
ODISTAT_CANCELED. Then it should call <CTSM>SendComplete or
<CTSM>FastSendComplete.
6-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

<CTSM>FastProcessGetRCB

Called by the CHSM to process an RCB for a
received packet and to preallocate a new
nonfragmented RCB for the next packet.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <<ctsm>.h>

RCB *<CTSM>FastProcessGetRCB (

DRIVER_DATA *driverData,

RCB *rcb,

UINT32 pktSize,

UINT32 rcvStatus,

UINT32 newRcbSize);

Input Parameters

driverData

Pointer to the HSM’s driver adapter data space.

rcb

Pointer to the received packet’s RCB.

pktSize

Size of the received packet including the MAC header.

rcvStatus

Status of received packet for the Receive Monitor (see
DriverPromiscuousChange in Chapter 5, "CHSM Functions").

newRcbSize

Minimum packet size for the new RCB.
CTSM Functions 6-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

lled

 is
Output Parameters

None.

Return Values

Remarks

<CTSM>FastProcessGetRCB is called at process or privileged time.
<CTSM>FastProcessGetRCB is identical to <CTSM>ProcessGetRCB,
except that before this routine returns, the RCB’s event service routine is ca
to complete the processing. <CTSM>ProcessGetRCB used in conjunction
with CMSMServiceEvents accomplishes the same task.

Do not call this function until the packet has been received into host memory and
ready to be handed to the CTSM.

This functionality is not possible on any multiprocessor-capable platforms.

For some busMaster implementations, you must set the first UINT32 parameter,
starting at RCBReserved[28] (defined in CMSM.H), to the number of bytes
necessary to skip to the beginning of the packet. This value can be as high as
128 bytes for chips which have poor alignment capabilities. This field is normally
part of the reserved space in the RCB definition and can only be used with this
call for the purpose stated for this function.

If the MM_FRAGS_PHYS_BIT of the MLIDCFG_Modeflags field is set, the fragment
offset of the RCB contains a physical pointer to the RCB data buffer.

See Also

<CTSM>ProcessGetRCB

Pointer to a new nonfragmented RCB.

NULL No nonfragmented RCBs are available.
6-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

<CTSM>FastRcvComplete

Called by the CHSM to direct a completed RCB to
the protocol stack.

Syntax

#include <cmsm.h>
#include <<ctsm>.h>

void <CTSM>FastRcvComplete (

const DRIVER_DATA *driverData,

RCB *rcb);

Input Parameters

driverData

Pointer to the HSM’S driver adapter data space.

rcb

Pointer to the received packet’s RCB.

Output Parameters

None.

Return Values

None.

Remarks

This routine increments the MTotalRxPackets, MTotalRxOkByteCount, and
MTotalGroupAddrRxCount statistics counters as needed for ECB-aware
adapters only. On adapters that have previously called <CTSM>GetRCB, the
counters will have already been incremented.

<CTSM>FastRcvComplete is called at process or privileged time.
<CTSM>FastRcvComplete is identical to <CTSM>RcvComplete with the
CTSM Functions 6-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 is

 it is

r

 is
exception that before this routine returns, the RCB’s event service routine
called to complete the processing. Using <CTSM>RcvComplete in
conjunction with CMSMServiceEvents accomplishes the same task.

Normally, <CTSM>FastRcvComplete is preferred over
<CTSM>RcvComplete. <CTSM>FastRcvComplete gives the ECB directly
to the protocol stack and saves an extra queueing. <CTSM>RcvComplete
does not send a packet directly to the protocol stack but to the LSL, where
queued. Adapters that have minimal amounts of memory should use
<CTSM>RcvComplete to help keep the adapter from overflowing the buffe
when too many packets are received.

Do not call this function until the packet has been received into host memory and
ready to be handed to the CTSM.

This functionality is not possible on any multiprocessor capable platforms.

See Also

<CTSM>RcvComplete
6-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

<CTSM>FastRcvCompleteStatus

Allows the CTSM to fill in the proper packet length
fields of the RCB, record the error status, and direct
the completed RCB to the protocol stack.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <<ctsm>.h>

void <CTSM>FastRcvCompleteStatus (

DRIVER_DATA *driverData,

RCB *rcb,

UINT32 packetLength,

UINT32 packetStatus);

Input Parameters

driverData

Pointer to the HSM’S driver adapter data space.

rcb

Pointer to the received packet’s RCB.

packetLength

Size of the received packet including the MAC header.

packetStatus

 Status of received packet for stack monitoring functions (see
DriverPromiscuousChange in Chapter 5, "CHSM Functions").

Output Parameters

None.
CTSM Functions 6-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3 ask

Return Values

None.

Remarks

<CTSM>FastRcvCompleteStatus is identical to
<CTSM>RcvCompleteStatus except that before this routine returns, the
RCB’s event service routine is called to complete the processing.
<CTSM>RcvCompleteStatus used in conjunction with
CMSMServiceEvents performs the same task as
<CTSM>FastRcvCompleteStatus.

During the RCB’s event service routine, the state of the system interrupt m
may change. The CHSM should preserve any needed state before calling
<CTSM>FastRcvCompleteStatus. If having interrupts enabled is
undesirable, the MLID should use <CTSM>RcvCompleteStatus and wait
until the conclusion of the receive routine before servicing events.

This function is called at process or privileged time.

Do not call this function until the packet has been received into host memory and
is ready to be handed to the CTSM.

This functionality is not possible on any multiprocessor capable platforms.

Intelligent adapters that are ECB aware should use <CTSM>RcvComplete to
return the RCBs.

See Also

<CTSM>RcvCompleteStatus
6-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

<CTSM>FastSendComplete

Called by the CHSM’s DriverSend or DriverISR
routine to release a TCB after a packet has been
transmitted.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <<ctsm>.h>

void <CTSM>FastSendComplete (

DRIVER_DATA *driverData,

TCB *tcb,

UINT32 transmitStatus);

Input Parameters

driverData

Pointer to the HSM’S driver adapter data space.

tcb

Pointer to the TCB.

transmitStatus

Used to flag whether a packet was actually sent.

0 Successful.

nonzero Undeliverable.

Output Parameters

None.

Return Values

None.
CTSM Functions 6-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

tine
g

k,
f
Remarks

The MTotalTxPacketCount, MTotalTxOkByteCount, and
MTotalGroupAddrTxCount statistics counters have been updated.

<CTSM>FastSendComplete is called at process or privileged time.
<CTSM>FastSendComplete is identical to <CTSM>SendComplete with
the exception that before this routine returns, the TCB’s event service rou
is called to notify the upper layers that the transmission is complete. Usin
<CTSM>SendComplete and CMSMServiceEvents together accomplishes
the same task.

Normally, <CTSM>FastSendComplete is preferred over
<CTSM>SendComplete. <CTSM>FastSendComplete gives the ECB
directly to the protocol stack and saves an extra queueing.
<CTSM>SendComplete does not send a packet directly to the protocol stac
but to the LSL where it is queued. Adapters that have minimal amounts o
memory should use <CTSM>SendComplete to help keep the adapter from
overflowing the buffer when lots of packets are being sent to it.

Do not call this function until the packet has been handed to the card and the
transmission has been initialized.

This functionality is not possible on any multiprocessor capable platforms.

See Also

<CTSM>SendComplete
6-14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

r.
<CTSM>GetConfigInfo

Allows a C HSM to get the configuration
information for the <CTSM>, including module and
ODI specification versions.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT <CTSM>GetConfigInfo(

void *configInfo,

UINT32 *nBytes);

Input Parameters

nBytes

Pointer to the requested number of bytes to be returned into the buffe

Output Parameters

configInfo

A pointer to a buffer used to receive the returned configuration
information. The caller needs to be sure that the buffer is at least nBytes
bytes long.

nBytes

Pointer to the number of bytes returned in the configuration buffer.
CTSM Functions 6-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Return Values s

Remarks

The configuration information is returned in the format defined by
CTSM_CONFIG_TABLE.

ODISTAT_SUCCESSFUL The configuration information of
nBytes was successfully returned in
the buffer.

ODISTAT_BAD_PARAMETER The nBytes requested was larger than
the actual configuration information
available. The number of bytes of the
configuration table actually returned is
indicated by the output parameter
nBytes.
6-16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

<CTSM>GetHSMIFLevel

Gets the interface level between the CHSM and
CTSM.

Syntax

#include <odi.h>
#include <<ctsm>.h>

UINT32 <CTSM>GetHSMIFLevel ();

Input Parameters

None.

Output Parameters

None.

Return Values

Current CHSM interface level.

Remarks

The current interface level is 111.
CTSM Functions 6-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

et.
<CTSM>GetRCB

Called by the CHSM to pass lookahead data to the
CTSM, and to get a fragmented RCB for the
remainder of the packet that has been received by
the adapter.

Syntax

#include <odi.h>
#include <<ctsm>.h>

RCB * <CTSM>GetRCB (

DRIVER_DATA *driverData,

UINT8 *lookAheadData,

UINT32 pktSize,

UINT32 rcvStatus,

UINT32 *startBytes,

UINT32 *numBytes);

Input Parameters

driverData

Pointer to the C HSM’S driver adapter data space.

lookAheadData

Pointer to the received packet header (lookahead buffer).

pktSize

Size of the received packet including the MAC header.

rcvStatus

Status of received packet (see DriverPromiscuousChange in Chapter 5,
"CHSM Functions").

Output Parameters

startBytes

Pointer to the number of bytes to skip over from the beginning of pack
6-18 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

t

e
ws

the
this

e.

ply

an
numBytes

Pointer to the number of bytes remaining to read.

Return Values

Pointer to a fragmented RCB if this call is successful.
NULL if no fragmented RCBs are available.

Remarks

This routine increments the MTotalRxPackets, MTotalRxOkByteCount, and
MTotalGroupAddrRxCount statistics counters as needed.

 <CTSM>GetRCB is called at process or privileged time. MLIDs that canno
handle fragmented receive buffers should get RCBs using either
CMSMAllocateRCB or <CTSM>ProcessGetRCB.

<CTSM>GetRCB uses a lookahead process where the CTSM previews th
packet header information before it gives the RCB to the CHSM. This allo
the CTSM to verify that it wants the packet before the CHSM transfers the
entire packet from the adapter to the RCB.

The RCB might be fragmented.

The adapter’s data transfer method governs how the lookahead process is
handled.

• If a programmed I/O adapter is being used, the CHSM must transfer
packet header information from the adapter to a buffer maintained for
purpose. The number of bytes to transfer is specified by
CMSMMaxFrameHeaderSize, which is described in Chapter 4, "CMSM/
CTSM Data Structures and Variables". The CHSM must set packetHdr to
point to the beginning of the lookahead buffer before calling this routin

• If a shared RAM (memory-mapped I/O) adapter is used, the CHSM sim
points packetHdr to the beginning of the packet buffer in shared RAM.

On entry to this routine, packetHdr must point to the packet’s header
information in the lookahead buffer, and packetSize must contain the size of the
received packet. If the header information is verified, the CTSM will obtain
RCB and use the lookahead information to fill in the RCBReserved fields
before it returns a pointer to the RCB.
CTSM Functions 6-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ket

 rest
he
t

size
After obtaining the RCB, the CHSM must transfer the remainder of the pac
into the RCB fragment buffers. nskip is the offset from the beginning of the
packet to start copying from, and ntoRead contains the number of bytes in the
packet left to read.

The address and buffer size contained in the RCB fragment list’s
FRAGMENT_STRUCT element must not be altered by the CHSM.

After the CHSM reads the rest of the packet, it must use
<CTSM>RcvComplete and CMSMServiceEvents to return the RCB to the
LSL.

If this routine returns a NULL pointer, the CHSM should discard the received
packet.

Bus Master Adapters

Bus master devices require preallocated RCBs. Since preallocation is not
compatible with <CTSM>GetRCB, the CHSM for a bus mastering adapter
uses CMSMAllocateRCB and <CTSM>ProcessGetRCB.

Pipeline Adapters

On pipeline adapters, the first part of the packet can be indicated while the
of the packet is still being received. This condition is indicated by setting t
contents of the packet size field to UNUSED. The CTSM assumes that at leas
CMSMMaxFrameHeaderSize bytes of the data are presented. See
<CTSM>RcvCompleteStatus for information on returning the RCB. With
pipeline adapters, the counters are updated when
<CTSM>RcvCompleteStatus is called.

If a packet is not wanted, <CTSM>GetRCB will update the statistics counters
as best it can; since the packet is not wanted, there is no way to know its
and other information for sure.
6-20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

<CTSM>ProcessGetRCB

Called by the CHSM to process an RCB for a
received packet and to preallocate a new
nonfragmented RCB for the next packet.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <<ctsm>.h>

RCB * <CTSM>ProcessGetRCB (

DRIVER_DATA *driverData,

RCB *rcb,

UINT32 pktSize,

UINT32 rcvStatus,

UINT32 newRcbSize);

Input Parameters

driverData

Pointer to the HSM’s driver adapter data space.

rcb

Pointer to the received packet’s RCB.

pktSize

Size of the received packet including the MAC header.

rcvStatus

Status of received packet (see DriverPromiscuousChange in Chapter 5,
"CHSM Functions").

newRcbSize

Minimum packet size for the new RCB.
CTSM Functions 6-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3 ket

e
Output Parameters

None.

Return Values

Pointer to a new nonfragmented RCB.

NULL No nonfragmented RCBs are available.

Remarks

The CHSM calls <CTSM>ProcessGetRCB at process or privileged time.
The CHSM must have previously copied the contents of the received pac
into the RCB data buffer.

Use this routine if the RCB was preallocated using CMSMAllocateRCB or
was obtained from a previous call to this routine.

This routine increments the following statistics counters:

MTotalRxPacketCount

MTotalRxMiscCount

MPacketRxTooBigCount

MPacketRxTooSmallCount

MTotalGroupAddrRxCount

If the adapter/MLID is ECB-aware and has already filled in all required ECB
fields as described in Chapter 4, "CMSM/CTSM Data Structures and Variables",
it should return the ECB for processing by using <CTSM>RcvCompleteStatus
and CMSMServiceEvents . If the MM_FRAGS_PHYS_BIT bit of the
MLIDCFG_ModeFlags field is set, the fragment offset of the RCB contains a
physical pointer to the RCB data buffer.

The CHSM must eventually use CMSMServiceEvents, which enables the
RCB’s event service routine to complete the processing.

Ethernet

The CHSM starts copying the packet from the 6-byte destination field of th
media header into the RCB data buffer.
6-22 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

edia

dia

is
Token-Ring

The CHSM starts copying the packet from the access control byte of the m
header into the RCB data buffer.

FDDI

The CHSM starts copying the packet from the frame control byte of the me
header into the RCB data buffer.

For some busMaster implementations, you must set the first UINT32 parameter,
starting at RCBReserved[28] (defined in CMSM.H), to the number of bytes
necessary to skip to the beginning of the packet. This value can be as high as
128 bytes for chips which have poor alignment capabilities. This field is normally
part of the reserved space in the RCB definition and can only be used with this
call for the purpose stated for this function.

Do not call this function until the packet has been received into host memory and
ready to be handed to the CTSM.

See Also

CMSMReturnRCB
CTSM Functions 6-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

e
<CTSM>RcvComplete

Called by the CHSM to direct a completed RCB to
the LSL’s holding queue to await processing.

Syntax

#include <cmsm.h>
#include <<ctsm>.h>

void <CTSM>RcvComplete (

DRIVER_DATA *driverData,

RCB *rcb);

Input Parameters

driverData

Pointer to the HSM’S driver adapter data space.

rcb

Pointer to the received packet’s RCB.

Output Parameters

None.

Return Values

None.

Remarks

<CTSM>RcvComplete is called at process or privileged time. This routine
increments the MTotalRxPacketCount, MTotalRxOkByteCount, and
MTotalGroupAddrRxCount statistics counters for ECB_Aware adapters. Us
this routine if the CHSM gets the RCB using the <CTSM>GetRCB function
and copies the received packet into the RCB receive buffer(s).
6-24 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

e

When the CHSM uses this routine to queue an RCB, it must eventually us
CMSMServiceEvents to call the RCB’s event service routine and complete
the processing.
CTSM Functions 6-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

<CTSM>RcvCompleteStatus

Allows the CTSM to fill in the packet length of the
RCB fields, record the error status, and direct the
RCB to the LSL’s holding queue to await
processing.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <<ctsm>.h>

void <CTSM>RcvCompleteStatus (

DRIVER_DATA *driverData,

RCB *rcb,

UINT32 packetLength,

UINT32 packetStatus);

Input Parameters

driverData

Pointer to the HSM’S driver adapter data space.

rcb

Pointer to the received packet’s RCB.

packetLength

Size of the received packet including the MAC header.

packetStatus

Status of the received packet for stack monitoring functions (see
DriverPromiscuousChange in Chapter 5, "CHSM Functions").

Output Parameters

None.
6-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 the
Return Values

None.

Remarks

Use this routine if a pipelined adapter obtained the RCB by calling
<CTSM>GetRCB with packetSize equal to UNUSED.

When the CHSM uses this routine to queue an RCB, it must eventually use
CMSMServiceEvents macro to call the ECB’s event service routine and
complete the processing.

This function is called at process or privileged time.
CTSM Functions 6-27

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

<CTSM>RegisterHSM

Initially registers the CHSM with the CTSM and
CMSM.

Syntax

#include <odi.h>
#include <<ctsm>.h>

ODISTAT <CTSM>RegisterHSM (

DRIVER_PARM *DriverParameterBlock,

MLID_CONFIG_TABLE **configTable);

Input Parameters

DriverParameterBlock

Pointer to the driver parameter block structure.

Output Parameters

configTable

Pointer to a pointer to the configuration table.

Return Values

Remarks

<CTSM>RegisterHSM is called at initialization time only. The CHSM’s
DriverInit routine must call <CTSM>RegisterHSM with a pointer to its driver
parameter block structure in driverParm. This routine calls the CMSM, which
performs the following tasks:

ODISTAT_SUCCESSFUL The CHSM was successfully registered with
the CTSM and CMSM.

ODISTAT_FAIL The CHSM was not successfully registered
with the CTSM and CMSM.
6-28 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ce
• Copies the driver parameter block into local data space

• Processes driver firmware variables

• Allocates the frame data space

• Copies the driver configuration table template into the frame data spa

• Parses information derived from the linker definition file
CTSM Functions 6-29

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

an
<CTSM>SendComplete

Called by the CHSM’s DriverSend or DriverISR
routine to return a TCB after a packet has been
transmitted.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <<ctsm>.h>

void <CTSM>SendComplete (

DRIVER_DATA *driverData,

TCB *tcb,

UINT32 transmitStatus);

Input Parameters

driverData

Pointer to the HSM’S driver adapter data space.

tcb

Pointer to the TCB. If the CHSM is ECB aware, then it is a pointer to
ECB that has been type cast to a TCB pointer.

transmitStatus

Used to flag whether a packet was really sent.

0 Successful

nonzero Undeliverable

Output Parameter

None.

Return Values

None.
6-30 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 into

cts

ice
Remarks

<CTSM>SendComplete is called at process or privileged time.
<CTSM>SendComplete can be called before the actual transmission is
complete (a "lying send"), as long as all packet data has been transferred
the adapter’s transmit buffer.

This function returns the packet’s TCB to the unused TCB queue and dire
the underlying transmit ECB to the LSL’s service queue.

The CHSM must eventually use CMSMServiceEvents, which calls the
ECB’s event service routine. Typically, if the DriverSend routine is called to
transmit the next packet after a send complete interrupt, the interrupt serv
routine should invoke CMSMServiceEvents.

The MTotalTxPacketCount, MTotalTxOkByteCount, and
MTotalGroupAddrTxCount statistics counters are updated.

The DriverSend routine can use ECBs instead of TCBs by initializing the driver
parameter block variable DriverSendWantsECBs to a nonzero value (see
Chapter 3, "CHSM Data Structures and Variables"). In this case,
<CTSM>SendComplete will simply direct the ECB to the LSL’s service queue.
CTSM Functions 6-31

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

s

r’s
<CTSM>UpdateMulticast

Forces the CTSM to call DriverMulticastChange .

Syntax

#include <<ctsm>.h>

ODISTAT <CTSM>UpdateMulticast (

DRIVER_DATA *driverData);

Input Parameters

driverData

Pointer to the HSM’S driver adapter data space.

Output Parameters

None.

Return Values

Remarks

The CHSM can call <CTSM>UpdateMulticast at process or privileged time,
but it is generally called by DriverReset. When this routine is called, it passe
the current multicast table (maintained by the CTSM) to the CHSM’s
DriverMulticastChange routine. This allows the driver to update the adapte
multicast address registers.

ODISTAT_SUCCESSFUL The requested operation was completed
successfully.

ODISTAT_RESPONSE_DELAYED The function cannot complete
immediately; this is due to the
asynchronous nature of this function.

ODISTAT_FAIL The requested operation could not be
completed.
6-32 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

LID

"
t

t
This routine is called by internal CTSM functions each time multicast
addresses are added to or deleted from the CMSM’s multicast table. The M
can also call this routine during the CHSM’s DriverReset routine.

Refer to the sections in Chapter 3, "CHSM Data Structures and Variables
covering the following flags and variables for more information on multicas
addressing:

• MM_MULTICAST_BIT bit of the MLIDCFG_ModeFlags field is used to
indicate whether or not multicast addressing is supported.

• MF_SOFT_FILT_GRP_BIT and MF_GRP_ADDR_SUP_BIT bits of the
MLIDCFG_Flags field must be set appropriately to reflect the multicas
filtering mechanism used by the adapter/driver.

• The driver parameter block variable, DriverMaxMulticast, must be set to
reflect the maximum number of multicast addresses the adapter can
handle.
CTSM Functions 6-33

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

6-34 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

c h a p t e r 7 CMSM Functions
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

,
 the
m.

m

n
Overview

This chapter describes the C language Media Support Module (CMSM)
functions provided as tools for CHSM developers. These CMSM functions
along with the topology-specific functions described in Chapter 6, manage
primary details of interfacing the CHSM to the LSL and the operating syste
The functions in this chapter are media independent and handle generic
initialization and run-time issues.

The functions included in this chapter are designed to shield the MLID fro
future operating system changes. These functions are defined in the cmsm.h
file. If an operating system call changes, we will modify the corresponding
functions in cmsm.h. Then, instead of modifying your existing CHSM, you ca
simply recompile it with the new cmsm.h.
CMSM Functions 7-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

d by

-bit
CMSMAddToCounter

Adds a user-specified value to the counter pointed
to by STAT_TABLE_ENTRY.

Syntax

#include <odi.h>
#include <cmsm.h>

void CMSMAddToCounter (

STAT_TABLE_ENTRY *statTableEntryPtr,

UINT32 value);

Input Parameters

StatTableEntryPtr

Pointer to the statistics table entry whose counter is to be incremente
value.

value

The value to increment the counter by.

Output Parameters

None.

Return Values

None.

Remarks

This function is intended to simplify the process of adding a value to a 64
counter, but it can also be used for 32-bit counters.
7-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

See Also

CMSMIncrCounter

For more information on STAT_TABLE_ENTRY, see the statistics table
information in Chapter 3, "CHSM Data Structures and Variables".
CMSM Functions 7-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

e,

will
CMSMAlloc

Used by the CHSM to allocate memory at process
time.

Syntax

#include <odi.h>
#include <cmsm.h>

void *CMSMAlloc (

CONST DRIVER_DATA *driverData,

UINT32 nbytes);

Input Parameters

driverData

Pointer to the HSM’S driver adapter data space.

nbytes

Number of bytes of memory to allocate.

Output Parameters

None.

Return Values

If successful, CMSMAlloc returns a pointer to the allocated space. Otherwis
it returns NULL.

Remarks

The CHSM must return the buffer allocated to CMSMAlloc at shutdown time
using CMSMFree.

If the driver parameter block variable, DriverNeedsBelow16Meg, is initialized
to 1 (see Chapter 3, "CHSM Data Structures and Variables"), the CMSM
allocate memory below the 16MB boundary.
7-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

The memory allocated by CMSMAlloc is logically contiguous, but may not be
physically contiguous.

Example

/* Allocate memory for transmit buffers if using Am7990 LANCE chipset.*/

if ((configTable->MLIDCFG_ModeFlags & MM_FRAGS_PHYS_BIT) == 0) {
driverData->TxBuffers =CMSMAlloc(driverData, BUFFER_SIZE *TX_BUFFERS);
if (driverData->TxBuffers == 0) {

CMSMPrintString(configTable, MSG_TYPE_INIT_ERROR,
MSG(“073: Unable to allocate memory.\n\r”, 39), 0 ,0);
CMSMReturnDriverResources(configTable);
return-1;

 }
}

CMSM Functions 7-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 be
f the
s

Set

ate
ated,
CMSMAllocateMultipleRCBs

Allocates a block of RCBs for packets to be
received by the CHSM.

Syntax

#include <odi.h>

#include <cmsm.h>

RCB * CMSMAllocateMultipleRCBs (

const Driver_Data *driverData,

UINT32 nbytes,

UINT32 *nRCBs,

void **physicalRCB);

Input Parameters

driverData

Pointer to the CHSM's driver adapter data space.

nbytes

Number of data bytes of memory to allocate per RCB. As this call is to
used for preallocation of RCBs, this value should be set to the value o
MLIDCFG_MaxFrameSize field of the configuration table (see remark
below).

nRCBs

Pointer to the number of RCBs to be allocated.

physicalRCB

Address of the pointer to the physical address of the first RCB in list.
to NULL if physical addresses are not needed.

Output Parameters

nRCBs

Pointer to the number of RCBs actually allocated. This routine will upd
the input parameter, in the case of requested RCBs equals RCBs alloc
the value will remain the same.
7-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

s.

t

will
n the

l

f all
tself.

 pre

al
ain
f the
e C
 be

 the

e
physicalRCB

Pointer to the physical address of the first RCB on the linked list of RCB
Set to NULL if there was an allocation error.

Return Values
If successful, CMSMAllocateMultipleRCBs returns a pointer to the firs
RCB allocated in the linked list. If Unsuccessful,
CMSMAllocateMultipleRCBs returns a NULL.

Remarks

If the number of RCBs available is less than nRCBs, then the procedure
allocate as many RCBs as are available. If there are no available RCBs, the
procedure will return a NULL, and the C MSM will increment the
NoECBAvailableCount statistics counter. If nRCBs is zero at call time, the
procedure will return with null pointers and the NoECBAvailableCount wil
not be incremented.

The returned RCBs will be nonfragmented and large enough to hold the
received packet frame. The length passed in nbytes includes the length o
protocol and hardware headers, but does not include the size of the RCB i

C HSMs that support bus mastering DMA adapters may use this routine to
allocate blocks of RCBs. If the MM_FRAGS_PHYS_BIT bit of the
MLIDCDFG_ModeFlags field is set, PhysicalRCB will be set to the physic
address of the first RCB on the linked list, and the fragment pointer will cont
a physical pointer. After the adapter copies the packet into the fragment o
RCB, the C HSM uses <CTSM>ProcessGetRCB to return each RCB to th
MSM for processing and get a replacement RCB. CMSMReturnRCB can
used to return individual unused RCBs to the CMSM without processing.
CMSMReturnMultipleRCBs can be used to return lists of unused RCBs to
C MSM without processing them.

If the adapter is ECB aware (see 'Event Control Blocks (ECBs)') and has
previously filled in all the RCB fields according to the ODI specification, th
C HSM should call <CTSM>RcvComplete.

This procedure is designed for speed and performance, and does not
incorporate all of the checking found in CMSMAllocateRCB. If the driver
requires the RCBs to be allocated below the 16 MegaByte boundary, this
procedure should not be used.
CMSM Functions 7-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

he

1]
 and

he

edia

dia
The fields RCB->RCBDriverWS.RWs_i32val[0] and
RCB->RCBDriverWS.RWs_i32val[1] will be returned as 32 bit pointers to t
next RCB on the list. RCB->RCBDriverWS.RWs_i32val[0] will contain the
logical address of the next RCB, while RCB->RCBDriverWS.RWs_i32val[
will contain the physical address (when needed). The remaining operation
description of the RCB will be unchanged.

Ethernet

The C HSM starts copying the packet from the 6-byte destination field of t
media header into the RCB RCBDataBuffer field.

Token-Ring

The C HSM starts copying the packet from the access control byte of the m
header into the RCB's RCBDataBuffer field.

FDDI

The C HSM starts copying the packet from the frame control byte of the me
header into the RCB's RCBDataBuffer field.

See Also

CMSMAllocateRCB

CMSMReturnRCB

CMSMReturnMultipleRCBs
7-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

rns
CMSMAllocPages

Allocates a system, page-aligned, memory buffer
at process time.

Syntax

#include <odi.h>
#include <cmsm.h>

void *CMSMAllocPages (

const DRIVER_DATA *driverData,

UINT32 nbytes),

Input Parameters

driverData

Pointer to the CHSM’S driver adapter data space.

nbytes

Number of bytes of memory to allocate.

Output Parameters

None.

Return Values

If successful, CMSMAllocPages returns a pointer to the allocated space.
Otherwise, it returns NULL.

Remarks

The CHSM calls CMSMAllocPages at process time only; CMSMAllocPages
returns a pointer to the allocated buffer. If the routine is unsuccessful, it retu
0. The CHSM must return this buffer at shutdown time using
CMSMFreePages.
CMSM Functions 7-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

l

If the driver parameter block variable DriverNeedsBelow16Meg is initialized to
1 (see Chapter 3, "CHSM Data Structures and Variables"), the CMSM wil
allocate memory below the 16MB boundary.
7-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

eter
CMSMAllocateRCB

Allocates an RCB for a packet received by the
CHSM, or preallocates an RCB for a packet the
CHSM will receive.

Syntax

#include <odi.h>
#include <cmsm.h>

RCB * CMSMAllocateRCB (

const DRIVER_DATA *driverData,

UINT32 nbytes,

void **physicalRCB);

Input Parameters

driverData

Pointer to the CHSM’S driver adapter data space.

nbytes

Number of bytes of memory to allocate.

Output Parameters

physicalRCB

Pointer to a pointer to the RCB’s physical address. Usually, this param
is used only by ECB-aware, C HSMs. Set to 0 if not needed.

Return Values

If successful, CMSMAllocateRCB returns a pointer to the allocated RCB.
Otherwise, it returns NULL.
CMSM Functions 7-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ived

the
et.

M
r

e

ates

e

edia

dia
Remarks

The returned RCB will be nonfragmented and large enough to hold the rece
packet frame. The length passed in nbytes includes the length of all protocol
and hardware headers. If an RCB is not available, the CTSM increments
MNoECBAvailableCount statistics counter, and the CHSM discards the pack

CHSMs that support bus mastering DMA adapters use this routine to
preallocate RCBs. In this case, the CHSM sets nbytes to the maximum packet
size specified by the MLIDCFG_MaxFrameSize field of the configuration table
before using CMSMAllocateRCB. If the MM_FRAGS_PHYS_BIT bit of the
MLIDCFG_ModeFlags field is set. The fragment pointer will contain a
physical pointer.

After the adapter copies the packet into the fragment of the RCB, the CHS
uses <CTSM>ProcessGetRCB to return the RCB to the CMSM. If the adapte
is ECB aware (see Appendix B, "Event Control Blocks (ECBs)") and has
previously filled in all the RCB fields according to the ODI specification, th
CHSM calls <CTSM>RcvComplete.

If DriverNeedsBelow16Meg of the driver parameter block is initialized to 1
(see Chapter 3, "CHSM Data Structures and Variables"), the CMSM alloc
the RCB in memory below the 16MB boundary.

Ethernet

The CHSM starts copying the packet from the 6-byte destination field of th
media header into the RCB RCBDataBuffer field.

Token-Ring

The CHSM starts copying the packet from the access control byte of the m
header into the RCB’s RCBDataBuffer field.

FDDI

The CHSM starts copying the packet from the frame control byte of the me
header into the RCB’s RCBDataBuffer field.

See Also

CMSMReturnRCB
7-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

CMSMCancelAES

Called to cancel an AES event.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMCancelAES (

DriverData *driverData,

MLID_AES_ECB *mlidAESECB);

Input Parameters

driverData

Pointer to the C HSM's driver adapter data space.

mlidAESECB

Pointer to the MLID_AES_ECB structure of the AES to be canceled.

Output Parameters

None.

Return Values

Remarks

This function is called to cancel an AES event that was scheduled using
CMSMScheduleAES.

See Also

CMSMScheduleAES

ODISTAT_SUCCESSFUL Call back was successfully Canceled.

ODISTAT_BAD_PARAMETER AES was not active.
CMSM Functions 7-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

sly
 it
CMSMControlComplete

Called to notify the CMSM that the previously
scheduled event has completed.

Syntax

#include <odi.h>
#include <cmsm.h>

void CMSMControlComplete (

DRIVER_DATA *driverData,

CHSM_COMPLETE controlFunction,

ODISTAT completionStatus);

Input Parameters

driverData

Pointer to the CHSM’S driver adapter data space.

controlFunction

The control function that has completed.

completionStatus

The return states of the completed event.

Output Parameters

None.

Return Values

None.

Remarks

This function should not be used if the CHSM can quickly and synchronou
complete all of the control functions. This function is used by the CHSM if
7-14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

to
returned ODISTAT_RESPONSE_DELAYED for a given control procedure
signal that the event completed.

You can only have one outstanding scheduled event.

CHSM_COMPLETE Enumeration

typedef enum _CHSM_COMPLETE_

{

CHSM_COMPLETE_STATISTICS,

CHSM_COMPLETE_MULTICAST,

CHSM_COMPLETE_SHUTDOWN,

CHSM_COMPLETE_RESET,

CHSM_COMPLETE_LOOK_AHEAD,

CHSM_COMPLETE_PROMISCUOUS,

CHSM_COMPLETE_MANAGEMENT,

CHSM_COMPLETE_RESERVED

} CHSM_COMPLETE;

See Also

DriverReset

DriverShutdown

DriverMulticastChange

DriverPromiscuousChange

DriverStatisticsChange

DriverRxLookAheadChange

DriverManagement
CMSM Functions 7-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ed to

r
CMSMDeRegisterResource

Allows a C HSM to deregister resources registered
with CMSMRegisterResource .

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMDeRegisterResource (

DRIVER_DATA *driverData,

EXTRA_CONFIG *extraConfig,

ECB *pAsyncECB);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

extraConfig

Pointer to an EXTRA_CONFIG structure that contains the hardware
options to be deregistered. This pointer must be the same pointer us
register the resources in CMSMRegisterResource.

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is called if
CMSMDeRegisterResource returns
ODISTAT_RESPONSE_DELAYED.

The ESR is called with pAsyncECB as a parameter and the pAsyncECB
ECB_Status field will contain the return value.

Other ECB fields may be used by the C HSM to store context or othe
information that is needed by the ESR.

Output Parameters

None.
7-16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

t
on
SR
Return Values

Remarks

After CMSMRegisterMLID has been called, but before
CMSMDeRegisterResource is called, the adapter must be placed in a
shutdown state by calling CMSMShutdownMLID .

CMSMDeRegisterResource will deregister those resources found in
extraConfig’s substructure IOConfig. The resources must previously have
been registered through CMSMRegisterResource using the same extraConfig
pointer.

If CMSMDeRegisterResource cannot complete the operation at the presen
time, an asynchronous process will be scheduled to complete the operati
later. Once the asynchronous operation is complete, the pAsyncECB’s E
routine will be called to report the final return value of the operation. The
return value will be stored in the pAsyncECB’s ECB_Status field.

ODISTAT_SUCCESSFUL The resources contained in the
extraConfig parameter were
successfully deregistered.

ODISTAT_BAD_PARAMETER An input parameter was invalid or the
call was made at interrupttime and the
pAsyncECB parameter was a NULL.

ODISTAT_FAIL The adapter was not in a shutdown
state before the call was made,
another C MSM API returned
ODISTAT_RESPONSE_DELAYED
and has not completed when this
routine was called, or an unknown
error occurred.

ODISTAT_ITEM_NOT_PRESENT The extraConfig pointer was not found
in the list of extraConfig pointers used
in calls to CMSMRegisterResource .

ODISTAT_RESPONSE_DELAYED The operation of de-registering
resources could not be completed at
the present time. An asynchronous
process will be scheduled to complete
the operation at a later time.
CMSM Functions 7-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 a
e

tion
Upon successful return from CMSMDeRegisterResource or from the
asynchronous process, the CHSM is responsible for putting the adapter in
functional state. If additional resources of an EXTRA_CONFIG nature ar
required, the CHSM must call CMSMRegisterResource to register the
additional resources.

CMSMDeRegisterResource upon successful completion will produce a
NESL Service/Status Change event to inform consumers that the configura
of the adapter has been updated.

See Also

CMSMRegisterResource

CMSMShutdownMLID
7-18 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

CMSMDriverRemove

Called by the CHSM’s DriverRemove function to
deregister the CHSM and return all CHSM
resources allocated by the CMSM or the CTSM.

Syntax

#include <cmsm.h>

void CMSMDriverRemove (

MODULE_HANDLE *moduleHandle);

Input Parameters

moduleHandle

The module load handle passed to DriverInit and placed in
DriverModuleHandle of the driver parameter block.

Output Parameters

None.

Return Values

None.

Remarks

CMSMDriverRemove calls the CHSM’s DriverShutdown routine before
returning.
CMSM Functions 7-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

e
n in
CMSMECBPhysToLogFrags

For transmissions, if MM_FRAGS_PHYS_BIT is
set and the adapter is ECB aware, this function
gets the address of the ECB, which contains the
FRAGMENT_LIST_STRUCTURE of the logical
addresses of the fragments in the ECB.

Syntax

#include <odi.h>
#include <cmsm.h>

ECB *CMSMECBPhysToLogFrags (

ECB *ecb);

Input Parameters

ecb

Pointer to an ECB structure.

Output Parameters

None.

Return Values

Pointer to an ECB structure containing logical addresses for the ECB
fragments.

Remarks

You cannot assume that the fragment pointers have a one-to-one
correspondence. Because the physical pointers point to fragments that ar
physically contiguous, there can be more fragments in the physical list tha
the logical list.

The ECBs ECB_PreviousLink and ECB_ESR fields must not be changed.
7-20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 by
te

is
 has
The ECB containing a FRAGMENT_LIST_STRUCTURE of logical
addresses acquired with this function is not returned directly to the system
the HSM. The TSM returns it to the system when one of the Send Comple
APIs has been called for the ECB passed in as the input parameter for th
function. Once a Send Complete API has been called, the HSM no longer
ownership of either ECB and must not reference or modify either ECB.

FRAGMENT_LIST_STRUCT Structure

typedef struct _FRAGMENT_LIST_STRUCT_

{

UINT32 FragmentCount;

FRAGMENT_STRUCT FragmentStruct;

) FRAGMENT_LIST_STRUCT;

Field Descriptions:

FragmentCount

The number of fragments.

FragmentStruct

Specifies a fragment structure.
CMSM Functions 7-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

e
CMSMEnablePolling

Used during DriverInit to enable the operating
system to periodically call DriverPoll if the CHSM’s
board service routine is poll-driven.

Syntax

#include <cmsm.h>

ODISTAT CMSMEnablePolling (

const DRIVER_DATA *driverData);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

Output Parameters

None.

Return Values

Remarks

The DriverPoll routine polls the adapter to determine if any send or receiv
events have occurred. An implied input from the DriverPollPtr field of the
driver parameter block points to the function to be called.

This routine will not relinquish control to other procedures during execution.

ODISTAT_SUCCESSFUL The requested operation was
completed successfully.

ODISTAT_BAD_PARAMETER The DriverPollPtr field of
DriverParameterBlock is set to NULL.
7-22 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

See Also

CMSMGetPollSupportLevel

CMSMSetHardwareInterrupt
CMSM Functions 7-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

st
CMSMFree

Must be used by the CHSM before it permanently
shuts down, to return any memory allocated with
CMSMAlloc or CMSMInitAlloc .

Syntax

#include <cmsm.h>

void CMSMFree (

const DRIVER_DATA *driverData,

void *dataPtr);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space. This parameter mu
contain NULL if memory was allocated using CMSMInitAlloc .

dataPtr

Pointer to the data allocated using CMSMAlloc or CMSMInitAlloc .

Output Parameters

None.

Return Values

None.

Remarks

CMSMFree must be called at process time.
7-24 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Example

The following code is used in DriverShutdown.

if (shutdownType == PERMANENT_SHUTDOWN) {

if (driverData->xyzBuffers) {

CMSMFree(driverData, driverData->xyzBuffers);

driverData->xyzBuffers = 0;

}

DMACleanup((UINT32)configTable->MLIDCFG_DMALine0);

}

CMSM Functions 7-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMFreePages

Returns the system, page-aligned memory buffers
allocated by CMSMAllocPages .

Syntax

#include <cmsm.h>

void CMSMFreePages (

const DRIVER_DATA *driverData,

void *dataPtr);

Input Parameters

driverData

Pointer space.

dataPtr

Pointer to the memory allocated using CMSMAllocPages.

Output Parameters

None.

Return Values

None.

Remarks

CMSMFreePages must be called at process time.

If the CHSM allocates memory using CMSMAllocPages, this function must
be called before the CHSM is permanently shut down.
7-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

pe

d in
n
ould
ou
CMSMGetAlignment

Called to obtain the alignment requirements of the
underlying platform.

Syntax

#include <odi.h>
#include <cmsm.h>

UINT32 CMSMGetAlignment (

UINT32 type);

Input Parameters

type

0 - alignment requirement
1 - best case alignment
Other - undefined

Output Parameters

None.

Return Values

Power of 2 byte boundary data alignment requirement.

Remarks

If type equals 0, this function returns the worst-case data alignment
requirement of the data object involved in the I/O transfer. This arbitrary ty
allows the platform to function without exceptions or corrupted data.

All operations and "real world" use of these operations should be considere
determining this value. That is, if DMAing into an arbitrary memory locatio
can cause data corruption due to noncoherent caching, then this function sh
return a value equal to at least the cache line size. Without this function, y
CMSM Functions 7-27

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 the

he

86).

cannot write platform-independent DMA code, since the code cannot
determine what characteristics it must meet.

If type is equal to 1, this function returns the data alignment requirement for
platform to function at its best performance.

The value returned for type equal to 0 should always be less than or equal to t
value returned for type equal to 1.

For most Intel processor based platforms, type equal to 0 should return a 0 and
type equal to 1 should return the bus width of the processor (4 for a 386 or 4
An HP PA-RISC machine should return 32 for both type equal to 0 and type
equal to 1, due to the requirements of the memory cache.

Before using this function, compile your CHSM using the #define for your
hardware type. #defines are found in the file: PORTABLE.H.

Example:

• #define IAPX386

• #define MC680X0

• #define MC88000 (Motorola RISC)

• #define RX000 (MIPS)
7-28 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

CMSMGetBusInfo

Returns the size of the bus addresses associated
with busTag.

Syntax

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetBusInfo (

void *busTag,

UINT32 *physicalMemAddrSize,

UINT32 *ioAddrSize);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter or
CMSMScanBusInfo, that identifies a specific bus.

Output Parameters

physicalMemAddrSize

The size in bits of a physical address on the bus specified by busTag.

ioAddrSize

The size in bits of an I/O address on the bus specified by busTag.

Return Values

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_ITEM_NOT_PRESENT The specified bus does not exist.
CMSM Functions 7-29

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMGetBusSpecificInfo

Returns supplementary information about the
specified bus.

Syntax

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetBusSpecificInfo (

VOID *busTag,

UINT32 size

VOID *busSpecificInfo);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter or
CMSMScanBusInfo, that identifies a specific bus.

size

The size of the caller’s buffer, pointed to by busSpecificInfo.

Output Parameters

busSpecificInfo

Pointer to the buffer whose size is an input parameter.
7-30 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Return Values

Remarks

The following information is returned for the specified bus:

PnP ISA Bus

size 48

busSpecificInfo (as follows)

struct ISAInfoStructure

{

UINT32 PnPISABIOSPresentFlag;

UINT16 PnPISABIOSMajorVer;

UINT16 PnPISABIOSMinorVer;

UINT16 PnPISABIOSRevision;

UINT32 PnPISACMPresentFlag;

UINT32 PnPISACMType;

UINT16 PnPISACMTypeMajorVer;

UINT16 PnPISACMMinorVer;

UINT16 PnPISACMRevision;

UINT32 NetFrameFlag;

UINT32 NonATCompatibleFlag;

UINT32 HardwareLoaderID;

UINT32 ISAInfoReserved1;

UINT32 ISAInfoReserved2;

UINT32 ISAInfoReserved3;

};

ODI_NBI_SUCCESSFUL The operation was completed successfully.

ODI_NBI_UNSUPPORTED_OPERATION The bus has no supplementary information to
return.

ODI_NBI_PARAMETER_ERROR An input parameter was invalid.
CMSM Functions 7-31

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

on
PC Card and CardBus Buses

The following CardBus definition applies only to hardware not using the
common silicon method defined by the CardBus PC Card/PCI Common
Silicon Requirements guideline. For CardBus adapters using the comm
silicon method, refer to the definition for the PCI Bus.

size 40

busSpecificInfo (as follows)

struct PCCardInfoStructure

{

UINT32 CSPresentFlag;

UINT32 CSType;

UINT16 CSVendorMajorVer;

UINT16 CSVendorMinorVer;

UINT8 *CSVendorNamePtr;

UINT16 CSInterfaceLevelMajorVer;

UINT16 CSInterfaceLevelMinorVer;

UINT32 CSNumberOfSockets;

UINT32 PCCardInfoReserved0;

UINT32 PCCardInfoReserved1;

UINT32 PCCardInfoReserved2;

UINT32 PCCardInfoReserved3;

};
7-32 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

PCI Bus

size 32

busSpecificInfo (as follows)

struct PCIInfoStructure

{

UINT32 PCIBIOSPresentFlag;

UINT16 PCIInterfaceLevelMajorVer;

UINT16 PCIInterfaceLevelMinorVer;

UINT32 PCIHardwareMechanism;

UINT32 LastPCIBusInSystem;

UINT32 PCIInfoReserved0;

UINT32 PCIInfoReserved1;

UINT32 PCIInfoReserved2;

UINT32 PCIInfoReserved3;

};
CMSM Functions 7-33

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMGetBusType

Returns a value that indicates the bus type of the
bus specified by busTag.

Syntax

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetBusType (

void *busTag,

UINT32 *busType);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter or
CMSMScanBusInfo, that identifies a specific bus.

Output Parameters

busType (Defined in odi_nbi.h)

A value that indicates the type of bus.

The ODI_BUSTYPE_CARDBUS type value is used only for hardware not using
the common silicon method defined by the CardBus PC Card/PCI Common
Silicon Requirements guideline. For CardBus adapters using the common
silicon method refer to the ODI_BUSTYPE_PCI type value.

The following bus type values are the defined:
7-34 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

All
ISA
Return Values

Remarks

This function returns a value indicating the bus type of the specified bus.
instances of a particular bus type return the same value. For example, all E
buses return ODI_BUSTYPE_EISA.

Type Value Bus

ODI_BUSTYPE_ISA ISA / ISA PnP bus

ODI_BUSTYPE_MCA Micro Channel bus

ODI_BUSTYPE_EISA EISA bus

ODI_BUSTYPE_PCMCIA PCMCIA bus

ODI_BUSTYPE_PCI PCI bus

ODI_BUSTYPE_NUBUS NuBus bus

ODI_BUSTYPE_OFM Open Firmware motherboard

ODI_BUSTYPE_VESA VESA Local bus

ODI_BUSTYPE_CARDBUS CardBus bus

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PARAMETER_ERROR busTag is invalid.
CMSM Functions 7-35

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

tion

by
CMSMGetCardConfigInfo

Retrieves and returns configuration information for
bus architectures that keep information on a per
device basis.

Syntax

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetCardConfigInfo (

void *busTag,

UINT32 uniqueIdentifier,

UINT32 size,

UINT32 parm1,

UINT32 parm2,

void *configInfo);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter, that
identifies a specific bus.

uniqueIdentifier

Architecture-dependent value returned by CMSMGetUniqueIdentifier
or CMSMSearchAdapter that identifies a specific device or function.

size

Number of bytes to be returned into the configuration buffer.

parm1

A bus architecture-dependent value that further specifies what informa
is to be returned, independent of the particular platform (because it is
platform independent) and independent of what adapter is described
this information.
7-36 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 to
rm

ler

e

e

ds,
, but

parm2

Architecture-dependent value that further specifies what information is
be returned, independent of the particular platform (because it is platfo
independent) and independent of what adapter is described by this
information.

Output Parameters

configInfo

A pointer to a buffer used to receive the returned information. The cal
needs to be sure that the buffer is at least size bytes long.

Return Values

Remarks

Call CMSMGetCardConfigInfo only if busTag identifies a bus whose
architecture keeps configuration information on a per-device basis. It is th
caller’s responsibility to know how much and what sort of information is
returned, so that configInfo is set pointing to a sufficiently large space and th
resulting information can be interpreted.

parm1 and parm2 are defined on a per bus architecture basis. In other wor
their meanings must be the same on all implementations of a particular bus
will vary from one bus to another. One or both of these parameters can be
unused, and if unused, must be set to 0.

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PARAMETER_ERROR One of the parameters was invalid.

ODI_NBI_UNSUPPORTED_OPERATION busTag denotes a bus type that has
no configuration information.

ODI_NBI_ITEM_NOT_PRESENT The uniqueIdentifier that was passed
in has no card present.

ODI_NBI_FAIL All of the input parameters appeared
to be valid, but the operation could not
be completed.

ODI_NBI_BUS_SPECIFIC_ERROR A bus specific error occurred.
CMSM Functions 7-37

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

The parameter values for the specified bus types are as follows:

EISA Bus

For a definition of the information returned, see the EISA Specification.

Micro Channel Bus

For a definition of the information returned, see the Personal System/2
Hardware Interface Technical Reference.

PCI Bus

For a definition of the information returned, see the PCI Local Bus
Specification.

size 320

parm1 EISA configuration block number

parm2 n/a

configInfo Filled in with EISA configuration information for the specified
uniqueIdentifier.

size 8

parm1 n/a

parm2 n/a

configInfo Filled in with I/O port values from P0S0 - P0S7 (100h - 107h)
for the uniqueIdentifier specified.

size 256

parm n/a

parm2 n/a

configInfo Filled in with PCI configuration information for the specified
uniqueIdentifier.
7-38 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

PNP ISA

size 512

parm1 n/a

parm2 n/a

configInfo Filled in with Plug and Play configuration information for the
specified uniqueIdentifier. The
CMSM_PNP_ISA_CONFIG_INFO structure defines the
information returned as follows:

typedef struct _CMSM_PNP_ISA_CONFIG_INFO_
{

UINT32 CPNPBusID;
UINT32 CPNPDeviceID;
UINT32 CPNPSerialNumber;
UINT32 CPNPLogicalID;
UINT32 CPNPFlags;
UINT8 CPNPCSN;
UINT8 CPNPLogicalDevNum;
UINT16 CPNPReadDataPort;
UINT16 CPNPNumMemWindows;
UINT32 CPNPMemBase[CMAX_MEM_REGS];
UINT32 CPNPMemLength[CMAX_MEM_REGS];
UINT16 CPNPMemAttrib[CMAX_MEM_REGS];
UINT16 CPNPNumIOPorts;
UINT16 CPNPIOPortBase[CMAX_IO_PORTS];
UINT8 CPNPIOPortLength[CMAX_IO_PORTS];
UINT16 CPNPNumIRQs;
UINT8 CPNPIRQRegisters[CMAX_IRQS];
UINT8 CPNPIRQAttrib[CMAX_IRQS];
UINT16 CPNPNumDMAs;
UINT8 CPNPDMAList[CMAX_DMAS];
UINT16 CPNPDMAAttrib[CMAX_DMAS];
UINT8 CPNPVendorDefined[CMAX_VDS];

} CMSM_PNP_ISA_CONFIG_INFO;
CMSM Functions 7-39

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

PC Card (PCMCIA) Bus

size The size of the buffer needed to contain the information defined by parm2.

parm1 The size of the information requested from the Card Services API,
GetConfigurationInfo . The valid values are 37 or 42.

Note: If this call returns ODI_NBI_PARAMETER_ERROR, it may be because
42 bytes were requested, but the version of Card Services only supports 37
bytes.

parm2 The order and type of information to be returned in the configInfo buffer. The
following values are valid for parm2:

ODI_DEFAULT_INFO

The configInfo buffer will contain the following default information:

• 37 or 42 bytes of information returned by the Card Services API,
GetConfigurationInfo .

• Attribute memory space equal to the amount of space remaining in
the configInfo buffer

ODI_IO_MEMORY_WINDOWS

If the size of the information returned by the Card Services API,
GetConfigurationInfo, is 42 bytes, the configInfo buffer will contain:

• The 42 bytes of information returned by the Card Services API,
GetConfigurationInfo .

• If there are I/O windows or memory windows, the window information
is placed in the configInfo buffer as 18 byte blocks (one 18 byte block
for each window). The first thirteen bytes of information is returned by
the Card Services API, GetFirstWindow or GetNextWindow .

For memory windows, the remaining five bytes of information is
returned by the Card Services API, GetMemPage .

For I/O windows, the remaining five bytes are zero.

• Attribute memory space equal to the amount of space remaining in the
configInfo buffer.
7-40 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

For a definition of the information returned, see PC Card Standards.

CardBus Bus

The following CardBus definition applies only to hardware not using the
common silicon method defined by the CardBus PC Card/PCI Common Silicon
Requirements guideline. For CardBus adapters using the common silicon
method, refer to the definition for the PCI Bus.

For a definition of the information returned, see PC Card Standards and the
PCI Local Bus Specification.

If the size of the information returned by the Card Services API,
GetConfigurationInfo , is 37 bytes, the configInfo buffer will contain:

• The 37 bytes of information returned by the Card Services API,
GetConfigurationInfo .

• Attribute memory space equal to the amount of space remaining in
the configInfo buffer.

configInfo The information returned is determined by the parm2 input parameter.

size The size of the buffer needed to contain the information defined by parm1,
parm2, and the desired amount of CIS memory.

parm1 The size of the information requested from the Card Services API,
GetConfigurationInfo . The valid values are 37 or 42.

Note: If this call returns ODI_NBI_PARAMETER_ERROR, it may be because
42 bytes were requested, but the version of Card Services only supports 37
bytes.

parm2 The size of the PCI configuration space requested. The maximum size
available is 256 bytes.

configInfo The configInfo buffer will contain:

• The number of bytes specified by parm1 of information returned by
the Card Services API GetConfigurationInfo .

• The number of bytes specified by parm2 of PCI configuration space.

• CIS memory space equal to the amount of space remaining in the
configInfo buffer.
CMSM Functions 7-41

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

r.

tes
CMSMGetConfigInfo

Allows a C HSM to get the configuration
information for the C MSM, including module and
ODI specification versions.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMGetConfigInfo(

void *configInfo,

UINT32 *nBytes);

Input Parameters

nBytes

Pointer to the requested number of bytes to be returned into the buffe

Output Parameters

configInfo

A pointer to a buffer used to receive the returned configuration
information. The caller needs to be sure that the buffer is at least nBy
bytes long.

nBytes

Pointer to the number of bytes returned in the configuration buffer.
7-42 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Return Values

Remarks

The configuration information is returned in the format defined by
CMSM_CONFIG_TABLE.

See Also

<CTSM>GetConfigInfo

ODISTAT_SUCCESSFUL The configuration information of
nBytes was successfully returned in
the buffer.

ODISTAT_BAD_PARAMETER The nBytes requested was larger than
the actual configuration information
available. The number of bytes of the
configuration table actually returned
in the buffer is indicated by the output
parameter nBytes.
CMSM Functions 7-43

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 time
 7
 CMSMGetCurrentTime

Determines the elapsed time (using the current
relative time) for some of the CHSM-related
activities.

Syntax

#include <odi.h>
#include <cmsm.h>

UINT32 CMSMGetCurrentTime (void);

Input Parameters

None.

Output Parameters

None.

Return Values

A 32-bit value in 1/18 second clock ticks.

Remarks

The value returned at the start of an operation subtracted from the current
is the elapsed time in 1/18th-second clock ticks. (This timer requires over
years to roll over.) For finer resolution, use CMSMGetMicroTimer .
7-44 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Example

UINT32 time1, time2, elapsedTime;

•

•

elapsedTime = 0;

time1 = CMSMGetCurrentTime ();

/* wait for 1 second */

while (elapsedTime < 18)

{

time2 = CMSMGetCurrentTime();

elapsedTime = time2 - time1;

}

See Also

CMSMGetMicroTimer
CMSM Functions 7-45

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

he
 CMSMGetHINFromHINName

Gets the Hardware Instance Number (HIN)
associated with a HIN name.

Syntax

#include <odi.h>
#include <chsm.h>
#include <odi_nbi.h>

ODI_NBI CMSMGetHINFromHINName (

MEON_STRING *hinName,

UINT16 *hin);

Input Parameters

hinName

Pointer to a NULL terminated string which represents the HIN name. T
string (including the termination) can not exceed
MAX_HIN_NAME_SIZE.

Output Parameters

hin

HIN associated with the HIN name.

Return Values

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PARAMETER_ERROR The specified HIN name is
invalid.

ODI_NBI_UNSUPPORTED_OPERATION This function is not available.
7-46 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

e
Remarks

The HIN name is compared with existing HIN names in the system and th
corresponding HIN is returned.

See Also

CMSMGetHINFromHINName
CMSM Functions 7-47

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMGetHINNameFromHIN

Gets the name associated with a Hardware
Instance Number (HIN).

Syntax

#include <odi.h>
#include <chsm.h>
#include <odi_nbi.h>

ODI_NBI CMSMGetHINNameFromHIN (

UINT16 hin,

MEON_STRING *hinName);

Input Parameters

hin

The HIN for which the name is being requested.

Input/Output Parameters

hinName

Pointer to a buffer (provided by the caller) of MAX_HIN_NAME_SIZE
that receives the NULL terminated HIN name string.

Return Values

ODI_NBI_SUCCESSFUL The requested operation was completed
successfully.

ODI_NBI_INSTANCE_NONEXIST The specified HIN is invalid.

ODI_NBI_NO_INSTANCENAME_AVAIL No name is associated with the specified HIN.

ODI_NBI_UNSUPPORTED_OPERATION This function is not available.
7-48 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

o a
Remarks

The HIN name may be used in displaying hardware instance information t
user.

The HIN name is returned in uppercase and is not translatable.

See Also

CMSMGetHINNameFromHIN
CMSM Functions 7-49

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

nce
CMSMGetInstanceNumber

Retrieves the instance number of the specified
device or function on the specified bus.

Syntax

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetInstanceNumber (
VOID *busTag
UINT32 uniqueIdentifier,
UINT16 *instanceNumber);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter, that
identifies a specific bus.

uniqueIdentifier

Architecture-dependent value returned by CMSMGetUniqueIdentifier ,
or CMSMSearchAdapter that uniquely identifies a specificed device
function.

Output Parameters

instanceNumber

Address to return the instance number of the device or function. Insta
numbers are unique across all buses on the system.
7-50 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

nique

on,
er.
tem.
ss
Return Values

Remarks

There is a one-to-one correspondence between the bus tag and the u
identifier pairs and the instance number. You can think of an instance
number as a logical slot number. If an adapter contains just one functi
the instance number is equivalent to the adapter’s physical slot numb
Instance numbers are unique across all buses and devices on the sys
They are generated or determined by the NBI and are consistent acro
system boots.

ODI_NBI_SUCCESSFUL The operation was completed
successfully.

ODI_NBI_PARAMETER_ERROR An input parameter was invalid.
CMSM Functions 7-51

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMGetInstanceNumberMapping

Retrieves the bus tag and unique identifier
associated with the specifed instance number.

Syntax

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetInstanceNumberMapping (
UINT16 instanceNumber,
VOID **busTag
UINT32 *uniqueIdentifier);

Input Parameters

instanceNumber

The instance number of the device or function.

Output Parameters

busTag

Address to put the instance’s bus tag

uniqueIdentifier

Address to put the unique identifier.

Return Values

ODI_NBI_SUCCESSFUL The operation was completed successfully.

ODI_NBI_PARAMETER_ERROR An input parameter was invalid.
7-52 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ifier
ical
r is
ique

mined
Remarks

CMSMGetInstanceNumberMapping is the inverse of
CMSMGetInstanceNumber. It retrieves the bus tag and unique identifier
associated witht the specified instance number.

There is a one-to-one correspondence between bus tag and unique ident
pairs and instance number. You can think of an instance number as a log
slot number. If an adapter contains just one function, the instance numbe
equivalent to the adapters physical slot number. Instance numbers are un
across all buses and devices on the system. They are generated or deter
by the NBI and are consistent across system boots.
CMSM Functions 7-53

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

d
 first
CMSMGetMicroTimer

Returns a counter that is incremented once per
microsecond.

Syntax

#include <odi.h>
#include <cmsm.h>

UINT32 CMSMGetMicroTimer (void);

Input Parameters

None.

Output Parameters

None.

Return Values

A 32-bit, one-microsecond clock value.

Remarks

CMSMGetMicroTimer reads a time counter and returns the value. Elapse
time can be calculated by executing this function twice and subtracting the
returned value from the second.
7-54 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

.

CMSMGetPhysical

Converts a logical address to a physical one.

Syntax

#include <cmsm.h>

void *CMSMGetPhysical (

void *logicalAddr);

Input Parameters

logicalAddr

Pointer to the logical address to be converted into a physical address

Output Parameters

None.

Return Values

Returns a physical address.

Remarks

If the MM_FRAGS_PHYS_BIT bit of the MLIDCFG_ModeFlags field is set,
this call is needed only at DriverInit time to pass the control information in
memory to the adapter. This is because ECB fragment pointers are set to
physical addresses.

No buffer length is associated with the addresses.
CMSM Functions 7-55

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMGetPhysList

Obtains the physical address list equivalent of the
input LogicalAddress list.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMGetPhysList(

UINT32inputFragCount,

FRAGMENT_STRUCT*inputFragList,

UINT32*outputFragCount,

FRAGMENT_STRUCT*outputFragList

DRIVER_DATA*driverData);

Input Parameters

inputFragCount

The number of fragments in inputFragList.

inputFragList

Pointer to the input fragment list.

driverData

Pointer to the CHSM’s driver adapter data space.

Output Parameters

outputFragCount

The number of fragments in outputFragList.

outputFragList

Pointer to the output fragment list.
7-56 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

e

nt to
nce

lly
e

st
Return Values

Remarks

This function assumes that the pages containing the logical addresses ar
locked in memory.

This function generates an output physical address fragment list equivale
the input logical address fragment list. However, a one-to-one corresponde
between the input list and the output list is not guaranteed due to potentia
non-contiguous logical memory. As a result, the number and the size of th
fragments in the output list may differ from those in the input list.

The input list must not be greater than 16 fragments, but the output buffer mu
be large enough to accommodate 16 fragments.

ODISTAT_SUCCESSFUL Output list was successfully
generated.

ODISTAT_FAIL Output list failed because the
maximum number of fragments was
exceeded.
CMSM Functions 7-57

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMGetPollSupportLevel

Allows a polled driver/adapter to ascertain the level
polling supported by the operating system.

Syntax

#include <odi.h>
#include <cmsm.h>

UINT32 GetPollSupportLevel (void);

Input Parameters

None.

Output Parameters

None.

Return Values

0 The environment does not support polling.
Polling procedures will never be called. The
adapter should use interrupts only.

1 Limited support for polling. Polling procedures
will be called infrequently. The adapter should
use interrupts.

2 Polling is fully supported. However, interrupt
backup is still recommended due to periods
where polling is infrequent.

3 Polling is fully supported. No interrupt backup
is required.
7-58 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

r
pt
Remarks

The CHSM uses GetPollSupportLevel to ascertain whether the adapter drive
should be purely interrupt driven, purely poll driven, or a mixture of interru
and polling with preference given to polling.

Call this routine only at process time. This routine runs to completion.
CMSM Functions 7-59

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

eded
h as

 on
CMSMGetUniqueIdentifier

Returns a value which uniquely identifies the
device or function of an adapter for the specified
input parameters.

Syntax

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetUniqueIdentifier (

void *busTag,

UINT32 *parameters,

UINT32 parameterCount,

UINT32 *uniqueIdentifier);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter, that
identifies a specific bus.

parameters

A bus-architecture-dependent array of UNIT32 parameters that are ne
to generate a unique identifier. These parameters specify values suc
the slot and the function.

parameterCount

The number of elements in the parameter array being passed in.

Output Parameters

uniqueIdentifier

Architecture-dependent value that uniquely identifies a specific device
an adapter.
7-60 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

s

the
he

is
Return Values

Remarks

This function allows physical parameters to be used in identifying adapter
placed in physical slots. It also allows the functions on the adapter to be
converted to system architecture-dependent values required in operating
adapter. Unique identifiers are interpreted only by other NBI functions. T
caller views each as a magic cookie with no predefined format.
CMSMGetUniqueIdentifierParameters does the inverse of this function.

The parameter values for each bus type are as follows:

ISA Bus

N/A

MCA Bus

parameterCount 1

parameters[0] Physical slot number

EISA Bus

parameterCount 1

parameters[0] Physical slot number

PC Card (PCMCIA) Bus

parameterCount 1

parameters[0] For single function cards, the physical socket
number (1-based). For multiple function cards,
the function number (1-based) is in the least
significant byte, and the physical socket number
in the next byte.

ODI_NBI_SUCCESSFUL The device or function was found
and uniqueIdentifier was retuned.

ODI_NBI_PARAMETER_ERROR An input parameter was invalid.

ODI_NBI_UNSUPPORTED_OPERATION busTag specifies a bus type that has
no configuration information.
CMSM Functions 7-61

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

t

er

d

t
PCI Bus

parameterCount 2

parameters [0] Zero (PCI BIOS version 2.0), physical slot number
(PCI BIOS version 2.1)

parameter[1] Bus/device/function number combination equivalen
to the value returned from the PCI BIOS FindDevice
function.

PnP ISA Bus (ODI_BUSTYPE_ISA)

parameterCount 2

parameter[0] Card Select Number (CSN) is in the least significant
byte and the Logical Device Number is in the next
byte.

parameter[1] Read Data Port

CardBus Bus

The following CardBus definition applies only to hardware not using the
common silicon method defined by the CardBus PC Card/PCI Common Silicon
Requirements guideline. For CardBus adapters using the common silicon
method, refer to the definition for the PCI Bus.

parameterCount 2

parameters[0] For single function cards, the physical socket numb
(1-based). For multiple function cards, the function
number (1-based) is in the least significant byte, an
the physical socket number is in the next byte.

parameter[1] Bus/device/function number combination equivalen
to the value returned from the PCI BIOS FindDevice
function.

31 16 15 8 7 0

 0 Logical Device Number CSN

31 16 15 0

 0 Read Data Port
7-62 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

(See
CMSMGetUniqueIdentifierParameters

Returns the bus-specific information about the
device or the function represented by the given
unique identifier.

Syntax

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMGetGetUniqueIdentifierParameters (
VOID *busTag,
UINT32 uniqueIdentifier,
UINT32 parameterCount,
UINT32 *parameters);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter,
which specifies the bus on which the operation is to be performed.

uniqueIdentifier

Architecture-dependent value; returned by
CMSMGetInstanceNumberMapping, CMSMGetUniqueIdentifier , or
CMSMSearchAdapter; that uniquely identifies a specific device or
function.

parameterCount

The number of elements in the parameter array to be filled in.

Output Parameters

parameters

An array of UINT32 values to be filled in with the bus architecture-
dependent parameters represented by the specifed unique identifier.
CMSMGetUniqueIdentifier for the format.)
CMSM Functions 7-63

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Return Values

Remarks

This function is called for a bus which stores bus-specific information.

ODI_NBI_SUCCESSFUL The operation was completed successfully.

ODI_NBI_UNSUPPORTED_OPERATION The bus has no supplementary information to
return.

ODI_NBI_PARAMETER_ERROR An input parameter was invalid.
7-64 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

o
e

er

al.

CMSMHardwareFailure

Called to report a critical or fatal hardware error.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMHardwareFailure (

DRIVER_DATA *driverData,

UINT32 failureType,

MEON_STRING *failMsgString);

Input Parameters

driverData

Pointer to the C HSM's driver adapter data space.

 failureType

NOTIFY_CRITICAL

The CHSM encountered an adapter hardware problem and failed t
recover using the available hardware reset capabilities; however, th
system may be able to restore the hardware to a functional state.

NOTIFY_FATAL

The CHSM was able to detect a hardware failure, but cannot recov
from it.

NOTIFY_DEGRADED

The CHSM has experienced a hardware failure, but is still function

 failMsgString

Pointer to a NULL terminated string describing the failure. The C MSM
will print this string.
CMSM Functions 7-65

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

are

a
r
r.

d a
Output Parameters

None.

Return Values

Remarks

The C HSM calls this routine to report hardware errors.

NOTIFY_FATAL should be reported if the C HSM was able to detect a
hardware failure, but cannot recover from it.

NOTIFY_CRITICAL should be reported if the C HSM has encountered an
adapter hardware problem and failed to recover using the available hardw
reset capabilities, but the system may be able to restore the hardware to
functional state, using platform or media specific recovery procedures. Fo
example, on some platforms it may be possible to power cycle the adapte

NOTIFY_DEGRADED should be reported if the hardware has experience
failure, but is still functional.

ODISTAT_SUCCESSFUL The operation completed successfully.
7-66 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

by 1.
CMSMIncrCounter

Increments the counter pointed to by
STAT_TABLE_ENTRY by 1.

Syntax

#include <odi.h>
#include <cmsm.h>

void CMSMIncrCounter (

STAT_TABLE_ENTRY *statTableEntryPtr);

Input Parameters

statTableEntryPtr

Pointer to the statistics table entry whose counter is to be incremented

Output Parameters

None.

Return Values

None.

Remarks

This function is intended to simplify the process of incrementing a 64-bit
counter, but it can also be used for 32-bit counters.

See Also

CMSMAddToCounter

For more information on STAT_TABLE_ENTRY, see the statistics table
information in Chapter 3, "CHSM Data Structures and Variables".
CMSM Functions 7-67

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

pts
CMSMInitAlloc

Used by CHSMs if they must allocate memory prior
to calling CMSMRegisterHardwareOptions .

Syntax

#include <odi.h>
#include <cmsm.h>

void * CMSMInitAlloc (

UINT32 nbytes);

Input Parameters

nbytes

Number of bytes of memory to allocate.

Output Parameters

None.

Return Values

If successful CMSMInitAlloc returns a pointer to the allocated space.
Otherwise, it returns a NULL.

Remarks

CHSMs must use the CMSMInitAlloc routine if they must allocate memory
prior to calling CMSMRegisterHardwareOptions. The CMSMFree routine
releases the buffer any time after CMSMRegisterHardwareOptions is called.

If DriverNeedsBelow16Meg of the driver parameter block is initialized to 1
(see Chapter 3, "CHSM Data Structures and Variables"), the CMSM attem
to allocate memory below the 16MB boundary.
7-68 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

CMSMInitParser

Initializes the parser.

Syntax

#include <odi.h>

#include <cmsm.h>

#include <parser.h>

ODISTAT CMSMInitParser(

DRIVER_PARM_BLOCK *hsmParmBlock)

Input Parameters

hsmParmBlock

Pointer to the HSMs Parameter Block.

Output Parameters

None.

Return Values

Remarks

The C HSM is required to call this routine at the beginning of DriverInit , after
it has set the pointer to the chsmStack in DriverInitParmPointer and before it
makes any C MSM or C TSM API calls. (See the "Initialization" section in
Chapter 5, "CHSM Functions" for more details.)

This function must be called only once for each logical board.

ODISTAT_SUCCESSFUL The operation completed successfully.
CMSM Functions 7-69

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

See Also

CMSMParseSingleParameter

CMSMParseDriverParameters
7-70 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

iled
CMSMNESLDeRegisterConsumer

Deregisters a consumer of a specific event.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <nesl_str.h>

UINT32 CMSMNESLDeRegisterConsumer (

NESL_ECB *consumer)

Input Parameters

consumer

Pointer to the NESL_ECB structure passed to
CMSMNESLRegisterConsumer.

Output Parameters

None.

Return Values

Remarks

Called from foreground with interrupts enabled. See Appendix E for a deta
description of NESL support.

NESL_OK Deregistration succeeded.

NESL_EVENT_NOT_REGISTERED The specified NESL_ECB structure
is not registered.

NESL_CONSUMER_NOT_FOUND The consumer is NULL or can not be
located.
CMSM Functions 7-71

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

See Also

CMSMNESLRegisterConsumer
7-72 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

CMSMNESLDeRegisterProducer

Deregisters the producer of a specified event. If the
producer is the last producer of the specified event,
all the remaining consumers of the event are
placed onto an orphaned consumer's list.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <nesl_str.h>

UINT32 CMSMNESLDeRegisterProducer (

NESL_ECB *producer)

Input Parameters

producer

Pointer to the NESL_ECB structure passed to
CMSMNESLRegisterProducer.

Output Parameters

None.
CMSM Functions 7-73

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

iled
Return Values

Remarks

Called in the foreground with interrupts enabled. See Appendix E for a deta
description of NESL support.

See Also

CMSMNESLRegisterProducer

NESL _OK Deregistration was successful.

NESL_EVENT_NOT_REGISTERED The event cannot be located.

NESL_PRODUCER_NOT_FOUND The producer is NULL or could not
be located.
7-74 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ll if
CMSMNESLProduceEvent

Called by an event producer to notify registered
consumers that the event has occurred. If the event
is consumable, one of the consumers can
consume the event, and the event notification will
stop.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <nesl_str.h>

UINT32 CMSMNESLProduceEvent (

NESL_ECB *producerNecb,

NESL_ECB **consumerNecb,

EPB *eventParmBlock);

Input Parameters

producerNecb

Pointer to the NESL_ECB structure passed to
CMSMNESLRegisterProducer.

eventParmBlock

Pointer to the Event Parameter Block.

Input/Output Parameters

consumerNecb

Pointer to the location of the pointer to the consumer of the event. Nu
the producer does not care who the consumer is.
CMSM Functions 7-75

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ts

t they

Return Values

Remarks

Producer routines and consumer routines running on asynchronous even
(such as IPX packets or interrupts), must be reentrant.
CMSMNESLProduceEvent will not protect consumer routines from being
reentered.

For example, if the consumer routine reenables interrupts, another
asynchronous event can be issued from a producer and thus re-enter the
consumer.

It is up to either the producer or the consumer routine to protect itself from
reentrancy issues. Producer and consumer routines must also ensure tha
do not cause stack overflow. See Appendix E for a detailed description of
NESL support.

NESL_PRODUCER_NOT_FOUND The producer is NULL.

NESL_EVENT_CONSUMED Event is consumable and is
consumed. ConsumerNecb is set to
the consumer's NESL_ECB
structure if information about the
consumer is available. Otherwise, it
is set to NULL.

NESL_EVENT_NOT_CONSUMED Event is consumable but is not
consumed. ConsumerNecb set to
NULL.

NESL_EVENT_BROADCAST Event has been broadcast to all
consumers. ConsumerNecb not
changed.
7-76 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

for

for

ust

vice
EPB Structure

 typedef struct EPB_tag
 {
 UINT32 EPBMajorVersion;
 UINT32 EPBMinorVersion;
 void *EPBEventName;
 void *EPBEventType;
 void *EPBModuleName;
 void *EPBDataPtr0;
 void *EPBDataPtr1;
 UINT32 EPBEventScope;
 UINT32 EPBReserved;
 } EPB;

Field Descriptions:

EPBMajorVersion

Major version of the Event Parameter Block. The current version is 1 (
1.00).

EPBMinorVersion

Minor version of the Event Parameter Block. The current version is 00 (
1.00).

EPBEventName

Event name or class name for the event as registered with NESL; for
example, Service Suspend or Service Resume. All valid event names m
be registered with Novell Labs.

EPBEventType

Event subclass name for the event. An example of a subclass for Ser
Suspend is APM Suspend. All valid event subclass names must be
registered with Novell Labs.

EPBModuleName

Pointer to the module name that generated the event--for example,
NE2000.

EPBDataPtr0

Used to pass a pointer to the configuration table.

EPBDataPtr1

Used for event dependent information.
CMSM Functions 7-77

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

EPBEventScope

The CHSM must set this field to EPB_SPECIFIC_EVENT.

EPBReserved

Reserved by Novell.

See Also

CMSMNESLDeRegisterConsumer

CMSMNESLDeRegisterProducer

CMSMNESLRegisterConsumer

CMSMNESLRegisterProducer

CMSMNESLProduceMLIDEvent
7-78 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 the
CMSMNESLProduceMLIDEvent

Called by an event producer to notify registered
consumers that the event has occurred. If the event
is consumable, one of the consumers can
consume the event, and the event notification will
stop. This call produces the event for each logical
board associated with driverData.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <nesl_str.h>

UINT32 CMSMNESLProduceMLIDEvent (

NESL_ECB *producerNecb,

NESL_ECB **consumerNecb,

EPB *eventParmBlock

DRIVER_DATA *driverData);

Input Parameters

producerNecb

Pointer to the NESL_ECB structure passed to
CMSMNESLRegisterProducer.

eventParmBlock

Pointer to the Event Parameter Block.

driverData

Pointer to the CHSM’s driver adapter data space.

Input/Output Parameters

consumerNecb

Pointer to the location of where to place the pointer to the consumer of
event. Null if the producer does not care who the consumer is.
CMSM Functions 7-79

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ts

t they

Return Values

Remarks

Producer routines and consumer routines running on asynchronous even
(such as IPX packets or interrupts), must be reentrant.
CMSMNESLProduceEvent will not protect the consumer routine from being
reentered.

For example, if the consumer routine reenables interrupts, another
asynchronous event can be issued from a producer and thus re-enter the
consumer.

It is up to either the producer or the consumer routine to protect itself from
reentrancy issues. Producer and consumer routines must also ensure tha
do not cause stack overflow. See Appendix E for a detailed description of
NESL support.

EPB Structure

 typedef struct EPB_tag
 {
 UINT32 EPBMajorVersion;

NESL_PRODUCER_NOT_FOUND The producer is NULL.

NESL_EVENT_CONSUMED Event is consumable and is
consumed. ConsumerNecb may be
set to the consumer's NESL_ECB
structure for the consumer of the last
logical board that the event was
generated for, or it may be set to
NULL if the event was consumed,
but no information about the
consumer was available.

NESL_EVENT_NOT_CONSUMED Event is consumable but is not
consumed. ConsumerNecb set to
NULL.

NESL_EVENT_BROADCAST Event has been broadcast to all
consumers. ConsumerNecb not
changed.

NESL_INVALID_CONTEXT_HANDLE The logical board(s) identified by
driverData were invalid.
7-80 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

for

for

ust

vice
 UINT32 EPBMinorVersion;
 void *EPBEventName;
 void *EPBEventType;
 void *EPBModuleName;
 void *EPBDataPtr0;
 void *EPBDataPtr1;
 UINT32 EPBEventScope;
 UINT32 EPBReserved;
 } EPB;

Field Descriptions:

EPBMajorVersion

Major version of the Event Parameter Block. The current version is 1 (
1.00).

EPBMinorVersion

Minor version of the Event Parameter Block. The current version is 00 (
1.00).

EPBEventName

Event name or class name for the event as registered with NESL; for
example, Service Suspend or Service Resume. All valid event names m
be registered with Novell Labs.

EPBEventType

Event subclass name for the event. An example of a subclass for Ser
Suspend is APM Suspend. All valid event subclass names must be
registered with Novell Labs.

EPBmoduleName

Pointer to the module name that generated the event; for example,
NE2000.

EPBDataPtr0

Used to pass a pointer to the configuration table.

EPBDataPtr1

Used for event dependent information.

EPBEventScope

The CHSM must set this field to EPB_SPECIFIC_EVENT.

EPBReserved

Reserved by Novell.
CMSM Functions 7-81

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

See Also

CMSMNESLDeRegisterConsumer CMSMNESLDeRegisterProducer
CMSMNESLRegisterConsumer
CMSMNESLRegisterProducer
CMSMNESLProduceEvent
7-82 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

CMSMNESLRegisterConsumer

Registers the consumer of an event. If the producer
of the event is not currently registered, the
consumer is placed onto an orphaned consumer
list.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <nesl_str.h>

UINT32 CMSMNESLRegisterConsumer (

NESL_ECB *consumer)

Input Parameters

consumer

Pointer to a NESL_ECB structure.

Output Parameters

None.

Return Values

NESL_OK Registration was successful.

NESL_EVENT_TABLE_FULL The event was not registered
because the event table is full.

NESL_DUPLICATED_NECB The NESL_ECB structure was
previously registered in the event
table.

NESL_INVALID_NOTIFY_PROC The consumer's notification
procedure is NULL.

NESL_CONSUMER_NOT_FOUND The NESL_ECB pointer is NULL.
CMSM Functions 7-83

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

L

e

his
ng

The
ng
les
ain
Remarks

Called at process time. See Appendix E for a detailed description of NES
support.

NESL_ECB Structure

 typedef struct NECBStruct
 {
 struct NECBStruct *NecbNext;
 UINT16 NecbVersion;
 UINT16 NecbOsiLayer;
 MEON_STRING *NecbEventName;
 UINT32 NecbRefData;
 UINT32 (*PnecbNotifyProc)(
 struct NECBStruct *consumerNECB,
 struct NECBStruct *producerNecb,
 void *eventData);
 void *NecbOwner;
 void *NecbWorkSpace;
 void *NecbContext;
 } NESL_ECB;

Field descriptions:

NecbNext

Reserved. This field should not be modified by the calling routine whil
the NESL_ECB structure is registered.

 NecbVersion

This field contains the version number of the NESL_ECB structure. T
field allows the interface to be expanded in the future while still providi
full backward compatibility. The current version is 2.

NecbOsiLayer

Determines the ordering of registered consumers of the same event.
format of this field is 0xLRRR, where L is the number (0-7) correspondi
to the OSI layer and RRR (0-4095) is the relative order with other modu
also registered on that layer. The relative ordering is useful when cert
events require specific consumer ordering.

NESL_FIRST_ALREADY_HOOKED The head of the consumer list has
already been hooked.
7-84 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

L
 If
 to

e

hes
uld

ck
The definition NESL_HOOK_FIRST can also be used in element
NecbOsiLayer. This definition causes a consumer to be hooked first, no
matter what. If the caller sets the low byte of NecbOsiLayer to this value,
the consumer will be hooked first in the consumer list. Normally, NES
events will put lower layer identifiers before the hooked lead element.
another call is made specifying this definition, an error will be returned
the caller and the element will not be added to the list.

NecbEventName

ASCIIZ name string of the event or class of events. This name has th
maximum length of NESL_MAX_NAME_LENGTH.

NecbRefData

Reserved. Set this field to NULL.

PNecbNotifyProc

Pointer to the event notification callback routine.

 UINT32 MyNotifyProc (

 NESL_ECB *ConsumerNecb,

 NESL_ECB *ProducerNecb,

 void *eventData)

ConsumerNecb

Points to the NESL_ECB structure used by consumer during
CMSMNESLRegisterConsumer.

ProducerNecb

Points to the NESL_ECB structure used by the producer during
CMSMNESLRegisterProducer.

EventData

If the producer only has one data item, it can be passed to the
consumer as an argument or as an address.

If the producer has more than one data item or if the producer wis
to guarantee portability, the address of an array of data items sho
be passed. The structure of eventData must be defined by the
producer and known by the consumer if it is to be interpreted
properly.

For most events this will be a pointer to an Event Parameter Blo
(EPB). (See Appendix E, "NESL Support" for more information
about EPBs.)
CMSM Functions 7-85

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

-
ion

e

. It
he
e
Return values from a consumer after an event notification callback:

NESL_EVENT_CONSUMED

Event was consumed by the consumer process.

NESL_EVENT_NOT_CONSUMED

Event was not consumed by the process.

This is only really applicable if the event is consumable, but a consumer should
always do this to be compatible with both types of events.

NecbOwner

Specifies the owner of the NESL_ECB structure. This field is platform
specific and platform-dependent. The DOS/MS Windows implementat
requires this field to be set to the owner's module handle information.

NecbWorkSpace

Reserved. This field should not be modified by the calling routine whil
the NESL_ECB structure is registered.

NecbContext

This field is available for use by the owner of the NESL_ECB structure
will not be modified by anyone else in the system. It may be used by t
owner to pass context or other data to the notification procedure. If th
owner is not using this field, it must be set to NULL.

See Also

CMSMDeRegisterConsumer
7-86 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

CMSMNESLRegisterProducer

Registers the producer of an event and creates a
consumer list containing the consumers of this
event.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <nesl_str.h>

UINT32 CMSMNESLRegisterProducer (

NESL_ECB *Producer)

Input Parameters

Producer

Pointer to a NESL_ECB structure.

Output Parameters

None.

Return Values

NESL_OK Registration was successful.

NESL_REGISTERED_UNIQUE A previous producer has
registered the event as unique
and this producer tried to register
the event as non-unique.

NESL_REGISTERED_NOT_UNIQUE A previous producer has
registered the event as non-
unique and this producer tried to
register the event as unique.
CMSM Functions 7-87

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Remarks

Called at process time.

The Event definition contains the rules necessary concerning process and
interrupt time execution during event notification. See Appendix E for a
detailed description of NESL support.

NESL_ECB Structure

 typedef struct NECBStruct
 {
 struct NECBStruct *NecbNext;
 UINT16 NecbVersion;
 UINT16 NecbOsiLayer;
 MEON_STRING *NecbEventName;
 UINT32 NecbRefData;
 UINT32 (*PnecbNotifyProc)(
 struct NECBStruct *consumerNECB,
 struct NECBStruct *producerNecb,
 void *eventData);
 void *NecbOwner;
 void *NecbWorkSpace;
 void *NecbContext;
 } NESL_ECB;

NESL_REGISTERED_CONSUMABLE A previous producer has
registered the event as
consumable and this producer
tried to register the event as
broadcast.

NESL_REGISTERED_BROADCAST A previous producer has
registered the event as a
broadcast and this producer tried
to register the event as
consumable.

NESL_EVENT_TABLE FULL The event was not registered
because the event table is full.

NESL_DUPLICATE_NECB The NESL_ECB structure was
previously registered in the event
table.

NESL_PRODUCER_NOT FOUND The NESL_ECB structure is
NULL.
7-88 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

e

d

e

 new
er is

e of

r
,
Field descriptions:

NecbNext

Reserved. This field should not be modified by the calling routine whil
the NESL_ECB structure is registered.

NecbVersion

The version number of the NESL_ECB structure. This field allows the
interface to be expanded in the future while still providing full backwar
compatibility. The current version is 2.

NecbOsiLayer

Reserved. Set this field to NULL.

NecbEventName

ASCIIZ name string of the event or class of events. This name has th
maximum length of NESL_MAX_NAME_LENGTH.

NecbRefData

This is a flag field used to specify whether the event is unique or
consumable. It also indicates the sorting order for calling registered
consumers at event time.

Consumers that are on the orphan consumer list will be sorted when a
producer is registered. All consumers that are registered after a produc
registered will be correctly sorted.

NESL_SORT_CONSUMER_BOTTOM_UP

Use bottom-up relative ordering on the consumer's NecbOsiLayer field in
maintaining an ordered list of consumers requiring notification.

NESL_CONSUME_EVENT

The event can be consumed by one of the registered consumers. By
default, an event is broadcast to all registered consumers.

This flag will cause a chaining effect among the consumers which will
start with the first registered consumer and proceed to the next until on
the consumers consumes the event or the end of the consumer list is
reached.

NESL_UNIQUE_PRODUCER

The producer of the event must be unique. If there is another produce
registered with the same event string, then this call will fail. By default
there can be multiple producers of the same event.
CMSM Functions 7-89

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

-
ion
ion.

e

. It
he
e
This flag is used to prohibit multiple producers provided that this is the
first producer registered.

PNecbNotifyProc

Reserved. Set this field to NULL.

NecbOwner

Specifies the owner of the NESL_ECB structure. This field is platform
specific and platform-dependent. The DOS/MS Windows implementat
REQUIRES this field to be set to the owner's module handle informat

NecbWorkSpace

Reserved. This field should not be modified by the calling routine whil
the NESL_ECB structure is registered.

NecbContext

This field is available for use by the owner of the NESL_ECB structure
will not be modified by anyone else in the system. It may be used by t
owner to pass context or other data to the notification procedure. If th
owner is not using this field, it must be set to NULL.

See Also

CMSMNESLDeRegisterProdcer
7-90 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

CMSMParseDriverParameters

Parses the MLID’s parameters.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <parser.h>

ODISTAT CMSMParseDriverParameters (

DRIVER_PARM_BLOCK *hsmParmBlock,

struct _DRIVER_OPTION_ *driverOption)

Input Parameters

hsmParmBlock

Pointer to the driver parameter block structure. See Chapter 3, "CHSM
Data Structures and Variables" for a description of
DRIVER_PARM_BLOCK.

driverOption

Pointer to a linked list of DRIVER_OPTION structures, where each
structure describes one of the MLID’s possible parameters.

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL All required parameters were found.

ODISTAT_ITEM_NOT_PRESENT One optional parameter was parsed
for and that parameter cannot be
found.

ODISTAT_FAIL A valid value for a required parameter
cannot be found or cannot be
obtained, or the user canceled on the
prompting of a parameter.
CMSM Functions 7-91

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

nd

ed.

. The

h

s
Remarks

An instance of the DRIVER_OPTION structure is used to describe each
parameter to be parsed. (Refer to Chapter 4, "CMSM/CTSM Structures a
Variables" for details on the DRIVER_OPTION structure.)

DRIVER_OPTION structures are linked together by the Link field of the
structure. If the parameter to be parsed is a standard parameter (such asINT,
PORT, DMA, MEM, SLOT, NODE, CHANNEL, FRAME, NAME, RETRIES,
BELOW16, BUFFERS16); then, Type, Flags, Parameter0, Parameter1, and
Parameter2 are the only fields that need to be set. All other fields are ignor

If the parameter to be parsed is a custom parameter, all fields must be set
Flag field is used to determine the interpretation of Parameter0, Parameter1,
and Parameter2; these along with the format specifier in ParseString control
the parsing of the parameter.

CMSMParseDriverParameters must be called once and only once for eac
logical board and cannot be called before <CTSM>RegisterHSM.

Command Line Parameter Types

CMSMParseDriverParameters can parse for two different types of
command line parameters:

• Custom Parameters

• Standard Parameters

Custom parameters are any special parameters that your particular driver
needs.

Standard parameters are a set of predefined parameters with established
purposes. The parser will populate the MLIDConfiguration table with value
parsed for standard parameters.
7-92 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

s:
The standard parameters and their required input information are as follow

Parameter Input Information

INT The first IRQ used by the adapter.

INT1 The second IRQ used by the adapter.

PORT The first I/O base address used by the adapter.

PORT1 The second I/O base address used by the adapter.

DMA The first DMA channel number used by the adapter.

DMA1 The second DMA channel number used by the adapter.

MEM The first memory base address used by the adapter.

MEM1 The second memory base address used by the adapter.

SLOT The system-wide unique Hardware Instance Number
(HIN). It may be the physical slot number on a slot based
bus such as Micro Channel, PCI, PC Card, and EISA; or it
may be another uniquely assigned number.

NODE The media specific address that the adapter is to use.

CHANNEL The logical channel number that this logical adapter is to
use. For a multiport adapter, the channel number usually is
a port number. For an adapter on a connection oriented
media, the channel number can be used as a connection
ID.

FRAME The name of the frame format that this logical adapter is to
use. Token-Ring drivers can add "MSB" or "LSB" following
the frame type designation. LSB forces canonical addresses
to be passed between the MLID and the upper layers. The
MSB designation forces noncanonical addresses to be
passed (this is the default for Token-Ring media). Ethernet
media cannot use the MSB designator.

NAME A logical name that can be used with the BIND command
to refer to this logical adapter.

RETRIES This is the number of send retries that the MLID should use
in its attempts to send packets.
CMSM Functions 7-93

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Do not parse for NODE, FRAME, NAME, RETRIES, BELOW16, or
BUFFERS16; the CMSM/CTSM parses for these parameters.

BELOW16 This keyword must be specified on the load command line
if the driver needs memory allocated below the 16MB
boundary. This keyword is required only if the MLID is
loaded on a system that initially has less than 16 MB of
memory, but will have more memory added later. In
addition, the driver must also set the
DriverNeedsBelow16Meg field of the DRIVER_PARM
structure to a nonzero value.

BELOW16 is a KEYWORDPARM type field.

BUFFERS16 This keyword is used to override the number of RCBs below
16MB allocated by the CMSM at initialization. The CHSM
must set the DriverNeedsBelow16M field in the
DRIVER_PARM structure for this keyword to be valid. The
RCB allocation routines (CMSMAllocRCB ,
<CTSM>GetRCB, <CTSM>ProcessGetRCB , etc.) use
these RCBs if the RCB allocated by the LSL is physically
over 16MB. The number of RCBs allocated by default is
eight. If the CHSM preallocates more than eight RCBs at a
time, the user can override this default when loading the
driver by typing BUFFERS16=n. The CMSM will force this
value to a multiple of eight, so values other than 8, 16, 32,
... are invalid. No restriction is placed on the maximum
value, except that the CMSM might not be able to allocate
enough memory from the operating system.
7-94 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 to
CMSMParseSingleParameter

Parses for a single parameter specified by
driverOption and returns the value in the
driverOption.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <parser.h>

ODISTAT CMSMParseSingleParameter(

struct _DRIVER_OPTION_ *driverOption);

Input Parameters

driverOption

Pointer to a DRIVER_OPTION structure that describes the parameter
parse for.

Output Parameters

None.
CMSM Functions 7-95

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ed.
te
Return Values

Remarks

A DRIVER_OPTION structure is used to describe the parameter to be pars
Refer to Chapter 4, "CMSM/CTSM Structures and Variables" for a comple
description of the DRIVER_OPTION structure.

The DRIVER_OPTION type field is ignored by CMSMParseSingleParameter .
The results are returned only in the DRIVER_OPTION structure.

See Also

CMSMInitParser

CMSMParseDriverParameters

ODISTAT_SUCCESSFUL The parameter was successfully
parsed.

ODISTAT_FAIL The parameter cannot be found
or cannot be obtained, or the
user canceled on the prompting
of a parameter.

ODISTAT_ITEM_NOT_PRESENT The parameter was not present.

ODISTAT_BAD_PARAMETER The parameter was found, but
was not within the range or
value.
7-96 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

CMSMPrintString

Prints the message pointed to by the msg
parameter.

Syntax

#include <odi.h>
#include <cmsm.h>

void CMSMPrintString (

const MLID_CONFIG_TABLE *configTable,

MSG_TYPE msgType;

MEON_STRING *message,

void *parm1,

void *parm2);

Input Parameters

configTable

Pointer to the configuration table.

msgType

The type of message pointed to by msg.

message

Pointer to the MEON_STRING to be printed.

parm1

First optional parameter.

parm2

Second optional parameter.

Output Parameters

None.
CMSM Functions 7-97

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

sed
Return Values

None.

Remarks

The CHSM’s initialization routine must call <CTSM>RegisterHSM prior to
using this print function.

The parm1 and parm2 parameters are used here in the same way they are u
in the C language printf routine. If there are no format specifications in the
string, parm1 and parm2 are not used.

MSG_TYPE Enumeration

typedef enum _MSG_TYPE_

{

MSG_TYPE_INIT_INFO,

MSG_TYPE_INIT_WARNING,

MSG_TYPE_INIT_ERROR,

MSG_TYPE_RUNTIME_INFO,

MSG_TYPE_RUNTIME_WARNING,

MSG_TYPE_RUNTIME_ERROR

} MSG_TYPE;

Example

startTime = driverData->TxStartTime[driverData->TxNextToReturn];
if (startTime) {
if ((CMSMGetCurrentTime() - startTime) > 36) {

/* Transmit Timeout */
/* Send Alert if driverData->BNCFlag != 0 */
CMSMPrintString(configTable,

MSG_TYPE_RUNTIME_WARNING,
MSG(“066: The cable might be disconnected on the

 board.\n\r“, 42),0 ,0);

The MSG function is used in language enabling. For more information on
language enabling, see Appendix A: Language Enabling.
7-98 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

See Also

See ODI Specification Supplement: Standard MLID Message Definitions for
a listing of standard messages used by Novell.
CMSM Functions 7-99

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 by
CMSMRdConfigSpacex

Takes a bus identifier and an offset from the bus’s
configuration space and performs the necessary
operations to acquire and return the requested
data.

Syntax

#include <odi.h>
#include <cmsm.h>

UINT8 CMSMRdConfigSpace8 (

void *busTag,

UINT32 uniqueIdentifier,

UINT32 offset);

UINT16 CMSMRdConfigSpace16 (

void *busTag,

UINT32 uniqueIdentifier,

UINT32 offset);

UINT32 CMSMRdConfigSpace32 (

void *busTag,

UINT32 uniqueIdentifier,

UINT32 offset);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter, that
identifies a specific bus.

uniqueIdentifier

The unique identifier for the specified adapter or function, as returned
CMSMGetInstanceNumberMapping, CMSMGetUniqueIdentifier , or
CMSMSearchAdapter.
7-100 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

g on
ory or
offset

The byte offset in the configuration space of the specified adapter or
function of the item to be read.

Output Parameters

None.

Return Values

An unsigned value of the appropriate size.

Remarks

This function is provided only for MLIDs that need to interact with the
configuration space. On most buses, CMSMGetCardConfigInfo will meet
the MLIDs needs.

For most buses, these calls will do nothing. These calls only have meanin
buses that have a configuration address space that is separated from mem
I/O space--for example, a PCI bus.

See Also

CMSMGetCardConfigInfo , CMSMWrtConfigSpacex
CMSM Functions 7-101

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMReadPhysicalMemory

Copies a block of memory that the MLID might not
have the right to access into a buffer that the MLID
can access.

Syntax

#include <odi.h>
#include <cmsm.h>

void CMSMReadPhysicalMemory (

UINT32 nbytes,

void *destAddr,

void *srcBusTag,

const void *physSrcAddr);

Input Parameters

nbytes

The number of bytes to read.

srcBusTag

Architecture-dependent value, returned by CMSMSearchAdapter, that
identifies a specific bus.

physSrcAddr

Physical source address (where to read data from).

Output Parameters

destAddr

Logical destination address (where to transfer data to).

Return Values

None.
7-102 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Remarks

CMSMReadPhysicalMemory is called during DriverInit before
CMSMRegisterHardwareOptions. If the MLID attempts to access shared
RAM before calling CMSMRegisterHardwareOptions, a page fault
exception can occur.

Access to the shared RAM prior to registration does not normally happen
unless the CHSM must obtain additional information, such as interrupt
numbers or the shared RAM buffer size for the configuration table.

The CHSM can use this routine to read information from a shared RAM
physical address before hardware registration.

See Also

CMSMWritePhysicalMemory
CMSM Functions 7-103

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMRegisterHardwareOptions

Used to register hardware resources with the
platform.

Syntax

#include <odi.h>
#include <cmsm.h>

REG_TYPE CMSMRegisterHardwareOptions (

MLID_CONFIG_TABLE *configTable,

DRIVER_DATA **driverData);

Input Parameters

configTable

Pointer to the configuration table of the MLID being registered.

Output Parameters

driverData

Pointer to the CHSM’s driver adapter data space.
7-104 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3e

e

t
Return Values

Remark

The CHSM’s DriverInit routine must call this function to register the hardwar
options.

When this function returns, the MLIDCFG_MaxFrameSize field in the
configuration table may have been down sized if the CHSM set it to a valu
larger than the maximum size supported by the topology.

The MLIDCFG_DBusTag field in the MLID Configuration table must be se
before making this call.

REG_TYPE_NEW_ADAPTER A new adapter was registered and the
CHSM should continue initializing the
adapter. If a new adapter is being added,
the memory associated with the adapter
data space is allocated and control
returns to DriverInit with driverData
pointing to that adapter data space.

REG_TYPE_NEW_FRAME A new frame type was registered for an
existing adapter and the DriverInit
routine is basically finished.

REG_TYPE_NEW_CHANNEL A new channel was registered for an
existing multichannel adapter. The
CMSM typically treats the registering of a
new channel as a new adapter. The
CHSM proceeds with hardware
initialization (The driverData parameter
contains a pointer to the CHSM’s driver
adapter data space).

REG_TYPE_FAIL The CMSM was unable to register the
hardware options (typically due to
conflicts with existing hardware).
DriverInit should immediately return a
nonzero value to the operating system.
CMSM Functions 7-105

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMRegisterMLID

Registers the MLID with the LSL.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMRegisterMLID (

const DRIVER_DATA *driverData,

MLID_CONFIG_TABLE *configTable);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space for the MLID being
registered.

configTable

Pointer to the configuration table of the MLID being registered.

Output Parameters

None.

Return Values

Remarks

During DriverInit and after successfully initializing the adapter, DriverInit
should call this routine to register the MLID with the LSL.

ODISTAT_SUCCESSFUL The requested operation was
completed successfully.

ODISTAT_OUT_OF_RESOURCES The requested operation could not be
completed due to depletion of some
system resource.
7-106 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

When this routine returns, the configuration table contains a valid board number.
CHSMs for intelligent bus master adapters can now pass the board number and
frame ID information to the adapter if necessary. The MLIDCFG_MaxFrameSize
field in the configuration table may have been down sized if the CHSM sets the
value larger than the maximum size supported by the topology.

Example

The following is within DriverInit .

/* Allow CMSM to register the MLID with the LSL */

if ((CMSMRegisterMLID(driverData, configTable)) !=

ODISTAT_SUCCESSFUL)

{

CMSMReturnDriverResources(configTable);

return-1;

}

CMSM Functions 7-107

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ns
CMSMRegisterResource

Registers a resource such as memory, interrupts,
DMA, and I/O ports with the underlying operating
system.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMRegisterResource (

const DRIVER_DATA *driverData,

MLID_CONFIG_TABLE *configTable,

EXTRA_CONFIG *extraConfig);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space for the MLID that ow
the resource being registered.

configTable

Pointer to the configuration table of the MLID that owns the resource
being registered.

extraConfig

Pointer to the information needed to register the resource(s).

Output Parameters

None.
7-108 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

d in
full.

Return Values

Remarks

This routine allows a CHSM to register a hardware resource that is not liste
the configuration table because that resource in the configuration table is

This routine cannot be called until after CMSMRegisterHardwareOptions
has been called and has returned with REG_TYPE_NEW_ADAPTER or
REG_TYPE_NEW_CHANNEL. This routine must be called before
CMSMSetHardwareInterrupt if it is being used to add interrupts. The
extraConfig parameter must always remain allocated, so the CMSM will be
responsible for returning the resource if the CHSM gets unloaded.

This routine may only be called at process time.

EXTRA_CONFIG Structure

typedef struct _EXTRA_CONFIG_
{

struct _EXTRA_CONFIG_ *NextLink;
UINT32 (*ISRRoutine0)(void *MagicNumber);
void*ISR0Reserved0;
void*ISR0Reserved1;
void*ISR0Reserved2;
void*ISR0Reserved3;
UINT32 (*ISRRoutine1)(void *MagicNumber);
void*ISR1Reserved0;
void*ISR1Reserved1;
void*ISR1Reserved2;
void*ISR1Reserved3;
IO_CONFIG IOConfig;

} EXTRA_CONFIG;

ODISTAT_SUCCESSFUL Resource registered.

ODISTAT_OUT_OF_RESOURCES Resource in use by another device.
CMSM Functions 7-109

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

e

ified

d

ified
Field Descriptions:

ISRRoutine0

Pointer to the interrupt handler for the specified IRQ. This field must b
filled in if the IO_Interrupt0 or IO_Interrupt1 field is specified.

ISR0Reserved0, ISR0Reserved1, ISR0Reserved2, ISR0Reserved3

These fields are reserved for use by the CMSM and must not be mod
by the CHSM.

ISRRoutine1

This field must be filled in if the IO_Interrupt0 or IO_Interrupt1 field is
specified. This field is a pointer to the interrupt handler for the specifie
IRQ.

ISR1Reserved0, ISR1Reserved1, ISR1Reserved2, ISR1Reserved3

These fields are reserved for use by the CMSM and must not be mod
by the CHSM.

IOConfig

This field is an IO_CONFIG structure filled in by the caller.
7-110 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ust
IO_CONFIG Structure

The IO_CONFIG structure is defined in odi.h. The fields of this structure
correspond to the fields in the lower portion of the configuration table and m
be set accordingly. For a description of these fields, see the
MLID_CONFIG_TABLE structure field descriptions in Chapter 3, "CHSM
Data Structures and Variables".

typedef struct _IO_CONFIG_

{

struct _IO_CONFIG_ *IO_DriverLink;

UINT16 IO_SharingFlags;

UINT16 IO_Slot;

UINT16 IO_IOPort0;

UINT16 IO_IORange0;

UINT16 IO_IOPort1;

UINT16 IO_IORange1;

void *IO_MemoryAddress0;

UINT16 IO_MemorySize0;

void *IO_MemoryAddress1;

UINT16 IO_MemorySize1;

UINT8 IO_Interrupt0;

UINT8 IO_Interrupt1;

UINT8 IO_DMALine0;

UINT8 IO_DMALine1;

void *IO_ResourceTag;

void *IO_Config;

void *IO_CommandString;

MEON_STRING IO_LogicalName [18];

void *IO_LinearMemory0;

void *IO_LinearMemory1;

UINT16 IO_ChannelNumber;

void *IO_DBusTag;

UINT8 IO_DIOConfigMajorVer;

UINT8 IO_DIOConfigMinorVer;

} IO_CONFIG;
CMSM Functions 7-111

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

s to
he

 to
CMSMReRegisterHardwareOptions

Allows a C HSM to deregister its current hardware
options and register a new set of hardware options.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMReRegisterHardwareOptions (

DRIVER_DATA *driverData,

IO_CONFIG *newIOConfig,

ECB *pAsyncECB);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

newIOConfig

Pointer to an IO_CONFIG structure that contains the hardware option
be registered. The fields of an IO_CONFIG structure correspond to t
fields in the MLID_CONFIG_TABLE structure starting with the
MLIDCFG_DriverLink and ending with the
MLIDCFG_DIOConfigMinorVer. This pointer cannot be NULL.

pAsyncECB

Pointer to an ECB whose ESR ((*ECB_ESR)(ECB*)) is called if
CMSMReRegisterHardwareOptions returns
ODISTAT_RESPONSE_DELAYED. The ESR is called with
pAsyncECB as a parameter and the pAsyncECB ECB_Status field will
contain the return value. Other ECB fields may be used by the C HSM
store context or other information that is needed by the ESR.

Output Parameters

None.
7-112 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

are
e set
Return Values

Remarks

After CMSMRegisterMLID has been called, but before
CMSMReRegisterHardwareOptions is called, the adapter must be placed in
a shutdown state by calling CMSMShutdownMLID .

CMSMReRegisterHardwareOptions will deregister the current set of
hardware options held by the CHSM for an adapter as registered through
CMSMRegisterHardwareOptions or through a previous call to
CMSMReRegisterHardwareOptions. All hardware options in the
newIOConfig parameter will then be registered for the adapter. Any hardw
options in the newIOConfig parameter that are not to be registered must b

ODISTAT_SUCCESSFUL The old hardware options were
deregistered and the new hardware
options were successfully registered.

ODISTAT_BAD_PARAMETER An input parameter was invalid or the
call was made at interrupt time an the
pAsyncECB parameter was a NULL.

ODISTAT_FAIL The adapter was not in a shutdown
state before the call was made,
another C MSM API returned
ODISTAT_RESPONSE_DELAYED
and has not completed when this
routine was called, or an unknown
error occurred.

ODISTAT_ITEM_NOT_PRESENT The hardware options to be
deregistered have not previously
been registered.

ODISTAT_OUT_OF_RESOURCES The new hardware options could not
be registered. This is typically due to
conflicts with resources held by other
hardware devices.

ODISTAT_RESPONSE_DELAYED The operation of deregistering and
registering hardware options could
not be completed at the present time.
An asynchronous process will be
scheduled to complete the operation
at a later time.
CMSM Functions 7-113

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ions

e

e
e

he
s

er in

he

s).
as not in use as described in the Driver Configuration Table Field Descript
section in Chapter 3.

If all hardware options in the newIOConfig parameter were successfully
registered, CMSMReRegisterHardwareOptions will update all
configuration tables of the adapter to reflect the newly registered hardwar
options.

If CMSMReRegisterHardwareOptions cannot complete the operation at th
present time, an asynchronous process will be scheduled to complete th
operation later. Once the asynchronous operation is complete, the
pAsyncECB’s ESR routine will be called to report the final return value of t
operation. The return value will be stored in the pAsyncECB’s ECB_Statu
field.

Upon successful return from CMSMReRegisterHardwareOptions or from
the asynchronous process, the CHSM is responsible for putting the adapt
a functional state. If an interrupt was registered, the CHSM must call
CMSMSetHardwareInterrupt .

CMSMReRegisterHardwareOptions upon successful completion will
produce a NESL Service/Status Change event to inform consumers that t
configuration of the adapter has been updated.

This function updates the following fields in the HSM’s configuration table(

• MLIDCFG_SharingFlags
(with the exception of the MS_SHUTDOWN_BIT)

• MLIDCFG_Slot
• MLIDCFG_IOPort0
• MLIDCFG_IORange0
• MLIDCFG_IOPort1
• MLIDCFG_IORange1
• MLIDCFG_MemoryAddress0
• MLIDCFG_MemorySize0
• MLIDCFG_MemoryAddress1
• MLIDCFG_MemorySize1
• MLIDCFG_Interrupt0
• MLIDCFG_Interrupt1
• MLIDCFG_DMALine0
• MLIDCFG_DMALine1
• MLIDCFG_LinearMemory0
• MLIDCFG_LinearMemory1
• MLIDCFG_ChannelNumber
7-114 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

See Also

Driver Configuration Table Field Descriptions

<CTSM>RegisterHSM

CMSMSetHardwareInterrupt

CMSMShutDownMLID
CMSM Functions 7-115

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMResetMLID

Called by the CHSM to reset the MLID.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMResetMLID (

DRIVER_DATA *driverData);

Input Parameters

driverData

Pointer to the C HSM’s driver adapter data space.

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL Reset was successful.

ODISTAT_BAD_PARAMETER An input parameter was invalid or
NULL.

ODISTAT_FAIL The operation failed. The C HSM
should place itself in a safe state and
clean up resources.

ODISTAT_RESPONSE_DELAYED The operation could not be completed
in a timely manner and has been
scheduled to complete later. This is a
result of the C HSM returning
ODISTAT_RESPONSE_DELAYED
when the C MSM called DriverReset .
7-116 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

set.

t.
Remarks

If DriverReset needs to be called from with in the C HSM it is done by this
function. The C MSM puts the driver in a safe state and then calls DriverRe

 If the operation is successful the SHUTDOWN flag in CMSMStatusFlags is
cleared by the C MSM. The C MSM also produces a NESL Resume even

Polling is not re-enabled by this call if it is in a suspend state.

CMSMResetMLID cannot be called until after CMSMRegisterMLID has been
called.

See Also

DriverReset

CMSMShutdownMLID

CMSMResumePolling
CMSM Functions 7-117

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 call

 C
CMSMResumePolling

Called to re-enable polling after it has been
suspended.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMResumePolling (

DRIVER_DATA *driverData);

Input Parameters

driverData

Pointer to the C HSM’s driver adapter data space.

Output Parameters

None.

Return ValuesReturn Values

Remarks

Turns polling back on after CMSMSuspendPolling has suspended it. This
is only useful if CMSMSuspendPolling was called previously. When
CMSMEnablePolling is called polling will start up active.

The POLLING_SUSPENDED flag in CMSMStatusFlags is cleared by the
MSM when CMSMResumePolling is called.

ODISTAT_SUCCESSFUL Polling was successfully enabled.

ODISTAT_BAD_COMMAND There was no polling procedure
registered for this MLID.
7-118 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

See Also

CMSMSuspendPolling

CMSMEnablePoliing
CMSM Functions 7-119

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

lf,
sage
CMSMReturnDriverResources

Returns the MLID’s resources before exiting.

Syntax

#include <odi.h>
#include <cmsm.h>

void CMSMReturnDriverResources (

const MLID_CONFIG_TABLE *configTable);

Input Parameters

configTable

Pointer to the configuration table.

Output Parameters

None.

Return Values

None.

Remarks

If the MLID fails during DriverInit , this routine should be called before
exiting DriverInit to return the resources. If the CHSM detects an error itse
opposed to having an error reported to it, the CHSM can print an error mes
using CMSMPrintString before calling this function.
7-120 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Example

/* Set up our interrupt procedure*/

if (CMSMSetHardwareInterrupt(driverData, configTable) !=

ODISTAT_SUCCESSFUL)

{

CMSMReturnDriverResources(configTable);

return (-1);

}

CMSM Functions 7-121

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

.

CMSMReturnMultipleRCBs

Returns a linked list of RCBs. This routine is called
to discard RCBs, not process them.

Syntax

#include <cmsm.h>

void CMSMReturnMultipleRCBs (

RCB *rcbp);

Input Parameters

rcbp

Pointer to the first RCB on the linked list to be returned.

Output Parameters

None.

Return Values

None.

Remarks

CMSMReturnMultipleRCBs is executed at process time or privileged time

This function must only be used to return ECBs allocated using
<CTSM>ProcessGetRCB, CMSMAllocateMultipleRCBs ,
CMSMAllocateRCB.

Refer to the description of the Receive Control Block (RCBs) in Chapter 4,
"CMSM/CTSM Structures and Variables" for details concerning the link fields in
the RCB.
7-122 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

See Also

CMSMAllocateRCB

CMSMAllocateMultipleRCBs

CMSMReturnRCB

<CTSM>RcvComplete

<CTSM>ProcessGetRCB
CMSM Functions 7-123

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMReturnRCB

Returns an RCB to the LSL. This routine is called
to discard the RCB, not to process it.

Syntax

#include <cmsm.h>

void CMSMReturnRCB (

const DRIVER_DATA *driverData,

RCB *rcbp);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space for the MLID.

rcbp

Pointer to the unneeded RCB.

Output Parameters

None.

Return Values

None.

Remarks

CMSMReturnRCB is executed at process or privileged time.

This function must only be used to return RCBs allocated using
<CTSM>ProcessGetRCB and CMSMAllocateRCB.
7-124 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Example

/* Return any RCBs that we have queued up */

while(driverData->NeedRCBCount != RX_BUFFERS) {

rcb = driverData->RCBTable[driverData->RxNextToReturn++];

driverData->RxNextToReturn &= (RX_BUFFERS - 1);

driverData->NeedRCBCount++;

CMSMReturnRCB(driverData, rcb);

}

See Also

<CTSM>RcvComplete, <CTSM>ProcessGetRCB
CMSM Functions 7-125

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 the
CMSMScanBusInfo

Specifies the buses that are available on the
system.

Syntax

#include <odi.h>
#include <cmsm.h>
#include <odi_nbi.h>

ODI_NBI CMSMScanBusInfo (

UINT32 *scanSequence,

void **busTag,

UNIT32 *busType,

MEON_STRING **busName);

Input/Output Parameters

scanSequence

Must be initialized to -1 for the first search. The value returned in this
parameter after each call must be passed back into this parameter in
subsequent call to this function.

Output Parameters

busTag

Architecture-dependent value that identifies a specific bus.

busType (Defined in odi_nbi.h)

A pointer to a value that specifies the bus type.

The ODI_BUSTYPE_CARDBUS type value is used only for hardware not using
the common silicon method defined by the CardBus PC Card/PCI Common
Silicon Requirements guideline. For CardBus adapters using the common
silicon method refer to the ODI_BUSTYPE_PCI type value.
7-126 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

hat
his
.

busName

A pointer to a static, NULL-terminated, architecture-dependent string t
is determined by the platformdeveloper. The caller should not modify t
string. To reference this string, make a local copy of it.

Return Values

Remarks

CMSMScanBusInfo searches the system for available busses.

Type Value Bus

ODI_BUSTYPE_ISA ISA / ISA PnP bus

ODI_BUSTYPE_MCA Micro Channel bus

ODI_BUSTYPE_EISA EISA bus

ODI_BUSTYPE_PCMCIA PC Card

ODI_BUSTYPE_PCI PCI bus

ODI_BUSTYPE_VESA VESA local bus

ODI_BUSTYPE_NUBUS NuBus bus

ODI_BUSTYPE_OFM Open Firmware Motherboard

ODI_BUSTYPE_CARDBUS CardBus bus

ODI_NBI_SUCCESSFUL The requested operation was completed
successfully.

ODI_NBI_PARAMETER_ERROR The parameter was invalid.

ODI_NBI_NO_MORE_ITEMS There are no more buses.
CMSM Functions 7-127

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMScheduleAES

Called during DriverInit to enable a call back to a
routine in the CHSM.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMScheduleAES (

const DRIVER_DATA *driverData,

MLID_AES_ECB *mlidAESECB);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space of the MLID that is
registering an AES callback.

mlidAESECB

Pointer to the MLID_AES_ECB structure.

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL Call back was successfully scheduled.

ODISTAT_BAD_PARAMETER Invalid parameter(s) set in
MLID_AES_ECB structure).

ODISTAT_OUT_OF _RESOURCES Resources to the successfully
completed operation were not
available.
7-128 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ter
t

ch
Remarks

When this routine is called, the CHSM passes in an MLID_AES_ECB poin
with the routine to be called and the time interval to wait before calling tha
routine.

The CHSM should not call this routine until after CMSMRegisterMLID has
been called.

MLID_AES_ECB Structure

typedef struct _MLID_AES_ECB_

{

struct _MLID_AES_ECB_ *NextLink;

void (*DriverAES)(DRIVER_DATA
*,MLID_CONFIG_TABLE *);

AES_TYPE AesType;

UINT32 TimeInterval;

void *AesContext;

UINT8 AesReserved[30];

} MLID_AES_ECB;

Field descriptions:

NextLink

Used to link MLID_AES_ECB structures together.

DriverAES

A pointer to the function that is called after the specified time interval.

More than one instance of this function can be active at a time, but ea
instance must have a unique name and MLID_AES_ECB structure.

AesType

Used to specify the type of event, where AesType is one of the following:

AES_TYPE_PRIVILEGED_ONE_SHOT Call only once at privileged
time

AES_TYPE_PRIVILEGED_CONTINUOUS Call this routine at privileged
time
CMSM Functions 7-129

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

TimeInterval

The time in milliseconds to wait before calling DriverAES .

AesContext

Reserved for use by the CMSM.

AesReserved

Reserved for use by the CMSM.

MLID_AES_ECB must remain allocated until the MLID is removed.

AES_TYPE_PROCESS_ONE_SHOT Call only once at process
time

AES_TYPE_PROCESS_CONTINUOUS Call this routine at process
time
7-130 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

CMSMSearchAdapter

Takes the bus type and address of a product ID and
returns a busTag and a uniqueIdentifier for where
the specified product (device or function) is found.

Syntax

#include <odi.h>
#include <cmsm.h>

#include <odi_nbi.h>

ODI_NBI CMSMSearchAdapter (

UINT32 *scanSequence,

UINT32 busType,

UINT32 productIDLen,

const MEON *productID,

void **busTag,

UINT32 *uniqueIdentifier);

Input Parameters

busType

A bus type as defined in odi_nbi.h.

The ODI_BUSTYPE_CARDBUS type value is used only for hardware not using
the common silicon method defined by the CardBus PC Card/PCI Common
Silicon Requirements guideline. For CardBus adapters using the common
silicon method refer to the ODI_BUSTYPE_PCI type value.

Type Value Bus

ODI_BUSTYPE_ISA ISA / ISA PnP bus

ODI_BUSTYPE_MCA Micro Channel bus

ODI_BUSTYPE_EISA EISA bus

ODI_BUSTYPE_PCMCIA PC CardBus

ODI_BUSTYPE_PCI PCI bus

ODI_BUSTYPE_NUBUS NuBus bus
CMSM Functions 7-131

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

r an

ssed

n

ct
ard

n
productIDLen

Length of the product ID.

productID

A pointer to a bus architecture-dependent parameter that uniquely
identifies an adapter board/peripheral/system option. For example, fo
EISA bus, this is an EISA product ID as defined in the EISA Specification
document.

Input/Output Parameters

scanSequence

On the first search for each productID, scanSequence must be initialized
to -1. The value returned in this parameter after each call must be pa
back into this parameter in each subsequent call to this function.

Output Parameters

busTag

Architecture-dependent value that specifies the bus where this functio
found the first item identified by the product ID.

The ODI_BUSTYPE_CARDBUS type value is used only for hardware not using
the common silicon method defined by the CardBus PC Card/PCI Common
Silicon Requirements guideline. For CardBus adapters using the common
silicon method refer to the ODI_BUSTYPE_PCI type value.

uniqueIdentifier

Architecture-dependent value that identifies the specific device or
function. This call will return information for each instance of the produ
ID and compatible products, including multiple instances on a single c
(each having a different function number). The Hardware Instance
Number (HIN) (used in the slot= command line parameter) can be take
from the busTag and the uniqueIdentifier pair by calling
CMSMGetInstanceNumber.

ODI_BUSTYPE_OFM Open Firmware motherboard

ODI_BUSTYPE_CARDBUS CardBus bus
7-132 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Return Values

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_ITEM_NOT_PRESENT No device or function matches the
given bus type and product ID
combination.
CMSM Functions 7-133

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ro
Remarks

This function should be used only if the CHSM’s adapter has a unique
productID associated with it that can be read by the NBI. The productID must
be retrievable according to an accepted standard, such as EISA, PCI, Mic
Channel, PnP ISA, or PC Card.
7-134 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

s
CMSMServiceEvents

Completes the processing of queued and received
packets.

Syntax

#include <cmsm.h>

void CMSMServiceEvents (void);

Input Parameters

None.

Output Parameters

None.

Return Values

None.

Remarks

CMSMServiceEvents is called at process or privileged time. If the CHSM ha
used <CTSM>SendComplete, <CTSM>RcvComplete, or
<CTSM>ProcessGetRCB, it must use CMSMServiceEvents before it exits
back to the operating system.
CMSM Functions 7-135

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMSetHardwareInterrupt

Called by the CHSM’s DriverInit routine to set up
a hardware interrupt handler.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMSetHardwareInterrupt (

DRIVER_DATA *driverData,

const MLID_CONFIG_TABLE *configTable);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to the configuration table.

Output Parameters

None.

Return Values

ODISTAT_SUCCESSFUL The requested operation was
completed successfully.

ODISTAT_OUT_OF_RESOURCES The requested operation could not be
completed due to depletion of a
system resource.

ODISTAT_BAD_PARAMETER The DriverISRPtr field in the driver
parameter block was NULL.
7-136 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

e
Remarks

CMSMSetHardwareInterrupt examines the configuration table to obtain th
number of the interrupt to set. CMSMSetHardwareInterrupt , then examines
the driver parameter block to obtain the address of DriverISR . If the CHSM’s
MLID configuration table and driver parameter block specify two interrupt
service routines, CMSMSetHardwareInterrupt will set up both.

Do not call this function unless you are ready to process interrupts. This call may
only be called at process time.

Example

/* Set up our interrupt procedure */

if (CMSMSetHardwareInterrupt(driverData, configTable) !=

ODISTAT_SUCCESSFUL) {

CMSMReturnDriverResources(configTable);

return (-1);

}

CMSM Functions 7-137

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMShutdownMLID

Called by the C HSM to shut the MLID down.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMShutdownMLID (

DRIVER_DATA *driverData,

UINT32 shutdownType);

Input Parameters

driverData

Pointer to the C HSM’s driver adapter data space.

shutdownType

SHUTDOWN_PERMANENT

Perform a permanent shutdown.

SHUTDOWN_PARTIAL

Perform a partial shutdown.

Output Parameters

None.
7-138 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

le or
Return Values

Remarks

If the DriverShutdown needs to be called from within the C HSM it is done
by this function. The C MSM puts the driver in a safe state and then calls
DriverShutdown. If a partial shutdown was preformed a call to
CMSMResetMLID will bring the driver out of shutdown state

The SHUTDOWN flag in CMSMStatusFlags is set by the C MSM when
CMSMShutdownMLID is called. The C MSM also produces a NESL
Suspend event.

If CMSMShutdownMLID returns ODISTAT_RESPONSE_DELAYED, we
recommend that you return with the adapter disabled unless it is impossib
inadvisable.

CMSMShutdownMLID cannot be called until after CMSMRegisterMLID
has been called.

See Also

DriverShutdown

CMSMResetMLID

ODISTAT_SUCCESSFUL The driver was shutdown
successfully.

ODISTAT_BAD_PARAMETER An input parameter was invalid or
NULL.

ODISTAT_FAIL The operation failed.

ODISTAT_RESPONSE_DELAYED Under circumstances where shutting
down the MLID cannot be completed
when CMSMShutdownMLID is
called, an asynchronous process
should be called at a later time.
CMSM Functions 7-139

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

nd
his

 Most
eds

CMSMSuspendPolling

Suspends the calling of the DriverPoll procedure
until CMSMResumePolling is called.

Syntax

#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMSuspendPolling (

DRIVER_DATA *driverData);

Input Parameters

driverData

Pointer to the C HSM’s driver adapter data space.

Output Parameters

None.

Return Values

Remarks

The polling procedure is very expensive, especially in a Multi-Processor
environment. Each time DriverPoll is called the Mutex must be acquired a
both DriverDisableInterrupts and DriverEnableInterrupts must be called. T
keeps the Mutex held a high percentage of the time and causes bus traffic.
of the time that DriverPoll is called there is no usable work that the driver ne
to do yet while in the poll procedure the driver is locked out from receiving

ODISTAT_SUCCESSFUL Polling was successfully suspended.

ODISTAT_BAD_COMMAND There was no polling procedure
registered for this MLID.
7-140 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 do.

M
interrupts, DriverSends, etc. Use CMSMSuspendPolling to temporarily stop
the driver from being polled when it is known that there is no usable work to

The POLLING_SUSPENDED flag in CMSMStatusFlags is set by the C MS
when CMSMSuspendPolling is called and cleared by the C MSM when
CMSMResumePolling is called and can be inspected by the C HSMto
determine the current polling status.

Calling CMSMResetMLID does not re-enabled polling.

See Also

CMSMResumePolling
CMSM Functions 7-141

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

e
n in
CMSMTCBPhysToLogFrags

Gets the address of the ECB whose ECB structure
contains the logical addresses of the fragments in
the TCB for an adapter when the
MM_FRAGS_PHYS_BIT bit is set.

Syntax

#include <odi.h>
#include <cmsm.h>

ECB *CMSMTCBPhysToLogFrags (

TCB *tcb);

Input Parameters

tcb

Pointer to a TCB structure.

Output Parameters

None.

Return Values

Pointer to the ECB structure containing the logical addresses for the TCB
fragments.

Remarks

You cannot assume that the fragment pointers have a one-to-one
correspondence. Because the physical pointers point to fragments that ar
physically contiguous, there can be more fragments in the physical list tha
the logical list.
7-142 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

FRAGMENT_LIST_STRUCT Structure

typedef struct _FRAGMENT_LIST_STRUCT_

{

UINT32 FragmentCount;

FRAGMENT_STRUCT FragmentStruct;

) FRAGMENT_LIST_STRUCT;
CMSM Functions 7-143

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ll
CMSMUpdateConfigTables

Allows a C HSM to tell the tool kit to update all
copies of the configuration table for an adapter.

Syntax
#include <odi.h>
#include <cmsm.h>

ODISTAT CMSMUpdateConfigTables (

DRIVER_DATA *driverData,

MLID_CONFIG_TABLE *configTable);

Input Parameters

driverData

Pointer to the CHSM’s driver adapter data space.

configTable

Pointer to a configuration table.

Output Parameters

None.

Return Values

Remarks

CMSMUpdateConfigTables copies the following configuration table fields
from the configTable parameter to all configuration tables of a adapter. A
other configuration table fields are ignored.

MLIDCFG_NodeAddress

MLIDCFG_ModeFlags

MLIDCFG_MaxFrameSize

ODISTAT_SUCCESSFUL All configuration tables for the adapter
were updated.

ODISTAT_BAD_PARAMETER An input parameter was invalid.
7-144 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

y

all

t the
MLIDCFG_CardName

MLIDCFG_ShortName

MLIDCFG_TransportTime

MLIDCFG_LineSpeed

MLIDCFG_SGCount

MLIDCFG_PrioritySup

MLIDCFG_Flags

MLIDCFG_SendRetries

MLIDCFG_BestDataSize and MLIDCFG_WorstDataSize are automaticall
adjusted by the CTSM based on MLIDCFG_MaxFrameSize.

A CHSM can call CMSMUpdateConfigTables any time to update an
adapter’s configuration tables. All fields copied from the configTable
parameter must be valid before CMSMUpdateConfigTables is called.

During a driver’s initialization for an adapter,
CMSMRegisterHardwareOptions automatically updates the adapter’s
configuration tables. A call to CMSMUpdateConfigTables is only necessary
if the fields copied from the configTable parameter are modified after the c
to CMSMRegisterHardwareOptions.

CMSMUpdateConfigTables upon successful completion will produce a
NESL Service/Status Change event to inform consumers of the event tha
configuration tables for the adapter have been updated.

See Also

CMSMRegisterHardwareOptions
CMSM Functions 7-145

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMWrtConfigSpacex

Takes a value, a bus identifier, and an offset in the
bus’s configuration space and performs whatever
operations are necessary to deliver the value to the
specified location.

Syntax

#include <odi.h>
#include <cmsm.h>

void CMSMWrtConfigSpace8 (

void *busTag,

UINT32 uniqueIdentifier,

UINT32 offset,

UINT8 writeVal);

void CMSMWrtConfigSpace16 (

void *busTag,

UINT32 uniqueIdentifier,

UINT32 offset,

UINT16 writeVal);

void CMSMWrtConfigSpace32 (

void *busTag,

UINT32 uniqueIdentifier,

UINT32 offset,

UINT32 writeVal);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter, that
identifies a specific bus.
7-146 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

g on
ory or
uniqueIdentifier

An architecture-dependent value identifying the specific device or
function. See CMSMSearchAdapter or CMSMGetUniqueIdentifier .

offset

The byte offset in the configuration space of the specified device or
function where the item is to be written to.

writeVal

The appropriate size value to be written to the specified configuration
space address on the specified bus.

Output Parameters

None.

Return Values

None

Remarks

This function is provided only for MLIDs that need to interact with the
configuration space.

For most buses, these calls will do nothing. These calls only have meanin
buses that have a configuration address space that is separated from mem
I/O space--for example, a PCI bus.

See Also

CMSMGetCardConfigInfo , CMSMWrtConfigSpacex
CMSM Functions 7-147

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

CMSMWritePhysicalMemory

Allows the CHSM to write to memory that is not
registered to the CHSM.

Syntax

#include <odi.h>
#include <cmsm.h>

void CMSMWritePhysicalMemory (

UINT32 nbytes,

void *destBusTag,

void *physDestAddr,

const void *srcAddr);

Input Parameters

nbytes

The number of bytes to write.

destBusTag

Architecture-dependent value, returned by CMSMSearchAdapter, that
identifies a specific bus.

physDestAddr

Physical destination buffer (where to transfer data).

srcAddr

Logical source buffer (where to read data).

Output Parameters

None.

Return Values

None.
7-148 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ly
rupt

ress
Remarks

CMSMWritePhysicalMemory is called during DriverInit before
CMSMRegisterHardwareOptions. If the CHSM attempts to access shared
RAM before calling CMSMRegisterHardwareOptions, a page fault ABEND
will occur. Accesses to the shared RAM prior to registration do not normal
happen unless the CHSM must obtain additional information, such as inter
numbers or shared RAM buffer size for the configuration table.

This routine can be used to write information to a shared RAM physical add
before hardware registration.

See Also

CMSMReadPhysicalMemory
CMSM Functions 7-149

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

7-150 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

c h a p t e r 8
NetWare Bus Interface
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

re
e or

ls of

SM.

nd
iece

n.
ter,
ms.

t
ded

e
Overview

One of the goals of this specification is to allow you to write CHSMs that a
portable across different platforms. Some of these platforms may have on
more buses that are quite different from each other. Therefore, to achieve
platform independence, it is necessary to isolate the CHSM from the detai
the platform’s bus architecture.

This chapter describes bus architecture-dependent functions provided by
Novell or the platform developer to perform operations needed by the CH

If you want your CHSM to be portable, you must follow this specification a
must not access the Programmable Interrupt Controller (PIC), since this p
of hardware is different on different hardware platforms. Interrupt control
operations should be performed using functions defined in this specificatio
Also, the CHSM must not directly write or read data to or from its own adap
because this can require different operations on different hardware platfor
Instead, it must use the Inx , Outx, Rdx, and Wrtx functions defined here.

Some of the functions defined in this specification are not needed by mos
CHSMs. If a function is not needed, it should not be used. Defining unnee
functions increases the likelihood that your CHSM will not work on a
particular platform, since some of the functions are not supported on som
platforms.
NetWare Bus Interface 8-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

aviors
 For

of
Bus Architecture

A bus architecture is one or more related address spaces and a set of beh
(including asynchronous behaviors) of data within those address spaces.
example, an IBM PC ISA address space consists of the following:

• A 16-bit memory address space

• A 16-bit I/O address space

• A defined set of interrupts with their means of generation and means
dismissal

• A set of DMA channels with means of starting and completing their
operations.

Multiple Bus Platforms

Figure 8.1 shows an example of a multiple bus platform.

Figure 8-1

Multiple Bus Platform Example

Bus Adapter

ISA Bus LAN Adapter

CPU

System Bus 1

System Bus 2 (EISA Bus)
8-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

D
able
C.
nt
ess
 8.1

dent
SM
de

its
-
eir
/

will

N
wn

sfers

in

ess
l not
Because of the potentially differing bus architectures on a multiple bus
platform and the intervening bus adapter, you cannot assume that an MLI
executing on the CPU will always be able to directly access the Programm
Interrupt Controller or the DMA controller the same way it does on an IBM P
These controllers may be implemented using hardware completely differe
from the IBM PC. You cannot even assume that the MLID will be able to acc
the memory addresses it needs to communicate with its adapter. In Figure
for example, the intervening bus adapter may have the System Bus 2 memory
addresses mapped to some other set of addresses in the System Bus 1 address
space, or they may not be mapped at all.

The functions in this chapter are defined so that the CHSM can be indepen
of the underlying architecture. If you use these functions correctly, your CH
should be portable from platform to platform by simply recompiling the co
for the new platform. You can write a CHSM specifically for a particular
platform, but it will not be portable.

A portable CHSM must not attempt to access anything directly outside of
own data space area. Instead, the CHSM should use the bus architecture
dependent functions in this chapter to access all hardware devices and th
associated data. These functions include such things as interrupt enabling
disabling/dismissing and DMA start/cleanup.

Memory Mapping and Address Manipulation

The memory mapping and address manipulation functions in this chapter
make more sense if you have some idea of their intended use and
implementation. The following examples describe two different types of LA
adapters (or cards): a shared memory card, and a card that transfers its o
data.

In the case of a shared memory card, the CHSM running on the CPU tran
the data. The intention is to let the CMSM (using MapBusMemory) map the
shared memory card’s physical address range on System Bus 2 to a logical
address on System Bus 1. This mapping is to remain in effect as long as the
driver is loaded. (This may involve allocating and programming hardware
the bus adapter or looking up how the hardware was programmed during
system initialization.) The CMSM then converts the System Bus 1 physical
address to a CPU logical address. The CHSM then uses this CPU logical
address as the base address of the card’s shared memory.

At this point, it might seem like the CHSM should be able to use this addr
plus the offsets to access the card’s shared memory. Unfortunately, this wil
NetWare Bus Interface 8-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

e

SM

SM as

ing
ther
ure
y the
alue
work on all platforms, and this is the reason for the MovFastFromBus,
MovFastToBus, MovFromBusx, MovToBusx, Rdx, Wrtx , and Setx
functions. On most platforms, these functions will be implemented as inlin
macros.

In the case of a card that transfers its own data, the intention is for the CH
to convert logical addresses in system memory to physical addresses on System
Bus 1; then, to map the System Bus 1 physical addresses to System Bus 2
physical addresses. The CHSM then passes the System Bus 2 physical
addresses to the card for its use. These mappings are released by the CH
soon as the transmission or the reception is complete.

Byte Order

It is the responsibility of the functions in this chapter to do any byte swapp
that is necessary to get the data to its destination in the correct order. In o
words, if a UINT16 is being read from an ISA adapter in the example in Fig
8.1 and System Bus 1 is a big endian bus, the bytes are to be swapped b
In16 or Rd16 routine (unless the bus adapter hardware does it) so that the v
returned by the function is correct.
8-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

and
A

ith
DMACleanup

Cleans up, closes down, and releases the
resources associated with a DMA operation.

Syntax

#include <odi.h>

#include <odi_nbi.h>

void DMACleanup (

UINT32 dmaChannel);

Input Parameters

dmaChannel

An architecture-dependent value specified by the platform developer
set by the user in the MLID load command line. It specifies which DM
channel is to be used.

Output Parameters

None.

Return Values

None.

Remarks

It is the responsibility of the NBI to know what resources are associated w
this operation. If called while the DMA operation is still in progress, this
function must first abort the operation and then do the cleanup.
NetWare Bus Interface 8-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 in
s in I/

o
DMAStart

Moves data from one location (on one bus) to
another location (potentially on a different bus)
using the specified DMA channel.

Syntax

#include <odi.h>

#include <odi_nbi.h>

ODI_NBI DMAStart (

void *destBusTag,

UINT32 destAddrType,

const void *destAddr,

void *srcBusTag,

UINT32 srcAddrType,

const void *srcAddr,

UINT32 len,

UINT32 dmaChannel,

UINT32 dmaMode1,

UINT32 dmaMode2);

Input Parameters

destBusTag

Architecture-dependent value, returned by CMSMSearchAdapter, that
identifies a specific bus.

destAddrType

Boolean parameter. False (0) indicates that the destination address is
memory space; true (nonzero) indicates that the destination address i
O space.

destAddr

The physical memory address in the bus architecture of the adapter t
which the DMA is to occur.
8-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

in
I/O

om

and
A

 are
eter
srcBusTag

Architecture-dependent value, returned by CMSMSearchAdapter, that
identifies a specific bus.

srcAddrType

Boolean parameter. False (zero) indicates that the source address is
memory space; true (nonzero) indicates that the source address is in
space.

srcAddr

The physical memory address in the bus architecture of the adapter fr
which the DMA is to occur.

len

The length in bytes to be DMA’d.

dmaChannel

An architecture-dependent value specified by the platform developer
set by the user in the MLID load command line. It specifies which DM
channel is to be used. If not set by the user, it should be set to 0.

dmaMode1 and dmaMode2

These parameters are bus architecture-dependent. Their meaning is
defined on a bus architecture by bus architecture basis. Currently, they
defined only for the ISA and EISA buses. On these boards, this param
specifies the DMA transfer mode for this DMA channel.

Bits 7 - 6

00 demand mode select

01 single mode select

10 block mode select

11 cascade mode select

Bit 5

0 address increment select

1 address decrement select

Bit 4

0 automatic initialization disable

1 automatic initialization enable
NetWare Bus Interface 8-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

g
 count

m-

th
 has
ission
Automatic initialization refers to the DMA device automatically restorin
the current address and current count from the base address and base
after the process ends.

Output Parameters

None.

Return Values

Remarks

This function is used only in situations where the DMA channel is a syste
wide resource. It is not used where the adapter itself does the DMA.

The NBI deals with alignment issues, hardware mapping issues, and leng
issues. Errors are returned only if a hardware failure is detected, the user
requested an operation that is impossible, or the user does not have perm
to access the memory indicated.

This function seems to allow some unreasonable operations such as DMAing
from I/O space to I/O space; this specification is not intended to support such
operations. Also, the DMA channels are assumed to be a system-wide resource
and not associated with a particular bus. In fact, any particular DMA controller
will be associated with some particular bus, but it is the responsibility of the NBI
to manage the platform’s DMA controllers and determine (using srcBusTag and
destBusTag) how to perform the requested operation.

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection prevented the
completion of the requested
operation.

ODI_NBI_HARDWARE_ERROR Hardware error or hardware
limitation prevented the completion
of the requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was invalid.

ODI_NBI_UNSUPPORTED_OPERATION The requested operation could not
be completed.
8-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

and
A

sfer
ses.
DMAStatus

Returns the status of the specified DMA channel.

Syntax

#include <odi.h>

#include <odi_nbi.h>

UINT32 DMAStatus (

UINT32 dmaChannel);

Input Parameters

dmaChannel

An architecture-dependent value specified by the platform developer
set by the user in the MLID load command line. It specifies which DM
channel is to be used.

Output Parameters

None.

Return Values

Bit 0 Set if the channel has completed DMA operation.

Bit 1 Set if the channel has a pending DMA bus cycle request.

Remarks

This function can be used by the CHSM to determine the state of the DMA
channel. This function can be used to detect the completion of a DMA tran
on that channel or if that channel is currently requesting the I/O memory bu
NetWare Bus Interface 8-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

FreeBusMemory

Frees any hardware resources allocated by the
function MapBusMemory .

Syntax

#include <odi.h>

#include <odi_nbi.h>

ODI_NBI FreeBusMemory (

void *busTag1,

const void *memAddr,

void *busTag2,

const void *mappedAddr,

UINT32 len);

Input Parameters

busTag1

Architecture-dependent value, returned by CMSMSearchAdapter, that
identifies the bus that contains the physical memory space.

memAddr

Address of the physical memory space of busTag1.

busTag2

Architecture-dependent value, returned by CMSMSearchAdapter, that
identifies the bus that is mapped to the physical memory space of busTag1.

mappedAddr

Pointer to the address of the physical memory space of busTag1; used by
busTag2.

len

The length of the mapped memory space in bytes.
8-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

re
Output Parameters

None.

Return Values

Remarks

The parameters passed to this call must be the same parameters that we
passed to MapBusMemory when the memory was mapped..

A CHSM cannot unmap just a portion of previously mapped memory.

See Also

MapBusMemory

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection prevented the
completion of the requested
operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was
invalid.
NetWare Bus Interface 8-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

nput
Inx

Does whatever operations are necessary to get
and return the requested data, using the bus tag
and I/O address space.

Syntax

#include <odi.h>

#include <odi_nbi.h>

UINT8 In8 (

void *busTag,

const void *ioAddr);

UINT16 In16 (

void *busTag,

const void *ioAddr);

UINT32 In32 (

void *busTag,

const void *ioAddr);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter, that
identifies a specific bus.

ioAddr

The I/O address in the bus architecture of the adapter from where the i
is to occur.

Output Parameters

None.
8-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 bus
Return Values

An unsigned value of the appropriate size.

Remarks

These routines are used only by CHSMs written for adapters intended for
architectures that have an I/O address space.
NetWare Bus Interface 8-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

InBuff x

Takes a bus identifier (busTag), an I/O address in
that bus’s I/O address space, a buffer in the CPU’s
logical address space, and a count of items and
does the necessary operations to get the specified
number of data units (in the specified size) and
puts them in the buffer.

Syntax

#include <odi.h>

#include <odi_nbi.h>

ODI_NBI InBuff8 (

UINT8 *buffer,

void *busTag,

const void *ioAddr,

UINT32 count);

ODI_NBI InBuff16 (

UINT16 *buffer,

void *busTag,

const void *ioAddr,

UINT32 count);

ODI_NBI InBuff32 (

UINT32 *buffer,

void *busTag,

const void *ioAddr,

UINT32 count);

Input Parameters

buffer

The memory address in logical address space where the data is to be
written.
8-14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ed

fill
busTag

Architecture-dependent value, returned by CMSMSearchAdapter, that
identifies a specific bus.

ioAddr

The I/O address in the bus architecture of the LAN adapter (or MLID)
from which the input is to be read.

count

The number of items to input.

Output Parameters

None.

Return Values

Remarks

These routines are used by CHSMs that have an I/O space. A buffer is fill
with data from the specified I/O address with the number of data units
specified. The I/O address is not incremented, but the buffer address will
forward.

ODI_NBI_SUCCESSFUL The requested operation
was completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection
prevented the completion of
the requested operation.

ODI_NBI_MEMORY_ERROR Memory error occurred
while attempting to perform
the requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was
invalid.

ODI_NBI_UNSUPPORTED_OPERATION The requested operation
could not be completed.
NetWare Bus Interface 8-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

s

ts
U’s
MapBusMemory

Takes a bus identifier (busTag1), a physical
memory address, and a length and makes the
described piece of memory accessible from
another specified bus (busTag2).

Syntax

#include <odi.h>

#include <odi_nbi.h>

ODI_NBI MapBusMemory (

void *busTag1,

const void *memAddr,

void *busTag2,

void **mappedAddr,

UINT32 len);

Input Parameters

busTag1

Architecture-dependent value, returned by CMSMSearchAdapter, which
specifies the bus on which the memory to be mapped resides.

memAddr

The physical memory address of the memory to be mapped in the bu
architecture specified by busTag1.

busTag2

Architecture-dependent value, returned by CMSMSearchAdapter, which
specifies the bus on which the memory is to be mapped. The caller se
busTag2 equal to -1 to specify that the target of the mapping is the CP
physical address space, regardless of which bus the CPU is actually
connected to.

len

The minimum length of the space to be mapped in bytes.
8-16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ith

ked.
Output Parameters

mappedAddr

The physical memory address in the bus architecture specified by busTag2
that can be used from busTag2 to access busTag1 / memAddrPtr.

Return Values

Remarks

The purpose of this function is to supply MLIDs for bus master adapters w
a means to get any needed address mapping performed.

When this function returns, the appropriate physical pages have been loc

See Also

FreeBusMemory

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection prevented the
completion of the requested
operation.

ODI_NBI_HARDWARE_ERROR Hardware error or hardware
limitation prevented the completion
of the requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was invalid.
NetWare Bus Interface 8-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

the
MovFastFromBus

Moves the contents of the source buffer on the
adapter to the destination buffer in the CPU’s
logical address space as fast as the platform can
move it.

Syntax

#include <odi.h>

#include <odi_nbi.h>

ODI_NBI MovFastFromBus (

void *destAddr,

void *srcBusTag,

void *reserved,

const void *srcAddr,

UINT32 count);

Input Parameters

destAddr

The memory address in the logical address space of the CPU where
data is to be written.

srcBusTag

Architecture-dependent value, returned by CMSMSearchAdapter, which
specifies the bus from which data is to be moved.

reserved

This parameter is reserved and must be set to NULL.

srcAddr

The address of the source based on the information returned by
MapBusMemory.

count

The number of items to be moved.
8-18 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Output Parameters

None.

Return Values

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection prevented
the completion of the requested
operation.

ODI_NBI_MEMORY_ERROR Memory error occurred while
attempting to perform the
requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was
invalid.

ODI_NBI_UNSUPPORTED_OPERATION The requested operation could
not be completed.
NetWare Bus Interface 8-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

hich
MovFastToBus

Moves the contents of the source buffer in the CPU
logical address space into the destination buffer on
the adapter as fast as the platform can move it.

Syntax

#include <odi.h>

#include <odi_nbi.h>

ODI_NBI MovFastToBus (

void *destBusTag,

void *reserved,

void *destAddr,

const void *srcAddr,

UINT32 count);

Input Parameters

destBusTag

Architecture-dependent value, returned by CMSMSearchAdapter, which
specifies the bus to which data is to be moved.

reserved

This parameter is reserved and must be set to NULL.

destAddr

The address of the destination based on the information returned by
MapBusMemory.

srcAddr

The memory address in the logical address space of the CPU from w
the data is to be read.

count

The number of items to be moved.
8-20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Output Parameters

None.

Return Values

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection prevented the
completion of the requested
operation.

ODI_NBI_MEMORY_ERROR Memory error occurred while
attempting to perform the
requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was invalid.

ODI_NBI_UNSUPPORTED_OPERATION The requested operation could not
be completed.
NetWare Bus Interface 8-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

the
MovFromBus x

Moves the contents of the source buffer on the
adapter to the destination buffer in the CPU’s
logical address space.

Syntax

#include <odi.h>

#include <odi_nbi.h>

ODI_NBI MovFromBus8 (

void *destAddr,

void *srcBusTag,

void *reserved,

const void *srcAddr,

UINT32 count);

ODI_NBI MovFromBus16 (

void *destAddr,

void *srcBusTag,

void *reserved,

const void *srcAddr,

UINT32 count);

ODI_NBI MovFromBus32 (

void *destAddr,

void *srcBusTag,

void *reserved,

const void *srcAddr,

UINT32 count);

Input Parameters

destAddr

The memory address in the logical address space of the CPU where
data is to be written.
8-22 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

srcBusTag

Architecture-dependent value, returned by CMSMSearchAdapter, which
specifies the bus from which data is to be moved.

reserved

This parameter is reserved and must be set to NULL.

srcAddr

The address of the source, based on the information returned by
MapBusMemory.

count

The number of items to be moved.

Output Parameters

None.

Return Values

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection prevented
the completion of the requested
operation.

ODI_NBI_MEMORY_ERROR Memory error occurred while
attempting to perform the
requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was
invalid.

ODI_NBI_UNSUPPORTED_OPERATION The requested operation could
not be completed.
NetWare Bus Interface 8-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

at
es,
cted
Remarks

If possible, data will be moved in the size data objects (such as 8, 16, 32)
specified by the name of the routine called. If this is impossible on some
platforms, due to hardware constraints, some adapters will not work on th
platform. The NBI will deal with alignment issues, mapping hardware issu
and length issues. Errors can be returned only if a hardware failure is dete
or if the user does not have permission to access the memory indicated.
8-24 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

MovToBus x

Moves the contents of the source buffer in the CPU
logical address space into the destination buffer on
the adapter.

Syntax

#include <odi.h>

#include <odi_nbi.h>

ODI_NBI MovToBus8 (

void *destBusTag,

void *reserved,

void *destAddr,

const void *srcAddr,

UINT32 count);

ODI_NBI MovToBus16 (

void *destBusTag,

void *reserved,

void *destAddr,

const void *srcAddr,

UINT32 count);

ODI_NBI MovToBus32 (

void *destBusTag,

void *reserved,

void *destAddr,

const void *srcAddr,

UINT32 count);
NetWare Bus Interface 8-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

here
Input Parameters

destBusTag

Architecture-dependent value, returned by CMSMSearchAdapter, which
specifies the bus to which data is to be moved.

reserved

This parameter is reserved and must be set to NULL.

destAddr

The address of the destination based on the information returned by
MapBusMemory.

srcAddr

The memory address in the logical address space of the CPU from w
the data is to be read.

count

The number of items to be moved.

Output Parameters

None.

Return Values

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection prevented
the completion of the requested
operation.

ODI_NBI_MEMORY_ERROR Memory error occurred while
attempting to perform the
requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was
invalid.

ODI_NBI_UNSUPPORTED_OPERATION The requested operation could
not be completed.
8-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

at
es,
cted
Remarks

If possible, data will be moved in the size data objects (such as 8, 16, 32)
specified by the name of the routine called. If this is impossible on some
platforms, due to hardware constraints, some adapters will not work on th
platform. The NBI will deal with alignment issues, mapping hardware issu
and length issues. Errors can be returned only if a hardware failure is dete
or if the user does not have permission to access the memory indicated.
NetWare Bus Interface 8-27

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

he
Outx

Takes a bus identifier (busTag), a value, and an
I/O address in that bus’s address space and
performs whatever operations are necessary to
deliver the value to the specified address.

Syntax

#include <odi.h>

#include <odi_nbi.h>

void Out8 (

void *busTag,

const void *ioAddr,

UINT8 outputVal);

void Out16 (

void *busTag,

const void *ioAddr,

UINT16 outputVal);

void Out32 (

void *busTag,

const void *ioAddr,

UINT32 outputVal);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter, which
specifies the bus to which data is to be moved.

ioAddr

The I/O address in the bus architecture of the LAN adapter to which t
output is to occur.
8-28 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 The

 for
outputVal

The value to be sent to the specified I/O address on the specified bus.
type of this value varies depending on which function is called.

Output Parameters

None.

Return Values

None.

Remarks

These routines are used only by CHSMs written for LAN adapters intended
bus architectures that have an I/O address space.
NetWare Bus Interface 8-29

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

OutBuff x

Takes a bus identifier (busTag), an I/O address in
that address space, a buffer in the CPU’s logical
address space and performs whatever operations
are necessary to output the specified number of
data units (in the specified size) from the buffer to
the I/O address.

Syntax

#include <odi.h>

#include <odi_nbi.h>

ODI_NBI OutBuff8 (

void *busTag,

void *ioAddr,

const void *buffer,

UINT32 count);

ODI_NBI OutBuff16 (

void *busTag,

void *ioAddr,

const void *buffer,

UINT32 count);

ODI_NBI OutBuff32 (

void *busTag,

void *ioAddr,

const void *buffer,

UINT32 count);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter, which
specifies the bus to which data is to be moved.
8-30 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

 to

hich

uffer
ed.
.

ioAddr

The I/O address in the bus architecture of the LAN adapter (or MLID)
which the output is to occur.

buffer

The memory address in the logical address space of the CPU from w
the output is to occur.

count

The number of items to output.

Output Parameters

None.

Return Values

Remarks

These routines are used by CHSMs that have an I/O space. Data from a b
is output to the specified I/O address with the number of data units specifi
The I/O address is not incremented, but the buffer address is incremented

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection prevented
the completion of the requested
operation.

ODI_NBI_MEMORY_ERROR Memory error occurred while
attempting to perform the
requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was
invalid.

ODI_NBI_UNSUPPORTED_OPERATION The requested operation could
not be completed.
NetWare Bus Interface 8-31

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Rdx

Takes a bus identifier and a physical memory
address in that bus’s memory address space and
performs whatever operations are necessary to
acquire and return the requested data.

Syntax

#include <odi.h>

#include <odi_nbi.h>

UINT8 Rd8 (

void *busTag,

void *reserved,

const void *memAddr);

UINT16 Rd16 (

void *busTag,

void *reserved,

const void *memAddr);

UINT32 Rd32 (

void *busTag,

void *reserved,

const void *memAddr);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter, which
specifies the bus from which data is to be moved.

reserved

This parameter is reserved and must be set to NULL.

memAddr

The address of the source based on the information returned by
MapBusMemory.
8-32 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Output Parameters

None.

Return Values

An unsigned value of the appropriate size.
NetWare Bus Interface 8-33

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Setx

Fills a buffer with a specified value.

Syntax

#include <odi.h>

#include <odi_nbi.h>

ODI_NBI Set8 (

void *busTag,

void *reserved,

const void *memAddr,

UINT8 value,

UINT32 count);

ODI_NBI Set16 (

void *busTag,

void *reserved,

const void *memAddr,

UINT16 value,

UINT32 count);

ODI_NBI Set32 (

void *busTag,

void *reserved,

const void *memAddr,

UINT32 value,

UINT32 count);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter, which
specifies the bus on which the operation is to be performed.

reserved

This parameter is reserved and must be set to NULL.
8-34 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

on

e

BI
es.
s not
memAddr

The address of the destination based on the information returned by
MapBusMemory.

value

The value to be duplicated into the specified memory block on the
specified bus. The type of this value varies depending on which functi
is called.

count

The number of items to be moved.

Output Parameters

None.

Return Values.

Remarks

If possible, data will be written in the size units specified by the name of th
routine called. If this is impossible on some platform due to hardware
constraints, some LAN adapters will not be usable on that platform. The N
will deal with alignment issues, mapping hardware issues, and length issu
Errors can be returned only if a hardware failure is detected or the user doe
have permission to access the memory indicated.

ODI_NBI_SUCCESSFUL The requested operation was
completed successfully.

ODI_NBI_PROTECTION_VIOLATION Memory protection prevented the
completion of the requested
operation.

ODI_NBI_MEMORY_ERROR Memory error occurred while
attempting to perform the
requested operation.

ODI_NBI_PARAMETER_ERROR One of the parameters was invalid.
NetWare Bus Interface 8-35

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

er, if

cts
t all
o
Slow

A 0.5 microsecond NOP.

Syntax

#include <odi.h>

#include <odi_nbi.h>

void Slow (void);

Input Parameters

None.

Output Parameters

None.

Return Values

None.

Remarks

This function will be implemented in a processor speed independent mann
possible, to prevent problems between platform models and current (and
future) models. This function is necessary because some hardware restri
how rapidly two successive accesses can be made, and unfortunately, no
hardware protects itself against attempts to make successive accesses to
rapidly. This function allows MLIDs written for hardware which has such
problems to work on a wider variety of platforms than would be possible
otherwise.
8-36 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Wrtx

Takes a value, a bus identifier, and a memory
address in that bus’s memory address space and
performs whatever operations are necessary to
deliver the value to the specified address.

Syntax

#include <odi.h>

#include <odi_nbi.h>

void Wrt8 (

void *busTag,

void *reserved,

void *memAddr,

UINT8 writeVal);

void Wrt16 (

void *busTag,

void *reserved,

void *memAddr,

UINT16 writeVal);

void Wrt32 (

void *busTag,

void *reserved,

void *memAddr,

UINT32 writeVal);

Input Parameters

busTag

Architecture-dependent value, returned by CMSMSearchAdapter, which
specifies the bus to which data is to be moved.

reserved

This parameter is reserved and must be set to NULL.
NetWare Bus Interface 8-37

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 bus.
memAddr

The destination address based on the information returned by
MapBusMemory.

writeVal

The value to be sent to the specified memory address on the specified
The type of this value varies depending on which function is called.

Output Parameters

None.

Return Values

None.
8-38 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

A p p e n d i x A
Language Enabling
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

he

our

ily

SM.
M

g:

e or

e
Overview

A language-enabled CHSM allows you to change the language in which t
CHSM’s messages are displayed.

A set of tools is available from Novell that allows you to language enable y
CHSMs. These tools are part of the NetWare Client SDK software development
kit. The documentation on using the language enabling tools is in the Using the
Message Enabling Tools document of the kit. By using these tools and
following the instructions in the documentation, you should be able to eas
language enable a CHSM.

Language Enabling Procedure

The language enabling tools are designed to be used on a completed CH
In other words, you do not need to do anything special in writing your CHS
except write your CHSM to this specification. The tools will make the
necessary modifications to your source files for you.

If you are going to language enable your MLID, you should do the followin

1. Make sure you have the NetWare Client SDK software development kit.

You should review the chapter that describes language enabling befor
soon after you start writing your CHSM, so you will be familiar with the
process when the time comes.

2. Complete your CHSM to this specification.

3. Use the language enabling tools on the completed CHSM to languag
enable your CHSM.
Language Enabling A-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

A-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

A p p e n d i x B
Event Control Blocks (ECBs)
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

e,
eful

d
ply

in

are."

f
lved
ssor

ed
Overview

This appendix describes the Event Control Block (ECB), the ECB structur
and each of the fields in the ECB structure. This appendix is especially us
for those developing for ECB aware LAN adapters.

ECB Aware Adapters

This appendix defines the general Event Control Block (ECB) structure an
illustrates its relationship to the RCB and TCB. This appendix does not ap
to most MLIDs written with the CMSM / CTSM interface.

MLIDs written using the CMSM / CTSM interface typically interact with
RCBs and TCBs during packet transactions as shown in Figure B-1.
However, some MLIDs need to bypass these CMSM provided structures
order to work directly with the underlying general ECB structure. This is
typically the case for intelligent adapters that are designed to be "ECB aw

An ECB aware adapter/MLID will completely fill in and manage all fields o
the ECB during packet transactions. This shifts much of the overhead invo
in packet reception and transmission to the adapter, which gives the proce
more time to perform other tasks.

The format of the ECB structure is shown below. The same structure is us
for both receiving and transmitting packets.
Event Control Blocks (ECBs) B-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

Figure B-1

Packet Transfer through MLID

Event Control Block Structure

typedef struct _FRAGMENT_STRUCT_

{

void *FragmentAddress;

UINT32 FragmentLength;

}FRAGMENT_STRUCT;

typedef struct _ECB_

{

struct _ECB_ *ECB_NextLink;

struct _ECB_ *ECB_PreviousLink;

UINT16 ECB_Status;

void (*ECB_ESR)(struct _ECB_ *);

UINT16 ECB_StackID;

PROT_ID ECB_ProtocolID;

UINT32 ECB_BoardNumber;

NODE_ADDR ECB_ImmediateAddress;

union

{

Link Support Layer (LSL)

Support Modules (CMSM/CTSM)

ECB

Hardware Specific Module (CHSM)

RCB
TCB
B-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

UINT8 DWs_i8val[4];

UINT16 DWs_i16val[2];

UINT32 DWs_i32val;

void *DWs_pval;

} ECB_DriverWorkspace;

union

{

UINT8 PWs_i8val[8];

UINT16 PWs_i16val[4];

UINT32 PWs_i32val[2];

UINT64 PWs_i64val;

void *PWs_pval[2];

} ECB_ProtocolWorkspace;

UINT32 ECB_DataLength;

UINT32 ECB_FragmentCount;

FRAGMENT_STRUCT ECB_Fragment[1];

} ECB;

Table B-1

Fragment Structure and ECB Field Descriptions

Name Description

FragmentAddress Pointer to a data buffer of FragmentLength bytes.

FragmentLength Length of the buffer (in bytes) pointed to by FragmentAddress. This field can
be 0, in which case the MLID will skip over it when transmitting or receiving
data.

ECB_NextLink Typically used as a forward link to a list of ECBs. The current owner of the ECB
(such as the protocol stack) uses this field.
Event Control Blocks (ECBs) B-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ECB_PreviousLink Typically used as a back link to manage a list of ECBs. The current owner of
the ECB uses this field. When an ECB is returned from an MLID containing a
received packet, this field contains the received packet error status defined as
follows:

Bit Value Description

0x0000 0001 CRC error (for example, frame check sequence (FCS) error).

0x0000 0002 CRC / Frame alignment error.

0x0000 0004 Runt packet.

0x0000 0010 Packet larger than allowed by media.

0x0000 0020 Received packet for a frame type not supported, for example,
logical board not registered for the frame type of the received
packet. A board number associated with the physical adapter is
placed in the LOOKAHEAD structure.

0x0000 0040 Malformed packet. For example, packet size smaller than
minimum size for media header (for example, incomplete MAC
header). Contents of the length field in an Ethernet 802.3
header is larger than the total packet size.

0x0000 4000 Do not decompress the received packet.

0x0000 8000 The address present in ECB_ImmediateAddress is in
noncanonical format.

If no error bits are set, the packet was received without error and the data can
be used. All undefined bits are cleared.

Table B-1

Fragment Structure and ECB Field Descriptions continued

Name Description
B-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ECB_Status Completion status of an ECB. This field is invalid until the associated event
service routine is called. The following are the possible return values.

ODISTAT_SUCCESSFUL Packet was received successfully.

ODISTAT_RX_OVERFLOW Packet was too big to fit into the fragments
described by the ECB. However, only the
portion of the packet that overflowed the buffer
was lost; the buffer contains as much data as
it could hold.

ODISTAT_CANCELED The ECB was not needed by the MLID. The
MLID signals to the protocol stack that the
ECB was not transmitted.

ODISTAT_MLID_SHUTDOWN The LAN adapter specified in the
ECB_BoardNumber field cannot be found.
This usually means that the MLID has been
removed from memory by shut down
(temporarily or permanently).

ODISTAT_BAD_PARAMETER The ECB contains bad parameters—for
example, the amount of data to transmit
exceeds the maximum possible for the MLID.
The ECB will not have been transmitted.

Note: The return values are ODISTAT cast as UINT16.

ECB_ESR The protocol stack sets this field to point to an appropriate routine that is called
when the send or receive event is complete (either successfully or with an
error). This field must point to a valid handler ((*ECB_ESR)(ECB*)).

Table B-1

Fragment Structure and ECB Field Descriptions continued

Name Description
Event Control Blocks (ECBs) B-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ECB_StackID When a packet is transmitted, the protocol stack sets this field to the protocol
stack’s assigned Stack ID (SID) before the protocol stack sends the ECB to the
LSL. When a packet is being received, the LSL sets this field to the Stack ID
assigned to the protocol stack that is receiving the packet. If a packet is being
transmitted as a raw send, the protocol stack can set this field to 0xFFFF as a
signal to the underlying MLID that this is a raw send. This gives the protocol
stack the ability to specify the complete packet, including all low-level headers.

The following values are valid for the ECB_StackID field:

RAW_SEND_PRIORITY_0 0xFFFF No Priority.
RAW_SEND_PRIORITY_1 0xFFFE Scale 1-7: 1 = Lowest Priority.
RAW_SEND_PRIORITY_2 0xFFFD
RAW_SEND_PRIORITY_3 0xFFFC
RAW_SEND_PRIORITY_4 0xFFFB
RAW_SEND_PRIORITY_5 0xFFFA
RAW_SEND_PRIORITY_6 0xFFF9
RAW_SEND_PRIORITY_7 0xFFF8 Scale 1-7: 7 = Highest Priority.
SEND_PRIORITY_0 0xFFF7 Scale 1-7: 0 = No Priority.
SEND_PRIORITY_1 0xFFF6 Scale 1-7: 1 = Low Priority.
SEND_PRIORITY_2 0xFFF5
SEND_PRIORITY_3 0xFFF4
SEND_PRIORITY_4 0xFFF3
SEND_PRIORITY_5 0xFFF2
SEND _PRIORITY_6 0xFFF1
SEND_PRIORITY_7 0xFFF0 Scale 1-7: 7 = Highest Priority.

ECB_ProtocolID The Protocol ID (PID) value for sends and receives.

For send ECBs, the protocol stack sets this field before calling SendPacket. For
send ECBs, the PID is embedded into the low-level packet header by the
underlying MLID and is used to uniquely identify the packet as the caller’s
protocol type.

For receive ECBs, the protocol stack puts the Protocol ID, supplied by the
LOOKAHEAD structure, in this field.

The PID is stored in high-low order.

Table B-1

Fragment Structure and ECB Field Descriptions continued

Name Description
B-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ECB_BoardNumber When an MLID registers with the LSL, the MLID is given a logical board
number. The BoardNumber field of the configuration table contains this board
number.

For send ECBs, the protocol stack puts the target logical board number in this
field.

For receive ECBs, the protocol stack puts the board number, supplied by the
LOOKAHEAD structure, in this field.

ECB_ImmediateAddress If the ECB is a send ECB, the protocol stack sets this field before calling
SendPacket, and the immediate address is the destination address of the
packet on the physical network. If the ECB is a receive ECB, the protocol stack
fills in this field with the immediate address supplied in the LOOKAHEAD
structure. This source address is the node on the same physical network that
just sent the packet. If the MLID is utilizing canonical addressing, the
immediate address is in canonical form.

Table B-1

Fragment Structure and ECB Field Descriptions continued

Name Description
Event Control Blocks (ECBs) B-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ECB_DriverWorkspace Generally reserved for use by the MLID.

The first byte, offset 0, of the ECB_DriverWorkspace field is used to
indicate the type of received packet and the number of data bytes present
in the packet after an MLID has finished filling the ECB and the ECB is
placed on the LSL event queue.

Bit Description

0x01 Multicast : The packet was destined to a subset of group addresses
on the physical network that the MLID has been programmed to
support.

0x02 Broadcas t: The packet was destined to all nodes on the physical
network. Note that on receiving a broadcast both b0 and b1 are set
to 1, since a broadcast address is also a group address.

0x04 UnicastRemote : The packet was directly destined to another
workstation on the physical network. This bit is generally set only
after the MLID has been entered into promiscuous mode or has
received a packet due to source routing.

0x08 MulticastRemote : The packet was destined to a subset of group
addresses on the physical network that the MLID has not been
programmed to support.

0x10 SourceRoute : This bit is set in conjunction with other packet type
bits if the packet has source routing information in the packet, in
other words, the RII bit is set. If the source routing module is not
loaded and the length of the source route field is greater than two
bytes (packet from a remote ring) all other bits will be cleared.

0x20 GlobalError : The packet contains errors. See the
ECB_PreviousLink field for the specific error. This is an exclusive
bit; if set, all other bits should be 0. This value supersedes
SourceRoute.

0x40 MacFrame: The packet is a non-data frame (for example, the MAC
layer frame). This is an exclusive bit if set. All other bits must be zero
(0). Note that MAC frames by definition are not source routable.

0x80 Direct : The packet was destined to this station only.

Table B-1

Fragment Structure and ECB Field Descriptions continued

Name Description
B-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

The second byte, offset 1, of the ECB_DriverWorkspace field contains the
number of control bytes present in the 802.2 header.

Bit Value Description

0x00 No 802.2 header present in frame.

0x01 One control byte is present in the 802.2 header

0x02 Two control bytes are present in the 802.2 header

0x04 The received packet is a priority packet.

Bit value 0x04 is only valid for topologies that support a distinction in
priority levels. Bit value 0x04 is not set if the received frame is at the normal
priority level or lower.

The second word, byte offsets 2 and 3, of the ECB_DriverWorkspace field
are filled with the size of the received frame minus the MAC header, which
is the total number of data bytes present in the frame.

ECB_ProtocolWorkspace Reserved for use by the originating protocol stack and must not be
modified by the LSL or the MLIDs.

ECB_DataLength If this is a send ECB, the protocol stack sets this field to the total length of
the data in bytes before it calls SendPacket. If this is a receive ECB, this
field is set to the length in bytes of the data that is copied into the fragment
structure portion of the ECB.

ECB_FragmentCount The number of fragment buffer descriptors immediately following this field.
This value is greater than zero and less than or equal to 16 (0 <
ECB_FragmentCount <= MAX_FRAG_COUNT).

ECB_Fragment[1] This field specifies a fragment structure.

Table B-1

Fragment Structure and ECB Field Descriptions continued

Name Description
Event Control Blocks (ECBs) B-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

hat
 how

ure

ng
Relationship between Receive ECBs and RCBs

The general receive ECB and the CMSM’s RCB essentially form a union. T
is, both structures occupy the same memory space. The following shows
the receive ECB fields are equated to the RCB fields.

Figure B-2

RCB Correspondence to ECB

The ECB fields that correspond to RCBReserved are normally managed by the
CTSM. However, if an adapter is ECB-aware, it can simply treat the struct
as an ECB and take over the management of these fields.

MLIDs written for ECB aware adapters must obtain control blocks by calli
CMSMAllocateRCB. This routine allows the MLID to preallocate RCBs
without the CMSM initializing the fields. When a packet is received, the
adapter copies it into the RCB data buffer, fills in the required fields,
and returns the structure using either the <CTSM>RcvComplete /
CMSMServiceEvents combination or the function
<CTSM>FastRcvComplete.

These Receive ECB Fields Correspond to these RCB Fields

NextLink
PreviousLink

Status
ESR

StackID
ProtocolID

BoardNumber
ImmediateAddress
DriverWorkstation

ProtocolWorkspace
DataLength

FragmentCount
Fragment

MediaHeader

Data

Driver WS

Reserved

FragCount

FragStruct
B-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

res.

ter.

to

nd
Relationship between Transmit ECBs and TCBs

The general transmit ECB and the CTSM’s TCB are totally separate structu
The TCBFragStruct field of the TCB, however, points to the FragmentCount
field of the ECB. Knowing this, it is possible to work directly with the
underlying ECB by using both negative and positive offsets from this poin

The CMSM provides another more efficient way for ECB aware adapters
work directly with ECBs. By setting the DriverSendWantsECBs variable of the
driver parameter block to any nonzero value (see Chapter 3, "CHSM Data
Structures and Variables"), the CHSM’s DriverSend routine will be given
ECBs rather than TCBs for packet transmission. The CHSM will then be
responsible for building the proper media header depending on the board
number. The following shows the relationship between the transmit ECB a
TCB.

Figure B-3

Relationship between TCB and ECB

TCB Fields ECB Fields

DirverWS
DataLen
FragStructPtr
MediaHeaderLen
MediaHeader

NextLink
PreviousLink
Status
ESR
StackID
ProtocolID
BoardNumber
ImmediateAddress
DriverWorkspace
ProtocolWorkspace
DataLength
FragmentCount
Fragment
Data
Event Control Blocks (ECBs) B-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

B-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

A p p e n d i x C Platform Specific Information
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

in

es.

n

 one.
Overview

This appendix presents platform-specific information related to writing
MLIDs. Currently, only Intel (80x86 and Pentium) processor specific
information is provided. Information about other platforms will be provided
the future.

Intel Processors

The following information is specific to Intel 80x86 based processor machin

Building the CHSM

The following describes the process of creating, compiling, linking, and
loading a CHSM.

Creating the Source Files

C language NetWare drivers are written in ANSI C code. This specificatio
provides the details for writing the driver.

Compiling the Source Files

The source file (<driver>.c) and header files (odi.h, <ctsm>.h, cmsm.h, and
odi_nbi.h) are compiled into an object file (<driver>.OBJ). The driver can
consist of one or more object files. Depending on the target platform, the
developer may have a choice of several compilers or may be restricted to
Platform Specific Information C-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ile
re

n
be
Linking the Object Files

The NetWare linker (NLMLINKX) converts the <driver>.OBJ object file and
any other object files that make up the MLID into a super object file called
<driver>.LAN. NLMLINKX requires a linker definition file to create a
NetWare Loadable Module. The linker definition file is described below.
To use the linker, type:

nlmlinkx Driver

(where Driver is the name of the linker definition file)

Linker Definition File

Each NetWare Loadable Module must have a corresponding definition file
with a ".DEF" extension. This file is needed by the NetWare linker,
NLMLINKX. All definition file information can also be embedded inside a
make file, and the make file can produce the definition file. The definition f
contains information about the loadable module, including a list of NetWa
variables and routines that the loadable module must access.

The following shows a definition file example that can be used to create a
MLID. The file consists of keywords followed by data. The keywords can
upper or lower case.

Linker Definition File Example

TYPE 1

DESCRIPTION “NetWare CNE2000"

VERSION 5,30,2

OUTPUT <drivername>

INPUT <.OBJ drivername>

START DriverInit

EXIT DriverRemove

MESSAGE CNE2000.MSG

MODULE ETHERTSM

REENTRANT

MAP

IMPORT CEtherTSMRegisterHSM

CEtherTSMGetRCB

CEtherTSMRcvComplete
C-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

CEtherTSMSendComplete

CEtherTSMGetNextSend

CEtherTSMUpdateMulticast

CMSMAlloc

CMSMDriverRemove

CMSMFree

CMSMParseDriverParameters

CMSMPrintString

CMSMRegisterHardwareOptions

CMSMRegisterMLID

CMSMReturnDriverResources

CMSMScheduleAES

CMSMSetHardwareInterrupt

Table C-1

Linker Definition File Example Definitions

Name Description

TYPE Extension to append to the output file. The default extension is ".NLM". A value of 1
specifies ".LAN", and a value of 2 specifies ".DSK".

DESCRIPTION Description string in the header of the <driver>.LAN file. This string describes the
loadable module and is from 1 to 127 bytes long. The console commands, MODULES,
CONFIG, and LOAD display this description string on the file server console.

Examples of the description string are shown here:

NetWare NE2000
3Com EtherLink Plus 3C503

OUTPUT Output file name.

INPUT OBJ files to include in the loadable module. It is not necessary to use the filename
extension in this list.

START Name of the loadable module’s initialization routine, in this case, DriverInit . This is the
procedure the NetWare loader will call when the module is loaded.

EXIT Name of the loadable module’s remove routine, in this case, DriverRemove. The
UNLOAD command uses this routine to unload the module from memory.

REENTRANT Allows the driver to be loaded more than once, but only have the driver’s code copied
into memory the first time.
Platform Specific Information C-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

MAP Tells the linker to create a map file.

IMPORT NetWare variables and routines the loadable module must access.

EXPORT A list of variable and function names resident in the loadable module that are available
to other loadable modules.

MODULE Loadable modules that must be loaded before the loadable module defined by this file
is loaded. If the necessary loadable modules are not already in memory, the loader will
attempt to find and load them. If it cannot find them, the loader will not load the current
module.

CUSTOM Name of a file that contains custom firmware data. When the linker sees this keyword it
includes the specified file in the output file it is creating.

DEBUG Tells the linker to include debug information in the output file that it creates. This allows
public labels to be accessible as symbols in NetWare’s resident debugger.

CHECK Name of the loadable module’s check procedure. Both the UNLOAD and DOWN
console commands call a loadable module’s check procedure if one exists. An MLID’s
check procedure might check to see if an adapter is currently being accessed and return
a nonzero value to the NetWare operating system if the board is busy. The NetWare
operating system can then display a message warning the console operator that the
board is busy.

MULTIPLE Tells the linker that more than one code image of the loadable module can be loaded
into memory concurrently.

COPYRIGHT Tells the linker to include a copyright string in the output file. A MEON string 1 to 252
bytes long, in double quotes following the keyword COPYRIGHT is displayed whenever
the module is loaded. To start a new line within the displayed string, use "\n". If the
copyright keyword is used but no string is entered, the linker includes the Novell default
copyright message.

Note: You must use NLMLINKX.EXE to use the COPYRIGHT keyword.

Table C-1

Linker Definition File Example Definitions continued

Name Description
C-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3le

and
file.
 the

e
 line.

The
MLID Configuration File

CHSMs that support a large number of custom keywords may have troub
specifying all parameters on the limited space of the command line. Comm
line parameters can be listed in a driver configuration file or load response
To use a load response file, type the parameters as they would appear on
command line in the file and at the command line type:

LOAD <drivername> @<response filename>

If this file exists in the same directory as the driver, the CMSM will open th
file, parse it, and process it along with other parameters on the command

Load Keywords and Parameters

This section describes the parameters for the NetWare LOAD command.
CMSMParseDriverParameters routine handles the load command

VERSION Gives the linker the version of the module that should be placed into the NLM header
version field. The format for this keyword is:

VERSION Major, Minor[, Revision]

The version must be separated by commas. The major version number is one digit, and
the minor version number is two digits. The revision number is optional and is a number
from 1-26 representing a-z.

For example, "VERSION 3,50,2" produces the version field 3.50b in the NLM header
of the output file.

Note that to use the VERSION keyword, you must use NLMLINKX.EXE. The date is
automatically set by the linker to the date that the files are linked.

The CMSM.NLM and <CTSM>.NLM must be loaded (only once) before any CHSMs are
loaded. These can be auto-loaded using the "module" keyword in the linker definition
file.

To load the driver, you could enter a command similar to this:

LOAD <driver>FRAME=ETHERNET_802.3, PORT=300,
NODE=2608C760361, INT=3

The parameters do not have a set order. The commas are optional.

Table C-1

Linker Definition File Example Definitions continued

Name Description
Platform Specific Information C-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

parameters in drivers written using the CMSM. The load parameters and
examples of their use are described below.

Table C-2

Load Keywords and Parameters Descriptions

Name Descriptions

PORT, PORT1 I/O mapped address base that the user wants the board to use. A port length
can also be included as shown in the following examples.

LOAD <driver> PORT=300
LOAD <driver> PORT=300:A
LOAD <driver> PORT=300:A PORT1=700:8

MEM, MEM1 Beginning address of the shared RAM that the board can use. The size of the
shared memory buffer can also be specified.

LOAD <driver> MEM=C0000
LOAD <driver> MEM=C0000:1000
LOAD <driver> MEM=C0000:1000 MEM1=CC000

INT, INT1 Interrupt number that the board is expected to use to awaken the interrupt
service routine.

LOAD <driver> INT=3
LOAD <driver> INT=3 INT1=5

DMA, DMA1 If the board supports DMA, this is the direct memory address channel that the
adapter should use for data transfer to memory.

LOAD <driver> DMA=0
LOAD <driver> DMA=0 DMA1=3

SLOT System-wide unique Hardware Instance Number (HIN) that may be the
physical slot number on a slot based bus such as Micro Channel, PCI, PC
Card, EISA, or another uniquely assigned number.

LOAD <driver> SLOT=4

RETRIES Number of send retries that the MLID should use in its attempts to send
packets.

RETRIES = n

CHANNEL Channel number (controller number) to use for multichannel adapters. A
multichannel adapter is a board containing more than one adapter.

CHANNEL = number
C-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

BELOW16 This keyword must be specified on the load command line if the driver needs
memory allocated below the 16MB boundary. This keyword is required only if
the MLID is loaded on a system that initially has less than 16 MB of memory,
but will have more memory added later using the server’s REGISTER
MEMORY command. In addition, the driver must also set the
DriverNeedsBelow16Meg field of the DRIVER_PARM_BLOCK structure to
a nonzero value.

BELOW16

FRAME String specifying the frame type (see ODI Supplement: Frame Types and
Protocol IDs for a list of frame type strings).

FRAME = type

Token-Ring drivers can add "MSB" or "LSB" following the frame type
designation. LSB forces canonical addresses to be passed between the MLID
and the upper layers. The MSB designation forces noncanonical addresses to
be passed (this is the default for Token-Ring media). Ethernet media cannot
use the MSB designator.

BUFFERS16 This keyword is used to override the number of RCBs below 16MB allocated
by the CMSM at initialization. The CHSM must set the
DriverNeedsBelow16Meg field in the DRIVER_PARM_BLOCK structure for
this keyword to be valid. The RCB allocation routines (CMSMAllocRCB ,
<CTSM>GetRCB , <CTSM>ProcessGetRCB , etc.) use these RCBs if the
RCB allocated by the LSL is physically over 16MB. The number of RCBs
allocated by default is eight. If the CHSM preallocates more than eight RCBs
at a time, the user can override this default when loading the driver by typing
BUFFERS16=n. The CMSM will force this value to a multiple of eight, so values
other than 8, 16, 32 and so on are invalid. No restriction is placed on the
maximum value, except that the CMSM might not be able to allocate enough
memory from the operating system.

Table C-2

Load Keywords and Parameters Descriptions continued

Name Descriptions
Platform Specific Information C-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

NODE Node address that the board is to use; this address should override the default
address on the board if one exists.

NODE = nnnnnnnnnnnn

In the case of Token-Ring media, which has a noncanonical physical layer
format, the override node address on the command line can be entered in
either canonical or noncanonical format (see ODI Specification Supplement:
Canonical and Noncanonical Addressing). To indicate the format of the
address, an "L" (LSB) or an "M" (MSB) can be appended. For example, to
indicate a node address for Token-Ring media in canonical format enter:

NODE = nnnnnnnnnnnnL

No matter what the format of the node address specified on the command line,
the format of the node address actually placed in the configuration table is
indicated by the MM_NONCANONICAL_BIT bit in the
MLIDCFG_ModeFlags field.

Table C-2

Load Keywords and Parameters Descriptions continued

Name Descriptions
C-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

A p p e n d i x D Portability Issues
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ou

nd

 to
nes
gma

he
ng

nd
ith,

ters.

 one

sed

st.
Overview

For the CHSM to be portable across processors and operating systems, y
need to do several things. This appendix describes some programming
practices, assumptions, general principles, and other miscellaneous
information to help you in writing a portable driver. This appendix also
describes the macros that you can use to deal with the big /little endian a
alignment issues of portability.

In most cases, it should be possible to port your code from one processor
another or from one operating system to another by modifying a few #defi
and/or typedef statements in a few header files, and perhaps defining a pra
or setting a compiler switch.

Portability Rules

The following are rules and guidelines that you should follow to increase t
probability that your code will be portable to other processors and operati
systems. This is not a comprehensive list, therefore, you may need to do
additional things not listed to ensure portability (test on different platforms a
operating systems, learn about the specifics of hardware you are working w
etc.).

• Adhere strictly to the ANSI C specification.

• Don’t make assumptions about the size of a given type, especially poin

• Be aware that numeric fields composed of more than 1 byte can be in
of two formats: big endian (high-low) or little endian (low-high). Big
endian numbers contain the most significant byte in the lowest addres
byte of the field, the next most significant byte in the second lowest
addressed byte, and so on, with the least significant byte appearing la
Portability Issues D-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ntel

ing

t

nt

ters

ad

sic
e,
/

ay be

g in
ake
ment

d use

 the

der
Little endian numbers are stored in the opposite order. For example, I
80x86 microprocessors store numbers in little endian order.

• Pay attention to alignment constraints when allocating memory and us
pointers. The addresses that certain operands can be assigned to are
restricted on some architectures.

• Be aware that pointers to objects can have the same size but differen
formats.

• Do not redefine the NULL symbol. NULL should always be the consta
zero.

• Make file names no more than eight main and three extension charac
long.

• Always dereference the pointer when calling functions passed as
arguments. For example, if "F" is a pointer to a function, use "*F" inste
of "F", because some compilers may not recognize "F".

• In general, do not declare any variable to be any of the C language ba
types (short, long, int, char). Declare variables to be of some abstract typ
and typedef that type to the appropriate base type for each processor
operating system combination. In some cases, such as counters, it m
more efficient to use int instead of an abstract type.

• Make sure that all members in any structure that describes data comin
from or going out to the LAN are given unique, abstract types. Also, m
sure that all references to these members use the appropriate misalign
correction and byte order correction macros.

• Isolate processor and operating system code into separate modules an
conditional compilation to make it easier to port your code.

• Do not modify string constants, because many implementations place
constants into read-only memory. (This is required by the ANSI C
standard.)

• Enclose #pragma directives with #ifdef’s in order to document under
which platform they make sense (suggested).

• Protect header files (to ensure portability, do not modify any of the hea
files provided by Novell).
D-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

tions

e the
o the

ers
ly

given

.
nt

ith
d

e
• Use the sizeof operator to determine the size of an object, rather than
making an assumption or hard-coding a value.

• Use the offsetof macro to determine the offset of a member within a
structure, rather than making an assumption or hard-coding a value.

• Initialize all data.

• Do not depend on parameter passing conventions, especially assump
about which parameters will be passed on the stack or in registers.

• Do not access arrays based on a knowledge of the storage method. Us
standard C language access methods instead of computing offsets int
array.

• Do not assume a stack growth direction.

• Use the varargs features to implement functions that require variable
arguments.

• Pay attention to word sizes. Objects may be non-intuitive sizes. Point
are not always the same size as ints, the same size as each other, or free
interconvertible.

• Be aware that some machines have more than one possible size for a
type. The size you get can depend upon both the compiler and
compile-time flags.

• Understand that the void* type is guaranteed to have enough bits of
precision to hold a pointer to any data object.

• Be aware that even when, say, an int* and char* are the same size, they
may have different formats.

• Understand that the integer constant zero may be cast to any pointer type
The resulting pointer is called a NULL pointer for that type and is differe
from any other pointer of that type. A NULL pointer always compares
equal to the constant zero. A NULL pointer might not compare equal w
a variable that has the value zero. NULL pointers are not always store
with all bits zero. NULL pointers for two different types are sometimes
different. A NULL pointer of one type cast in to a pointer of another typ
will be cast in to the NULL pointer for that second type.
Portability Issues D-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

is not

tion

 and

ng

he
.

ters

me
rs

e

n.
• Watch out for signed characters. Code that assumes signed/unsigned
portable.

• Avoid assuming ASCII. Characters may hold more than 8 bits.

• Do not use code that takes advantage of two’s compliment representa
of numbers in most cases.

• Be aware that there may be unused holes in structures. Suspect unions used
for type cheating. Specifically, a value should not be stored as one type
retrieved as another.

• Be aware that different compilers use different conventions for returni
structures.

• Be aware that the address space can have holes. Simply computing t
address of an unallocated element in an array can crash the program

• Be aware that only the == and != comparisons are defined for all poin
of a given type. It is only portable to use <, <=, >, or >= to compare
pointers when they both point in to (or to the first element after) the sa
array. It is likewise only portable to use arithmetic operators on pointe
that both point into the same array or the first element afterwards.

• Be aware that side effects within expressions can result in code whos
semantics are compiler-dependent, since the order of evaluation is
explicitly undefined in most places in the C language.

Translation Limits

The following are transaction limits that you should follow to ensure
portability between operating systems and processors. The following are
maximum values:

• Eight nesting levels of conditional inclusion.

• Eight nesting levels for #include files

• 32 nesting levels of parenthesized expressions within a full expressio

• 1024 macro identifiers simultaneously.

• 509 characters in a logical source line.
D-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

t

the

 of a

alue
 a
his
cture

ry,
e

s to

that
ns
ef’d
ons
ber
• Six significant initial characters in an external identifier.

• 127 members in a single structure or union.

• 31 parameters in one function call.

Coding Assumptions

The following are assumptions that need to be made in writing your code.

• All target architectures will align 8-bit items on 8-bit boundaries, 16-bi
items on 16-bit boundaries, and 32-bit items on 32-bit boundaries.

• All compilers support the volatile data type qualifier.

• The compiler and architecture will align structures to the alignment of
largest data item within the structure (for example, a structure whose
largest element is a byte can be byte aligned).

Data Packing and Alignment

The ANSI C specification states that you cannot assume that the members
structure will be contiguous. The compiler for many processors will insert
padding into a structure to force each member to begin on the alignment v
appropriate for its type. This is done because many processors will cause
processor exception if an attempt is made to access "misaligned data." T
causes problems because the MAC header cannot be described as a stru
in many media types. In these media, the members of the MAC header
structure are not guaranteed to be properly aligned, either in the structure
definition, which prevents the computer from inserting padding, or in memo
which prevents processor exceptions. This implies two requirements to th
CHSM developer:

• All members of such structures should be declared as types not used
anywhere except in such structure declarations. This allows these type
be declared in a header file that is platform dependent. On platforms
have no alignment restrictions or on platforms with alignment restrictio
and an appropriate compiler switch or pragma, the type can be typed
to its appropriate basic type. On platforms that have alignment restricti
and no compiler switch or pragma to force packed structures, the mem
can be typedef’d to an appropriately-sized array of char.
Portability Issues D-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

h a
h

ng a

for

 that
es of
• All accesses to any member of such a structure must be made throug
macro that allows access to unaligned data. The only situation in whic
you do not need to use one of these macros is when you are accessi
single byte in a member whose underlying type is char. portable.h is a
header file included in the toolkit that contains a set of useful macros
writing CHSMs; it is included by cmsm.h.

Portability Macros

The portability macros are an attempt to create a consistent set of macros
allow the C language code to be isolated from alignment and endian issu
a particular machine. The macros are defined in the cmsm.h file. The following
routines define the interface for each of the portability macros.
D-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ains
COPY_FROM_HILO_UINTx

Copies data from big endian format to the
processor’s format, swapping and/or aligning data
as needed.

Syntax

#include <cmsm.h>

COPY_FROM_HILO_UINT16 (dest_addr, src_addr);

COPY_FROM_HILO_UINT32 (dest_addr, src_addr);

Input Parameters

dest_addr

Address to copy data to.

src_addr

Address to copy data from.

Output Parameters

None.

Return Values

None.

Remarks

On a high-low machine, this macro performs a simple byte copy and maint
byte order. On a low-high machine, this macro swaps bytes.
Portability Issues D-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 this
COPY_FROM_LOHI_UINTx

Copies data from little endian format to the
processor’s format, swapping and/or aligning data
as needed.

Syntax

#include <cmsm.h>

COPY_FROM_LOHI_UINT16 (dest_addr, src_addr);

COPY_FROM_LOHI_UINT32 (dest_addr, src_addr);

Input Parameters

dest_addr

Address to copy data to.

src_addr

Address to copy data from.

Output Parameters

None.

Return Values

None.

Remarks

On a high-low machine, this macro swaps bytes. On a low-high machine,
macro performs a simple byte copy and maintains byte order.
D-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ains
COPY_TO_HILO_UINTx

Copies data from the processor’s format to big
endian format, swapping and/or aligning data as
needed.

Syntax

#include <cmsm.h>

COPY_TO_HILO_UINT16 (destAddr, srcAddr);

COPY_TO_HILO_UINT32 (destAddr, srcAddr);

Input Parameters

destAddr

Address to copy data to.

srcAddr

Address to copy data from.

Output Parameters

None.

Return Values

None.

Remarks

On a high-low machine, this macro performs a simple byte copy and maint
byte order. On a low-high machine, this macro swaps bytes.
Portability Issues D-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

 this
COPY_TO_LOHI_UINTx

Copies data from the processor’s format to little
endian format, swapping and/or aligning data as
needed.

Syntax

#include <cmsm.h>

COPY_TO_LOHI_UINT16 (destAddr, srcAddr);

COPY_TO_LOHI_UINT32 (destAddr, srcAddr);

Input Parameters

destAddr

Address to copy data to.

srcAddr

Address to copy data from.

Output Parameters

None.

Return Values

None.

Remarks

On a high-low machine, this macro swaps bytes. On a low-high machine,
macro performs a simple byte copy and maintains byte order.
D-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

COPY_UINTx

Copies unaligned data from one address to
another.

Syntax

#include <cmsm.h>

COPY_UINT16 (destAddr, srcAddr);

COPY_UINT32 (destAddr, srcAddr);

Input Parameters

destAddr

Address where data is copied to.

srcAddr

Address where data is copied from.

Output Parameters

None.

Return Values

None.
Portability Issues D-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

GET_HILO_UINTx

Gets a value in the processor’s format and converts
it to big endian format.

Syntax

#include <cmsm.h>

GET_HILO_UINT16 (addr);

GET_HILO_UINT32 (addr);

Input Parameters

addr

Address where data is retrieved.

Output Parameters

None.

Return Values

A value of appropriate size in big endian format.
D-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

GET_LOHI_UINTx

Gets a value in the processor’s format and converts
it to little endian format.

Syntax

#include <cmsm.h>

GET_LOHI_UINT16 (addr);

GET_LOHI_UINT32 (addr);

Input Parameters

addr

Address where data is retrieved.

Output Parameters

None.

Return Values

A Value of appropriate size in little endian format.
Portability Issues D-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

GET_UINTx

Receives a value from memory that may be
misaligned. (These macros do not swap the data.)

Syntax

#include <cmsm.h>

GET_UINT16 (addr);

GET_UINT32 (addr);

Input Parameters

addr

The address of the potentially misaligned data.

Output Parameters

None.

Return Value

A value of appropriate size.
D-14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

igh
HOST_FROM_HILO_UINTx

Converts a value at a single address from host
address to big endian format.

Syntax

#include <cmsm.h>

HOST_FROM_HILO_UINT16 (addr);

HOST_FROM_HILO_UINT32 (addr);

Input Parameters

addr

Address where data is retrieved.

Output Parameters

None.

Return Values

None.

Remarks

On a high-low machine, nothing is done; there is no swapping. On a low-h
machine, bytes are swapped to high-low (big endian).
Portability Issues D-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

HOST_FROM_LOHI_UINTx

Converts a value at a single address from host
address to little endian format.

Syntax

#include <cmsm.h>

HOST_FROM_LOHI_UINT16 (addr);

HOST_FROM_LOHI_UINT32 (addr);

Input Parameters

addr

Address where data is retrieved.

Output Parameters

None.

Return Values

None.

Remarks

On a high-low machine, bytes are swapped to high-low. On a low-high
machine, nothing is done; there is no swapping.
D-16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

igh
HOST_TO_HILO_UINTx

Converts a value to big endian format when the
source and destination are the same.

Syntax

#include <cmsm.h>

HOST_TO_HILO_UINT16 (addr);

HOST_TO_HILO_UINT32 (addr);

Input Parameters

addr

Address where data is retrieved.

Output Parameters

None.

Return Values

None.

Remarks

On a high-low machine, nothing is done; there is no swapping. On a low-h
machine, bytes are swapped to high-low.
Portability Issues D-17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

HOST_TO_LOHI_UINTx

Converts a value to little endian format when the
source and destination are the same.

Syntax

#include <cmsm.h>

HOST_TO_LOHI_UINT16 (addr);

HOST_TO_LOHI_UINT32 (addr);

Input Parameters

addr

Address where data is retrieved.

Output Parameters

None.

Return Values

None.

Remarks

On a high-low machine, bytes are swapped to high-low. On a low-high
machine, nothing is done; there is no swapping.
D-18 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

PUT_HILO_UINTx

Takes a host-ordered value and stores it in
high-low order.

Syntax

#include <cmsm.h>

PUT_HILO_UINT16 (addr, value);

PUT_HILO_UINT32 (addr, value);

Input Parameters

addr

Address where data is placed.

value

The value placed.

Output Parameters

None.

Return Values

None.
Portability Issues D-19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

PUT_LOHI_UINTx

Takes a host ordered value and stores it in low-high
order.

Syntax

#include <cmsm.h>

PUT_LOHI_UINT16 (addr, value);

PUT_LOHI_UINT32 (addr, value);

Input Parameters

addr

Address where data is placed.

value

The value placed.

Output Parameters

None.

Return Values

None.
D-20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

PUT_UINTx

Stores a value in memory without changing byte
order to a value that may be misaligned. (These
macros do not swap the data.)

Syntax

#include <cmsm.h>

PUT_UINT16 (addr, value);

PUT_UINT32 (addr, value);

Input Parameters

addr

The address of the potentially misaligned data.

value

A constant or a variable.

Output Parameters

None.

Return Values

None.
Portability Issues D-21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

UINTx_EQUAL

Compares two groups of bytes for equality.

Syntax

#include <cmsm.h>

UINT16_EQUAL (addr1, addr2);

UINT32_EQUAL (addr1, addr2);

Input Parameters

addr1

Address of bytes to be compared.

addr2

Address of bytes to be compared.

Output Parameters

None.

Return Values

TRUE The two sets of bytes are equal.

FALSE The two sets of bytes are unequal.
D-22 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

VALUE_FROM_HILO_UINTx

Converts a value from host-order to high-low order.

Syntax

#include <cmsm.h>

VALUE_FROM_HILO_UINT16 (value);

VALUE_FROM_HILO_UINT32 (value);

Input Parameters

value

Where data is placed.

Output Parameters

None.

Return Values

A value of appropriate size in big endian order.
Portability Issues D-23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

VALUE_FROM_LOHI_UINTx

Converts a value from host-order to low-high order.

Syntax

#include <cmsm.h>

VALUE_FROM_LOHI_UINT16 (value);

VALUE_FROM_LOHI_UINT32 (value);

Input Parameters

value

Where data is placed.

Output Parameters

None.

Return Values

A value of appropriate size in little endian order.
D-24 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

VALUE_TO_HILO_UINTx

Returns a value in high-low order.

Syntax

#include <cmsm.h>

VALUE_TO_HILO_UINT16 (value);

VALUE_TO_HILO_UINT32 (value);

Input Parameters

value

Where data is retrieved.

Output Parameters

None.

Return Values

A value or appropriate size in big endian format.
Portability Issues D-25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

VALUE_TO_LOHI_UINTx

Returns a value in low-high order.

Syntax

#include <cmsm.h>

VALUE_TO_LOHI_UINT16 (value);

VALUE_TO_LOHI_UINT32 (value);

Input Parameters

value

Where data is retrieved.

Output Parameters

None.

Return Values

A value of appropriate size in little endian format.
D-26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

A p p e n d i x E NESL Support
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

er of

t the

ister

e
es
Overview

The NetWare Event Service Layer (NESL) handles event registration and
notification. The NESL is designed around the concept of consumers and
producers. Generally, a producer will produce events, which a consumer
consumes. The NESL provides the following services:

• Registers the event producer

• Deregisters the event producer

• Performs the event notification

• Registers the event consumer

• Deregisters the event consumer

For a given event type, there can be multiple consumers and producers
simultaneously. A client module must register as a producer of an event in
order to produce that event. Likewise, a module must register as a consum
an Event Type in order to consume the event.

If a consumer chooses to consume an event, it will notify the producer tha
event is consumed, and event notification will end.

When a producer or consumer is removed from the system, it must dereg
all producer/consumer events it has registered.

Tasks should be designed to run to completion. If consumer and producer
routines are running asynchronous event types (for example, IPX packet
interrupts), the routines must be resident. CMSMNESLProductEvent will not
protect the consumer routine from being reentered.

The NESL maintains a list for each event class. When a producer calls th
NESL to signal that an event has occurred within a class, the NESL notifi
NESL Support E-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

nds
tion

e

ion

it
everyone in the consumer list. The order used to call the consumers depe
on the level of the OSI model the consumer belongs to and the calling direc
defined by the event class.

The data definitions for the NESL are located inODI_NESL.H.

Registering and Deregistering Event Producers

Event producers use CMSMRegisterProducer to register with the NESL as a
producer of an event class. Once it registers, the event producer calls
CMSMNESLProduceEvent or CMSMNESLProduceMLIDEvent to
notify event consumers when an event takes place.

Event producers can also register as event consumers.

When an event producer no longer provides events, it calls
CMSMNESLDeRegisterProducer for that event. For example, when an
event providing module is unloading, its clean-up function must first call
CMSMNESLDeRegisterProducer for each event it has added. The modul
could then complete its unloading process.

Registering and Deregistering Event Consumers

Event consumers must register with the NESL in order to receive notificat
when an event occurs. These modules call CMSMNESLRegisterConsumer
for each event class they wish to be notified of.

When an event consumer no longer requires event notification, or before
unloads, it must deregister by calling CMSMNESLDeRegisterConsumer for
each event it registered for.
E-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

for

for

ust

red
NESL Structures

EPB (Event Parameter Block) Structure

 typedef struct EPB_tag
 {
 UINT32 EPBMajorVersion;
 UINT32 EPBMinorVersion;
 void *EPBEventName;
 void *EPBEventType;
 void *EPBModuleName;
 void *EPBDataPtr0;
 void *EPBDataPtr1;
 UINT32 EPBEventScope;
 UINT32 EPBReserved;
 } EPB;

Field Descriptions:

EPBMajorVersion

Major version of the Event Parameter Block. The current version is 1 (
1.00).

EPBMinorVersion

Minor version of the Event Parameter Block. The current version is 0 (
1.00).

EPBEventName

Event Name (class name) for the event as registered with NESL--for
example, Service Suspend or Service Resume. All valid event names m
be registered with Novell Labs.

EPBEventType

Name for the Event Type. An example of an Event Type for Service
Suspend is APM Suspend. All valid Event Type names must be registe
with Novell Labs.

EPBmoduleName

Pointer to the module name that generated the event--for example,
NE2000.

EPBDataPtr0

Used to pass a pointer to the configuration table.
NESL Support E-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

e

his
ng
EPBDataPtr1

Used for event dependent information.

EPBEventScope

The CHSM must set this field to EPB_SPECIFIC_EVENT.

EPBReserved

Reserved by Novell.

NESL_ECB Structure

The following defines the NESL_ECB structure.

 typedef struct NECBStruct
 {
 struct NECBStruct *NecbNext;
 UINT16 NecbVersion;
 UINT16 NecbOsiLayer;
 MEON_STRING *NecbEventName;
 UINT32 NecbRefData;
 UINT32 (*PnecbNotifyProc)(
 struct NECBStruct *consumerNECB,
 struct NECBStruct *producerNecb,
 void *eventData);
 void *NecbOwner;
 void *NecbWorkSpace;
 void *NecbContext;
 } NESL_ECB;

Field descriptions:

NecbNext

Reserved. This field should not be modified by the calling routine whil
the NESL_ECB structure is registered.

NecbVersion

This field contains the version number of the NESL_ECB structure. T
field allows the interface to be expanded in the future while still providi
full backward compatibility. The current version is 2.
E-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

e

ith
eful

L
 If
 to

 new
er is
NecbOsiLayer

This field is used by consumers only. Producers do not use this field.
Producers must set this field to NULL when registering.

This field determines the ordering of registered consumers of the sam
event. The format of this field is 0xLRRR, where L is the number (0-7)
corresponding to the OSI layer and RRR (0-4095) is the relative order w
other modules also registered on that layer. The relative ordering is us
when certain events require specific consumer ordering.

The definition NESL_HOOK_FIRST can also be used in element
NecbOsiLayer. This definition causes a consumer to be hooked first, no
matter what. If the caller sets the low byte of NecbOsiLayer to this value,
the consumer will be hooked first in the consumer list. Normally, NES
events will put lower layer identifiers before the hooked lead element.
another call is made specifying this definition, an error will be returned
the caller and the element will not be added to the list.

NecbEventName

ASCIIZ name string of the event (class). This name has the maximum
length of NESL_MAX_NAME_LENGTH.

NecbRefData

This field is used by producers only. Consumers do not use this field.
Consumers must set this field to NULL when registering.

This is a flag field used to specify whether the event is unique or
consumable. It also indicates the sorting order for calling registered
consumers at event time.

Consumers that are on the orphan consumer list will be sorted when a
producer is registered. All consumers that are registered after a produc
registered will be correctly sorted.

PNecbNotifyProc

This field is used by consumers only. Producers do not use this field.
Producers must set this field to NULL when registering.

This field is a pointer to the event notification callback routine:
 UINT32 MyNotifyProc (
 NESL_ECB *ConsumerNecb,
 NESL_ECB *ProducerNecb,
 void *eventData)

ConsumerNecb

Points to the NESL_ECB structure used by consumer during
CMSMNESLRegisterConsumer.
NESL Support E-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

hes
uld

ck
or

ts

-
ion

e

. It
he
e
ProducerNecb

Points to the NESL_ECB structure used by the producer during
CMSMNESLRegisterProducer.

EventData

If the producer only has one data item, it can be passed to the
consumer as an argument or as an address.

If the producer has more than one data item or if the producer wis
to guarantee portability, the address of an array of data items sho
be passed. The structure of eventData must be defined by the
producer and known by the consumer if it is to be interrupted
properly.

For most events this will be a pointer to an Event Parameter Blo
(EPB). Refer to the Events and Types section of this Appendix f
more information.

Return from a consumer after an event notification callback:

NESL_EVENT_CONSUMED

Event was consumed by the consumer process.

NESL_EVENT_NOT_CONSUMED

Event was not consumed by the process.

Note, this is only really applicable if the event is consumable, but a
consumer should always do this to be compatible with both types of
events. Called from foreground time or from interrupt time with interrup
enabled or disabled.

NecbOwner

Specifies the owner of the NESL_ECB structure. This field is platform
specific and platform-dependent. The DOS/MS Windows implementat
requires this field to be set to the owner's module handle information.

NecbWorkSpace

Reserved. This field should not be modified by the calling routine whil
the NESL_ECB structure is registered.

NecbContext

This field is available for use by the owner of the NESL_ECB structure
will not be modified by anyone else in the system. It may be used by t
owner to pass context or other data to the notification procedure. If th
owner is not using this field, it must be set to NULL.
E-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

.
ue
lso
 be
m

.

in

n
Events and Types

Event names and specific event types are identified with ASCIIZ strings.
Novell has defined four event names along with some specific event types
However, anyone can define event names or event types by defining uniq
names (ASCIIZ strings) for them. The definition of an Event Name must a
include the direction in which the consumers of the event Event Name will
called (that is, called from the top of the OSI model down or from the botto
up). Event types that are added to existing event names must fit within the
definition of the event name.

Below is a list of the event names and event types defined by Novell.

Consumers of these events will be called with the eventData parameter pointing to an
Event Parameter Block (EPB).

Event Names

Event Name Description

 Service Suspend The Event Name contains any event that suspends a service
This event is called from the top of the OSI model down.

Service Resume This Event Name contains event types that indicate the
availability of a new service or the restoration of a previously
available service. This event is called from the bottom of the
OSI model up.

Service/Status Change This Event Name contains event types that signal a change
status or the current level of service. This event is called from
the top of the OSI model down.

 Suspend Request This Event Name contains event types that request permissio
to suspend service before the service is actually suspended.
This event is called from the top of the OSI model down.
NESL Support E-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

d

.

Event Types

Service Suspend Types

Type Name Description

MLID Cable Disconnect This Event Type indicates that the cable has been disconnecte
from a given NIC. A pointer to the MLID's configuration table
is passed in the EPBDataPtr0 field of the Event Parameter
Block. This event should be produced by the C HSM
whenever it has detected that the cable has been disconnected

MLID Card Removal This Event Type is triggered by the hardware and indicates
that the PC Card has been removed from a socket. A pointer to
the MLID's configuration table is passed in the EPBDataPtr0
field of the Event Parameter Block. Even though this Event
Type puts the MLID into shutdown mode, it does not generate
a shutdown event. This event is generally produced by a
configuration manager loader or other software, not the C
HSM.

MLID Hardware Failure This Event Type indicates that a serious hardware failure has
occurred with the NIC. A pointer to the MLID's configuration
table is passed in the EPBDataPtr0 field of the Event
Parameter Block, and EPBDataPtr1 is set to one of the
following conditions:

NOTIFY_CRITICAL
The CHSM encountered an adapter hardware problem and
failed to recover using the available hardware reset
capabilities; however, the system may be able to restore the
hardware to a functional state.

NOTIFY_FATAL
The CHSM was able to detect a hardware failure, but
cannot recover from it.

NOTIFY_DEGRADED
The CHSM has experienced a hardware failure, but is still
functional.

This event is normally produced by the CMSM when
CMSMHardwareFailure is called.
E-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

Suspend Request

Currently no event types have been defined for this class.

MLID Not In Range This Wireless Event Type indicates that there is no access
point in range. A pointer to the MLID's configuration table is
passed in the EPBDataPtr0 field of the Event Parameter
Block. This event is usually produced by the C HSM when it
has determined that there is no access point in range.

MLID Shutdown This Event Type is triggered through the MLID control
services and indicates that an MLID was shutdown. A pointer
to the MLID's configuration table is passed in the
EPBDataPtr0 field of the Event Parameter Block. This event
is also produced by the CMSM when the C HSM calls
CMSMShutdownMLID .

MLID Media Access Denied This Event Type indicates that access to the physical medium
was either denied or unsuccessful. A pointer to the MLID's
configuration table is passed in the EPBDataPtr0 field of the
Event Parameter Block. This event is produced by C HSMs
which can determine when access to the physical medium can
not be obtained.
NESL Support E-9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

d
Service Resumed Types

Type Name Description

MLID Cable Reconnect This Event Type indicates that the cable has been reconnecte
to a given NIC. A pointer to the MLID's configuration table is
passed in the EPBDataPtr0 field of the Event Parameter
Block. This event is produced by the C HSM when it detects
that the cable has been reconnected.

MLID Card Insertion Complete This Event Type is triggered when a new logical board is
added to the system and LAN adapter and driver are fully
functional. A pointer to the MLID's configuration table is
passed in the EPBDataPtr0 field of the Event Parameter Block.
This Event Type does not trigger a reset event. This event is
produced by the C HSM during DriverInit if the C HSM/
adapter were successfully initialized

MLID In Range This wireless Event Type indicates that there is an access
point in range again. A pointer to the MLID's configuration
table is passed in the EPBDataPtr0 field of the Event
Parameter Block. This event is produced by the C HSM.

MLID Reset This Event Type is trigger by the MLID control services and
indicates that an MLID was just reset. A pointer to the MLID's
configuration table is passed in the EPBDataPtr0 field of the
Event Parameter Block. This event is also produced by the
CMSM inside the CMSMResetMLID function.
E-10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

e

Service/Status Changed Types

Type Name Description

MLID Access Point Change This Event Type indicates that a station has moved from one
access point's range to another and that the new access point
will start serving the station. A pointer to the MLID's
configuration table is passed in the EPBDataPtr0 field of the
Event Parameter Block. The C HSM produces this event.

MLID Speed Change This Event Type indicates that there has been a change in th
communication speed. For example, in the wireless
environment this could be caused by the radio link due to a
change in the quality of the signal. A pointer to the MLID's
configuration table is passed in the EPBDataPtr0 field of the
Event Parameter Block. The C HSM produces this event.

MLID Config Table Change This Event Type indicates that the MLID configuration tables
have been updated by CMSMUpdateConfigTables. A
pointer to the MLID's updated configuration table is passed in
the EPBDataPtr0 field of the Event Parameter Block. The C
MSM produces this event inside
CMSMUpdateConfigTables.

MLID DeRegister Resource
Change

This Event Type indicates that a resource registered using
CMSMRegisterResource has been deregistered using
CMSMDeRegisterResource. A pointer to the MLID's
configuration table is passed in the EPBDataPtr0 field of the
Event Parameter Block. The C MSM produces this event
inside CMSMDeRegisterResource.

MLID ReRegister Hardware
Options

This Event Type indicates that hardware resource(s) have been
reregistered using CMSMReRegisterHardwareOptions. A
pointer to the MLID's configuration table is passed in the
EPBDataPtr0 field of the Event Parameter Block. The C MSM
produces this event inside
CMSMReRegisterHardwareOptions.
NESL Support E-11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

he
CMSM NESL String Exports

The C MSM exports string variables for the Events and Types defined in t
Events and Types section of this appendix. These string variables are as
follows:

Event Name Export
Service Suspend NESL_Service_Suspend
Service Resume NESL_Service_Resume
Service/Status Change NESL_ServiceStatus_Change
Suspend Request NESL_Suspend_Request

Event Type Export
MLID Shutdown NESL_MLID_Shutdown
MLID Card Removal NESL_MLID_Card_Removal
MLID Not In Range NESL_MLID_Out_Range
MLID Hardware Failure NESL_MLID_HW_Failure
MLID Cable Disconnect NESL_MLID_Cable_Disconnect
MLID Media Access Denied NESL_MLID_Media_Access_Denied
MLID Reset NESL_MLID_Reset
MLID Card Insertion Complete NESL_MLID_Card_Insertion_Complete
MLID In range NESL_MLID_In_Range
MLID Cable Reconnect NESL_MLID_Cable_Reconnect
MLID Access Point Change NESL_MLID_Access_Point_Change
MLID Speed Change NESL_MLID_Speed_Change
MLID Config Table Change NESL_MLID_Config_Table_Change
MLID DeRegister Resource Change NESL_MLID_DeRegister_Resource_Change
MLID ReRegister Hardware Options Change

NESL_MLID_ReRegister_Hardware_Option
s_Change

MLID Power Cycle Hardware NESL_MLID_Power_Cycle_Hardware
E-12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

NESL Return Codes

The NESL return codes (located in NESL.H) are as follows:

NESL_OK 00000000h

NESL_EVENT_CONSUMED 00000000h

NESL_EVENT_NOT_CONSUMED 00000001h

NESL_EVENT_BROADCAST 00000002h

NESL_EVENT_NOT_REGISTERED 00000003h

NESL_EVENT_TABLE_FULL 00000004h

NESL_EVENT_IS_CONSUMABLE 00000005h

NESL_EVENT_IS_NOT_CONSUMABLE 00000006h

NESL_NO_MORE_EVENTS 00000007h

NESL_PRODUCER_NOT_FOUND 00000008h

NESL_CONSUMER_NOT_FOUND 00000009h

NESL_INVALID_CONTEXT_HANDLE 0000000ah

NESL_INVALID_DESTINATION 0000000bh

NESL_REGISTERED_UNIQUE 0000000ch

NESL_REGISTERED_NOT_UNIQUE 0000000dh

NESL_REGISTERED_CONSUMABLE 0000000eh

NESL_REGISTERED_BROADCAST 0000000fh

NESL_REGISTERED_SORT_TOP_DOWN 00000010h

NESL_REGISTERED_SORT_BOTTOM_UP 00000011h

NESL_DUPLICATE_NECB 00000012h

NESL_INVALID_NOTIFY_PROC 00000013h

NESL_INVALID_FIRST_ALREADY_HOOKED 00000014h
NESL Support E-13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

NESL Event Flags

The following are the NESL event flags:

NESL_BROADCAST_EVENT 00000000h

NESL_SORT_CONSUMER_TOP_DOWN 00000000h

NESL_SORT_CONSUMER_BOTTOM_UP 00000001h

NESL_CONSUME_EVENT 00000002h

NESL_UNIQUE_PRODUCER 00000004h

NESL_NOT_UNIQUE_PRODUCER 00000000h
E-14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

NESL OSI Layer Definitions

The following are the NESL OSI layer definitions:

NESL_APPLICATION_LAYER 7000h

NESL_PRESENTATION_LAYER 6000h

NESL_SESSION_LAYER 5000h

NESL_TRANSPORT_LAYER 4000h

NESL_NETWORK_LAYER 3000h

NESL_DATALINK_LAYER 2000h

NESL_PHYSICAL_LAYER 1000h
NESL Support E-15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

E-16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

Glossary
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ot or

ter

y

e

ns.
Abort
To execute an orderly termination of a process whenever the process cann
should not complete.

Adapter
A circuit board driven by software. In the context of this document an adap
refers to a physical board. See also NIC, MLID, Driver.

Address
A unique group of characters that correspond either to a selected memor
location, an input/output port, or a device on the network. See also Node
address.

AES--Asynchronous Event Scheduler
An auxiliary service that measures elapsed time and triggers events at th
conclusion of measured time intervals.

API--Application Programming Interface
A defined set of routines that enables two software modules to pass
information between them.

ARP--Address Resolution Protocol
The protocol used by TCP/IP to locate nodes on a network.

Asynchronous process
A process that does not depend upon occurrence of a timing signal.

Bit
A binary digit that can only be 0 or 1.

Broadcast
A simultaneous transmission of data from a single source to all destinatio
-1

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

is

tes
d.

 the

J

ther

 also

 (or
Buffer
A data area used for the temporary storage of data being moved between
processes.

Bus
The hardware interface upon which data is transferred.

Byte
A sequence of 8 bits.

CAM--Content Addressable Memory
Memory that resides on the adapter. In the context of this specification, th
memory is used to hold the group addresses that the adapter is to filter.

CHSM--C language Hardware Specific Module
One of three modules comprising the LAN driver toolkit. The developer wri
the CHSM to handle all hardware interactions for a specific physical boar

CMSM--C language Media Support Module
One of three modules comprising the LAN driver toolkit. The CMSM
standardizes and manages the generic details of interfacing ODI MLIDs to
LSL and the operating system.

CTSM--C language Topology Specific Module
One of three modules comprising the LAN driver toolkit. The <CTSM>.OB
manages the operations unique to a specific media type.

Completion code
A code returned by a routine to indicate that the routine has completed ei
successfully or unsuccessfully.

Control Block
A data structure that is used by a process to store control information. See
ECB.

Destination Address
A field that identifies the physical location to which data is to be sent.

Driver
The software module that operates a circuit board. In the context of this
document, driver refers to a software module that drives a network board
adapter) and enables a device to communicate over a LAN. See also Adapter,
NIC, MLID.
-2 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ng

ent
t, or

 a

rate

d
yer

vices.
e

uting

t
ECB--Event Control Block
A data structure that contains the information required to coordinate the
scheduling and activation of certain operations. All ODI layers and AES
functions act upon ECBs.

EISA--Extended Industry Standard Architecture
A 32-bit bus standard, a superset of the ISA standard.

EOI--End of Interrupt
A command issued to the programmable interrupt controller (PIC) indicati
an end of interrupt.

ESR--Event Service Routine
An application-defined procedure that is called after an event occurs. An ev
can be the completion of a send request, the completion of a listen reques
the recurrence of an event that rescheduled itself with the AES.

Ethernet
A data-link protocol that specifies how data is placed on and retrieved from
common transmission medium.

FDDI--Fiber Distributed Data Interface
A cable interface capable of transmitting data at 100 Mbps. FDDI can ope
over fiber lines or twisted-pair cable.

Frame
The unit of transmission on the network. The frame includes the associate
addresses and control information in the Media Access Control (MAC) La
and the transmitted data.

HIN--Hardware Instance Number
HIN is used to uniquely identify functions and devices on multiple device
adapters, as well as single device adapters and integrated motherboard de
The Hardware Instance Number is a system-wide, bus-independent uniqu
handle for a device.

Interrupt
A hardware signal that causes the orderly suspension of the currently exec
process in order to execute a special program (or interrupt handler).

IOCTL--I/O Control
MLID procedures that perform specific actions (for example, add multicas
address, reset, shut down, etc.).
-3

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ndle

m

ith

st.

rces.

e

r

to

This
IP--Internet Protocol
The protocol used by TCP/IP. IP is connectionless and was designed to ha
a large number of WANs and LANs on an internetwork.

IPX--Internet Packet Exchange
An implementation of the Internetwork Datagram Packet (IDP) protocol fro
Xerox. It allows applications running on NetWare workstations to take
advantage of NetWare communications drivers to communicate directly w
other workstations, servers, or devices on the internetwork.

ISA--Industry Standard Architecture
An 8/16-bit bus standard used with Intel’s microprocessors.

ISR--Interrupt Service Routine
Routine that is executed to handle a hardware or software interrupt reque

LAN--Local Area Network
At least two computers (usually located in the same building) connected
together in such a way as to allow them to communicate and share resou

LSL--Link Support Layer
An ODI layer through which multiple protocol packets are directed from th
MLID to a designated protocol stack, and vice versa. The LSL directs
incoming and outgoing packets.

MAC Header--Media Access Control Header
Controls the transmission of packets through a network. The MAC heade
includes source and destination data.

Medium
The physical carrier of a signal.

Micro Channel Architecture
A bus standard defined by IBM.

MLI--Multiple Link Interface
The interface between the MLID and the LSL that allows multiple MLIDs
exist concurrently.

MLID--Multiple Link Interface Driver
The ODI layer that receives and transmits packets to a hardware device.
acronym refers to ODI LAN drivers.
-4 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

s

ws

roup

are

ave

 the

me

ted
MMIO--Memory Mapped I/O
An architecture for input and output that allows I/O ports to be accessed a
though they were memory locations.

MPI--Multiple Protocol Interface
The interface between the LSL and a Network Layer protocol stack that allo
different communication protocols to operate concurrently.

Multicast
The simultaneous transmission of data from a single source to a selected g
of destination addresses on the network.

NIC--Network Interface Controller/Card
The physical network board installed in workstations and file servers.

NLM--NetWare Loadable Module
Applications that are loaded dynamically and integrated with all the NetW
server operating systems starting with NetWare 3.

Node
Any network device that transmits and/or receives data. The device must h
a physical board and a unique address. See also Node Address.

Node Address
A unique combination of characters that corresponds to a physical board on
network. Each adapter must have a unique node address.

ODI--Open Data-Link Interface
The model that allows multiple network protocols, physical boards, and fra
types to coexist on a single workstation or server.

OSI--Open Systems Interconnection
A standard communications model that defines communications between
computer systems, specifically ISO standards.

PC Card
Refer to the document, Personal Computer Memory Card International
Association--PC Card (PCMCIA).

Packet
The unit of transmission on the network. The packet includes the associa
addresses and control information.
-5

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

at

itted

ific

be

puter
Peripheral Component Interconnect—PCI
A 32-bit or 64-bit bus standard with multiplexed address and data lines.

Personal Computer Memory Card International Association—PCMCIA
A 16-bit bus standard. This is also known as PC Card.

PID--Protocol Identification
A value containing a globally administered value (1 to 6 bytes in length) th
reflects the protocol stack in use (for example, E0h=IPX 802.2). The PID
located in every packet is a value that uniquely identifies the packet as
belonging to a specific protocol.

Privileged Time
An execution time that has higher execution priority than process time.

Process Time
An execution time where you can allocate memory and (with certain
exceptions) perform file input and output (I/O).

Protocol
The set of rules and conventions that determines how data is to be transm
and received on the network.

Pseudocode
Describes computer program algorithms generically without using the spec
syntax of any programming language.

RAM--Random Access Memory
The computer’s (or physical board’s) storage area into which data can be
entered and retrieved nonsequentially.

RCB--Receive Control Block
A data structure used by the MLID to receive data.

ROM--Read Only Memory
The portion of the computer’s (or physical board’s) storage area that can
read only (write operations are ignored).

Shared RAM
The RAM on some physical boards that can be accessed by either the com
or the physical board on which the RAM is installed.
-6 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

ing

d

ine.

iming

fer

e to
d the

 its
e the
rtual

llow
Source Address
A field in a frame that identifies the physical location of a node that is send
the packet.

SPX--Sequenced Packet Exchange
A Session Layer protocol that uses IPX. SPX provides connection oriente
services and guarantees packet delivery.

Stubbed Routine
A routine that contains only an instruction to return to the caller of the rout

Synchronous Process
A process that depends upon the occurrence of another event such as a t
signal.

TCB--Transmit Control Block
The data structure used by the MLID to transmit data.

TCP--Transmission Control Protocol
A communication protocol that provides a reliable stream service to trans
data between nodes on a network.

Token-Ring
A network that utilizes a ring topology and passes a token from one devic
another. A node that is ready to send data can capture the token and sen
data for as long as it holds the token.

TSR--Terminate-and-Stay-Resident
A DOS program or routine that remains in memory after being loaded and
subsequently exited.

Virtual Machine
An illusion of multiple processes, each executing on its own processor with
own memory. The resources of the physical computer can be used to shar
CPU and make it appear that each process has its own processor. The vi
machine is created with an interface that appears to be identical to the
underlying hardware.

WAN--Wide Area Network
At least two computers remotely connected together in such a way as to a
them to communicate over wide distances and to share resources.
-7

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

-8 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

Revision History
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

This Revision History covers document changes from Doc Version 1.10 to Doc
Version 1.13.

The page numbers in items 1 through 32 refer to Doc Version 1.12.

The page numbers in items 33 and 34 refer to Doc Version 1.13.

1. On page 4-22, under Flags, in the KEYWORDPARAM definition, the
following sentence was added:

If KEYWORDPARAM is used, DEFAULTPRESENT and
REQUIREDPARAM are ignored.

2. On page 4-22, under Flags, in the STRINGPARAM definition,

"a %format specifier"

was changed to:

"a %s or %c format specifier".

3. On page 4-24, under ParseString Field, under "The following is the
format of the parse string:", the format now reads as follows:

[whitespace]keyword[whitespace]=[whitespace]conversion
specifier[whitespace]

4. On page 5-46, DriverPromiscuousChange, under Input Parameters,
Bit2 and Bit3 was changed to read as follows:

Bit2 is set if Station Management Frames (SMT) are to be received.
Bit3 is set if Remote Multicast Frames are to be received (see
Remarks section below).
9

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

to:
5. On the following pages: 7-71, 7-73, 7-75, 7-79, 7-83, 7-87,

#include <odi_nesl.h>

was changed to:

#include <nesl_str.h>

6. On page 7-139, under Return Values for CMSMShutdownMLID , the
definition for ODISTAT_RESPONSE_DELAYED was changed to the
following definition:

Under circumstances where shutting down the MLID cannot be
completed when CMSMShutdownMLID is called, an asynchronous
process should be called at a later time.

7. On page 7-139, under Remarks for CMSMShutdownMLID , the
following paragraph was added:

If CMSMShutdownMLID returns ODISTAT_RESPONSE_DELAYED,
we recommend that you return with the adapter disabled unless it is
impossible or inadvisable.

8. On page E-2, under Registering and Deregistering Event Consumers,

 CMSMRegisterConsumer

was changed to:

CMSMNESLRegisterConsumer .

9. On page 3-22, the description for MLIDCFG_DBusTag was changed

Pointer to an architecture-dependent value, which specifies the bus on
which the adapter is found. The value placed in this field is returned by
CMSMSearchAdapter unless the board is Legacy ISA, in which case
it is set to zero. This field must be set before calling
CMSMRegisterHardwareOptions .

10. On page 7-116, under Return Values for CMSMResetMLID , the
description of ODISTAT_FAIL was changed to:

The operation failed. The C HSM should place itself in a safe state and
clean up resources.
10 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

11. On page 4-2, under Data Structures, Event Control Blocks (ECBs) was
deleted and the following items were added:

• CMSM Configuration Table (CMSM_CONFIG_TABLE)

• CTSM Configuration Table (CTSM_CONFIG_TABLE)

• DRIVER_OPTION Structure

12. On page 4-22, the Note after SHARABLE was deleted and the following
text was added:

Interpretation of the Flags Field in the DRIVER_OPTION structure

KEYWORDPARAM, ENUMPARAM, RANGEPARAM, and
STRINGPARAM are mutually exclusive. Only one of these bits can be
set at a time, but it is not required to set any of the bits. If the
ENUMPARAM and RANGEPARAM bits are not set, any value of the
appropriate type may be entered by the user.

OPTIONALPARAM and REQUIREDPARAM are mutually exclusive
and one of the bits is required unless the KEYWORDPARAM bit is
present. KEYWORDPARAM implies that it is an optional parameter.

The DEFAULTPRESENT is valid for RANGEPARAM and
STRINGPARAM. It is also valid if none of the KEYWORDPARAM,
ENUMPARAM, RANGEPARAM, and STRINGPARAM bits are present.

Function of the DEFAULTPRESENT Bit

The DEFAULTPRESENT bit is basically used to determine how
prompting is handled. There are two major cases:

DEFAULTPRESENT and OPTIONALPARAM
DEFAULTPRESENT and REQUIREDPARAM

DEFAULTPRESENT and OPTIONALPARAM

The parameter is not present on the command line: no action is taken
and ODISTAT_ITEM_NOT_PRESENT is returned.

The parameter is present on the command line and the parameter is
valid: the parameter is used as is.

The parameter is present on the command line and the parameter is
invalid: the user is prompted with the default value as the default input.
11

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

:

DEFAULTPRESENT and REQUIREDPARAM

The parameter is not present on the command line: the user is
prompted with the default value as the default input.

The parameter is present on the command line and the parameter is
valid: the parameter is used as is.

The parameter is present on the command line and the parameter is
invalid: The user is prompted with the default value as the default input.

13. On page 4-25, under Conversion Specifiers, the following sentence was
added to the first paragraph:

The maximum conversion specifiers length is 80 characters including
the NULL termination.

14. On page 4-26, after the first paragraph that follows Table 4-5, the
following Note was added:

White space is not allowed between conversion specifiers.

15. On page 4-27, under Conventions, the following text was added to [abcd]

The search terminates when it encounters the first character not in the
search set.

and the following text was to [^abcd]:

The search terminates when it encounters any character in the search
set.

16. On page 7-91, under Return Values for CMSMParseDriverParameters,
and on page 7-96, under Return Values for
CMSMParseSingleParameter, the following text was added to the
description for ODISTAT_FAIL:

... , or the user canceled on the prompting of a parameter.

17. On page 7-105, under Remarks for CMSMRegisterHardwareOptions,
the following text was added:

The MLIDCFG_DBusTag field in the MLID Configuration Table must be
set before making this call.
12 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

18. On page 7-32, under PC Card and CardBus Busses, the following text
was added as the first paragraph:

The following CardBus definition applies only to hardware not using the
common silicon method defined by the CardBus PC Card/PCI
Common Silicon Requirements guideline. For CardBus adapters using
the common silicon method, refer to the definition for the PCI Bus.

19. On pages 7-34, 7-126, and 7-130, under Output Parameter, busType, the
following Note was added:

The ODI_BUSTYPE_CARDBUS type value is used only for hardware
not using the common silicon method defined by the CardBus PC
Card/PCI Common Silicon Requirements guideline. For CardBus
adapters using the common silicon method refer to the
ODI_BUSTYPE_PCI type value.

20. On pages 7-41 and 7-61, the following Note was added to the CardBus
Bus section:

The following CardBus definitions apply only to hardware not using the
common silicon method defined by the CardBus PC Card/PCI
Common Silicon Requirements guideline. For CardBus adapters using
the common silicon method, refer to the definition for the PCI Bus.

21. On page 3-3, in the Driver Parameter Block Structure, and on page 3-9,
in Table 3-1, "Driver Parameter Block Field Descriptions",

 DriverMessagePtr

was changed to

DriverMessagesPtr.

22. On page 3-29, in Table 3-5, "MLIDCFG_SharingFlags Bits
Description" , in the description for MS_SHUTDOWN_BIT,

"Set to 1 if the adapter..."

was changed to:

"Set to 1 if the logical board...".
13

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

23. On page 5-33, under Pseudocode,

"Call <CTSM>SendComplete (config Table, tcbp),"

was changed to:

"Call <CTSM>SendComplete (config Table, tcbp, transmitStatus),"

24. On page 5-28, the first sentence of the Note was changed to:

"For transmissions, if the MM_FRAGS_PHYS_BIT ..."

and the last sentence of the Note was changed to:

"These APIs ..." instead of "These macros ..."

25. On page 7-20, under CMSMECBPhysToLogFrags, the first sentence of
the description at the top of the page was change to:

For transmissions, if MM_FRAGS_PHYS_BIT ...

and the following sentence was added to the Remarks section:

The ECBs ECB_PreviousLink and ECB_ESR fields must not be
changed.

26. On pages 3-2 and 3-3, in the Driver Parameter Block Structure, the
following entries were changed:

ODISTAT (*DriverResetPtr) (DRIVER_DATA *,
MLID_CONFIG_TABLE *);

ODISTAT (*DriverShutdownPtr) (DRIVER_DATA *,
MLID_CONFIG_TABLE *, UINT32);

ODISTAT (*DriverPriorityQueuePtr) (ECB*);

to read as follows:

ODISTAT (*DriverResetPtr) (DRIVER_DATA *,
MLID_CONFIG_TABLE *, OPERATION_SCOPE);

ODISTAT (*DriverShutdownPtr) (DRIVER_DATA *,
MLID_CONFIG_TABLE *, UINT32, OPERATION_SCOPE);
14 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

s

ODISTAT (*DriverPriorityQueuePtr) (DRIVER_DATA*,
MLID_CONFIG_TABLE *, ECB*);

27. On page 7-21, under the Remarks section for
CMSMECBPhysToLogFrags, the following paragraph was added:

The ECB containing a FRAGMENT_LIST_STRUCTURE of logical
addresses acquired with this function is not returned directly to the
system by the HSM. The TSM returns it to the system when one of the
Send Complete APIs has been called for the ECB passed in as the
input parameter for this function. Once a Send Complete API has been
called, the HSM no longer has ownership of either ECB and must not
reference or modify either ECB.

28. On page 3-27, in Table 3-4, "MLIDCFG_Flags Bits Description" ,
under Bit 10, MF_GRP_ADDR_SUP_BIT, the following paragraph wa
added:

Bit 9 is not used by ECB aware HSMs. ECB aware HSMs must do their
own filtering of multicast addresses.

29. On page 3-34, under Specification Version String,

1.10

was changed to:

1.11

30. On page 4-10, in Table 4.2, "Programmed RCB Field Description", in
the description for RCBReserved, the following text was added to the first
sentence:

... , except as described in the functions <CTSM>ProcessGetRCB
and <CTSM>FastProcessGetRCB .

31. On page 5-45, right before the Ethernet and FDDI heading, the following
new paragraph was added.

ECB aware HSMs must do their own filtering of multicast addresses.
15

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ad as
32. On page 6-8, in the third Note under Remarks for
<CTSM>FastProcessGetRCB, and on page 6-23, in the Note under
FDDI :

RProtocolWorkspace

was replaced with:

starting at RCBReserved[28]

33. On page 7-114, change the last sentence of the fourth paragraph to re
follows:

If an interrupt was registered, the CHSM must call
CMSMSetHardwareInterrupt .

34. On page 4-23, under DEFAULTPRESENT and OPTIONALPARAM,
change:

no action is taken

to read:

the user is not prompted
16 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

Index
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

16MB boundary 7-4, 7-10, 7-12, 7-68, 7-94

A
adapter

base memory address 3-19
initializing 5-8

adapter code space 2-9
adapter data space 2-9, 3-33
adapter multicast filtering 5-44
adapters

getting physical addresses 5-28
ADDR_SIZE parameter xx
address manipulation 8-3
addresses

getting physical 5-28
addressing

multicast 2-11
AES_TYPE enumeration xxi
AES_TYPE enumereration xxi
alignment

requirement
getting 7-27

alignment issues D-5
ANSI C xvii, xxv, D-1
ASCII D-4
assumptions

coding D-5

B
base memory address

adapter 3-19

big endian D-1
board service 5-1

CHSM 2-2
board service routine 5-15

reception event 5-20
setup 5-9
shared interrupt 5-17
transmission complete 5-20

BOOLEAN enumeration xxii
Brouter 2-12

document xxvi, 2-12, 5-55
building CHSM

NetWare/Intel C-1
bus

multiple on platform 8-2
bus address

size
getting 7-29

bus architecture 8-2
bus master adapter 2-5, 5-15
bus type 2-5

Extended Industry Standard Architecture 2-5
Industry Standard Architecture (ISA) 2-5
Micro Channel Architecture 2-5
Peripheral Component Interconnect (PCI) 2-5
values 7-34, 7-126

byte order 8-4

C
callbacks

scheduling 5-9
canonical address 3-26
canonical and noncanonical addressing
 17

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

document xxvi, 4-6
CEtherTSM file 6-1
CFDDITSM file 6-1
character

keyword 4-25
whitespace 4-24

CHSM 5-1
board service 5-1
building

NetWare/Intel C-1
components 2-1
control function 5-1
data structures 2-4

hardware issues 2-4
design considerations 2-4
initialization 5-1, 5-3
optional support 2-11
packet transmission 5-1
procedures 2-1

board service 2-2
control 2-3
driver remove 2-3
initialization 2-2
packet transmission 2-3
timeout detection 2-3

recommended support 2-11
removal 5-1
revision level 3-17
timeout detection 5-2
variables 2-4

CHSM_COMPLETE enumeration 7-15
CMSM 7-1

data access 4-2
CMSMDefaultVirtualBoard pointer 4-4
CMSMMaxFrameHeaderSize variable 4-5
CMSMPhysNodeAddress variable 4-6
CMSMStatusFlags variable 4-4
CMSMTxFreeCount 4-4
CMSMVirtualBoardLink pointers 4-2
DADSP_TO_CMSMADSP macro 4-2

registering with 5-3
variable 4-1

cmsm.h 4-9, 4-12, 7-1

CMSMAddToCounter function 7-2, 7-30, 7-50, 7-52,
7-63

CMSMAlloc function 7-4
CMSMAllocateRCB function 4-9, 5-15, 5-16, 7-11
CMSMAllocPages function 7-9
CMSMControlComplete function 7-14
CMSMDefaultVirtualBoard pointer 4-4
CMSMDriverRemove function 7-19
CMSMECBPhysToLogFrags function 7-20
CMSMECBPhysToLogFrags macro 5-28
CMSMEnablePolling function 5-9, 7-22
CMSMFree function 7-24
CMSMFreePages function 7-26
CMSMGetAllignment function 7-27
CMSMGetBusType function 7-34
CMSMGetCardConfigInfo function 7-36
CMSMGetCurrentTime function 7-44
CMSMGetMicroTimer function 7-54
CMSMGetPhysical function 7-55
CMSMGetUniqueID function 7-60
CMSMIncrCounter function 7-67
CMSMInitAlloc function 7-68
CMSMMaxFrameHeaderSize variable 4-5
CMSMNESLRegisterCounsumer function 7-83
CMSMNESLRegisterProducer function 7-87
CMSMParseDriverParameters function 5-6, 7-91
CMSMPhysNodeAddress variable 4-6
CMSMPrintString function 7-97
CMSMRdConfigSpacex function 7-100
CMSMReadPhysicalMemory function 7-102
CMSMRegisterHardwareOptions function 3-11, 5-7,

5-9, 7-104
CMSMRegisterMLID function 5-8, 7-106
CMSMRegisterResource function 7-108
CMSMReturnDriverResources function 5-8, 7-120
CMSMReturnRCB function 7-124
CMSMScanBusInfo function 7-126
CMSMScheduleAES function 5-9, 7-128
CMSMSearchAdapter function 7-131
CMSMServiceEvents function 7-69, 7-135
CMSMSetHardwareInterrupt function 5-9, 7-136
CMSMStatusFlags variable 4-4
CMSMTCBPhysToLogFrags macro 5-28, 7-142
CMSMTxFreeCount variable 4-4, 5-8, 5-24
18 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

CMSMVirtualBoardLink pointers 4-2
CMSMWritePhysicalMemory function 7-148
code

portability xxv
code space 2-8

adapter 2-9
CONFIG_TABLE structure 3-11
configuration table 2-9, 3-10

MLID
major version number 3-12
minor version number 3-12

template 3-11
consumer

registering 7-83
control block

event B-2
receive 4-10

control function 5-1
control procedure 5-34

CHSM 2-3
convention, manual xvii
conversion specifier 4-25
COPY_FROM_HILO_UINTx macro D-7
COPY_FROM_LOHI_UINTx macro D-8
COPY_TO_HILO_UINTx macro D-9
COPY_TO_LOHI_UINTx macro D-10
COPY_UNITx macro D-11
CTokenTSM file 6-1
 6-1
CTSM 6-1

registering with 5-3
FastProcessGetRCB function 6-7
FastRevComplete function 6-9
FastSendComplete function 6-13
GetHSMIFLevel function 6-17
bus master adapter

GetRCB function 6-20
GetRCB function 4-9, 5-16, 6-18, 6-20
pipeline adapter

GetRCB function 6-20
ProcessGetRCB function 4-9, 5-15, 6-21
RcvComplete function 5-16, 6-24
RcvCompleteStatus function 5-17, 6-26
RegisterHSM function 5-3, 6-28

SendComplete function 5-24, 6-30
UpdateMulticast function 6-32

D
DADSP_TO_CMSMADSP macro 4-2
data access

CMSM 4-2
data flow

receive 1-12
send 1-10

data packing D-5
data space 2-8

adapter 2-9, 3-33
frame 2-9, 3-10

data structure 4-2, 4-6
CHSM 2-4
Receive Control Block (RCB) 4-8

example 4-10
Transmit Control Block (TCB) 4-12

data transfer mode 2-5
data type

definition xvii
design considerations

CHSM 2-4
determining

hardware options 5-4
packet destination 1-4

direct memory access (DMA) 2-5
DMA channel

default 3-21
DMACleanup function 8-5
DMAStart function 8-6
DMAStatus function 8-9
document

Brouter supplement xxvi, 2-12, 5-55
canonical and noncanonical addressing s xxvi, 4-6
frame types xxvi
hub management interface xxvi, 2-12, 5-34, 5-55
installation information file xxvi
MLID message definition xxvi, 7-99
protocol IDs (PIDs) xxvi
referenced xxvi
19

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

source routing xxvi, 2-12
DOS ODI xv
DPB_Reserved0 field 3-3
DPB_Reserved1 field 3-4
DPB_Reserved2 field 3-4
DPB_Reserved3 field 3-4
DPB_Reserved4 field 3-4
DPB_Reserved5 field 3-6
DPB_Reserved6 field 3-6
driver firmware 3-47
driver remove

procedure 2-3
DRIVER_DATA structure xviii
DRIVER_OPTION structure 4-19, 5-6
DRIVER_PARM structure 3-2
DriverAdapterDataSpaceSize field 3-4
DriverAdapterPointer field 3-4
DriverAES function 2-3, 5-62
DriverConfigTemplatePtr field 3-4
DriverDataPtr field 3-4
DriverDisableInterrupt function 5-57
DriverDisableInterruptPtr field 3-8
DriverEnableInterrupt function 5-56
DriverEnableInterruptPtr field 3-8
DriverEndOfChainFlag field 3-5
DriverFirmwareBuffer field 3-4, 3-47, 5-4
DriverFirmwareSize field 3-4, 3-47, 5-4
DriverInit function 2-2, 3-2, 5-11
DriverInputParmPointer field 3-3
DriverISR function 2-2, 5-9, 5-19
DriverISR2Ptr field 3-8
DriverISRPtr field 3-6
DriverManagement function 5-54
DriverManagementPtr field 3-8
DriverMaxMulticast field 3-5
DriverMessagePtr field 3-9
DriverModuleHandle field 3-3
DriverMulticastChange function 2-3, 2-11, 5-43
DriverMulticastChangePtr field 3-6
DriverNeedsBelow16Meg field 3-6
DriverParameterSize field 3-3
DriverPoll function 2-2, 5-9, 5-22
DriverPollPtr field 3-6
DriverPromiscuousChange function 2-3, 2-11, 5-46

DriverPromiscuousChangePtr field 3-7
DriverRemove function 2-3, 5-14
DriverReset function 2-3, 5-36
DriverResetPtr field 3-7
DriverRxLookAheadChange function 5-52
DriverRxLookAheadChangePtr field 3-8
DriverSend function 2-3, 5-29, 5-31, 7-56
DriverSendPtr field 3-7
DriverSendWantsECBs field 3-5, 5-25
DriverShutdown function 2-3, 5-39
DriverShutdownPtr field 3-7
DriverStatisticsChange function 5-50
DriverStatisticsChangePtr field 3-7
DriverStatisticsTablePtr field 3-4
DriverTxTimeoutPtr field 3-7

E
ECB aware 5-16
ECB aware adapter B-1
ECB_BoardNumber field B-7
ECB_DataLength field B-9
ECB_DriverWorkspace field B-8
ECB_ESR field B-5
ECB_Fragment field B-9
ECB_FragmentCount field B-9
ECB_ImmediateAddress field B-7
ECB_NextLink field B-3
ECB_PreviousLink field B-4
ECB_ProtocolID field B-6
ECB_ProtocolWorkspace field B-9
ECB_StackID field B-6
ECB_Status field B-5
EISA Specification document 7-132
enumeration

AES_TYPE xxi
BOOLEAN xxii
CHSM_COMPLETE 7-15
definition xxi
MSG_TYPE 7-98
ODI_NBI xxii
ODI_STAT xxiii
ODISTAT xxiii
20 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

REG_TYPE xxiv
EPB structure 7-77, 7-80, E-3
ETH_RxAbortFrameAlignment field 3-44
ETH_TxAbortCarrierSense field 3-44
ETH_TxAbortExcesiveDeferral field 3-44
ETH_TxAbortExcessCollision field 3-44
ETH_TxAbortLastCollision field 3-44
ETH_TxOKButDeferred field 3-44
ETH_TxOKMultipleCollisionCount field 3-44
ETH_TxOKSingleCollisionCount field 3-43
ETHERTSM.NLM file 1-8, 6-1
Event Control Block (ECB) 4-6, B-1

description B-1
structure B-2

execution time 2-7
privileged time 2-7
process time 2-7

Extended Industry Standard Architecture 2-5, 5-18,
7-38

EXTRA_CONFIG structure 7-109

F
FastRevCompleteStatus function 6-2, 6-5, 6-11
FDDITSM.NLM file 1-8, 6-1
FDI_ConfigurationStats field 3-45
FDI_DownstreamNode field 3-45
FDI_FrameErrorCount field 3-45
FDI_FramesLostCount field 3-45
FDI_LCTFailureCount field 3-46
FDI_LemRejectCount field 3-46
FDI_RingManagementCount field 3-46
FDI_UpstreamNode field 3-45
flags field 3-26
flow of data

receive 1-12
send 1-10

fragment structure 4-8, B-2
example 4-8

FRAGMENT_LIST_STRUCT structure 7-21, 7-143
FRAGMENT_STRUCT structure 4-8, B-2
FragmentAddress field 4-8, B-3
fragmented RCB 3-24

FragmentLength field 4-8
frame data space 2-9, 3-10, 5-7
frame type 2-9

document xxvi
FreeBusMemory function 8-10

G
generic statistics counter

media specific 3-35
GET_HILO_UINTx macro D-12
GET_LOHI_UINTx macro D-13
GET_UINTx macro D-14
GetBusInfo function 7-29
GetMLIDConfiguration function 7-58

H
hardware options

determinimg 5-4
registering 5-7

HardwareDriverMLID string 3-12
header file D-2
HOST_FROM_HILO_UINTx macro D-15
HOST_FROM_LOHI_UINTx macro D-16
HOST_TO_HILO_UINTx macro D-17
HOST_TO_LOHI_UINTx macro D-18
HSM (Hardware Specific Module)

defined 1-7
hub management 2-11
hub management interface

document xxvi, 2-12, 5-34, 5-55

I
InBuffx function 8-14
Industry Standard Architecture (ISA) bu 2-5, 5-17
initialization

CHSM 5-3
procedure for CHSM 2-2

installation information file
21

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

document xxvi
interrupt

enabling/disabling 2-6, 5-2
vector number 3-20

interrupt service routine (ISR) 2-2
Inx function 8-12
IO_CONFIG structure 7-111
IOCTL (I/O control function) 5-34

K
keyword character 4-25

L
language enabling xvi

procedure A-1
Link Support Layer (LSL)

defined 1-4
registering with 5-8

linker definition file 3-1
NetWare/Intel C-2

little endian D-1
loading

MLID modules 3-1
lookahead 3-24
lying send 6-31

M
macros

portability D-6
MAdapterOprTimeStamp field 3-40
MAdapterResetCount field 3-40
major version number

MLID
configuration table 3-12
statistics table 3-36

manual
convention xvii
prerequisites xvii

MapBusMemory function 8-16
maximum packet size 3-30
MChecksumErrorCount field 3-40
MCustomCounterPtr field 3-37
media specific counter 3-41

Ethernet 3-43
FDDI 3-45

memory allocation
MLID (Multiple Link Interface Driver) 2-2

memory mapping 8-3
MEON definition xvii
MEON_STRING definition xvii
message

printing 7-97
message enabling

DriverMessagePtr field 3-9
MF_GRP_ADDR_SUP_BIT bit 3-27
MF_HUB_MANAGEMENT_BIT bit 3-27
MF_SOFT_FILT_GRP_BIT bit 3-27
MGenericCountersPtr field 3-36
MHardwareRxMismatchCount field 3-40
Micro Channel Architecture bus 2-5
Micro Channel bus 7-38

shared interrupt 5-17
minor version number

MLID
configuration table 3-12
statistics table 3-36

MLI (Multiple Link Interface)
defined 1-6

MLID
initialization 5-11
portability xxv

MLID (Multiple Link Interface Driver)
defined 1-6
memory allocation 2-2
message definition

document xxvi, 7-99
MLID modules

loading 3-1
MLID_AES_ECB structure 7-129
MLID_AESECB structure 7-129
MLIDCFG_BestDataSize field 3-14
MLIDCFG_BoardInstance field 3-14
22 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

MLIDCFG_BoardNumber field 3-13
MLIDCFG_CardName field 3-15, 5-4
MLIDCFG_ChannelNumber field 3-22
MLIDCFG_CommandString field 3-21
MLIDCFG_Config field 3-21
MLIDCFG_DBusTag field 3-22
MLIDCFG_DIOConfigMajorVer field 3-22
MLIDCFG_DIOConfigMinorVer field 3-22
MLIDCFG_DMALine0 field 3-21
MLIDCFG_DMALine1 field 3-21
MLIDCFG_DriveMajorVer field 3-17
MLIDCFG_DriverLink field 3-18
MLIDCFG_DriverMinorVer field 3-17
MLIDCFG_Flags field 3-17, 3-26
MLIDCFG_FrameID field 3-16
MLIDCFG_FrameTypeString field 3-15
MLIDCFG_Interrupt0 field 3-20
MLIDCFG_Interrupt1 field 3-20
MLIDCFG_IOPort0 field 3-18
MLIDCFG_IOPort1 field 3-19
MLIDCFG_IORange0 field 3-19
MLIDCFG_IORange1 field 3-19
MLIDCFG_LinearMemory0 field 3-21
MLIDCFG_LinearMemory1 field 3-22
MLIDCFG_LineSpeed field 3-16
MLIDCFG_LogicalName field 3-21
MLIDCFG_LookAheadSize field 3-16, 4-5
MLIDCFG_MajorVersion field 3-12, 5-4
MLIDCFG_MaxFrameSize field 3-14, 5-3, 5-4, 5-8
MLIDCFG_MemoryAddress0 field 3-19
MLIDCFG_MemoryAddress1 field 3-20
MLIDCFG_MemorySize0 field 3-19
MLIDCFG_MemorySize1 field 3-20
MLIDCFG_MinorVersion field 3-12
MLIDCFG_ModeFlags field 3-13, 3-22
MLIDCFG_NodeAddress field 3-13, 4-6
MLIDCFG_PrioritySup field 3-17
MLIDCFG_Reserved0 field 3-15
MLIDCFG_Reserved1 field 3-17
MLIDCFG_Reserved2 field 3-17
MLIDCFG_ResourceTag field 3-21
MLIDCFG_SendRetries field 3-18
MLIDCFG_SharingFlags field 3-18, 3-29
MLIDCFG_ShortName field 3-15

MLIDCFG_Signature field 3-12
MLIDCFG_Slot field 3-18
MLIDCFG_SourceRouting field 3-16
MLIDCFG_TransportTime field 3-16
MLIDCFG_WorstDataSize field 3-15
MLIDMaximumPacketSize field 3-30
MM_C_HSM_BIT bit 3-24
MM_CSL_BIT bit 3-24
MM_DATA_SZ_UNKNOWN_BIT bit 3-24
MM_DEPENDABLE_BIT bit 3-23
MM_FRAG_RECEIVES_BIT bit 3-24
MM_FRAGS_PHYS_BIT bit 3-25, 5-28
MM_FRAGS_RECEIVES_BIT bit 4-8
MM_MULTICAST_BIT bit 3-23
MM_NONCANONICAL_BIT bit 3-26
MM_PHYS_NODE_ADDR_BIT bit 3-26, 4-6
MM_PREFILLED_ECB_BIT bit 3-24
MM_PROMISCUOUS_BIT bit 3-25
MM_RAW_SENDS_BIT bit 3-24
MM_SMP_BIT bit 3-24
MMediaCountersPtr field 3-37
MNoECBAvailableCount field 3-39
MNumCustomCounters field 3-37
MNumGenericCounters field 3-36
MNumMediaCounters field 3-37
mode flags field 3-23
MODULE_HANDLE structure xx
modules

support
defined 1-7
HSM (Hardware Specific Module) defined 1-9
MSM (Media Support Module) defined 1-8
TSM (Topology Specific Module) defined 1-8

MovFastFromBus function 8-18
MovFastToBus function 8-20
MovFromBusx function 8-22
MovToBusx function 8-25
MPacketRxOverflowCount field 3-39
MPacketRxTooBigCount field 3-39
MPacketRxTooSmallCount field 3-39
MPacketTxTooBigCount field 3-39
MPacketTxTooSmallCount field 3-39
MQDepth field 3-41
MRetryTxCount field 3-40
23

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

MS_HAS_CMD_INFO_BIT bit 3-30
MS_NO_DEFAULT_INFO_BIT bit 3-30
MS_SHARE_DMA0_BIT bit 3-29
MS_SHARE_DMA1_BIT bit 3-30
MS_SHARE_IRQ0_BIT bit 3-29
MS_SHARE_IRQ1_BIT bit 3-29
MS_SHARE_MEMORY0_BIT bit 3-29
MS_SHARE_MEMORY1_BIT bit 3-29
MS_SHARE_PORT0_BIT bit 3-29
MS_SHARE_PORT1_BIT bit 3-29
MS_SHUTDOWN_BIT bit 3-29
MSG_ID definition xviii
MSG_TYPE enumeration 7-98
MStatTableMajorVer field 3-36
MStatTableMinorVer field 3-36
MTotalGroupAddrRxCount field 3-40
MTotalGroupAddrTxCount field 3-40
MTotalRxMiscCount field 3-39
MTotalRxOKByteCount field 3-40
MTotalRxPacketCount field 3-38
MtotalTxMiscCount field 3-39
MTotalTxOKByteCount field 3-40
MTotalTxPacketCount field 3-38
multicast addressing 2-11, 3-23
multiple bus platform 8-2
Multiple Protocol Interface (MPI)

defined 1-4

N
NESL_ECB structure 7-84, 7-88, E-4
nesting level D-4
NetWare Bus Interface (NBI) xvi
NetWare Event Service Layer (NESL) 2-12
NetWare/Intel

building CHSM C-1
creating source file C-1
linker definition file C-2

network interface controller 2-4
NODE_ADDR structure xx
NULL D-2, D-3
NULTICAST_TABLE structure xx

O
ODI (Open DataLink Interface) sp 1-1, 1-2
ODI_NBI enumeration xxii
ODI_STAT enumeration xxiii
ODISTAT enumeration xxiii
offsetof macro D-3
operating system/processor information xvi
OutBuffx function 8-30
Outx function 8-28

P
packet

destination
determining 1-4

flow 1-10
packet reception 4-8, 5-15
packet transmission 4-12, 5-1, 5-24

CHSM 2-3
method 5-24

parameter
parsing 7-91

parameter bloack
size 3-3

parameter block 3-1
field description 3-3
structure 3-2

ParseString field 4-24
parsing

string 4-24
parsing parameter 7-91
Peripheral Component Interconnect (PCI) 2-5, 7-38
Peripheral Computer Interconnect (PCI) bus 5-17
physical addresses

getting 5-28
PID_SIZE parameter xx
pipeline adapter 6-20
platform

dependence
NetWare operating system 2-6

multiple bus 8-2
24 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

polling procedure 2-2
portability

alignment D-5
assumptions D-5
data packing D-5
issues xvi, D-1
macros D-6
requirements xxv
rules D-1

portable.h file D-6
pragma D-2
printing

message 7-97
privileged time 2-7
procedure

control 5-34
process time 2-7
producer

registering 7-87
programmable interrupt controller (PIC) 8-1
programmed I/O 2-5, 5-16
promiscuous mode 2-11, 5-47

bit 3-25
PROT_ID structure xx
protocol stack

defined 1-2
public variable 3-1
PUT_HILO_UINTx macro D-19
PUT_LOHI_UINTx macro D-20
PUT_UINTx macro D-21

R
raw send 3-24, 4-14
RCBDriverWS field 4-10
RCBFragmentCount field 4-10
RCBFrags field 4-11
RCBReserved field 4-10
Rdx function 8-32
Receive Control Block (RCB) 4-10, B-10

definition 4-8
example 4-10
structure 4-10

reception
packet 4-8

reception methods 5-15
reentrancy 2-11
referenced documents xxvi
REG_TYPE enumeration xxiv
registering

with CMSM 5-3
with CTSM 5-3
with LSL 5-8

registering a consumer 7-83
registering a producer 7-87
registering hardware options 5-7
resource

freeing hardware 8-10
retries at sending packet 3-18
revision level

CHSM 3-17
ROUTE.NLM 2-12

S
scheduling

timout callback 5-9
sending packets

number of retries 3-18
Setx function 8-34
shared interrupt 5-17
shared RAM 2-5, 5-16
sharing flags field 3-29
sizeof operator D-3
Slow function 8-36
source file

creating
NetWare/Intel C-1

source routing 2-12
document xxvi, 2-12

specification
prerequisites xvii

specification version number 3-34
specification version string 3-34
speed

topology 3-16
25

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

STAT_TABLE structure 3-36
STAT_TABLE_ENTRY structure 3-35
statistics counter

custom 3-35
generic 3-35

media specific 3-35
statistics table 3-35

entry 3-35
media specific counter

description 3-41
MLID

major version number 3-36
minor version number 3-36

string parsing 4-24
structure

CONFIG_TABLE 3-11
DRIVER

OPTION 4-19
DRIVER_DATA xviii
DRIVER_OPTION 4-19
DRIVER_PARM 3-2
ECB B-2
EPB 7-77, 7-80, E-3
EXTRA_CONFIG 7-109
fragment 4-8, B-2
FRAGMENT_LIST_STRUCT 7-21, 7-143
FRAGMENT_STRUCT 4-8, B-2
IO_CONFIG 7-111
MLID_AES_ECB 7-129
MLID_AESECB 7-129
MODULE_HANDLE xx
MULTICAST_TABLE xx
NESL_ECB 7-84, 7-88, E-4
NODE_ADDR xx
PROT_ID xx
RCB 4-10
STAT_TABLE 3-36
STAT_TABLE_ENTRY 3-35

support modules
defined 1-7
HSM (Hardware Specific Module) defined 1-9
MSM (Media Support Module) defined 1-8
TSM (Topology Specific Module) defined 1-8

T
TCBDataLen field 4-13
TCBDriverWS field 4-13
TCBFragHeader field 4-13
TCBFragmentCount field 4-13
TCBMediaHeader field 4-14
TCBMediaHeaderLen field 4-14
timeout callback

scheduling 5-9
timeout detection 5-2, 5-61

CHSM 2-3
media specific counter

TokenRing 3-41
TOKENTSM.NLM file 1-8, 6-1
topology

speed 3-16
translation limit D-4
transmission

packet 4-12
Transmit Control Block (TCB) B-11

definition 4-12
TRN_AbortDelimiterCounter field 3-41
TRN_ACErrorCounter field 3-41
TRN_BurstErrorCounter field 3-41
TRN_FrameCopiedErrorCounter field 3-42
TRN_FrequencyErrorCounter field 3-42
TRN_InternalErrorCounter field 3-42
TRN_LastBeaconType field 3-43
TRN_LastRingID field 3-43
TRN_LastRingStatus field 3-42
TRN_LineErrorCounter field 3-42
TRN_LostFrameCounter field 3-43
TRN_TokenErrorCounter field 3-43
TRN_UpstreamNodeAddress field 3-43
typedef

definitions xviii

U
UINT16 definition xvii
UINT32 definition xvii
26 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

UINT64 definition xvii
UINT8 definition xvii
UINTx_EQUAL macro D-22
UNUSED xvii, 6-20, 6-27

V
VALUE_FROM_HILO_UINTx macro D-23
VALUE_FROM_LOHI_UINTx macro D-24
VALUE_TO_HILO_UINTx macro D-25
VALUE_TO_LOHI_UINTx macro D-26
variable

CHSM 2-4
vector number

interrupt 3-20
version number

MLID
configuration table 3-12
statistics table 3-36

void* D-3

W
whitespace character 4-24
Wrtx function 8-37
27

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

28 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

c h a p t e r Trademarks
S
p

e
c

 v
1

.1
1

 - D
o

c
 v1

.1
3

y
t of

c.

n
Novell, Inc. has attempted to supply trademark information about compan
names, products, and services mentioned in this manual. The following lis
trademarks was derived from various sources.

Novell Trademarks
Hardware Specific Module, HSM, and CHSM are trademarks of Novell, In

Internetwork Packet Exchange and IPX are trademarks of Novell, Inc.

Link Support Layer and LSL are trademarks of Novell, Inc.

MAC is a trademark of Novell, Inc.

Media Support Module, MSM, and CMSM are trademarks of Novell, Inc.

Multiple Link Interface Driver and MLID are trademarks of Novell, Inc.

Multiple Protocol Interface and MPI are trademarks of Novell, Inc.N-Desig
is a registered trademark of Novell, Inc.

N-Design is a registered trademark of Novell, Inc.

NE1000, NE2000, NE2100, NE/2, NE2-32, NTR2000 are trademarks of
Novell, Inc.

NetWare is a registered trademark of Novell, Inc.

NetWare Access Services is a trademark of Novell, Inc.

NetWare Core Protocol and NCP are trademarks of Novell, Inc.

NetWare Directory Services and NDS are trademarks of Novell, Inc.

NetWare DOS Requester and NDR are trademarks of Novell, Inc.

NetWare Express is a trademark of Novell, Inc.

NetWare Management Agent is a trademark of Novell, Inc.

NetWare Loadable Module and NLM are trademarks of Novell, Inc.

NetWare Logotype is a registered trademark of Novell, Inc.

NetWare Requester is a trademark of Novell, Inc.

NetWare Run-time is a trademark of Novell, Inc.

Novell is a registered trademark of Novell, Inc.

NetWare System Interface and NSI are trademarks of Novell, Inc.
-29

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

S
p

e
c

 v
1

.1
1

 -
 D

o
c

 v
1

.1
3

ell,

.

Novell Embedded Systems Technology and NEST are trademarks of Nov
Inc.

Novell Labs is a trademark of Novell, Inc.

Open Data-Link Interface and ODI are trademarks of Novell, Inc.

Packet Burst is a trademark of Novell, Inc.

RX-Net is a trademark of Novell, Inc.

SFT is a trademark of Novell, Inc.

Topology Specific Module, TSM, and CTSM are trademarks of Novell, Inc

Transactional Tracking System and TTS are trademarks of Novell, Inc.

Virtual Loadable Module and VLM are trademarks of Novell, Inc.

Third-Party Trademarks
AMP is a trademark of AMP Inc.

AppleTalk is a registered trademark of Apple Computer, Inc.

IBM is a registered trademark of International Business Machines
Corporation.

IBM Operating System/2 Local Area Network Server (LAN Server) is a
trademark of International Business Machines Corporation.

LAT is a trademark of Digital Equipment Corporation.
-30 ODI Specification: Hardware Specific Modules (HSMs) (C Language)

ODI Specification: Hardware Specific Modules (HSMs) (C Language)
Part Number: 107-000053-001

January 29, 1998

	disclaimer
	Further, Novell, Inc. makes no representations or warranties with respect to any NetWare software...
	trademarks
	Contents

	1 Introduction to ODI
	2 ODI C Language HSM Overview
	3 CHSM Data Structures and Variables
	4 CMSM/CTSM Structures and Variables
	5 CHSM Functions
	6 CTSM Functions
	7 CMSM Functions
	8 NetWare Bus Interface
	Figures
	Tables
	Preface
	Overview
	Prerequisites to Using this Manual
	Manual Conventions
	Data Type Definitions
	Structure Definitions
	DRIVER_DATA Structure
	MODULE_HANDLE Structure
	GROUP_ADDR_LIST_NODE_ Structure
	NODE_ADDR Structure
	PROT_ID Structure
	CHSM_STACK Structure

	Enumeration Definitions
	AES_TYPE Enumeration
	BOOLEAN Enumeration
	ODI_NBI Enumeration
	ODISTAT Enumeration
	ODI_STAT Enumeration
	REG_TYPE Enumeration
	OPERATION_SCOPE Enumeration

	Portability Requirements
	Referenced Documents
	1 Introduction to ODI

	Overview
	Open Data�Link Interface (ODI)
	Figure�1�1 The ODI Specification Elements
	Protocol Stacks
	Figure�1�2 How ODI Fits into the OSI Model

	The Multiple Protocol Interface (MPI)
	Figure�1�3 The Multiple Protocol Interface (MPI)

	Link Support Layer (LSL)
	Multiple Link Interface Drivers (MLIDs)
	MLID Functionality
	The Multiple Link Interface (MLI)
	Figure�1�4 The Multiple Link Interface (MLI)

	LAN Driver Toolkit
	Figure�1�5 MLID Modules
	C Language Media Support Module (CMSM)
	C Language Topology Specific Module (CTSM)
	C Language Hardware Specific Module (CHSM)

	NetWare Bus Interface (NBI)

	Data Flow
	Send Data Flow
	Figure�1�6 Data Flow from Application to LSL
	Figure�1�7 Data Flow from the LSL to the Board
	Figure�1�8 Data Flow from the Board to the Wire

	Receive Data Flow
	Figure�1�9 Receive Data Flow from Wire to Application
	2 ODI C Language HSM Overview

	Overview
	CHSM Procedures
	Initialization
	Board Service Routine
	Packet Transmission
	Control Procedures
	Timeout Detection
	Driver Removal

	CHSM Data Structures and Variables
	CHSM Design Considerations
	Topology Issues
	Hardware Issues
	Network Interface Controllers
	Data Transfer Mode
	Bus Type

	NetWare Environment Issues
	Interrupt Service Routine

	Execution Times
	Process Time
	Privileged Time
	Table�2�1 Execution Time of MLID Routines�

	Code and Data Space
	Frame Data Space
	Adapter Data Space
	Adapter Code Space
	Figure�2�1 Implementation of Multiple Frame Support

	Special Support
	Reentrancy
	Multicast Addressing
	Promiscuous Mode

	Optional Support
	Hub Management
	Source Routing
	Brouter (Source Route Bridging)

	NESL Support
	3 CHSM Data Structures and Variables
	Overview
	1. CMSM.NLM
	2. <CTSM>.NLM
	3. <C HSM>.LAN

	Driver Parameter Block
	Driver Parameter Block Structure
	Table�3�1 Driver Parameter Block Field Descriptions continued

	Frame Data Space
	Figure�3�1 Frame and Adapter Data Space

	Configuration Table
	Driver Configuration Table Template
	Table�3�2 Driver Configuration Table Field Descriptions continued

	MLIDCFG_ModeFlags Field
	Figure�3�2 MLIDCFG_ModeFlags Field Default Values
	Table�3�3 MLIDCFG_ModeFlags Bits Description continued

	MLIDCFG_Flags Field
	Figure�3�3 MLIDCFG_Flags Field
	Table�3�4 MLIDCFG_Flags Bits Description

	MLIDCFG_SharingFlags Field
	Figure�3�4 MLID_SharingFlags Field Default Values
	Table�3�5 MLIDCFG_SharingFlags Bits Description

	Maximum Packet Size
	Table�3�6 Frame Types Versus Size Fields�
	Example

	Driver Adapter Data Space
	Figure�3�5 Driver Frame and Adapter Data Space
	Specification Version String

	Driver Statistics Table
	STAT_TABLE_ENTRY Structure
	Field Descriptions

	Statistics Table Structure
	Table�3�7 MLID Statistics Table Fields
	Example

	Table�3�8 MLID Statistics Table Generic Counters continued

	MLID Statistics Table Media Specific Counters
	Token�Ring Counters
	Table�3�9 Media Specific Counters for Token-Ring continued
	Ethernet Counters

	Table�3�10 Media Specific Counters for Ethernet continued
	FDDI Counters

	Table�3�11 Media Specific Counters for FDDI continued

	Driver Firmware
	DriverFirmwareSize Value
	DriverFirmwareBuffer Value
	4 CMSM/CTSM Structures and Variables

	Overview
	The CMSM Data Access Function and CMSM Variables
	Data Structures

	CMSM Data Access
	DADSP_TO_CMSMADSP Macro
	CMSMVirtualBoardLink Pointers
	Ethernet Example
	Token�Ring Example
	FDDI Example

	CMSMDefaultVirtualBoard Pointer
	CMSMStatusFlags Variable
	CMSMTxFreeCount Variable
	CMSMPriorityTxFreeCount
	CMSMMaxFrameHeaderSize Variable
	CMSMPhysNodeAddress Variable

	Data Structures
	Figure�4�1 Packet Transfer through the MLID
	Fragment Structure
	Table�4�1 Fragment Structure Field Descriptions

	Receive Control Blocks (RCBs)
	RCB Structure
	Table�4�2 Programmed RCB Field Description

	Transmit Control Blocks (TCBs)
	1. The protocol stack assembles a list of fragment pointers in a transmit ECB.
	2. The protocol stack passes the ECB to the LSL.
	3. The LSL transfers the ECB to the CTSM
	4. The CTSM processes the information and builds a TCB. (The TCB structure consists of the packet...
	5. The CTSM directs the TCB to the appropriate CHSM.
	6. The CHSM collects the header and the packet fragments and transmits the packet.

	TCB Structure
	Table�4�3 TCB Field Descriptions continued

	CMSM_CONFIG_TABLE
	CMSMCFG_TableSize
	CMSMCFG_TableMajorVersion
	CMSMCFG_TableMinorVersion
	CMSMCFG_ModuleMajorVersion
	CMSMCFG_ModuleMinorVersion
	CMSMCFG_ODISpecMajorVersion
	CMSMCFG_ODISpecMinorVersion
	CMSMCFG_Reserved
	CMSMCFG_MaxNumberOfBoards
	CMSMCFG_SystemFlags

	CTSM_CONFIG_TABLE
	CTSMCFG_TableSize
	CTSMCFG_TableMajorVersion
	CTSMCFG_TableMinorVersion
	CTSMCFG_ModuleMajorVersion
	CTSMCFG_ModuleMinorVersion
	CTSMCFG_ODISpecMajorVersion
	CTSMCFG_ODISpecMinorVersion
	CTSMCFG_Reserved
	CTSMCFG_MaxFrameSize
	CTSMCFG_SystemFlags
	DRIVER_OPTION Structure
	Table�4�4 Interpretation of Parameter0, Parameter1, and Parameter2
	Link
	ParseString
	Min
	OptionPtr
	Max
	Range
	Default
	StringDefault
	Type
	Flags
	String
	ParseString Field

	Table�4�5 Input and Results for Each Character Type
	5 CHSM Functions

	Overview
	Initialization
	Registering with the CMSM/CTSM
	Determining Hardware Options
	1. If the CHSM supports an adapter with a product ID that is retrievable according to a standard,...
	2. If the CHSM needs certain parameter values to determine other parameter values, it should call...

	Registering Hardware Options
	Initializing the Adapter
	Registering with the LSL
	Setting up a Board Service Routine
	Scheduling Timeout Callbacks
	Driver Removal

	DriverInit
	The initialization routine is called by the loader when it loads the CHSM.
	Syntax
	Input Parameters
	ModuleHandle
	ScreenHandle
	CommandLine
	ModuleLoadPath
	UninitizedDataLength
	CustomDataFileHandle
	FileRead
	CustomDataOffset
	CustomDataSize
	NumMsgs
	Msgs

	Output Parameters
	Return Values
	Remarks

	DriverRemove
	Causes the CHSM to return its resources prior to being unloaded.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks
	Board Service Routine
	Packet Reception
	Reception Methods
	Reception Method—Option 1
	1. The CHSM calls CMSMAllocateRCB to get an RCB (unless it already has one from Step 5 below). If...
	2. The CHSM copies the received packet into the RCB.
	3. The CHSM calls <CTSM>ProcessGetRCB.
	4. The CTSM checks the frame header information and fills in the remainder of the RCB fields.
	5. The CTSM returns the RCB to the operating system and gets a new RCB for the CHSM. If no RCB is...

	Reception Method—Option 2
	1. The CHSM sets up a lookahead buffer.
	2. The CHSM calls <CTSM>GetRCB with a pointer to the lookahead buffer.
	3. The CTSM filters the packet and frame header and passes the lookahead data to the LSL. If a pr...
	4. The CHSM copies the remainder of the packet into the RCB and calls <CTSM>RcvComplete. If no RC...

	Reception Method—Option 3
	1. The CHSM obtains an ECB by calling CMSMAllocateRCB and queues it until it is needed for a rece...
	2. The firmware filters the frame header information and all fields of the ECB as described in Ap...
	3. The CHSM calls <CTSM>RcvComplete to return the ECB after it is completely filled in.

	Reception Method—Option 4
	1. The CHSM sets up a LookAhead buffer.
	2. The CHSM calls <CTSM>GetRCB with packetSize set to UNUSED before it has received the entire pa...
	3. The CTSM checks the frame header information and passes the LookAhead data to the LSL. (The CT...
	4. The CHSM copies the remainder of the packet into the RCB and calls <CTSM>RCVCompleteStatus. If...

	Using Shared Interrupts
	Table�5�1 DriverEndofChainFlag Values�

	DriverISR
	Called by the CMSM when a hardware interrupt is detected.
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return Values
	Remarks
	Packet Reception Event
	Transmission Complete Event
	1. Return the TCB using <CTSM>SendComplete if the TCB was not returned during DriverSend.
	2. Increment the number of available transmit resources using CMSMTxFreeCount.
	1. Discard the packet.
	2. Return the TCB using <CTSM>SendComplete if the TCB was not returned during DriverSend.
	3. Increment the number of available transmit resources using CMSMTxFreeCount.

	DriverPoll
	Services the adapter.
	Syntax
	Input Parameters
	driverData
	configTable

	Return Values
	Remarks
	Packet Transmission
	Transmission Methods
	Transmission Method—Option 1
	1. The CHSM sets CMSMTxFreeCount to the maximum number of packets that the adapter can buffer (pe...
	2. The CTSM receives an ECB, processes the information, and constructs a TCB. The TCB structure c...
	3. The CTSM decrements CMSMTxFreeCount and calls DriverSend with a pointer to a filled in TCB str...
	4. The CHSM calls <CTSM>SendComplete after the packet has been buffered onto the adapter or after...
	5. The CHSM increments CMSMTxFreeCount after the adapter completes the transmission (typically pe...

	Transmission Method—Option 2
	1. The CHSM sets the DriverSendWantsECBs field in the DRIVER_PARM structure to 1 and sets CMSMTxF...
	2. The CTSM decrements CMSMTxFreeCount and calls DriverSend with a pointer to the configuration t...
	3. The CHSM adds the media header and sends the packet.
	4. The CHSM calls either <CTSM>SendComplete after the packet has been buffered onto the adapter o...
	5. The CHSM increments CMSMTxFreeCount after the adapter completes the transmission (typically pe...

	Priority Transmission Support
	1. During DriverInit, the CHSM sets the following parameters:
	2. The protocol stack sets the ECB_StackID field to a value greater than or equal to 0x0FFF0. The...
	3. The CTSM normally gives the packet to the CHSM directly, as a TCB using the DriverSend functio...
	4. The CHSM calls <CTSM>BuildTransmitControlBlock to build a TCB whenever a priority transmit res...
	5. After the CHSM has transmitted the TCB returned by <CTSM>BuildTransmitControlBlock, the CHSM c...

	Adapters that Need Physical Addresses
	1. For TCBs, fragment pointers all contain physical addresses pointed to locked, contiguous buffers.
	2. For ECB aware adapters and for send ECBs, pointers to the ECB can be converted to a physical a...
	3. <CTSM>ProcessGetRCB returns an RCB with locked, contiguous, physical addresses in the fragment...

	DriverPriorityQueueSupport
	Called by <CTSM> before it queues a priority packet.
	Syntax
	Parameters
	ecb
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks

	DriverSend
	Transfers a frame onto the LAN medium.
	Syntax
	Input Parameters
	driverData
	configTable
	tcb
	paddedLen
	ecbPhysicalPtr

	Output Parameters
	Return Values
	Remarks
	Pseudocode
	Control Procedures
	Table�5�2 Code Path of Control Functions continued

	DriverReset
	Resets and initializes the specified part of the MLID.
	Syntax
	Input Parameters
	driverData
	configTable
	operationScope

	Output Parameters
	Return Values
	Remarks
	OP_SCOPE_ADAPTER

	Pseudocode

	DriverShutdown
	Releases the HSM resources associated with the entity being shutdown. If an adapter is being shut...
	Syntax
	Input Parameters
	driverData
	configTable
	shutdownType
	operationScope

	Output Parameters
	Return Values
	Remarks
	OP_SCOPE_ADAPTER
	SHUTDOWN_PARTIAL
	1. Sets CMSMStatusFlag to SHUTDOWN.
	2. Sets the MS_SHUTDOWN_BIT of the MLIDCFG_SharingFlags field in the configuration table.
	3. Waits for the transmissions in progress to complete
	4. Returns the transmit ECBs.

	SHUTDOWN_PERMANENT
	1. Sets CMSMStatusFlag to SHUTDOWN.
	2. Sets the MS_SHUTDOWN_BIT of the MLIDCFG_SharingFlags field in the configuration table.
	3. Empties the send queue.
	4. Returns all resources not allocated directly by the C HSM.

	OP_SCOPE_LOGICAL _BOARD
	SHUTDOWN_PARTIAL
	SHUTDOWN_PERMANENT

	Pseudocode

	DriverMulticastChange
	Updates the adapter to reflect the changes in the CTSM’s functional address table.
	Syntax
	Input Parameters
	driverData
	configTable
	groupAddrListNode
	numEntries
	funAddrBits

	Output Parameters
	Return Values
	Remarks
	Adapter Multicast Filtering

	Pseudocode

	DriverPromiscuousChange
	Provides a means for the stack monitor function to enable or disable promiscuous reception.
	Syntax
	Input Parameters
	driverData
	configTable
	changeTo
	 (see Remarks section below).

	Output Parameters
	Return Values
	Remarks
	Pseudocode

	DriverStatisticsChange (optional)
	Allows the CMSM to notify MLIDs whenever an application requests IOCTL 1 (get MLID statistics).
	Syntax
	Input Parameters
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks
	See Also

	DriverRxLookAheadChange (optional)
	Allows the CMSM to notify CHSMs after an application invokes IOCTL 9 to set the lookahead size.
	Syntax
	Input Parameters
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks
	See Also

	DriverManagement (optional)
	Processes management requests if an MLID accepts management commands from outside NLMs (such as h...
	Syntax
	Input Parameters
	driverData
	configTable
	ecbp

	Output Parameters
	Return Values
	See Also

	DriverEnableInterrupt
	Called by the CMSM through the driver parameter block to enable the adapter’s interrupt(s) at the...
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return Values
	Remarks

	DriverDisableInterrupt
	Called by the CMSM through the driver parameter block to disable the adapter’s interrupt(s) at th...
	Syntax
	Input Parameters
	driverData
	flag

	Output Parameters
	Return Values
	Remarks
	See Also

	DriverDisableInterrupt2
	Called by the CMSM through the driver parameter block to disable the adapter's interrupt(s) at th...
	Syntax
	Input Parameters
	driverData
	flag

	Output Parameters
	None.

	Return Values
	TRUE
	FALSE

	Remarks
	See Also
	Timeout Detection

	DriverAES
	DriverAES is an event service routine.
	Syntax
	Input Parameters
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks
	Pseudocode
	6 CTSM Functions

	Overview

	<CTSM>BuildTransmitControlBlock
	The C HSM calls this function when it is ready to send a priority packet that has been queued usi...
	Syntax
	Input Parameters
	driverData
	ecb

	Output Parameters
	tcb
	pktSize

	Return Values
	Remarks

	<CTSM>CancelPrioritySend
	The CHSM calls this function to cancel/return an ECB that has not been sent.
	Syntax
	Input Parameters
	driverData
	ecb

	Output Parameters
	Return Values
	Remarks

	<CTSM>FastProcessGetRCB
	Called by the CHSM to process an RCB for a received packet and to preallocate a new nonfragmented...
	Syntax
	Input Parameters
	driverData
	rcb
	pktSize
	rcvStatus
	newRcbSize

	Output Parameters
	Return Values
	Remarks
	See Also

	<CTSM>FastRcvComplete
	Called by the CHSM to direct a completed RCB to the protocol stack.
	Syntax
	Input Parameters
	driverData
	rcb

	Output Parameters
	Return Values
	Remarks
	See Also

	<CTSM>FastRcvCompleteStatus
	Allows the CTSM to fill in the proper packet length fields of the RCB, record the error status, a...
	Syntax
	Input Parameters
	driverData
	rcb
	packetLength
	packetStatus

	Output Parameters
	Return Values
	Remarks
	See Also

	<CTSM>FastSendComplete
	Called by the CHSM’s DriverSend or DriverISR routine to release a TCB after a packet has been tra...
	Syntax
	Input Parameters
	driverData
	tcb
	transmitStatus

	Output Parameters
	Return Values
	Remarks
	See Also

	<CTSM>GetConfigInfo
	Allows a C HSM to get the configuration information for the <CTSM>, including module and ODI spec...
	Syntax
	Input Parameters
	nBytes

	Output Parameters
	configInfo
	nBytes

	Return Valuess
	Remarks

	<CTSM>GetHSMIFLevel
	Gets the interface level between the CHSM and CTSM.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	<CTSM>GetRCB
	Called by the CHSM to pass lookahead data to the CTSM, and to get a fragmented RCB for the remain...
	Syntax
	Input Parameters
	driverData
	lookAheadData
	pktSize
	rcvStatus

	Output Parameters
	startBytes
	numBytes

	Return Values
	Remarks
	Bus Master Adapters
	Pipeline Adapters

	<CTSM>ProcessGetRCB
	Called by the CHSM to process an RCB for a received packet and to preallocate a new nonfragmented...
	Syntax
	Input Parameters
	driverData
	rcb
	pktSize
	rcvStatus
	newRcbSize

	Output Parameters
	Return Values
	Remarks
	Ethernet
	Token�Ring
	FDDI

	See Also

	<CTSM>RcvComplete
	Called by the CHSM to direct a completed RCB to the LSL’s holding queue to await processing.
	Syntax
	Input Parameters
	driverData
	rcb

	Output Parameters
	Return Values
	Remarks

	<CTSM>RcvCompleteStatus
	Allows the CTSM to fill in the packet length of the RCB fields, record the error status, and dire...
	Syntax
	Input Parameters
	driverData
	rcb
	packetLength
	packetStatus

	Output Parameters
	Return Values
	Remarks

	<CTSM>RegisterHSM
	Initially registers the CHSM with the CTSM and CMSM.
	Syntax
	Input Parameters
	DriverParameterBlock

	Output Parameters
	configTable

	Return Values
	Remarks

	<CTSM>SendComplete
	Called by the CHSM’s DriverSend or DriverISR routine to return a TCB after a packet has been tran...
	Syntax
	Input Parameters
	driverData
	tcb
	transmitStatus

	Output Parameter
	Return Values
	Remarks

	<CTSM>UpdateMulticast
	Forces the CTSM to call DriverMulticastChange.
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return Values
	Remarks
	7 CMSM Functions

	Overview

	CMSMAddToCounter
	Adds a user-specified value to the counter pointed to by STAT_TABLE_ENTRY.
	Syntax
	Input Parameters
	StatTableEntryPtr
	value

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMAlloc
	Used by the CHSM to allocate memory at process time.
	Syntax
	Input Parameters
	driverData
	nbytes

	Output Parameters
	Return Values
	Remarks
	Example

	CMSMAllocateMultipleRCBs
	Allocates a block of RCBs for packets to be received by the CHSM.
	Syntax
	Input Parameters
	driverData
	nbytes
	nRCBs
	physicalRCB

	Output Parameters
	nRCBs
	physicalRCB

	Remarks
	See Also

	CMSMAllocPages
	Allocates a system, page-aligned, memory buffer at process time.
	Syntax
	Input Parameters
	driverData
	nbytes

	Output Parameters
	Return Values
	Remarks

	CMSMAllocateRCB
	Allocates an RCB for a packet received by the CHSM, or preallocates an RCB for a packet the CHSM ...
	Syntax
	Input Parameters
	driverData
	nbytes

	Output Parameters
	physicalRCB

	Return Values
	Remarks
	Ethernet
	Token�Ring
	FDDI

	See Also

	CMSMCancelAES
	Called to cancel an AES event.
	Syntax
	Input Parameters
	driverData
	mlidAESECB

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMControlComplete
	Called to notify the CMSM that the previously scheduled event has completed.
	Syntax
	Input Parameters
	driverData
	controlFunction
	completionStatus

	Output Parameters
	Return Values
	Remarks
	CHSM_COMPLETE Enumeration

	See Also

	CMSMDeRegisterResource
	Allows a C HSM to deregister resources registered with CMSMRegisterResource.
	Syntax
	Input Parameters
	driverData
	extraConfig
	pAsyncECB

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMDriverRemove
	Called by the CHSM’s DriverRemove function to deregister the CHSM and return all CHSM resources a...
	Syntax
	Input Parameters
	moduleHandle

	Output Parameters
	Return Values
	Remarks

	CMSMECBPhysToLogFrags
	For transmissions, if MM_FRAGS_PHYS_BIT is set and the adapter is ECB aware, this function gets t...
	Syntax
	Input Parameters
	ecb

	Output Parameters
	Return Values
	Remarks
	FRAGMENT_LIST_STRUCT Structure
	FragmentCount
	FragmentStruct

	CMSMEnablePolling
	Used during DriverInit to enable the operating system to periodically call DriverPoll if the CHSM...
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMFree
	Must be used by the CHSM before it permanently shuts down, to return any memory allocated with CM...
	Syntax
	Input Parameters
	driverData
	dataPtr

	Output Parameters
	Return Values
	Remarks
	Example

	CMSMFreePages
	Returns the system, page-aligned memory buffers allocated by CMSMAllocPages.
	Syntax
	Input Parameters
	driverData
	dataPtr

	Output Parameters
	Return Values
	Remarks

	CMSMGetAlignment
	Called to obtain the alignment requirements of the underlying platform.
	Syntax
	Input Parameters
	type

	Output Parameters
	Return Values
	Remarks

	CMSMGetBusInfo
	Returns the size of the bus addresses associated with busTag.
	Syntax
	Input Parameters
	busTag

	Output Parameters
	physicalMemAddrSize
	ioAddrSize

	Return Values

	CMSMGetBusSpecificInfo
	Returns supplementary information about the specified bus.
	Syntax
	Input Parameters
	busTag
	size

	Output Parameters
	busSpecificInfo

	Return Values
	Remarks

	CMSMGetBusType
	Returns a value that indicates the bus type of the bus specified by busTag.
	Syntax
	Input Parameters
	busTag

	Output Parameters
	busType (Defined in odi_nbi.h)

	Return Values
	Remarks

	CMSMGetCardConfigInfo
	Retrieves and returns configuration information for bus architectures that keep information on a ...
	Syntax
	Input Parameters
	busTag
	uniqueIdentifier
	size
	parm1
	parm2

	Output Parameters
	configInfo

	Return Values
	Remarks
	EISA Bus
	Micro Channel Bus
	PCI Bus
	PNP ISA
	PC Card (PCMCIA) Bus
	CardBus Bus

	CMSMGetConfigInfo
	Allows a C HSM to get the configuration information for the C MSM, including module and ODI speci...
	Syntax
	Input Parameters
	nBytes

	Output Parameters
	configInfo
	nBytes

	Return Values
	Remarks
	See Also

	CMSMGetCurrentTime
	Determines the elapsed time (using the current relative time) for some of the CHSM-related activi...
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks
	Example
	See Also

	CMSMGetHINFromHINName
	Gets the Hardware Instance Number (HIN) associated with a HIN name.
	Syntax
	Input Parameters
	hinName

	Output Parameters
	hin

	Return Values
	Remarks
	See Also

	CMSMGetHINNameFromHIN
	Gets the name associated with a Hardware Instance Number (HIN).
	Syntax
	Input Parameters
	hin

	Input/Output Parameters
	hinName

	Return Values
	Remarks
	See Also

	CMSMGetInstanceNumber
	Retrieves the instance number of the specified device or function on the specified bus.
	Syntax
	Input Parameters
	busTag
	uniqueIdentifier

	Output Parameters
	instanceNumber

	Return Values
	Remarks

	CMSMGetInstanceNumberMapping
	Retrieves the bus tag and unique identifier associated with the specifed instance number.
	Syntax
	Input Parameters
	instanceNumber

	Output Parameters
	busTag
	uniqueIdentifier

	Return Values
	Remarks

	CMSMGetMicroTimer
	Returns a counter that is incremented once per microsecond.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	CMSMGetPhysical
	Converts a logical address to a physical one.
	Syntax
	Input Parameters
	logicalAddr

	Output Parameters
	Return Values
	Remarks

	CMSMGetPhysList
	Obtains the physical address list equivalent of the input LogicalAddress list.
	Syntax
	Input Parameters
	inputFragCount
	inputFragList
	driverData

	Output Parameters
	outputFragCount
	outputFragList

	Return Values
	Remarks

	CMSMGetPollSupportLevel
	Allows a polled driver/adapter to ascertain the level polling supported by the operating system.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	CMSMGetUniqueIdentifier
	Returns a value which uniquely identifies the device or function of an adapter for the specified ...
	Syntax
	Input Parameters
	busTag
	parameters
	parameterCount

	Output Parameters
	uniqueIdentifier

	Return Values
	Remarks
	ISA Bus
	MCA Bus
	EISA Bus
	PC Card (PCMCIA) Bus
	PCI Bus
	PnP ISA Bus�(ODI_BUSTYPE_ISA)
	CardBus Bus

	CMSMGetUniqueIdentifierParameters
	Returns the bus-specific information about the device or the function represented by the given un...
	Syntax
	Input Parameters
	busTag
	uniqueIdentifier
	parameterCount

	Output Parameters
	parameters

	Return Values
	Remarks

	CMSMHardwareFailure
	Called to report a critical or fatal hardware error.
	Syntax
	Input Parameters
	driverData
	failureType
	failMsgString

	Output Parameters
	None.

	Return Values
	Remarks

	CMSMIncrCounter
	Increments the counter pointed to by STAT_TABLE_ENTRY by 1.
	Syntax
	Input Parameters
	statTableEntryPtr

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMInitAlloc
	Used by CHSMs if they must allocate memory prior to calling CMSMRegisterHardwareOptions.
	Syntax
	Input Parameters
	nbytes

	Output Parameters
	Return Values
	Remarks

	CMSMInitParser
	Initializes the parser.
	Syntax
	Input Parameters
	hsmParmBlock

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMNESLDeRegisterConsumer
	Deregisters a consumer of a specific event.
	Syntax
	Input Parameters
	consumer

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMNESLDeRegisterProducer
	Deregisters the producer of a specified event. If the producer is the last producer of the specif...
	Syntax
	Input Parameters
	producer

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMNESLProduceEvent
	Called by an event producer to notify registered consumers that the event has occurred. If the ev...
	Syntax
	Input Parameters
	producerNecb
	eventParmBlock

	Input/Output Parameters
	consumerNecb

	Return Values
	Remarks
	EPB Structure
	EPBMajorVersion
	EPBMinorVersion
	EPBEventName
	EPBEventType
	EPBModuleName
	EPBDataPtr0
	EPBDataPtr1
	EPBEventScope
	EPBReserved

	See Also

	CMSMNESLProduceMLIDEvent
	Called by an event producer to notify registered consumers that the event has occurred. If the ev...
	Syntax
	Input Parameters
	producerNecb
	eventParmBlock
	driverData

	Input/Output Parameters
	consumerNecb

	Return Values
	Remarks
	EPB Structure
	EPBMajorVersion
	EPBMinorVersion
	EPBEventName
	EPBEventType
	EPBmoduleName
	EPBDataPtr0
	EPBDataPtr1
	EPBEventScope
	EPBReserved

	See Also

	CMSMNESLRegisterConsumer
	Registers the consumer of an event. If the producer of the event is not currently registered, the...
	Syntax
	Input Parameters
	consumer

	Output Parameters
	Return Values
	Remarks
	NESL_ECB Structure
	NecbNext
	NecbVersion
	NecbOsiLayer
	NecbEventName
	NecbRefData
	PNecbNotifyProc
	ConsumerNecb
	ProducerNecb
	EventData
	NESL_EVENT_CONSUMED
	NESL_EVENT_NOT_CONSUMED
	NecbOwner
	NecbWorkSpace
	NecbContext

	See Also

	CMSMNESLRegisterProducer
	Registers the producer of an event and creates a consumer list containing the consumers of this e...
	Syntax
	Input Parameters
	Producer

	Output Parameters
	Return Values
	Remarks
	NESL_ECB Structure
	NecbNext
	NecbVersion
	NecbOsiLayer
	NecbEventName
	NecbRefData
	NESL_SORT_CONSUMER_BOTTOM_UP
	NESL_CONSUME_EVENT
	NESL_UNIQUE_PRODUCER
	PNecbNotifyProc
	NecbOwner
	NecbWorkSpace
	NecbContext

	See Also

	CMSMParseDriverParameters
	Parses the MLID’s parameters.
	Syntax
	Input Parameters
	hsmParmBlock
	driverOption

	Output Parameters
	Return Values
	Remarks
	Command Line Parameter Types

	CMSMParseSingleParameter
	Parses for a single parameter specified by driverOption and returns the value in the driverOption.
	Syntax
	Input Parameters
	driverOption

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMPrintString
	Prints the message pointed to by the msg parameter.
	Syntax
	Input Parameters
	configTable
	msgType
	message
	parm1
	parm2

	Output Parameters
	Return Values
	Remarks
	MSG_TYPE Enumeration

	Example
	See Also

	CMSMRdConfigSpacex
	Takes a bus identifier and an offset from the bus’s configuration space and performs the necessar...
	Syntax
	Input Parameters
	busTag
	uniqueIdentifier
	offset

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMReadPhysicalMemory
	Copies a block of memory that the MLID might not have the right to access into a buffer that the ...
	Syntax
	Input Parameters
	nbytes
	srcBusTag
	physSrcAddr

	Output Parameters
	destAddr

	Return Values
	Remarks
	See Also

	CMSMRegisterHardwareOptions
	Used to register hardware resources with the platform.
	Syntax
	Input Parameters
	configTable

	Output Parameters
	driverData

	Return Values
	Remark

	CMSMRegisterMLID
	Registers the MLID with the LSL.
	Syntax
	Input Parameters
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks
	Example

	CMSMRegisterResource
	Registers a resource such as memory, interrupts, DMA, and I/O ports with the underlying operating...
	Syntax
	Input Parameters
	driverData
	configTable
	extraConfig

	Output Parameters
	Return Values
	Remarks
	EXTRA_CONFIG Structure
	ISRRoutine0
	ISR0Reserved0, ISR0Reserved1, ISR0Reserved2, ISR0Reserved3
	ISRRoutine1
	ISR1Reserved0, ISR1Reserved1, ISR1Reserved2, ISR1Reserved3
	IOConfig

	IO_CONFIG Structure

	CMSMReRegisterHardwareOptions
	Allows a C HSM to deregister its current hardware options and register a new set of hardware opti...
	Syntax
	Input Parameters
	driverData
	newIOConfig
	pAsyncECB

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMResetMLID
	Called by the CHSM to reset the MLID.
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMResumePolling
	Called to re-enable polling after it has been suspended.
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return ValuesReturn Values
	Remarks
	See Also

	CMSMReturnDriverResources
	Returns the MLID’s resources before exiting.
	Syntax
	Input Parameters
	configTable

	Output Parameters
	Return Values
	Remarks
	Example

	CMSMReturnMultipleRCBs
	Returns a linked list of RCBs. This routine is called to discard RCBs, not process them.
	Syntax
	Input Parameters
	rcbp

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMReturnRCB
	Returns an RCB to the LSL. This routine is called to discard the RCB, not to process it.
	Syntax
	Input Parameters
	driverData
	rcbp

	Output Parameters
	Return Values
	Remarks
	Example
	See Also

	CMSMScanBusInfo
	Specifies the buses that are available on the system.
	Syntax
	Input/Output Parameters
	scanSequence

	Output Parameters
	busTag
	busType (Defined in odi_nbi.h)
	busName

	Return Values
	Remarks

	CMSMScheduleAES
	Called during DriverInit to enable a call back to a routine in the CHSM.
	Syntax
	Input Parameters
	driverData
	mlidAESECB

	Output Parameters
	Return Values
	Remarks
	MLID_AES_ECB Structure
	NextLink
	DriverAES
	AesType
	TimeInterval
	AesContext
	AesReserved

	CMSMSearchAdapter
	Takes the bus type and address of a product ID and returns a busTag and a uniqueIdentifier for wh...
	Syntax
	Input Parameters
	busType
	productIDLen
	productID

	Input/Output Parameters
	scanSequence

	Output Parameters
	busTag
	The ODI_BUSTYPE_CARDBUS type value is used only for hardware not using the common silicon method ...
	uniqueIdentifier

	Return Values
	Remarks

	CMSMServiceEvents
	Completes the processing of queued and received packets.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	CMSMSetHardwareInterrupt
	Called by the CHSM’s DriverInit routine to set up a hardware interrupt handler.
	Syntax
	Input Parameters
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks
	Example

	CMSMShutdownMLID
	Called by the C HSM to shut the MLID down.
	Syntax
	Input Parameters
	driverData
	shutdownType

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMSuspendPolling
	Suspends the calling of the DriverPoll procedure until CMSMResumePolling is called.
	Syntax
	Input Parameters
	driverData

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMTCBPhysToLogFrags
	Gets the address of the ECB whose ECB structure contains the logical addresses of the fragments i...
	Syntax
	Input Parameters
	tcb

	Output Parameters
	Return Values
	Remarks
	FRAGMENT_LIST_STRUCT Structure

	CMSMUpdateConfigTables
	Allows a C HSM to tell the tool kit to update all copies of the configuration table for an adapter.
	Input Parameters
	driverData
	configTable

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMWrtConfigSpacex
	Takes a value, a bus identifier, and an offset in the bus’s configuration space and performs what...
	Syntax
	Input Parameters
	busTag
	uniqueIdentifier
	offset
	writeVal

	Output Parameters
	Return Values
	Remarks
	See Also

	CMSMWritePhysicalMemory
	Allows the CHSM to write to memory that is not registered to the CHSM.
	Syntax
	Input Parameters
	nbytes
	destBusTag
	physDestAddr
	srcAddr

	Output Parameters
	Return Values
	Remarks
	See Also
	8 NetWare Bus Interface

	Overview
	Bus Architecture
	Multiple Bus Platforms
	Figure�8�1 Multiple Bus Platform Example

	Memory Mapping and Address Manipulation
	Byte Order

	DMACleanup
	Cleans up, closes down, and releases the resources associated with a DMA operation.
	Syntax
	Input Parameters
	dmaChannel

	Output Parameters
	Return Values
	Remarks

	DMAStart
	Moves data from one location (on one bus) to another location (potentially on a different bus) us...
	Syntax
	Input Parameters
	destBusTag
	destAddrType
	destAddr
	srcBusTag
	srcAddrType
	srcAddr
	len
	dmaChannel
	dmaMode1 and dmaMode2

	Output Parameters
	Return Values
	Remarks

	DMAStatus
	Returns the status of the specified DMA channel.
	Syntax
	Input Parameters
	dmaChannel

	Output Parameters
	Return Values
	Remarks

	FreeBusMemory
	Frees any hardware resources allocated by the function MapBusMemory.
	Syntax
	Input Parameters
	busTag1
	memAddr
	busTag2
	mappedAddr
	len

	Output Parameters
	Return Values
	Remarks
	See Also

	Inx
	Does whatever operations are necessary to get and return the requested data, using the bus tag an...
	Syntax
	Input Parameters
	busTag
	ioAddr

	Output Parameters
	Return Values
	Remarks

	InBuffx
	Takes a bus identifier (busTag), an I/O address in that bus’s I/O address space, a buffer in the ...
	Syntax
	Input Parameters
	buffer
	busTag
	ioAddr
	count

	Output Parameters
	Return Values
	Remarks

	MapBusMemory
	Takes a bus identifier (busTag1), a physical memory address, and a length and makes the described...
	Syntax
	Input Parameters
	busTag1
	memAddr
	busTag2
	len

	Output Parameters
	mappedAddr

	Return Values
	Remarks
	See Also

	MovFastFromBus
	Moves the contents of the source buffer on the adapter to the destination buffer in the CPU’s log...
	Syntax
	Input Parameters
	destAddr
	srcBusTag
	reserved
	srcAddr
	count

	Output Parameters
	Return Values

	MovFastToBus
	Moves the contents of the source buffer in the CPU logical address space into the destination buf...
	Syntax
	Input Parameters
	destBusTag
	reserved
	destAddr
	srcAddr
	count

	Output Parameters
	Return Values

	MovFromBusx
	Moves the contents of the source buffer on the adapter to the destination buffer in the CPU’s log...
	Syntax
	Input Parameters
	destAddr
	srcBusTag
	reserved
	srcAddr
	count

	Output Parameters
	Return Values
	Remarks

	MovToBusx
	Moves the contents of the source buffer in the CPU logical address space into the destination buf...
	Syntax
	Input Parameters
	destBusTag
	reserved
	destAddr
	srcAddr
	count

	Output Parameters
	Return Values
	Remarks

	Outx
	Takes a bus identifier (busTag), a value, and an I/O address in that bus’s address space and perf...
	Syntax
	Input Parameters
	busTag
	ioAddr
	outputVal

	Output Parameters
	Return Values
	Remarks

	OutBuffx
	Takes a bus identifier (busTag), an I/O address in that address space, a buffer in the CPU’s logi...
	Syntax
	Input Parameters
	busTag
	ioAddr
	buffer
	count

	Output Parameters
	Return Values
	Remarks

	Rdx
	Takes a bus identifier and a physical memory address in that bus’s memory address space and perfo...
	Syntax
	Input Parameters
	busTag
	reserved
	memAddr

	Output Parameters
	Return Values

	Setx
	Fills a buffer with a specified value.
	Syntax
	Input Parameters
	busTag
	reserved
	memAddr
	value
	count

	Output Parameters
	Return Values.
	Remarks

	Slow
	A 0.5 microsecond NOP.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	Wrtx
	Takes a value, a bus identifier, and a memory address in that bus’s memory address space and perf...
	Syntax
	Input Parameters
	busTag
	reserved
	memAddr
	writeVal

	Output Parameters
	Return Values
	A Language Enabling
	Overview
	Language Enabling Procedure
	1. Make sure you have the NetWare Client SDK software development kit.
	2. Complete your CHSM to this specification.
	3. Use the language enabling tools on the completed CHSM to language enable your CHSM.
	B Event Control Blocks (ECBs)

	Overview
	ECB Aware Adapters
	Figure B-1 Packet Transfer through MLID

	Event Control Block Structure
	Table B�1 Fragment Structure and ECB Field Descriptions continued

	Relationship between Receive ECBs and RCBs
	Figure B-2 RCB Correspondence to ECB

	Relationship between Transmit ECBs and TCBs
	Figure B-3 Relationship between TCB and ECB
	C Platform Specific Information

	Overview
	Intel Processors
	Building the CHSM
	Creating the Source Files
	Compiling the Source Files
	Linking the Object Files
	Linker Definition File
	Linker Definition File Example

	Table C�1 Linker Definition File Example Definitions continued
	MLID Configuration File
	Load Keywords and Parameters

	Table C�2 Load Keywords and Parameters Descriptions continued
	D Portability Issues

	Overview
	Portability Rules
	Translation Limits
	Coding Assumptions
	Data Packing and Alignment
	Portability Macros

	COPY_FROM_HILO_UINTx
	Copies data from big endian format to the processor’s format, swapping and/or aligning data as ne...
	Syntax
	Input Parameters
	dest_addr
	src_addr

	Output Parameters
	Return Values
	Remarks

	COPY_FROM_LOHI_UINTx
	Copies data from little endian format to the processor’s format, swapping and/or aligning data as...
	Syntax
	Input Parameters
	src_addr

	Output Parameters
	Return Values
	Remarks

	COPY_TO_HILO_UINTx
	Copies data from the processor’s format to big endian format, swapping and/or aligning data as ne...
	Syntax
	Input Parameters
	destAddr
	srcAddr

	Output Parameters
	Return Values
	Remarks

	COPY_TO_LOHI_UINTx
	Copies data from the processor’s format to little endian format, swapping and/or aligning data as...
	Syntax
	Input Parameters
	destAddr
	srcAddr

	Output Parameters
	Return Values
	Remarks

	COPY_UINTx
	Copies unaligned data from one address to another.
	Syntax
	Input Parameters
	destAddr
	srcAddr

	Output Parameters
	Return Values

	GET_HILO_UINTx
	Gets a value in the processor’s format and converts it to big endian format.
	Syntax
	Input Parameters
	addr

	Output Parameters
	Return Values

	GET_LOHI_UINTx
	Gets a value in the processor’s format and converts it to little endian format.
	Syntax
	Input Parameters
	Output Parameters
	Return Values

	GET_UINTx
	Receives a value from memory that may be misaligned. (These macros do not swap the data.)
	Syntax
	Input Parameters
	addr

	Output Parameters
	Return Value

	HOST_FROM_HILO_UINTx
	Converts a value at a single address from host address to big endian format.
	Syntax
	Input Parameters
	addr

	Output Parameters
	Return Values
	Remarks

	HOST_FROM_LOHI_UINTx
	Converts a value at a single address from host address to little endian format.
	Syntax
	Input Parameters
	addr

	Output Parameters
	Return Values
	Remarks

	HOST_TO_HILO_UINTx
	Converts a value to big endian format when the source and destination are the same.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	HOST_TO_LOHI_UINTx
	Converts a value to little endian format when the source and destination are the same.
	Syntax
	Input Parameters
	Output Parameters
	Return Values
	Remarks

	PUT_HILO_UINTx
	Takes a host-ordered value and stores it in high�low order.
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values

	PUT_LOHI_UINTx
	Takes a host ordered value and stores it in low�high order.
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values

	PUT_UINTx
	Stores a value in memory without changing byte order to a value that may be misaligned. (These ma...
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values

	UINTx_EQUAL
	Compares two groups of bytes for equality.
	Syntax
	Input Parameters
	addr2

	Output Parameters
	Return Values

	VALUE_FROM_HILO_UINTx
	Converts a value from host-order to high�low order.
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values

	VALUE_FROM_LOHI_UINTx
	Converts a value from host-order to low�high order.
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values

	VALUE_TO_HILO_UINTx
	Returns a value in high�low order.
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values

	VALUE_TO_LOHI_UINTx
	Returns a value in low�high order.
	Syntax
	Input Parameters
	value

	Output Parameters
	Return Values
	E NESL Support

	Overview
	Registering and Deregistering Event Producers
	Registering and Deregistering Event Consumers
	NESL Structures
	EPB (Event Parameter Block) Structure
	EPBMajorVersion
	EPBMinorVersion
	EPBEventName
	EPBEventType
	EPBmoduleName
	EPBDataPtr0
	EPBDataPtr1
	EPBEventScope
	EPBReserved

	NESL_ECB Structure
	NecbNext
	NecbVersion
	NecbOsiLayer
	NecbEventName
	NecbRefData
	PNecbNotifyProc
	ConsumerNecb
	ProducerNecb
	EventData
	NESL_EVENT_CONSUMED
	NESL_EVENT_NOT_CONSUMED
	NecbOwner
	NecbWorkSpace
	NecbContext

	Events and Types
	Event Names
	Event Types
	Service Suspend Types
	Suspend Request
	Service Resumed Types
	Service/Status Changed Types

	CMSM NESL String Exports
	NESL Return Codes
	NESL Event Flags
	NESL OSI Layer Definitions

	Glossary
	Abort
	Adapter
	Address
	AES--Asynchronous Event Scheduler
	API--Application Programming Interface
	ARP--Address Resolution Protocol
	Asynchronous process
	Bit
	Broadcast
	Buffer
	Bus
	Byte
	CAM--Content Addressable Memory
	CHSM--C language Hardware Specific Module
	CMSM--C language Media Support Module
	CTSM--C language Topology Specific Module
	Completion code
	Control Block
	Destination Address
	Driver
	ECB--Event Control Block
	EISA--Extended Industry Standard Architecture
	EOI--End of Interrupt
	ESR--Event Service Routine
	Ethernet
	FDDI--Fiber Distributed Data Interface
	Frame
	HIN--Hardware Instance Number
	Interrupt
	IOCTL--I/O Control
	IP--Internet Protocol
	IPX--Internet Packet Exchange
	ISA--Industry Standard Architecture
	ISR--Interrupt Service Routine
	LAN--Local Area Network
	LSL--Link Support Layer
	MAC Header--Media Access Control Header
	Medium
	Micro Channel Architecture
	MLI--Multiple Link Interface
	MLID--Multiple Link Interface Driver
	MMIO--Memory Mapped I/O
	MPI‘--Multiple Protocol Interface
	Multicast
	NIC--Network Interface Controller/Card
	NLM--NetWare Loadable Module
	Node
	Node Address
	ODI--Open Data-Link Interface
	OSI--Open Systems Interconnection
	PC Card
	Packet
	Peripheral Component Interconnect—PCI
	Personal Computer Memory Card International Association—PCMCIA
	PID--Protocol Identification
	Privileged Time
	Process Time
	Protocol
	Pseudocode
	RAM--Random Access Memory
	RCB--Receive Control Block
	ROM--Read Only Memory
	Shared RAM
	Source Address
	SPX--Sequenced Packet Exchange
	Stubbed Routine
	Synchronous Process
	TCB--Transmit Control Block
	TCP--Transmission Control Protocol
	Token-Ring
	TSR--Terminate�and�Stay�Resident
	Virtual Machine
	WAN--Wide Area Network
	Revision History
	1. On page 4-22, under Flags, in the KEYWORDPARAM definition, the following sentence was added:
	2. On page 4-22, under Flags, in the STRINGPARAM definition,
	3. On page 4-24, under ParseString Field, under "The following is the format of the parse string:...
	4. On page 5-46, DriverPromiscuousChange, under Input Parameters, Bit2 and Bit3 was changed to re...
	5. On the following pages: 7-71, 7-73, 7-75, 7-79, 7-83, 7-87,
	6. On page 7-139, under Return Values for CMSMShutdownMLID, the definition for ODISTAT_RESPONSE_D...
	7. On page 7-139, under Remarks for CMSMShutdownMLID, the following paragraph was added:
	8. On page E-2, under Registering and Deregistering Event Consumers,
	9. On page 3-22, the description for MLIDCFG_DBusTag was changed to:
	10. On page 7-116, under Return Values for CMSMResetMLID, the description of ODISTAT_FAIL was cha...
	11. On page 4-2, under Data Structures, Event Control Blocks (ECBs) was deleted and the following...
	12. On page 4-22, the Note after SHARABLE was deleted and the following text was added:
	13. On page 4-25, under Conversion Specifiers, the following sentence was added to the first para...
	14. On page 4-26, after the first paragraph that follows Table 4-5, the following Note was added:
	15. On page 4-27, under Conventions, the following text was added to [abcd]:
	16. On page 7-91, under Return Values for CMSMParseDriverParameters, and on page 7-96, under Retu...
	17. On page 7-105, under Remarks for CMSMRegisterHardwareOptions, the following text was added:
	18. On page 7-32, under PC Card and CardBus Busses, the following text was added as the first par...
	19. On pages 7-34, 7-126, and 7-130, under Output Parameter, busType, the following Note was added:
	20. On pages 7-41 and 7-61, the following Note was added to the CardBus Bus section:
	21. On page 3-3, in the Driver Parameter Block Structure, and on page 3-9, in Table 3-1, "Driver ...
	22. On page 3-29, in Table 3-5, "MLIDCFG_SharingFlags Bits Description", in the description for M...
	23. On page 5-33, under Pseudocode,
	24. On page 5-28, the first sentence of the Note was changed to:
	25. On page 7-20, under CMSMECBPhysToLogFrags, the first sentence of the description at the top o...
	26. On pages 3-2 and 3-3, in the Driver Parameter Block Structure, the following entries were cha...
	27. On page 7-21, under the Remarks section for CMSMECBPhysToLogFrags, the following paragraph wa...
	28. On page 3-27, in Table 3-4, "MLIDCFG_Flags Bits Description", under Bit 10, MF_GRP_ADDR_SUP_B...
	29. On page 3-34, under Specification Version String,
	30. On page 4-10, in Table 4.2, "Programmed RCB Field Description", in the description for RCBRes...
	31. On page 5-45, right before the Ethernet and FDDI heading, the following new paragraph was added.
	32. On page 6-8, in the third Note under Remarks for <CTSM>FastProcessGetRCB, and on page 6-23, i...
	33. On page 7-114, change the last sentence of the fourth paragraph to read as follows:
	34. On page 4-23, under DEFAULTPRESENT and OPTIONALPARAM, change:

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	T rademarks

