
Novell Boot ROM

Developer’s Guide for

DOS Workstations

9 July 1992

Version 1.0

Part Number 107-000026-001

Disclaimer

Novell, Inc. makes no representations or warranties with
respect to the contents or use of this manual, and specifically
disclaims any express or implied warranties of
merchantability or fitness for any particular purpose.
Further, Novell, Inc. reserves the right to revise this
publication and to make changes to its content, at any time,
without obligation to notify any person or entity of such
revisions or changes.

© Copyright 1992 by Novell, Inc. All rights reserved. All
rights reserved. No part of this publication may be
reproduced, photocopied, stored on a retrieval system, or
transmitted without the express prior written consent of the
publisher.

Novell has made every effort to supply trademark information
about company names, products, and services mentioned in
this document. Trademarks indicated below were derived
from various sources.

Borland is a trademark of Borland, Incorporated.

Ethernet is a trademark of Digital Equipment, Incorporated,
Intel Incorporated, and Xerox, Incorporated.

IBM, Micro Channel, and Token-Ring are trademarks of
International Business Machines, Incorporated.

Intel is a trademark of Intel, Incorporated.

Microsoft is a trademark of Microsoft, Incorporated.

NetWare and Novell are registered trademarks of Novell,
Incorporated.

Novell Boot ROM Developer’s Guide

References

The following publications contain information that might be
helpful when you read this document:

IBM Remote Program Load User’s Guide, 83X7840

IBM Token-Ring Network Architecture Reference,
SC30-3374-02 39F9354

Open Data-Link Interface Developer’s Guide for NetWare DOS
Workstation Drivers, Part Number 107-000010-001

Open Data-Link Interface Developer’s Guide for DOS
Workstation Protocol Stacks

Version 1.0 i

Novell Boot ROM Developer’s Guide for DOS Workstations

ii Version 1.0

Novell Boot ROM Developer’s Guide

Table of Contents

The Boot ROM Developer’s Kit 1
Contents of the Boot ROM Developer’s Kit 1
The Boot ROM Creation Process 3
Assumptions about the HSM 4

Theory of Operation . 4
Booting a Diskless Workstation with RPL 5

Quick Reference . 5
Description of Procedure 5

Locating An RPL File Server 7
The Find Frame . 7
The Found Frame . 9
The Send File Request Frame 10
The File Data Response Frame 11

The Boot ROM Interfaces . 11
The Boot ROM LSL Interface 11

The Boot ROM LSL MLID Support Interface . . 12
The Boot ROM LSL Protocol Support Interface 13

The Boot Strap Program . 15
Boot Strap Program Machine State 15
Enabling the Boot Strap Program to Use the HSM 16

The RPL Display Screen . 16

Version 1.0 iii

Novell Boot ROM Developer’s Guide for DOS Workstations

List of Figures

Figure 1. Flow of Operations . 6
Figure 2. Find/Found Frame RPL

Protocol Flow Diagram 7
Figure 3. Format of the Find Frame 8
Figure 4. Hexadecimal Trace of a Find

Frame from an Ethernet Board 8
Figure 5. Format of the Found Frame 9
Figure 6. Hexadecimal Trace of a Found

Frame from an Ethernet Board 10
Figure 7. Format of the Send File

Request Frame . 10
Figure 8. Hexadecimal Trace of a Send

File Request Frame from an
Ethernet Board . 11

Figure 9. Format of the File Data
Response Frame . 11

Figure 10. Hexadecimal Trace of a File
Data Response Frame from an
Ethernet Board . 12

Figure 11. Block Diagram of Boot ROM
Interfaces . 12

Figure 12. An Example RPL Display
Screen . 17

List of Tables
Table 1. RPL Basic Events . 5
Table 2. Exceptions to Standard LSL

Functionality . 13
Table 3. Limitations of the HSM IOCTL

Interface . 13
Table 4. Changes to the LSL Protocol

Support Interface . 14
Table 5. Functions Not Implemented in the

Boot ROM LSL . 14
Table 6. Registers in Effect During the

Boot Strap Program . 15
Table 7. Status of Registers when Calling a

Protocol Stack . 16
Table 8. Three-Character IDs . 17

iv Version 1.0

Novell Boot ROM Developer’s Guide

The Boot ROM Developer’s Kit

The Novell Boot ROM Developer’s Kit allows board
manufacturers to create a Boot ROM by linking an HSM
(Hardware Specific Module) used for DOS ODI workstations
with object files in the kit provided by Novell. You can use
most HSMs without modification, easing version control of the
software and reducing the amount of code developed by the
board manufacturer.

The Boot ROM you create uses the IBM Find/Found RPL
Protocol to allow a hardware independent Boot Strap Program
to boot a diskless workstation. The IBM RPL Protocol is used
because it is generic and allows the board manufacturer to
provide a single Boot ROM that will boot from any network
supporting the protocol. Currently, this includes Novell
NetWare, Microsoft LAN Manager, and IBM LAN Server.

Contents of the Boot ROM Developer’s Kit
The Novell Boot ROM Developer’s kit provides the following
object modules:

BSM.OBJ Module similar to the Media Specific
Module (MSM) in the LAN Driver
Developer’s Kit; it provides a Link
Support Layer (LSL) and MSM interface
for the HSM and the Boot Strap
Program.

BSMETHER.OBJ Ethernet media module that links with
BSM.OBJ to provide a Boot ROM for any
Ethernet HSM.

BSMFDDI.OBJ FDDI media module that links with
BSM.OBJ to provide a Boot ROM for any
FDDI HSM.

BSMTOKEN.OBJ Token-Ring media module that links with
BSM.OBJ to provide a Boot ROM for any
Token-Ring HSM.

In addition, the kit includes the following source code so that
the board manufacturer can customize the Boot ROM:

BSM.ASM Source code for BSM.OBJ.

BSMETHER.ASM Source code for BSMETHER.OBJ.

BSMFDDI.ASM Source code for BSMFDDI.OBJ.

Version 1.0 1

Novell Boot ROM Developer’s Guide for DOS Workstations

BSMTOKEN.ASM Source Code for BSMTOKEN.OBJ.

ODI.INC Include file required by the source code.

RPL.INC Include file required by BSM.ASM.

ROMMAP.INC Include file used by BSM.ASM to
determine the possible ROM locations
and adapter configurations. This file
allows the adapter to use different
interrupts, ports, DMA channels, etc.,
depending upon the setting of the ROM
location. ROMMAP.INC also includes
the sample code of the NE1000 and
NE2000 drivers. The NE2100 and 1500T
drivers must change the ROMPad from
0000 to 9500.

The kit also includes two utilities to allow the board
manufacturer to test the Boot ROM before it is burned into a
PROM:

ROMSUM.COM Utility that does a checksum on the ROM
and adjusts the size of the ROM image
file according to input specifications. The
size of the ROM created can be anywhere
from 4k (4096) bytes to 127.5k bytes
(128k bytes - 512 bytes = 127.5k bytes or
130,560 bytes) in 512 byte pages. (PC
architecture imposes a ROM limit of
127.5k bytes.)

TESTROM.COM Utility that uses the ROM image file as
input, places the ROM image in high
memory, and simulates the BIOS
memory scan performed by POST (Power
On Self Test). This utility validates that
the ROM image file has a checksum of
00, calls OFFSET 03 from the ROM
image file, and issues INT 18h to start
the RPL operation.

2 Version 1.0

Novell Boot ROM Developer’s Guide

The Boot ROM Creation Process
To create a Boot ROM:

1. Modify ROMMAP.INC to include the possible ROM
locations and configuration options of the adapter.

Note: This step is not required if the adapter is self-
configurable or if the HSM handles the configuration
options. However, if you change the configuration
information in ROMMAP.INC, you must re-assemble
the BSM.ASM file to create a new BSM.OBJ file. Use
Borland’s TASM.EXE or any compatible assembler.

2. Link BSM.OBJ, the appropriate <Media>.OBJ, and the
<HSM>.OBJ using Borland’s TLINK.EXE, or a compatible
linker, to create a file called RBOOT.ROM. For example,
the appropriate command to link a Token-Ring Boot ROM
using TLINK.EXE would be:

TLINK BSM.obj BSMTOKEN.obj HSM.obj,RBOOT.rom /t

Note: BSM.OBJ must be the first object file to be
linked.

You can also create RBOOT.ROM using the Microsoft
Linker:

LINK BSM.obj BSMTOKEN.obj HSM.obj,BSM.exe,,,,
EXE2BIN BSM.exe RBOOT.rom

3. Run the ROMSUM utility on the newly created
RBOOT.ROM. This utility adjusts the size of
RBOOT.ROM to the nearest 8k boundary, unless you enter
a Size parameter on the command line. The Size
parameter specifies the number of 512 byte pages you
would like RBOOT.ROM to encompass. For example, to
use ROMSUM to size RBOOT.ROM to 16 512-byte pages,
enter:

ROMSUM 16

This specifies an 8k (8192) byte ROM (16 x 512 byte
pages). Running the utility with no Size parameters
entered on the command line,

ROMSUM

creates an RBOOT.ROM file adjusted to the nearest 8k
(8192) byte boundary.

Version 1.0 3

Novell Boot ROM Developer’s Guide for DOS Workstations

4. Test the Boot ROM’s functionality by using
TESTROM.COM. Use TESTROM.COM from a DOS
prompt without loading the network. You can also load a
debugger from the DOS prompt, then load
TESTROM.COM which then executes the ROM file.

5. Burn the Boot ROM into a PROM.

Assumptions about the HSM
The HSM you use must conform to the following rules:

• The HSM must conform to the Novell ODI specification for
using the MSM tool kit. (See reference Open Data-Link
Interface Developer’s Guide for NetWare DOS Workstation
Drivers.)

• The HSM must be capable of sending and receiving 802.2
frames.

• The HSM must not chain or share hardware interrupts.

• The HSM must not do segment fix ups.

• The HSM must not intercept software interrupt vectors or
the timer interrupt (08h or 1Ch).

• The HSM can issue the following DOS INT 21h function
codes:

AH = 02h ==> Print char in DL
AH = 09h ==> Print ’$’ terminated string in DS:DX.
AH = 25h ==> Write DS:DX to Hardware Interrupt

Vector.
AH = 35h ==> Read Hardware Interrupt Vector into

ES:BX.

Caution: No other DOS function codes are allowed.
Using other DOS function codes will halt RPL.

Theory of Operation
The Boot ROM Developer’s Kit contains reduced-functionality
modules of the LSL and MSM, the Find/Found Frame RPL
Protocol Stack, and a loader application.

4 Version 1.0

Novell Boot ROM Developer’s Guide

Booting a Diskless Workstation with RPL

Quick Reference

The following table overviews the basic events involved in
using RPL to boot a diskless workstation. These events are
explained in more detail following the table.

Table 1. RPL Basic Events

Actor/Agent Action

BIOS 1. Searches for the 55Ah signature.

Boot ROM 2. Hooks Interrupt Vector 18h.

BIOS 3. Calls Loader Application by using
Interrupt Vector 18h.

Loader
Application

4. Copies the image of the boot file.
5. Executes the Boot Strap Program.
6. Transfers control to the Boot Strap

program.

Boot Strap
Program

7. Registers as a protocol stack with
the LSL in the Boot ROM.

8. Begins to send and receive packets
to download a DOS, OS/2, UNIX or
any other operating system image
that might be required.

Description of Procedure

When the computer is turned on, it performs the POST
(Power On Self Test) operation: the BIOS scans memory
between C0000h and EE000h in 2k (2048) byte increments,
looking for a 55AAh signature that denotes the presence of a
ROM. If the signature is found, the BIOS uses the third byte
of the ROM (containing the number of 512 byte pages) to
perform a checksum on the ROM. If the checksum results in
0, the BIOS issues a far call to offset 03 (the fourth byte) of
the ROM.

In the case of a Boot ROM, the code located at offset 03h
hooks Interrupt Vector 18h (the BASIC interrupt) to point to
the ROM’s relocate routine and returns to the BIOS. Later,
when the BIOS has determined that there is no other bootable
device, the BIOS will perform an INT 18h instruction.

The INT 18h executes the relocate code, which copies the
ROM into RAM just below 32k from the top of memory as
reported by INT 12h.

Version 1.0 5

Novell Boot ROM Developer’s Guide for DOS Workstations

The ROM sets the hardware options in the driver’s
configuration table according to the ROM location and the
information in the ROMMAP.INC file. The ROM then
executes the initialization routines of the LSL, MSM, HSM,
and the Find/Found Frame RPL Protocol Stack.

Figure 1 is a block diagram illustrating the flow of operations
after the BIOS calls the Loader Application. Figure 2
provides the flow diagram for the Find/Found Frame RPL
protocol. The following sections describe these flows in detail.

RPL File Server

Diskless Workstation

The Loader Application

Boot ROM

Boot Strap Program

7. Transfers control

1. Requests Boot
Strap Program

2. Sends
Find Frame

3. Responds with
Found Frame

5. Responds with
File Data
Response Frame

6. When all frames
are received, returns
control to Loader Application

4. Sends
Send File
Request Frame

Figure 1. Flow of Operations

6 Version 1.0

Novell Boot ROM Developer’s Guide

Locating An RPL File Server

Figure 2. Find/Found Frame RPL Protocol Flow Diagram

Boot ROM Workstation RPL File Server

Find Frame -->
.
TIMEOUT
Find Frame -->

<------------------ Found Frame
Send File Request 00 ----------------------------->

<------------------ File Data Response 00
<------------------ File Data Response 01

/------------- File Data Response 02
<------------------ File Data Response 03
<------------------ File Data Response END

Send File Request 02 ----------------------------->
<------------------ File Data Response 02
<------------------ File Data Response 03
<------------------ File Data Response END

The Find Frame

The Boot ROM attempts to locate an RPL file server by
transmitting a Find Frame using the multicast address 03 00
02 00 00 00h. The Find Frame format is given in Figure 3.

Note: The protocol always requires that values be present
in High-Low format. The Boot ROM must swap the values
when running on an INTEL processor.

Version 1.0 7

Novell Boot ROM Developer’s Guide for DOS Workstations

Figure 4 illustrates a hexadecimal trace of an Ethernet board

Figure 3. Format of the Find Frame

Offset Length Value Description
(decimal)

00 02 0053h Frame Length
02 02 0001h FIND Command
04 04 0008 4003h Correlator Vector
08 04 0000 0000h Correlator Value
12 04 0010 0008h Connect Info Vector
16 04 0006 4009h Frame Size Sub-Vector
20 02 Max Frame Max Frame from Driver Config Table
22 04 0006 400Ah Connect Class Sub-Vector
26 02 0001h Class I ONLY
28 04 000A 4006h Address Vector
32 06 Ring Address Ring address of this Adapter in Media

Format
38 04 0005 4007h Logical SAP Vector
42 01 FCh Remote SAP Value
43 04 0028 0004h Search Vector
47 04 0024 C005h Loader info Sub-Vector
51 08 Configuration Configuration obtained by issuing INT

15h
59 02 Equipment Register AX from INT 11h
61 02 Memory Size Register AX from INT 12h MINUS 32k

MINUS the Boot ROM Size
63 02 Version Major, Minor Version of BSM.obj
65 06 000000000000 Rest of RPL EC
71 02 5342h Adapter ID
73 10 Short Name The HSM Short Name from the Driver

Config Table

sending the Find Frame.

Figure 4. Hexadecimal Trace of a Find Frame from an Ethernet Board

0000 03 00 02 00 00 00 00 00 1B 04 1A 65 00 56 FC FC
0010 03 00 53 00 01 00 08 40 03 00 00 00 00 00 10 00
0020 08 00 06 40 09 05 EA 00 06 40 0A 00 01 00 0A 40
0030 06 00 00 1B 04 1A 65 00 05 40 07 FC 00 28 00 04
0040 00 24 C0 05 08 00 F8 04 04 F6 74 00 42 21 02 57
0050 01 00 00 00 00 00 00 00 53 42 4E 42 00 00 00 00
0060 00 00 00 00

The Find Frame has the following features:

• The Connection Class field at offset 26h is set to accept
Class I frames only. The Boot ROM is not capable of
accepting File Data Response Frames that are broadcast to
a Group or Functional Address.

8 Version 1.0

Novell Boot ROM Developer’s Guide

• The Memory Size field at offset 61h is set to:

<RAM_memory_size> – 32k bytes – <boot_ROM_size>

Because the Boot ROM is relocated from ROM to RAM,
the boot strap should not use this memory. 32k bytes is
subtracted from the memory size to allow room for the
transient portion of DOS.

• The first two bytes of the Remote Program Load EC
(Engineering Change) field at offset 63h are set to the
Major and Minor Version number of BSM.OBJ. The rest
of the 8 byte field is set to 00h.

• The Adapter ID field at offset 71h is set to 5342h for all
adapters. This informs the RPL server to use a generic
boot strap.

• If the RPL file server must know the type of adapter, the
Adapter EC field at offset 73h of the Find and the Send
File Request Frames contain the HSM Short Name field,
taken from the Driver Configuration Table at offset 50h.

The Found Frame

The RPL file server should respond to the Find Frame with a
Found Frame. See Figure 5 for the format of the Found
Frame.

Figure 5. Format of the Found Frame

Offset Length Value Description
(decimal)

00 02 003Ah Frame Length
02 02 0002h FOUND Frame
04 04 0008 4003h Correlator Vector
08 04 0000 0000h Correlator Value
12 04 0005 400Bh Response Correlator
16 01 00 Response Code
17 04 000A 400Ch Set Address Vector
21 06 0000 0000 0000 Group Address NOT Supported
27 04 000A 4006h Loader Address Vector
31 06 Node Addr RPL Server Node Address
37 04 0010 0008 Connect Info Vector
41 04 0006 4009h Frame Size Sub-Vector
45 02 Max Frame Maximum Frame Size
47 04 0006 400Ah Connect Class Sub-Vector
51 02 0001 Connection Class
53 04 0005 4007h Loader SAP Vector
57 01 RSAP SAP Value of the RPL Server

Version 1.0 9

Novell Boot ROM Developer’s Guide for DOS Workstations

Figure 6 contains a hexadecimal trace of an Ethernet board
sending the Found Frame.

The Send File Request Frame

Figure 6. Hexadecimal Trace of a Found Frame from an Ethernet Board

0000 00 00 1B 04 1A 65 00 00 1B 24 58 8F 00 3D FC FC
0010 03 00 3A 00 02 00 08 40 03 4E 65 74 57 00 05 40
0020 0B 00 00 0A 40 0C 00 00 00 00 00 00 00 0A 40 06
0030 00 00 D8 24 1A F1 00 10 00 08 00 06 40 09 05 EA
0040 00 06 40 0A 00 01 00 05 40 07 FC

After receiving the Found Frame, the Boot ROM transmits the
Send File Request Frame to download the Boot Strap
Program. See Figure 7 for the format of the Send File
Request Frame.

Figure 7. Format of the Send File Request Frame

Offset Length Value Description
(decimal)

00 02 0053h Frame Length
02 02 0010h Send File Request Command
04 04 0008 4003h Correlator Vector
08 04 0000 0000h Correlator Value
12 04 0010 0008h Connect Info Vector
16 04 0006 4009h Frame Size Sub-Vector
20 02 Max Frame Max Frame from Driver Config Table
22 04 0006 400Ah Connect Class Sub-Vector
26 02 0001h Class I ONLY
28 04 000A 4006h Address Vector
32 06 Ring Address Ring address of this Adapter in Media

Format
38 04 0005 4007h Logical SAP Vector
42 01 FCh Remote SAP Value
43 04 0028 0004h Search Vector
47 04 0024 C005h Loader info Sub-Vector
51 08 Configuration Configuration obtained by issuing INT

15h
59 02 Equipment Register AX from INT 11h
61 02 Memory Size Register AX from INT 12h MINUS 32k MINUS

the Boot ROM Size
63 02 Version Major, Minor Version of BSM.obj
65 06 000000000000 Rest of RPL EC
71 02 5342h Adapter ID
73 10 Short Name The HSM Short Name from the Driver

Config Table

Figure 8 contains a hexadecimal trace of an Ethernet board
transmitting the Send File Request Frame.

10 Version 1.0

Novell Boot ROM Developer’s Guide

The File Data Response Frame

The RPL file server responds to the Send File Request Frame
with a File Data Response Frame. This frame contains a copy
of the Boot Strap Program to be sent to the Loader
Application. See Figure 9 for the format of the File Data
Response Frame.

Figure 8. Hexadecimal Trace of a Send File Request Frame from an Ethernet Board

0000 00 00 1B 24 58 8F 00 00 1B 04 1A 65 00 56 FC FC
0010 03 00 53 00 10 00 08 40 03 00 00 00 00 00 10 00
0020 08 00 06 40 09 05 EA 00 06 40 0A 00 01 00 0A 40
0030 06 00 00 1B 04 1A 65 00 05 40 07 FC 00 28 00 04
0040 00 24 C0 05 08 00 F8 04 04 F6 74 00 42 21 02 57
0050 01 00 00 00 00 00 00 00 53 42 4E 42 00 00 00 00
0060 00 00 00 00

Figure 10 contains a hexadecimal trace of an Ethernet board
sending the File Data Response Frame.

Figure 9. Format of the File Data Response Frame

Offset Length Value Description
(decimal)

00 02 0019h+nn Frame Length
nn = File Data Length

02 02 0020h File Data Response Frame
04 04 0008 4011h Sequence Header
08 04 0000 nnnnh Sequence Number
12 04 000D C014h Loader Header
16 04 Locate Addr Address of Data
20 04 XFER Addr Transfer Control Address
24 01 Flags Bit Significant Option Flag
25 02 0004h+nn File Data Vector Length
27 02 4018h File Data Vector
29 nn File Data Binary File Data

.

.

.

The Boot ROM Interfaces

The Boot ROM LSL Interface
An LSL interface is built into BSM.OBJ to provide support
routines for both the HSM and the protocol stacks, including
the Find/Found RPL protocol and the protocol stack used by
the Boot Strap Program. This implementation of the LSL and
the MSM has been optimized in BSM.OBJ to create as small a

Version 1.0 11

Novell Boot ROM Developer’s Guide for DOS Workstations

Boot ROM as possible. The BSM.OBJ LSL actually contains 2
interfaces (illustrated in Figure 11):

• The Boot ROM LSL MLID Support Interface (a version of
the ODI LSL with reduced functionality)

• The Boot ROM LSL Protocol Support Interface

Figure 10. Hexadecimal Trace of a File Data Response Frame from an Ethernet Board

0000 00 00 1B 04 1A 65 00 00 1B 24 58 8F 05 DC FC FC
0010 03 05 D9 00 20 00 08 40 11 00 00 00 00 00 0D C0
0020 14 00 08 C2 B0 00 08 C2 B0 20 05 C0 40 18 File
0030 Data ...

IBM
Find/Found
RPL Protocol

The Boot ROM LSL Protocol Support Interface

The Boot ROM LSL MLID Support Interface

MLID

Figure 11. Block Diagram of Boot ROM Interfaces

This section describes the changes and enhancements to the
LSL provided by BSM.OBJ.

The Boot ROM LSL MLID Support Interface

The Boot ROM LSL MLID Support Interface is functionally
equivalent to the interface described in the Open Data-Link
Interface Developer’s Guide for NetWare DOS Workstation
Drivers, Volume III (part number: 107-000010-001). Table 2
contains the exceptions to the standard LSL functionality.

12 Version 1.0

Novell Boot ROM Developer’s Guide

Table 2. Exceptions to Standard LSL Functionality

BL Register Equals: Function Difference

06h DeRegisterMLID This function is NO-OPed.

15h AddProtocolID This function will return BAD COMMAND in register
AX.

16h GetStackECB This function will return BAD COMMAND in register
AX. To get an ECB to fill in, the HSM should use
MSMGetRCB.

In addition, BSM.OBJ provides the HSM IOCTL interface
with the limitations outlined in Table 3.

Table 3. Limitations of the HSM IOCTL Interface

BL Register Equals: Function Difference

02h AddMulticastAddress Only one multicast address will be active at
any given time.

03h DeleteMulticastAddress BSM.OBJ assumes only one multicast active
at a time.

09h SetLookAheadSize The LookAhead size is set to 128 bytes
during initialization and is not changed
afterwards.

The Boot ROM LSL Protocol Support Interface

The Find/Found Frame RPL protocol stack and the Protocol
Stack implemented by the Boot Strap Program use the LSL
Protocol Support Interface, described in detail in the Open
Data-Link Interface Developer’s Guide for DOS Workstation
Protocol Stacks, Volume III. This section describes the
changes implemented by BSM.OBJ.

Version 1.0 13

Novell Boot ROM Developer’s Guide for DOS Workstations

Table 4. Changes to the LSL Protocol Support Interface

BL Register
Equals:

Function Difference

06h RegisterStack This function requires the following input:

AX = Protocol ID For 802.2, the Protocol ID
is the Destination SAP
value in AH. AL should be
equal to 00. For SNAP or
EII, the Protocol ID is the
two byte value used in the
media header.

BH = Board Number BH = 00 ==> 802.2
board
BH = 01 ==> 802.2
SNAP board
BH = 02h ==>
Ethernet_II board

ES:SI = The protocol stack receive handler

The protocol stack should be ready to receive packets
when this function is called. This function calls
BindStack automatically.

08h RegisterDefaultStack ES:SI must point to the Default Stack Receive Handler.

10h RegisterPrescanStack ES:SI must point to the Prescan Stack Receive Handler.

Table 5 contains the functions not implemented in the Boot
ROM LSL. If any of these functions are called, register AX
will return BAD_COMMAND (8009h).

Table 5. Functions Not Implemented in the Boot ROM LSL

BL Register Equals: Function

16h GetStackIDFromName

17h GetPIDFromStackIDBoard

19h GetProtocolControlEntry

20h GetLSLStatistics

21h BindStack (Use LSLRegisterStack)

22h UnbindStack (Use LSLDeRegisterStack)

23h AddProtocolID (Use LSLRegisterStack)

14 Version 1.0

Novell Boot ROM Developer’s Guide

Table 5. Functions Not Implemented in the Boot ROM LSL

BL Register Equals: Function

25h GetLSLConfiguration

26h GetTickMarker

In addition, the Boot ROM LSL does not provide the General
Services Interface. If the General Services entry point is
called, register AX returns BAD_COMMAND (8009h).

The Boot Strap Program

Boot Strap Program Machine State
Once the RPL file server has been found, it sends a copy of
the Boot Strap Program to the Loader Application which then
copies the program into RAM and transfers control to that
program. Table 6 contains the state of the registers in effect
when the Boot Strap Program gains control.

Table 6. Registers in Effect During the Boot Strap Program

Register Definition

DS:AX LSL Protocol Support Entry Point. Use these registers to obtain the LSL Support routines in
the Boot ROM.

DS:BX A pointer to the This Ring Only variable. Source Routing uses this one byte variable to
control the number of Spanning Tree Explorer frames sent with broadcast frames.
Immediately following this variable is the This Ring Only Initial Value. The Boot Strap
Program might wish to modify these variables to control Source Routing.

DS:DX A pointer to the adapter’s six byte Node Address in the HSM’s Driver Configuration Table.
The Node Address is always stored in canonical form by the Boot ROM. A canonical Node
Address means that the Broadcast bit is the least significant bit of the first byte. Token-Ring
and FDDI present the Node Address in Non-canonical form and, therefore, must perform a
bit swap.

The Boot Strap Program can use this pointer to access other fields of the Driver
Configuration Table, or it may use the LSL Get MLID Config Table interface to access the
Driver Configuration Table.

The Media ID field at offset 60h of the Driver Configuration Table will be set to 03h for
Ethernet, 04h for Token-Ring, and 20h for FDDI.

DS:SI A pointer to the RPL File Server’s six byte Node Address, also stored in canonical form.
The thirty byte Source Routing field used to access the RPL file server immediately follows
these six bytes. For Ethernet adapters, the Source Routing field will be thirty bytes of 0h.

Version 1.0 15

Novell Boot ROM Developer’s Guide for DOS Workstations

Enabling the Boot Strap Program to Use the HSM
When the Boot Strap Program gets control, it is ready to
download an appropriate Disk Image file from the RPL file
server. To continue to use the HSM driver in the Boot ROM
code, the Boot Strap Program must:

1. Save the address of the LSL Protocol Support Entry Point
in a local variable.

2. Initialize all necessary control blocks and work area
variables with the adapter’s Node Address, the RPL file
server Node Address, and any necessary information from
the Driver Configuration Table.

3. Call the LSL Protocol Support Entry Point to register an
appropriate protocol stack. See Table 7.

Table 7. Status of Registers when Calling a Protocol Stack

Register Value Description

AX Protocol ID For 802.2 protocols, the Protocol ID is the Destination SAP
in register AH, with AL equal to 0.

BH Board Number 00h = 802.2
01h = 802.2 SNAP
02h = Ethernet_II

BL 06h RegisterStack

ES:SI Receive Handler Boot Strap Program Protocol Receive Handler Entry Point

Call dword ptr LSL Protocol
Support Entry Point

The address of this entry point is given by the Boot ROM
program in registers DS:AX

The Boot Strap Program is now ready to send and receive
data using the HSM in the Boot ROM.

The RPL Display Screen
When the Boot ROM gets control through INT 18, it will clear
the video display and present pertinent messages as the
information becomes available. The Boot ROM’s sign-on
message is displayed first, immediately followed by the HSM
driver’s sign-on message.

The sign-on messages are followed by any messages the HSM
driver displays using the MSMPrintStringZero function.
These messages are followed by the HSM driver’s
configuration information. The configuration information is
prefixed by RPL-ROM-iii (iii is a three character ID signifying

16 Version 1.0

Novell Boot ROM Developer’s Guide

the type of information). Figure 12 illustrates an example
display screen.

Figure 12. An Example RPL Display Screen

Novell RPL BootROM v1.00 (920117)
Novell NE2 Ethernet MLID v1.21 (911104)
(C) Copyright 1991 Novell, Inc. All Rights Reserved.

RPL-ROM-ADR: 0000 1B24 588F
RPL-ROM-IRQ: 3
RPL-ROM-MM1: C800
RPL-ROM-PIO: 1000
RPL-ROM-SLT: 2

RPL-ROM-FFC: 1
RPL-ROM-SFC: 1
RPL-ROM-SEQ: 3

Table 8 describes each three-character ID.

Table 8. Three-Character IDs

Character ID Format Description

RPL-ROM-ADR xxxx xxxx xxxx The six byte Node Address of the installed
adapter. It is a hexadecimal field displayed in
media format. For example, it is canonical for
Ethernet, and non-canonical for FDDI and Token-
Ring. Its value is taken from the Driver
Configuration Table.

RPL-ROM-DMA nn A one byte decimal field signifying the DMA
channel used by the driver. Its value is taken
from the Driver Configuration Table. This
message is only displayed if the driver uses DMA.

Version 1.0 17

Novell Boot ROM Developer’s Guide for DOS Workstations

Table 8. Three-Character IDs

Character ID Format Description

RPL-ROM-ERR BADA; RPL Halted The prefix of a FATAL error. This message
always ends with "RPL Halted." The displayed
message comes either from the driver (through
the MSMPrintStringFatal function) or from the
Boot ROM. If the message came from the driver,
it contains the ASCII text of the message. If the
message came from the Boot ROM, it contains a
two byte hexadecimal number signifying the type
of error. The two possible error types are:

RPL-ROM-ERR: BADA; RPL Halted
This message is displayed if the RPL server sent
a File Data Response frame with an invalid
Locate or Transfer address.

RPL-ROM-ERR: DExx; RPL Halted
This message is displayed if the HSM driver
issued an invalid DOS function code to INT 21.
xx is the hexadecimal value of the offending
function code.

RPL-ROM-FFC nnnn A decimal field signifying the number of Find
Frames sent by the Boot ROM. An excessive
Find Frame count indicates that the RPL server
either is not present or is congested.

RPL-ROM-HSM message. . . The prefix given to a driver-generated message.

RPL-ROM-IRQ nn A one byte decimal field signifying the Interrupt
level used by the driver. Its value is taken from
the Driver Configuration Table. It is only
displayed if the driver uses interrupts.

RPL-ROM-MM1 xxxx A two byte hexadecimal field containing the
segment value used by the driver for Memory
Address 1. Its value is taken from the Driver
Configuration Table. It is only displayed if the
driver uses Memory Address 1.

RPL-ROM-MM2 xxxx A two byte hexadecimal field containing the
segment value used by the driver for Memory
Address 2. Its value is taken from the Driver
Configuration Table. It is only displayed if the
driver uses Memory Address 2.

RPL-ROM-PIO xxxx A two byte hexadecimal field containing the
Programmed I/O (PIO) address used by the
driver. Its value is taken from the Driver
Configuration Table. It is only displayed if the
driver uses programmed I/O.

18 Version 1.0

Novell Boot ROM Developer’s Guide

Table 8. Three-Character IDs

Character ID Format Description

RPL-ROM-SEQ nnnn A decimal field containing the number specifying
the last valid sequence number received.

RPL-ROM-SFC nnnn A decimal field containing the number of Send
File Request Frames sent by the Boot ROM. An
excessive Send File Request count indicates that
the RPL Server is not responding after it has
been found.

RPL-ROM-SLT xxxx A decimal field containing the Micro-Channel or
EISA Slot Number used by the driver. Its value is
taken from the Driver Configuration Table. It is
only displayed if the driver specifies a Slot
number.

Version 1.0 19

Novell Boot ROM Developer’s Guide for DOS Workstations

20 Version 1.0

Index

Version 1.0 21

Novell Boot ROM Developer’s Guide for DOS Workstations

B

Boot ROM
interfaces used in 11

Boot ROM Developers Kit, contents of.
See Contents of Boot ROM Developer’s Kit.

Boot ROM, interfaces used in
Boot ROM LSL MLID Support Interface 11
Boot ROM LSL Protocol Support Interface

12
HSM IOCTL interface 13

Boot Strap Program
Downloading. See Downloading Boot Strap

Program.
Machine state. See Machine state, Boot

Strap Program.
Using HSM. See HSM, enabling Boot

Strap Program to use.
Booting diskless workstation

Theory of operations 5

C

Calling a protocol stack
status of registers when calling stack 16

Calling General Services entry point 15
Contents of Boot ROM Developer’s Kit

object files included 1
source files included 1
utilities included 2

Creating a Boot ROM
process of 1

D

Disk Image File, downloading.
See Downloading Disk Image File.

Diskless workstation, booting
theory of operations 5

Display screen.
See RPL display screen.

Downloading
Boot Strap Program 11

See also File Data Response Frame;
Send File Request Frame.

Disk Image File 16

F

File Data Response Frame
format of 11
hexadecimal trace of from Ethernet board

12

Find Frame
features of 7
format of 8
hexadecimal trace of from Ethernet board 8

Find/Found Frame RPL Protocol Flow
diagram of 7

Found Frame
format of 9, 10

Frame Format
File Data Response Frame 11
Find Frame 8
Found Frame 9
Send File Request Frame 10

G

General Services entry point, calling 15

H

HSM
assumptions which HSM must conform to 4
enabling Boot Strap program to use 16

HSM IOCTL interface
limitations of Boot ROM implementation 13

I

Interfaces used in Boot ROM.
See Boot ROM, interfaces used in.

L

Locating RPL file server 7
See also Operation, block diagram of; Find

Frame; Found Frame.
LSL

Boot ROM LSL MLID Support Interface 11
changes to the LSL Protocol Support

Interface 14
exceptions to standard LSL functionality 13
functions not implemented in Boot ROM LSL

13
implementation of in Boot ROM 11

LSL MLID Support Interface.
See LSL, implementation of in Boot ROM.

LSL Protocol Support Interface.
See LSL, implementation of in Boot ROM

22 Version 1.0

Novell Boot ROM Developer’s Guide

M

Machine state
Boot Strap Program 15
register state of 15

O

Operations
block diagram of 6
chart of events 5
theory of 4

P

Protocol used by Boot ROM 1

R

Registers, state of.
See Machine State Boot Strap Program;

Calling a Protocol Stack.
RPL display screen

sign-on messages displayed 16
three character ID of sign-on messages 17

RPL file server, locating.
See Locating RPL file server.

RPL Protocol
diagram of Find/Found Frame RPL Protocol

Flow 6

S

Send File Request Frame
format of 10
hexadecimal trace of from Ethernet board 11

Sign-on messages
display on RPL screen 16
three character ID of 17

T

Three character ID
sign-on messages 17

W

Workstation, booting diskless
theory of operations 5

Version 1.0 23

Novell Boot ROM Developer’s Guide for DOS Workstations

24 Version 1.0

