
NLM Programming

NLM Programming

 1

NLM Programming Overview

NLM Development

NLM Development: Guides

NLM Development Tools

NLM Development Tools: Guides

Advanced

Advanced: Guides

Advanced: Functions

Advanced: Structures

Bit Array

Bit Array: Functions

Character Manipulation

Character Manipulation: Functions

Device I/O

Device I/O: Functions

Library

Library: Guides

Library: Functions

Mathematical Computation

Mathematical Computation: Functions

Mathematical Computation: Structures

Memory Allocation

Memory Allocation: Functions

Memory Manipulation

Memory Manipulation: Functions

NLM Debug

NLM Debug: Functions

NWSNUT

NWSNUT: Guides

NLM Programming

 2

NWSNUT: Functions

NWSNUT: Structures

Screen Handling

Screen Handling: Guides

Screen Handling: Functions

SMP

SMP: Guides

SMP: Functions

String Conversion

String Conversion: Functions

String Manipulation

String Manipulation: Functions

Thread

Thread: Guides

Thread: Functions

Variable Length Argument Lists

Variable Length Argument Lists: Functions

NLM Programming

 3

NLM Development

NLM Programming

 4

NLM Development: Guides

NLM Programming Overview Guide

The NetWare® 3.x and 4.x OS's are a platform, consisting of core services
such as process management, memory management, and screen
management. To this platform of core services, you can add building blocks
of functionality---such as communication/service protocols, file and
directory systems, naming conventions, LAN and disk drivers, and other
value-added services. This way, you can create a custom network OS, suited
to a particular environment or situation.

NLM Applications

Types of NLM Applications

Utility and Service Modules

LAN and Device Driver Modules

Name Space Modules

Loading NLM Applications

How NLM Applications Are Loaded

Using the LOAD Command

Unloading NLM Applications

NLM Development

NLM Programming Overview

Client-Server Applications

NLM Code Development

SFT III

NLM Assembly Interface on the Intel Platform

NLM Optimization for the Intel Platform

Controlling the Server Clock under NetWare 4.x

NLM Programming

NLM Development: Guides 5

Modular CLIB Header Files

Renamed NLM Functions

Remote Server Support

VAP to NLM Conversion

Client-Server Applications

Introduction to Client-Server Applications

Designing Client-Server NLM Applications

Locating Services

Client-Server Communication

NLM Code Development

Includes compiler issues, OS design features that should be considered by
NLM™ developers, and features of the NetWare® OS.

Once you understand the model of NLM applications, you can begin
writing modules that take advantage of the multithreaded environment that
the NetWare OS and the NetWare API provide for you. To locate the
information that you need, see the SDK Roadmap.

Programming Languages

NetWare API

Modular CLIB

Cross-Platform Functions in NLM Applications

Development Steps

OS-Related Issues

Nonpreemptive Environment

Protected or Nonprotected Environment

Current Working Directory

Connection and Task Numbers

Screens and the NetWare OS

NLM Programming

NLM Development: Guides 6

NLM Coding Issues

Threads

Thread Groups

Multithreaded Programming

Context

Structure of an NLM

NLM Startup

Relinquishing Control

Critical Sections

NLM Synchronization

Shared Memory

NLM Screen Handling

Freeing Resources upon Exit

Termination Process

SFT III

Many applications work, as is, with SFT III™ software. This information will
help you understand the issues involved with developing NLM™
applications that run on NetWare® SFT III versions 3.11 and 4.x.

Introduction to SFT III

Mirrored Server Link

IOEngine and MSEngine

Primary and Secondary Server

SFT III Server Memory Management

SFT III Application Design Issues

Dual-Processing Support

SFT III LAN Configuration

SFT III and Device Drivers

NetWare Support Layer Architecture

NLM Programming

NLM Development: Guides 7

NetWare SFT III Support Layer Architecture

SFT III Application Design Issues

Mirrored Applications

IOEngine Applications

MSEngine Applications

The NetWare API and SFT III

The NetWare API and the IOEngine

NetWare Functions Not Supported by the MSEngine

NLM Assembly Interface on the Intel Platform

Introduction to the NLM Assembly Interface

General Purpose Registers

Segment Registers

C Code That Calls Assembly Procedures

Assembly Code That Calls C Functions

Parameter Passing

NLM Optimization for the Intel Platform

Part of optimizing the performance of your NLM™ application is
eliminating wasted instructions, or clock cycles. These topics discuss how to
design data structures so that the operations performed on them take the
fewest clock cycles.

Data Alignment

16-bit Variables

Controlling the Server Clock under NetWare 4.x

NetWare® 4.0 introduced a mechanism for controlling the apparent tick rate
of the clock to simplify time synchronization.

Time synchronization is complicated by daylight savings time and time
zones. Very little detail about these subjects is presented here because of the

NLM Programming

NLM Development: Guides 8

large number of special cases.

You can discover useful information about the time environment on a server
and control the tick rate of the clock by using the interface to the
synchronized clock structure of a NetWare 4.x server. It is possible to
duplicate or augment the function of the TIMESYNC NLM through this
interface.

The Synchronized Clock Structure

Operation of the Clock

The Synchronized Clock Interface

Synchronized Clock Status Flags

Clock Control Fields

The eventOffset and eventTime Fields

Daylight Savings Time Information Fields

Interactions between Local Time, UTC, and Other Variables

The Effect of Setting the Hardware Clock Bit

More Detail for High Accuracy Time Synchronization Users

Interactions with TIMESYNC

SFT III Considerations for Time Synchronization

Modular CLIB Header Files

Former and Present Header Names

New NetWare SDK Headers

Obsolete CLIB Headers

Remote Server Support

Introduction to Remote Server Support

Accessing Remote Servers

Changing the Current Server

Logging Out from Remote Servers

Remote and Local Server Operations

NLM Programming

NLM Development: Guides 9

Renamed NLM Functions

Some functions have either been removed from the NLM™ Library, or have
had their names changed. See the following for more information.

Renamed Functions in Connection Number and Task Management
Services

Renamed Functions in Connection Services

Renamed Functions in Screen Handling Services

Changes to SMP Services

NLM Limited Support Functions

VAP to NLM Conversion

Altering the Source Code

VAP Processes and NLM Threads

VAP to NLM Conversion and Linking

VAP to NLM Conversion and Loading

NLM Equivalents for VAP Functions

NLM Programming

NLM Development: Guides 10

NLM Development: Tasks

Designing Client-Server NLM Applications

When designing a client-server application, you should consider several
issues, such as division of workload and communication methods. In
general, follow these steps to design a client-server application:

1. Divide the modules of the program into client-based tasks and
server-based tasks.

Place tasks on the computer that can most efficiently process them. For
instance, some I/O operations should be placed on the client because
the data or resource is on the client. Other I/O operations should reside
on the server because the data or resource resides on the server.

Consider all possibilities in dividing the program. Considering the
extreme cases, such as all processes on the server or all processes on the
client, can help you reach a division of tasks that provides the most
computing power for the least computing effort.

Scalability is an important factor in designing client-server applications.
For example, if you overload the server with CPU-intensive operations,
your application might work well for 10 users, but not for 1,000.

In addition, try to achieve load balancing in the application. Processing
loads should be distributed somewhat evenly between the client and
server portions of the application, so that neither portion is
overburdened. However, for scalability, the client should take on a
slightly larger share of the processing.

2. Choose both an interface and a protocol for communication between
client and server programs.

As you decide, consider the performance characteristics of the interfaces
and protocols. A good rule of thumb is to choose the lowest-level
interface possible without significantly compromising the level of effort
required to implement it.

You should also consider portability issues. For example, using TLI
eases supporting multiple client platforms, whereas IPX™ and SPX™
limit those choices.

3. If you want to limit the number of clients your NLM™ will serve,
determine the maximum number of clients to accept.

Consider the following factors:

NLM Programming

NLM Development: Tasks 11

Memory considerations---If the tasks your clients request of the
server require large amounts of memory, you might want to limit the
number of clients to avoid running out of memory.

Performance considerations---The more efficient the server is, the
more clients it can support. On the other hand, if the tasks your
clients request of the server reduce the performance of the server as a
whole, you might want to limit the number of clients.

Connection considerations---The number of clients your NLM can
accept is limited by the number of connections the server computer
accepts. For example, if clients communicate with the server by
modem and the server has four modems, your NLM can accept no
more than four clients at one time.

Parent Topic: Introduction to Client-Server Applications

Development Steps

In general, follow these steps when developing an NLM™ application:

1. Set up the development environment you will use to build, run and
debug the NLM.

Three methods for setting up a development environment are discussed
in NLM Client Development Setup.

2. Plan the threads of execution your NLM will run.

All NLM applications have at least one thread contained in one thread
group to accommodate the main function. You can set up other threads
to accomplish different tasks. For example, you might set up a thread for
each incoming client request.

NOTE: Threads and thread groups are discussed in NLM Coding
Issues.

3. Organize the threads into groups.

For example, you can place threads that use the same current screen
and current working directory in the same thread group.

4. Write the NLM source code as a server program, using the rules for
NLM applications in the nonpreemptive environment (see
Nonpreemptive Environment).

The NetWare API contains functions you can use in writing your NLM.

5. Compile, link, and debug the NLM using the procedures discussed in
NLM Development Tools Overview.

NLM Programming

NLM Development: Tasks 12

Parent Topic: NLM Code Development

NLM Programming

NLM Development: Tasks 13

NLM Development: Concepts

16-bit Variables

To increase the execution speed of your NLM™ application, you should
avoid 16-bit variables and use 32-bit variables instead. Accessing a 16-bit
value takes more time than accessing a 32-bit value. For example,

MOV AX, WordVar ;16-bit value

on a 486 takes two clock ticks, but

MOV EAX, LongVar ;32-bit value

only takes one.

So, using the structure in Data Alignment, a better choice would be to
change C to be a LONG as follows:

struct {
 LONG A,
 LONG D,
 LONG C,
 BYTE B,
} BestStruct;

This structure is designed for optimal speed.

16-bit Parameters:If you are using 16-bit values to save space, remember
that they are converted to 32-bit values when they are passed as parameters.

32-bit Registers

Because you are adapting code from a 16-bit environment (NetWare® 2.x)
to a 32-bit environment (NetWare 3.x and 4.x), avoid loading pointers into
16-bit pointers. In the 80386 environment, the eight general-purpose, 32-bit
registers are named EAX, EBX, ECX, EDX, EBP, ESP, ESI, and EDI. You
should rewrite your program to use these registers.

For example, the following VAP assembly code uses the AX register in a
16-bit environment:

mov ax,offset mydata

NLM Programming

NLM Development: Concepts 14

To convert this code to an NLM, change it to use the EAX register available
in the 32-bit environment, as in the following example:

mov eax,offset mydata

The following VAP assembly code uses two register moves to identify the
beginning address of the data segment, DGROUP:

mov ax,DGROUP
mov ds,ax
mov dx,offset mydata
mov byte ptr [dx],0

The process of loading the segment register (shown in the VAP code) is
unnecessary in an NLM:

mov mydata, 0

Parent Topic:

Memory Considerations When Converting VAPs

Accessing Remote Servers

A remote server is accessed by calling LoginToFileServer with a server
name attached to the object name (server/object). If the specified server is
found, it is assigned the next available server ID and this number is added
to a remote session table maintained by the NetWare® API. This remote
server then has the same server ID for the life of the NLM™ application
even if all connections to it are logged out. However, if the NLM terminates
and is loaded again, the same server might not have the same server ID.

Server IDs are assigned in the order in which logins are performed to remote
servers. If an NLM logs in to server A and then to server B, server A has
server ID 1 and server B has server ID 2 for the life of the NLM. If the NLM
terminates and is loaded again but first logs in to server B, then server B is
assigned server ID 1. The local server (the one which is actually running the
NLM) is always assigned server ID 0, even if no login is performed to the
local server.

Functions that use a pathname (such as open, close, chdir) now accept a
server name as part of the path (server/volume:path). If no server name is
given, the path is assumed to be on the current server.

Parent Topic:

Remote Server Support

Altering the Source Code

Your C language VAP can run as an NLM™ application with only minor

NLM Programming

NLM Development: Concepts 15

adjustments. Although some alterations are optional, they are suggested
because they allow you to take full advantage of the NetWare® 3.x and 4.x
architectures.

Assembly Language Considerations for VAP Conversion

Transferring Functions from VAPs to NLM Applications

Memory Considerations When Converting VAPs

Communication and VAP Conversion

Parent Topic:

VAP to NLM Conversion

API Support for NLM Applications Running in the
IOEngine

When the MSEngine is loaded, a NetWare® SFT III™ server (in conjunction
with the NetWare API) emulates a standard NetWare environment. This
emulation involves redirecting file system (and related) functions targeted
to what would be (in standard NetWare) the local server from the local
server to the MSEngine (which is a remote server).

The redirection of file system-related functions made by an NLM running in
the IOEngine is accomplished by the NetWare API and is transparent to the
NLM. To achieve this type of transparent support, additional SFT III
support code was added to the NetWare API.

Parent Topic:

The NetWare API and the IOEngine

Assembly Code That Calls C Functions

When assembly code calls a C function, it expects the C function to do the
following:

Preserve the EBX, ESI, EDI and EBP registers

Place the return code in the EAX register

Your assembly code does not need to save the EBX, ESI, EDI and EIP
registers before calling a C function because C functions automatically
restore these registers when they return. It is a waste of instructions to save
these registers before calling a C function. (This is not the case if you are
using register-based parameter passing.)

C places the return code of a function in the EAX register. If a C function

NLM Programming

NLM Development: Concepts 16

returns a double, the return value is in the EAX and EDX registers, with the
high bytes in EDX.

The C function does not restore the values of the EAX, ECX, or EDX
registers if it changes them, so if your assembly code uses these registers, it
should save them before calling the C function.

Parent Topic:

NLM Assembly Interface on the Intel Platform

Assembly Language Considerations for VAP
Conversion

Most VAP assembly source code, written for the 80286 processor, requires
substantial rewriting for the 80386 processor. If any of the following occur in
your assembly language VAP, you must rewrite the program using 32-bit
assembly language:

Segment register change

Calls to far pointers

Use of 16-bit registers as index registers

Other use of far memory or 16-bit registers

AtUnload and atexit Functions

During unloading, the AtUnload and the ANSI standard atexit functions
are executed if they have been defined. During self-termination, only the
atexit functions are executed if they have been defined.

The AtUnload and atexit functions can perform resource cleanup such as
freeing memory, closing semaphores, and so on. Each NLM can have a
single AtUnload function and up to 32 atexit functions.

CAUTION: The AtUnload and atexit functions register routines
that will be run by OS threads that only have NLM level context.
These threads cannot be given thread group context because all
thread groups have been destroyed by the time these functions are
run. You cannot use any of the NetWare API functions that need
context (for example, printf) while in the AtUnload and atexit
routines. If you do, the server abends. If you need thread group level
context to do cleanup, use a SIGTERM routine (see signal and Using
signal handlers: Example).

NLM applications can define the AtUnload function with a call such as the
following:

NLM Programming

NLM Development: Concepts 17

AtUnload(NLMUnloadFunction);

The following example uses the AtUnload function:

char *myMemPtr; /* the pointer for this NLM's memory */

main()
{
 AtUnload(NLMUnloadFunction);
 /* other NLM code would go here */
 printf("You may unload this NLM.\n");
}
void NLMUnloadFunction()
{
 if(myMemPtr != NULL) free (myMemPtr);
}

The AtUnload function calls one function only. Therefore, the called
function should perform all the necessary functions you want implemented
at unload time.

NLM applications usually specify their atexit functions with calls such as
the following:

atexit(CloseMyFile);
atexit(CloseMySemaphore);
atexit(FreeMyMemory);

Successive calls to the atexit function create a list of functions to be executed
on a last-in, first-out basis.

The following example uses the atexit function:

FILE *myOpenFile; /* the file this NLM will open */
LONG mySemaphore; /* the semaphore this NLM will use */
char *myMemPtr; /* memory this NLM will allocate */

main()
{
 atexit(CloseMyFile);
 atexit(CloseMySemaphore);
 atexit(FreeMyMemory);
 /* other NLM code would go here */
 printf("You may unload this NLM.\n");
}

void CloseMyFile()
{
 // still have NLM level context
 if(myOpenFile != NULL)
 fclose (myOpenFile);
}

NLM Programming

NLM Development: Concepts 18

void CloseMySemaphore()
{
 if(mySemaphore != NULL)
 CloseLocalSemaphore(mySemaphore);
}

void FreeMyMemory()
{
 if(myMemPtr != NULL)
 free(myMemPtr);
}

If you do not handle cleanup through signal handling, you can use the
atexit functions to clean up if any of the following conditions are met:

The NLM calls exit.

The last thread in the NLM returns from its original function.

The NLM calls ExitThread with EXIT_NLM as the action code
parameter, which causes NetWare to unload the NLM. (If only one
thread is running, calling ExitThread with EXIT_THREAD as the action
code parameter also terminates the NLM.)

The NLM is unloaded with the UNLOAD command.

If the NLM never self-terminates, then the only function that needs to be
defined is AtUnload or a SIGTERM signal handler. These functions gain
control when the operator issues the UNLOAD command.

Autoloading Prerequisite NLM Applications

You can specify more than one prerequisite NLM™ applicaton by including
the MODULE directive in a linker directive file. You can separate the NLM
names with commas or use multiple MODULE directives on separate lines.

If different NLM applications can satisfy the same requirements, you can
specify those modules by separating their names with a vertical bar (|). The
OS searches for these modules in the order specified, loading the first one
that it finds.

The list of NLM applications that need to be autoloaded are specified with
the linker directive MODULE (for WLINK and NLMLINK) as follows:

MODULE module_name1, module_name2,..

module_name1 and module_name2 are the filenames of the NLM applications
to be autoloaded.

NOTE: The NetWare® 3.0 OS does not support the automatic loading
of modules specified in the MODULE directive. You have to load them

NLM Programming

NLM Development: Concepts 19

manually.

An NLM fails to load if the loader cannot find any of the modules listed in
the autoload list of the NLM, or if there is not enough memory to load them.

C Code That Calls Assembly Procedures

When C calls an assembly procedure, it expects the procedure to behave as a
C function behaves. Therefore, C expects the assembly procedure to do the
following:

Preserve the EBX, ESI, EDI, and EBP registers.

Place the return value in the EAX parameter.

The first step the assembly routine must take is to save the EBX, ESI, EDI,
and EBP registers if it is going to modify them. Then, before the assembly
routine returns, it must restore the saved registers to their original states.
Saving and restoring is usually accomplished by using the PUSH and POP
instructions.

C expects to find the return code of a function in the EAX register.
Therefore, an assembly procedure that is called by C needs to place its
return code in the EAX register. If the procedure returns a double, it must
place the return code in the EDX and EAX registers, with the high bytes in
EDX.

The assembly routine does not need to save the state of the EAX, ECX, or
EDX registers because C allows these registers to be changed.

It is important to conform to this behavior when writing assembly
procedures to be registered as callbacks with the NetWare OS because this is
the behavior that the OS expects.

Parent Topic:

NLM Assembly Interface on the Intel Platform

C Parameter Ordering

When C calls a function, it places the function parameters on the stack in the
reverse order that they appear in the call. (The rightmost parameter is the
first parameter that C pushes on the stack.) For example, when C issues the
call

MyFunc(A, B, C);

it places the parameters on the stack in the order of C, B, and A, as shown in
the following figure.

NLM Programming

NLM Development: Concepts 20

Figure 1. Example of C Parameter Passing

When C calls an assembly procedure, it pushes the parameters on the stack
just as if the assembly procedure is a C function. For example, C issues the
call

MyProc(A, B, C);

it places the parameters on the stack in the order of C, B, and A.

Related Topics::

Parameter Processing by Assembly Procedures

Passing Parameters to C Code

Parent Topic:

Parameter Passing

NLM Programming

NLM Development: Concepts 21

Changes to SMP Services

Changes to SMP Services were made in December, 1995 (Edition 2.3 of the
NetWare SDK).

The following functions were removed because local semaphore functions
in Thread are SMP enabled:

sema_alloc

sema_destroy

sema_examine

sema_init

sema_name

sema_post

sema_trywait

sema_wait

The following initialization functions were removed because they are not
needed. Initialization is accomplished by allocation functions.

barrier_init

cond_init

mutex_init

rmutex_init

rwlock_init

spin_init

The following barrier spin-waiting functions have been removed:

_barrier_spin

_barrier_spin_destroy

_barrier_spin_init

The remaining functions have been renamed as follows:

Old Function Name New Function Name

barrier_alloc NWSMPBarrierAlloc

barrier_destroy NWSMPBarrierDestroy

barrier_wait NWSMPBarrierWait

cond_alloc NWSMPCondAlloc

cond_broadcast NWSMPCondBroadcast

cond_destroy NWSMPCondDestroy

cond_signal NWSMPCondSignal

cond_wait NWSMPCondWait

mutex_destroy NWSMPMutexDestroy

NLM Programming

NLM Development: Concepts 22

mutex_lock NWSMPMutexLock

mutex_sleep_alloc NWSMPMutexSleepAlloc

mutex_trylock NWSMPMutexTryLock

mutex_unlock NWSMPMutexUnlock

rmutex_alloc NWSMPRMutexAlloc

rmutex_destroy NWSMPRMutexDestroy

rmutex_lock NWSMPRMutexLock

rmutex_owner NWSMPRMutexOwner

rmutex_trylock NWSMPRMutexTryLock

rmutex_unlock NWSMPRMutexUnlock

rwlock_alloc NWSMPRWLockAlloc

rwlock_destroy NWSMPRWLockDestroy

rw_rdlock NWSMPRWReadLock

rw_tryrdlock NWSMPRWTryReadLock

rw_trywrlock NWSMPRWTryWriteLock

rw_unlock NWSMPRWUnlock

rw_wrlock NWSMPRWWriteLock

spin_alloc NWSMPSpinAlloc

spin_destroy NWSMPSpinDestroy

spin_lock NWSMPSpinLock

spin_trylock NWSMPSpinTryLock

spin_unlock NWSMPSpinUnlock

thr_yield_to_mp NWSMPThreadToMP

thr_yield_to_NetWare NWSMPThreadToNetWare

Changing the Current Server

The current server can be changed by calling SetCurrentFileServerID or
chdir. The chdir function allows a server name as part of the path. If the
specified server is found in the remote session list, the current server ID is
set to the specified server.

CHECK Function

In the first step of the unload process, the NLM™ application calls the
CHECK function, but only if it has been specified. NLM applications specify

NLM Programming

NLM Development: Concepts 23

CHECK functions in the linking phase using directives. For example, the
WLINK linker uses the "OPTION CHECK" directive to specify the name of
the CHECK function. (The function does not need to be named CHECK.) If
CheckFunction were the name of the function to be called as the CHECK
function, the WLINK directive would be as follows:

option check = CheckFunction

Your CHECK function must be defined in one of the object modules. The
CHECK function should determine if the NLM is in a state in which it can
unload safely. If so, the function should return a zero value, indicating that
the unload process can continue normally. However, if the function
determines that the NLM cannot be unloaded safely, it should display a
warning message on the system console screen and return a nonzero value.

If the NetWare® OS receives a nonzero return value from the CHECK
function, it issues the following message:

Unload module anyway? n

If the above message appears, the system console operator can abort the
termination process and allow the NLM to continue its normal operation.
NLM termination code should not be placed in the CHECK function,
because the operator has the option of continuing with the execution of the
NLM, rather than terminating it.

CAUTION: The CHECK function is run by an OS thread that by
default does not have CLIB context in any NetWare version. If your
CHECK function calls any NetWare API functions that need CLIB
context, you must give the calling thread CLIB context by calling
SetThreadGroupID.

The following is a sample CHECK function:

int CheckFunction()
{
 /* If you need context information, put it here */
 if(NLMIsBusyRightNow)
 {
 ConsolePrintf(
 "That NLM is currently in use.\r\n");
 return 1;
 }
 return 0;
}

Given the sample CHECK function above, if the operator attempted to
unload HELLO.NLM while it is busy, the following would be the command
and output on the console:

:unload hello
That NLM is currently in use.
Unload module anyway? n

NLM Programming

NLM Development: Concepts 24

:

NOTE: This method does not prevent an operator from continuing
with the unload process. Instead, it provides a meaningful message that
the operator can use in deciding whether to continue the unload.

In most situations, you would want to allow the NLM to be unloaded.
However there might be a reason that you do not want anyone to unload
the NLM without shutting the server down. In this case, you need to
ungetch an `n' to the system console. This can be done with the following
code:

Causing the Server to Shut Down When an NLM is Unloaded

#include <stdio.h>
#include <conio.h>
#include <process.h>

int sysThreadGroupID
main()
{
 sysThreadGroupID = GetThreadGroupID();
 ...
}

int NWNoUnload()
{
 LONG OldScrID;
 LONG NewScrID;
 int TGID;

 // give the OS thread CLIB context
 TGID = SetThreadGroupID(sysThreadGroupID);

 OldScrID = GetCurrentSceen
 NewScrID = CreateScreen("System Console",0);
 If(OldScrID != NewScrID)
 SetCurrentScreen(NewScrId);
 ungetch('n');
 if(OldScrID != NewScrID)
 {
 SetCurrentScreen(OldScrID);
 DestroyScreen(NewScrID);
 }

 SetThreadGroupID(TGID)
 return -1;
}

Starting with the NetWare 4.0 OS, you can use SetNLMDontUnloadFlag to
set an NLM so it cannot be unloaded even if the console operator says it is
OK to unload the NLM. Use ClearNLMDontUnloadFlag to allow the NLM
to be unloaded after its don't unload flag has been set.

NLM Programming

NLM Development: Concepts 25

Related Topics::

Termination Process

Using check functions: Example

Using check functions: Example 2

CLIBAUX.NLM

CLIBAUX.NLM provides support for symbols that have changed for
various reasons, allowing NLM applications built with new headers to run
with older versions of CLIB.NLM.

For example, to support new ANSI code for stat, the structure stat had to be
enlarged. To provide support for NLM applications compiled with old
headers, stat was retained and a new function, stat_411, provides the new
functionality (stat is now redefined to stat_411 by the preprocessor). NLM
applications that use older headers continue to work with the newer CLIB
and NLM applications that use new headers have increased functionality.
However, if an NLM that uses new headers is loaded with an older version
of CLIB.NLM, stat_411 is missing.

CLIBAUX.NLM provides missing symbols so that the NLM can load.
However, CLIBAUX.NLM usually is not able to fill in the new information
in the structure, filling it in with NULLs instead. If the field information
changed offsets in the structure, CLIBAUX.NLM copies the structure into
the expected offsets based on the new header file.

The following figure shows what the behavior of an NLM is expected to be
when loaded with older versions of CLIB.

IMPORTANT: In this graphic, "works" means that the NLM runs

NLM Programming

NLM Development: Concepts 26

without recompiling or loading CLIBAUX.NLM. The NLM might
abend or produce inaccurate results for some functions using older
versions of CLIB.

Functions affected by these changes include at least the following:

fstat

NWLsetlocale

opendir

readdir

ScanErasedFiles

setlocale

stat

NOTE: See information about the use of Watcom headers and
statically linked libraries below.

Load Dependence

We do not recommend load-dependence on CLIBAUX.NLM, although the
alternative of making the system administrator aware of this potential
problem might be unsatisfactory. You can attempt to load CLIBAUX.NLM
along with later libraries that provide the new symbols because
CLIBAUX.NLM autoloads CLIB.NLM and unloads itself if none of the
symbols that it exports are missing. The autoload, autounload process can
be repeated as often as necessary for NLM applications that depend on
CLIBAUX.NLM.

Compiling with Watcom Headers

Watcom provides many functions also provided by CLIB.NLM including
almost all ANSI functions. Because Watcom's library is statically linked,
Watcom headers can differ greatly from Novell headers with no problem
because the header definitions are linked into the NLM.

However, occasionally changes cause Watcom and Novell to become
incompatible. For example, the Novell and Watcom versions of locale.h
were identical before Watcom v. 9.0, when Watcom changed some
definitions, including that for LC_ALL. This caused no problem when
calling setlocale because it is provided by Watcom, but calling
NWLsetlocale caused problems with the underlying collation tables and
other locale settings.

Rather than requiring the use of Novell headers, we have changed locale.h
to match Watcom and supply setlocale_411 and NWLsetlocale_411 in
newer libraries. These functions are now called when setlocale or
NWLsetlocale are called. CLIBAUX.NLM provides these symbols for newer
NLM applications running with older versions of CLIB.

NLM Programming

NLM Development: Concepts 27

Client-Server Communication

One factor in determining the type of client-server communication you use
involves how your client and server applications will manage service
requests. There are two types of client-server communication:

Asynchronous communication

The client continues processing after it issues service requests, but
before the server replies, as shown in the following figure.

Figure 2. Asynchronous Communication

In this sample archiving application, the client sends multiple requests
to the server without waiting between requests for a reply.

Synchronous communication

The calling program makes a service request and then suspends
processing until the called process replies, as shown in the following
figure.

Figure 3. Synchronous Communication

NLM Programming

NLM Development: Concepts 28

In this sample database application, the client sends a read file request
to the server and then waits for a reply before sending the next
request.

Asynchronous communication can be achieved through any of the
following: IPX, SPX, SPX II, TLI, BSD Sockets, or Queue Management (see
QMS for Client-Server Communication).

Synchronous communication can be achieved through any of the following:
IPX, SPX, SPX II, TLI, or BSD Sockets API.

Related Topics:

QMS for Client-Server Communication

Clock Control Fields

The clock field can be set if necessary. See Interactions between Local Time,
UTC, and Other Variables for an explanation of the relationship between
local time and UTC. When the clock is set, a time change event occurs and
can be detected through the event notification interface.

The tickIncrement, adjustmentCount, adjustmentValue, and grossCorrection
fields can be changed as needed to control the clock, as explained in The

NLM Programming

NLM Development: Concepts 29

Synchronized Clock Interface. If necessary, you can change the tickIncrement
.

The stdTickIncrement field contains the value that is used to initialize the
tickIncrement. This field should not be changed. It is provided as a reference
value, in case tickIncrement must be restored.

Communicating with Other NLM Applications

A loaded NLM™ application can call any function in any NLM that exports
symbols. To use a function exported by another NLM, the current NLM
must include an IMPORT statement in its directive file. In addition, the NLM
that contains the function must include an EXPORT statement in its directive
file. For a discussion of directive files, see NLM Linkers.

Communication and VAP Conversion

NLM™ applications have available to them a wide variety of functions for
accomplishing their tasks. NLM applications can access the many functions
available in the NetWare® API. In addition, NLM applications can import
functions from other NLM applications.

Once an NLM is loaded, it becomes part of the NetWare 3.x or 4.x OS. This
means NLM applications have advantages that VAPs do not. Specifically,
NLM applications can directly access both the server and other NLM
applications. Thus, NLM applications handle communication more
efficiently than VAPs.

Related Topics:

Server Connections and VAP Conversion

Communicating with Other NLM Applications

Connection and Task Numbers

Connection numbers are unique numbers assigned by a NetWare® server to
identify its clients. They reflect the client's place in the server's connection
table. Connection numbers provide an easy way to identify objects logged
in on the network and to obtain additional information about them. When a
client closes its connection, this connection goes back into the pool of
available connections.

NetWare file services use a combination of connection and task numbers to
identify individual programs, running at any given time at a workstation.
Task numbers are only unique for a given workstation.

NLM Programming

NLM Development: Concepts 30

Connection numbers and task numbers together are used for:

Client Identification

When a client attaches to a server, each file service request has an
identifying connection number and task number.

Security

When a file service is requested, the OS verifies that the client and/or
NLM has the appropriate access rights by looking at the connection
number.

Accounting

In a system where the NetWare accounting feature is installed, the
price of servicing a request is charged to the specified connection
number.

Resource Management

When a connection logs out, server resources allocated to that
connection are freed.

A DOS application on a network workstation does not normally concern
itself with connection numbers and task numbers; the network shell
program handles those issues.

Because server-based applications often offer services on behalf of more
than one client, they must be able to specify on whose behalf they are
operating.

An NLM has three different types of connection numbers it can specify:

Connection number (0)

This gives the NLM supervisor rights to the server's file system. This is
the default connection number for NLM applications.

The connection number of an already logged-in workstation

This gives the NLM the file access rights of the logged-in workstation.
This lets the NLM do work on behalf of the workstation.

An NLM connection number

The NetWare 3.11 OS reserves 100 "hidden" connection numbers for
NLM applications. The numbers begin after the last client connection
number. For instance, in a 250-user system, NLM connection numbers
run from 251 through 350. Likewise, in a 100-user system, the NLM
connection numbers are 101 through 200.

The NetWare 4.x OS provides unlimited connection numbers for NLM
applications. These connection numbers start at the first number after
the last client connection number.

NLM applications can get an NLM connection number on the server
they reside on by attaching to the server or by calling "
SetCurrentConnection(-1)". They can then log in as a user and
assume the rights of that user.

NLM Programming

NLM Development: Concepts 31

For more information about connection and task numbers, see Connection
Number and Task Management.

Context

The NetWare® API maintains a context for each NLM™ application that is
running. The context is divided into three levels of scope: thread level
context, thread group level context, and NLM level context. (The following
figure illustrates the three levels of context.) Because this context is created
using the functions found in CLIB.NLM, it is commonly known as CLIB
context.

Figure 4. Context Levels

NLM Programming

NLM Development: Concepts 32

NOTE: An understanding of context is critical to NLM development.
Many errors in NLM applications are caused by developers not
understanding context and how it can change.

Threads created in one of the four ways described in Thread Groups have
the CLIB thread level, group level, and NLM level context. These context
levels contain different information that is changed by the NetWare API.
The context information cannot be changed directly by the programmer.

NOTE: A fifth way to create threads is for the OS to create threads.
These threads do not have CLIB context, and must be given CLIB
context. This issue is discussed after the following discussion about the
context levels.

Related Topics:

Thread Level Context

Thread Group Level Context

NLM Level Context

Context Problems with OS Threads

Context Solutions for OS Threads

Context Problems with OS Threads

There are two types of threads running in the NetWare® OS: OS threads
(also known as callbacks) and CLIB threads (those created by the
CLIB.NLM functions). The OS threads are created by the OS in instances
such as when the LOAD and the UNLOAD commands are used. CLIB
threads are created by calling the NetWare API functions BeginThread,
ScheduleWorkToDo, and BeginThreadGroup, and by a default thread
starting at the main function. The following figure shows that OS threads
are missing the context that CLIB threads have.

Figure 5. CLIB and OS Threads

NLM Programming

NLM Development: Concepts 33

The problem here is that many---but not all---NetWare API functions need
to have a context in order to work correctly. For example: printf writes to
the calling thread's current screen. The current screen is kept in the thread's
thread group context. OS threads do not have any CLIB context, so their
calls to printf do not produce output anywhere. In more extreme cases, OS
threads calling the NetWare API functions that need CLIB context can cause
the server to abend.

NOTE: The solution to this problem is to give the OS threads context,
thereby turning them into CLIB threads. The method for doing this is
presented in the following section.

NLM Programming

NLM Development: Concepts 34

Developers must be aware of all the situations where NLM™ applications
will be running with OS threads instead of CLIB threads, and adjust their
code accordingly to give the OS threads CLIB context. The following is a list
of conditions where the NLM runs with OS threads:

In the optional startup function that is specified with the "OPTION
START" directive, when using the WLINK linker, or with the "START"
directive for NLMLINK

In the check function that is specified with the "OPTION CHECK"
directive when using the WLINK linker, or with the "CHECK" directive
for NLMLINK

In some of the functions registered with signal, such as SIGTERM

In functions registered with RegisterForEvent

In functions registered with ScheduleSleepAESProcessEvent

In functions registered with ScheduleNoSleepAESProcessEvent

In the function registered with RegisterConsoleCommand

Adding Console Commands: Example

In the function registered with FERegisterNSPathParser (might not have
the correct context)

In the library cleanup function set by RegisterLibrary

Context Solutions for OS Threads

Two solutions to these context problems are as follows:

NetWare 3.11 and 4.x solution:read group ID of one of the groups, such as
for the default thread group created for the main function. (You might also
want to create a global variable for each of the thread groups that are
created.) The thread group ID of the current thread group can be obtained
with GetThreadGroupID, as shown in the following example:

#include <process.h>
 int globalThreadGroupID;

 main()
 {
 globalThreadGroupID = GetThreadGroupID();
 ...
 }

Then, when you have an OS thread running, you give the OS thread context
using SetThreadGroupID as follows:

NLM Programming

NLM Development: Concepts 35

using SetThreadGroupID as follows:

oldTGID = SetThreadGroupID(globalThreadGroupID);
 /* do work */
 SetThreadGroupID(oldTGID);
 /* always set back the thread group ID */

At this point, the NetWare® API takes the OS thread and gives it context,
just as if it had been a CLIB thread. This lets you use the NetWare API
functions that need context.

CAUTION: You must be careful when using the thread group ID
that other threads are using. Changes to the context affect all threads
in that group.

NetWare 4.x Specific solution:CLIB threads in the NetWare 4.x OS have
been given a context specifier that gives these threads the ability to
automatically give context to callbacks (OS threads that are registered to be
called to run when specific conditions occur) that they register. The context
that is given to the callbacks when they are registered is determined by the
setting of the registering thread's context specifier. The context specifier can
be set to one of the following settings:

NO_CONTEXT

Use this when you don't want callbacks to be automatically registered
with a CLIB context. The advantage here is that you avoid the
overhead needed for setting up CLIB context. The disadvantage is that
without the context, the callback is only able to call NetWare API
functions that manipulate data or manage local semaphores.

Call SetThreadGroupID and pass in a valid thread group ID. Use this
once inside your callback to give your callback thread CLIB context.

USE_CURRENT_CONTEXT

Use this to register callbacks to have the thread group context of the
registering thread.

A valid thread group ID

Use this when you want the callbacks to have a different thread group
context than the thread that schedules them.

You can determine the existing setting of the registering thread's context
specifier by calling GetThreadContextSpecifier. Call
SetThreadContextSpecifier to set a thread's context specifier.

When a new thread is started with BeginThread, BeginThreadGroup, or
ScheduleWorkToDo, its context specifier is set to
USE_CURRENT_CONTEXT by default.

Using this solution, if you want the registered thread to have the thread
group context of the registering thread, you would set the registering
thread's context specifier to USE_CURRENT_CONTEXT (if it has been
changed from the default) and then register the function that will run as a

NLM Programming

NLM Development: Concepts 36

callback.

NOTE: The drawback to using this solution is that the context specifier
is specific to the NetWare 4.x OS. If you use this solution, your NLM
will not run on the NetWare 3.11 OS.

Critical Sections

Critical sections allow you to put to sleep all threads in the NLM™
application, except for the current thread, by calling EnterCritSec. This
allows the current thread to execute code without relinquishing control to
other threads in the NLM. The thread must exit the critical section, using
ExitCritSec, before any other thread in the NLM can run.

NOTE: Critical sections only affect the NLM they are called from.
Calling EnterCritSec does not put to sleep threads in other NLM
applications.

An alternative to using critical sections is to use local or network
semaphores, which limit the access of threads to specific resources and put
threads in semaphore queues. Semaphores are discussed in NLM
Synchronization.

For more information on critical sections, see Thread.

Cross-Platform Functions in NLM Applications

All cross-platform ("client") functions have now been ported to run on the
NLM™ platform through the library CALNLM32.NLM, also included in
this SDK. These functions provide a much richer API set for NLM
applications than has previously been offered. (NLM specific functions that
provide the same functionality as the cross-platform functions are called
Limited Support NLM functions. These functions are contained in the
library NIT.NLM and documented in the NLM Function Reference of the
NetWare® Limited Support SDK. See NLM Limited Support Functions.)

WARNING: The connection model for CALNLM32.NLM is
significantly different from the connection model for NIT.NLM. An
application that makes calls to both libraries will break. Thus link to
either CALNLM32.NLM or NIT.NLM to prevent calling functions
from both.

When considering the use of cross-platform functions for NLM
development, observe the following about load order and include order:

Load Order

If your NLM application includes calls to the cross-platform libraries,

NLM Programming

NLM Development: Concepts 37

CALNLM32.NLM must be the first NLM loaded. It automatically loads
modules on which it has dependencies, including CLIB.NLM and its
associated modules.

If your NLM application does not include calls to the cross-platform
libraries, load CLIB.NLM first. Its associated modules will also load
automatically.

Include Order

NOTE: Some header files in the NWSDK\INCLUDE directory have
the same names as files in the NWSDK\INCLUDE\NLM directory,
but the contents of such files are not identical.

If an NLM application makes calls to CALNLM32.NLM, specify the
following include order in the make file or in a SET command:

NWSDK\INCLUDE
NWSDK\INCLUDE\NLM

If an NLM application makes calls to the NIT.NLM library, specify the
following include order in the make file or in a SET command:

NWSDK\INCLUDE\NLM
NWSDK\INCLUDE

Parent Topic:

NetWare API

Current Working Directory

One difference between programming for the NetWare® OS and DOS is
that the threads in NLM™ applications can share information called context
. An example of context is the implementation of the current working
directory (CWD). Under DOS, all programs on a given DOS drive share a
single CWD. In the NLM environment, each thread group has its own
CWD, as well as a current working volume and a current server ID.
However, there is no notion of "drive" in this environment when you are
referring to the NetWare file system.

CWDs for NLM applications can be used by almost all NetWare API
functions that take a pathname as an input parameter. Any time a server
and volume are specified in a pathname, the pathname is absolute.
Similarly, if the pathname does not contain a server or volume, the path is
considered relative to the CWD.

NLM Programming

NLM Development: Concepts 38

Custom VAP Functions

You might have defined some custom functions for your VAP that are not
available through the NetWare® API---DOS Library, such as screen and I/O
management functions. However, the NetWare API provides many of these
functions for you. Therefore, you might want to replace many of your
custom functions with NetWare API functions.

For more information on the NetWare API functions, see the function
descriptions.

Data Alignment

Data alignment describes data that is within the boundaries that are
associated with each data type. Each data type, BYTE, WORD, LONG, and
DOUBLE have rules where their starting addresses should begin. These
rules are summarized in the following table.

Table auto. Data Type Address Boundaries

Data Type Starting Address Boundary

BYTE Addresses that are multiples of one. No alignment
issues.

WORD Addresses that are multiples of two.

LONG Addresses that are multiples of four.

DOUBLE Addresses that are multiples of eight.

A variable that does not fit in these boundaries is not aligned. For example,
a LONG is four bytes, and should start on an address that is a multiple of
four. If it does not start on the correct boundary, it spans boundaries, as
shown in the following figure.

Figure 6. Data Alignment Figure

NLM Programming

NLM Development: Concepts 39

On 386 and 486 based processors, accessing variables that are not
long-aligned adds extra clock cycles to your program's execution. You take a
three clock cycle hit (for alignment) each time you access a variable that is
not long-aligned.

NLM Programming

NLM Development: Concepts 40

For example, if var is a 32-bit variable, the instruction

MOV EAX, var

takes one clock cycle to complete if the value is long-aligned and four clock
cycles if it is not (one cycle for the instruction, three cycles for alignment).

One place where alignment problems are common is in structure
definitions. For example, the structure

struct {
 LONG A,
 BYTE B,
 WORD C,
 LONG D
} BadStruct;

is a poorly-designed structure because the placement of B in the structure
causes C and D to cross long boundaries (they are not long-aligned). This is
shown in the following figure.

Figure 7. Alignment of BadStruct

NLM Programming

NLM Development: Concepts 41

To solve the alignment problem (and to speed up the NLM™ application),
you can arrange the structure fields as follows:

struct {
 LONG A,
 LONG D,
 WORD C,
 BYTE B,
} GoodStruct;

As shown in the following figure, this is a well-designed structure because it
does not have alignment problems. The fact that B is not on a long boundary
is not an issue; BYTEs do not need to be long aligned because a byte can
never cross a boundary as a WORD or a LONG can.

Figure 8. Alignment of GoodStruct

NLM Programming

NLM Development: Concepts 42

Daylight Savings Time Information Fields

The OS interface for setting and controlling Daylight Savings Time (DST)
information is implemented in SET parameters. The values stored in the
Synchronized Clock Structure should not be changed except by using the
SET parameter interface. Otherwise, inconsistent information might be
displayed by the set parameters.

The daylight field indicates whether the value of tzname[1] is valid. It is true
(nonzero) if the second abbreviation was detected in the time zone string.

The daylightOffset field contains the number of seconds by which local time
is adjusted when DST is in effect. It is controlled by the SET DAYLIGHT
SAVINGS TIME OFFSET parameter.

When true (nonzero), the daylightOnOff field indicates that DST is in effect.
The state is determined by the OS after analyzing the information provided
by the SET START/END OF DAYLIGHT SAVINGS TIME parameters.

The startDSTime and stopDSTime fields hold the times at which the next DST
transitions are scheduled to occur. The times are determined by the
information provided in the SET START/END OF DAYLIGHT SAVINGS
TIME parameters.

Drive Duplexing

Drive duplexing, a major element of SFT™ Level II, is important to the
operation of SFT III™. To the MSEngine, NetWare® partitions residing on
two mirrored machines appear as if they are duplexed partitions residing
on the same standard NetWare server. This makes it possible for SFT III
developers to ignore the details of file system fault tolerance just as standard
NetWare developers are able to do.

One benefit offered by the implementation of drive duplexing of SFT III is
that the secondary server is able to fulfill read requests as if it were a
standard NetWare duplexed drive controller. This "split seek" capability can
speed file service when two servers are mirrored.

Another benefit offered by this implementation of drive duplexing is that
remirroring of NetWare partitions after either the primary or secondary
server suffers a fault occurs in the background after the two servers are
synchronized. This makes it possible to restore redundant operation very
quickly after a fault.

Dual-Processing Support

NLM Programming

NLM Development: Concepts 43

NetWare® SFT III™ provides optional support for dual-CPU server
hardware. When running on such hardware, NetWare SFT III performs
asymmetric multiprocessing, meaning that the load placed on each
respective CPU is not equal. When NetWare SFT III is running on a
dual-CPU machine, one processor performs all hardware-related I/O,
whereas the other processor performs file service, NCP™ service, and other
processing not directly related to the server hardware.

Flat Memory Model

VAPs use many memory models (such as small, large, and huge). In
contrast, NLM™ applications use only the flat memory model.

In the flat memory model, all calls to functions and references to data are
made with 32-bit near pointers. Using 32-bit offsets, the flat memory model
provides full memory addressability of up to 4 GB of memory, referenced to
a single selector for data and a single selector for code. (A selector is a value
loaded into a segment register.)

Segment registers CS, DS, ES, FS, GS, and SS are initialized to constants at
load time. Because you do not need to alter the segment registers to access
code or data, all references to far objects should be modified to reference
near objects.

One quick way to remove the far calls from your C language code is to insert
the following line:

#define far

This statement defines far as nothing, and so the program ignores
subsequent far references.

The following VAP C language code references a far object:

extern int far myfunc(void);

To convert this code to an NLM, change it to reference the function as a near
object, as in the following example:

extern int myfunc(void);

In addition, you should remove all far pointers from the source code. For
example, the following VAP assembly language code uses a far pointer:

call far myfunction

To convert the code to an NLM, change it to use a near pointer or no pointer,
as in the following example:

call near myfunction

NLM Programming

NLM Development: Concepts 44

/* or */
call myfunction

The following example of VAP code uses far pointers:

char obj[10];
char far *mydata;
mydata = (char far *)obj;

To convert it to an NLM eliminate the far pointers, as in the following
example:

char obj[10];
char *mydata;
mydata = obj;

Following Exit Steps

The registered function calls and signal raising shown in the figures that
show exit steps occur only if the NLM™ application has specified them,
using AtUnload, atexit, and signal. If no registered functions or signal
handling exist in the NLM, the associated step is skipped.

In addition, steps are performed depending on the way the NLM
terminates. For example, the NetWare API performs some resource cleanup
at every NLM termination, but the CHECK function and the AtUnload
function are called only if the NLM is unloaded at the command line. The
atexit functions are only called in the self-termination and unload processes;
they are not called during the abnormal exit process.

Former and Present Header Names

The following table lays out, by file name, the correspondence of header
files between the unified, "monolithic" CLIB that shipped with the NLM™
SDK to the modular CLIB. It also identifies which CLIB module contains the
functions declared in each migrated header file. Files marked with an
asterisk (*) in the first column did not change names in the transition to
modular CLIB. Note that some files were divided between two CLIB
modules and retained the original name in both modules.

"Monolithic"
CLIB Header

Modular CLIB
Module

Modular
CLIB Header

Comment or
Explanation

advanced.h NLMLIB.NLM nwadv.h

assert.h* CLIB.NLM assert.h ANSI-compliant

conio.h THREADS.NL
M

nwconio.h

NLM Programming

NLM Development: Concepts 45

ctype.h* CLIB.NLM ctype.h ANSI-compliant

datamig.h NIT.NLM nwdatamg.h

debugapi.h THREADS.NL
M

nwdebug.h

dfs.h NLMLIB.NLM nwdfs.h

direct.h NLMLIB.NLM nwfattr.h

dos.h NLMLIB.NLM nwdos.h

dynarray.h NLMLIB.NLM nwdynarr.h

errno.h* CLIB.NLM errno.h ANSI-compliant

extattr.h NIT.NLM nwextatt.h

fcntl.h* NLMLIB.NLM fcntl.h

fileengd.h NLMLIB.NLM nwfile.h

fileengd.h NLMLIB.NLM nwfattr.h

float.h* CLIB.NLM float.h ANSI-compliant

fshooks.h NLMLIB.NLM nwfshook.h

io.h NLMLIB.NLM nwfattr.h

library.h NLMLIB.NLM nwlib.h

limits.h* CLIB.NLM limits.h ANSI-compliant

locale.h* CLIB.NLM locale.h ANSI-compliant

malloc.h THREADS.NL
M

nwmalloc.h

math.h* CLIB.NLM math.h ANSI-compliant

namespc.h NLMLIB.NLM nwfile.h

ncpext.h NLMLIB.NLM nwncpext.h

niterror.h THREADS.NL
M

nwerrno.h

nwaccntg.h* NIT.NLM nwaccntg.h

nwafp.h* NIT.NLM nwafp.h

nwbindry.h* NIT.NLM nwbindry.h

nwclient.h* REQUESTR.NL
M

nwclient.h

nwcntask.h* REQUESTR.NL
M

nwcntask.h

nwcntask.h* NLMLIB.NLM nwcntask.h

nwconn.h* REQUESTR.NL
M

nwconn.h

nwconn.h* NLMLIB.NLM nwconn.h

nwenvrn.h* NIT.NLM nwenvrn.h

NLM Programming

NLM Development: Concepts 46

nwenvrn1.h* NIT.NLM nwenvrn1.h

nwfile.h* NLMLIB.NLM nwfile.h

nwipxspx.h* NLMLIB.NLM nwipxspx.h

nwlocale.h* NLMLIB.NLM nwlocale.h

nwmedian.h* NLMLIB.NLM nwmedian.h

nwmisc.h NLMLIB.NLM nwfile.h

nwmisc.h NIT.NLM nwdir.h

nwmisc.h NLMLIB.NLM nwtime.h

nwmisc.h THREADS.NL
M

nwstring.h

nwmsg.h* NIT.NLM nwmsg.h

nwmsg.h THREADS.NL
M

nwpre.h New header file

nwqueue.h* NIT.NLM nwqueue.h

nwsemaph.h* THREADS.NL
M

nwsemaph.h

nwserial.h* NIT.NLM nwserial.h

nwservst.h* NIT.NLM nwservst.h

nwsmp.h* THREADS.NL
M

nwsmp.h New header file

nwsync.h* NIT.NLM nwsync.h

nwtts.h* NIT.NLM nwtts.h

nwtypes.h* THREADS.NL
M

nwtypes.h

 process.h THREADS.NL
M

nwthread.h

sap.h NLMLIB.NLM nwsap.h

setjmp.h* CLIB.NLM setjmp.h ANSI-compliant

signal.h THREADS.NL
M

nwsignal.h

signal.h* CLIB.NLM signal.h ANSI-compliant

stdarg.h* CLIB.NLM stdarg.h ANSI-compliant

stddef.h* CLIB.NLM stddef.h ANSI-compliant

stdio.h* CLIB.NLM stdio.h ANSI-compliant

stdlib.h* CLIB.NLM stdlib.h ANSI-compliant

string.h* CLIB.NLM string.h ANSI-compliant

sys/bsdskt.h* NLMLIB.NLM sys/bsdskt.h

sys/filio.h* NLMLIB.NLM sys/fileio.h

sys/ioctl.h* NLMLIB.NLM sys/ioctl.h

NLM Programming

NLM Development: Concepts 47

 sys/socket.h* NLMLIB.NLM sys/socket.h

sys/sockio.h* NLMLIB.NLM sys/sockio.h

sys/stat.h* NLMLIB.NLM sys/stat.h POSIX-compliant

sys/time.h NLMLIB.NLM sys/timeval.h

sys/types.h* NLMLIB.NLM sys/types.h POSIX-compliant

sys/uio.h* NLMLIB.NLM sys/uio.h

sys/utsname.h* NLMLIB.NLM sys/utsname.
h

POSIX-compliant

time.h NLMLIB.NLM nwtime.h

time.h* CLIB.NLM time.h ANSI-compliant

Freeing Resources upon Exit

NLM™ applications are responsible for freeing the resources they allocate,
such as memory, sockets, screens, devices, semaphores, and so on. NLM
applications should return all allocated resources to the OS during the
termination process. If an NLM has not freed all its resources upon program
termination, NetWare issues a warning message such as the following:

5/24/93 3:30pm: Module did not release 500 resources.
Module: Hello
Resource: Small memory allocations
Description: Alloc Short Term Memory

During NLM termination, NetWare and the NetWare API attempt to free all
resources that the NLM allocated. Local semaphores are the only resource
that cannot be freed; they must be freed with calls to CloseLocalSemaphore.
If an NLM does not close all allocated local semaphores upon termination,
the server abends.

Functions Unsupported by the IOEngine

The three functions listed below are not supported in the IOEngine because
they provide the calling NLM™ application with direct access to file system
cache buffers.

AsyncRead

AsyncRelease

gwrite

For the same reason, you also cannot call the Direct File System functions
with the IOEngine.

NLM Programming

NLM Development: Concepts 48

AFP functions always return an error indicating that AFP is not supported
on the MSEngine. This is not an abnormal situation: because the MSEngine
in NetWare SFT III™ 3.11 does not support AppleTalk*, these functions
always return with an error code indicating that the Macintosh* name space
is not present. However, AppleTalk will be supported in a future version of
NetWare SFT III.

General Purpose Registers

The Intel* 386* and 486 processors have eight general purpose registers that
are available for programmers to use. These registers are EAX, EBX, ECX,
EDX, ESI, EDI, EBP, and ESP.

When using a language to write functions or procedures to be used by
another language, you need to understand how each language uses these
registers. For example, C automatically restores the state of some of the
registers when it returns from a function, but an assembly procedure does
not restore the state unless you explicitly save the registers and restore
them.

How NLM Applications Are Loaded

The executable file that first establishes the NetWare® 3.x and 4.x OS's is
SERVER.EXE. This file contains two parts: a loader and SERVER.NLM.
When you start a NetWare server by running SERVER.EXE, the loader is
put into memory first. It then loads SERVER.NLM, which contains the
NetWare OS kernel.

Both the loader and SERVER.NLM must be in memory before you can load
NLM™ applications. The loader knows how to load NLM applications, but
it cannot do so without allocating memory for them. Because SERVER.NLM
maintains the list of available memory, the loader and SERVER.NLM must
work together to load NLM applications.

All NLM applciations consist of a header and the code and data. The header
component of an NLM contains the following three lists:

Autoload list

Includes the prerequisite modules that must be loaded before a given
NLM can function.

Import list

Includes the names of services and data that the NLM needs to use in
order to function.

Export list

Includes the names of services and data that the NLM provides for use
by other modules.

NLM Programming

NLM Development: Concepts 49

When you load an NLM with the LOAD command, the loader first
processes the NLM header, which includes the autoload, import, and export
lists. Then the loader loads the actual code and data of the NLM.

As NetWare loads the NLM into the server's memory, it resolves all
unresolved externals and initializes the module. The basic steps in loading
an NLM are as outlined here:

1. The loader processes the NLM header.

2. The loader loads the code and data of the NLM by requesting memory
from SERVER.NLM and loading the code and data at the memory
addresses allocated. (For the NetWare 4.x OS, if the NLM has been
compressed with NLMPACK, the loader unpacks the NLM as it is
loaded.)

3. The loader maintains a master list of available services and their
addresses. (The loader builds this list by processing the export lists of
NLM applications as it loads them.) The loader resolves the names in
the imported lists of the NLM (that is, substitutes the service's address
in memory for its name throughout the NLM code). This process allows
NLM applications to call services directly by calling their code.

Related Topics::

Loading Multiple NLM Applications

Autoloading Prerequisite NLM Applications

Importing and Exporting NLM Applications

Importing and Exporting NLM Applications

After processing the autoload list, the loader processes the import list and
then the export list. The loader checks the import list of the NLM™
application, name by name, to verify that it can resolve the name of each
service. An NLM fails to load if the loader cannot resolve one or more of the
names in the import list. (Any names that cannot be resolved are displayed
on the system console screen.)

Once the import list of the NLM has been processed successfully, the loader
processes the export list (the list of services that the NLM provides). The
loader adds each name in the export list to its master table of available
services.

Input and Output Cursors

An NLM™ screen has two cursors associated with it: an input cursor and an
output cursor. It is possible to position both an input cursor and an output

NLM Programming

NLM Development: Concepts 50

cursor on the NLM screens, giving your application the ability to accept
input at one location on the screen and write output at a different location. If
you want to mimic the DOS cursor, you can couple the two cursors, causing
them to always act as one cursor. (The default setting is to have the cursors
coupled.) The cursor coupling is set using SetCursorCouplingMode.

Interactions between Local Time, UTC, and Other
Variables

The synchronized clock structure holds UTC and information that
determines how local time can be calculated from UTC. (For efficiency, local
time is kept as a separate clock structure that is incremented along with
UTC during each timer interrupt.) The relationship between local time and
UTC is described by the equation:

Local = UTC - timezoneOffset + daylightOffset * daylightOnOff

assuming that daylightOnOff is always 0 or 1. This equation contains five
variables, of which only UTC cannot be set from the console. To maintain
the relationship between local time and UTC, one or the other must be
recalculated when any variable changes. The general rule is that when UTC
is set, the local time is recalculated, but when any other variable is set, UTC
is recalculated.

When calling SetSyncClockFields to change the UTC clock, local time is
automatically recalculated. The calculation of local time is performed after
any field updates are applied. Because local time is updated at the same rate
as UTC time, any adjustments made to the clock also affect the calculation
of local time.

An interface already exists for setting the local time from the system console
or under program control. That interface updates the UTC clock in the
synchronized clock structure. However, because only the whole seconds can
be specified when setting local time, the subsecond part of the UTC clock is
set to 0 when local time is set.

Interactions with TIMESYNC

Although the synchronized clock interface was designed to support the
needs of TIMESYNC NLM, the OS and TIMESYNC have been separated as
much as possible. The OS knows very little about the functionality of
TIMESYNC.

Because the TIMESYNC NLM can be unloaded, it is possible to write a
different synchronization NLM. If you do so, you must be aware of the two
places where the OS interacts with time synchronization:

The OS clears the CLOCK_IS_NETWORK_SYNCHRONIZED bit in the

NLM Programming

NLM Development: Concepts 51

status flags to indicate that critical time parameters might have changed
and UTC time might need correction.

The status flags, which includes a server type field, is passed to clients,
both in the server and on workstations. You should set the field to one of
the known values (described in Synchronized Clock Status Flags) that
best reflects how time is controlled on the server.

It might be useful to augment the TIMESYNC NLM by supplying an
external time signal or detecting and correcting for an inaccurately ticking
clock. This can be accomplished by setting the UTC clock or adjusting the
tickIncrement field as needed and allowing TIMESYNC to continue
functioning as usual. TIMESYNC was designed not to change the tick
increment when correcting the clock so that an add-on product can safely do
so.

Because there is no convenient interface with TIMESYNC that allows you to
detect when the next synchronization period will start, you must rely on the
behavior of TIMESYNC and do some monitoring. If you need to know
when the next attempt to synchronize will occur, look at the
adjustmentCount value. The value that TIMESYNC places in the
adjustmentCount is calculated to complete the adjustments a few ticks before
TIMESYNC begins the next synchronization attempt. Of course, if the value
is 0, you don't know whether synchronization is about to begin or that no
adjustment was necessary during the last attempt.

The most reliable way to cooperate with TIMESYNC is to set the
adjustmentCount to 0 and clear the network synchronized status flag at the
time you change other fields. This has the effect of cancelling the previous
adjustment while notifying TIMESYNC that it should immediately begin
another synchronization attempt. The following example demonstrates this
operation.

Cooperating with TIMESYNC NLM

SetTickIncrement (long value)
{
 /* Sets the tick increment and notifies TIMESYNC that something has changed. */
 /* Cancels any pending adjustments */
 /* Parameter value is a fractional second -
 the whole seconds will be set to zero */

 long mask;
 Synchronized_Clock_T aclock;

 /* Be sure to save the status bits we aren't changing */
 GetSyncClockFields (SYNCCLOCK_STATUS_BIT, &aclock);
 aclock.statusFlags &= (~CLOCK_IS_NETWORK_SYNCHRONIZED);
 /* Notifies TIMESYNC of changes */

 aclock.tickIncrement[0] = 0; /* Clear whole seconds */
 aclock.tickIncrement[1] = value; /* Set fractional seconds */
 aclock.adjustmentCount = 0; /* Stop applying old adjustments */

NLM Programming

NLM Development: Concepts 52

 /* Copy the new values into the synchronized clock structure */
 mask = SYNCCLOCK_STATUS_BIT | SYNCCLOCK_TICK_INCREMENT_BIT |
 SYNCCLOCK_ADJUSTMENT_COUNT_BIT;
 SetSyncClockFields (mask, &aclock);
}

IMPORTANT: If an external time signal is being supplied through a
separate NLM, the TIMESYNC HARDWARE CLOCK and TYPE
options must be configured so that TIMESYNC does not fight the new
time signal. That means on single and reference servers the hardware
clock option should be off.

Introduction to Client-Server Applications

Distributed applications running on the NetWare® OS typically use the
client-server model. (Peer-to-peer models can also be used, but here we
address the more common client-server model.) In the client-server model,
the client program makes service requests of---and receives replies from---a
separate server program. These services can be data management, print and
communication services, computation, and so on.

The following figure shows a client-server application where the computer
specializing in database file management acts as the server, and the
workstation specializing in graphical displays acts as the client.

Figure 9. Client-Server Application

The client-server model enhances distributed applications in many ways.
For example, the client-server model offers the following advantages:

By offloading some application processing to the server, the application
can take advantage of specialized, high-performance software and
hardware on the server.

By moving client and server tasks closer to the network resources they
use, the client and server can accomplish their tasks more efficiently.

By reducing client resource use, the client workstation can run larger

NLM Programming

NLM Development: Concepts 53

applications.

Through centralization, security, concurrency, and data integrity, the
application can be improved.

In general, the NLM™ client-server model has these characteristics:

The server program resides on the server as an NLM.

The server program sets up its services, initializes variables, and waits for
client requests. The server advertises its services, but does not try to find
clients.

When a client program needs a service, the program finds the server and
then issues a request for service.

Client-server communication occurs as a request/reply pair, with the
client making the request and the server issuing the reply.

The server program (NLM) often services multiple clients. The following
figure shows the distribution of an example archiving application, in which
a single server program offers file backup services to multiple client
programs. When a client needs those services, it sends a request to the
server.

Figure 10. Server with Multiple Clients

The example archiving application uses accounting services to charge

NLM Programming

NLM Development: Concepts 54

clients for network usage. The server uses file services to find and copy
client files. These files could be stored anywhere on the network.

Similarly, in a more complex configuration, each client might access more
than one type of server program to complete its task, as shown in the
following figure. This figure shows the distribution of a database
application in which multiple server programs provide data and
computation services for multiple client programs.

Figure 11. Distributed Application

In this sample database application, multiple servers offer special services to
each client. The data services server offers data storage and retrieval. The
computation services server offers calculation-intensive services, such as
regression analysis. When a client needs a service, it sends a request to the
appropriate server. The use of multiple servers can enhance performance by
optimizing the use of network resources. For example, the server that offers
computation services might be able to calculate more quickly than other
servers.

Related Topics::

Designing Client-Server NLM Applications

Locating Services

Client-Server Communication

Introduction to Remote Server Support

NLM Programming

NLM Development: Concepts 55

Remote server support provides an NLM™ application with the ability to
access other servers on the network through the functions in the NetWare®
API. A local server can be defined as the server on which the NLM is
loaded. Any other server on the internetwork to which an NLM can attach
and log into is considered a remote server.

Servers are identified by a server ID number.

NOTE: Do not confuse the server ID with the connection number. The
server ID identifies a particular server, whereas the connection number
indicates a particular connection on a particular server.

NLM and thread group context play an important role in remote server
support. Server IDs are placed at the NLM level of context. At this level, all
connections are accessible by any threads running within the NLM. If any
thread does a logout, all connections for all threads are cleared.

The current server, which is the server to which all calls are being directed,
is maintained at the thread group level. Any thread within a thread group
can directly affect the current server of all threads within that group.

To see if an NLM function provides remote support, see the "Remote
Servers" notation on its function description.

Related Topics:

Accessing Remote Servers

Changing the Current Server

Logging Out from Remote Servers

Remote and Local Server Operations

Introduction to SFT III

SFT III™ is a method of mirroring the state of a NetWare® server on a
second server such that the resulting entity, the SFT III server, is resilient to
any single hardware failure. If the primary server fails or is halted by the
console operator, the secondary server instantly (and transparently to the
client) becomes the active component of the logical server. The result is
uninterrupted service to the client. Clients using the SFT III server see no
loss of state or service after any failure (other than perhaps a slight glitch as
the LAN communications protocol changes its route to the server).

The primary server (machine #1) and the mirrored secondary server
(machine #2), connected by a Mirrored Server Link™ (MSL™) connection,
function together as one logical server. Only the primary server appears to
clients on the internetwork as a NetWare "server." The secondary server
maintains an event-by-event mirror of the primary server's activities.

All server application modules that don't require direct access to the

NLM Programming

NLM Development: Concepts 56

All server application modules that don't require direct access to the
hardware can be mirrored transparently, including data base applications
and alternative file service protocols.

Related Topics:

Mirrored Server Link

IOEngine and MSEngine

Primary and Secondary Server

SFT III Server Memory Management

NLM Applications and SFT III

Dual-Processing Support

Introduction to the NLM Assembly Interface

This information does not intend to be complete reference on calling C
functions from assembly code. Rather, this information provides guidelines
for your assembly code that will call functions in the NetWare® API or will
provide assembly routines to be called by the NetWare OS. This chapter
refers to stack-based parameter passing that is used by the NetWare API.

This information describes the guidelines you should follow when
combining C code and assembly code. It includes guidelines for assembly
code that calls the NetWare API. It also includes guidelines for assembly
procedures that will be called by the NetWare OS; for example, callbacks.

NOTE: The following topics make assumptions about the behavior of
C compilers. Do not assume that your compiler and assembler make
these same assumptions. Instead, first check your compiler's and
assembler's manuals to verify that they behave in the manner described
here.

Related Topics:

General Purpose Registers

Segment Registers

C Code That Calls Assembly Procedures

Assembly Code That Calls C Functions

Parameter Passing

IOEngine and MSEngine

The NetWare SFT III™ OS is divided into two distinct executable modules

NLM Programming

NLM Development: Concepts 57

called the IOEngine and MSEngine. Both the IOEngine and the MSEngine
can be viewed as entities in and of themselves---they each have their own
scheduler and memory manager.

The IOEngine (input/output engine) contains all code that requires direct
access to server machine hardware. All device drivers are loaded and
executed by the IOEngine.

The MSEngine (mirrored server engine) contains only code that does not
require direct access to servermachine hardware. This includes the NetWare
logical file system, bindery, NCP™ service, queue services, and so on.

When two SFT III servers are mirrored, their IOEngines contain different
memory images, and consequently are not mirrored. This allows two
mirrored servers to have different hardware configurations. All
hardware-specific details are compartmentalized within the IOEngine and
sealed off from the logical workings of the MSEngine.

The MSEngines of two mirrored SFT III servers contain identical memory
images, and are mirrored such that there is only one logical MSEngine.
Because the MSEngine provides all the characteristics clients associate with
a NetWare "server," the two mirrored servers present internetwork clients
with the illusion that the mirrored machines are a single logical "server."
(The two IOEngines appear to clients as two stand alone internetwork
routers.)

On a single NetWare SFT III server, the IOEngine and MSEnine
communicate with each other using a special message-passing protocol. The
IOEngine converts hardware-related processing into a stream of "events,"
which it passes to the MSEngine. Likewise, the MSEngine converts calls to
hardware device drivers into a stream of "requests," which it passes to the
IOEngine.

Most device drivers that adhere to the NetWare ODI™ specification work
unmodified with NetWare SFT III. Both the IOEngine and the MSEngine
maintain the standard higher-level device driver interface.

IOEngine Applications

Any application that requires specific knowledge of or access to server
hardware must be loaded in the IOEngine. Typical IOEngine applications
are device drivers, although other types of applications can be required to
run in the IOEngine. Applications that do the following are required to run
in the IOEngine:

Hook interrupt vectors

Call interrupt vectors

Generate real-mode interrupts directly

NLM Programming

NLM Development: Concepts 58

Execute conditionally upon hardware configuration

Require specific hardware information

It is possible that some applications that are not required to run in the
IOEngine can find an advantage in doing so. In order to run in the
IOEngine, an application cannot use any of the following NetWare®
services:

File services (including TTS™ services, OS I/O, and any service which
uses the NetWare file system)

Connection-oriented services

Queue services

Bindery services (including any service which makes use of the bindery)

NCP™ services

Accounting services

AFP services

NOTE: Some of the services listed above can be available to IOEngine
applications if there are remote servers on the internetwork. For more
information, see The NetWare API and SFT III.

However, when the MSEngine is loaded, NLM™ applications can call
functions provided by the services listed above provided such NLM
applications are written and compiled using the NetWare API. The
NetWare API provides NLM applications running in the IOEngine with
access to MSEngine services, including all services related to the NetWare
logical file system.

Other services are available to applications running in the IOEngine,
including synchronization and thread control, memory allocation and
management, string manipulation, screen handling, and so on. The
IOEngine provides standard NetWare routing and communications
services, including STREAMS, IPX™, and SPX™ services.

Unless required to do so by its design, it is inappropriate for any application
that benefits from mirroring to run in the IOEngine. However, applications
that add value to the internetwork environment and do not gain benefit
from mirroring can be appropriate for running in the IOEngine. The
following types of applications are examples:

Specialized routers

Network management agents

Monitoring agents

The IOEngine itself performs internetwork-related utility functions,
including IPX routing and acting as a network bridge.

NLM Programming

NLM Development: Concepts 59

LAN and Device Driver Modules

LAN drivers control communication between the OS and the network
boards; disk drivers control communication between the OS and the hard
disk controllers installed in your server.

A number of LAN drivers (NE1000™ and NE2000™) and disk drivers
(ISADISK) are provided by Novell® and are ready to load into NetWare®.

Developers of LAN driver NLM applications use the LSL™ functions, which
are part of the ODI™ specification. This specification, which Novell and
Apple* developed together, allows more than one communication protocol
stack (such as IPX/SPX™, AppleTalk*, or TCP/IP) to share a
driver/adapter, and allows one protocol stack to use more than one
driver/adapter.

A driver written to the ODI specification is known as a MLID™ application.
MLID applications receive data from adapters and transmit it to the LSL. An
MLID does not attempt to interpret the data in a packet. Instead, it passes
packets to the LSL, which acts as a type of switchboard to route packets.

Novell Labs provides and supports a LAN Driver Developer's Kit and a
Device Driver Developer's Kit. For more information, call 1-801-429-5544.

Loading Multiple NLM Applications

The NetWare® API allows multiple NLM™ applications to run
simultaneously. Most NLM applications rely on services that other modules
provide. This interdependence is why many NLM applications must be
loaded in a certain order. If an NLM requires services provided by other
modules, it must be loaded last. For example, STREAMS.NLM must be
loaded before loading CLIB.NLM as follows:

LOAD STREAMS
LOAD CLIB

Or, because CLIB.NLM autoloads STREAMS.NLM, you could simply enter
the following:

LOAD CLIB

If you try to load a new NLM that requires services provided by an NLM
that is not present, and the NLM does not autoload the needed NLM
applications, the new NLM will not load.

Loading NLM Applications

NLM Programming

NLM Development: Concepts 60

NLM™ applications can be loaded and unloaded from the server while the
server is running. You can load NLM applications from the console screen
with the NetWare® console command LOAD or with the spawnlp and
spawnvp functions that are included in the NetWare API. The NetWare API
can be passed parameters (and can pass parameters to an NLM) whenever a
NetWare API application is loaded. (See Using the LOAD Command for
more information about NetWare API parameters and Adding Console
Commands: Example.)

As NetWare loads the NLM, it resolves all unresolved external calls and
initializes the module.

Before loading NLM applications, you can specify a search path using the
NetWare console command SEARCH. For example:

SEARCH ADD C:\SERVER

To restrict the loading of NLM applications, use the SECURE CONSOLE
command. This command prevents anyone from loading unauthorized
NLM applications. After the console is secured, you can load only NLM
applications that reside in any search path.

Regardless of how an NLM is loaded, there are certain rules that the
NetWare OS follows to find the NLM:

If you specified an absolute path, then the search path is not used. An
absolute path must contain a NetWare volume name or a DOS drive
letter. Absolute paths are not allowed if the console is secured.

If you specified a relative path, it is appended to each of the entries in the
search path until the NLM is found or all of the entries have been tried.

If you do not specify an extension, the extensions .NLM, .LAN, .DSK, and
.NAM are applied, in that order.

The OS must be able to find the NLM applications when a LOAD command
is issued. You can load NLM applications from a floppy diskette on the
server, from the DOS partition of a hard disk on the server, from the server's
SYS:SYSTEM directory, or from other locations.

For example, to load a utility module named TEST.NLM, you can use the
LOAD command at the server console in any of the following ways:

To load from the current working directory (CWD) on disk drive A:, enter
the following:

LOAD A:TEST

To load from the CWD on the DOS partition of the hard disk, enter the
following:

LOAD C:TEST

NLM Programming

NLM Development: Concepts 61

To load from the root directory on the SYS: volume on the server, enter
the following:

LOAD SYS:TEST

To load from a search path (as specified by the SEARCH command) on
the server, enter the following:

LOAD TEST

Related Topics:

How NLM Applications Are Loaded

Using the LOAD Command

Adding Console Commands: Example

Unloading NLM Applications

Locating Bindery Services

The NetWare® bindery is a database stored on the server. This database
contains information about resources (such as other servers, print servers,
and database servers) and about the users who can access and use those
resources. Because each server on a network stores resource information,
clients can scan the bindery to find all available services.

On NetWare 2.x and 3.x servers, the bindery is stored on each NetWare
server. NetWare 4.x servers do not store a bindery; instead, they simulate a
bindery, using objects found at a specific context within the Directory tree.

For servers before NetWare 4.0, the bindery is the basis on which NetWare
login security mechanisms are built, including password protection and
client restrictions. (NetWare 4.x servers can use the security of the Directory
or the security of the bindery.)

NOTE: The security of the bindery is independent of the security of
the file system. The bindery does not store any of the file system's
directory trustee information. Directory trustees are stored in directory
entries, which are an integral part of the NetWare directory structure.

The main relationship between the bindery and the file system is that
the file system stores each directory's trustees in the form of a bindery
object ID.

The bindery is composed of objects and properties. An object can be any
logical or physical entity that has been given a name. For example, an object
might be a job queue.

Each object also has associated with it a set of characteristics called
properties, and each property has one or more property values. For
example, the object DAN, a user, might have associated with it the

NLM Programming

NLM Development: Concepts 62

example, the object DAN, a user, might have associated with it the
properties GROUPS_I'M_IN, ACCOUNT_BALANCE, and PASSWORD.
The property PASSWORD contains user DAN's login password.

For more information on the bindery, see Bindery.

Locating BSD Socket Services

The BSD Socket API helps you port TCP/IP-based applications to the
NetWare® environment. In addition, you can use these functions to write
new TCP/IP-based applications for NetWare.

The BSD Socket API resembles the UNIX* file system interface. Instead of
opening a file on a disk, the application creates a socket and uses the
socket's I/O descriptor to read, write, and close a socket as if it were a disk
file. Each socket created by an application has a unique network address.

Because of the complex nature of network communications, a NetWare
application must invoke several operations that are not required by the
UNIX file system interface. For example, whereas a typical NetWare
application might send data to a filename, a UNIX application can specify
the address of the destination socket.

For more information on the BSD Socket API, see BSD Socket.

Locating Connection and Task Services

Before a client receives service, it usually establishes a connection with the
server. In a distributed environment, a server often manages several clients
concurrently. Likewise, a client can attach to several different servers.

When an NLM™ application offers service to more than one client, that
NLM must be able to associate its tasks with the requesting clients.
Otherwise, tasks might return values to the wrong clients.

A NetWare® connection is established when the client attaches to the
server. NetWare servers identify their client connections through
connection numbers.

NOTE: Do not confuse generic connections with NetWare connection
numbers. In general, a connection is a link between two computers.
Specifically, a NetWare connection number is the unique number
assigned by a NetWare server to identify its attached clients.

NLM applications can use these NetWare connection numbers to their
benefit, but they are not required to. NLM applications can use connection
numbers to request service on behalf of a client. This technique allows the
NLM to use NetWare features, such as security, accounting, and resource
cleanup.

NLM Programming

NLM Development: Concepts 63

NetWare connection numbers and task numbers allow the OS to provide
the following:

Security

When an NLM requests a service, NetWare uses the connection
number to verify that the client or NLM has the appropriate access
rights.

Accounting

In a system where the NetWare accounting feature is installed, the
price of servicing a request is charged to a client or NLM based on its
connection number.

Resource management

When a connection logs out, NetWare frees the second-level files
(opened by fopen or fdopen) allocated to that connection number.

Alternatively, an NLM can bypass these features by using its own method
for identifying clients. For example, an NLM might identify clients by their
network addresses. However, any NetWare features (such as security) that
the NLM might want to use would need to be provided by the NLM itself.

Related Topics:

NetWare Connection Numbers

NetWare Task Numbers

Locating IPX/SPX Services

The NetWare® API provides IPX/SPX™ services for use with the IPX/SPX
protocols. These communications protocols are derived from the Xerox*
Network Systems (XNS*) Internet Transport Protocols.

The Communication Services functions enable a program to send IPX or
SPX packets directly to other programs on an internetwork or to receive
such packets directly from other programs. This capability is known as
peer-to-peer communication.

IPX is a best-effort (datagram) delivery service. LAN drivers make a
best-effort attempt to deliver packets, but do not guarantee delivery.

IPX communication requires more of the developer's time. However, for
NLM™ applications that value speed over guaranteed delivery, IPX is a
good solution. The NLM runs faster than with SPX because IPX does not
maintain the overhead required to establish connections, sequence packets,
guarantee delivery, or track undelivered packets.

In contrast, SPX is a guaranteed delivery service. Applications sending SPX
packets form SPX connections with destination applications, and SPX
retransmits any unacknowledged packets after appropriate timeout

NLM Programming

NLM Development: Concepts 64

intervals. After a certain number of unacknowledged retransmissions, SPX
assumes that the destination application is no longer listening and breaks
the connection.

For more information on NetWare IPX/SPX, see IPX/SPX.

Locating NDS Services

The NDS™ database, which is new with NetWare® 4.x, introduces a new
component to the NetWare environment: the Directory. The Directory is a
distributed database of network objects. It replaces the bindery, which
served as the system database for previous releases of NetWare. Although
the bindery is designed to support the operation of a single server, the
Directory is designed to support the entire network. Now, clients can scan
the Directory to find information about objects on the entire network.

NOTE: It is critical that you learn to program using the Directory.
Although there are Bindery Services in the NetWare 4.x OS, the
Directory offers substantially more information and flexibility.

For more information about how to scan for objects in the Directory, see
NDS.

Locating SAP Services

NLM™ applications can use SAP to advertise their presence on the
network. When a server receives the service advertising packet, it adds that
service object to its bindery. Servers broadcast their service availability over
the network. In turn, servers receiving those broadcasts rebroadcast the
availability to other servers. In this way, service availability is propagated
throughout the network. Any client on the network can find a service
provider by logging into a server and scanning its bindery.

By using the bindery, it is possible for clients to easily locate service
providers by both name and type. Each server object in the bindery has a
name and type that identifies it uniquely on the network. In cases where
multiple servers offer the same type of service (such as print services),
clients can also request "nearest" service.

Client applications can also bypass the bindery's service lookup and use
SAP to directly query for the presence of servers on the network. Using
QueryServices, an application can send a service query broadcast and wait
for replies.

SAP is based on the IPX™ protocol. SAP defines special kinds of IPX
packets, called service advertising packets.

For more information on SAP, see SAP.

NLM Programming

NLM Development: Concepts 65

Locating Services

When a client program needs a particular service, it first must locate a
service provider. The client can use one of many methods for locating the
server:

NDS™ database

NetWare® 4.x replaces the bindery with the Directory. The Directory
is a hierarchical database of the complete network. A client can search
through the Directory, looking for objects of the type it needs. (See
NDS.)

Bindery Services

Every NetWare 3.x server contains a bindery that, among other things,
identifies available services and service providers. Clients can scan this
bindery to find services. You must use the bindery if your NLM™
application is loaded on a NetWare 3.x server. (See Bindery.)

NetWare 4.x servers do not have a bindery; instead they simulate a
bindery, using the objects at a specific location within the Directory
tree. This means that an NLM that uses the bindery can run on
NetWare 4.x servers as well as 3.x servers.

SAP Services

Service providers can use SAP to advertise their presence on the
network. In addition, clients can query for services by broadcasting a
packet that specifies the type of service they want and whether they
want to find all services on the network or the nearest service. (See
SAP.)

Communication Services

If the application does not require communication through servers or
bridges, the client can use the Communication Services functions to
accomplish service-to-address resolution through IPX/SPX™
protocols. (See IPX/SPX.)

TLI

The client can use TLI to accomplish service-to-address resolution
through protocol suites such as the ISO protocols, TCP/IP, and
IPX/SPX. SPX II was added for NetWare 4.x. (See TLI.)

BSD Socket API

The client can use the BSD Socket API for service-to-address resolution
through TCP/IP. (See BSD Socket.)

The client typically establishes a connection with the service provider, then,
depending on the client program, either waits for a reply or continues
running other processes.

Related Topics::

NLM Programming

NLM Development: Concepts 66

Locating Bindery Services

Locating BSD Socket Services

Locating Connection and Task Services

Locating IPX/SPX Services

Locating NDS Services

Locating SAP Services

Locating TLI Services

Locating TLI Services

TLI is a transport service interface that enables applications and
higher-layer protocols to be implemented without knowledge of the
underlying protocol suites.

TLI provides a common interface to several protocol suites, including:

ISO protocols

TCP/IP

IPX/SPX™ protocols

TLI is implemented as a user library using the STREAMS I/O mechanism.
Therefore, many services available to STREAMS applications are also
available to users of NetWare® TLI.

TLI provides two modes of service, a connectionless mode and
connection-oriented mode. Although connectionless mode is faster, it is less
reliable because packets are not sequenced and delivery is not guaranteed.
By contrast, the connection-oriented mode guarantees delivery and
preserves packet order.

By defining a set of services common to many transport protocols, TLI offers
protocol independence for user software. Thus, a distributed application
written using NetWare TLI is portable to a wide range of transport
protocols.

For more information on NetWare TLI, see TLI.

Locking

Locking enables a thread to gain exclusive access to a file-related resource,
such as a file, physical record, or logical record. Threads lock resources by
entering the filename or record location and the size into a log table, then

NLM Programming

NLM Development: Concepts 67

issuing a single call to lock every resource listed in the table. Normally, a
thread logs a group of records and then locks them as a set. However, a
thread can lock a single record when it is placed in the log table.

This technique of logging files and records as a set and locking them all at
once ensures that either all files and records are locked or none are locked.
Thus, the developer can prevent deadlock, in which two or more
applications reach a stalemate trying to access resources locked by the other
application.

CAUTION: Don't use locking when you are using connection 0
because locking temporarily disables the connection. This disables
connection 0 for all modules using the connection. If you are going to
use locking, acquire a connection using LoginToFileServer.

For more information on resource locking, see NLM Synchronization.

Logging Out from Remote Servers

An NLM™ can break connections to remote servers by calling any of the
following functions:

NWDSLogout---Logs an object out of the network leaving all server
attachments and other session connections intact.

Logout---Breaks all connections to all remote servers. This function does
not allow an NLM to selectively maintain groups of connections.
(Requires bindery context.)

LogoutFromFileServer---Breaks all connections between a server and all
logged objects from the NLM. This function allows an NLM to
specifically target those connections that it no longer needs. (Requires
bindery context.)

LogoutObject---Allows an NLM that logged in multiple times to
selectively break a connection between a particular logged-in object and
a server. (Requires bindery context.)

Memory Considerations When Converting VAPs

The NetWare® 3.x and 4.x OS's run on 32-bit computers that can address up
to 4 GB of memory. When converting a VAP to an NLM, you must alter the
program's memory usage. NLM and VAP memory usage differs in two
areas:

Memory models---NLM applications use the flat memory model (see Flat
Memory Model).

Register size---For those developers working in assembly language, NLM

NLM Programming

NLM Development: Concepts 68

applications use 32-bit registers (see 32-bit Registers).

Mirrored Applications

The primary advantage of the NetWare SFT III™ development environment
is that applications can take advantage of server mirroring automatically.
That is, an application running on a mirrored server is also mirrored by
default. The single requirement is that the mirrored application must be
loaded into the MSEngine. Applications loaded into the IOEngine are never
mirrored (just as the IOEngine is not mirrored).

Application mirroring is especially attractive to developers of distributed
(client-server) applications. Just as NCP™ clients of a mirrored server
experience no loss of state when the primary server suffers a fault, clients of
a mirrored server application experience no loss of state when the
application's server hardware suffers a fault.

Mirrored Server Link

Two mirrored NetWare SFT III™ servers must be connected by a
high-speed Mirrored Server Link™ (MSL™). The MSL should be a
low-latency medium with a capacity equal to the combined bandwidth of
all network boards attached to either mirrored server. The MSL is the
channel that two mirrored servers use to communicate with each other and
to maintain their synchronization. For more information on the MSL, see the
Mirrored Server Link Driver Specification.

More Detail for High Accuracy Time
Synchronization Users

Careful readers will note that setting local time normally clears the
subsecond counter in the UTC clock. When SetSyncClockFields
recalculates local time, it saves and restores the subsecond counter rather
than letting it be set to 0. This is a pragmatic solution to a problem that
results from implementing a request to clear the counter. If a timer interrupt
occurs during the time that SetSyncClockFields is setting local time and the
hardware clock, the tick is lost when the subsecond counter is restored.
Furthermore, if the lost tick caused the whole seconds to increment, the
restored value causes it to increment again during the next interrupt---that
is, the lost tick results in a gained second.

To avoid this situation, check the subsecond counter before updating the
hardware clock and only perform the update when the subsecond counter is
small. Alternatively, delay setting the UTC clock and hardware clock until
the subsecond counter in the UTC clock can be set to a known value (such as

NLM Programming

NLM Development: Concepts 69

0) so that the problem does not occur.

Modular CLIB

CLIB.NLM versions previous to 4.0 were very large libraries containing the
funcitonality now divided among the following modular libraries:

CLIB.NLM---ASNI compatability

THREADS.NLM---Support for NetWare® threads

REQUESTR.NLM---NetWare Requester™ support

NLMLIB.NLM---POSIX and NetWare support

FPSM.NLM---Floating-point decimal support

NIT.NLM---Old NetWare server functions now provided in cross-platform
libraries through CAL32NLM.NLM.

MATHLIB.NLM---Stub

MATHLIBC.NLM---Stub

When this modular version of CLIB.NLM is loaded, its dependency NLM™
libraries load automatically unless they are already loaded.

These modules collectively contain NetWare API functions that your NLM
applications can call to perform a wide variety of services, including the
following:

Network security, management, and accounting

High- and low-level I/O

String and file manipulations

Memory allocation

Thread control, synchronization, and communication

Data conversion

Mathematical calculations

Screen management

In addition, the library contains a set of Advanced Services that include
functions for dynamic arrays, event reporting and management, extended
attributes, complex memory allocation, and console command registration.

Header Files in Modular CLIB

The headers files in the old CLIB have gone through extensive changes in
the transition to modular CLIB. These changes are laid out in tabular form
in Modular CLIB Header Files.

NLM Programming

NLM Development: Concepts 70

Modular CLIB, NetWare 3.12, and NWSNUT

When modular CLIB is installed on a server running NetWare 3.12, the
NWSNUT user interface can be used only of the following NLM
applications are loaded:

AFTER311.NLM

A3112.NLM

These two NLM applications can be found on the Novell® SDK CD-ROM at
the followng path:

NWSDK\LIB\NLM\4_X

Parent Topic:

NetWare API

Parent Topic:

Modular CLIB Header Files

MSEngine Applications

Most server-based applications for NetWare SFT III™ should run in the
MSEngine. By doing so, they gain the benefit of mirrored execution
automatically. However, applications running in the MSEngine must
remain ignorant of the server's underlying hardware configuration. Because
the mirrored "shadow application" might be running on a server with a
different hardware configuration, any knowledge of server hardware
obtained by the mirrored application breaks the SFT III architecture.

The following operations are invalid for MSEngine applications:

Hooking interrupt vectors

Calling interrupt vectors

Generating real-mode interrupts directly

Executing conditionally upon hardware configuration

Obtaining specific hardware information

Most server-based applications do not need to attempt any of the above
operations, because in every instance, the SFT III OS provides applications
with the necessary support, either through virtualized devices or using its
inter-engine message passing protocol.

For example, the MSEngine provides a function that mirrored applications

NLM Programming

NLM Development: Concepts 71

can use to load NLM applications from the server's DOS partition. When a
mirrored application calls this function, the call eventually resolves to a
real-mode interrupt in the IOEngine. Nevertheless, the details are hidden
from the mirrored application, thus preserving the integrity of the SFT III
architecture.

Applications loaded in the MSEngine gain access to all of the higher-level
services of NetWare, such as file service, TTS™, NCP™ service, queue
services, the bindery, and so on.

Related Topics:

SFT Level II

Drive Duplexing

Transaction Tracking and SFT III

Multithreaded Programming

Multithreading is common in multiclient distributed applications. Typically,
a client-server NLM™ application uses a different thread group for each
client to which it provides service. This allows the NLM to service multiple
clients concurrently. In addition, NLM applications often establish
specialized threads, such as display, input, and communication threads.
These threads can be used, for example, to accept commands from the
server console, receive incoming requests, and send outgoing replies.

An efficient way to handle multiple clients is for the NLM to create a new
thread for each client it services. As the NLM receives client requests, it
creates a new thread to process each request. Then, after the request is
serviced, the thread runs to the end of its initial procedure and is
terminated.

There are cases where the method mentioned above would not be efficient.
For example, if you are servicing 250 users and have 250 threads with 8 KB
stacks, then just the stacks of these threads take up 2,000 KB of memory. In
this case you might want to establish a pool of threads to handle multiple
clients. As the NLM receives client requests, it selects a free thread to process
the request. After the thread processes the request, it returns to the pool of
free threads.

Using multiple threads has many advantages. It allows you to:

Simplify code through modularization

By separating processes into threads, programs become more easily
read, maintained, and updated. Multithreading relieves the developer
of having to use task switching logic.

Increase throughput

By dividing the NLM into multiple threads, you can reduce the

NLM Programming

NLM Development: Concepts 72

amount of time the CPU remains idle. Instead of blocking during I/O
requests, the OS switches control to another thread and more fully
utilizes the CPU.

Enhance response time

Because the server is able to switch between threads (thus preventing
a single thread from monopolizing the CPU), clients receive faster
replies to their requests. A lengthy I/O-intensive request from one
workstation does not preclude the completion of a smaller request
from another workstation.

Develop multiple contexts through thread grouping

A thread group consists of one or more threads, as defined by the
programmer. Threads in the same thread group share the same
context, such as the CWD and current connection. This provides the
programmer with shortcuts, such as the ability to use the CWD instead
of specifying the full pathname.

The advantages of a multithreaded application are increased performance
and efficiency. In a multithreaded application, processes get more equal
time to use system resources. Additionally, any thread can process
separately from other threads. For example, a process can update files in the
background while a foreground process produces data that needs to be
written to those files. Similarly, one thread can be used to interact with a
client process while performing complex, time-consuming computations in
the background.

The following is a simple example showing the creation of multiple threads:

Creating Multiple Threads

#include <stdio.h>
#include <stdlib.h>
#include <process.h>

int getOut = FALSE;
int twoOut = FALSE;
int threeOut = FALSE;
int fourOut = FALSE;

void ThreadTwo();
void ThreadThree();
void ThreadFour(void *data);

main()
{
 BeginThreadGroup(ThreadThree, NULL, NULL, NULL);
 ThreadSwitch();

 BeginThread(ThreadTwo, NULL, NULL, NULL);

NLM Programming

NLM Development: Concepts 73

 ThreadSwitch();

 while (!kbhit())
 printf("Thread One.\n");
 getOut = TRUE;

 // allow all threads to clean up before NLM exits
 while (!(twoOut && threeOut && fourOut))
 ThreadSwitch();
}

void ThreadTwo()
{
 while (!getOut)
 {
 printf(" Thread Two\n");
 ThreadSwitch();
 }
 twoOut = TRUE;
}

void ThreadThree()
{

 BeginThread(ThreadFour, NULL, NULL, "THREAD FOUR");
 while (!getOut)
 {
 printf("In Thread Three\n");
 ThreadSwitch();
 }
 threeOut = TRUE;
}

void ThreadFour(void *data)
{
 while (!getOut)
 {
 printf(" %s\n",(char *) data);
 ThreadSwitch();
 }
 fourOut = TRUE;
}

See Thread for more information about threads, thread groups, and the
context that the NetWare API maintains. The Context also discusses context
issues.

Name Space Modules

NLM Programming

NLM Development: Concepts 74

Name space NLM™ applications allow a file to be accessed using a variety
of naming conventions. The NetWare® OS allows multiple name spaces on
the same volume. Therefore, a single NetWare server running multiple
name space NLM applications can offer file storage for a range of file
naming conventions.

For example, a server could offer support for DOS, NFS*, OS/2*, and OSI
(via FTAM.NLM) naming conventions on the same volume. A client
workstation running DOS could read a file created by an OS/2 workstation.
The OS/2 filename could be displayed on the DOS workstation.

Support for DOS naming conventions is hard-coded in the NetWare OS.

NetWare API

The NetWare® API provides over 1,000 NLM™ functions, allowing an NLM
direct access to NetWare OS services. The NetWare API is a load-time link
library consisting of several modules that can be accessed concurrently by
multiple NLM applications.

The modules available for application development, combined with the
underlying architecture of the NetWare OS, provide the functionality
required to build high-performance, server-based systems.

The following NLM modules ship as part of the NetWare API:

CLIB.NLM

NIT.NLM

NLMLIB.NLM

FPSM.NLM

REQUESTR.NLM

THREADS.NLM

CLIBDEB.NLM

DSAPI.NLM

MATHLIB.NLM

MATHLIBC.NLM

NWSNUT.NLM

TLI.NLM

Related Topics:

Modular CLIB

Cross-Platform Functions in NLM Applications

NetWare Connection Numbers

NLM Programming

NLM Development: Concepts 75

NetWare® assigns a unique connection number to each client as the client
attaches to the server. Numbers are assigned sequentially, beginning with
connection number 1. As long as the client maintains an open connection
with the server, NetWare maintains that connection number for the client.
When a client closes a connection, its connection number is held in reserve
for a period of time in case of client reconnect; then the connection number
goes back into the pool of available connections.

An NLM™ application can specify one of three types of NetWare
connection numbers:

Connection number 0

This bypasses the regular client security and provides the NLM with
supervisor rights to the NetWare file system. Multiple NLM
applications can use connection number 0 concurrently. This
connection number could be used, for example, by monitor or control
NLM applications whose resource usage does not require restrictions
or accounting.

Existing connection number assigned to a client

This allows NLM applications to make requests on behalf of the client
associated with that connection number. Thus, the NLM assumes the
client's access rights and privileges while it is executing the client's
request. In this way, an NLM can maintain network security and
accounting when accessing resources on behalf of clients.

New connection number assigned to the NLM

This assigns the NLM a new connection number with the same access
rights as an attached (but not logged-in) client.

If an NLM running on a NetWare 3.11 server logs in, it must log in as a
bindery object. If the NLM is running on a NetWare 4.x server, it can
log in as a Directory object or as a bindery object (if bindery context is
set). This object can be created by the NLM itself or by another
program. If the NLM logs in as a user, its access to the server can be
restricted.

The NetWare 3.11 OS reserves 100 "hidden" connection numbers for
NLM applications. These numbers begin after the last client
connection number. For instance, in a 250-user system, NLM
connection numbers run from 251 through 350. Likewise, in a 100-user
system, the NLM connection numbers are 101 through 200.

The NetWare 4.x OS does not place a limit on the number of "hidden"
connections that NLM applications can use.

For more information about connections, see IPX/SPX.

NetWare Functions Not Supported by the
MSEngine

NLM Programming

NLM Development: Concepts 76

The MSEngine provides a "standard" environment for NLM™ applications,
except for the restrictions discussed earlier in this document. Specifically,
NLM applications loaded in the MSEngine cannot obtain or require any
specific knowledge regarding the underlying server hardware.

All services associated with a NetWare® server are available to NLM
applications that are loaded in the MSEngine. However, you should not
issue the following functions by a NLM running in the MSEngine:

ClearHardwareInterrupt

_disable

_enable

SetHardwareInterrupt

NetWare SFT III Support Layer Architecture

NetWare SFT III™ maintains the standard NetWare support layer
architecture and extends it to support the division of the OS into the
IOEngine and the MSEngine.

Support layers in SFT III maintain their two-phased interface. Hence, logical
structures such as file systems or protocol stacks can run unaltered in the
MSEngine, despite the fact that all device drivers are loaded in the
IOEngine. Conversely, device drivers can run unaltered in the IOEngine,
despite the fact that the logical structures that they are supporting reside in
the MSEngine. Standard NetWare device driver compatibility is maintained
by the insertion of an inter-engine support layer between the upper and
lower interfaces of the device driver support layers.

The inter-engine layer, which resides in the "middle" of all SFT III support
layers, is the same message-passing protocol mentioned in Introduction to
SFT III. Data submitted to the support layer through its lower-level interface
is converted into MSEngine events and submitted to the MSEngine side of
the support layer. Data submitted to the support layer through its
higher-level interface is converted into IOEngine requests and submitted to
the IOEngine side of the support layer.

Figure 12. SFT III Support Layer Architecture

NLM Programming

NLM Development: Concepts 77

Most device driver developers can therefore remain unconcerned with the
inner workings of SFT III, because all relevant interfaces remain unaltered.
The exception to this rule concerns MSL or multiprocessing device drivers,
which are specific to SFT III.

NetWare Support Layer Architecture

NLM Programming

NLM Development: Concepts 78

The support layer architecture for device drivers provides the NetWare®
OS with important capabilities. For example, it allows the OS to maintain
the same logical structures regardless of the underlying hardware.

For example, the IPX™ protocol stack implemented by the OS can remain
unaware of the physical network media over which it is operating. This
allows a single NetWare server to support a wide range of network media,
such as ethernet, token ring, ARCnet*, and FDDI/DX*. The ability of
NetWare to bridge different media types within a server is a direct result of
the support layer architecture.

Likewise, the physical device driver can remain unaware of the logical
format of the data it is transmitting or storing. For example, the ethernet
driver can remain unaware of the transport stack it is supporting, whether it
is AppleTalk, IPX, or IP. This is key to ability of NetWare to support
multiple transport protocols within a single server.

Figure 13. Communication Support Layer Architecture

The NetWare disk driver specification allows logical structures such as
volumes or file systems to remain unaware of issues such as drive mirroring
or duplexing, split-seeking, partitions, and so on. Disk drivers can also
remain unconcerned about these issues because mirroring, duplexing,
partitioning, and so on, are all implemented at the support layer.

Figure 14. Device Support Layer Architecture

NLM Programming

NLM Development: Concepts 79

The NetWare support layer architecture requires a specific support layer to
implement a two-phased API. For example, the LSL™ software must
provide an interface that allows protocol stacks to receive and submit

NLM Programming

NLM Development: Concepts 80

network data. The LSL also must provide an interface that allows device
drivers to receive and submit network data. One phase of the LSL API is
strictly for stack communication between the LSL and the protocol, whereas
the other phase of the LSL API is strictly for communication between the
LSL and the device driver.

It is useful to speak of support layers as having upper-level and lower-level
interfaces. The upper-level interface of the LSL provides communication
between logical structures (protocol stacks) and the LSL, whereas the
lower-level interface provides communication between physical device
drivers and the LSL.

Regardless of the type of device, all NetWare support layers have the same
basic architecture. They maintain a data base containing information about
specific physical devices and their drivers, and act as a specialized router by
ensuring that logical information is sent to or received from the correct
physical device driver.

NetWare Task Numbers

In NetWare®, a task number identifies a program running on a network
workstation or server. NetWare assigns task numbers sequentially,
beginning with task number 1. The combination of the connection number
and the task number yields a unique connection/task number pair. This
connection number/task number is unique only to a given server.

NetWare uses the connection number/task number to manage network
resources. Because client-server NLM™ applications can access resources on
their own behalf or on behalf of a client, NLM applications must specify
both a connection number and a task number when making requests.

NOTE: If an NLM uses connection number 0 or a client's connection
number to access a resource, the NLM should request a new task
number to distinguish it from other tasks using the same connection
number.

For more information on connections and tasks, see Connection Number
and Task Management.

New NetWare SDK Headers

The following header files are new to CLIB 4.11, and had no equivalent in
the "monolithic" CLIB:

NWSDK
Header

Modular
CLIB
Module

Comment or Explanation

NLM Programming

NLM Development: Concepts 81

nwieeefp.h CLIB.NLM

dirent.h NLMLIB.NL
M

POSIX-compliant

nwbitops.h NLMLIB.NL
M

nwbitops.h NLMLIB.NL
M

nwtoolib.h NLMLIB.NL
M

unistd.h NLMLIB.NL
M

POSIX-compliant

utime.h NLMLIB.NL
M

POSIX-compliant

NLM Abnormal Exit Process

The NLM™ abnormal exit process, as shown in the following figure, occurs
only when the NLM calls the _exit or abort function. The NLM abnormal
exit process is a sequence of steps, some performed by the NLM, and others
performed by the NetWare® OS or by the NetWare API.

NLM Programming

NLM Development: Concepts 82

NLM Programming

NLM Development: Concepts 83

NLM Applications

The building blocks that customize the NetWare® 3.x and 4.x OS's are
known as NLM™ applications. They are programs built to run in server
memory with the NetWare OS. You can load or unload NLM applications
from server memory while the server is running. Once loaded, NLM
applications become part of the OS. This means that NLM applications can
access NetWare services directly without using a service protocol such as the
Novell® NCP™ service. The server procedures that NLM applications can
access are collectively called the NetWare API. A fundamental part of the
NetWare API is a core set of APIs that provide a direct programming link
into the NetWare 3.x and 4.x OS services.

In summary, NLM applications add openness, modularity, and flexibility to
the NetWare OS, as follows:

They can be loaded and unloaded as needed

They can allocate and deallocate memory as needed

They can link with and access the NetWare OS and other NLM
applications

NLM applications, such as print and communication servers and
server-based utilities, enable NetWare users to extend the flexibility and
capability of their networks ever further.

NLM Applications and SFT III

Both the IOEngine and the MSEngine are allowed to load and run NLM™
applications. However, NLM applications loaded by the IOEngine cannot
use any services implemented by the MSEngine, such as the logical file
system, bindery, NCP™ service, and so on. (See The NetWare API and SFT
III for exceptions to this rule.) Conversely, NLM applications loaded by the
MSEngine cannot hook any hardware interfaces and must remain ignorant
of machine hardware.

NLM applications loaded by the MSEngine are mirrored automatically
whenever the SFT III server is mirrored. This is a major benefit of the SFT
III™ design, because NLM programmers achieve mirrored operation
without any special effort on their part. On the other hand, NLM
applications loaded by the IOEngine are never mirrored.

NLM applications that use the NetWare® API should run unmodified on
SFT III. The exception to this is the NLM that gains access to hardware
directly (by hooking interrupts or some other method) and that also uses the

NLM Programming

NLM Development: Concepts 84

logical services of the NetWare OS.

Similarly, NLM applications which use undocumented system calls or that
rely on the existence or location of undocumented labels can fail to load or
work correctly under SFT III.

NLM Equivalents for VAP Functions

If your VAP uses functions from the NetWare® C Interface---DOS Library,
you can easily convert the program to an NLM™ application that uses
functions from the NetWare API. Most of the NetWare C Interface---DOS
Library functions are the same in the NetWare API. This includes naming
conventions, parameter types, return types, and structures.

The following section outlines similarities between the NetWare C
Interface---DOS Library and the NetWare API. In cases where VAP
functions do not have NLM function counterparts, substitute functions are
suggested.

NOTE: This is not intended as a comprehensive reference source.
Thus, it does not discuss the exact differences between two particular
functions. Rather, it highlights the areas of difference between the two
libraries so that you can refer to the appropriate manual for additional
information.

See the following tables for VAP equivalents:

VAP Equivalents for Accounting Functions

VAP Equivalents for AFP Functions

VAP Equivalents for Bindery Functions

VAP Equivalents for Communication Functions

VAP Equivalents for Connection Functions

VAP Equivalents for File System Functions

VAP Equivalents for Message Functions

VAP Equivalents for Miscellaneous Functions

VAP Equivalents for Queue Management Functions

VAP Equivalents for SAP Functions

VAP Equivalents for Server Environment Functions

VAP Equivalents for Synchronization Functions

VAP Equivalents for TTS Functions

NLM Programming

NLM Development: Concepts 85

VAP Services

Workstation Environment Services

NOTE: For equivalents for directory functions, see VAP Equivalents
for File System Functions.

In addition to the above services, the NetWare API provides other services.
To locate more information about specific services, see SDK Roadmap.

NLM Level Context

The NLM™ level context is shared by all thread groups and threads in the
NLM, and these data items have only one value for the entire NLM. The
data items are global to all the thread groups and threads in the NLM. Any
changes made to the values of NLM global data items affect all the thread
groups and threads in the NLM.

NLM applications maintain the following context on a per NLM basis:

"Active advertisers"

Each NLM can have a set of "active advertisers" (started by
AdvertiseService (NLM)).

argv array

This is the argv array passed to main.

atexit, AtUnload

These functions register functions that are to be called when the NLM
exits normally or is unloaded.

Libraries' work areas pointers

These are pointers to the data areas of any NLM libraries that the NLM
has called, as described in Library.

Locale settings

These settings are used by the locale functions.

Open directories

The set of directories (opened by opendir) the NLM has open.

Open IPX/SPX/SPX II sockets

The set of IPX/SPX/SPX II sockets the NLM has open.

Open files

The set of files the NLM has open. First-level open files include those
opened with open, sopen, creat; second-level files include those
opened with fopen, fdopen, freopen.

Open network semaphores

The set of network semaphores (opened by NWOpenSemaphore) the
NLM has open.

NLM Programming

NLM Development: Concepts 86

open screens

The set of screens the NLM has open.

original command line

A copy of the original command line when the NLM was started is
saved (used by the getcmd function).

thread name

This pattern is used for naming new threads (used by BeginThread
and BeginThreadGroup).

NLM Limited Support Functions

NLM™ Limited Support functions are functions that continue to be
provided by the NetWare® SDK, but are only support by Developer
Support and no longer have any engineering or documentation support.
The Limited Support functions have been replaced by functions in
NWCALLS (the cross-platform API). Documentation for these functions
have been removed from this SDK because they are no longer maintained.
Documentation for NLM Limited Support functions can be found in the
NetWare Limited Support SDK.

The Limited Support functions are as follows:

Accounting Services

AccountingInstalled

GetAccountStatus

SubmitAccountCharge

SubmitAccountChargeWithLength

SubmitAccountHold

SubmitAccountNote

AFP Services

AFPAllocTemporaryDirHandle

AFPCreateDirectory

AFPCreateFile

AFPDelete

AFPDirectoryEntry

AFPGetEntryIDFromName

AFPGetEntryIDFromNetWareHandle

AFPGetEntryIDFromPathName

AFPGetFileInformation

AFPOpenFileFork

NLM Programming

NLM Development: Concepts 87

AFPRename

AFPScanFileInformation

AFPSetFileInformation

AFPSupported

Auditing Services

NWAddRecordToAuditingFile

NWGetAuditingIdentity

NWSetAuditingIdentity

Bindery Services

AddBinderyObjectToSet

ChangeBinderyObjectPassword

ChangeBinderyObjectSecurity

ChangePropertySecurity

CloseBindery

CreateBinderyObject

CreateProperty

DeleteBinderyObject

DeleteBinderyObjectFromSet

DeleteProperty

GetBinderyAccessLevel

GetBinderyObjectID

GetBinderyObjectName

IsBinderyObjectInSet

OpenBindery

ReadPropertyValue

RenameBinderyObject

ScanBinderyObject

ScanBinderyObjectTrusteePaths

ScanProperty

VerifyBinderyObjectPassword

WritePropertyValue

Connection Services

AttachByAddress

AttachToFileServer

GetConnectionInformation

GetConnectionList

GetConnectionNumber

GetDefaultFileServerID

GetFileServerID

NLM Programming

NLM Development: Concepts 88

GetInternetAddress

GetLANAddress

GetMaximumNumberOfStations

GetObjectConnectionNumbers

GetStationAddress

GetUserNameFromNetAddress

LoginToFileServer

Logout

LogoutFromFileServer

NWGetSecurityLevel

NWSetSecurityLevel

SetConnectionCriticalErrorHandler

Data Migration Services

NWGetDataMigratorInfo

NWGetDefaultSupportModule

NWGetDMFileInfo

NWGetDMVolumeInfo

NWGetSupportModuleInfo

NWIsDataMigrationAllowed

NWMoveFileFromDM

NWMoveFileToDM

NWPeekFileData

NWSetDefaultSupportModule

Extended Attribute Services

CloseEA

CopyEA

EnumerateEA

GetEAInfo

OpenEA

ReadEA

WriteEA

File System Services

AddSpaceRestrictionForDirectory

AddTrustee

AddUserSpaceRestriction

ChangeDirectoryEntry

DeleteTrustee

DeleteUserSpaceRestriction

GetAvailableUserDiskSpace

NLM Programming

NLM Development: Concepts 89

GetAvailableUserDiskSpace

GetDiskSpaceUsedByObject

GetEffectiveRights

GetMaximumUserSpaceRestriction

GetNumberOfVolumes

GetVolumeInformation

GetVolumeInfoWithNumber

GetVolumeName

GetVolumeNumber

GetVolumeStatistics

ModifyInheritedRightsMask

PurgeTrusteeFromVolume

ReturnSpaceRestrictionForDirectory

ScanTrustees

ScanUserSpaceRestrictions

SetDirectoryInfo

UpdateDirectoryEntry

Message Services

BroadcastToConsole

DisableStationBroadcastss

EnableStationBroadcasts

GetBroadcastMessage

SendBroadcastMessage

Miscellaneous Services

GetNetworkSerialNumber

VerifyNetworkSerialNumber

Queue Management Services

AbortServicingQueueJobAndFile

AttachQueueServerToQueue

ChangeQueueJobEntry

ChangeQueueJobPosition

ChangeToClientRights

CloseFileAndAbortQueueJob

CloseFileAndStartQueueJob

CreateAQueue

CreateQueueJobAndFile

DestroyQueue

DetachQueueuServerFromQueue

FinishServicingQueueJobAndFile

NLM Programming

NLM Development: Concepts 90

GetQueueJobList

GetQueueJobsFileSize

NWQAbortJob

NWQAbortJobService

NWQBeginJobService

NWQChangeJobEntry

NWQChangeJobPosition

NWQChangeJobQueue

NWQChangeToClientRights

NWQCreate

NWQCreateJob

NWQDestroy

NWQDetachServer

NWQEndJobService

NWQGetJobEntry

NWQGetJobFileSize

NWQGetServers

NWQGetServerStatus

NWQGetStatus

NWQMarkJobForService

NWQRemoveJob

NWQRestoreServerRights

NWQScanJobNums

NWQServiceJob

NWQSetServerStatus

NWQSetStatus

ReadQueueCurrentStatus

ReadQueueJobEntry

ReadQueueServerCurrentStatus

RemoveJobFromQueue

RestoreQueueServerRights

ServiceQueueJobAndOpenFile

SetQueueCurrentStatus

SetQueueServerCurrentStatus

Server Environment Services

CheckConsolePrivileges

CheckNetWareVersion

ClearConnectionNumber

DisableFileServerLogin

DisableTransactionTracking

DownFileServer

EnableFileServerLogin

EnableTransactionTracking

NLM Programming

NLM Development: Concepts 91

GetBinderyObjectDiskSpaceLeft

GetConnectionSemaphores

GetConnectionsOpenFiles

GetConnectionsTaskInformation

GetConnectionsUsageStats

GetConnectionsUsingFile

GetDiskCacheStats

GetDiskChannelStats

GetDiskUtilization

GetDriveMappingTable

GetFileServerDateAndTime

GetFileServerDescriptionStrings

GetFileServerLANIOStats

GetFileServerLoginStatus

GetFileServerMiscInformation

GetFileServerName

GetFileSystemStats

GetLANDriverConfigInfo

GetLogicalRecordInformation

GetLogicalRecordsByConnection

GetPathFromDirectoryEntry

GetPhysicalDiskStats

GetPhysicalRecordLocksByFile

GetPhysRecLockByConnectAndFile

GetSemaphoreInformation

GetServerInformation

GetServerMemorySize

GetServerUtilization

SSGetActiveConnListByType

SSGetActiveLANBoardList

SSGetActiveProtocolStacks

SSGetCacheInfo

SSGetCPUInfo

SSGetDirCacheInfo

SSGetFileServerInfo

SSGetGarbageCollectionInfo

SSGetIPXSPXInfo

SSGetKnownNetworksInfo

SSGetKnownServersInfo

SSGetLANCommonCounters

SSGetLANConfiguration

SSGetLANCustomCounters

SSGetLoadedMediaNumberList

SSGetLSLInfo

NLM Programming

NLM Development: Concepts 92

SSGetLSLLogicalBoardStats

SSGetMediaManagerObjChildList

SSGetMediaManagerObjInfo

SSGetMediaManagerObjList

SSGetMediaNameByNumber

SSGetNetRouterInfo

SSGetNetworkRoutersInfo

SSGetNLMInfo

SSGetNLMLoadedList

SSGetNLMResourceTagList

SSGetOSVersionInfo

SSGetPacketBurstInfo

SSGetProtocolConfiguration

SSGetProtocolCustomInfo

SSGetProtocolNumbersByLANBoard

SSGetProtocolNumbersByMedia

SSGetProtocolStatistics

SSGetRouterAndSAPInfo

SSGetServerInfo

SSGetServerSourcesInfo

SSGetUserInfo

SSGetVolumeSegmentList

SSGetVolumeSwitchInfo

SendConsoleBroadcast

SetFileServerDate AndTime

TTSGetStats

Synchronization Services

ClearFile

ClearFileSet

ClearLogicalRecord

ClearLogicalRecordSet

ClearPhysicalRecord

ClearPhysicalRecordSet

CloseSemaphore

ExamineSemaphore

LockFileSet

LockLogicalRecordSet

LockPhysicalRecordSet

LogFile

LogLogicalRecord

LogPhysicalRecord

OpenSemaphore

ReleaseFile

NLM Programming

NLM Development: Concepts 93

ReleaseFileSet

ReleaseLogicalRecord

ReleaseLogicalRecordSet

ReleasePhysicalRecord

ReleasePhysicalRecordSet

SignalSemaphore

WaitOnSemaphore

TTS Services

TTSAbortTransaction

TTSBeginTransaction

TTSEndTransaction

TTSGetApplicationThresholds

TTSGetWorkstationThresholds

TTSIsAvailable

TTSSetApplicationThresholds

TTSSetWorkstationThresholds

TTSTransactionStatus

Parent Topic:

Renamed NLM Functions

NLM Coding Issues

Besides the issues of the NetWare® OS, the programmer needs to
understand the structure of NLM™ applications as well as services that are
provided by the NetWare API. The following gives an overview of the
features that should be used when writing code for NLM applications.

Threads

Thread Groups

Multithreaded Programming

Context

Structure of an NLM

NLM Startup

Relinquishing Control

Critical Sections

NLM Programming

NLM Development: Concepts 94

NLM Synchronization

Shared Memory

NLM Screen Handling

Freeing Resources upon Exit

Termination Process

NLM Screen Handling

You can create, switch, and destroy screens from within server-based
applications. A single NLM™ application can have multiple screens, one
screen, or no screens.

Related Topics:

Screen Creation

Input and Output Cursors

Screen Deletion

NLM Self-Termination Process

The NLM™ self-termination process, as shown in the following figure,
occurs when an NLM calls exit or ExitThread or when all threads in an NLM
terminate. The NLM self-termination process consists of two phases, with
the first phase performed by the thread that caused the termination and the
second phase performed by an OS thread.

NLM Programming

NLM Development: Concepts 95

NLM Startup

When the NLM™ application first loads, some initialization must be done,

NLM Programming

NLM Development: Concepts 96

usually with the _Prelude function that is called automatically when the
NLM is loaded. The _Prelude function preforms the following initialization
steps:

Establishes the context of the NLM for the NetWare API.

Establishes a default thread group

Creates a new thread, belonging to the default thread group, and starts
the thread executing at the main function.

The _Prelude function is part of PRELUDE.OBJ or NWPRE.OBJ, one of
which must be linked in with the OBJ files for the NLM. A discussion of the
differences between these two objects follows.

Related Topics:

PRELUDE.OBJ or NWPRE.OBJ

Reentrant NLM Applications

NLM Synchronization

The Synchronization Services functions, part of the NetWare® API, enable
applications to coordinate access to network files and other resources. These
services are divided into two categories: locking and semaphores.

Related Topics::

Locking

Semaphores

Synchronization

Parent Topic:

NLM Coding Issues

NLM Unload Process

The NLM™ unload process, as shown in the following figure, occurs only
when an NLM is unloaded from the system console command line. The
NLM unload process is a sequence of steps, some performed by the NLM,
and others performed by the NetWare OS or by the NetWare API.

NLM Programming

NLM Development: Concepts 97

NLM Programming

NLM Development: Concepts 98

Nonpreemptive Environment

The NetWare® OS is designed specifically as a network server OS. A server
OS works most efficiently if it does not perform time slicing (preemption).
Because the nonpreemptive scheduler has fewer cases of task switching, the
NetWare OS achieves superior performance. This nonpreemptive
environment rewards the developer with applications that run faster,
perform more efficiently, and are easier to develop.

With access to shared memory being a common occurrence in a NetWare
environment, nonpreemption puts threads (processes) in the offensive
position of being able to ensure, without mandatory locking, that their
shared data remains coherent. This assurance is the result of a thread being
able to run until it knowingly calls a function that blocks (relinquishes
control to the OS). The advantage of nonpreemption is that all threads run
quicker, and there is less overhead when switching operations between
threads.

Because the OS waits for threads to block, NLM™ applications operate in a
"nice guy" environment, where they are expected to govern their use of the
CPU time so as not to take control of the CPU for indefinite periods of time.

NLM applications must either quickly complete the request, do things to
regularly relinquish control (such as I/O requests), or explicitly relinquish
control by calling a function such as ThreadSwitch. In general, the NLM
should run for about 1 millisecond (from 3,000 to 10,000 machine
instructions) and then relinquish control.

NOTE: Because you determine when your the threads in your NLM
block, you might be tempted to have your NLM retain control of the
CPU for long periods of time in order to speed it up. To do so is a
mistake because it violates the "nice guy" environment.

Obsolete CLIB Headers

The following headers files from the unified, "monolithic" CLIB have been
obsoleted, with no modular CLIB equivalent:

cdecl.h

newin400.h

Operation of the Clock

During NetWare® initialization, the hardware clock on the host system is

NLM Programming

NLM Development: Concepts 99

read and the UTC clock set. The value of tickIncrement is also determined at
this time. The influence of time zone and daylight savings time information
on time calculations is discussed in Interactions between Local Time, UTC,
and Other Variables. The following illustrates what happens during each
timer interrupt (clock tick):

clock = clock + tickIncrement;
if (adjustmentCount > 1)
{
 clock = clock + adjustmentValue;
 adjustmentCount = adjustmentCount - 1;
}
else if (adjustmentCount == 1)
{
 clock = clock + grossCorrection;
 adjustmentCount = adjustmentCount - 1;
}

After the UTC clock is updated, a second clock structure holding local time
is updated at the same rate. Local time calculations are affected by the clock
adjustments just as UTC is.

This algorithm was chosen with the task of time synchronization in mind.
The adjustmentValue determines how much gradual correction is applied to
the clock during each timer interrupt and the grossCorrection holds a
remainder. Thus, if a clock error of ERR seconds is to be corrected over a
period of N clock interrupts, the following calculations provide appropriate
values (ignoring potential problems such as division by zero):

adjustmentCount = N

adjustmentValue = ERR/(N-1)

grossCorrection = ERR mod (N-1)

Note that the grossCorrection and adjustmentValue can be positive or negative.
In practice, a further restriction should be enforced because time should not
move backwards: when negative, the adjustmentValue and grossCorrection
should be strictly smaller in magnitude than the tick increment. That is, the
clock should never tick backwards. A primary use of UTC time is as a
timestamp for ordering events. As such, UTC should increase
monotonically.

CAUTION: Many applications use timestamps to sort events and
rely heavily on the fact that time does not move backwards.
Particularly, NDS™ operations rely on timestamps derived from UTC
time. Almost any application that uses a timestamp is adversely
affected if time appears to move backwards. For that reason, even
setting the time backwards on an operating server to correct an
obvious error can have drastic consequences and should be avoided
when possible. It is important that time be set correctly when the
server boots, or adjusted as quickly as possible thereafter so that
applications are not adversely affected by backwards corrections.

The difference between setting the time directly and applying one or more

NLM Programming

NLM Development: Concepts 100

adjustments to the clock is that applying adjustments does not generate a
time change event, which is detectable through the event notification
interface. The adjustment mechanism is intended to allow a way to correct
small time errors gradually so that they are not noticed. It is possible to
apply very large adjustments, but it might not be wise to do so.

OS-Related Issues

Some services are available to the programmer because of the design of the
OS. The following topics discuss the OS features that are significant for
NLM™ developers.

Related Topics:

Nonpreemptive Environment

Protected or Nonprotected Environment

Current Working Directory

Connection and Task Numbers

Screens and the NetWare OS

Parameter Passing

When writing assembly procedures to be called by C code, or when calling
C functions from assembly code, you must understand how parameter
passing is accomplished. The following discusses stack-based parameter
passing.

C Parameter Ordering

Parameter Size

Parameter Processing by Assembly Procedures

When an assembly procedure is called by C, the assembly procedure finds
its parameters on the stack in the order shown in the figure in C Parameter
Ordering. After saving the necessary registers, the assembly procedure can
address these values on the stack. For example, the procedure MyProc could
be coded as follows:

Proc MyProc
 push ebp
 mov ebp,esp
 ...

NLM Programming

NLM Development: Concepts 101

 mov eax, [ebp+8]; "A"
 mov ecx, [ebp+12]; "B"
 mov edx, [ebp+16]; "C"
 ...
 mov esp,ebp
 pop ebp
 RET

Parameter Size

When examining the figure in C Parameter Ordering, you will notice the
parameters A, B, and C, are all pushed on the stack as long (32-bit) values, to
keep the stack long aligned. C does this automatically when it passes
parameters; your assembly code must do the same.

When calling C functions from assembly, you should never push a BYTE as
a parameter on the stack; instead, you must first convert it to a long. One
way to convert it to a long is shown in the following example.

p ;to push a BYTE on the stack as a 32-bit value
 XOR EAX, EAX
 MOV AL, ByteValue
 PUSH EAX
 ;or
 MOVZX EAX, ByteValue
 PUSH EAX

Passing Parameters to C Code

When assembly code makes a call to a C function, it must provide the
parameters to the C function in the order that the C function expects. That is,
it must place the parameters on the stack just as C would.

For example, when assembly code calls the C function, MyFunc, which has
the parameters A, B and C. The assembly code must issue the following
commands:

PUSH C
 PUSH B
 PUSH A
 CALL MyFunc

NOTE: There is no need for the assembly code to save the EBX, ESI,
EDI, or EBP registers because C functions preserve these registers.

PRELUDE.OBJ or NWPRE.OBJ

NLM Programming

NLM Development: Concepts 102

Whether to link PRELUDE.OBJ or NWPRE.OBJ depends on the need for
backward compatibility measured against the need for ANSI or POSIX
compliance. Do not attempt to link to both objects.

Link to PRELUDE.OBJ for full backward compatibility with versions of
CLIB.NLM previous to version 4.11. Even with the use of CLIB version 4.11
or later, if there is a need to run with the old CLIB binaries, this is the object
to link to.

Link to NWPRE.OBJ to get full ANSI and POSIX compliance. Although this
object does not provide full backward compatibility without explicitly
breaking ANSI compliance, it offers some important improvements:

Improved UNIX* like command line for redirection is enabled (although
the old CLIB_OPT switches still work. The redirection characters, which
are set on the system console commnad line as they would be under DOS
or UNIX, are as follows:

< filename---redirect stdin from filename

> filename---redirect stdout to filename

2< filename---redirect stderr to filename

Implementation of return values for fputs is corrected according to ANSI.
Watcom* previously returned -1 for failure and 0 for success. It now
returns the number of characters put on success.

An update correction of the tm_isdst field in the tm structure passed by
the mktime function is included.

The object provides more silent behavior for math errors when no
handler has been registered. If no error handler has been registered with
RegisterMatherrHandler and an error occurs, the function returns -1 and
errno is set.

The accuracy in the values of global variables daylight, daylightOffset,
daylightOnOff, altzone, timezone, and tzname in multithreaded applications
is improved. The values of these global variables remain loyal to the
thread that set them, although threads still overwrite each other's values
until all application source code using these global variables has been
recompiled.

The buffer passed to fgets is left untouched of the return is set to nil.
Previously Watcom put NULL in the first character.

A new distinction between pronouns P and p, and R and r in strftime is
enabled. The uppercase pronouns generate AM and PM, and the
lowercase pronouns generate am and pm.

The old global variable _IsTime from ctype.h exists and is supported, but
old functions and newly-compiled macros in applications now use
__ctype.

NLM Programming

NLM Development: Concepts 103

Primary and Secondary Server

When two NetWare SFT III™ servers are running as a mirrored pair, one
server is the primary server and the other server is the secondary server.
Initially, the primary server is the server on which the operator issued the
ACTIVATE SERVER command. However, if the (initial) primary server
suffers a fault, the secondary server takes over as the primary server. When
the former primary server comes back up, it becomes the secondary server.

The primary server of a mirrored pair always controls the sequence of
events that are processed by the MSEngine. Network clients always send
their request packets to the primary server, and always receive their
response packets from the primary server. The secondary server mirrors the
state of the primary server.

Programming Languages

You can write NLM™ applications in either C language or assembly
language. You do not need to learn new coding conventions or a new
language standard to begin writing NLM applications. Because the
NetWare® OS runs in protected mode on 80386 and 80486 computers, you
should use a compiler or assembler that generates 32-bit code. For more
information about compilers, see NLM Compilers.

Related Topics:

NLM Assembly Interface on the Intel Platform

Protected or Nonprotected Environment

In the NetWare® 3.x environment, NLM™ applications run at ring 0 for
faster execution. This does not offer memory protection, however, and
ill-behaved NLM applications can access memory that is not theirs. While
developing NLM applications, you can add a limited amout of memory
protection to the server using PROTECT.NLM, which catches many illegal
memory accesses.

You can use PROTECT.NLM while developing your NLM applications, but
end users do not run PROTECT.NLM.

A new feature of the NetWare 4.x OS is the option to run with or without
memory protection. The NetWare 4.x OS provides two domains of
protection: OS and OS_PROTECTED. The OS domain is always present in
the OS. The OS_PROTECTED domain is created when DOMAIN.NLM is
loaded. There is a tradeoff here: modules running in the OS_PROTECTED
domain have the overhead of ring transition code when accessing OS calls.
Modules in the OS domain run faster because they do not have the ring
transition overhead, but the OS is not protected from them.

NLM Programming

NLM Development: Concepts 104

All NetWare 4.x NLM applications should be tested in the OS_PROTECTED
domain while they are being developed because this domain catches more
addressing errors. You might want to test all of your NetWare 3.x
applications on NetWare 4.x servers because DOMAIN.NLM can catch
more errors than PROTECT.NLM.

Unlike PROTECT.NLM, which is strictly a development tool, end users can
run DOMAIN on their servers.

QMS for Client-Server Communication

Using the Queue Management System (QMS), you can take advantage of
the queuing features inherent in the NetWare® OS. This frees the server
from the responsibility of queuing and allows it to process requests more
efficiently.

When clients issue service requests, QMS places the requests in a queue and
the server services them. Multiple servers can access a single queue to
process requests. Likewise, a single server can handle multiple queues.

QMS uses the features of the Directory or the bindery to represent queues
and to define their characteristics. Each queue is represented in the bindery
and in the Directory as an object.

Client and server applications manipulate the queues using QMS functions.
QMS functions form a complete set of tools for working with the bindery
aspect of NetWare jobs. If an application needs more control in defining the
structure of jobs, it can use QMS functions exclusively to supply services.

Generally, QMS works best for applications that:

Process large units of work

Large jobs and batch jobs, such as print spooling or sending data by
modem, can benefit from QMS.

Do not require an immediate response

Queues process requests on a FIFO basis. Therefore, the promptness of
the service varies with the size of the queue.

Need flexibility and control

QMS can sort and manage jobs by properties such as job size and
priority. In addition, QMS offers a secure and dependable operating
environment.

Reentrant NLM Applications

A reentrant NLM™ application can be loaded multiple times, but the server
keeps only a single image of the NLM code in memory, rather than a code

NLM Programming

NLM Development: Concepts 105

instance for each load.

Nonreentrant NLM applications call the startup function _Prelude each
time they are loaded. Reentrant NLM applications, on the other hand, only
call _Prelude on their initial load. They do not call _Prelude on reentrant
loads.

To write a reentrant NLM, create a startup function that checks to see if the
NLM has previously been loaded. On the initial load of the NLM, have your
startup routine call _Prelude, passing _Prelude the parameters that the OS
passed into your statup function. (_Prelude calls the main function of your
NLM.) On subsequent loads of the NLM, do not have your startup routine
call _Prelude; instead, have it handle the reentrant setup and then call the
main function of the NLM itself.

RENTRANT.C is a working example of a reentrant NLM. It is located in the
EXAMPLES directory. Code fragments from RENTRANT.C are used in the
following example.

The startup function for RENTRANT.C is MultipleLoadFilter. This function
uses a flag called gAlreadyLoaded to indicate whether the current load of
the NLM is the first load or a subsequent load.

Reentrant NLM

typedef struct resource_list
{
 struct resource_list *next;
 int screenHandle;
} ResourceList;

int gAlreadyLoaded = 0;
int gMainThreadGroupID;
ResourceList *gResList = (ResourceList *) NULL;
typedef void (*PVF) (void *);

LONG MultipleLoadFilter (
 LoadDefStructPtr NLMHandle,
 ScreenStructPtr initErrorScreenID,
 BYTE *cmdLineP,
 BYTE *loadDirPath,
 LONG uninitDataLen,
 LONG NLMFileHandle,
 LONG cdecl (*readFunc)())
{
 int myThreadGroupID;
 if (!gAlreadyLoaded) /* first time through!!!!! */
 return _Prelude(NLMHandle, initErrorScreenID, cmdLineP,
 loadDirPath,uninitDataLen, NLMFileHandle, readFunc);
 /* subsequent times through...*/
 myThreadGroupID = SetThreadGroupID(gMainThreadGroupID);
 BeginThreadGroup((PVF) main, NULL, NULL, cmdLineP);
 SetThreadGroupID(myThreadGroupID);

NLM Programming

NLM Development: Concepts 106

 return 0L;
}

void main(int argc,char *argv[])
{
 int myThreadGroupID;
 ...
 char **argV;
 if (!gAlreadyLoaded)
 {
 gMainThreadGroupID = GetThreadGroupID();
 RenameThread(gMainThreadGroupID, "Sample--main");
 gAlreadyLoaded = 1;
 firstTime = TRUE;
 argV = argv;
 AtUnload(Cleanup);
 }
 else
 {
 char threadName[17+1+13];
 sprintf(threadName, "Sample--#%d", gAlreadyLoaded);
 myThreadGroupID = GetThreadGroupID();
 RenameThread(myThreadGroupID, threadName);
 gAlreadyLoaded++;
 firstTime = FALSE;
 argV = args;
 }
 scrH = CreateScreen("Sample Reentrant NLM", 0);
 if (!scrH)
 {
 ConsolePrintf("\nUnable to create screen...");
 goto NoScreenExit;
 }
 LogScreenHandle(scrH);
 SetCurrentScreen(scrH);
 printf("\nSample Reentrant NLM: %d\n", gAlreadyLoaded);
...
}

Your startup function must return zero. If it does not, the OS displays the
message "Attempt to reinitialize reentrant module FAILED"
even if the NLM successfully loads.

NOTE: When an NLM is loaded, its startup thread is an OS thread,
which usually doesn't have CLIB context until _Prelude is called. In the
example code above, the startup function MultipleLoadFilter calls
_Prelude the first time the NLM is loaded, and _Prelude gives the
thread CLIB context and creates a default thread group ID. In the
example, main saves the default thread group ID in
gMainThreadGroupID the first time the NLM is loaded. On subsequent
loads of the NLM, MultipleLoadFilter gives the OS thread CLIB
context by setting the thread group ID using the ID stored in

NLM Programming

NLM Development: Concepts 107

gMainThreadGroupID.

You specify that an NLM is reentrant when you link its object modules. In
the directive file (.LNK), use the REENTRANT option (withWLINK and
NLMLINK) to specifiy that the NLM is reentrant. Use the START option to
specify the function you want to use as the startup function. The following
is an example of a WLINK directive file:

form novell nlm 'Reentrant NLM'
name rentrant
option reentrant
option start = MultipleLoadFilter
option case,nodefaultlibs
file prelude
file rentrant
import @clib.imp

The REENTRANT option specifies that the NLM is reentrant. The START
option specifies the name of the function to call when reentering the NLM.
Directive files are discussed in NLM Linkers.

For each instance that you use a reentrant NLM, you must load the NLM
with the LOAD command. However, every instance of the reentrant NLM is
unloaded with a single UNLOAD command. For this reason you must keep
track of all of the resources that are used by all instances of the NLM and
free all of them when the NLM is unloaded. (RENTRANT.C shows this by
keeping a list of screens.)

Relinquishing Control

Because the NetWare® OS does not timeslice or preempt thread execution,
the responsibility of relinquishing control falls to the thread itself. To
relinquish control of the processor, a thread can do one of the following:

Call a function that can relinquish control

For example, if a thread calls printf, it can relinquish control because
printf writes to a device. However, this method should not be used in
a program that must be guaranteed that control is relinquished.

Functions that might block are identified in the function descriptions.

Call ThreadSwitch

ThreadSwitch passes control of the CPU to the OS, which then passes
control to the next thread in the run queue. The calling thread is
placed at the end of the run queue.

Call delay or ThreadSwitchWithDelay

These functions suspend thread execution for a specified time (in
milliseconds). ThreadSwitchWithDelay is new for the NetWare 4.x
OS, but it has been added to the 3.11 version of CLIB.

NLM Programming

NLM Development: Concepts 108

CAUTION: Threads that do busy waiting or spin locks in
NetWare 4.x need to allow low priority threads to run. For this
reason, these threads should call ThreadSwitchWithDelay,
instead of ThreadSwitch. Low priority threads can only run
when there are no threads waiting on the RunList, and
ThreadSwitch places the threads that call it on the RunLIst.
ThreadSwitchWithDelay places threads that call it on the
DelayedList.

Call EnterCritSec

The EnterCritSec function prevents all other threads in the NLM™
application from running but it does not stop threads in other NLM
applications.

NOTE: If a new thread is started while the NLM is in a critical
section, the thread will not be in the critical section.

Call SuspendThread

The SuspendThread function puts a thread to sleep until it is
awakened.

NOTE: A sleeping thread can be awakened only by calling
ResumeThread from another thread.

Call ThreadSwitchLowPriority

The ThreadSwitchLowPriority function suspends thread execution
and places the thread in the Low-Priority Queue. This function is new
for the NetWare 4.x OS.

Wait on an event

The OS automatically puts to sleep any threads waiting on events. For
example, if a thread waits in a semaphore queue, it relinquishes
control.

CAUTION: Do not use this method when waiting to read a
file from a disk. If the file is stored in cache memory, the thread
does not have to wait and does not relinquish control.

One side effect of failing to relinquish control is that incoming client
requests are still received by the server, but the packets cannot be processed.
Thus, without acknowledgment of the request, the client connection
eventually times out.

Remote and Local Server Operations

Not all functions in the NetWare® API work on remote servers.

The function descriptions include paragraphs that indicate whether the
function supports only remote server or local server operations, or both.

The paragraphs are labelled Local Server and Remote Server. N/A in this

NLM Programming

NLM Development: Concepts 109

paragraph indicates that the function does not support operation on the
indicated type of server.

Additionally, for the type of server operations that the function supports,
each function is further identified as nonblocking or blocking.

Nonblocking functions do not cause the caller to lose its thread of
execution (do not relinquish control).

Functions that can block might cause the caller to relinquish control.

For example, a function that is blocking on a remote server would read "
Remote Server: blocking."

Finally, some functions can be either blocking or nonblocking depending
on the circumstances of the call. These functions are identified as "either
blocking or nonblocking." When this is the case, a note is included in the
Remarks section to explain the circumstances under which the function
blocks. For example:

Blocking Information: This function blocks if called in blocking mode.

Renamed Functions in Connection Number and
Task Management Services

The functions listed in the following table were renamed to reduce
confusion.

Old Name New Name

GetCurrentConnectionID GetCurrentFileServerID

SetCurrentConnectionID SetCurrentFileServerID

Renamed Functions in Connection Services

The functions listed in the following table were renamed to reduce
confusion.

Old Name New Name

GetDefaultConnectionID GetDefaultFileServerID

SetDefaultConnectionID SetDefaultFileServerID

NLM Programming

NLM Development: Concepts 110

Renamed Functions in Screen Handling Services

MapScreenIDToHandle was renamed GetScreenInfo because the new
name was less confusing.

Renaming VAP Functions

If function names in your VAP differ from those you will use in your
NLM™ application, you can rename (map) the functions used in your VAP.
For example, if you use the ConsoleDisplay function in your VAP, you can
add the following line to the NLM to call the ConsolePrintf function:

#define ConsoleDisplay ConsolePrintf

Many functions are more efficient and more flexible in an NLM than in a
VAP. For example, the ConsolePrintf function in NLM applications allows
for embedded strings that define variables, an option not allowed in VAPs.
The following code example is not valid in VAPs but is allowed in NLM
applications.

ConsolePrintf(You are user %s, logged in to %s.\n",
 login_name, fileserver_name);

If you are mapping a VAP function for use in an NLM, see the function
references for specific information on syntax, return values, data structures,
and so on.

Screen Creation

Screens are created using CreateScreen, which returns a handle to the new
screen, but it does not switch to the new screen. You switch to a screen by
passing a screen handle into SetCurrentScreen. Once the current screen has
been set, all output for functions such as printf go to that screen.

The following function shows the creation of a new screen, which is then
switched to be the current screen. A new thread is created from within
ThreadTwo, so the new thread belongs to the same thread group as
ThreadTwo. Therefore, its output goes to the new screen.

void ThreadTwo()
{
 int screenHandle;
 int oldScreen;

 screenHandle = CreateScreen("Second Screen", 0);
 oldScreen=SetCurrentScreen(screenHandle);
 BeginThread(ThreadThree, NULL, NULL, "THREAD THREE ");

NLM Programming

NLM Development: Concepts 111

 printf("This is printing on the second screen\n");
}

NOTE: Setting the current screen changes the current screen for all of
the threads within the thread group.

Screen Deletion

By default, NLM™ screens do not close automatically when the NLM
terminates. Instead, the following message is displayed at the bottom line of
the monitor console when an NLM terminates:

<Press any key to close screen>

This occurs because some preexisting applications that are being ported to
the NetWare® environment might have been designed to write out a
closing message to the screen and then terminate their execution. The
auto-closing feature would immediately destroy the screen, possibly
causing the operator to miss an important status message. If an application
requires auto-closing, you can turn off the default <Press any key to close
screen> screen-closing mode by using SetAutoScreenDestructionMode.
Screens can also be destroyed within the NLM by calling DestroyScreen.

For more information about screens and how to write to them, see Screen
Handling.

Screens and the NetWare OS

The main screen for the server is the console screen. This screen allows the
operator to issue commands directly to the OS. This is also the screen where
NLM™ applications are loaded.

NLM applications can have zero, one, or multiple screens. These screens
display on the same monitor as the console screen. The OS switches between
screens when the following happens:

The operator presses Ctrl+Esc

This displays a menu of the names of the currently open screens. The
operator then enters the number of the screen to switch to.

The operator presses Alt+Esc

This switches the current screen to the next screen in the list of open
screens. This allows the operator to cycle quickly between screens.

A running thread changes the active screen

This is done when a thread calls DisplayScreen.

The NLM that owns the current screen terminates

When an NLM terminates, its screens are destroyed and the console

NLM Programming

NLM Development: Concepts 112

screen becomes the current screen.

NOTE: Keystrokes are accepted only for the currently displayed
screen. An NLM that is waiting for input does not receive it until the
operator switches to its screen and enters the needed keystrokes.

The NetWare® 3.x OS does not limit the number of screens than an NLM
can have open. The NetWare 4.x OS limits the number of screens to 100.

An example of creating and using multiple screens is presented in
Multithreaded Programming.

Segment Registers

Your NLM™ applications should not change the CS, DS, ES, FS, GS, or SS
segment registers. These registers are used for memory protection, and
changing them causes unpredictable results.

Semaphores

Whereas locking allows only one thread to access a file-related resource,
semaphores limit the threads that can access network resources to a
configurable number. You can also use semaphores to limit the number of
users of a particular resource.

Semaphores can be associated with resources, such as files, structures, and
devices. There are two types of semaphores:

Network semaphores

These apply to resources available to servers and workstations on the
network. For more information on network semaphores, see
Synchronization.

Local semaphores

These apply to resources available only to a single server. For more
information on local semaphores, see Interprocess Synchronization.

If your NLM™ application uses resources that could be used by a thread
running on another workstation or server on the network, you might use
network semaphores.

NOTE: You can use local semaphores among multiple NLM
applications; however, an NLM must either pass its semaphore handles
to other modules or export a function that returns the semaphore
handles to other modules.

If you are using semaphores to communicate between threads in the same
NLM, you might use local semaphores. Local semaphores are faster than

NLM Programming

NLM Development: Concepts 113

network semaphores because they are simpler and easier for the NLM to
find and implement.

CAUTION: Don't use network semaphores when you are using
connection 0 because locking temporarily disables the connection.
This disables connection 0 for all NLM applications using the
connection. If you are going to use network semaphores, acquire a
connection using LoginToFileServer.

Server Connections and VAP Conversion

Both VAPs and NLM™ applications use connections to communicate with
the NetWare® OS. However, NLM applications can receive file service
without logging in to the server, whereas VAPs must log in as an object.

When a VAP communicates with the server, it logs in as a user and acquires
a connection number as if it were a user. In some previous versions of
NetWare, the number of connections available to client workstations could
be significantly reduced if many VAPs were installed on the server.

In contrast, NLM applications are not required to attach (or log in) to the
local server in order to access the NetWare OS. NLM applications can
directly access NetWare file services to perform file I/O, bindery operations,
transactions, and so on.

Whereas a VAP must use a flag in the VAP header to indicate that it needs a
connection, an NLM can establish connections as needed. NLM applications
can call SetCurrentConnection(0) to bypass the typical user login sequence
and gain Supervisor rights to the file system.

NLM applications can log in to a server if necessary.The NetWare 3.11 OS
reserves 100 "hidden" connection numbers for NLM applications. These
numbers begin after the last client connection number. For instance, in a
250-user system, NLM connection numbers run from 251 to 350. Likewise,
in a 100-user system, the NLM connection numbers are 101 to 200. The
NetWare 4.x OS does not limit the number of connections for NLM
applications.

For more information on connections, see Connection Number and Task
Management and Connection.

SFT III and Device Drivers

NetWare SFT III™ does not depart from the standard NetWare device
driver framework. For each type of device supported by NetWare (LAN,
disk, or other), NetWare implements a support layer that separates logical
structures such as file systems or transport protocols from physical device
drivers such as ethernet drivers or SCSI drivers.

NLM Programming

NLM Development: Concepts 114

Compare the NetWare Support Layer Architecture with the NetWare SFT
III Support Layer Architecture.

SFT III Application Design Issues

NetWare SFT III™ presents important opportunities to server application
developers. Generally, developing applications for NetWare SFT III is not
unlike developing applications for standard NetWare. However, some areas
of development require special attention.

NLM developers using the NetWare API must address some additional
issues, which are discussed in The NetWare API and SFT III.

The following types of applications must be considered:

Mirrored Applications

IOEngine Applications

MSEngine Applications

SFT III Considerations for Time Synchronization

Although the I/O engine of an SFT III™ server generally isolates hardware
dependencies, it does not isolate the timer interrupt. Therefore, both engines
service the timer interrupts independently. However, SetSyncClockFields
(see The Synchronized Clock Interface) updates the synchronized clock
structures in both engines. This greatly simplifies time synchronization on
SFT III servers.

Parent Topic:

Controlling the Server Clock under NetWare 4.x

SFT III LAN Configuration

The primary difference in LAN configuration between standard NetWare®
and NetWare SFT III™ is that both the IOEngine and the MSEngine
maintain internal IPX™ networks.

The internal IPX network provides a stable destination address for client
request packets (and conversely, a stable source address for server reply
packets). The server's physical LANs can come and go dynamically as the
operator loads and unloads LAN drivers; however, the server's internal IPX
LAN remains operational for as long as the server itself is operating.

When you load the NetWare SFT III IOEngine, you must assign to it an IPX

NLM Programming

NLM Development: Concepts 115

internal network number. This number remains the ultimate source and
destination address for packets sent to and from the IOEngine for as long as
the IOEngine is running.

The IOEngines of two mirrored SFT III servers must have unique IOEngine
internal network numbers. (Just because they are mirrored partners does not
mean their IOEngines can have the same IPX internal network number.) In
fact, IOEngine internal network numbers must be completely unique on an
internetwork.

The MSEngine internal network number must be different from both
IOEngine internal network numbers, and also unique to the entire
internetwork. However, because there is only one logical MSEngine, both
servers of a mirrored pair run the MSEngine using the same IPX internal
network number. Remember, however, that the MSEngine on the secondary
server is invisible to network clients, and is strictly a "shadow" of the
MSEngine on the primary server.

If the primary server fails, it is critical that the MSEngine on the secondary
server have the same internal IPX network address. This allows network
clients to continue sending request packets and receiving response packets
from the same address.

Figure 15. SFT III LAN Configuration Figure

NLM Programming

NLM Development: Concepts 116

The LAN configuration of the IOEngine can be radically different for two
servers operating as a mirrored pair. This is because IOEngine network
addresses are never the ultimate source or destination address of request
and reply packets. Network clients view IOEngine network addresses as
part of the route to the MSEngine internal network, which is the ultimate
source and destination of reply and request packets.

All physical LAN segments attached to a SFT III server are part of the
IOEngine LAN configuration---they are never part of the MSEngine LAN
configuration. This condition exists because only the IOEngine can load
device drivers.

The IOEngine, because it contains all hardware-specific data structures, is
never mirrored between two SFT III servers. Consequently, when a network
board (or cabling) fails, that network segment disappears. Therefore, it is
important that systems designers configure LAN segments in a redundant
manner, providing network clients with multiple routes to the SFT III
MSEngine IPX internal network address.

A redundant LAN configuration is similar in principal to the NetWare drive
duplexing logic. When a drive adapter fails, that drive "disappears."
However, the NetWare drive addressing logic allows the OS to perform
drive I/O using an "alternate route" (in this case, a redundant drive and
controller). Similarly, when a physical LAN segment attached to an SFT III
server suffers a fault, clients should be able to perform LAN I/O using an
alternate route.

SFT III Server Memory Management

Like standard NetWare®, NetWare SFT III™ implements a flat memory
model using 32-bit memory addresses. Also as in standard NetWare, DOS
can occupy SFT III server memory addresses below 1 MB.

The IOEngine occupies 2 MB of memory beginning at the end of DOS
memory. When the IOEngine loads the MSEngine as the result of an
ACTIVATE SERVER command, the MSEngine occupies the remainder of
physical memory, beginning at the end of IOEngine memory. (You can limit
the amount of memory occupied by the MSEngine by performing the
memory alignment procedure by means of SET parameters in the IOEngine
before the server is activated. See the NetWare SFT III manual for more
information.)

Both the IOEngine and the MSEngine have their own memory management
kernels. When both engines are active, they are able to address the same
memory space. However, memory sharing between engines should occur
rarely, only under certain circumstances, and according to a strict protocol.
In all cases, inter-engine memory sharing is accomplished by the OS for its
own purposes. Applications should never attempt to address memory

NLM Programming

NLM Development: Concepts 117

across engine boundaries.

Developers using documented NetWare memory allocation functions do
not need to worry about allocating memory belonging to an unintended
engine. However, pointer bugs can cause unintended memory addressing.
As in standard NetWare, pointer errors can bring down the SFT III server.

SFT III Support in the NetWare API

Modifications to the NetWare® API for SFT III™ are relatively slight. As
previously mentioned, most functions were originally coded to support
NCP™ requests to remote servers as well as direct system calls to a local
server. Because there is no "local" server for an NLM™ application running
in the IOEngine, most of the modifications to the NetWare API involve
establishing an implicit connection to the MSEngine at NLM load time. This
implicit connection forces all file system-related calls to resolve to an NCP
request to the MSEngine. In addition, certain functions were altered to be
aware of the implicit connection to the MSEngine, including
AttachToFileServer, GetConnectionNumber, GetDefaultConnection,
GetDefaultFileServer, Logout, LogoutFromFileServer, LogoutObject,
LoginToFileServer, LoginObject, SetCurrentConnection, and
SetCurrentFileServer.

The implicit connection to the MSEngine is established by the startup code
of the NetWare API, just before the OS calls the main function of the NLM
(provided the MSEngine is loaded).

If the NetWare API determines that the NLM is running on an IOEngine
and that the MSEngine is loaded, it establishes a connection to the
MSEngine by calling AttachToFileServer. Next, the NetWare API logs the
IOEngine in to the MSEngine by calling LoginUser. The implicit connection
to the MSEngine (which is technically a remote server) is now established.
Note that all of this occurs before the OS calls the main function of the
NLM.

NOTE: The connection established with the MSEngine is a licensed
connection, not an NLM connection. Each NLM that uses the NetWare
API establishes a licensed connection with the MSEngine when the
NLM is loaded in the IOEngine. The connection in the IOEngine is an
NLM connection.

SFT Level II

SFT™ Level II is the group of fault-tolerant features included with standard
NetWare®, including Hot Fix™, TTS™, and drive duplexing services.

All SFT Level II services are essentially unchanged in SFT III™. However,
the services are not active unless the MSEngine is running. The data
structures and logic required for SFT Level II are part of the NetWare file

NLM Programming

NLM Development: Concepts 118

system, which is implemented in the MSEngine. As a result, applications
running in the IOEngine do not benefit from SFT Level II services. This is
yet another reason to design applications to run in the MSEngine whenever
possible.

Shared Memory

Shared memory allows multiple threads to communicate. To share memory
among threads in the same NLM™ application, use a global or static pointer
to a single block of memory. The following example uses a global pointer to
share memory among thread groups in the same NLM:

Using a Global Pointer to Share Memory among Thread Groups

int SharedMemoryFlag = 0;
char *SharedMemory;
void ThreadGroup2()
{
 while (!SharedMemoryFlag)
 ThreadSwitch();
 strcpy (SharedMemory,
 "ThreadGroup2 has accessed shared memory.");
 SharedMemoryFlag = 0;
}

main()
{
 /* Start the second thread group */
 if (BeginThreadGroup (ThreadGroup2,0,0,0) == EFAILURE)
 {
 printf ("BeginThreadGroup failed.\n");
 exit(0);
}

/* Allocate the memory to be shared. Note that SharedMemory
 * could have been defined as an array, if desired. */
 SharedMemory = malloc (100);
 if (SharedMemory == NULL)
 {
 printf ("Could not allocate memory.\n");
 exit(0);
 }

/* Store a string in the allocated memory and print it */
strcpy (SharedMemory,
 "Main ThreadGroup has accessed shared memory.");
printf ("%s\n",SharedMemory);

/* Let ThreadGroup2 know it is OK to access the memory */
SharedMemoryFlag = 1;

NLM Programming

NLM Development: Concepts 119

/* Wait for ThreadGroup2 to access the memory */
while (SharedMemoryFlag)
 ThreadSwitch();

/* Print the message stored by ThreadGroup2 */
printf ("%s\n",SharedMemory);
free (SharedMemory);
}

If you want to use shared memory with multiple NLM applications, write a
function that passes the memory address pointer among the modules. The
following example shows the first NLM setting up values to share with the
second NLM:

Setting up Values to Share Memory with Another NLM

/* ----------------- FIRST NLM ----------------- *
 * This NLM must be loaded first. Its .LNK file *
 * exports the two shared values, SharedMemoryFlag *
 * and SharedMemory. *
 * -- */
int SharedMemoryFlag = 0;
char *SharedMemory;

main()
{
 /* Allocate the memory to be shared. Note that
 * SharedMemory could have been defined as an array,
 * if desired. */
 SharedMemory = malloc (100);
 if (SharedMemory == NULL)
 {
 printf ("Could not allocate memory.\n");
 exit(0);
 }

 /* Store a string in the allocated memory and print it */
 strcpy (SharedMemory,
 "The main NLM has accessed shared memory.");
 printf ("%s\n",SharedMemory);

 /* Let the other NLM know it is OK to access the
 memory */
 SharedMemoryFlag = 1;

 /* Wait for the other NLM to access the memory */
 while (SharedMemoryFlag)
 ThreadSwitch();

 /* Print the message stored by the other NLM */
 printf ("%s\n",SharedMemory);
 free (SharedMemory);

NLM Programming

NLM Development: Concepts 120

}

The following directive file should be used to link the first NLM:

form novell nlm 'Example of Shared Memory between NLM applications'
name nlm1
file prelude,nlm1
import @clib.imp
export SharedMemoryFlag, SharedMemory

The following example shows the second NLM using the shared values set
up by the first NLM:

A Second NLM Sharing Memory with the First

/* ----------------- SECOND NLM ----------------- *
 * This NLM must be loaded after the first. Its *
 * .LNK file imports the two shared values. *
 * -- */
extern int SharedMemoryFlag = 0;
extern char *SharedMemory;
main()
{
 while (!SharedMemoryFlag)
 ThreadSwitch();
 strcpy (SharedMemory,
 "The second NLM has accessed shared memory.");
 SharedMemoryFlag = 0;
}

The following directive file should be used to link the second NLM:

form novell nlm 'Example of Shared Memory between NLM applications'
name nlm2
file prelude,nlm2
import @clib.imp,
 SharedMemoryFlag, SharedMemory

NOTE: For the NetWare® 4.x OS, NLM applications can only share
memory with modules that are loaded in the same domain. For
example, modules loaded in the OS_PROTECTED domain can share
memory among themselves, but they cannot access memory of modules
running in the OS domain. (Domains are not an issue for the NetWare
3.x OS.)

Signal Handling

In general, a signal is raised by the NetWare® API when a particular
program condition occurs. However, the NLM™ itself can raise a signal by
calling raise.

Signal handling allows previously registered functions to gain control of

NLM Programming

NLM Development: Concepts 121

critical shutdown processes. The following are typical signals your NLM
might handle:

SIGABRT

This signal is raised only during abnormal exit of the NLM, such as
stack overflow. In abnormal exit, the NLM calls abort, which raises the
SIGABRT signal.

SIGINT

This signal is raised when the operator presses Ctrl+C during screen
output and if the NLM screen's CtrlCharCheckMode is set to TRUE
(default). This does not affect an NLM if the current screen is the
System Console screen.

SIGTERM

This ANSI standard signal is raised only when the NLM is unloaded
from the console command line. Because the NetWare API raises the
SIGTERM signal only when the NLM is unloaded, you must raise the
signal yourself when exiting with ExitThread or exit. You can raise the
signal using raise.

Although NLM resources can be freed using either AtUnload or atexit,
these methods do not work in some situations. For instance, local semaphore
handles can be stored on the local stack of a thread, where they are hidden
from external functions such as AtUnload and atexit.

In all cases of the termination process, threads are ended before the
functions registered with AtUnload and atexit are called. Without signal
handling, resources allocated on a local stack cannot be released, because
thread stacks are freed before the functions registered with AtUnload and
atexit are called. (If you want to keep track of these resources after the
treads are terminated, you could store them in global or static variables.)

NLM applications usually define signal handlers during initialization by
calling a function such as the following:

signal(SIGTERM,MySignalHandler);

The following is a sample signal handler:

NLM Signal Handler

int ThreadCounter;/* counts the number of threads running */
int ShutDownFlag; /* the signal handler sets this to TRUE */
#pragma off(unreferenced);
void MySignalHandler(int sigtype) /* sigtype is SIGTERM */
#pragma on(unreferenced);
{
 ShutDownFlag = TRUE;
 printf("Inside signal handler.
 Waiting for threads to stop ...\n");
 while(ThreadCounter > 0)
 {

NLM Programming

NLM Development: Concepts 122

 delay(500); /* wait half a second */
 }
 printf("Inside signal handler. Threads have
 stopped.\n");
}

By writing a signal handler function that defines a global flag, you can
manage resources that are allocated from a local stack. When the signal is
raised, it can set a global flag that each thread in the NLM reads. Those
threads then can return their own resources and exit.

Whether you require the use of a signal handler depends primarily on
whether you have local resources that can be freed only by the thread of
execution that allocated them. If your NLM uses any stack-based resources,
a signal handler is necessary for proper NLM shutdown.

Structure of an NLM

An NLM™ application must have initialization code, a main body of code,
and termination code. The following figure shows the structure of an NLM.

Figure 16. NLM Structure

NLM Programming

NLM Development: Concepts 123

Synchronized Clock Status Flags

The following defines the constants for several flags that isolate bit fields
within the statusFlags field:

#define CLOCK_IS_SYNCHRONIZED 0x00000001L
#define CLOCK_IS_NETWORK_SYNCHRONIZED 0x00000002L
#define CLOCK_SYNCHRONIZATION_IS_ACTIVE 0x00000004L
#define CLOCK_STATUS_SERVER_TYPE 0x00000F00L

Three status bit fields allow you to determine whether time synchronization
is active on a server and the status of the synchronization effort. The
synchronizing agent is responsible for managing the bits.

CLOCK_SYNCHRONIZATION_IS_ACTIVE indicates that the TIMESYNC
NLM™ (or some equivalent) is active. When this bit is set, it is reasonable to
expect that the CLOCK_IS_NETWORK_SYNCHRONIZED bit might
eventually be set. When synchronization is active, the setting of
CLOCK_IS_SYNCHRONIZED mirrors the setting of
CLOCK_IS_NETWORK_SYNCHRONIZED. However, if synchronization is
not active, CLOCK_IS_SYNCHRONIZED should always be set to 1.
CLOCK_IS_NETWORK_SYNCHRONIZED is used by the synchronizing
agent to indicate that the UTC clock is accurate.

NOTE: The interaction of these bits might not be obvious. If you want
a reliable network timestamp, you should first ensure that
synchronization is active and watch for the
CLOCK_IS_NETWORK_SYNCHRONIZED flag to be set before using
the UTC clock field. If time synchronization is not active, network
synchronization will not be achieved, so an application watching only
CLOCK_IS_NETWORK_SYNCHRONIZED blocks. If you want an
application to operate whenever time is as synchronized as possible,
watch the CLOCK_IS_SYNCHRONIZED bit so that the application
does not block when time synchronization is not active.

The NetWare® OS clears CLOCK_IS_NETWORK_SYNCHRONIZED
whenever time-related information changes the accuracy of the UTC clock.
The synchronizing agent should monitor this bit to know when the OS is
signalling that corrective action might be necessary. The TIMESYNC NLM
checks this bit once a second.

The CLOCK_STATUS_SERVER_TYPE field is used by the TIMESYNC
NLM to report the server type as follows:

SINGLE (5)

REFERENCE (4)

PRIMARY (3)

SECONDARY (2)

NLM Programming

NLM Development: Concepts 124

Some applications can look at this field to determine the nature of the
TIMESYNC NLM that is loaded. The value is not used internally in the OS,
but is returned by some functions that report the clock status to clients. The
value should reflect the nature of the synchronizing agent---that is, SINGLE
and REFERENCE servers generally have an external time source and do not
adjust their clocks to agree with PRIMARY and SECONDARY servers.
PRIMARY and SECONDARY time sources adjust their clocks to agree with
other time sources.

Other bits within the status flags are undefined and reserved for use by
Novell®.

Termination Process

Using functions from the NetWare® API, an NLM™ application can control
the termination process. An NLM should include mechanisms to handle:

Self-termination, such as when the NLM exits on its own

Unload, such as when the NLM is unloaded at the system console
command line, before the NLM exits on its own

Abnormal exit, such as when an error causes unexpected shutdown, such
as when abort and raise are called

Related Topics:

NLM Self-Termination Process

NLM Unload Process

NLM Abnormal Exit Process

Following Exit Steps

CHECK Function

Signal Handling

AtUnload and atexit Functions

Thread Termination

The Effect of Setting the Hardware Clock Bit

In the field mask used by GetSyncClockFields and SetSyncClockFields
(see The Synchronized Clock Interface) there is a
SYNCCLOCK_HARDWARE_CLOCK_BIT. However, there is no hardware
clock field in the synchronized clock structure. The effect of this bit differs
between the two functions. This is the mechanism that the TIMESYNC NLM

NLM Programming

NLM Development: Concepts 125

uses to implement the SET TIMESYNC HARDWARE CLOCK parameter.

When the hardware clock bit is set, the first action of GetSyncClockFields is
to read the hardware clock and set both local and UTC time from it.
However, the subsecond counter in the UTC clock is not set to 0.

In a complementary manner, when the hardware clock bit is set, the last
action of SetSyncClockFields is to update the hardware clock. This is
accomplished by setting the local time using UTC as a base and applying
the necessary time zone and DST adjustments.

The eventOffset and eventTime Fields

When UTC is greater than or equal to eventTime, an internal OS routine is
notified and adds eventOffset[0] (the whole second part) to the UTC clock.
This is the mechanism by which TIMESYNC schedules a time adjustment.
eventOffset[1] is used as a status word by TIMESYNC. If TIMESYNC is not
loaded, the eventTime and eventOffset fields can be used similarly.

The NetWare API and SFT III

The NetWare® API shields developers from worrying about the
system-level changes between different versions of the NetWare OS. This is
also true with the NetWare API and SFT III™. See the following for
information about the NetWare API implementation on SFT III.

The NetWare API and the IOEngine

NetWare Functions Not Supported by the MSEngine

The NetWare API and the IOEngine

The IOEngine does not support the NetWare® file system, the bindery,
NCP™ service, queue services, or any other service that relies on the logical
NetWare file system or related modules. Consequently, NetWare system
calls designed to work with the logical file system are not contained in the
IOEngine. (Rather, they are contained in the MSEngine.)

However, the NetWare API functions, which provide services based on the
logical NetWare file system, in many cases support local and remote servers.
When an NetWare API function is targeted to the local server, the function
resolves to one or more direct system calls. On the other hand, when the
function is targeted to a remote server, the NetWare API resolves that
function into one or more NCP requests to that remote server. The
differences between functions targeted to local and remote servers are
hidden from the NLM™ developer.

NLM Programming

NLM Development: Concepts 126

An NLM loaded in the IOEngine can call open, ScanBinderyObject, fseek,
and so on, despite the fact that the IOEngine has no file system, provided
the target file system is located on a remote server. Without support for SFT
III™ within the NetWare API, NLM applications running in the IOEngine
would have to target all file system-related functions to a remote server
explicitly. However, this is not required, as discussed below.

When the MSEngine is loaded, it is viewed by the IOEngine as a "remote"
server, despite the fact that both the IOEngine and the MSEngine are
running on the same machine. Remember, the MSEngine and IOEngine
have different IPX internal network numbers.

Related Topics:

API Support for NLM Applications Running in the IOEngine

SFT III Support in the NetWare API

Functions Unsupported by the IOEngine

The Synchronized Clock Interface

Two functions are provided to access the synchronized clock structure,
GetSyncClockFields and SetSyncClockFields. The prototypes follow:

void GetSyncClockFields (LONG bitMask, Synchronized_Clock_T *);
void SetSyncClockFields (LONG bitMask, Synchronized_Clock_T *);

The following defines the bitmask:

#define SYNCCLOCK_CLOCK_BIT 0x00000001L
#define SYNCCLOCK_TICK_INCREMENT_BIT 0x00000002L
#define SYNCCLOCK_ADJUSTMENT_BIT 0x00000004L
#define SYNCCLOCK_GROSS_CORRECTION_BIT 0x00000008L
#define SYNCCLOCK_ADUSTMENT_COUNT_BIT 0x00000010L
#define SYNCCLOCK_STATUS_BIT 0x00000020L
#define SYNCCLOCK_STD_TICK_BIT 0x00000040L
#define SYNCCLOCK_EVENT_TIME_BIT 0x00000080L
#define SYNCCLOCK_EVENT_OFFSET_BIT 0x00000100L
#define SYNCCLOCK_HARDWARE_CLOCK_BIT 0x00000200L
#define SYNCCLOCK_RESERVED1_BIT 0x00000400L
#define SYNCCLOCK_DAYLIGHT_BIT 0x00000800L
#define SYNCCLOCK_TIMEZONE_OFFSET_BIT 0x00001000L
#define SYNCCLOCK_TZNAME_BIT 0x00002000L
#define SYNCCLOCK_TIMEZONE_STR_BIT 0x00004000L
#define SYNCCLOCK_DAYLIGHT_OFFSET_BIT 0x00008000L
#define SYNCCLOCK_DAYLIGHT_ON_OFF_BIT 0x00010000L
#define SYNCCLOCK_START_DST_BIT 0x00020000L
#define SYNCCLOCK_STOP_DST_BIT 0x00040000L

These functions are not provided by the NetWare® API, but can be

NLM Programming

NLM Development: Concepts 127

imported directly from the OS. Their use does not require CLIB context, and
they should be considered blocking functions. Each function expects a
pointer to a clock structure and a bitmask indicating which fields are of
interest. Bits in the mask must be set to transfer data to or from the OS
structure, so you do not have to supply all of the information to change one
field.

A NetWare API interface to the UTC clock and status fields of the
synchronized clock structure is provided by GetClockStatus.

NOTE: Debugging hint: The OS structure is named
SynchronizedClock and might be visible by that name in the debugger.
However, don't attempt to read or write this structure directly from
your NLM™ application or you might encounter memory protection
problems. Always use the Get and Set functions to prevent enormous
debugging problems.

WARNING: It might appear that the interface to information for
time zone, timezoneOffset, daylight savings time, and so on, is
provided. This is not the case. Although information about current
settings is stored in the synchronized clock structure and used in
some calculations, the interface for setting these parameters is inside
the NetWare OS. Attempting to change anything but the fields
controlling the clock and tick rate can result in unpredictable
behavior.

To use the interface, it is important to understand how the status flags are
interpreted and what the effects of setting various fields are.

Related Topics:

Synchronized Clock Status Flags

Clock Control Fields

The eventOffset and eventTime Fields

Daylight Savings Time Information Fields

The Synchronized Clock Structure

Following is an internal NetWare® structure commonly called the
Synchronized Clock. Access to this structure is provided by
GetSyncClockFields and SetSyncClockFields (see The Synchronized Clock
Interface).

typedef struct Synchronized_Clock
{
 LONG clock[2]; /* [0]=whole seconds, [1]=fractional - UTC*/
 LONG statusFlags; /* bit fields as defined below */
 LONG adjustmentCount;
 long adjustmentValue[2]; /* [0]=whole seconds, [1]=fractional*/

NLM Programming

NLM Development: Concepts 128

 long grossCorrection[2]; /* [0]=whole seconds, [1]=fractional*/
 long tickIncrement[2]; /* [0]=whole seconds, [1]=fractional*/
 LONG stdTickIncrement[2]; /* [0]=whole seconds, [1]=fractional*/
 long eventOffset[2]; /* [0]=whole seconds, [1]=TimeSync flags*/
 LONG eventTime; /* whole seconds only*/
 LONG daylight; /* 0 if DST name was not in timezone info */
 long timezoneOffset; /* seconds to UTC; LocalTime+timezone=UTC */
 long tzname[2]; /* offset to normal and daylight names in
 timezoneString */
 char timezoneString[80];
 long daylightOffset; /* seconds of additional offset during
 Daylight Savings Time*/
 long daylightOnOff; /* 0=not in daylight savings time (OFF),
 nonzero=ON */
 LONG startDSTime; /* Next time DST starts */
 LONG stopDSTime; /* Next time DST ends */
} Synchronized_Clock_T;

This structure is not the only one involved in keeping track of time in the
NetWare OS, but provides a method for obtaining information about the
parameters that effect the time of day clock on the server and altering some
of that information.

The fields of most interest are clock, tickIncrement, adjustmentCount,
adustmentValue, and grossCorrection. The clock field, as well as the
tickIncrement, adjustmentValue, and grossCorrection, consists of two parts,
whole seconds and fractional seconds. Conceptually, there is a binary point
between the whole and fractional seconds parts. The whole seconds part of
the clock holds UTC time in seconds since the start of 1970. NetWare UTC
time does not account for leap seconds.

Thread Group Level Context

All of the threads in a thread group share the same thread group level
context. Any change that one thread makes to the value of a thread group
data item affects all the threads in the group. The context of a thread group,
however, is not shared with other thread groups, so changes within one
thread group do not affect another group.

Thread groups maintain the following context:

Current connection

The current connection number is described in Connection Number
and Task Management.

Current screen

The current screen is the target of screen I/O functions, as described in
Screen Handling.

Current task

NLM Programming

NLM Development: Concepts 129

The current task number is described in Connection Number and Task
Management.

CWD

Current working directory, as described in File System.

Signal settings

Signal handler functions are set by signal. (The signal and raise
functions are discussed in Signal Handling.)

stdin, stdout, stderr

These data items are the second-level standard I/O handles, as
described in Stream I/O.

umask flags

These flags are set by the umask function, as described in File System.

Current user

The "current user" is the user context used by NDS™ functions (
NetWare® 4.x only).

Thread Level Context

Thread level context is the most private level of context information within
an NLM™ application; the context of each thread is available only to each
thread. These values are separate for each thread. The data items of one
thread cannot be referenced by another thread.

Threads maintain the following context:

asctime char string pointer

This character string is only allocated if the asctime, asctime_r function
is called. The asctime, asctime_r function returns a char *.

critical section count

This count contains the number of outstanding EnterCritSec calls
against a thread.

ctime, ctime_r, gmtime, gmtime_r, and localtime, localtime_r tm
structure pointer

The ctime, ctime_r, gmtime, gmtime_r, and localtime, localtime_r
functions return a pointer to a tm structure. Each thread has its own tm
structure. The tm structure is only allocated if one of these three
functions is called.

errno

Some functions set the errno return code to the last error code that was
detected.

Last value from the function rand

Each thread has its own seed value (to start or continue a sequence of

NLM Programming

NLM Development: Concepts 130

random numbers). (See rand, rand_r.)

NetWareErrno

This error code is a NetWare specific error code. Some functions set
both NetWareErrno and errno.

Stack

This points to the block of memory BeginThread allocated for the
thread's stack.

strtok pointer

The strtok function maintains a pointer into the string being parsed.

t_errno

This error code is used by TLI functions.

Suspend count

This count contains the number of outstanding SuspendThread calls
against a thread.

Thread Termination

If an operator unloads an NLM™ application, all threads are destroyed
except the current thread, which started the unloading process (usually the
console command thread) and executes the remaining shutdown code. The
NetWare® API performs this step automatically.

During self-termination, the NetWare API destroys all threads created by
the NLM, except the thread that caused the termination. This thread
remains in order to execute the remaining shutdown code.

During an abnormal exit, all threads (including the current thread) are
destroyed. The NetWare API performs this step automatically.

Transaction Tracking and SFT III

Benefits of TTS™ services are not superseded by SFT III™ mirrored
operation. You should still use TTS for database applications. TTS should be
viewed as a safeguard against logical (rather than physical) data corruption,
because it makes atomic a series of granular write operations. SFT III by
itself does not provide this capability; it relies on TTS to do so, just as the
standard NetWare® OS does.

In practice, SFT III developers should rely on TTS more than developers of
standard NetWare applications should. The use of SFT III implies that all
the server's data is critical, which in turn implies that the data should be
protected by TTS.

NLM Programming

NLM Development: Concepts 131

Transferring Functions from VAPs to NLM
Applications

If your VAP uses functions from the NetWare® C Interface---DOS Library,
you can easily convert the program to an NLM that uses functions from the
NetWare API. See NLM Equivalents for VAP Functions to see the
differences between these two interfaces.

Renaming VAP Functions

VAP Presentation Functions

Custom VAP Functions

Types of NLM Applications

NLM™ applications allow you to add functionality in increments to
NetWare® 3.x and 4.x server platforms. You can produce your own
customized utilities, LAN and disk drivers, and server applications. The
following types of NLM applications add flexibility and a wide range of
capabilities to NetWare:

Service, management, utility modules, including serial I/O drivers

LAN driver modules

Disk driver modules

Modules that define file system name spaces

NetWare includes NLM applications from each of these categories. For
example:

INSTALL and MONITOR are utility NLM applications.

NE1000.LAN and NE2000.LAN are LAN drivers.

ISADISK.DSK is a disk driver.

OS2.NAM supports the OS/2* High Performance File System naming
convention. (Support for DOS and FAT-based OS/2 naming conventions
are part of the NetWare OS and not loaded as NLM applications.)

NOTE: This manual describes the process of writing management,
utility, and server NLM applications. It does not explain how to write
LAN drivers or device drivers. This information is available in the
Novell LAN Driver Developer's Kit and in the Novell Device Driver
Developer's Kit, which are Novell Labs™ publications.

Related Topics:

NLM Programming

NLM Development: Concepts 132

Utility and Service Modules

LAN and Device Driver Modules

Name Space Modules

Unloading NLM Applications

NLM™ applications can be unloaded while the server is running. When an
NLM is unloaded, it must return all the memory and resources that the
server previously allocated to it. The OS generates a warning for each
resource that has not been explicitly released.

You can unload NLM applications manually by means of the console
command UNLOAD entered at the command line, or they can unload
themselves. When an NLM exits by means of UNLOAD, a function
registered with AtUnload is called. The functions registered with atexit are
called as well.

NOTE: A detailed explanation of the unload process is presented in
NLM Code Development.

You can use the UNLOAD command to unload programs. The syntax for
the UNLOAD command is as follows:

UNLOAD loadable-module-name

where loadable-module-name is the name of the NLM you want to unload.

Using the LOAD Command

The NetWare® API can be passed parameters whenever an NetWare API
application is loaded. The LOAD command can include:

Command line parameters that are passed to the NLM™ application

NetWare API runtime parameters

The syntax for the LOAD command is as follows:

LOAD loadable-module-name [parameter1 parameter2 ...]
[(CLIB_OPT)/CLIB-parameter1/CLIB-parameter2 ...]

The following summarizes parameters used with the LOAD command.

loadable-module-name

(Required) The name of the module to load can be specified with or
without a filename extension. If no filename extension is specified,
then files with extensions .NLM, .LAN, .DSK, and .NAM are searched

NLM Programming

NLM Development: Concepts 133

for.

The path information precedes the loadable module name. If you
specify an absolute path, then it must begin with a DOS drive letter or
a NetWare volume name. If you do not specify path information, then
the server assumes that the loadable module is located in the server's
search path.

parameter1 parameter2 ...

(Optional) You can pass one or more parameters to the module.

(CLIB_OPT)/CLIB- parameter1/ CLIB-parameter2 ...

(Optional)You can specify one or more NetWare API runtime
parameters (see below).

NOTE: The (CLIB_OPT) parameters must not have any
embedded blanks.

CLIB_OPT parameters include the following:

/Pcwd

Specifies the initial CWD. This allows you to specify an initial CWD
other than the root for this execution of the NLM.

LOAD TESTER (CLIB_OPT)/PVOL1:PDEMO

/>filepath

Redirects the second-level output, stdout, to the specified file path.

The following example executes an NLM called BINDDUMP whose
second-level output is to be written to SYS:TEMP\BINDERY.LST.

LOAD BINDDUMP (CLIB_OPT)/>SYS:TEMP\BINDERY.LST

When the paths are specified, "\\" must be used because the "/" is
interpreted as a new option. (You can also you redirection in ways
similar to how it is done in DOS and UNIX*.)

/<filepath

Redirects the second-level input, stdin, from the specified file path as
in this example:

LOAD TESTER (CLIB_OPT)/<SYS:TEST\TEST1.SCR

When the paths are specified, "\\" must be used because the "/" is
interpreted as a new option.

See Stream I/O for more information about second-level I/O. (You can
also you redirection in ways similar to how it is done in DOS and
UNIX.)

/Efilepath

Redirects the second-level error stream, stderr, to the specified path.
(You can also you redirection in ways similar to how it is done in DOS

NLM Programming

NLM Development: Concepts 134

and UNIX.)

/L

There are two /L parameters that can be used when loading an NLM.
The command

LOAD /L loadable_module

loads your NLM code into the data segment. This option is used when
the compiler places character constants in your code segment. If your
NLM does not run with DOMAIN.NLM loaded, try this option.

The second /L parameter is as follows:

LOAD loadable_module [optional parameters] (CLIB_OPT)/L<number>

where number is the packet signature level as specified by the NCP
Packet Signature security enhancement, which protects servers and
clients using the NCP by preventing packet forgery. Packet signature
level options are:

0---CLIB does not sign packets

1---CLIB signs packets only if the server requests it (server option is 2
or higher)

2---CLIB signs packets if the server is capable of signing (server option
is 1 or higher)

3---CLIB signs packets and requires the server to sign packets (or
logging in will fail).

The default NCP packet signature level is 1 for clients and 2 for
servers. The default level for CLIB is 1.

To change the default packet signature level for all NLM applications
that use CLIB, use the following command format when you load
CLIB:

LOAD CLIB/L<number>

where number is the signature level.

To change the packet signature level for a single NLM, use the
following command format when you load the NLM:

LOAD loadable_module [optional parameters] (CLIB_OPT)/L<number>

Detailed information on this security enhancement is available in the
readme, SECURE.DOC, includedwith the security enhancement. The
files are available on the NetWireSM service. For information call
1-800-REDWORD.

/N

Specifies the initial name space. The optional name space
specifications are as follows:

/N [DOS | UNIX | FTAM | OS2]

NLM Programming

NLM Development: Concepts 135

/N [DOS | UNIX | FTAM | OS2]

/S

Specifies a remote server login, as shown here:

/S servername\userID [\password]

/Y

This option is used when you receive the console error message "An
NLM has been loaded that does not allow low priority threads to be
run. Set `Upgrade Low Priority Threads' to ON or unload the NLM."
This condition occurs when an NLM that does busy waiting or spin
locks with ThreadSwitch (instead of with ThreadSwitchWithDelay) is
loaded on a NetWare 4.x server.

For NLM applications that were developed using the NetWare API,
you should use the /Y option if you receive the above error message.
This option causes the NLM to use the handicapped CPU-yielding
functions.

See Relinquishing Control for information on how to write NLM
applications that do not create this problem.

Multiple options can be used together as show in the following example:

LOAD TESTER (CLIB_OPT)/>SYS:OUT/PSYS:SYSTEM

Utility and Service Modules

Some of the well-known NetWare® utilities such as DISKSET, INSTALL,
VREPAIR, and MONITOR are NLM™ applications. You can load these
utilities after the NetWare OS is loaded.

Developers of service and utility NLM applications use the NetWare API to
create them. The NetWare API includes the following:

ANSI C runtime library

POSIX functions

De facto standard DOS C runtime library functions

OS/2* execution thread APIs

Interface APIs to the NetWare OS

The NetWare API is a set of NLM applications that link to the NetWare OS
through its dynamic linking mechanism. The interface consists of the
modules listed in the following table.

Table auto. NLM Applications in the NetWare API

NLM Programming

NLM Development: Concepts 136

NLM Description

AFTER311 An NLM that can be loaded on NetWare 3.11
servers to allow NLM applications written for the
NWSNUT interface to run on NetWare 3.11 and
3.12 servers.

AIO.NLM Provides an interface through which applications
can access asynchronous communication services
in the NetWare 3.11 and 4.x environments. For
detailed information on its use, see Asynchronous
I/O.

CLIB.NLM Contains the core set of functions needed for NLM
development. In addition to functions unique to
NetWare, it includes functions derived from the
ANSI C Runtime Library, BSD Socket API, POSIX
API, WATCOM* C Runtime Library, and UNIX*
System Calls.

CLIBDEB.NLM A version of CLIB.NLM that exports debugging
information and implements stack checking. This
NLM should be used for development, but it is not
available to users.

DSAPI.NLM Contains the NDS™ functions that are necessary to
access the Directory. (This is new with the
NetWare 4.0 OS.)

MATHLIB.NLM Contains trigonometric, logarithmic, and other
advanced math functions. Use this NLM if an
80387 numeric data processor is installed. This
NLM requires that CLIB.NLM be loaded.

MATHLIBC.NL
M

Contains the same set of functions as
MATHLIB.NLM. Use MATHLIBC.NLM if an
80387 numeric data processor is not installed. This
NLM requires that CLIB.NLM be loaded.

PATCH311.NLM This is a dummy file that is used for NetWare 3.11
NLM applications that autoload PATCH311.NLM.
The functions that were in PATCH311.NLM have
been moved to CLIB.NLM.

TLI.NLM Contains a set of functions that emulate the System
V™ STREAMS TLI, a transport-independent
network access method on UNIX systems.
TLI.NLM autoloads STREAMS.NLM and
CLIB.NLM if they are not already loaded.

The STREAMS based TLI functions are documented in TLI.

In addition to the NetWare API, the service module NWSHELL is supplied
with this SDK. NWSHELL provides a command interface for the NetWare
3.x and 4.x environments, similar to the DOS command shell,
COMMAND.COM. For more information about this command processor,

NLM Programming

NLM Development: Concepts 137

see the README file in the NOVM\NWSHELL directory.

VAP Equivalents for Accounting Functions

The Accounting Services functions for NLM™ applications and VAPs are
the same. The following table shows VAP functions, their NLM
counterparts, and the associated header file. For more information on
Accounting Services, see Accounting.

VAP Function NLM Function NLM Header

AccountingInstalled AccountingInstalled nwaccntg.h

niterror.h

GetAccountStatus GetAccountStatus nwaccntg.h

niterror.h

SubmitAccountCha
rge

SubmitAccountCharge nwaccntg.h

niterror.h

SubmitAccountHol
d

SubmitAccountHold nwaccntg.h

niterror.h

SubmitAccountNot
e

SubmitAccountNote (This
function does not use the
commentLen parameter.)

nwaccntg.h

nwtypes.h

VAP Equivalents for AFP Functions

The AFP Services functions for NLM™ applications and VAPs are the same.
However, whereas VAPs can log in to a maximum of eight servers, NLM
applications can log in to any number, as long as there are connections
available.

VAP Function NLM Function NLM
Header

AFPAllocTemporaryDirHan
dle

AFPAllocTemporaryDirHan
dle

nwafp.
h

nwtype
s.h

AFPCreateDirectory AFPCreateDirectory nwafp.
h

nwtype
s.h

AFPCreateFile AFPCreateFile nwafp.

NLM Programming

NLM Development: Concepts 138

h

nwtype
s.h

AFPDelete AFPDelete nwafp.
h

nwtype
s.h

AFPDirectoryEntry AFPDirectoryEntry nwafp.
h

nwtype
s.h

AFPGetEntryIDFromName AFPGetEntryIDFromName nwafp.
h

nwtype
s.h

AFPGetEntryIDFromNetWar
eHandle

AFPGetEntryIDFromNetWar
eHandle (Additional
parameter)

nwafp.
h

nwtype
s.h

AFPGetEntryIDFromPathNa
me

AFPGetEntryIDFromPathNa
me

nwafp.
h

nwtype
s.h

AFPGetFileInformation AFPGetFileInformation
(Different structure)

nwafp.
h

nwtype
s.h

AFPOpenFileFork AFPOpenFileFork nwafp.
h

nwtype
s.h

AFPRename AFPRename nwafp.
h

nwtype
s.h

AFPScanFileInformation AFPScanFileInformation
(Different structure)

nwafp.
h

nwtype
s.h

AFPSetFileInformation AFPSetFileInformation
(Different structure)

nwafp.
h

nwtype
s.h

AFPSupported AFPSupported nwafp.
h

NLM Programming

NLM Development: Concepts 139

nwtype
s.h

VAP Equivalents for Bindery Functions

The Bindery Services functions available to NLM™ applications are the
same as those available for VAPs. For more information on the Bindery
functions, see Bindery.

VAP Function NLM Function NLM
Header

AddBinderyObjectToSet AddBinderyObjectToSet nwbindr
y.h

nwtypes.
h

ChangeBinderyObjectPassw
ord

ChangeBinderyObjectPassw
ord

nwbindr
y.h

nwtypes.
h

ChangeBinderyObjectSecuri
ty

ChangeBinderyObjectSecuri
ty

nwbindr
y.h

nwtypes.
h

ChangePropertySecurity ChangePropertySecurity nwbindr
y.h

nwtypes.
h

CloseBindery CloseBindery nwbindr
y.h

nwtypes.
h

CreateBinderyObject CreateBinderyObject nwbindr
y.h

nwtypes.
h

CreateProperty CreateProperty nwbindr
y.h

nwtypes.
h

DeleteBinderyObject DeleteBinderyObject nwbindr
y.h

nwtypes.
h

NLM Programming

NLM Development: Concepts 140

DeleteBinderyObjectFromSe
t

DeleteBinderyObjectFromSe
t

nwbindr
y.h

nwtypes.
h

DeleteProperty DeleteProperty nwbindr
y.h

nwtypes.
h

GetBinderyAccessLevel GetBinderyAccessLevel nwbindr
y.h

nwtypes.
h

GetBinderyObjectID GetBinderyObjectID nwbindr
y.h

nwtypes.
h

GetBinderyObjectName GetBinderyObjectName nwbindr
y.h

nwtypes.
h

isBinderyObjectInSet IsBinderyObjectInSet nwbindr
y.h

nwtypes.
h

OpenBindery OpenBindery nwbindr
y.h

nwtypes.
h

ReadPropertyValue ReadPropertyValue nwbindr
y.h

nwtypes.
h

RenameBinderyObject RenameBinderyObject nwbindr
y.h

nwtypes.
h

ScanBinderyObject ScanBinderyObject nwbindr
y.h

nwtypes.
h

ScanBinderyObjectTrusteeP
aths

ScanBinderyObjectTrusteeP
aths

nwbindr
y.h

nwtypes.
h

ScanProperty ScanProperty nwbindr

NLM Programming

NLM Development: Concepts 141

y.h

nwtypes.
h

VerifyBinderyObjectPasswo
rd

VerifyBinderyObjectPasswo
rd

nwbindr
y.h

nwtypes.
h

WritePropertyValue WritePropertyValue nwbindr
y.h

nwtypes.
h

The NetWare® API provides the following additional defined properties
listed in the following table.

Table auto. Bindery Properties

Property Name Object Type

ACCOUNT_HOLDS

ACCT_LOCKOUT ACCT_LOCKOUT

ACCT_LOCKOUT User

BLOCKS_READ File Server

BLOCKS_WRITTEN File Server

CONNECT_TIME File Server

DISK_STORAGE File Server

MODE_CONTROL User

REQUESTS_MADE File Server

MANAGERS is not a defined property in the Bindery Services of the
NetWare API.

VAP Equivalents for Communication Functions

The IPX™ packet header for NLM™ applications is different from the one
for VAPs. (It is longer and contains different fields.) The SPX™ packet
header is similar for both NLM applications and VAPs with one main
exception: whereas the VAP fields are either bytes or words, the NLM fields
are unsigned chars and unsigned shorts. The ECB structure is also different.

The following table shows VAP functions that can be mapped to NLM
functions. Note the spelling differences between the two libraries.

NLM Programming

NLM Development: Concepts 142

VAP Function NLM Function NLM
Header

IPXCancelEvent IpxCancelEvent or
IpxCancelPacket

nwipxsp
x.h

IPXCloseSocket IpxCloseSocket nwipxsp
x.h

IPXDisconnectFromTarge
t

Not applicable for NLM

IPXGetDataAddress Not applicable for NLM

IPXGetInternetworkAddr
ess

IPXGetInternetworkAddress nwipxsp
x.h

IPXGetIntervalMarker SpxGetTime nwipxsp
x.h

IPXGetLocalTarget IPXGetLocalTarget nwipxsp
x.h

IPXInitialize Not applicable for NLM

IPXListenForPacket IpxReceive (Different
parameters)

nwipxsp
x.h

IPXOpenSocket IPXOpenSocket nwipxsp
x.h

IPXRelinquishControl Not applicable for NLM

IPXScheduleIPXEvent Not applicable for NLM

IPXSendPacket IpxSend (Different parameters) nwipxsp
x.h

SPXAbortConnection SpxAbortConnection nwipxsp
x.h

SPXEstablishConnection SpxEstablishConnection nwipxsp
x.h

VAP Equivalents for Connection Functions

Many of the Connection Services functions are the same between the two
libraries. The following tables show VAP functions, their NLM™
counterparts, and the associated header file.

VAP Function NLM Function NLM Header

AttachToFileServer Not applicable in
NetWare 3.x

AttachToFileServerWithA
ddress

Not applicable in
NetWare 3.x

NLM Programming

NLM Development: Concepts 143

ddress NetWare 3.x

DetachFromFileServer Not applicable in
NetWare 3.x

EnterLoginArea Not applicable in
NetWare 3.x

GetConnectionInformatio
n

GetConnectionInformatio
n

nwconn.h

nwtypes.h

GetConnectionNumber GetConnection Number nwconn.h

nwtypes.h

GetInternetAddress GetInternetAddress
(Different parameters)

nwconn.h

nwtypes.h

GetObjectConnectionNu
mbers

GetObjectConnectionNu
mbers

nwconn.h

nwtypes.h

GetStationAddress GetStationAddress nwconn.h

nwtypes.h

LoginToFileServer LoginToFileServer nwconn.h

nwtypes.h

Logout Logout nwconn.h

nwtypes.h

LogoutFromFileServer LogoutFromFileServer nwconn.h

nwtypes.h

VAP Equivalents for File System Functions

Several File Services functions are different between the two libraries. The
following table shows VAP functions, their NLM™ counterparts, and the
associated header file. For more information on File Services, see File System
.

Table auto. Directory Functions

VAP Function NLM Function NLM Header

AddTrusteeToDirectory AddTrustee nwdir.h

AllocPermanentDirectory
Handle

Not applicable for NLM

AllocTemporaryDirectory
Handle

Not applicable for NLM

ClearVolRestrictions DeleteUserSpaceRestricti
on (Different parameters)

nwdir.h

CreateDirectory mkdir (Different
parameters)

direct.h

nwtypes.h

NLM Programming

NLM Development: Concepts 144

DeallocateDirectoryHand
le

Not applicable for NLM

DeleteDirectory rmdir (Different
parameters)

direct.h

nwtypes.h

DeleteTrustee Delete Trustee (Different
parameters)

nwdir.h

DeleteTrusteeFromDirect
ory

DeleteTrustee (Different
parameters)

nwdir.h

GetCurrentDirectory getcwd (Different
parameters)

direct.h

nwtypes.h

GetDirectoryHandle Not applicable for NLM

GetDirectoryPath Not applicable for NLM

GetDirEntry readdir (Different
parameters and structure)

nwdir.h

GetDirInfo Not applicable for NLM

GetDirveInformation Not applicable for NLM

GetEffectiveDirectoryRig
hts

GetEffectiveRights
(Different parameters)

nwdir.h

GetEffectiveRights GetEffectiveRights nwdir.h

GetObjectDiskRestriction
s

GetDiskSpaceUsedByObj
ect or
GetMaximumUserSpaceR
estrictions (Different
parameters)

GetSearchDriveVector Not applicable for NLM

GetVolumeInformation GetVolumeInformation
(Different Structure)

nwdir.h

GetVolumeInfoWithHan
dle

GetVolumeStatistics
(Different parameters)

nwdir.h

GetVolumeInfoWithNum
ber

GetVolumeInfoWithNum
ber

nwdir.h

GetVolumeName GetVolumeName nwdir.h

GetVolumeNumber GetVolumeNumber nwdir.h

GetVolUsage GetVolumeStatistics
(Different parameters)

nwdir.h

IsSearchDrive Not applicable for NLM

MapDrive Not applicable for NLM

MapDriveUsingString Not applicable for NLM

MapV2TrusteeRightsToV
3

Not applicable for NLM

MapV3TrusteeRightsToV Not applicable for NLM

NLM Programming

NLM Development: Concepts 145

2

ModifyMaximumRights
Mask

ModifyInheritedRightsM
ask

nwdir.h

MoveEntry rename (Different
parameters)

stdio.h

RenameDirectory rename (Different
parameters)

stdio.h

RestoreDirectoryHandle Not applicable for NLM

SaveDirectoryHandle Not applicable for NLM

ScanBinderyObjectTruste
ePaths

ScanBinderyObjectTrusst
eePaths

nwdir.h

ScanDirectoryForTrustees Scan Trustees (Different
parameters)

nwdir.h

ScanDirectoryInformatio
n

stat (Different parameters
and structure)

nwfile.h

stdlib.h

ScanDirEntry stat (Different parameters
and structure)

nwfile.h

stdlib.h

ScanDirRestrictions ScanUserSpaceRestriction
s (Diferent parameters)

nwdir.h

ScanEntryForTrustees ScanTrustees (Different
parameters)

nwdir.h

ScanVolForRestrictions ScanUserSpaceRestriction
s (Different parameters)

nwdir.h

SetDirectoryHandle Not applicable for NLM

SetDirectoryInformation SetDirectoryInfo
(Different Parametes)

nwdir.h

SetDirRestriction AddSpaceRestrictionFor
Directory (Different
parameters)

nwdir.h

SetEntry ChangeDirectoryEntry
(Different parameters)

nwdir.h

SetSearchDriveVector Not applicable for NLM

SetTrustee AddTrustee (Different
parameters)

nwdir.h

SetVolRestriction AddUserSpaceRestriction nwdir.h

Table auto. File Functions

VAP Function NLM Function NLM Header

EraseFiles remove stdio.h

FileServerFileCopy FileServerFileCopy nwfile.h

NLM Programming

NLM Development: Concepts 146

nwtypes.h

direct.h

GetExtendedFileAtt
ributes

GetExtendedFileAttributes nwfile.h

nwtypes.h

direct.h

PurgeAllErasedFile
s

PurgeErasedFile (Different
parameters)

nwfile.h

nwtypes.h

direct.h

PurgeErasedFiles PurgeErasedFile (Different
parameters)

nwfile.h

nwtypes.h

direct.h

PurgeSalvagableFil
e

PurgeErasedFile (Different
parameters)

nwfile.h

nwtypes.h

direct.h

RecoverSalvagableF
ile

SalvageErasedFile (Different
parameters)

nwfile.h

nwtypes.h

direct.h

RestoreErasedFile SalvageErasedFile (Different
parameters)

nwfile.h

nwtypes.h

direct.h

ScanFileEntry stat (Different parameters and
structure)

nwfile.h

stdlib.h

ScanFileInformation SalvageErasedFile (Different
parameters)

nwfile.h

stdlib.h

ScanFilePhysical SalvageErasedFile (Different
parameters)

nwfile.h

stdlib.h

ScanSalvagableFiles ScanErasedFiles (Different
parameters)

nwfile.h

nwtypes.h

direct.h

SetExtendedFileAttr
ibutes

SetExtendedFileAttributes nwfile.h

nwtypes.h

direct.h

SetFileInformation SetFileInfo (Different
parameters)

nwfile.h

nwtypes.h

direct.h

VAP Equivalents for Message Functions

The following table shows the VAP Message Services functions, their
NLM™ counterparts, and the associated header file. For more information

NLM Programming

NLM Development: Concepts 147

on Message Services, see Message.

VAP Function NLM Function NLM Header

BroadcastToConsol
e

BroadcastToConsole nwmsg.h

nwtypes.h

CheckPipeStatus Not applicable for NLM

CloseMessagePipe Not applicable for NLM

DisableBroadcasts DisableStationBroadcasts nwmsg.h

nwtypes.h

EnableBroadcasts EnableStationBroadcasts nwmsg.h

nwtypes.h

GetBroadcastMessa
ge

GetBroadcastMessage nwmsg.h

nwtypes.h

GetBroadcastMode Not applicable for NLM

GetPersonalMessag
e

Not applicable for NLM

LogNetworkMessag
e

Not applicable for NLM

OpenMessagePipe Not applicable for NLM

SendBroadcastMess
age

SendBroadcastMessage nwmsg.h

nwtypes.h

SendPersonalMessa
ge

Not applicable for NLM

SetBroadcastMode Not applicable for NLM

VAP Equivalents for Miscellaneous Functions

The following table shows VAP Miscellaneous Services functions, their
NLM™ counterparts, and the associated header file. For more information
on Miscellaneous Services, see Reorganization of Miscellaneous Service for
the current location of information.

VAP Function NLM Function NLM Header

ASCIIZToLenStr ASCIIZToLenStr nwstring.h

nwtypes.h

GetNetworkSerialNumbe
r

GetNetworkSerialNumbe
r

nwserial.h

nwtypes.h

IntSwap IntSwap nwstring.h

NLM Programming

NLM Development: Concepts 148

nwtypes.h

IsV3Supported Not applicable for NLM

LenStrCat LenStrCat nwstring.h

nwtypes.h

LenStrCmp LenStrCmp nwstring.h

nwtypes.h

LenStrCpy LenStrCpy nwstring.h

nwtypes.h

LenToASCIIZStr LenToASCIIZStr nwstring.h

nwtypes.h

LongSwap LongSwap nwstring.h

nwtypes.h

StripoFileServerFromPath StripoFileServerFromPath nwdir.h

nwtypes.h

VerifyNetworkSerialNu
mber

VerifyNetworkSerialNu
mber

nwserial.h

nwtypes.h

VAP Equivalents for Queue Management
Functions

All of the Queue Services functions are different between the two libraries.
The following table shows VAP Queue Services functions, their NLM™
counterparts, and the associated header file.

VAP Function NLM Function NLM
Header

AbortServicingQueueJobAn
dFile

NWQAbortJobService
(Different parameters)

nwqueu
e.h

nwtypes.
h

AttachQueueServerToQueu
e

NWQAttachServer
(Different parameters)

nwqueu
e.h

nwtypes.
h

ChangeQueueJobEntry NWQChangeJobEntry
(Different parameters)

nwqueu
e.h

nwtypes.
h

ChangeQueueJobPosition NWQChangeJobPosition
(Different parameters)

nwqueu
e.h

NLM Programming

NLM Development: Concepts 149

nwtypes.
h

ChangeToClientRights NWQChangeToClientRights
(Different parameters)

nwqueu
e.h

nwtypes.
h

CloseFileAndAbortQueueJo
b

NWQAbortJob (Different
parameters)

nwqueu
e.h

nwtypes.
h

CloseFileAndStartQueueJob NWQMarkJobForService
(Different parameters)

nwqueu
e.h

nwtypes.
h

CreateQueueJobAndFile NWQCreateJob (Different
parameters)

nwqueu
e.h

nwtypes.
h

CreateQueue NWQCreate (Different
parameters)

nwqueu
e.h

nwtypes.
h

DestroyQueue NWQDestroy (Different
parameters)

nwqueu
e.h

nwtypes.
h

DetachQueueServerFromQu
eue

NWQDetachServer
(Different parameters)

nwqueu
e.h

nwtypes.
h

FinishServicingQueueJobAn
dFile

NWQEndJobService
(Different parameters)

nwqueu
e.h

nwtypes.
h

GetQueueJobList NWQScanJobNums
(Different parameters)

nwqueu
e.h

nwtypes.
h

GetQueueJobsFileSize NWQGetJobFileSize
(Different parameters)

nwqueu
e.h

nwtypes.
h

ReadQueueCurrentStatus NWQGetStatus

NWQGetServers

(Different parameters)

nwqueu
e.h

nwtypes.
h

NLM Programming

NLM Development: Concepts 150

ReadQueueJobEntry NWQGetJobEntry (Different
parameters)

nwqueu
e.h

nwtypes.
h

ReadQueueServerCurrentSt
atus

NWQGetServerStatus
(Different parameters)

nwqueu
e.h

nwtypes.
h

RemoveJobFromQueue NWQRemoveJob (Different
parameters)

nwqueu
e.h

nwtypes.
h

RestoreQueueServerRights NWQRestoreServerRights
(Different parameters)

nwqueu
e.h

nwtypes.
h

ServiceQueueJobAndOpenF
ile

NWQBeginJobService
(Different parameters)

nwqueu
e.h

nwtypes.
h

SetQueueCurrentStatus NWQSetStatus (Different
parameters)

nwqueu
e.h

nwtypes.
h

SetQueueServerCurrentStat
us

NWQSetServerStatus
(Different parameters)

nwqueu
e.h

nwtypes.
h

VAP Equivalents for SAP Functions

SAP Services functions are similar for VAPs and NLM™ applications. The
following table shows VAP functions, their NLM counterparts and the
associated file header. For more information on SAP Services, see SAP.

VAP Function NLM Function NLM Header

AdvertiseService AdvertiseService (NLM) sap.h

nwipxspx.h

nwtypes.h

QueryServices QueryServices (Different
syntax)

sap.h

nwipxspx.h

NLM Programming

NLM Development: Concepts 151

nwtypes.h

ShutdownSAP ShutdownAdvertising
(Additional Parameter)

sap.h

nwipxspx.h

nwtypes.h

VAP Equivalents for Server Environment
Functions

Several Server Environment functions are different between the two
libraries. The following table shows VAP functions, their NLM™
counterparts, and the associated header file. For more information on Server
Environment Services, see Server Environment.

VAP Function NLM Function NLM
Header

CheckConsloePrivileges CheckConsolePrivileges nwenvrn
.h

nwtypes.
h

CheckNetWareVersion CheckNetWareVersion nwenvrn
.h

nwtypes.
h

ClearConnectionNumber ClearConnectionNumber nwenvrn
.h

nwtypes.
h

DisableFileServerLogin DisableFileServerLogin nwenvrn
.h

nwtypes.
h

DisableTransactionTracking DisableTransactionTracking nwenvrn
.h

nwtypes.
h

DownFileServer DownFileServer nwenvrn
.h

nwtypes.
h

EnableFileServerLogin EnableFileServerLogin nwenvrn
.h

nwtypes.

NLM Programming

NLM Development: Concepts 152

h

EnableTransactionTracking EnableTransactionTracking nwenvrn
.h

nwtypes.
h

GetBinderyObjectDiskSpace
Left

GetBinderyObjectDiskSpace
Left

nwenvrn
.h

nwtypes.
h

GetConnectionOpenFile Not applicable for NLM

GetConnectionsSemaphores Not applicable for NLM

GetConnectionsTaskInforma
tion

Not applicable for NLM

GetConnectionsUsageStats Not applicable for NLM

GetConnectionsUsingFile Not applicable for NLM

GetDiskCacheStats Not applicable for NLM

GetDiskChannelStats Not applicable for NLM

GetDiskUtilization GetDiskUtilization nwenvrn
.h

nwtypes.
h

GetDriveMappingTable Not applicable for NLM

GetFileServerDateAndTime

GetFileServerDescriptionStri
ngs

GetFileServerLANIOStats Not applicable for NLM

GetFileServerLoginStatus

GetFileServerMiscInformati
on

Not applicable for NLM

GetFileServerName

GetFileSystemStats Not applicable for NLM

GetLanDriverConfigInfo Not applicable for NLM

GetLogicalRecordInformatio
n

Not applicable for NLM

GetLogicalRecordsByConne
ction

Not applicable for NLM

GetPathFromDirectoryEntry Not applicable for NLM

GetPhysicalRecordLocksByF
ile

Not applicable for NLM

GetPhysRecLocksByConnect
AndFile

Not applicable for NLM

NLM Programming

NLM Development: Concepts 153

GetSemaphoreInformation Not applicable for NLM

GetServerInformation GetServerInformation
(Different parameters)

nwenvrn
.h

nwtypes.
h

SendConsoleBroadcast SendConsoleBroadcast nwenvrn
.h

nwtypes.
h

SetFileServerDateAndTime SetFileServerDateAndTime nwenvrn
.h

nwtypes.
h

TTSGetStats Not applicable for NLM

VAP Equivalents for Synchronization Functions

In general, the Synchronization Services functions are the same for VAPs
and NLM™ applications. The following table shows VAP functions, their
NLM counterparts and the associated header file. For more information on
Synchronization Services, see NLM Synchronization.

VAP Function NLM Function NLM Header

Clear File Clear File nwsync.h

nwtypes.h

ClearFileSet ClearFileSet nwsync.h

nwtypes.h

ClearLogicalRecord ClearLogicalRecord nwsync.h

nwtypes.h

ClearLogicalRecordSet ClearLogicalRecordSet nwsync.h

nwtypes.h

ClearPhysicalRecord ClearPhysicalRecord nwsync.h

nwtypes.h

ClearPhysicalRecordSet ClearPhysicalRecordSet nwsync.h

nwtypes.h

CloseSemaphore CloseSemaphore nwsync.h

nwtypes.h

ExamineSemaphore ExamineSemaphore nwsync.h

nwtypes.h

GetLockMode GetLockMode nwsync.h

NLM Programming

NLM Development: Concepts 154

nwtypes.h

LockFileSet LockFileSet nwsync.h

nwtypes.h

LockLogicalRecordSet LockLogicalRecordSet nwsync.h

nwtypes.h

LockPhysicalRecordSet LockPhysicalRecordSet nwsync.h

nwtypes.h

LogFile LogFile nwsync.h

nwtypes.h

LogLogicalRecord LogLogicalRecord nwsync.h

nwtypes.h

LogPhysicalRecord LogPhysicalRecord nwsync.h

nwtypes.h

OpenSemaphore OpenSemaphore nwsync.h

nwtypes.h

ReleaseFile ReleaseFile nwsync.h

nwtypes.h

ReleaseFileSet ReleaseFileSet nwsync.h

nwtypes.h

ReleaseLogicalRecord ReleaseLogicalRecord nwsync.h

nwtypes.h

ReleaseLogicalRecordSet ReleaseLogicalRecordSet nwsync.h

nwtypes.h

ReleasePhysicalRecord ReleasePhysicalRecord nwsync.h

nwtypes.h

ReleasePhysicalRecordSet ReleasePhysicalRecordSet nwsync.h

nwtypes.h

SetLocKMode SetLocKMode nwsync.h

nwtypes.h

SignalSemaphore SignalSemaphore nwsync.h

nwtypes.h

WaitOnSemaphore WaitOnSemaphore nwsync.h

nwtypes.h

VAP Equivalents for TTS Functions

In general, the TTS™ Services functions are the same for both VAPs and
NLM™ applications. The following table shows VAP functions, their NLM
counterparts, and the associated header files. For more information on TTS,

NLM Programming

NLM Development: Concepts 155

see TTS.

VAP Function NLM Function NLM Header

TTSAbortTransaction TTSAbortTransaction nwtts.h

nwtypes.h

TTSBeginTransaction TTSBeginTransaction nwtts.h

nwtypes.h

TTSEndTransaction TTSEndTransaction nwtts.h

nwtypes.h

TTSGetApplicationThres
holds

TTSGetApplicationThres
holds

nwtts.h

nwtypes.h

TTSGetWorkstationThres
holds

TTSGetWorkstationThres
holds

nwtts.h

nwtypes.h

TTSIsAvailable TTSIsAvailable nwtts.h

nwtypes.h

TTSSetApplicationThresh
olds

TTSSetApplicationThresh
olds

nwtts.h

nwtypes.h

TTSSetWorkstationThres
holds

TTSSetWorkstationThres
holds

nwtts.h

nwtypes.h

TTSTransactionStatus TTSTransactionStatus nwtts.h

nwtypes.h

VAP Presentation Functions

NLM™ presentation at the server console offers a substantial gain over VAP
console presentation. NLM applications can access a wide variety of screen
and I/O management functions using the NetWare® API. These functions
allow NLM applications to set up and maintain their own console screens.

Although almost all NLM applications use their own screen, if necessary
they can use the server's system console screen and hook into the command
line parser for that screen. NLM applications hook into the parser by
specifying to the OS those commands they want to act upon. This process is
similar to the use of keywords in a VAP header to register commands the
VAP acts upon.

Whenever the OS receives an unrecognized command, it calls the command
parsing function. If you specify an NLM command using the NetWare API
function RegisterConsoleCommand, the NLM gets a chance to identify and
act on that command.

NOTE: The NLM can specify only those commands unique to itself.
That is, the NLM cannot specify a command used by the OS or another

NLM Programming

NLM Development: Concepts 156

NLM.

VAP Processes and NLM Threads

Both VAPs and NLM™ applications use multiple processes to accomplish
tasks. In an NLM, these processes are called threads. There are a few
differences between VAP processes and NLM threads:

Initialization---VAPs use a VAP header that includes information for
spawning all necessary processes and allocating enough memory for
those processes. (You cannot increase VAP memory allocation after
initialization.) In contrast, NLM applications can begin and end threads
and allocate memory as needed at any point in the program.

Context and Grouping---Whereas all VAP processes share the same
limited context, NLM applications use thread grouping to arrange
threads into groups. This allows threads within a thread group to share
context, such as the CWD, current screen, and current connection.

For more information on multiple execution threads in NLM applications,
see Thread and NLM Code Development.

VAP Services

The following VAP Services can be replaced by the designated NLM™
functions:

VAP Function NLM Function NLM Header

AllocateSegment malloc malloc.h

CalculateAbsoluteAddres
s

Not necessary except to
developers of LAN and
device drivers.

ChangeProcess ThreadSwitch process.h

ChangeSegmentToData Not applicable for NLM

ClearScreen clrscr conio.h

nwtypes.h

ConsoleDisplay ConsolePrintf conio.h

nwtypes.h

ConsoleError ConsolePrintf conio.h

nwtypes.h

ConsoleMessage ConsolePrintf conio.h

nwtypes.h

ConsoleQuery Not applicable for NLM

NLM Programming

NLM Development: Concepts 157

ConsoleRead Not applicable for NLM

CreateProcess BeginThread or
BeginThreadGroup

process.h

DeclareExtendedSegment Not applicable for NLM

DeclareSegmentAsData Not applicable for NLM

DelayProcess delay process.h

DoConsoleError ConsolePrintf (This
function does not print
errors to the
SYS$LOG.ERR file.)

conio.h

nwtypes.h

GetInterruptVector Not applicable for NLM

GetProcessID GetThreadID process.h

GetScreenMode GetCurrentScreen conio.h

nwtypes.h

GetVAPHeader Not applicable for NLM

InitializationComplete Not applicable for NLM

InString Not applicable for NLM

KillProcess ExitThread process.h

OutString ConsolePrintf conio.h

nwtypes.h

PrintString ConsolePrintf conio.h

nwtypes.h

ReadKeyboard cgets (and others) conio.h

nwtypes.h

SegmentToPointer Not applicable for NLM

SetExternalProcessError Not applicable for NLM

SetHardwareInterruptVe
ctor

SetHardwareInterrupt advanced.h

SetScreenMode clrscr (and others) conio.h

nwtypes.h

ShellPassThroughEnable Not applicable for NLM

SleepProcess SuspendThread process.h

SpawnProcess BeginThread process.h

VAPAttachToFileServer LoginToFileServer
(Different parameters;
does not attach to the
server)

nwconn.h

nwtypes.h

VAPGetConnectionID GetConnectionInformatio
n

nwconn.h

nwtypes.h

VapGetFileServerName GetFileServerName nwconn.h

NLM Programming

NLM Development: Concepts 158

nwenvrn.h

nwtypes.h

WakeUpProcess ResumeThread process.h

VAP to NLM Conversion and Linking

The linking procedure is different for NLM™ applications than for VAPs.
When you convert your VAP source code, remember that:

Instead of using a special header file as VAPs do, NLM applications are
linked with an object module called PRELUDE.OBJ.

The WLINK command used to link NLM applications can accept a
directive file for passing all options and arguments. (See Linker
Directives and Options for a discussion of directive files.)

The directive file contains the list of files with functions you want to
import and export. Your NLM can call (import) functions from other
NLM applications for its own use. Likewise, your NLM can provide
(export) functions to other NLM applications. Functions can be imported
and exported only if specified in the module's directive file when linked.

For more information on linking an NLM, see NLM Linkers.

Whereas VAPs produce utilities only, there are four types of NLM
applications, each defined by its function. The WATCOM linker (WLINK)
converts an object file (.OBJ) to an executable file with an extension that
corresponds to the function of the loadable module. NLM applications can
be

Management utility and server application modules (.NLM)

LAN driver modules (.LAN)

Disk driver modules (.DSK)

Modules relating to file system name spaces (.NAM)

For more information on NLM types, see Types of NLM Applications.

VAP to NLM Conversion and Loading

You must load VAPs on a NetWare® 2.x server at boot time. In addition,
you must load either all VAPs or no VAPs. In contrast, you can load and
unload NLM™ applications dynamically as needed during server operation
without bringing down the server or loading or unloading all other NLM
applications.

NLM Programming

NLM Development: Concepts 159

Either a console command or another NLM can load an NLM. NLM
applications can be unloaded by a console command or by themselves.
However, an NLM cannot unload another NLM, at least not directly. For
instance, if NLM1 loads NLM2, it can unload NLM2 only by issuing some
sort of signal that NLM2 recognizes as an instruction to unload itself.

VAPs use the NetWare C Interface Library, which contains an interface for
communicating with NetWare. The loading process links each VAP with the
code required to handle server requests. This method of interface makes
VAPs larger and requires more server memory.

By comparison, NLM applications use the dynamically linked NetWare
API. This library is loaded once on the server. When NLM applications are
loaded, the function calls they make to this library are resolved. This means
that NLM applications are smaller than VAPs and take less memory.

For more information about the process of creating an executable NLM, see
NLM Programming Overview.

Workstation Environment Services

The following table shows the VAP functions, their NLM™ counterparts
and the associated header file.

VAP Function NLM Function NLM Header

EndOfJob Not applicable for NLM

GetConnectionID GetConnectionInformation nwconn.h

nwtypes.h

GetDefaultConnecti
onID

GetDefaultConnectionID
(Different return values)

nwconn.h

GetFileServerName GetFileServerName nwconn.h

nwenvrn.h

nwtypes.h

GetPreferredConne
ctionId

GetFileServerID (Different
parameters)

nwconn.h

GetPrimaryConnect
ionId

GetFileServerID (Different
parameters)

nwconn.h

IsConnectionIDInU
se

Not applicable for NLM

SetPreferredConnec
tionID

SetCurrentFileServerID nwcntask.h

SetPrimaryConnecti
onID

SetCurrentFileServerID nwcntask.h

NLM Programming

NLM Development: Concepts 160

Connection IDs for VAPs differ from server IDs for NLM applications. To
better understand server IDs, see Connection.

NLM Programming

NLM Development: Concepts 161

NLM Development Tools

NLM Programming

 162

NLM Development Tools: Guides

NLM Development Tools: Concept Guide

Tools Overview

NLM Compilers

NLM Linkers

NLM Debuggers

Using NLMDebug

NLMPACK and UNPACK

Memory Protection

Tools Overview

NLM Development Tools Overview

Compilers for NLM Applications

Linkers for NLM Applications

NLM Make Utilities

Debuggers for NLM Applications

NLM Memory Protection Tools

NLM Execution Profilers

NLM Message Tools for Internationalization

NLM Compression Tools

NLM Testing Tools

NLM Compilers

This information explains compilers and options that are specific to NLM™

NLM Programming

NLM Development Tools: Guides 163

development. This chapter is not intended to be a comprehensive guide for
the compilers. For complete information about your compiler, see the
documentation that came with it.

If you are going to link your NLM using NLMLINK, you must use a 386*
native mode compiler that generates PharLap* Easy Object Module Format
(OMF).

WATCOM Compilers

Using the WATCOM Compilers

Passing Parameters

Using Pragmas

NLM Linkers

Two linkers are available for linking NLM™ applications. They are the
WATCOM* linker (WLINK) and the Novell® linker (NLMLINK). Both
support message files, which are used in enabling. WLINK provides
debugging information for the WVIDEO debugger; NLMLINK does not.

Because the directives are sometimes different between the two linkers,
descriptions of linker directives include WATCOM information.

Using NLMLINK

Using the WATCOM Linker

Specifying a Linker Directive File

Linker Directives and Options

Symbols Used by NLMLINK

Linker Definition Syntax

Linker Directives and Options

Imported and Exported Symbols

NLM Debuggers

Debugger Overview

Linking Debug Information with WLINK

Linking Debug Information with NLMLINK

Using the WVIDEO Debugger

NLM Programming

NLM Development Tools: Guides 164

Using the NetWare Internal Debugger

Setting Breakpoints

Specifying Expressions

Overview of Rdebug

Using NLMDebug

NLMDebug aids in debugging NLM™ applications and getting them ready
for certification. This NLM gives you the capability to check the resources,
semaphores, memory overwrites of your NLM and to debug NCP™
requests. You can also view CLIB remote connection information, perform
function-count profiles and track the use of CLIB context.

Setting Up and Using NLMDebug

Changing Debug Settings

Watching CLIB Context

Using the NCP Debugger

Viewing CLIB Remote Connection Information

Using the Function-Call Profiler

Watching for File Opens

Using the Process Timer

Using Error Watch

NLMPACK and UNPACK Information

NLMPACK and UNPACK Information

NLMPACK and UNPACK Syntax

Memory Protection

In the NetWare® OS, NLM™ applications share the same data and code
space area as the OS. (This sharing is an option for the NetWare 4.x OS.)
This optimizes the speed that NLM applications run at, but does not
provide any protection for the OS or other NLM applications. This is a

NLM Programming

NLM Development Tools: Guides 165

concern to people running mission-critical applications, since an erring
NLM can bring down the server.

For developers, there is a limited amount of memory protection available for
the NetWare 3.x OS through PROTECT.NLM, but for the end users there is
no memory protection. The NetWare 4.x OS has memory protection as an
option that is available for developers and for end users. NetWare 4.x
memory protection is provided by DOMAIN.NLM.

The following forms of memory protection are discussed:

PROTECT.NLM---Used with NetWare 3.x servers. See PROTECT.NLM.

DOMAIN.NLM---Used with NetWare 4.x servers. See DOMAIN.NLM.

NLM Programming

NLM Development Tools: Guides 166

NLM Development Tools: Tasks

Breaking on a Connection Number

To have the debugger break on a specific connection number, do the
following:

1. From the NCP™ Debugger Setup Menu, select Break on Connection
Number.

2. Enter the connection number you want NLMDebug to break on and
press Enter.

NLMDebug breaks on the connection number entered.

If you do not want the debugger to break on a connection number, enter
0 in the edit box.

Parent Topic: Using the NCP Debugger

Breaking on a Function Code

To have the debugger break on a specific function code, do the following:

1. From the NCP™ Debugger Setup Menu, select Break on Function
Code.

2. Enter the function code as a hex number and press Enter.

If you do not want to break on a function code, enter 0 in the edit box.

Parent Topic: Using the NCP Debugger

Breaking on a Subfunction Code

To have NLMDebug break on a specific subfunction code, do the following:

1. From the NCP™ Debugger Setup Menu, select Break on
Sub-Function Code.

2. Enter the subfunction code as a hexadecimal number and press Enter.

NLM Programming

NLM Development Tools: Tasks 167

If you do not want NLMDebug to break on a subfunction code, enter 0
in the edit box.

Parent Topic: Using the NCP Debugger

Breaking on an Error

To have NLMDebug break on errors, do the following:

1. From the NCP™ Debugger Setup Menu, select Break on Error.

2. Type Y and press Enter.

The debugger breaks wherever an error is encountered in sending an
NCP packet.

If you do not want the debugger to break on errors, enter No in the edit
box.

Parent Topic: Using the NCP Debugger

Breaking on Every Packet

To have the debugger break on every packet, do the following:

1. From the NCP™ Debugger Setup Menu, select Break on Every Packet.

2. Type Y and press Enter.

The debugger breaks after each packet and only continues after you
press the Spacebar.

If you do not want the debugger to break on every packet, enter No in
the edit box.

Parent Topic: Using the NCP Debugger

Changing Debug Settings

From the Debug Settings menu you can set NLMDebug to check for
resources not freed, memory overwrites, semaphores not freed, and to
report if a CLIB function is called without CLIB context. You can also set
NLMDebug to ring a bell when information is written to the console and log
errors to a file.

To set Debug options do the following:

NLM Programming

NLM Development Tools: Tasks 168

1. From the NLMDebug main menu select Debug Settings and press
Enter.

The Debug Settings menu is displayed.

2. Select each option and press Y or N to tailor NLMDebug to your
needs.

If you want all errors logged to a file, enter a file name in the Log Errors
To File edit box.

For more information about options, see the following:

Resource Checking

Memory Checking

Semaphore Checking

Semaphore Monitoring

Report No CLIB Context

Ring the Bell on Error

Auto-Save All Settings

Log Output to Path

3. Press Enter.

4. When you are done, press Esc.

Parent Topic: Setting Up and Using NLMDebug

Delaying between Packets

To have the debugger break after each packet for a specified period of time,
do the following:

1. From the NCP™ Debugger Setup Menu, select Delay Between
Packets.

2. Enter the delay time in seconds and press Enter.

The debugger breaks after each packet for the specified time before
continuing.

If you do not want the debugger to delay between packets, enter 0 in
the edit box.

Parent Topic: Using the NCP Debugger

NLM Programming

NLM Development Tools: Tasks 169

Loading NOVSERV.NLM

1. The command syntax for loading NOVSERV.NLM is as follows:

 LOAD NOVSERV server_name

Where server_name is the name to be advertised as a communications
server. If no name is specified, the default name is "NovLink." The name
can be up to 47 characters and must follow the NetWare® naming rules
for server names.

Example:

 LOAD NOVSERV debug_server

Parent Topic: Setting Up the Server for Remote Debugging

Loading PARSERV.NLM

1. The command syntax for loading PARSERV is as follows:

 LOAD PARSERV port_number

Where port_number is the number of the parallel port (1 through 3) to be
used to communicate with the WVIDEO debugger. The default port
number is 1.

Example:

 LOAD PARSERV 1

Remote debugging over the parallel port is faster than remote
debugging over the serial port.

Parent Topic: Setting Up the Server for Remote Debugging

Loading SERSERV.NLM

1. The command syntax for loading PARSERV is as follows:

 LOAD SERSERV port_number . max_baud

Where port_number is the number of the serial port (1, 2, 3, etc.) to be
used to communicate with the WVIDEO debugger. The default number

NLM Programming

NLM Development Tools: Tasks 170

is 1. The max_baud argument is maximum baud rate to start checking at
to find an error-free transmission rate that can be used between the task
and the debugger machine.

Example:

 LOAD SERSERV 1.9600

The actual transmission rate can be lower than the one specified with
the max_baud argument. Notice that a period (.) separates port_number
from max_baud.

Parent Topic: Setting Up the Server for Remote Debugging

Using DOMAIN.NLM as a Development Tool

As a developer, you can catch many of the addressing errors in your NLM™
applications by running them in the OS_PROTECTED domain. The
advantage of developing on the NetWare 4.x operating system with
DOMAIN.NLM is that you do not need to reboot your server when an NLM
causes the operating system to abend.

To test NLM applications in the OS_PROTECTED domain, follow the steps
below:

1. Start with the developer option set to ON so the NLM will abend the
server when it makes an addressing error.

2. Load your NLM for testing.

3. At an "abend" screen, enter the NetWare® Internal Debugger (by
pressing Left-shift+Right-shift+Alt+Esc) to see the reason for the
abend and to see which instruction caused the error. (You will have
access to all of the debugger's commands.)

4. After you have determined the problem, toggle the developer option
to "OFF" using the .T command.

5. Issue the G command to reexecute the instruction that caused the
server to abend. The OS will then quarantine the NLM.

6. Unload the NLM from the system console by using the UNLOAD
command. (You do not need to reboot the server.)

7. Reset the developer option to ON at the system console by entering
the "Set developer option = on" command.

8. Correct the errors in your NLM and then reload it for additional
testing.

Parent Topic: DOMAIN.NLM

NLM Programming

NLM Development Tools: Tasks 171

Using Error Watch

Use Error Watch to have NLMDebug watch for errno and NetWareErrno
values and break when they are encountered. A stack walk to the function
that returned the error is displayed.

To use Error Watch, do the following:

1. From the NLMDebug main menu, select Error Watch and press Enter.

The Error Watch screen is displayed.

You can have the NLMDebug watch for errno and\or NetWareErrno
values and break when an error is encountered.

2. Select Break on `errno': and type Y or N depending on whether or not
you want the debugger to break when an errno value is returned.

3. Select Break on `NWErrno': and type Y or N depending on whether or
not you want the debugger to break when a NetWareErrno value is
returned.

4. Press F10 to run Error Watch.

A stack walk to the error is displayed on the console screen.

Parent Topic: Setting Up and Using NLMDebug

Using the Function-Call Profiler

Use the Function-Call Profiler to display the functions called by your
NLM™ application and the number of times the functions are called.

To use Function-Call Profiler, do the following:

1. From the NLMDebug main menu, select Function-Call Profiler and
press Enter.

The Function-Call Profiler screen is displayed.

2. Enter the name of the NLM that you want to profile in the Count
Function Calls for: edit box.

3. Select Count Calls in this NLM, type Y or N and press Enter.

If you want to see a list of the functions used that are not CLib, you
must have previously defined them by calling
NWBumpFunctionCount for each function you want to see. Type Y if
you want to see these functions, if not type N.

NLM Programming

NLM Development Tools: Tasks 172

4. Select Count Server-Library APIs, type Y or N and press Enter.

If you want to see a list of the functions used that reside in CLib type Y;
otherwise type N.

5. Select Sort Output by... and press Enter.

The Sort Output by selection box is displayed.

6. Select the desired output and press Enter.

You can sort the output list in one of three ways: in alphabetical order,
in ascending frequency of calls to a function or by descending
frequency of calls to a function. You can change the way the output is
sorted at any time. Press Esc to return to the Function-Call Profiler
menu.

7. Press F10 to start the profile.

8. Press the Spacebar to start and stop the profile until it is finished.

Parent Topic: Setting Up and Using NLMDebug

Using the NCP Debugger

Use the NCP™ Debugger to watch request and reply packet activity for an
NLM™ application. You can set the NCP Debugger to report activity for
every packet, only when there are errors, or when specific functions and/or
subfunctions are detected.

To use NCP Debugger, do the following:

1. From the NLMDebug main menu select NCP Debugger and press
Enter.

The NCP Debugger Setup Menu is displayed.

2. Enter the server name your NLM is communicating with. If left
blank, all servers are monitored.

3. Set the conditions you want for monitoring packets, then press Enter.

4. Press F10.

The NCP Debugger Setup Menu closes and the Waiting for Beginning
Request Packet and Waiting for Beginning Reply Packet windows
display. Run your NLM and on this screen watch the packet activity
based on the set conditions. To view the buffer information for either
the Request Packet Activity or the Reply Packet Activity, highlight the
screen you are interested in with the PageUp and PageDown keys.
Then scroll through the information in the buffer of the highlighted

NLM Programming

NLM Development Tools: Tasks 173

screen using the Up- and Down-arrow keys.

5. Press F4 from the NCP Debugger window to display the NCP
Debugger Setup Menu again.

You can make any changes to the NCP Debugger Setup at any time,
even while your NLM is being monitored.

Related Topics

Breaking on a Connection Number

Breaking on a Function Code

Breaking on a Subfunction Code

Breaking on an Error

Delaying between Packets

Breaking on Every Packet

Viewing Packet Header Information

Viewing Stack Walk Information

Viewing NCP Error Status

Parent Topic: Setting Up and Using NLMDebug

Using the Process Timer

Use the NLM™ Process Timer to determine where your NLM needs to
relinquish the CPU.

To use the NLM Process Timer, do the following:

1. From the NLMDebug main menu, select Process Timer and press
Enter.

The NLM Process Time screen is displayed.

2. Enter the maximum time slice in milliseconds and press Enter.

The NLM Process Stack Trace screen is displayed. Whenever your NLM
takes longer than the entered number of milliseconds to relinquish the
CPU, a stack walk to the problem is displayed on this screen.

3. To close the NLM Process Stack Trace screen, press Esc.

Parent Topic: Setting Up and Using NLMDebug

NLM Programming

NLM Development Tools: Tasks 174

Viewing NCP Error Status

1. To view the NCP™ Error Status for a specific error, press F5 from the
NCP Debugger main screen.

The Error Status screen opens, displaying information about the
detected error.

The Return Code field displays the error string associated with the
error.

The Connect Status information field tells you whether the connection is
OK or Bad.

The Reply ECB Status field tells you whether there are buffer overflows
or not.

Parent Topic: Using the NCP Debugger

Viewing Packet Header Information

1. To view the packet header information, press F3 from the NCP™
Debugger main screen.

The Packet Header Information screen is displayed.

The following describes the fields displayed on this screen.

Checksum displays the packet checksum.

Packet Length displays the entire length of the packet, including the
length of the header and the length of the data.

Transport Control displays the packet transport control. The IPX™
protocol always sets this field to zero before sending the packet.

Destination Socket displays the destination socket address. The
following sockets are reserved for use by the NetWare® OS:

Table auto. NetWare Reserved Sockets

451 File service packet

452 Service advertising packet

453 Routing information packet

455 NetBIOS packet

456 Diagnostic packet

NLM Programming

NLM Development Tools: Tasks 175

Therefore, NetWare servers accept requests addressed to socket 0x0451.

From displays the physical address of the packet source node.

Source Socket displays the socket address of the packet source node.

NCP Type displays the packet NCP type.

Sequence Number displays the packet sequence number.

Low Slot displays the low slot connection number.

Task displays the client task making the service request.

High Slot displays the high slot connection number.

Return Code displays the packet return code as a hex value.

Connection Status displays the packet connection status.

Parent Topic: Using the NCP Debugger

Viewing Stack Walk Information

1. To view the stack walk information, press F2 from the NCP™
Debugger main screen.

The Stack Walk Information screen opens and displays the stack walk
information for the function generating the received packet.

Parent Topic: Using the NCP Debugger

Watching CLIB Context

Use CLIB context to watch the relationship between threads and thread
groups in your NLM™ application in real time.

To use CLib Context, do the following:

1. From the NLMDebug main menu, select CLib Context and press
Enter.

2. Enter the name of the NLM whose context you want NLMDebug to
inspect.

3. Press F10.

NLM control structure information is displayed.

If the NLM is not currently loaded, press Alt+Esc to switch to the

NLM Programming

NLM Development Tools: Tasks 176

system console screen and type LOAD <nlm name> at the system
console command prompt. Return to NLMDebug using Alt+Esc.

4. Select options as follows:

To view information about fields in the screen, select the fields for
which you want more information and press Enter.

The function names that manipulate the information in the selected
field are also displayed.

To view the memory addresses of the thread groups belonging to the
NLM, select Thread Groups and press Enter.

To view information for a specific thread group, select the thread
group for which you want information and press Enter.

To display the memory address of all threads governed by a thread
group, select Threads and press Enter.

For more information about context, thread groups, and threads, see NLM
Code Development.

Parent Topic: Setting Up and Using NLMDebug

NLM Programming

NLM Development Tools: Tasks 177

NLM Development Tools: Concepts

Additional Debugger Commands

Loading DOMAIN.NLM adds additional commands to the NetWare®
Internal Debugger. These commands are listed in NLM Debuggers. You can
also display a help screen that lists the commands by entering "/h" while in
the NetWare Internal Debugger.

Parent Topic: DOMAIN.NLM

Allow Invalid Pointers

(NetWare® 4.x only) This parameter determines whether invalid pointers
are allowed to cause a nonexistent page to be mapped in with only one
notification. A nonexistent page is one whose address is above the physical
memory of the server.

If set to ON, the OS maps the nonexistent page into the page table and sends
a notification to the system console. The OS does not unmap the page after it
is accessed so subsequent accesses to the page do not cause a notification.
This means that in addition to the invalid pointer that caused the page to be
mapped in, other invalid pointers that access the same page will also not
cause a notification.

If set to OFF, an attempt to read a nonexistent memory page results in a
read page fault. If the "developer option" flag is set to OFF, the NLM™
application is quarantined. If the "developer option" is set to ON, the server
abends and the NetWare Internal Debugger screen appears.

Default Setting: ON

Recommended Setting: OFF

Parent Topic: Setting Server Parameters

Auto-Save All Settings

When Auto-Save All Settings is set to Yes, NLMDebug saves all settings
used in the session.

NLM Programming

NLM Development Tools: Concepts 178

Parent Topic: Changing Debug Settings

AUTOUNLOAD

AUTOUNLOAD

This directive sets a flag in the flags field of the NLM™ header indicating
that this NLM is to be unloaded when none of its entry points are in use.

The flags are defined as shown in the Current Features table (see
FLAG_ON, FLAG_OFF).

Parent Topic: Linker Directives and Options

Binary Operators

The binary operators in the following table are ordered from lowest to
highest precedence.

Symbol Description Precedence

* Multiply 2

/ Divide 2

% Mod 2

+ Add 3

- Subtract 3

>> Bit shift right 4

<< Bit shift left 4

> Greater than 5

< Less than 5

>= Greater than or
equal to

5

<= Less than or equal
to

5

== Equal to 6

!= Not equal to 6

& Bitwise AND 7

^ Bitwise XOR 8

| Bitwise OR 9

&& Logical AND 10

NLM Programming

NLM Development Tools: Concepts 179

|| Logical OR 11

Parent Topic: Specifying Expressions

Breakpoint Commands

The following lists breakpoint commands.

b

Displays all current breakpoints.

bc number

Clears the specified breakpoint.

bca

Clears all breakpoints.

b = address [(condition)]

Sets an execution breakpoint at address.

Example: Breakpoint if MyFunction is called and the first parameter
on the stack is equal to 0:

b = MyFunction [desp+4] == 0

br = address [(condition)]

Sets a read or write breakpoint at address.

Example: To check if the code (in the range 14500 to 15500) ever reads
or writes to memory location 160FE:

br = 160FE EIP >= 14500 && eip <= 15500

bw = address [(condition)]

Sets a write breakpoint at address.

Example: To check if the code (in the range 14500 to 15500) ever writes
to memory location 160FE:

bw = 160FE EIP >= 14500 && eip <= 15500

Parent Topic: Debugger Commands

CHECK

CHECK check procedure name

NLM Programming

NLM Development Tools: Concepts 180

This directive specifies the name of a function in the NLM™ application to
be executed when the console operator attempts to unload the NLM using
the UNLOAD console command. Do not confuse this operation with
registering a function by calling AtUnload or atexit, as explained in
Following Exit Steps.

This function returns 0 if the NLM can be unloaded. If a nonzero value is
returned, the NLM does not want to be unloaded.

WLINK: OPTION CHECK

Parent Topic: Linker Directives and Options

CODESTART

CODESTART address

This directive specifies an offset to be added to each code symbol offset in
the map file. This directive allows the developer to create a map file that
compares well with the values displayed by the debugger.

See also MAP and FULLMAP.

Parent Topic: Linker Directives and Options

Commands Available with DOMAIN.NLM

The following table lists commands added when DOMAIN.NLM is loaded.

Command Description

/a filename Write used symbols to DOS file named filename.

/c Close screen to screen dump file (in DOS).

/d Displays the names of all domains and lists the
NLM™ applications that are running in them. This is
the same as using the "DOMAIN" command at the
system console.

/d=domain_n
ame

Sets the domain to the specified domain. The
currently available domains are OS and
OS_PROTECTED. This command is similar to using
the "DOMAIN=OS" or "DOMAIN=OS_PROTECTED"
commands at the system console.

/f Displays outstanding RPC stack frames.

/g Displays the Global Descriptor Table

/h Displays the help screen for the DOMAIN.NLM

NLM Programming

NLM Development Tools: Concepts 181

debugger commands.

/i Displays the Interrupt Descriptor Table.

/m filename Writes symbols missing RPC definitions to a DOS file
filename.

/o filename Opens a screen dump file (in DOS) with the name of
filename.

/o Dumps the current screen to the screen dump file
specified with the "/o filename" command.

/q symbol Displays the RPC data for symbol.

/r Displays the RPC Pseudo Registers.

/s filename Writes the symbol lists to the DOS file filename.

/t Displays the current RPC Stack Frame.

/u Disassembles the current RPC layer.

/x+ Turns on all RPC Interpreter Single Step.

/y- Turns off IBT break points.

/y+ Turns on IBT break points.

Parent Topic: Debugger Commands

Compilers for NLM Applications

The WATCOM* C/386 and C/C++32 compilers are cross-compilers that run
under DOS or OS/2* 2.x and produce object files for other operating
systems, such as the NetWare® OS. They translate your standard ANSI C
program from source files and header files into 32-bit machine language
instructions.

The WATCOM C/386 and C/C++32 compilers are command-line oriented
and allow you to specify a wide range of parameters, such as:

Whether to include debug information in the object file

Object filename (if different from the default)

Pathnames for include files

Amount and type of optimization to perform

In addition, the compiler includes a set of #pragma directives you can use
to customize the code generation process.

The compiler also provides switches for specifying whether to use
stack-based or register-based parameter passing. The NetWare API expects
stack-based parameter passing. However, you can write "mixed mode"

NLM Programming

NLM Development Tools: Concepts 182

NLM applications that use register-based parameter passing except when
calling the NetWare API. Using register-based parameter passing generates
smaller, faster code.

For more specific information about the WATCOM C/386 and C/C++32

compilers, and about other compilers, see NLM Compilers.

Parent Topic: NLM Development Tools Overview

COPYRIGHT

COPYRIGHT "copyright string"

The copyright string is displayed on the console screen when the NLM™ is
loaded. If this option is not used, no copyright information is displayed.

If this directive is used, but no string is specified, NLMLINK uses the
Novell® copyright notice.

WLINK: OPTION COPYRIGHT

Parent Topic: Linker Directives and Options

CUSTOM

CUSTOM custom data filename

This directive allows the developer to specify a custom data file for the use
of the NLM™.

WLINK: OPTION CUSTOM

Parent Topic: Linker Directives and Options

DATASTART

This directive causes the .MAP file listing of data symbols to show locations
with a fixed offset (it has no effect on the .NLM file). This command, with
CODESTART, is used by developers to make map information correspond
to addresses where the OS is loaded, avoiding computation during
debugging.

Parent Topic: Linker Directives and Options

NLM Programming

NLM Development Tools: Concepts 183

DATE

DATE month, day, year

This directive dates the NLM™ application. The month, day, and year
parameters are entered with any whitespace character separating them.

The year must be expressed as the four-digit number. NLMLINK returns an
error if the year is less than 1900 or greater than 3000. The month must be
between 1 and 12. The day must be between 1 and 31.

Parent Topic: Linker Directives and Options

DEBUG

DEBUG

This directive instructs the linker to generate debugging information in the
executable file. NLMLINK creates debugging records for the NetWare®
Internal Debugger. The debug records contain all internal data and
procedure names.

WLINK: DEBUG

Also generates debug information for the WVIDEO debugger.

Parent Topic: Linker Directives and Options

Debugger Commands

You can recall commands from the NetWare® Internal Debugger's
command line buffer by pressing the Up-arrow key. After recalling a
command from the command-line buffer, you can edit it. The Right- and
Left-arrow keys move the cursor. Insert toggles overwrite. Some of the
commands can be repeated by pressing the Enter; these cases are noted in
the command descriptions.

NOTE: If you decide to cancel a command, the Esc key acts like the
Enter key. You must use the Delete or Backspace key to erase the
command line.

There are four types of commands in the NetWare Internal Debugger:

HE---Help on expressions

HB---Help on breakpoints

H---General Help

NLM Programming

NLM Development Tools: Concepts 184

.H---Help with the supplementary commands

/h---Help with domain commands

In the command summaries, a pair of square brackets in the Command
indicates an optional parameter. The following categories of commands are
available:

Commands Available with DOMAIN.NLM

Supplementary Commands

Breakpoint Commands

General Debugger Commands

SFT III Debugger Commands

Parent Topic: Using the NetWare Internal Debugger

Debugger Overview

Sometime during your code development, you will need to use a debugger.
The following debugging tools are included with this SDK to facilitate your
development of high-quality software:

The WATCOM* linker (WLINK) and the Novell® linker (NLMLINK) can
be used to include debugging information in an executable file.
Additionally, the linkers can be used to generate a map file, which is a
memory map of your program.

The WATCOM Visual Interactive Debugging Execution Overseer
(WVIDEO) is a source-level debugger that is used remotely from another
DOS machine. The WVIDEO debugger supports interaction with a
keyboard or mouse.

The NetWare® 3.x and 4.x OS's have a built-in command line debugger
that performs symbolic debugging.

The Rdebug tool is a powerful Windows 3.x test and development tool
that can be used for NLM software development, debugging, and
integration.

Related Topics

Linking Debug Information with WLINK

Linking Debug Information with NLMLINK

Using the WVIDEO Debugger

Using the NetWare Internal Debugger

NLM Programming

NLM Development Tools: Concepts 185

Setting Breakpoints

Specifying Expressions

Debuggers for NLM Applications

The tools that are available for debugging your NLM™ applications are:

WATCOM* Visual Interactive Debugging Execution Overseer
(WVIDEO)

NetWare® Internal Debugger

WVIDEO Debugger

The WATCOM VIDEO debugger (WVIDEO) is a source-level debugger
with a window-based user interface. The debugger can be used with a
keyboard or mouse.

WVIDEO requires the use of remote debugging, where you run the test
application from one workstation and the debugger from another, as shown
in the following figure.

Figure 17. WVIDEO Remote Debugging

For an introduction to using the WATCOM VIDEO debugger specifically
for debugging NLM applications, see NLM Debuggers.

For complete information on the WATCOM VIDEO debugger screens and
usage, see the WATCOM manuals.

NetWare Internal Debugger

The NetWare Internal Debugger is an assembly language debugger that is
built into the NetWare 3.x and 4.x OS's. This debugger is a command-line
debugger that does not display source code. However, you can use the

NLM Programming

NLM Development Tools: Concepts 186

WATCOM utility WDISASM with the "/s /l" options to create a list file
containing C source interspersed throughout the assembly code. This is very
helpful for debugging in 80386 assembly. To use the internal debugger, you
should have some knowledge of 80386 assembly language and stack-based
parameter passing.

The internal debugger was designed specifically to debug NLM
applications. It includes a set of supplementary commands that are
customized for NLM applications, such as .A (display abend or break
reason) and .P (display all process names and addresses). These are not part
of a typical debugger. The internal debugger allows resident debugging, in
which the debugger and the test application run on the same server. In
addition, the internal debugger provides a way to debug multiple NLM
applications concurrently.

To access the NetWare Internal Debugger, use one of these three methods:

At the server console, simultaneously press the following keys:
Left-shift+Right-shift+Alt+Esc.

NOTE: If the SECURE CONSOLE command is in effect, you
cannot access the NetWare Internal Debugger from the keyboard.

From a C language program, call Breakpoint.

From an assembly language program, issue an INT 3 instruction.

You can then set execution breakpoints, single-step through program
execution, examine the contents of memory, and so on.

For information about using the NetWare Internal Debugger, see NLM
Debuggers.

Parent Topic:

NLM Development Tools Overview

DESCRIPTION

DESCRIPTION "NLM description string"

The description string is displayed on the console screen when the NLM™
application is loaded. Typically, the description contains the name of the
NLM. The description string can be up to 127 characters.

This directive is required. If no description is specified, an error occurs.
Further, this directive should not be repeated.

Parent Topic: Linker Directives and Options

NLM Programming

NLM Development Tools: Concepts 187

Developer Option

If set to ON, the settings for the following developer flags are enabled:

Read fault emulation

Read fault notification

Write fault emulation

Write fault notification

This means that errors cause the server to abend and call the debugger.

If set to OFF, the OS quarantines NLM™ applications that have unhandled
exceptions.

Default Setting: ON

Recommended Setting: ON (if you want the server to abend or to call the
debugger when an exception happens.)

OFF (if you want the offending NLM to be quarantined, and to have the
server keep running.)

NOTE: The Developer Option can be toggled within the NetWare
Internal Debugger by using the .T command.

Parent Topic: Setting Server Parameters

Displaying Domain Information

To verify what domain is the current domain, type the following command:

DOMAIN

If the loading sequence in Loading Domain NLM is followed, the current
domain is OS_PROTECTED, and the screen displays output similar to the
following:

Domain "OS_PROTECTED" in ring 3 is the current domain.
Domain "OS" in ring 0.
 NLM NetWare C NLM Runtime Library V4.0
 NLM NetWare STREAMS
 NLM NetWare OS Loader
 NLM NetWare v4.0 ISA Device Driver
 NLM NetWare Bindery Name Service
 NLM NetWare 386 Domain Support NLM
 NLM NetWare Server Operating System

NLM Programming

NLM Development Tools: Concepts 188

You can switch to the OS domain by typing the following command:

DOMAIN=OS

If no other modules have been loaded, the output is something like the
following:

Domain "OS" in ring 0 is the current domain.
 NLM NetWare C NLM Runtime Library V4.0
 NLM NetWare STREAMS
 NLM NetWare OS Loader
 NLM NetWare v4.0 ISA Device Driver
 NLM NetWare Bindery Name Service
 NLM NetWare 386 Domain Support NLM
 NLM NetWare Server Operating System
Domain "OS_PROTECTED" in ring 3.

As more modules are loaded, their names are displayed under the domain
that they were loaded in.

Parent Topic: DOMAIN.NLM

DOMAIN.NLM

The NetWare® 4.x OS provides memory protection in the form of a new
page-mapping system and with DOMAIN.NLM. The new page-mapping
system marks certain pages, such as the zero page where DOS resides,
off-limits to NLM™ applications. NLM applications accessing these
protected areas generate page faults.

DOMAIN.NLM is used to create domains, which are areas of memory that
NLM applications run in. The version of DOMAIN.NLM that ships with the
NetWare 4.x OS provides two domains: OS and OS_PROTECTED. The
operating system is not protected from NLM applications running in the OS
domain, but it is protected from NLM applications running in the
OS_PROTECTED domain. The OS domain runs in ring 0, and the
OS_PROTECTED domain can be run in rings 1, 2, or 3. Ring 3 is the default.

DOMAIN.NLM is provided as a tool for developers and system
administrators, but its use is not mandatory. A developer can use
DOMAIN.NLM to create the OS_PROTECTED domain and develop NLM
applications in it, catching read and write requests to invalid memory
locations. A system administrator can use DOMAIN.NLM to create the
OS_PROTECTED domain and run new NLM applications in that domain,
until the administrator feels confident that the NLM is well behaved. Then
the administrator can move the NLM into the OS domain for faster program
execution.

Depending upon the switches that are set, a read or write to a bad address
either causes the server to abend, or DOMAIN.NLM stops (quarantines) the
offending NLM without bringing down the server. Then the NLM can be

NLM Programming

NLM Development Tools: Concepts 189

unloaded and restarted. These options are discussed later.

In the OS domain there is no memory protection. Running NLM
applications in the OS_PROTECTED domain protects the operating system
from modules trying to access invalid memory addresses, such as the space
used by the OS.

You should load your NLM applications in the OS_PROTECTED domain as
you develop and test them. This way you can catch more memory violations
than if you test in the OS domain only.

Another advantage to testing in the OS_PROTECTED domain is that in
most cases you do not need to reboot your server when an NLM violates
memory boundaries. Instead, the OS quarantines the NLM and you can
unload it.

For more information about using DOMAIN.NLM as a development tool,
see Memory Protection.

The commands listed in the following table are only available when
DOMAIN.NLM is loaded:

Domain Command Description

domain Displays information about the NLM
applications that are loaded and shows what
domain they are loaded in. It also shows which
domain is the current domain.

domain=
domain_name

Sets the current domain to the specified domain.
Currently, there are two domains: OS and
OS_PROTECTED.

domain ring 1-3 Sets the protection ring that the
OS_PROTECTED domain runs in. Ring 3 is the
default for startup.

domain help Displays a help screen, showing available
commands for DOMAIN.NLM.

domain show [off |
on]

Determines whether RPC symbols are displayed
as the exporting NLM is loaded. The command
without the options show whether the option is
toggled on or off.

Related Topics

Loading Domain NLM

Memory Protection Commands

Displaying Domain Information

Additional Debugger Commands

NLM Programming

NLM Development Tools: Concepts 190

Setting Server Parameters

Using DOMAIN.NLM as a Development Tool

EXIT

EXIT exit procedure name

This directive specifies the name of a symbol in the NLM™ application
where execution should stop. This procedure makes sure that all resources
have been released and all threads terminated before the NLM unloads.

If this option is not used, _Stop is the default.

WLINK: OPTION EXIT

Parent Topic: Linker Directives and Options

EXPORT

EXPORT symbol list

EXPORT @symbol list file

IMPORTANT: This describes how EXPORT was used in NetWare®
3.x and 4.0. For current information, see Imported and Exported
Symbols.

EXPORT is followed by an export list. EXPORT must appear in the left-most
column. Symbols must not appear in the first column. Symbols can be
indented with a tab or spaces, and can be separated by commas or spaces. A
file containing a list of symbols can be indicated by @ followed by the
filename.

WLINK: EXPORT

Parent Topic: Imported and Exported Symbols

FLAG_ON, FLAG_OFF

FLAG_ON flag number

FLAG_OFF flag number

These directives were added to allow for setting bits in the header without

NLM Programming

NLM Development Tools: Concepts 191

requiring the linker to add new directives. The feature number is a decimal
number that is used to form a bit mask. See the following table for a list of
current flags and their flag numbers.

Table auto. Current Features

Flag
Num
ber

Mask Bit Flag/Linker
Directive

Description

1 0x0000000
1

REENTRANT The module is reentrant.
That is, if the NLM™
application is loaded
twice, the code in the
server's memory is
reused.

2 0x00000002 MULTIPLE The module can be
loaded more than once by
a LOAD console
command.

4 0x00000004 SYNCHRONIZE The load process goes to
sleep until the NLM calls
SynchronizeStart. This
prevents any other
console commands
(particularly LOAD) from
being processed while the
NLM is being loaded.

8 0x00000008 PSEUDOPREEMPT
ION

The OS forces the NLM to
relinquish control if the
NLM does not do so on its
own often enough.

16 0x00000010 OS_DOMAIN The module must be
loaded in the OS domain.

64 0x00000040 AUTOUNLOAD Causes the module to be
automatically unloaded
when none of its entry
points are in use.

FLAG_ON turns the bits on; FLAG_OFF turns the bits off.

FLAG_ON and FLAG_OFF can appear more than once in a .DEF file. The
result is cumulative.

The following directives are also used to set feature flags: AUTOUNLOAD,
MULTIPLE, OS_DOMAIN, PSEUDOPREEMPTION, REENTRANT, and
SYNCHRONIZE.

Parent Topic: Linker Directives and Options

NLM Programming

NLM Development Tools: Concepts 192

FORMAT (W)

See NLMLINK directives DESCRIPTION and TYPE. This directive specifies
the format (NLM, LAN, DSK, NAM, and so on) of the executable file to be
generated. This directive also specifies the name to be displayed when the
NLM™ application is loaded.

Parent Topic: Linker Directives and Options

FULLMAP

FULLMAP map filename

This directive is the same as MAP, except that it adds relocation and fixup
data to the map file that is not included by MAP (see MAP).

Parent Topic: Linker Directives and Options

General Debugger Commands

The following lists the general debugger commands.

c address

Interactively changes memory.

c address=numbers

Changes memory, starting at address, to numbers.

Example: Change byte values starting at 10DFAB to FF, FE, 22.

c 10DFAB = FF,FE,22

c address = "text"

This command is currently not supported.

d address [length]

Dumps length bytes of memory starting at the address. If length is not
specified, 256 (decimal) bytes are dumped.

Example: Dump 16 (decimal) bytes at address 00088F20.

d 88F20 10

This command can be repeated by pressing Enter. You can visually
scan for a string in the ASCII portion of the dump display by dumping
a memory location and then repeatedly pressing Enter to display

NLM Programming

NLM Development Tools: Concepts 193

contiguous blocks of memory.

dl[+linkOffset] addr [length]

Traverses a linked list. If length is not specified, 256 (decimal) bytes
are dumped.

Example: Suppose the first node in a linked list starts at 50 and the
offset of the address of the next node is at offset 4.

To traverse the linked list, displaying 16 (decimal) bytes each time,
enter the following command.

dl+4 50 10

To display each successive node in the list, press Enter.

The default link offset is 0, which indicates the end of the list. Thus, dl
50 10 uses a link offset of 0.

This command can be repeated by pressing Enter. You can dump the
first node in a linked list and then dump each successive node by
pressing Enter. A NULL link marks the end of the list.

f flag=value

Changes the specified flag. value can be 0 or 1.

Example: To change the specified flag to the new value (0 or 1), where
flag is CF, AF, ZF, SF, IF, TF, PF, DF, or OF:

f CF = 0

g

Specifies a "Go" instruction, starting from the current EIP.

g [break_addresses]

Specifies a "Go" instruction, starting at the current EIP and ending at
the break address or addresses.

Example: Suppose a code breakpoint has just occurred at the start of a
C function. To resume execution until the function returns to its caller,
use the following command:

g [desp]

h

Displays general help.

hb

Displays breakpoint help.

he

Displays expressions help.

i[b,w,d] port

Inputs a byte, word, or double-word from the specified port. The

NLM Programming

NLM Development Tools: Concepts 194

default is a byte.

Example: To input the value at port 2F0:

i 2F0

m start [L length] pattern

Memory search is currently not supported.

n

Lists all symbol names, also displaying the NLM™ applications
defined them.

n symbolname value

Defines a new symbol name at an address.

Example: To give the value 2D46A5 the name x:

n x 2D46A5

Now x can be referenced with other commands, such as:

b=x, b=x+5, u x.

By default, the value is 10. Symbols can be defined with the n
command. The y option when the server is started is used to override
the default.

n-symbolname

Removes a user-defined symbol name.

n--

Removes all user-defined symbol names.

o[b,w,d] port = value

Outputs byte, word, or double-word to the specified port.

Example: To output 10h to port 320h:

o 320=10

p

Single-steps through the program code; proceeds past calls. (See the s
command for stepping into calls.)

This command can be repeated by pressing Enter. A common usage
for this command is to run until you hit a breakpoint, and then
single-step by entering the p command and then pressing Enter
repeatedly to continue single-stepping. By holding down Enter, you
can quickly single-step through the program code.

q

Quits to DOS.

r

NLM Programming

NLM Development Tools: Concepts 195

Displays the registers and flags.

REG = value

Changes the register to the specified value. The registers are EAX,
EBX, ECX, EDX, ESI, EDI, EBP, EIP, and EFL.

s

Single-steps through the program code; steps into a call. (See the p
command for stepping past calls.)

This command can be repeated by pressing Enter. You can hit a
breakpoint and single-step by entering the s command and then
pressing Enter repeatedly to continue single-stepping. By holding
down Enter, you can quickly single-step through the program code.

t

Same as s.

u address [count]

Disassembles count instructions. If you type u by itself and press Enter
, the starting address is assumed to be the contents of EIP, and 16
(decimal) bytes will be disassembled.

Example: Disassemble 16 (decimal) bytes prior to the current
instruction.

u eip-10

NOTE: A command such as this might not cause the disassembly
to fall on an instruction boundary.

This command can be repeated by pressing Enter. You can
disassemble starting at any memory location by initially entering the u
command and then pressing Enter to continue the contiguous
disassembly.

v

Displays the server's screen(s) for viewing. Each time a key is pressed,
the next screen is displayed. See the .s command.

x

Exchanges processor stack frames.

z expression

Evaluates the expression.

Example: To display the value at the address computed by adding
EBP to EBX shifted right 16 (decimal) times.

z [d EBP + (EBX >> 10)]

? [address]

Displays nearest symbols to address. If address is not given, EIP is
used.

NLM Programming

NLM Development Tools: Concepts 196

Example: To determine the NLM and function owning the current
instruction, type the following:

?

Parent Topic: Debugger Commands

Grouping Operators

The grouping operators (), [], and { } indicate to the debugger the desired
grouping of operations. These operators have the highest precedence (0).

()

(expression)

The terms inside the parentheses are evaluated first. In the case of
parenthetical expressions that are nested, evaluation begins with the
innermost parenthetical expression.

[]

[size expression]

expression is evaluated first and then used as a memory address. The
size specifier can be B,W, or D. The expression evaluates to byte, word,
or double-word at the specified address.

For example: Suppose the data at memory location 178D10 is the
following byte sequence in Intel* storage format 38 F9 99 88. Then,
using the z command, which evaluates expressions:

Z [D 178D10] evaluates to 8899F938

Z [W 178D10] evaluates to F938

Z [B 178D10] evaluates to 38

{ }

{size expression}

expression is evaluated first and then used as a port address. The size
specifier can be B,W, or D. The expression evaluates to byte, word, or
double-word from the port.

Parent Topic: Specifying Expressions

HELP

NLM Programming

NLM Development Tools: Concepts 197

HELP help file path

The help file path specifies the path to an internationalized help file that
contains the default help screens for the NLM™ application.

WLINK: OPTION HELP

Parent Topic: Linker Directives and Options

IMPORT

IMPORT symbol list

IMPORT @symbol list file

IMPORTANT: This describes how IMPORT was used in NetWare®
3.x and 4.0. For current information, see Imported and Exported
Symbols.

IMPORT is followed by an import list. IMPORT must appear in the
left-most column. Symbols must not appear in the first column. Symbols
may be indented with a tab or spaces, and can be separated by commas or
spaces. A file containing a list of symbols can be indicated by @ followed by
the filename.

WLINK: IMPORT

Parent Topic: Imported and Exported Symbols

Imported and Exported Symbols

Imported and exported symbols are used by the loader to match functions
called within the NLM™ that are exported by a different NLM. For
information about how imported and exported symbols were handled in
NetWare® 3.x and 4.0, see IMPORT and EXPORT.

To enable multiple compilers and libraries to be used (that is, to allow for
multiple versions of a function to exist in the server symbol table
simultaneously), we have modified the import and export lists to include
prefixes. The prefix is a code string representing the publisher of the library.
See below.

Prefixes for Imports and Exports: When the directive IMPORT or EXPORT
is encountered, the currentPrefix is set to NULL. When a string in
parentheses occurs after the IMPORT or EXPORT directive, that string
becomes the currentPrefix. For example, a developer might specify the
following:

NLM Programming

NLM Development Tools: Concepts 198

IMPORT symbol1
 (Prefix)
 symbol2
 symbol3

The prefix is appended to the beginning of the symbol name with the @
character separating the prefix from the name. The names of the prefixed
symbols are represented as Prefix@symbol2 and Prefix@symbol3 in the
NLM.

Prefix represents a library publisher. For example, the prefix representing
libraries published by Novell might be NOVL. If no prefix is specified, no
prefix or @ character is attached to the name of the function.

IMPORTANT: The prefix must also be appended to appropriate
debug record names.

NOTE: New prefixes are registered by calling 1-800-NETWARE
(1-800-638-9273).

Parent Topic: Linker Directives and Options

INPUT

INPUT object list

INPUT @object list file

This directive lists the object files that are to be linked. If the object files are
listed within a file, the object files should appear in standard list format (see
Linker Definition Syntax). If no extension is given, then either .OBJ or the
default for the environment should be assumed.

WLINK: FILE

Parent Topic: Linker Directives and Options

LIBRARY (W)

Specifies a user-defined library of functions.

Parent Topic: Linker Directives and Options

Linker Definition Syntax

NLM Programming

NLM Development Tools: Concepts 199

Any word beginning in the left-most column is considered to be a directive
(unless it begins with #, in which case it is considered to be a comment).

A directive can be followed by a list of parameters. These parameters can be
separated by commas or any whitespace character (such as spaces, tabs, and
carriage returns), but they must not begin in the left-most column. A file
containing a list of parameters is acceptable in most cases. The filename is
preceded by @. The parameters in this file must not begin in the left-most
column.

For example:

INPUT input1.obj
 input2.obj,
 @objlist.lst

NOTE: If you use commas, they do not have to be used consistently.

Parent Topic: Linker Directives and Options

Linker Directives and Options

Linker directives and options tell the linker how to create your program.
You can use directives and options when generating NLM™ applications.
Directives and options can be given at the command line, or they can be
placed in a directive file.

Linker Directives: Directives appear at the left-most column of the file.
Parameters for directives can appear anywhere but the left-most column.
Parameters can be separated by commas, whitespace, carriage returns or
tabs (which must not start in the left-most column). NLMLINK provides the
following directives:

See the following topics for general information about NLMLINK:

Symbols Used by NLMLINK

Linker Definition Syntax

Imported and Exported Symbols

NOTE: Options for WLINK are preceded by the directive OPTION.
NLMLINK does not use the OPTION directive before its options.

The following topics describe the directives and options for NLMLINK with
comparisons to WLINK (options exclusive to WLINK are marked with
"(W)").

NOTE: Do not rely on this information as a complete reference for all
WLINK directives. Check the WLINK documentation for a complete list
of directives.

NLM Programming

NLM Development Tools: Concepts 200

AUTOUNLOAD

OPTION CASEEXACT (W)

CHECK

CODESTART

COPYRIGHT

CUSTOM

DATASTART

DATE

DEBUG

DESCRIPTION

OPTION DOSSEG (W)

EXIT

EXPORT

See Imported and Exported Symbols for information about this directive.

FLAG_ON, FLAG_OFF

FORMAT (W)

FULLMAP

HELP

IMPORT

See Imported and Exported Symbols for information about this directive.

INPUT

LIBRARY (W)

MAP

MESSAGES

MODTRACE (W)

MODULE

MULTIPLE

NAMELEN

NLM Programming

NLM Development Tools: Concepts 201

OPTION NODEFAULTLIBS (W)

OS_DOMAIN

OUTPUT

PATH

PSEUDOPREEMPTION

OPTION QUIET (W)

REENTRANT

SCREENNAME

SHARELIB

STACK, STACKSIZE

STAMPEDDATA

START

OPTION SYMFILE (W)

OPTION SYMTRACE (W)

SYNCHRONIZE

THREADNAME

OPTION UNDEFSOK (W)

TYPE

VERBOSE

VERSION

XDCDATA

Linkers for NLM Applications

Because NLM™ applications use dynamically-linked libraries, they do not
resolve external symbols (global variables and function names) at link time.
Rather, they produce an executable file that contains references to external
symbols that are resolved, by the NetWare® loader, at load time. This
differs from operating systems such as DOS, in which external symbols are
resolved at link time, or OS/2*, in which external symbols are resolved the
first time the call is made in the program.

NLM Programming

NLM Development Tools: Concepts 202

NLMLINK

NLMLINK is a linker that Novell® developed specifically for linking NLM
applications. Novell supplies these versions of the linker: NLMLINKP,
NLMLINKR and NLMLINKX. NLMLINKP runs in protected mode and
NLMLINKR runs in real mode.

WLINK

WLINK is the WATCOM* linker. One of the executable formats it produces
is that of NLM applications. You must use WLINK if you are going to use
the WATCOM debugger WVIDEO, or if you require the need for linking
static libraries.

For more information about NLMLINK and WLINK, see NLM Linkers.

Parent Topic:

NLM Development Tools Overview

Linking Debug Information with NLMLINK

You can specify the DEBUG directive in a linker directive file to generate
debugging information in the executable file. DEBUG is available with
NLMLINK. It generates debugging information for the NetWare® Internal
Debugger.

To generate a map file, specify the MAP option with the OPTION directive.
The map file specifies the relative location of all global symbols in your
program and contains the size of your program.

For more information on how to use these directives and the MAP option,
see NLM Linkers.

Linking Debug Information with WLINK

You can specify the DEBUG directive in a linker directive file to generate
debugging information in the executable file. The following options can be
specified with the DEBUG directive to generate the following types of
debugging information:

DEBUG ALL

Generates all types of debugging information (global symbol, line
numbering, local symbol, and typing).

DEBUG NOVELL

NLM Programming

NLM Development Tools: Concepts 203

Generates global symbol debugging information that can be processed
only by the NetWare® Internal Debugger

DEBUG NOVELL ONLYEXPORTS

Generates NetWare global symbol information for exported symbols
only.

DEBUG ONLYEXPORTS

Generates WVIDEO global symbol information for exported symbols
only.

To generate a map file, specify the MAP option with the OPTION directive.
The map file specifies the relative location of all global symbols in your
program and contains the size of your program.

Additionally, with WLINK, you can use the MODTRACE (W) directive to
include in the map file a list of all modules that reference the symbols
defined in the specified modules. Use the OPTION SYMTRACE (W)
directive to list all the modules that reference the specified symbols. For
more information on how to use these directives and the MAP option, see
the WATCOM* manuals.

Loading Domain NLM

DOMAIN.NLM must be the first NLM™ application loaded. It is loaded
with the following command:

 LOAD DOMAIN

When DOMAIN.NLM loads, it creates the OS and the OS_PROTECTED
domains. By default, the OS domain runs in ring 0, and the
OS_PROTECTED domain runs in ring 3. The OS domain is the current
domain.

All NLM applications that are loaded are loaded in the domain that is the
current domain when they are loaded. You should load the NetWare API
files in the OS domain and your NLM applications in the OS_PROTECTED
domain. You might want to place the following commands in your
AUTOEXEC.NCF file:

LOAD DOMAIN
; the current domain is OS
LOAD CLIB
; now switch to the OS_PROTECTED domain
domain = os_protected
LOAD MYNLM

NOTE: CLIB always loads in the OS domain, no matter which domain
is the current domain.

Parent Topic: DOMAIN.NLM

NLM Programming

NLM Development Tools: Concepts 204

Log Output to Path

If you want to save stack traces and other information produced by
NLMDebug, enter a path where you want the information saved.

Parent Topic: Changing Debug Settings

MAP

MAP map file name

This directive sets an internal flag requiring the linker to create a map file
with the specified name. If no filename is specified, the module name
specified with the OUTPUT directive is used, but given a .MAP extension.

The FULLMAP directive produces a map file that is identical to that
produced by MAP, except that it includes relocation fixup information.

WLINK: OPTION MAP

Parent Topic: Linker Directives and Options

Memory Checking

When the Memory Checking option is set to Yes, NLMDebug checks for
memory overwrites on all calls to memory functions. A stack walk to the
location of the memory overwrites is displayed on the console screen. If you
want to force checking at a certain point in your code, call free (NULL).

Parent Topic: Changing Debug Settings

Memory Protection Commands

There are two types of commands associated with memory protection: those
that are available after DOMAIN.NLM is loaded and those available
regardless of whether or not DOMAIN.NLM is loaded.

Parent Topic: DOMAIN.NLM

MESSAGES

NLM Programming

NLM Development Tools: Concepts 205

MESSAGES message file path

This directive specifies the file path to an internationalized message file that
contains the default messages for the NLM™ application.

WLINK: OPTION MESSAGES

Parent Topic: Linker Directives and Options

MODTRACE (W)

Instructs the linker to print a list of all modules that reference symbols
defined in the specified modules.

Parent Topic: Linker Directives and Options

MODULE

MODULE autoload NLM list

This directive specifies NLM™ applications that must be loaded before this
NLM is loaded. These modules will be loaded automatically when this
NLM is loaded. An NLM that exports symbols that another NLM requires
must be loaded before the dependent NLM is loaded.

WLINK: MODULE

Parent Topic: Linker Directives and Options

MULTIPLE

MULTIPLE

This directive sets a flag in the flags field of the NLM™ header indicating
that this NLM can be loaded multiple times. If this flag is not set, the NLM
cannot be loaded more than once.

The flags are defined as shown in the Current Features table (see
FLAG_ON, FLAG_OFF).

WLINK: OPTION MULTILOAD

Parent Topic: Linker Directives and Options

NLM Programming

NLM Development Tools: Concepts 206

NAMELEN

NAMELEN number

This directive sets a maximum name length for comparisons when resolving
entry points, where number is the maximum name length to be used. The
default value for number is 31.

This directive is useful when the maximum name length for assemblers or
compilers differ. For example, an assembler might limit names to 31
characters in object files, but a C compiler might allow 32 characters. This
means that only 31 characters should be significant if you are linking
between the assembly and C object files.

WLINK: OPTION NAMELEN

Parent Topic: Linker Directives and Options

NLM Compression Tools

NLMPACK is an NLM™ compression utility that you can use to reduce the
disk storage size of your NLM files. NLMPACK can be used for NLM
applications that run on the NetWare® 4.x OS.

When the NetWare 4.x OS loads an NLM, the OS checks to see if the NLM is
in compressed format. If the NLM has been compressed, the OS
automatically decompresses it as the OS loads the NLM into memory.

NOTE: You should not compress NLM applications that will be
loaded on the NetWare 3.x OS because the 3.x OS cannot uncompress
them

For more information about NLMPACK, see NLMPACK and UNPACK.

Parent Topic: NLM Development Tools Overview

NLM Development Tools Overview

The following topics provide an overview of the tools that ship with the
NetWare® SDK. For a more in-depth look at the tools, see other topics listed
in NLM Development Tools: Guides.

The following types of tools ship with the NetWare SDK:

Compilers for NLM Applications

NLM Programming

NLM Development Tools: Concepts 207

Linkers for NLM Applications

NLM Make Utilities

Debuggers for NLM Applications

NLM Memory Protection Tools

NLM Execution Profilers

NLM Message Tools for Internationalization

NLM Compression Tools

NLM Testing Tools

NOTE: The WATCOM* tools can be purchased with this SDK or
separately.

NLM Execution Profilers

The following execution profilers are available with this SDK:

Procedure Coverage Logger (PCL)

WATCOM* execution profiler (WPROF)

PCL

PCL.NLM is one of the tools provided in the NLM™ Testing Tools SDK. It
does the following:

Dynamically monitors which public symbols have been called, including
initialization and cleanup routines

Dynamically tracks how often selected sections are called, helping you
identify critical paths for optimizing execution speed

Dynamically monitors all NetWare resources used by your product

Generates ASCII text reports that can be saved to either a NetWare® or a
DOS partition on the file server

Simultaneously monitors up to 13 NLM applications

For more information about PCL, see the PCL User's Manual that ships with
the NLM Testing Tools SDK.

WPROF

NLM Programming

NLM Development Tools: Concepts 208

WPROF is a performance development tool that allows you to identify
heavily executed regions of code and concentrate efforts on improving the
productivity of these regions. WPROF is used to display execution
information obtained by WSAMPLE.NLM. (WPROF and WSAMPLE.NLM
ship with the WATCOM compiler package.)

Analysis using WPROF is performed in two stages:

In the first phase of the analysis process, WSAMPLE.NLM runs on the
server and sets up a periodic interrupt. It then records the location of the
instruction pointer each time the program's execution is interrupted.
These samples of the execution provide a statistical measure of the
heavily executed portions of the program.

In the second phase, WPROF runs on a workstation and displays, in
graphical form, the execution samples saved by WSAMPLE.NLM. The
interactive nature of WPROF facilitates analysis of the program's
execution, and enables you to experiment with the effects of different
coding strategies in order to achieve optimal code performance.

For more information about the execution sampler and profiler, see the
WATCOM documentation.

Parent Topic:

NLM Development Tools Overview

NLM Make Utilities

The WATCOM* make utility is WMAKE. The makefiles associated with the
examples that ship with this SDK are written to be used by WMAKE. To
compile an example, you simply move to the directory where the example is
located and type:

WMAKE

To assist you in creating WMAKE-style makefiles for your programs, this
SDK ships with the QMK386 utility. QMK386 is located in the TOOLS
directory.

To display the QMK386 options, type:

 QMK386 ?

QMK386 gives you the option of creating makefiles that use WLINK or
makefiles that use NLMLINK. You can also customize the makefiles after
QMK386 creates them.

Parent Topic: NLM Development Tools Overview

NLM Programming

NLM Development Tools: Concepts 209

NLM Memory Protection Tools

Two tools are available to help you discover addressing errors in the
NLM™ applications you are developing. These tools are:

PROTECT.NLM

DOMAIN.NLM

Parent Topic:

NLM Development Tools Overview

NLM Message Tools for Internationalization

The NetWare® OS has a world market, and so it has been
"internationalized" for use with multiple languages. The term used to
describe writing software that is easily adaptable to different locales is
enabling. Enabled software can be adapted without having to recompile
and relink the source code.

You should also consider the world market for your NLM™ applications.
You should not limit your NLM applications to one language; you should
enable them for multiple languages. For this reason, we ship the Message
Tools with this SDK.

The Message Tools are a collection of programs that can be used to extract
the messages (text strings that will be displayed) from your source code, so
you can send these messages to a translation house. The end results of the
Message Tools are message files for multiple languages. Changing the
message file changes your module's display for a particular language.

Parent Topic: NLM Development Tools Overview

NLM Testing Tools

The NLM™ Testing Tools SDK, which ships with this SDK, provides the
following:

Information about the Novell NLM Certification program

NLM certification tools

Testing and programming hints

Tools for automating testing

NLM Programming

NLM Development Tools: Concepts 210

For more information about these tools, see the manuals in the NLM Testing
Tools SDK.

Parent Topic: NLM Development Tools Overview

NLMLINK Version History

The following information identifies some of the new features added with
each version of NLMLINK.

Version 2.82

The description string processes new links in the string. For example, "First
Line\nSecond Line" is printed on two lines on the console when the NLM™
application is loaded.

Added support for double quotes within a quoted string using escape quote
(\""). For example, "\"A quoted string in quotes.\""

Version 2.81

Changed some WARNING messages to INFORMATION messages so that
they would be easier to understand and cause less distraction.

Added checking for zero-length files and improved the error messages
associated with them.

Cleaned up several obscure error messages that gave incomplete or
misleading information.

Version 2.79

Processes object files produced with the WATCOM* /d2 switch.

Processes object files produced by the Borland* 386 compiler. This is a side
effect of fixing several problems with unrecognized object records.

Allows import/export prefix in symbols lists.

Added these new parameters: AUTOUNLOAD, DATASTART, FLAG_ON,
FLAG_OFF, NAMELEN, PATH, STAMPEDDATA.

Parent Topic:

Using NLMLINK

NLM Programming

NLM Development Tools: Concepts 211

NLMPACK and UNPACK

NLMPACK is a compression utility designed to minimize the disk space
needed for NLM™ applications that will run on the NetWare® 4.x OS.
When the NetWare 4.x OS loads an NLM, it checks in the NLM header to
see if the NLM has been compressed. It if has, the OS decompresses it as it is
loaded.

NLMPACK comes in two versions. NLMPACKP runs in protected mode
and NLMPACK runs in real mode. For convenience consider references to
NLMPACK to apply to NLMPACKP also.

UNPACK is a utility that unpacks NLMs that were packed using
NLMPACK. There are two versions of this utility. UNPACK runs in real
mode and UNPACKP runs in protected mode.

CAUTION: NLM applications compressed with NLMPACK cannot
be decompressed by the NetWare 3.x OS. NLM compression should
only be used for NLM applications that will run on the NetWare 4.x
OS.

For the syntax for NLMPACK and UNPACK, see NLMPACK and
UNPACK Syntax.

NLMPACK and UNPACK Syntax

Usage of NLMPACK is as follows:

NLMPACK <source name> <target name>

source name is the name of the NLM™ application that is to be compressed.

target name is the name of the file that the compressed NLM is to be placed
in.

NOTE: target name can be the same as source name.

Usage of UNPACK can be seen by entering "UNPACK" with no parameters
at the command line. The usage is as follows:

UNPACK <source name> <target name>

source name is the name of the packed NLM that your want to unpack.

target name is the destination file name for the unpacked NLM.

WARNING: target name cannot be the same as source name.

Parent Topic: NLMPACK and UNPACK Information

NLM Programming

NLM Development Tools: Concepts 212

OPTION CASEEXACT (W)

Tells the linker to respect case when resolving references to global symbols.

Parent Topic: Linker Directives and Options

OPTION DOSSEG (W)

Tells the linker to order segments in a special way.

Parent Topic: Linker Directives and Options

OPTION NODEFAULTLIBS (W)

Instructs the linker to ignore default libraries. This is used because you do
not link your object files to any libraries. Instead, the loader resolves
addresses with symbols provided by library NLM™ applications such as
CLIB.NLM.

Parent Topic: Linker Directives and Options

OPTION QUIET (W)

Instructs the linker to suppress informational messages.

Parent Topic: Linker Directives and Options

OPTION SYMFILE (W)

Provides a method for specifying an alternate file for debugging
information.

Parent Topic: Linker Directives and Options

OPTION SYMTRACE (W)

Instructs the linker to print a list of all modules that reference the specified

NLM Programming

NLM Development Tools: Concepts 213

symbols.

Parent Topic: Linker Directives and Options

OPTION UNDEFSOK (W)

Tells the linker to generate an executable file even if undefined symbols are
present.

Parent Topic: Linker Directives and Options

OS_DOMAIN

OS_DOMAIN

This directive sets a flag in the flags field of the NLM™ header indicating
that this NLM must be loaded in the OS domain.

The flags are defined as shown in the Current Features table (see
FLAG_ON, FLAG_OFF).

Parent Topic: Linker Directives and Options

OUTPUT

OUTPUT target file name

Provides the name of the output file to the linker. The name is restricted to
an 8-character name with a 3-character extension. If no extension is
specified, the linker will create an extension according to the NLM™ type
that is specified (see TYPE).

NOTE: If the module name does not match the module type, the OS
displays a warning message when the module is loaded.

WLINK: OPTION NAME

Parent Topic: Linker Directives and Options

Overview of Rdebug

The Rdebug tool is a powerful Windows* 3.x test and development tool for
the NetWare® server. This tool can be used for NLM™ software

NLM Programming

NLM Development Tools: Concepts 214

development, debugging, and integration.

Rdebug has the following features and benefits:

Windows 3.x human interface.

Source-level debugging. You can set and display break points directly in
the source code, browse through the program modules, and examine the
function call chain.

Watch expressions. You can select specific program variables to display
and watch the values of these variables change as you step through your
program.

Breakpoints. You can define a breakpoint, a conditional breakpoint, or a
passpoint on a source code line or an assembly instruction.

Stepping. You can execute your program as single assembly language
steps, high-level language statement steps, or return steps.

Register access. You can examine and modify processor registers.

Memory access. You can display memory using various type formats
including assembler mnemonics.

Symbolic support. You can use symbolics to debug all programs written
in either assembly or C languages. You can also display and modify
program memory using program symbolics.

Loading NB09. Rdebug supports NB09 as the debug format.

For complete information on the Redebug tool, see the Windows help for
Rdebug.

Passing Parameters

The WATCOM* C/386 and C/C++32 compilers allow you to specify either
stack-based or register-based parameter passing.

How parameters are passed to functions is determined by the size (in bytes)
of the parameter and where in the parameter list the parameter appears.
Depending on the size, parameters are either passed in registers or on the
stack. CLIB uses stack-based parameter passing for all of the functions. This
means you need to specify the /3s command line switch when building
NLM™ applications with the WATCOM compiler. Another option is to
#include , then use the default parameter passing mechanism.

The WATCOM compiler no longer supports the predefined constant
NOVELL. If you have code that depends upon this constant, you can use
the WCC386 environment variable to predefine it (for example, c:\< set
wcc386 =/3s /d_NOVELL_#1)

NLM Programming

NLM Development Tools: Concepts 215

Parameters such as structures are almost always passed on the stack, since
they are generally too large to fit in registers.

Because parameters are processed from left to right, the first few parameters
are likely to be passed in registers (if they can fit), and if the parameter list
contains many parameters, the last few parameters are likely to be passed
on the stack. The NetWare® API uses stack-based parameter passing. Bytes,
words, double words, and pointers are all pushed onto the stack as 4-byte
parameters.

It is possible to write an application that uses register-based parameter
passing internally and stack-based parameter passing when it calls the
NetWare API.

Parent Topic: WATCOM Compilers

PATH

PATH Apath[;[Apath]] . . .

This directive identifies search paths for files used with the INPUT,
CUSTOM, HELP, MESSAGES, SHARELIB, XDCDATA, IMPORT, and
EXPORT directives. The Apath parameter is a string suitable for prepending
to any filename to create a complete DOS path. Therefore, Apath must end
with "\". The current directory is not searched unless it is specified as Apath,
which can be done by including a NULL path (terminated by a semicolon),
or the specifier ".\". For example,

PATH .\;..\obj\;

and

PATH ;..\obj\;

both search the local directory and then search the obj directory one level
up.

The default value for PATH is the current directory. PATH can be repeated
and is in effect until PATH occurs again.

Any file that is specified with a path component only searches that specified
path. For example, if a path is specified as follows:

PATH ..\english\

The directive

MESSAGES ..\french\msgfile

does not search ..\english for msgfile.

To restore the default (search the current directory), simply use PATH with

NLM Programming

NLM Development Tools: Concepts 216

no path specified. That is,

PATH

is equivalent to

PATH.\

NOTE: Because the path is prepended to filenames, the terminating
backslash is required.

WLINK: PATH

Parent Topic: Linker Directives and Options

Placement of Debugging Files

For remote debugging of NLM applications, there are certain files that must
be on the machines:

NOVSERV.NLM, PARSERV.NLM, or SERSERV.NLM

The NLM™ application to be debugged

The data files for the NLM

The following files must be present on the remote debugging machine:

WVIDEO.EXE (if using the DOS or OS/2* OS)

NOV.TRP (if debugging over a NetWare® network)

PAR.TRP (if debugging over a parallel port)

SER.TRP (if debugging over a serial port)

NOV.DLL (if using OS/2)

The NLM source code

Parent Topic: Using the WVIDEO Debugger

PROTECT.NLM

A limited amout of memory protection is available for NetWare® 3.x
servers through the use of PROTECT.NLM. PROTECT.NLM is a
menu-driven debugging tool that you can use during NLM™ development.

PROTECT.NLM is used with the NetWare® 3.x OS. It provides a limited
amount of memory protection to help catch instructions that access invalid

NLM Programming

NLM Development Tools: Concepts 217

memory. PROTECT.NLM can be used by developers, but it is not used by
end users.

From the PROTECT.NLM main menu, you can toggle memory protection
on or off. You can also add NLM applications to the protection session and
can remove NLM applications, one at a time, from the protection session.

PROTECT.NLM also features an error report screen for displaying memory
faults.

You can use PROTECT.NLM as a debugging tool to detect and report
programming errors that result when an NLM attempts to access memory
locations to which it does not have any rights. You can also use it as a
certification tool to test released or pre-released products.

PROTECT.NLM is documented in the NLM Certification manual that is part
of the NLM Testing Tools SDK.

PSEUDOPREEMPTION

PSEUDOPREEMPTION

This directive sets a flag in the flags field of the NLM™ header indicating
that this NLM will be forced to relinquish control by the NetWare® OS if it
does not do so on its own often enough.

The amount of time that is allowed to pass before the NLM is forced to
relinquish control is set by the console command Set Pseudo Preemption
Time. When the time limit is exceeded, the NLM is forced to relinquish
control on the next file read or write system call.

The flags are defined as shown in the Current Features table (see
FLAG_ON, FLAG_OFF).

WLINK: OPTION PSEUDOPREEMPTION

Parent Topic: Linker Directives and Options

Read Fault Emulation

This parameter determines the action taken by the OS when a page fault
occurs (a process attempted to read a memory location not mapped to its
domain).

If set to ON, the OS temporarily maps a memory page to the current
domain, and the OS reads the memory location. The page is then mapped
out of the domain.

If set to OFF, an attempt to read a nonpresent memory page results in a read

NLM Programming

NLM Development Tools: Concepts 218

page fault. If the "developer option" flag is set to OFF, the NLM™
application is quarantined. If the "developer option" is set to ON, the server
will abend and call the debugger.

Default Setting: OFF

Recommended Setting: ON

Parent Topic: Setting Server Parameters

Read Fault Notification

If the "read fault emulation" flag is set to ON, the OS sends a message to the
system console screen and to a log file, recording the details of the read page
fault.

Default Setting: ON

Recommended Setting: ON

Parent Topic: Setting Server Parameters

REENTRANT

REENTRANT

This directive sets a flag in the flags field of the NLM™ header indicating
that this NLM is reentrant. If an NLM is reentrant, when it is loaded by the
LOAD command more than once, the NLM is not loaded again, but the
NLM in memory is reentered. In this case, one copy of the NLM is in
memory.

The flags are defined as shown in the Current Features table (see
FLAG_ON, FLAG_OFF).

WLINK: OPTION REENTRANT

Parent Topic: Linker Directives and Options

Registers and Flags

The 80386 registers, which can be used in expressions, are referenced by the
names listed in the following table.

Table auto. 80386 Registers

NLM Programming

NLM Development Tools: Concepts 219

Register Name

EAX Accumulator register

EBX Base register

ECX Count register

EDX Data register

ESI and EDI Index registers

ESP and EBP Base and stack pointer registers

EIP Instruction pointer register

The flags register is a 32-bit register that contains a number of status bits.
This register is sometimes referred to as the status register. The following
table lists the flags register bits.

Table auto. Flags Register Bits

Flag Bit Name

FLCF Carry flag

FLAF Auxiliary carry flag

FLZF Zero flag

FLSF Sign flag

FLIF Interrupt flag

FLTF Trap flag

FLPF Parity flag

FLDF Direction flag

FLOF Overflow flag

Parent Topic: Specifying Expressions

Report No CLIB Context

When the Report No CLib Context option is set to Yes, if a CLIB function
that requires CLIB context is called without context, the error is reported on
the console screen.

Parent Topic: Changing Debug Settings

Resource Checking

NLM Programming

NLM Development Tools: Concepts 220

When the Resource Checking option is set to Yes, NLMDebug checks for
various resources allocated by your NLM™ application that are not
subsequently freed. A stack walk to the location of the allocated resources
not freed is displayed on the console screen.

Parent Topic: Changing Debug Settings

Ring the Bell on Error

When Ring the Bell on Error is set to Yes, a bell rings whenever an error is
detected according to the conditions set in CLib Debug Options and an error
message is printed to the console screen.

Parent Topic: Changing Debug Settings

Running WVIDEO

Before running the WVIDEO program on the debugging machine, the
debug server must be loaded on the task machine. When WVIDEO is
invoked, it will look for the debug server.

The format of the WVIDEO command is as follows:

 WVIDEO [options][drive][path]filename[cmd_line]

options

These are valid WVIDEO options, each preceded by a slash (/) or a
dash (-). You can specify options in any order. For a complete listing of
options when your remote debugger is using DOS, see the WATCOM*
manuals.

The main options used for debugging NLM™ applications are:

/TRap=trap_file[;trap_parm]

where trap_file specifies the trap file, and trap_param specifies the
parameters for the trap file. The parameters are different for each trap
file.

/TRap=NOV;debugging_server

where debugging_server is the name given when NOVSERV.NLM was
loaded on the task machine.

/TRap=SER;port.BAUD

where port is the name of the serial port and BAUD is the transmission
baud rate. The parameters port and BAUD are separated by a period

NLM Programming

NLM Development Tools: Concepts 221

(.).

/TRap=PAR;port

where port is the name of the parallel port that connects the debugging
machine and the task machine.

drive

Specifies a drive where the NLM can be found. If you do not specify
the drive, the default drive is assumed.

path

Specifies the path where the NLM can be found. If you do not specify
the path, the current directory is assumed.

filename

Specifies the name of the NLM file to be loaded into memory. You can
include the file extension, if applicable. If you omit the extension,
WVIDEO attempts to load the file using, in succession, these
extensions: .NLM, .DSK, .LAN, and .NAM.

cmd_line

Specifies the command line that is passed to the application.

The following is an example of loading using WVIDEO over a
Novell® network:

 WVIDEO /trap=nov;rmt_debug my_nlm

Where nov is the name of the trap file, rmt_debug is the name of the
debugging server created when loading NOVSERV.NLM, and my_nlm
is the name of the NLM that is to be debugged. If the NLM needs any
arguments when loading, they would be entered after my_nlm.

For a complete guide to using the WVIDEO debugger, see the WATCOM
manuals.

Parent Topic: Using the WVIDEO Debugger

SCREENNAME

SCREENNAME "initial screen name"

This value determines the name of the first screen of an NLM™ application,
which is created when the NLM is loaded. The screen name is displayed at
the top of the console when Alt is pressed, and displayed in the list of
current screens when Alt+Esc is pressed.

The screen name is restricted to no more than 71 characters.

If this directive is not used, or if NONE is specified, there is no initial screen.

NLM Programming

NLM Development Tools: Concepts 222

In this case, the developer must call CreateScreen to create a screen for the
NLM.

WLINK: OPTION SCREENNAME

Parent Topic: Linker Directives and Options

Semaphore Checking

When the Semaphore Checking option is set to Yes, NLMDebug checks for
any semaphores allocated by your NLM™ application that are not
subsequently freed. A stack walk to the location of the allocated semaphores
that are not freed is displayed on the console screen. (Semaphores allocated
through CLIB that are not freed no longer abend the server.)

Parent Topic: Changing Debug Settings

Semaphore Monitoring

When the Semaphore Monitoring option is set to Yes, NLMDebug reports
all thread errors on the console.

Parent Topic: Changing Debug Settings

Setting Breakpoints

With the NetWare® Internal Debugger, you can set execute, write, or
read/write breakpoints.

There are four breakpoint registers, allowing a maximum of four
simultaneous breakpoints. Breakpoints can be permanent or temporary:

To set permanent breakpoints, use the b, br, and bw commands. For
permanent breakpoints, you can attach a condition that specifies whether
to take the breakpoint. If the condition is true, a breakpoint is taken. If it
is false, execution continues without stopping.

To set temporary breakpoints, use the g command. For example, a "go" to
a specific address is a temporary breakpoint. The p command can also set
a temporary breakpoint if the current instruction cannot be
single-stepped.

If you use all four breakpoints and issue a g [desp] command, the
following is displayed:

 Go out of breakpoints

NLM Programming

NLM Development Tools: Concepts 223

If you use all four breakpoints and attempt to proceed past a function call
using the p command, the following is displayed:

 Breakpoint not available for proceed

The assembly repeat instructions (such as REPE), the LOOP instruction,
and the CALL instruction also require p to set a temporary breakpoint.

Parent Topic: NLM Debuggers

Setting Server Parameters

To aid you in testing NLM applications that contain errors that could
otherwise bring down the server, you can set parameters to allow the OS to
stop the offending NLM. Then you can unload the NLM and restart it while
the OS keeps running. DOMAIN.NLM lets you do this.

The following parameters should be set with the SET command if you want
the OS to quarantine modules that access memory they shouldn't.

Allow Invalid Pointers = OFF

Read fault emulation = OFF

Read fault notification = ON

Write fault emulation = OFF

Write fault notification = OFF

Developer option = OFF

These settings will be explained in detail in this section.

The NetWare 4.x OS has a number of parameters that can be set to
configure the operating system various protection levels. The parameters
that deal with memory protection are given below, along with default
settings, recommended settings on NLM test file servers, and brief
explanations of each parameter.

To change a file server parameter from its default value, you can execute the
SET command at the file server console, or enter a SET command in the file
server's AUTOEXEC.NCF file. Some parameters can also be set in the file
server's STARTUP.NCF file. Documentation for the SET command and all
the file server parameters is given in NetWare 4.x OS's Utilities Reference
manual.

Related Topics

Allow Invalid Pointers

NLM Programming

NLM Development Tools: Concepts 224

Read Fault Emulation

Read Fault Notification

Write Fault Emulation

Write Fault Notification

Developer Option

Parent Topic: DOMAIN.NLM

Setting Up and Using NLMDebug

To use NLMDebug, copy nlmdebug.nlm to the server where the NLM™
application that you want to debug is loaded. At the server prompt type
LOAD NLMDEBUG. The NLMDebug main screen opens.

NOTE: Make sure that CLIB.NLM v.4.11 is loaded.

The Main Menu Options screen displays. Select the debug option you want
by using the Up- and Down-arrow keys to highlight the option and press
Enter.

Related Topics

Changing Debug Settings

Watching CLIB Context

Using the NCP Debugger

Viewing CLIB Remote Connection Information

Using the Function-Call Profiler

Watching for File Opens

Using the Process Timer

Using Error Watch

Setting Up the Debugger Machine for Remote
Debugging

Before the debugging machine can be used for remote debugging, it first
must be connected to the server.

If the debugging machine is using debugging through a parallel or serial
port, there are special wiring considerations between the two computers.

NLM Programming

NLM Development Tools: Concepts 225

See the WATCOM* manuals for more complete information.

If you will be debugging over a NetWare® network, your debugging
machine must have the necessary hardware to access the network. The
server and the remote workstation must also be on the same network
segment. WVIDEO does not work with NOVSERV.NLM if the server and
remote workstation are on different network segments.

Parent Topic: Using the WVIDEO Debugger

Setting Up the Server for Remote Debugging

Before remote debugging can begin, the task server must be set up to be a
debugging server by loading a communications-server NLM™ application.
The following servers (NLM applications) are provided, by WATCOM*, for
use with WVIDEO under the NetWare® 3.x and 4.x OS's.

NOVSERV.NLM, for remote debugging over the NetWare network. See
Loading NOVSERV.NLM.

PARSERV.NLM, for remote debugging over the parallel port. See
Loading PARSERV.NLM.

SERSERV.NLM, for remote debugging over the serial port. See Loading
SERSERV.NLM.

Parent Topic: Using the WVIDEO Debugger

SFT III Debugger Commands

The following table lists the debugger commands that are available for the
SFT III™ OS only.

Comma
nd

Description

.? Display server state.

DQ Dump level 3 queue pointers.

DQ
address

Dump level 3 queue elements.

Parent Topic: Debugger Commands

SHARELIB

NLM Programming

NLM Development Tools: Concepts 226

SHARELIB path to library NLM

This directive specifies the path to an NLM™ application to be loaded as a
shared NLM. Shared NLM applications (for example, math libraries)
contain global code and global data that are mapped into all memory
protection domains. This method of loading exported functions can be used
to avoid ring transitions when calling exported functions in other domains.

WLINK: OPTION SHARELIB

Parent Topic: Linker Directives and Options

Specifying a Linker Directive File

A linker directive file is useful when linker input consists of a large number
of object files that you do not want to manually enter on the command line
each time you link your program. Note that a linker directive file can also
include other linker directive files.

The @ directive instructs the linker to process the contents of the specified
directive file. The format of the @ directive is as follows:

 @directive_file

If you do not specify a file extension, the linker assumes a filename
extension of .LNK.

The following is a sample linker directive file:

 form nov 'NLM Linker Directive File'
 name test
 debug lines
 file prelude, test
 import @clib.imp

For information about PRELUDE.OBJ, see NLM Startup.

The IMPORT directive shown in the example above enables your NLM™
application to import (call) functions in other NLM applications. When
using the IMPORT directive, you have two choices for specifying the
external functions you want to call:

List each function as an IMPORT entry in the directive file (as shown
above with "@clib.imp").

Place all the function names in an import file (.IMP) and specify that file
as the IMPORT entry in the directive file.

For example, part of the NetWare® API is CLIB.NLM. It runs in memory,
and all the NLM applications loaded on the same server can import its

NLM Programming

NLM Development Tools: Concepts 227

and all the NLM applications loaded on the same server can import its
functions. To import a NetWare API function from CLIB.NLM, an NLM
directive file can either list each function it wants to import or specify the
CLIB.IMP file, which contains a list of functions exported by CLIB.NLM.

Specifying Expressions

The NetWare® Internal Debugger determines the order of execution of an
expression in accordance with the following:

Precedence of grouping operators

Precedence of unary, binary, and ternary operators

Common algebraic ordering

See the following sections for the various types of operators:

Grouping Operators

Unary Operators

Binary Operators

Ternary Operators

Registers and Flags

STACK, STACKSIZE

STACK stack size

STACKSIZE stack size

Both directives specify the stack size for the NLM™ application (in bytes, for
NLMLINK). The minimum stack size is 2 KB. Over 4 KB is recommended. If
no size is specified, the default is 8,192 bytes.

WLINK: OPTION STACK

Parent Topic: Linker Directives and Options

STAMPEDDATA

STAMPEDDATA "stamp" datafile

This directive causes NLMLINK to create a custom data structure in which
the dataName is given by stamp and adds the contents of the datafile to the

NLM Programming

NLM Development Tools: Concepts 228

NLM™ application.

For compatibility with earlier versions of NLMLINK, both stamp and datafile
are required. However, datafile can have zero length.

Parent Topic: Linker Directives and Options

START

START start procedure name

This directive specifies the name of a symbol in the NLM™ application
where execution should start. This procedure tracks the state of the NLM
and helps with the final cleanup function.

If this option is not used, _Prelude is the default.

WLINK: OPTION START

Parent Topic: Linker Directives and Options

Supplementary Commands

The following table lists supplementary commands.

Command Description

.a Displays the abend or break reason.

.c Does a diagnostic core dump to diskette (this
can take a great number of diskettes).

.d [address] If no address is specified, displays a page
directory map for the current debugger domain.

When address is specified, displays page entry
map for the current debugger domain.

.h Displays help information about the
supplementary commands.

.l offset [offset] Displays linear address given page map offsets.

.lx address Displays page offsets and values used for
translations.

.m Displays the names and addresses of the loaded
modules.

.p [address] If no address is specified, displays process
(thread) names and addresses.

If address is specified, displays address as a

NLM Programming

NLM Development Tools: Concepts 229

If address is specified, displays address as a
process (thread) control block.

You can use this command to determine what a
particular thread is doing. For example, you can
examine the values on the stack, which contain
return addresses for called functions, to
determine what an inactive task is doing
(waiting on a semaphore, waiting on keyboard
input, and so on). That is, you can construct a
"trail" of functions that have been called.

This command now displays the semaphore
address when listing processes waiting on a
semaphore.

.r Displays running process (thread) control block.
This command displays information about the
running thread in the same format as the .p
address command.

.s [address] If address is not specified, displays all screen
names and their addresses.

If address is specified, displays the specified
address as a screen structure.

A pointer value obtained by the .s command is
used as the address parameter. The command .s
address is another way to get information about
the current activity of a sleeping thread.

.sem [semaphore
address]

If an address is not specified, lists all
semaphores that have processes waiting on
them.

If a semaphore address is specified, displays
detailed information about the semaphore.

.t Toggles the "developer option" on or off.

.v Displays server version.

Parent Topic: Debugger Commands

Symbols Used by NLMLINK

The following symbols are used by NLMLINK:

@ Instructs the linker to process the contents of the
specified directive file (for a definition of a directive file,
see Linker Definition Syntax).

Note:The linker should accept an empty file.

Marks the beginning of a comment, which continues to

NLM Programming

NLM Development Tools: Concepts 230

the end of the line.

Whitespace
characters

Includes spaces, commas, tabs, carriage-returns, and
line-feeds.

Parent Topic: Linker Directives and Options

SYNCHRONIZE

SYNCHRONIZE

This directive sets a flag in the flags field of the NLM™ header indicating
that when this NLM is loaded, the load process goes to sleep until the NLM
calls SynchronizeStart. This prevents other console commands (particularly
LOAD) from being processed while the NLM is loading.

The flags are defined as shown in the Current Features table (see
FLAG_ON, FLAG_OFF).

WLINK: OPTION SYNCHRONIZE

Parent Topic: Linker Directives and Options

Ternary Operators

If expression1 is true, the result is the value of expression2; otherwise, the
result is the value of expression3.

 expression1 ? expression2 , expression3

In the following example, a break is taken on

 myFunction(char *myData)

if the carry flag (FLCF) is true and EAX contains 9C, or if the carry flag is
false and the first byte of myData is 0:

 b = myFunction (FLCF ? eax == 9c, [b [desp+4]] == 0)

Parent Topic: Specifying Expressions

THREADNAME

THREADNAME "initial thread name"

NLM Programming

NLM Development Tools: Concepts 231

This directive is used to name the threads of the NLM™ application. The
first 12 characters are used to create names for threads. For example, if the
name was Process, then threads created in the NLM would be named
"Process 1," "Process 2," "Process 3," and so on. Thread names can be
displayed by using the .P option in the NetWare® Internal Debugger.

The thread name is restricted to no more than 17 characters.

WLINK: OPTION THREADNAME

Parent Topic: Linker Directives and Options

TYPE

TYPE number

This directive is used to provide the type for the NLM™ application. If no
type is given, the default value is 0. NLM types are listed in the following
table.

Table auto. NLM Types and Corresponding Extensions

Num
ber

Extensio
n

Description

0 .NLM Generic NLM (default value)

1 .LAN LAN driver

2 .DSK Disk driver

3 .NAM Name space support module

4 .NLM Utility or support program

5 .MSL Mirrored Server Link

6 .NLM OS NLM

7 .NLM Paged high OS NLM

8 .HAM Host Adapter Module (works with Custom Device
Module)

9 .CDM Custom Device Module (works with Host Adapter
Module)

10 .NLM OS Reserved

11 .NLM OS Reserved

12 .NLM OS Reserved

This directive should not be repeated.

Parent Topic: Linker Directives and Options

NLM Programming

NLM Development Tools: Concepts 232

Unary Operators

The unary operators have precedence 1.

Symbol Description

! Logical not

- 2's complement

~ 1's complement

Parent Topic: Specifying Expressions

Understanding the Open File Information Screen

Information pertaining to the open file is displayed on the Open File
Information screen, as follows.

Field Description

Thread ID Displays the thread level context for the open
file.

Opening NLM Displays the NLM that opened the file.

OS Handle Displays the NetWare handle for the open file.

Position in File Displays the position where the file was opened,
0 (zero) being the beginning.

Access Rights

Connection Displays which server connection opened the
file.

Task Displays the task number the connection was
opened with.

Directory Number Displays the name of the file opened.

Volume Number Displays the volume on which the open file is
located.

Open Count Displays the number of times the file was
opened.

Dup Count Displays the number of times the Dup function
was called.

Open Type Displays the file type. File types include:

LOCAL FILE

NLM Programming

NLM Development Tools: Concepts 233

LOCAL QUEUE

REMOTE FILE

DOS FILE

EXTENDED ATTRIBUTE

STREAM FILE

BSD SOCKET

CONSOLE

PRINT QUEUE

ASYNC IO

REMOTE_EA

Task Number
Allocated?

Displays Yes or No, was another task number
allocated?

Opened stdin Displays Yes or No, was a stdin opened?

Parent Topic: Watching for File Opens

Using NLMLINK

NLMLINK is a linker that was created specifically for linking NLM™
applications. Novell® supplies the linker NLMLINK in three versions:
NLMLINKR (DOS real mode and 640 KB limit), NLMLINKX (DOS
protected mode and requires DOS4GW), and NLMLINK2 (OS/2* version).

The current version is identified as "2.82 X2R" in the startup banner.

These three executables replace the older NLMLINKP and NLMLINKR.
NLMLINKP is no longer supported. NLMLINKX is more compatible with
memory managers. DOS4GW is distributed with the WATCOM* compiler
(version 9.0 and above) and should be in the search path before running
NLMLINKX.

All three executables are created from the same source code, so there should
be no functional differences except those imposed by the execution
environment.

To see the directives available for use with NLMLINK, enter the following
at the command line:

 NLMLINKP

The usage for NLMLINK is as follows:

 NLMLINKP <def file name>

Where <def file name> is the name of the definition file holding the options
for NLMLINK.

NLM Programming

NLM Development Tools: Concepts 234

Related Topics

NLMLINK Version History

Using Pragmas

The WATCOM* C/386 and C/C++32 compilers also include a powerful set
of compiler directives known as pragmas. Pragmas allow you to specify
certain compiler options, default libraries, the way structures are stored in
memory, and so on. For example, auxiliary pragmas can be used to
customize the code generation process as follows:

Give an alternate name to a public symbol (for example, a symbol called
MyFunc in the C source code could generate a reference to __MyFunc in
the object file).

Define the meaning of the cdecl, Pascal, and FORTRAN keywords.

Define the calling information for a function or for a group of functions.

Calling information includes specifying such things as:

Whether parameters are in registers or on a stack

Whether the parameters are in reverse order on the stack

The register where a particular parameter is located

The registers where the result is returned

Whether the caller or the function removes the parameters from the stack

The actual sequence of bytes to perform a function

Some versions of the compiler also allow inline assembly in pragmas.

For more information about pragmas, see the WATCOM manuals.

Parent Topic: WATCOM Compilers

Using the NetWare Internal Debugger

The NetWare® Internal Debugger is an assembly language debugger that is
always present within the NetWare 3.x and 4.x OS's.

This debugger is a command line debugger that does not display source
code. However, you can use the WATCOM* utility WDISASM with the "/s
/l" options to create a list file containing C source interspersed throughout
the assembly code. This is very helpful for debugging in 386 assembly. To
use the internal debugger, you should have some knowledge of 80386

NLM Programming

NLM Development Tools: Concepts 235

assembly language and stack-based parameter passing.

The internal debugger was designed specifically to debug NLM™
applications. It includes a set of supplementary commands that are
customized for NLM applications, such as the .A (display abend or break
reason) and .P (display all process names and addresses) commands. These
are not part of a typical debugger. The internal debugger allows resident
debugging, in which the debugger and the test application run on the same
server. In addition, the internal debugger provides a way to debug multiple
NLM applications concurrently.

NOTE: The SDK includes debug versions of IPXS.NLM, SPXS.NLM,
TLI.NLM, STREAMS.NLM, and CLIB.NLM respectively named
IPXSDEB.NLM, SPXSDEB.NLM, TLIDEB.NLM, STREAMSD.NLM and
CLIBDEB.NLM. Debug records are linked in with each of these NLM
applications, allowing better visibility to developers using the internal
debugger.

You can access the NetWare Internal Debugger in any of the following
ways:

Press Left-shift+Right-shift+Alt+Esc to enter the internal debugger. This
keystroke combination activates the internal debugger and halts the
server.

NOTE: If the SECURE CONSOLE command is in effect, you
cannot access the NetWare Internal Debugger from the keyboard.

Enter an INT 3 instruction in an assembly language program.

Call the NetWare API function Breakpoint in a C language program.

You can then set execution breakpoints, single-step through program
execution, examine the contents of memory, and so on.

Some points to be aware of when using the internal debugger are:

NetWare 3.x and 4.x run in the 386 protected mode, using a flat memory
model. In a flat memory model, the values in the segment registers do not
change once they are initialized by the NetWare OS. Since they do not
change, the internal debugger does not display them.

The internal debugger supports program global symbolic information; it
does not support local symbolic information. Any symbols that you want
to reference from the internal debugger must be system-wide globals. To
access symbolic information, the program must be linked with the
DEBUG (for NLMLINK and WLINK) directive. For detailed information
about this directive, see NLM Linkers.

The internal debugger is case-sensitive to symbols. Keep this in mind
when specifying any symbol references.

All numbers are entered and displayed in hexadecimal format.

NLM Programming

NLM Development Tools: Concepts 236

Bytes, words, double-words, and pointers are pushed onto the stack as
4-byte parameters.

Related Topics

Debugger Commands

Using the WATCOM Compilers

To compile the NLM™ source and create an object file, invoke the
WATCOM* C/386 and C/C++32 compilers at the workstation as follows:

WCC386 [options] [drive] [path] filename [options]

options

List of valid C compiler options, each preceded by a slash (/) or a dash
(-). You can specify options in any order.

drive

Optional drive specification (for example, A: or B:). If you do not
specify the drive, the default drive is assumed.

path

Optional path specification (for example, \PROGRAMS\SRC\). If you
do not specify the path, the current directory is assumed.

filename

Name of the file to be compiled. You can include the filename
extension, if applicable. If you omit the extension, a filename extension
of .C is assumed. If you specify the period (.) but not the extension, the
file is assumed to have no filename extension.

options

To display a summary of the WATCOM C/386 and C/C++32 compiler
options, enter the name of the compiler with no arguments. For an
explanation of all of the compiler options, see the WATCOM manuals.

Starting with the WATCOM C/C++32 compiler and tools, you can compile
and link an NLM with the following command:

WCL386 /BT=NETWARE /L=NETWARE filename

filename

The name of the source file, including the .C filename extension.

For a complete listing of the options and syntax for WCL386 see the
WATCOM manuals.

NOTE: Before using WCL386, you must define the INC386 and
LIB386 environment variables to point to the libraries and the Novell
headers that WATCOM provides.

NLM Programming

NLM Development Tools: Concepts 237

NOTE: WATCOM now has a version of WVIDEO that runs on
NetWare 4.x. This version is available with the latest WATCOM C/C++
compiler or from WATCOM's BBS.

Parent Topic: WATCOM Compilers

Using the WATCOM Linker

There are three ways you can use WLINK to link your NLM™ applications:

Interactively

Listing options and directives on the command line

Referencing a directive file

To use WLINK interactively, type:

 WLINK

You will be prompted for input. Enter the directives and options, then press
Ctrl+Z.

You can use WLINK by listing all directives and options at the command
line. With DOS, you are limited to 127 characters, so this method has limited
use. To do this, enter the following:

 WLINK <list of directives and options>

Another way to use WLINK is to list all of the directives and options in a
directive file and reference the file as follows:

 WLINK @mynlm

You can view linker directives specific to NLM applications by entering the
following command:

 WLINK ? NOV

Using the WVIDEO Debugger

WVIDEO is a source-level debugger that uses remote debugging. Remote
debugging involves using two computers to debug your application, as
follows:

Run the NLM™ application on a NetWare® server, called the task server.

Run WVIDEO on the other PC, called the debugger machine.

Remote debugging consists of two stages:

NLM Programming

NLM Development Tools: Concepts 238

Setting up the server for remote debugging.

Running WVIDEO on the debugger machine.

Related Topics

Setting Up the Server for Remote Debugging

Setting Up the Debugger Machine for Remote Debugging

Placement of Debugging Files

Running WVIDEO

VERBOSE

VERBOSE

This directive causes the linker to display more information while linking.

WLINK: OPTION VERBOSE

Parent Topic: Linker Directives and Options

VERSION

VERSION major version, minor version, revision

This directive communicates the version number of the NLM™ application.
This number is displayed on the console screen when the NLM loads. The
numbers must be separated by whitespace characters. The revision is
optional.

The major version can be any number. The minor version can be 0 - 99. The
revision can be 0 - 26, representing a - z. If the revision is greater than 26, it
is set to 0.

Version information is required. The linker displays an error message if the
VERSION directive is not used.

WLINK: OPTION VERSION

Parent Topic: Linker Directives and Options

Viewing CLIB Remote Connection Information

NLM Programming

NLM Development Tools: Concepts 239

Use the CLib Remote Connection option to view in real time all remote
connections to the server on which NLMDEBUG is running. The
information provided by this option includes the ID of the server to which
there is a connection, number of remote connections to each server, the
connection number as found in the session list, and the connection
type---attached, logged-in, or cached. Specific information for each
connection is also available.

To view CLIB remote connection information, select CLib Remote
Connections from the NLMDebug main menu and press Enter.

The Remote CLib Connections screen opens, displaying all remote
connections to the server on which you are running NLMDEBUG. The IDs
of all remote servers, the number of connections to each server, and the
connection types are displayed.

Your server can have more than one type of connection to a specific remote
server. A logged-in connection is one created by LoginToFileServer. An
attached connection is one created by AttachToFileServer. A cached
connection is one created by ReturnConnection. A cached connection is a
connection that has been returned but not completely destroyed. Caching
connections is important for speed in NetWare.

To view the connection information for a specific server, from the Remote
CLib Connections screen select the server for which you want connection
information and press Enter.

The Connection Information screen opens, displaying all remote
connections to the server.

The connection numbers as found in the session list are displayed as well as
the connection types.

To view detailed information for a specific connection, from the Connection
Information screen select the connection for which you want detailed
information and press Enter.

The Detailed Connection Information screen opens, displaying information
for that connection.

The Slot and Status fields display the connection number and connection
type, respectively. The Net field displays the network address, the node,
and the socket. The NLMID field displays the ID of the NLM that gained
the connection. You can also view information about the authentication
state, whether or not the connection is licensed and whether or not the
connection is an NDS™ connection.

Parent Topic: Setting Up and Using NLMDebug

Watching for File Opens

NLM Programming

NLM Development Tools: Concepts 240

Use the File Opens option to have NLMDebug halt every time someone
issues a CLIB open command or whenever a specified NLM™ application
opens a file.

To use File Opens, select File Opens from the NLMDebug main menu and
press Enter.

The File Opens Setup Menu is displayed.

To have NLMDebug halt whenever a CLib open command is detected, do
the following:

1. From the File Opens Setup Menu select Halt Processing on Every
CLib Open and type Y.

2. Press F10.

NLMDebug runs until a CLIB open command is detected. NLMDebug
halts and the Open File Information screen is displayed on the console.

To have NLMDebug halt when a specific NLM is opened, do the following:

1. From the File Opens Setup Menu select Halt & Show Info. This NLM
Opens: and enter the name of the NLM you want watched.

2. Press F10.

NLMDebug runs until the specified NLM is opened. NLMDebug halts
and the Open File Information screen is displayed on the console.

For more about the Open File Information Screen, see Understanding the
Open File Information Screen.

Parent Topic: Setting Up and Using NLMDebug

WATCOM Compilers

The WATCOM* C/386 and C/C++32 compilers are cross-compilers that run
under DOS or OS/2* 2.x, yet produce object files for other operating
systems. They generate 32-bit protected mode code. They are command-line
oriented, with the usual complement of switches to specify such things as

Whether to include debug information in the object file

The name of the object file (if other than the default)

What directory or directories to get include files from

The amount and kind of optimization to perform

For detailed information about this compiler, see the WATCOM manuals.

NLM Programming

NLM Development Tools: Concepts 241

Related Topics

Using the WATCOM Compilers

Passing Parameters

Using Pragmas

Write Fault Emulation

This parameter determines the action taken when a write page fault occurs.
If set to ON, the OS temporarily maps the requested memory page to the
current domain and the OS executes the write instruction. Then the OS
unmaps the page from the current domain.

If set to OFF, an attempt to write to a nonexistent memory page results in a
write page fault. If the "developer option" flag is set to OFF, the NLM™
application is quarantined. If the "developer option" flag is set to ON, the
server abends and calls the debugger.

Default Setting: OFF

Recommended Setting: OFF

Parent Topic: Setting Server Parameters

Write Fault Notification

If the "write fault emulation" flag is set to ON, the OS sends a message to the
system console screen and to a log file, recording the details of the write
page fault.

Default Setting: ON

Recommended Setting: ON

Parent Topic: Setting Server Parameters

XDCDATA

XDCDATA path to RPC file

This directive specifies a path to a file containing Remote Procedure Call
(RPC) descriptions for functions in the NLM™ application. RPC
descriptions for functions make it possible for functions to be exported
across memory protection domain boundaries.

NLM Programming

NLM Development Tools: Concepts 242

The RPC compiler, which produces this file, has not yet been released.

WLINK: OPTION XDCDATA

Parent Topic: Linker Directives and Options

NLM Programming

NLM Development Tools: Concepts 243

Advanced

NLM Programming

 244

Advanced: Guides

Advanced: Concept Guide

Advanced functionality allows you to take advantage of some advanced
features provided by the NetWare® OS.

General Information

Advanced Function List

Advanced Service Areas

Dynamic Array Functions

Event Reporting and Management Functions

File I/O Functions

Using SynchronizeStart(): Example

Dynamic Linkage of Exported Symbols

Additional Links

Advanced: Functions

Advanced: Structures

NLM Programming

Advanced: Guides 245

Advanced: Concepts

Advanced Function List

AllocateDynArrayEntry Allocates an entry in a dynamic array.

AllocateGivenDynArrayE
ntry

Allocates an entry in a dynamic array at
a given element index.

AllocateResourceTag Allocates a resource tag for a particular
resource.

AsyncRead Allows a file to be read directly from
cache memory.

AsyncRelease Releases the cache buffer memory
allocated by a call to AsyncRead.

CancelNoSleepAESProces
sEvent

Cancels a scheduled AES (Asynchronous
Event Scheduler) event.

CancelSleepAESProcessEv
ent

Cancels a scheduled AES event.

DeallocateDynArrayEntry Frees the dynamic array entry at a
specified index.

GetFileHoleMap Returns a block allocation map for a file.

GetSetableParameterValu
e

Obtains the value of a server parameter.

GetThreadDataAreaPtr Returns the thread switch data area
pointer for the current thread.

gwrite Writes multiple buffers to a file.

ImportSymbol Returns a pointer to an exported symbol.

NWAddSearchPathAtEnd Adds a search path to the end of the
search path list that the OS uses to
determine the location of NLM
applications.

NWGarbageCollect Unfragments freed server memory.

NWDeleteSearchPath Deletes a search path from the search
path list that the OS uses to determine
the location of NLM applications.

NWGetSearchPathElemen
t

Returns a search paath from the search
path list that the OS uses to determine
the location of NLM applications.

NLM Programming

Advanced: Concepts 246

NWInsertSearchPath Inserts a search path into the search path
list that the OS uses to determine the
location of NLM applications.

qread Performs a low-overhead read operation.

qwrite Performs a low-overhead write
operation.

RegisterConsoleComman
d

Registers a console command parsing
function.

RegisterForEvent Registers to be notified when a particular
event occurs.

SaveThreadDataAreaPtr Sets the thread switch data area pointer
for the current thread.

ScanSetableParameters Returns information about server
parameters.

ScheduleNoSleepAESProc
essEvent

Defines a procedure to be called by the
asynchronous event scheduler (AES)
after a specified delay.

ScheduleSleepAESProcess
Event

Defines a procedure to be called by the
AES after a specified delay.

SetSetableParameterValu
e

Sets the value of a server parameter.

SynchronizeStart Restarts the NLM™ start-up process
when using synchronization mode.

UnimportSymbol Eliminates the dependency of an NLM
on a specified external symbol.

UnRegisterConsoleComm
and

Cancels a registered console command
parsing function.

UnregisterForEvent Cancels a registration for event
notification.

Dynamic Array Functions

The dynamic array functions, listed below, assist the developer in handling
arrays that grow dynamically.

AllocateDynArrayEntry

AllocateGivenDynArrayEntry

DeallocateDynArrayEntry

These functions perform some of the housework necessary when expanding
in-memory tables.

NLM Programming

Advanced: Concepts 247

An example of this kind of table is a connection table that might be used in
an NLM™ application. More specifically, a database server might maintain
a table where each entry contains information about one of the server's
clients. To avoid limiting the database server to an arbitrary maximum
number of clients it can service, this connection table expands whenever
new clients are added. Dynamic array functions perform some of the
housework for this expansion.

When using dynamic array functions, do the following:

1. Create a data structure called a dynamic array block (DAB). This
structure describes information table, such as entry types and expansion
parameters.

2. The DAB is an input parameter to one of two functions called whenever
the table must expand. Which function is used depends on how the
indexes to entries in the dynamic array are generated. Initially a
dynamic array has no entries. In the database server example, the
dynamic array would expand every time a new client requests service.

3. Call another function when a dynamic array entry is no longer being
used, so that entry can be reused.

There are two methods for generating indexes:

One method is to call AllocateDynArrayEntry, which generates the
index for a new entry.

The other method is to specify which index to use when allocating a new
entry in a dynamic array by calling AllocateGivenDynArrayEntry .

Dynamic array terms are defined as follows:

entry

Refers to an element in the dynamic array. For example, consider a
dynamic array consisting of 20 bytes. If the element size is 4 bytes, then
there are 5 entries in the array. Element and entry are used
interchangeably. Entries may or may not be in use.

dynamic array

An array whose number of enties can be increased dynamically by the
user as needed at run time.

DAB (dynamic array block)

A structure used to control a dynamic array. Every dynamic array
must have a DAB associated with it.

grow amount

The user specifies the number of elements to add to the dynamic array
when AllocateDynArrayEntry is invoked and there are no unused
array elements. For example, if the grow amount is 5, the first call to
AllocateDynArrayEntry produces an array of 5 elements. The next
call increases the number of elements to 10 only if there are no unused

NLM Programming

Advanced: Concepts 248

array elements in the first 5. The grow amount is not used with
AllocateGivenDynArrayEntry .

reallocation function

This function is used to reallocate memory for use by the dynamic
array, and must allow resizing. Currently, only realloc allows resizing.
However, users can write their own resizing memory allocation
function, as long as the number and definition of parameters is the
same as for realloc.

Dynamic Linkage of Exported Symbols

ImportSymbol and UnimportSymbol allow you to link and unlink
exported module symbols dynamically. Any symbol exported by an NLM
may be imported dynamically by another NLM by calling ImportSymbol.
This function is especially useful for creating an NLM that doesn't fully rely
on a symbol or set of symbols, but can have enhanced functionality if those
symbols are present. It is also useful for creating NLM applications that can
load on multiple versions of the server, and can take advantage of features
that are present in one version but not the other.

The function uses the "handle" of the NLM importing the symbol, and the
name (ASCIIZ string) of the symbol being imported. If successful, the
function returns the address of the symbol. The module dependency list
maintained by the OS reflects the NLM depencency on that symbol. If the
symbol is not available for import, the function returns NULL.

Once the symbol is imported, the NLM may freely call or access the symbol
as if it had been statically imported at load time. Symbols may be imported
from the OS itself or from other NLM applications that have exported
symbols.

The reverse of importing symbols is also possible. UnimportSymbol tells
the OS that the NLM no longer needs the specified symbol. If
UnimportSymbol is successful, the OS removes the NLM depencency on
that symbol. This allows the NLM from which the symbol was dynamically
imported to unload, providing no other dependencies exist on either the
NLM as a whole or any other symbols it exports.

NOTE: If a symbol is un-imported, it must not be accessed.

The return type of ImportSymbol is a void pointer. Generally, you can
assign the return value of data symbols to any pointer to object type,
although you should be careful to access the data object in ways that are
consistent with the type it really is.

It is not as generally acceptable in STD C to typecast a void pointer as a
function pointer, and you should be careful about this operation in your
source code.

Beginning with version 4.0 of the SDK, a header file (NEWIN400.H for

NLM Programming

Advanced: Concepts 249

NetWare 4.0) is provided that typedefs all functions that are new to that
version of CLIB.NLM as compared to the previous version. This can be of
some aid in creating variables to which to assign the return value of
ImportSymbol.

Event Reporting and Management Functions

Use the event reporting functions to obtain and set the thread data area
pointer for the current thread, to perform and cancel event notification, and
to restart the NLM startup process when using synchronization mode. These
functions are listed below:

GetThreadDataAreaPtr

RegisterConsoleCommand

SaveThreadDataAreaPtr

SynchronizeStart

UnRegisterConsoleCommand

NLM applications that manage events can use event management functions
to allocate resource tags and process events. Event management functions
are listed below:

AllocateResourceTag

CancelNoSleepAESProcessEvent

CancelSleepAESProcessEvent

ScheduleNoSleepAESProcessEvent

ScheduleSleepAESProcessEvent

File I/O Functions

NLM applications that need faster access to files and information about
sparse files can use File I/O functions.

AsyncRead

AsyncRelease

GetFileHoleMap

gwrite

qread

NLM Programming

Advanced: Concepts 250

qwrite

NLM Programming

Advanced: Concepts 251

Advanced: Functions

NLM Programming

Advanced: Functions 252

AllocateDynArrayEntry

Allocates an entry in a dynamic array

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwdynarr.h>

int AllocateDynArrayEntry (
 T_DYNARRAY_BLOCK *dabP);

Parameters

dabP

(IN) Points to the T_DYNARRAY_BLOCK structure containing the
Dynamic Array Block (DAB).

Return Values

This function returns the index of the entry (a value of 0 or greater) if
successful. Otherwise, it returns an error code:

-1 EFAILU
RE

5 ENOME
M

Not enough memory.

Remarks

Call the AllocateDynArrayEntry function to allocate additional entries in
the dynamic array. The dynamic array can be increased in size, but not
decreased.

DABarrayP is the pointer to the dynamic array. It is referenced as
varName.DABarrayP. To reference an entry of the dynamic array, the
expression, varName.DABarrayP[index] is used. If the entry is a structure,
one of its fields can be referenced as varName.DABarrayP[index].field.

DABrealloc is the address of the desired memory allocation function

NLM Programming

Advanced: Functions 253

which must allow resizing. This function is normally realloc, but it can be
a developer-defined function.

DABgrowAmount is the number of elements by which to increase the
dynamic array when more elements are needed.

The DAB structure can be declared and initialized by standard C
methods, or the following macro can be used:

GEN_DYNARRAY_BLOCK(elementType, varName, defDec)

Where elementType is the C type of the element, such as int, struct, and so
on. varName is the name of the variable declared as a dynamic array.
defDec can be DECLARE, DEFINE, or INIT, as follows:

DELARE

Declares the varName as the type of DAB specified. Generates the
following:

struct varName##Struct varName

DEFINE (realloc, growAmount)

Defines and initializes varName as the type of DAB specified.
Generates the following:

struct varName##Struct
{
 elementType *DABarrayP;
 int DABnumSlots;
 int DABelementSize;
 void *(*DABrealloc) (void *, size_t);
 int DABgrowAmount;
 int DABnumEntries;
} varName = {NULL, 0, elementSize, realloc, growAmount, 0}

INIT (realloc, growAmount)

Initializes an already-defined DAB. Generates the following:

struct varName##Struct varName =
 {NULL, 0, elementSize, realloc, growAmount, 0}

The parameters for DEFINE and INIT are as follows:

realloc

Specifies the reallocation function to use when expanding the dynamic
array. Normally, this would be realloc.

growAmount

Specifies the amount to expand the dynamic array by if
AllocateDynArrayEntry expands the array.

See Also

NLM Programming

Advanced: Functions 254

AllocateGivenDynArrayEntry , DeallocateDynArrayEntry

NLM Programming

Advanced: Functions 255

AllocateGivenDynArrayEntry

Allocates an entry in a dynamic array at a given element index

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwdynarr.h>

int AllocateGivenDynArrayEntry (
 T_DYNARRAY_BLOCK *dabP,
 int ndx);

Parameters

dabP

(IN) Specifies a pointer to the Dynamic Array Block (DAB).

ndx

(IN) Specifies the desired 0-based element index into the dynamic
array.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns an
error code:

5 ENOME
M

Not enough memory.

Remarks

Use the AllocateGivenDynArrayEntry function to allocate additional
entries in the dynamic array.

The array can be increased in size, but not decreased.

If the index goes beyond the number of elements in the array, the
array is expanded to accommodate it. All intermediate entries are
allocated and marked as available.

NLM Programming

Advanced: Functions 256

If an in-use memory block already exists at the specified index, it is
overwritten, and 0 is returned.

DAB is a structure with the following elements:

elementType *DABarrayP;
 /* elementType = int,struct,typedef,..*/
int DABnumSlots;
int DABelementSize; /* user-supplied */
void *(*DABrealloc) (void *, size_t); /* user-supplied */
int DABgrowAmount; /* user-supplied */
int DABnumEntries;

DABarrayP is the pointer to the dynamic array. It is referenced as
varName.DABarrayP. To reference an entry of the dynamic array, the
expression, varName.DABarrayP[index] is used. If the entry is a
structure, one of its fields can be referenced as
varName.DABarrayP[index].field.

DABrealloc is the address of the desired memory allocation function
which must allow resizing. This function is normally realloc, but it can be
a user-defined function.

DABgrowAmount is ignored for this function.

This structure can declared and initialized by standard C methods, or the
following macro can be used:

GEN_DYNARRAY_BLOCK(elementType, varName, defDec)

See AllocateDynArrayEntry for more detailed information about this
macro.

See Also

AllocateDynArrayEntry, DeallocateDynArrayEntry

NLM Programming

Advanced: Functions 257

AllocateResourceTag

Allocates a resource tag for a particular resource

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwadv.h>

LONG AllocateResourceTag (
 LONG NLMHandle,
 BYTE *descriptionString,
 LONG resourceType);

Parameters

NLMHandle

(IN) Specifies the handle of the NLM™ application for which a
resource tag is desired; the NLM handle is obtained by calling
GetNLMHandle.

descriptionString

(IN) Points to a string describing the resource tag.

resourceType

(IN) Specifies the type of resource tag desired.

Return Values

This function returns a resource tag if successful or a value of 0 if not
successful.

Remarks

The resource tag is used as a parameter to other function calls which
allocate resources, and in turn, used by the NetWare® Resource
Management System. A list of resource types or resource tag signatures
can be found in nwadv.h:

Resource Type For Use With

AESProcessSignature ScheduleNoSleepAESProcessEvent

NLM Programming

Advanced: Functions 258

ScheduleSleepAESProcessEvent

ConsoleCommandSi
gnature

RegisterConsoleCommand

See Also

alloca, __qmalloc, GetNLMHandle

NLM Programming

Advanced: Functions 259

AsyncRead

Reads a file directly from cache memory

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwfile.h>

int AsyncRead (
 int handle,
 LONG startingOffset,
 LONG numberOfBytesToRead,
 LONG *numberOfBytesActuallyRead,
 LONG localSemaphoreHandle,
 T_cacheBufferStructure
 **cacheBufferInformation,
 LONG *numberOfCacheBuffers);

Parameters

handle

(IN) Specifies a handle of the file from which data is to be read.

startingOffset

(IN) Specifies the offset in the file from which the first byte is to be
read.

numberOfBytesToRead

(IN) Specifies the number of bytes to read from the file.

numberOfBytesActuallyRead

(OUT) Receives the number of bytes actually read from the file.

localSemaphoreHandle

(IN) Used by the AsyncRead Event Service Routine (ESR) to signal
completion of all of the requested cache reads for a particular call to
AsyncRead. A local semaphore handle is obtained by calling
OpenLocalSemaphore. Either WaitOnLocalSemaphore or
ExamineLocalSemaphore should be used to determine when the ESR
has signalled the semaphore.

cacheBufferInformation

(OUT) Returns a pointer to an array of structures which contain the
cache buffer pointers, lengths, and completion codes.

NLM Programming

Advanced: Functions 260

numberOfCacheBuffers

(OUT) Receives the number of cache buffers required to perform the
file read.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns an
error code (nonzero value).

NOTE: If this function returns an error, do not wait on the local
semaphore passed. AsyncRead does not signal the semaphore when the
function fails.

Remarks

This function reads data from a file and returns pointers to the cache
buffers which contain the requested data. The requested data can then be
read directly from the cache buffers.

AsyncRead now reads only 64K at a time.

The cache buffer structure has the following form:

typedef struct cacheBufferStructure
 {
 char *cacheBufferPointer;
 LONG cacheBufferLength;
 int completionCode;
 } T_cacheBufferStructure;

The cacheBufferPointer field is the address of the first character for that
particular cache buffer. The cacheBufferLength field is the number of bytes
to be used from that cache buffer. The completionCode field is the NetWare
error code for that particular cache buffer read operation.

AsyncRelease must be called to release the memory allocated by
AsyncRead.

See Also

AsyncRelease, ExamineLocalSemaphore, OpenLocalSemaphore,
WaitOnLocalSemaphore

NLM Programming

Advanced: Functions 261

AsyncRelease

Releases the cache buffer memory allocated by a previous call to
AsyncRead

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwfile.h>

void AsyncRelease (
 T_cacheBufferStructure *cacheBufferInformation);

Parameters

cacheBufferInformation

(IN) Points to the address of the start of a cache buffer list returned by
a call to AsyncRead.

Return Values

None

Remarks

It is the responsibility of the user to free the cache memory created by an
AsyncRead call if an NLM should terminate before AsyncRelease is
called. The atexit, AtUnload, and signal functions can be used to handle
this situation. Note that _exit, by definition, does not call atexit, although
exit does call atexit.

See Also

AsyncRead, atexit, AtUnload, signal

NLM Programming

Advanced: Functions 262

CancelNoSleepAESProcessEvent

Cancels a previously scheduled event

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwthread.h>

extern void CancelNoSleepAESProcessEvent (
 struct AESProcessStructure *EventNode);

Parameters

EventNode

(IN) Points to an AESProcessStructure which describes the event to be
cancelled.

Return Values

None

Remarks

The EventNode should have been used in a previous call to
ScheduleNoSleepAESProcessEvent.

See Also

CancelSleepAESProcessEvent, ScheduleNoSleepAESProcessEvent

NLM Programming

Advanced: Functions 263

CancelSleepAESProcessEvent

Cancels a previously scheduled event

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwthread.h>

extern void CancelSleepAESProcessEvent (
 struct AESProcessStructure *EventNode);

Parameters

EventNode

(IN) Points to an AESProcessStructure which describes the event to be
cancelled.

Return Values

None

Remarks

The EventNode should have been used in a previous call to
ScheduleSleepAESProcessEvent.

See Also

CancelNoSleepAESProcessEvent

NLM Programming

Advanced: Functions 264

DeallocateDynArrayEntry

Frees the dynamic array entry at the specified index

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwdynarr.h>

int DeallocateDynArrayEntry (
 T_DYNARRAY_BLOCK *dabP,
 int ndx);

Parameters

dabP

(IN) Points to a Dynamic Array Block (DAB), as described for the
function AllocateDynArrayEntry.

ndx

(IN) Specifies the desired 0-based element index into the dynamic
array.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns:

-1 EFAILU
RE

Index exceeds limit or element is already deallocated.

Remarks

The specified element's space is not freed; it is just marked as available.

See Also

AllocateDynArrayEntry, AllocateGivenDynArrayEntry

NLM Programming

Advanced: Functions 265

GetFileHoleMap

Returns a block allocation map for a file

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwfile.h>

int GetFileHoleMap (
 int handle,
 LONG startingPosition,
 LONG numberOfBlocks,
 BYTE *replyBitMapP,
 LONG *allocationUnitSizeP);

Parameters

handle

(IN) Specifies the pertinent file handle.

startingPosition

(IN) Specifies the 0-based byte offset into the file.

numberOfBlocks

(IN) Specifies the number of file blocks required for a given file. This
indirectly specifies the size in bytes of replyBitMapP. This can be
computed by knowing the file size and the size of a block:

numberOfBlocks = (file-size) / (bytes-per-block) bytes-per-block = 8 x
(sectors-per-block)

Use filelength and GetVolumeInformation to get the necessary
information to compute the number of blocks.

replyBitMapP

(OUT) Points to a block of memory that should be considered as a
bit-stream. If the bit is set, then the file block is allocated. If it is cleared,
then the file block is not allocated.

allocationUnitSizeP

(OUT) Receives the size of each block in bytes.

Return Values

NLM Programming

Advanced: Functions 266

This function returns a value of 0 if successful. Otherwise, it returns an
error code (nonzero value).

Remarks

The startingPosition and numberOfBlocks specify which part of the file to
return information about.

NLM Programming

Advanced: Functions 267

GetSetableParameterValue

Obtains the value of a NetWare server console parameter

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwadv.h>

LONG GetSetableParameterValue (
 LONG connectionNumber,
 BYTE *setableParameterString,
 void *returnValue);

Parameters

connectionNumber

(IN) Specifies the connection number of the user who wants to obtain
information about server console parameters.

setableParameterString

(IN) Points to a NULL-terminated ASCIIZ string representing the
name of the server console parameter.

returnValue

(OUT) Points to the value of the server console parameter.

Return Values

This function returns 0 if successful, or -1 if an invalid setable parameter
string was specified.

Remarks

This function obtains the value of a setable parameter. A setable
parameter is a NetWare OS parameter that can be set using the SET
console command.

The setableParameterString parameter is the name of the setable
parameter, such as "Cache Buffer Size".

Enough space should be set aside for the return value to be copied to the
destination address pointed to by returnValue. The maximum size of a

NLM Programming

Advanced: Functions 268

server console parameter is 512 bytes.

See Also

ScanSetableParameters, SetSetableParameterValue , "SET" in
Supervising the Network

NLM Programming

Advanced: Functions 269

GetThreadDataAreaPtr

Gets the thread switch Data Area Pointer for the current thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: Yes

Service: Advanced

Syntax

#include <nwadv.h>

void *GetThreadDataAreaPtr (void);

Return Values

This function returns the thread switch pointer for the current thread.

Remarks

When thread-switch event reporting has been registered, the Data Area
Pointer is passed as the parameter to the report routine when a thread
switch occurs.

The pointer can point to any user-defined data structure.

See Also

SaveThreadDataAreaPtr, RegisterForEvent

NLM Programming

Advanced: Functions 270

gwrite

Writes multiple buffers to a file with a single call

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwfile.h>

int gwrite (
 int handle,
 T_mwriteBufferStructure
 *bufferP,
 LONG numberOfBuffers,
 LONG *numberOfBuffersWritten);

Parameters

handle

(IN) Handle of the file to which data is to be written.

bufferP

(IN) Pointer to an array of structures of type T_mwriteBufferStructure.
Each structure contains a pointer to the buffer to be written and the
number of bytes to be written.

numberOfBuffers

(IN) Specifies the number of structures in bufferP.

numberOfBuffersWritten

(OUT) Receives the number of buffers actually written.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns an
error code (nonzero value).

Remarks

The bufferP structure is defined in nwadv.h as:

char *mwriteBufferPointer
LONG mwriteBufferLength

NLM Programming

Advanced: Functions 271

int reserved

See Also

qwrite

NLM Programming

Advanced: Functions 272

ImportSymbol

Returns a pointer to an exported symbol

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

SMP Aware: Yes

Service: Advanced

Syntax

#include <nwadv.h>

void *ImportSymbol (
 int NLMHandle,
 char *symbolName);

Parameters

NLMHandle

(IN) Specifies the handle of the NLM that requires the symbol.

symbolName

(IN) Specifies the symbol to import.

Return Values

Returns a pointer to the function associated with the symbol upon
success. Otherwise, it returns 0.

Remarks

ImportSymbol is useful for resolving external symbol references that do
not exist when the NLM requiring those symbols loads. For example, if
an NLM calls Network Management functions, that NLM can test
whether the needed Network Management symbols are available.

The NLMHandle parameter can be obtained by calling GetNLMHandle.

See Importing a Function: Example.

See Also

GetNLMHandle, UnimportSymbol

NLM Programming

Advanced: Functions 273

NWAddSearchPathAtEnd

Adds a search path to the end of the search path list that the OS uses to
determine from where it loads NLM applications

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwadv.h>

int NWAddSearchPathAtEnd (
 BYTE *searchPath,
 LONG *number);

Parameters

searchPath

(IN) Points to a new path to be added at the end of the search path list.

number

(OUT) Points to a number defining where the new search path falls in
the list.

Return Values

0 Success

-1 Failure

Remarks

The number parameter may be used to delete the search path.

The number of search paths is equivalent to the number listed when the
NetWare server console `search' is entered.

See Also

NWDeleteSearchPath

NLM Programming

Advanced: Functions 274

NWGarbageCollect

Unfragments freed server memory

Local Servers: either blocking or nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwmalloc.h>

void NWGarbageCollect (
 LONG NLMHandle;

Parameters

NLMHandle

(IN) Specifies an NLM handle through which freed server memory
will be unfragmented.

Return Values

None

Remarks

NWGarbageCollect provides a programmatic way to unfragment server
memory before that memory is unfragmented automatically by the OS. If
a large number of calls have been made to allocate memory, especially in
small pieces, the NetWare 4.x OS often fragments server memory,
causing subsequent memory allocation calls to fail. A call to
NWGarbageCollect with a valid NLM handle unfragments all server
memory.

For the NLMHandle parameter, pass in the handle returned from a call to
GetNLMHandle.

Blocking Information: Although NWGarbageCollect can block in some
instances, it does not always do so.

See Also

FindNLMHandle, GetNLMHandle, MapNLMIDToHandle

NLM Programming

Advanced: Functions 275

NWDeleteSearchPath

Deletes a search path from the search path list the OS uses to determine
from where it loads NLM applications

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwadv.h>

int NWDeleteSearchPath (
 LONG searchPathNumber);

Parameters

searchPathNumber

(IN) Specifies the search path number to be deleted.

Return Values

0 Success

-1 Failure

Remarks

The number of search paths is equivalent to the number listed when the
NetWare server console `search' is entered.

See Also

NWAddSearchPathAtEnd

NLM Programming

Advanced: Functions 276

NWGetSearchPathElement

Returns a search path from the search path list the OS uses to determine
from where it loads NLMs

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwadv.h>

int NWGetSearchPathElement (
 LONG searchPathNumber,
 LONG *isDOSSearchPath,
 BYTE *searchPath);

Parameters

searchPathNumber

(IN) Specifies the search path number to be returned.

isDOSSearchPath

(OUT) Points to a flag indicating whether the search path is for the
DOS partition.

searchPath

(OUT) Points to a search path corresponding with searchPathNumber.

Return Values

0 Success

-1 Failure

Remarks

The number of search paths is equivalent to the number listed when the
NetWare server console `search' is entered.

NLM Programming

Advanced: Functions 277

NWInsertSearchPath

Inserts a search path into the search path list the OS uses to determine from
where it loads NLM applications

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwadv.h>

int NWInsertSearchPath (
 LONG searchPathNumber,
 BYTE *searchPath);

Parameters

searchPathNumber

(IN) Specifies the search path number to be entered.

searchPath

(OUT) Points to a new search path to be added to the search path list.

Return Values

0 Success

-1 Failure

Remarks

The number of search paths is equivalent to the number listed when the
NetWare server console `search' is entered.

NLM Programming

Advanced: Functions 278

qread

Performs a low-overhead read operation

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwfile.h>

int qread (
 int handle,
 void *buffer,
 LONG len,
 LONG position);

Parameters

handle

(IN) Specifies the pertinent file handle.

buffer

(OUT) Points to a buffer where the data is to be received.

len

(IN) Specifies the number of bytes to read.

position

(IN) Specifies the byte offset in the file at which to start reading.

Return Values

This function returns the number of bytes read.

Remarks

The qread function does not:

Perform parameter/context validation.

Maintain file position.

This function does not support:

Standard I/O

NLM Programming

Advanced: Functions 279

Semaphore use of the handle

Streams

BSD Sockets

See Also

qwrite

NLM Programming

Advanced: Functions 280

qwrite

Performs a low-overhead write operation

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwfile.h>

int qwrite (
 int handle,
 void *buffer,
 LONG len,
 LONG position);

Parameters

handle

(IN) Specifies the pertinent file handle.

buffer

(IN) Points to a buffer which contains the data.

len

(IN) Specifies the number of bytes to write.

position

(IN) Specifies the byte offset at which to start writing.

Return Values

If successful, this function returns the number of bytes written. If an error
occurs, it returns -1 (EFAILURE) and errno can be set to:

4 EBAD
F

Bad file number.

Remarks

The qwrite function does not:

NLM Programming

Advanced: Functions 281

Perform parameter/context validation.

Maintain file position.

This function does not support:

O_APPEND

Standard I/O

Semaphore use of the handle

Streams

BSD Sockets

See Also

qread

NLM Programming

Advanced: Functions 282

RegisterConsoleCommand

Registers a console command parsing function

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwadv.h>

void RegisterConsoleCommand (
 struct commandParserStructure *newCommandParser);

Parameters

newCommandParser

(IN) Defines a command parsing function.

Return Values

None (See "Remarks" for values returned by function inside
newCommandParser.)

Remarks

The command parsing function is called by the operating system
whenever an unrecognized console command is entered. The parsing
function is called with two parameters: a screen ID and a pointer to the
complete console command line (an ASCIIZ string).

The commandParserStructure can be found in the nwadv.h header file
and has the following definition:

struct commandParserStructure
 {
 struct commandParserStructure *Link;
 /* Set by RegisterConsoleCommand */
 LONG (*parseRoutine) (/* Parsing routine (user-defined) */
 LONG screenID,
 BYTE *commandLine);
 struct ResourceTagStructure *RTag;/* Set to resource tag */
 };

parseRoutine can have the following possible values returned:

NLM Programming

Advanced: Functions 283

0 The command was handled and does not allow any
subsequently registered command parser to be envoked.

Nonz
ero

The command was not handled. The console command thread
looks for other command parsers to handle the command. If
none does, NetWare displays "??? Unknown Command ???"

The required resource tag is obtained with a call to AllocateResourceTag
using the ConsoleCommandSignature constant (defined in nwadv.h) as
the signature value.

The function registered by RegisterConsoleCommand runs as a callback
(an OS Thread), which is not able to call most of the NetWare API
functions, unless it is given CLIB context.

For 3.11 NLM applications, you must manually create the thread group
context in your command parser, by calling SetThreadGroupID and
passing a valid thread group ID. Before this thread returns, it should
reset its context to its original context, by setting the thread group ID back
to its original value.

For 4.x NLM applications, the context that is given to the callbacks when
they are registered is determined by the value in the registering thread's
context specifier. You can set the context specifier to one of the following
options:

NO_CONTEXT---Callbacks registered with this option are not given
CLIB context. The advantage here is that you avoid the overhead
needed for setting up CLIB context. The disadvantage is that without
the context the callback is only able to call NetWare API functions that
manipulate data or manage local semaphores.

Once inside of your callback, you can manually give your callback
thread CLIB context by calling SetThreadGroupID and passing in a
valid thread group ID. If you manually set up your context, you need
to reset its context to its original context, by setting the thread group ID
back to its original value.

USE_CURRENT_CONTEXT---Callbacks registered with a thread that
has its context specifier set to USE_CURRENT_CONTEXT have the
thread group context of the registering thread.

A valid thread group ID---This is to be used when you want the
callbacks to have a different thread group context than the thread that
schedules them.

When a new thread is started with BeginThread, BeginThreadGroup or
ScheduleWorkToDo, its context specifier is set to
USE_CURRENT_CONTEXT by default.

You can determine the current setting of the registering thread's context

NLM Programming

Advanced: Functions 284

specifier by calling GetThreadContextSpecifier. Use
SetThreadContextSpecifier to set the registering thread's context
specifier to one of the above options.

For more information on using CLIB context, see the Context Problems
with OS Threads.

See Also

AllocateResourceTag, UnRegisterConsoleCommand

NLM Programming

Advanced: Functions 285

RegisterForEvent

Registers to be notified when a particular event occurs

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwadv.h>
LONG RegisterForEvent (
 LONG eventType,
 void (*reportProcedure) (
 LONG parameter),
 LONG (*warnProcedure) (
 void (*OutputRoutine) (
 void *controlString, ...),
 LONG parameter));

Parameters

eventType

(IN) Specifies an event type. The event types are listed in nwadv.h; for
example, EVENT_VOL_SYS_MOUNT.

reportProcedure

(IN) Lists the events that occurred.

warnProcedure

(IN) Can be NULL, since most events do not support a warning
procedure. (See nwadv.h for events which do call the warning
procedure.) The warning procedure returns zero or nonzero. If
nonzero, the user is given a choice to unload or not.

OutputRoutine

(IN) System-supplied.

parameter

(IN) Depends on event being registered.

Return Values

This function returns a nonzero event handle if successful. Otherwise it
returns EFAILURE (-1).

NLM Programming

Advanced: Functions 286

Remarks

Use this function whenever it is necessary to know about any of the
events listed in nwadv.h.

NOTE: To register for NDS events, call NWDSERegisterForEvent.

The function registered by RegisterForEvent runs as a callback (an OS
Thread), which is not able to call most of the NetWare API functions,
unless it is given CLIB context.

For 3.11 NLM applications, you must manually create the thread group
context in your command parser, by calling SetThreadGroupID and
passing a valid thread group ID. Before this thread returns, it should
reset its context to its original context, by setting the thread group ID back
to its original value.

For 4.x NLM applications, the context that is given to the callbacks when
they are registered is determined by the value in the registering thread's
context specifier. You can set the context specifier to one of the following
options:

NO_CONTEXT---Callbacks registered with this option is not given
CLIB context. The advantage here is that you avoid the overhead
needed for setting up CLIB context. The disadvantage is that without
the context the callback is only able to call NetWare API functions that
manipulate data or manage local semaphores.

Once inside of your callback, you can manually give your callback
thread CLIB context by calling SetThreadGroupID and passing in a
valid thread group ID. If you manually set up your context, you need
to reset its context to its original context, by setting the thread group ID
back to its original value.

USE_CURRENT_CONTEXT---Callbacks registered with a thread that
has its context specifier set to USE_CURRENT_CONTEXT have the
thread group context of the registering thread.

A valid thread group ID---This is to be used when you want the
callbacks to have a different thread group context than the thread that
schedules them.

When a new thread is started with BeginThread, BeginThreadGroup or
ScheduleWorkToDo, its context specifier is set to
USE_CURRENT_CONTEXT by default.

You can determine the current setting of the registering thread's context
specifier by calling GetThreadContextSpecifier. Use
SetThreadContextSpecifier to set the registering thread's context
specifier to one of the above options.

For more information on using CLIB context, see Context Problems with
OS Threads.

NLM Programming

Advanced: Functions 287

NOTE: It is very important that report routines for events do not block
unless it is explicitly allowed. The warn/check routines can sleep (but
should not have to). If a report procedure sleeps when prohibited, the
server abends. Report routines for the following events can sleep:

EVENT_ACTIVATE_SCREEN

EVENT_ALLOCATE_CONNECTION

EVENT_ANY_VOL_MOUNT

EVENT_ANY_VOL_DISMOUNT

EVENT_CLEAR_CONNECTION

EVENT_CLOSE_SCREEN

EVENT_DOWN_SERVER

EVENT_EXIT_TO_DOS

EVENT_LOGIN_USER

EVENT_LOGOUT_CONNECTION

EVENT_MODULE_LOAD

EVENT_MODULE_UNLOAD

EVENT_MODULE_UNLOADED

EVENT_NETWARE_ALERT

EVENT_OPEN_SCREEN

EVENT_PROTOCOL_BIND

EVENT_PROTOCOL_UNBIND

EVENT_REMOVE_PUBLIC

EVENT_SFT3_IMAGE_STATE

EVENT_SFT3_PRESYNC_STATE

EVENT_SFT3_SERVER_STATE

EVENT_VOL_SYS_DISMOUNT

EVENT_VOL_SYS_MOUNT

The report routine for all other events must not sleep.

The following summarizes the events, whether they call a warn routine,
and whether or not they can sleep:

Event Calls
warn
routi
ne

Ca
n
Sle
ep

Description

EVENT_VOL_SYS_MOUN
T

0 No Yes parameter is
undefined. Report
Routine is called
immediately after vol
SYS: has been
mounted.

EVENT_VOL_SYS_DISMO
UNT

1 Yes Yes parameter is
undefined. Warn
Routine and Report
Routine is called

NLM Programming

Advanced: Functions 288

Routine is called
before vol SYS: is
dismounted.

EVENT_ANY_VOL_MOU
NT

2 No Yes parameter is volume
number. Report
Routine is called
immediately after any
volume is mounted.

EVENT_ANY_VOL_DISM
OUNT

3 Yes Yes parameter is volume
number. Warn
Routine and Report
Routine is called
before any volume is
dismounted.

EVENT_DOWN_SERVER 4 Yes Yes parameter is
undefined. Warn
Routine and Report
Routine is called
before the server is
shut down.

See Using
DOWN_SERVER
Event: Example.

EVENT_EXIT_TO_DOS 7 No Yes parameter is
undefined. The
Report Routine is
called before the
server exits to DOS.
Only available in
NetWare 4.x

EVENT_MODULE_UNLO
AD

8 Yes Yes parameter is module
handle. Warn Routine
and Report Routine is
called when a module
is unloaded from the
console command
line. Only the Report
Routine is called
when a module
unloads itself.

See Using the
MODULE_UNLOAD
Event: Example.

EVENT_CLEAR_CONNE
CTION

9 No Yes parameter is
connection number.
Report Routine is
called before the
connection is cleared.

EVENT_LOGIN_USER 1 No Yes parameter is

NLM Programming

Advanced: Functions 289

0 connection number.
Report Routine is
called after the
connection has been
allocated.

EVENT_CREATE_BINDE
RY_OBJ

1
1

No No parameter is object ID.
Report Routine is
called after the object
is created and entered
in the bindery.

EVENT_DELETE_BINDER
Y_OBJ

1
2

No No parameter is object ID.
Report Routine is
called before the
object is removed
from the bindery.

EVENT_CHANGE_SECU
RITY

1
3

No No parameter is a pointer a
structure of type
EventSecurityChange
Struct. Report Routine
is called after a
security equivalence
change has occurred.

EVENT_ACTIVATE_SCRE
EN

1
4

No Yes parameter is screen ID.
Report routine is
called after the screen
becomes the active
screen. (Not
supported in
NetWare 3.x)

EVENT_UPDATE_SCREE
N

1
5

No No parameter is screen ID.
Report routine is
called after a change
is made to the screen
image. (Not
supported in
NetWare 3.x)

EVENT_UPDATE_CURSO
R

1
6

No No parameter is screen ID.
Report routine is
called after a change
to the cursor position
or state occurs. (Not
supported in
NetWare 3.x)

EVENT_KEY_WAS_PRES
SED

1
7

No No parameter is
undefined. Report
routine is called
whenever a key on
the keyboard is
pressed (including

NLM Programming

Advanced: Functions 290

shift/alt/control).
This routine is called
at interrupt time.

EVENT_DEACTIVATE_S
CREEN

1
8

No No parameter is screen ID.
Report routine is
called when the
screen becomes
inactive. (Not
supported in
NetWare 3.x)

EVENT_TRUSTEE_CHAN
GE

1
9

No No parameter is a pointer
to type struct
EventTrusteeChangeS
truct. The report
routine is called
everytime there is a
change to a trustee in
the file system.

See Using the
TRUSTEE_CHANGE
Event: Example.

EVENT_OPEN_SCREEN 2
0

No Yes parameter is the screen
ID for the newly
created screen. The
report routine is
called after the screen
is created. (Not
supported in
NetWare 3.x)

EVENT_CLOSE_SCREEN 2
1

No Yes parameter is the screen
ID for the screen that
is to be closed. The
report routine is
called before the
screen is closed. (Not
supported in
NetWare 3.x)

EVENT_MODIFY_DIR_E
NTRY

2
2

No No parameter is a pointer
to a structure of type
EventModifyDirEntry
Struct which contains
the modify
information. The
report routine is
called right after the
entry is changed but
before the directory
entry is unlocked.

EVENT_NO_RELINQUIS 2 No No parameter is the

NLM Programming

Advanced: Functions 291

H_CONTROL 3 running process. This
is called when the
timer detects that a
process is hogging the
processor. The report
routine must not
sleep. (Not supported
in NetWare 3.x)

EVENT_THREAD_SWITC
H

2
5

No No parameter is the thread
ID of the thread that
was executing when
the thread switch
occurred. The report
routine is called when
the new thread begins
executing. The report
routine must not go to
sleep. This event
applies only to
threads in the calling
NLM.

EVENT_MODULE_LOAD 2
7

No Yes parameter is module
handle. The report
routine is called after
a module has loaded.
(Not supported in
NetWare 3.x)

EVENT_CREATE_PROCE
SS

2
8

No No parameter is the PID of
the process being
created. It is called
after the process is
created. The report
routine must not
sleep. (Not supported
in NetWare 3.x)

EVENT_DESTROY_PROC
ESS

2
9

No No parameter is the PID of
the process being
destroyed. It is called
before the process is
actually destroyed.
The report routine
must not sleep. (Not
supported in
NetWare 3.x)

EVENT_NEW_PUBLIC 3
2

No No parameter is a pointer
to a length preceded
string which is the
name of the new
public entry point.
(Not supported in

NLM Programming

Advanced: Functions 292

NetWare 3.x)

EVENT_PROTOCOL_BIN
D

3
3

No Yes parameter is a pointer
to a structure of type
EventProtocolBindStr
uct. This event is
generated every time
a board is bound to a
protocol. (Not
supported in
NetWare 3.x)

EVENT_PROTOCOL_UNB
IND

3
4

No Yes parameter is a pointer
to a structure of type
EventProtocolBindStr
uct. This event is
generated every time
a board is unbound
from a protocol. (Not
supported in
NetWare 3.x)

EVENT_ALLOCATE_CO
NNECTION

3
7

No Yes parameter is
connection number.
Report Routine is
called after the
connection is
allocated. (Not
supported in
NetWare 3.x)

EVENT_LOGOUT_CONN
ECTION

3
8

No Yes parameter is
connection number.
Report Routine is
called before the
connection is logged
out. (Not supported in
NetWare 3.x)

EVENT_MLID_REGISTER 3
9

No No parameter is board
number. Report
Routine is called after
the MLID™ software
is registered. (Not
supported in
NetWare 3.x)

EVENT_MLID_DEREGIST
ER

4
0

No No parameter is board
number. Report
Routine is called
before the MLID is
deregistered. (Not
supported in
NetWare 3.x)

EVENT_DATA_MIGRATI 4 No No parameter is a pointer

NLM Programming

Advanced: Functions 293

ON 1 to a structure of type
EventDateMigrationI
nfo. This event is
generated when a
file's data has been
migrated. (Not
supported in
NetWare 3.x)

EVENT_DATA_DEMIGR
ATION

4
2

No No parameter is a pointer
to a structure of type
EventDateMigrationI
nfo. This event is
generated when a
file's data has been
de-migrated. (Not
supported in
NetWare 3.x)

EVENT_QUEUE_ACTION 4
3

No No parameter is a pointer
to a structure of type
EventQueueNote.
This event is
generated when a
queue is activated,
deactivated, created,
or deleted. (Not
supported in
NetWare 3.x)

EVENT_NETWARE_ALER
T

4
4

No Yes parameter is a pointer
to a strcutre of type
EventNetwareAlertStr
uct. This event is
generated any time
the following alert
calls are made:

SystemAlert (NW
3.0)

QueueSystemAlert
(NW 3.0)

INWSystemAlert
(NW 3.11 (temp))

INWQueueSystemA
lert (NW 3.11
(temp))

NLM Programming

Advanced: Functions 294

NetWareAlert (NW
4.x)

EVENT_CLOSE_FILE 5
0

No No parameter is a pointer
to a structure of type
EventCloseFileInfo.
(Not supported in
NetWare 3.x)

EVENT_CHANGE_TIME 5
1

No No This event is given
when the time is
changed or when
Time Synchronization
schedules a
nonuniform
adjustment. The
parameter is the UTC
time (in seconds)
before the time
change. The current
time is available from
the OS. Since you
have no way of
knowing the
magnitude of the time
change, nor whether it
has taken place or is
scheduled for the next
clock interrupt, you
must detect the time
change on your own.
In general, if current
time is less than old
time, or at least two
seconds ahead of the
old time, then the time
change has been
applied. You must
wait for one of those
conditions to be sure
that the time change
has "settled down"
before you can
assume that the event
has "happened." (Not
supported in
NetWare 3.x)

EVENT_MODULE_UNLO
ADED

5
6

No Yes parameter is a module
handle. Report
Routine is called after
the exit routine of the
NLM has been called,
after the resources of

NLM Programming

Advanced: Functions 295

the NLM have been
returned to the OS,
and after the
resources of the NLM
have are unlinked
from the OS's lists.
The only part of the
NLM left is the NLM
memory for the load
definition structure,
data image, and code
image. (Not
supported in
NetWare 3.x)

EVENT_REMOVE_PUBLI
C

5
7

No Yes parameter is the
address of the public
entry point. This
occurs only on
module unload. (Not
supported in
NetWare 3.x)

EVENT_SFT3_SERVER_ST
ATE

6
0

No No parameter is the
ServerState Number.
This event is available
only in the IOEngine.
When it occurs, the
Report Routine is
called with one of the
following values:

0 = IOEngineState

1 =
PrimaryNoSecondary
State

2 =
PrimarySyncingWithS
econdaryState

3 =
PrimaryTransferingM
emoryImageState

4 =
PrimaryWithSecondar
yState

5 =
SecondaryTransfering
MemoryImageState

6 =
SecondaryMirroredSt
ate

 (Not supported in

NLM Programming

Advanced: Functions 296

NetWare 3.x)

EVENT_SFT3_IMAGE_ST
ATE

6
1

No No parameter is the
memory mirror state
(0 = not mirrored, 1 =
mirrored). This event
is available only in the
MSEngine. (Not
supported in
NetWare 3.x)

EVENT_SFT3_PRESYNC_
STATE

6
2

No Yes parameter is currently
unused. This event is
called when the
primary is ready to
synchronize with
secondaries. (Not
supported in
NetWare 3.x)

NOTE: Event 24, EVENT_SYS_ALERT, and its associated structure,
EventSystemAlertStruct, have been removed from nwadv.h. Instead,
event 44, EVENT_NETWARE_ALERT, should be used with its
structure, EventNetwareAlertStruct.

See Also

UnregisterForEvent, NWDSERegisterForEvent

NLM Programming

Advanced: Functions 297

SaveThreadDataAreaPtr

Sets the thread switch Data Area Pointer for the current thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Advanced

Syntax

#include <nwadv.h>

void SaveThreadDataAreaPtr (
 void *threadDataAreaPtr);

Parameters

threadDataAreaPtr

(IN) Specifies the user-defined thread switch Data Area Pointer.

Return Values

This function does not return a value.

Remarks

When thread switch event reporting has been registered, the Data Area
Pointer is passed as the parameter to the report routine when a thread
switch occurs.

The pointer can point to any user-defined data structure.

See Also

GetThreadDataAreaPtr, RegisterForEvent

NLM Programming

Advanced: Functions 298

ScanSetableParameters

Returns information about NetWare server console parameters

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwadv.h>

LONG ScanSetableParameters (
 LONG scanCategory,
 LONG *scanSequence,
 BYTE *rParameterName,
 LONG *rType,
 LONG *rFlags,
 LONG *rCategory,
 void *rParameterDescription,
 void *rCurrentValue,
 LONG *rLowerLimit,
 LONG *rUpperLimit);

Parameters

scanCategory

(IN) Specifies the category for which to return setable parameter
information.

scanSequence

(IN/OUT) This parameter is used for calling this function iteratively.
On the first call, this parameter should be set to 0. On subsequent calls,
use the value returned in this parameter. When all information has
been returned, this function returns -1 (unsuccessful).

rParameterName

(IN/OUT) Specifies or receives the name of a setable parameter (an
ASCIIZ string). (Input if scanCategory is -2 or -5.)

rType

(OUT) Receives the type of the setable parameter.

rFlags

(OUT) Receives the setable parameter flags.

rCategory

(OUT) Receives the setable parameter category.

NLM Programming

Advanced: Functions 299

rParameterDescription

(OUT) Receives the description of a setable parameter (an ASCIIZ
string).

rCurrentValue

(OUT) Receives the value (a number or string, depending on rType) to
which the setable parameter is currently set. Receives the size of the
current value, rather than the value itself if scanCategory is set to -2.

rLowerLimit

(OUT) Receives the lower limit of the setable parameter.

rUpperLimit

(IN/OUT) Receives the upper limit of the setable parameter. (Input if
scanCategory is -4 or -5; must be at least 512 bytes.)

Return Values

This function returns 0 if successful, or a negative value if unsuccessful.

Remarks

This function returns information about setable parameters. A setable
parameter is a NetWare OS parameter that can be set using the SET
console command.

The scanCategory parameter defines what information the function
returns. This parameter can have one of the following values:

0 Scan category by number. Replace 0 with a category number, for
example 2 for FILE CACHE. To scan all parameters in a category,
set scanSequence to 0 on the first call.

-1 Scan all categories. To scan all parameters in all categories, set
scanSequence to 0 on the first call.

-2 Selected set parameter (rParameterName is input and points to a
parameter name string)

-3 Return category names (the scanSequence parameter is input and
points to a value of a category name for which the name string is
returned in the rParameterName pointer.)

-4 Fill a buffer pointed to by rCurrentValue with information about the
next parameter by sequence number as pointed to by scanSequence.
To return information iteratively about all parameters, set
scanSequence to 0 on the first call. (See below for explanation of the
buffer.)

-5 Fill a buffer pointed to by rCurrentValue with information about a
parameter as specified by name with the rParmaterName pointer.
(See below for explanation of the buffer.)

NLM Programming

Advanced: Functions 300

If scanCategory is -4 or -5, this function returns information into a buffer
pointed to by rCurrentValue. The buffer must be at least 512 bytes. Novell
does not provide a parser for this buffer, which is filled in the following
order:

long paramType
long category
long flags
string parameterName /* Null terminated string */
string/long parameterValue /* Could be long or null-terminated string */

The paramType segment contains a value that corresponds to those of the
rType parameter, explained below.

The category segment contains a value that corresponds to those of the
rCategory parameter, explained below.

The flags segment contains a value that corresponds to those of the rFlags
parameter, explained below.

The parameterName segment contains a string that names the parameter,
as explained about the rParameterName parameter below.

The parameterValue segment contains either a long or a string, depending
upon the parameter type as returned in the paramType segment.

The rParameterName parameter is the name of the setable parameter, such
as "Cache Buffer Size".

The rType parameter receives the type of the setable parameter:

0 number

1 boolean

2 time ticks

4 offset

5 string

6 trigger

The "trigger" type is a level at which an event would happen. The
"Minimum File Cache Buffer Report Threshold" is an example of a trigger
type.

The rFlags parameter defines properties of the parameter, such as when it
can be set:

0x000 startup only

NLM Programming

Advanced: Functions 301

1

0x000
4

advanced parameter

0x000
8

startup or later

0x001
0

not secured console---that is, the parameter cannot be set if the
console is secured

The rCategory parameter can be one of the following categories:

0 COMMUNICATIONS

1 MEMORY

2 FILE CACHE

3 DIR CACHE

4 FILE SYSTEM

5 LOCKING

6 TTS

7 DISK

8 TIME

9 NCP

1
0

MISCELLANEOUS

See Also

GetSetableParameterValue , SetSetableParameterValue , "SET" in
Supervising the Network

NLM Programming

Advanced: Functions 302

ScheduleNoSleepAESProcessEvent

Defines a procedure that is to be called by the Asynchronous Scheduler
(AES) after a specified delay

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwthread.h>

extern void ScheduleNoSleepAESProcessEvent(
 struct AESProcessStructure *EventNode);

Parameters

EventNode

(IN) Points to a structure that defines the event.

Return Values

None

Remarks

The defined procedure must not go to sleep when it runs. An abend
results if the procedure sleeps. The event is called at process time.

The AESProcessStructure is defined as follows:

struct AESProcessStructure
 {
 struct AESProcessStructure *ALink; /*Set by AES*/
 LONG AWakeUpDelayAmount; /*Set to # ticks to
 wait*/
 LONG AWakeUpTime; /*Set by AES*/
 void (*AProcessToCall) (void *); /*Set to function to
 call*/
 LONG ARTag; /*Set to resource tag */
 LONG AOldLink; /*Set to NULL*/
 }

Fields that are not set by AES must be set by the user as specified in the
above structure definition.

NLM Programming

Advanced: Functions 303

When the defined procedure is called, the AESProcessStructure pointer is
passed to it as the only parameter. By adding fields to the end of the
structure, the user can pass information to the procedure.

If the event procedure reschedules itself, the function can be made to
execute periodically. The scheduled event can be cancelled before time is
up by calling CancelNoSleepAESProcessEvent.

The procedure registered by ScheduleNoSleepAESProcessEvent runs as
a callback (an OS Thread), which is not able to call most of the NetWare
API functions, unless it is given CLIB context.

For 3.11 NLM applications, you must manually create the thread group
context in your procedure, by calling SetThreadGroupID and passing a
valid thread group ID. Before this thread returns, it should reset its
context to its original context, by setting the thread group ID back to its
original value.

For 4.x NLM applications, the context that is given to the callbacks when
they are registered is determined by the value in the registering thread's
context specifier. You can set the context specifier to one of the following
options:

NO_CONTEXT---Callbacks registered with this option are not given
CLIB context. The advantage here is that you avoid the overhead
needed for setting up CLIB context. The disadvantage is that without
the context the callback is only able to call NetWare API functions that
manipulate data or manage local semaphores.

Once inside of your callback, you can manually give your callback
thread CLIB context by calling SetThreadGroupID and passing in a
valid thread group ID. If you manually set up your context, you need
to reset its context to its original context, by setting the thread group ID
back to its original value.

USE_CURRENT_CONTEXT---Callbacks registered with a thread that
has its context specifier set to USE_CURRENT_CONTEXT have the
thread group context of the registering thread.

A valid thread group ID---This is to be used when you want the
callbacks to have a different thread group context than the thread that
schedules them.

When a new thread is started with BeginThread, BeginThreadGroup or
ScheduleWorkToDo, its context specifier is set to
USE_CURRENT_CONTEXT by default.

You can determine the current setting of the registering thread's context
specifier by calling GetThreadContextSpecifier. You use
SetThreadContextSpecifier to set the registering thread's context
specifier to one of the above options.

For more information on using CLIB context, see Context Problems with

NLM Programming

Advanced: Functions 304

OS Threads.

See Also

AllocateResourceTag, CancelNoSleepAESProcessEvent,
ScheduleSleepAESProcessEvent

NLM Programming

Advanced: Functions 305

ScheduleSleepAESProcessEvent

Defines a procedure that is to be called by the Asynchronous Scheduler
(AES) after a specified delay

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwthread.h>

extern void ScheduleSleepAESProcessEvent(
 struct AESProcessStructure *EventNode);

Parameters

EventNode

(IN) Points to the AESProcessStructure, which defines the event.

Return Values

None

Remarks

The defined procedure can go to sleep when it runs. The event is called at
process time.

The AESProcessStructure is defined as follows:

struct AESProcessStructure
 {
 struct AESProcessStructure *ALink; /*Set by AES*/
 LONG AWakeUpDelayAmount; /*Set to # ticks to
 wait*/
 LONG AWakeUpTime; /*Set by AES*/
 void (*AProcessToCall) (void *); /*Set to function to
 call*/
 LONG ARTag; /*Set to resource tag */
 LONG AOldLink; /*Set to NULL*/
 }

Fields that are not set by AES must be set by the user as specified in the
above structure definition.

NLM Programming

Advanced: Functions 306

When the defined procedure is called, the AESProcessStructure pointer is
passed to it as the only parameter. By adding fields to the end of the
structure, the user can pass information to the procedure.

If the event procedure reschedules itself, the function can be made to
execute periodically. The scheduled event can be cancelled before time is
up by calling CancelSleepAESProcessEvent.

The procedure registered by ScheduleSleepAESProcessEvent runs as a
callback (an OS Thread), which is not able to call most of the NetWare
API functions, unless it is given CLIB context.

For 3.11 NLM applications, you must manually create the thread group
context in your procedure, by calling SetThreadGroupID and passing a
valid thread group ID. Before this thread returns, it should reset its
context to its original context, by setting the thread group ID back to its
original value.

For 4.x NLM applications, the context that is given to the callbacks when
they are registered is determined by the value in the registering thread's
context specifier. You can set the context specifier to one of the following
options:

NO_CONTEXT---Callbacks registered with this option are not given
CLIB context. The advantage here is that you avoid the overhead
needed for setting up CLIB context. The disadvantage is that without
the context the callback is only able to call NetWare API functions that
manipulate data or manage local semaphores.

Once inside of your callback, you can manually give your callback
thread CLIB context by calling SetThreadGroupID and passing in a
valid thread group ID. If you manually set up your context, you need
to reset its context to its original context, by setting the thread group ID
back to its original value.

USE_CURRENT_CONTEXT---Callbacks registered with a thread that
has its context specifier set to USE_CURRENT_CONTEXT have the
thread group context of the registering thread.

A valid thread group ID---This is to be used when you want the
callbacks to have a different thread group context than the thread that
schedules them.

When a new thread is started with BeginThread, BeginThreadGroup or
ScheduleWorkToDo, its context specifier is set to
USE_CURRENT_CONTEXT by default.

You can determine the current setting of the registering thread's context
specifier by calling GetThreadContextSpecifier. Use
SetThreadContextSpecifier to set the registering thread's context
specifier to one of the above options.

For more information on using CLIB context, see Context Problems with

NLM Programming

Advanced: Functions 307

OS Threads.

See Also

AllocateResourceTag, CancelSleepAESProcessEvent,
ScheduleNoSleepAESProcessEvent

NLM Programming

Advanced: Functions 308

SetSetableParameterValue

Changes the value of a NetWare server console parameter

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwadv.h>

LONG SetSetableParameterValue (
 LONG connectionNumber,
 BYTE *setableParameterString,
 void *newValue);

Parameters

connectionNumber

(IN) Specifies the connection number of the user who wants to modify
server console parameters.

setableParameterString

(IN) Points to a NULL-terminated ASCIIZ string representing the
name of the server console parameter.

newValue

(IN) Points to the new value of the server console parameter.

Return Values

This function returns 0 if successful, or -1 if an invalid setable parameter
string was specified.

Remarks

This function sets the value of a setable parameter. A setable parameter is
a NetWare OS parameter that can be set using the SET console command.

The setableParameterString is the name of the setable parameter, such as
"Cache Buffer Size".

See Also

GetSetableParameterValue , ScanSetableParameters, "SET" in

NLM Programming

Advanced: Functions 309

Supervising the Network

NLM Programming

Advanced: Functions 310

SynchronizeStart

Restarts the NLM startup process when using synchronization mode

Local Servers: blocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwadv.h>

void SynchronizeStart (void);

Return Values

None

Remarks

This function is used in synchronization mode to restart the startup
process, which is put to sleep to make sure that another NLM is not
loaded before the current NLM application's mainline is reached.
Synchronization mode is selected at link time by using the
SYNCHRONIZE keyword in the link directive file.

NOTE: If an NLM is using synchronization mode, it should include a
call to SynchronizeStart as early in the code as possible. Synchronize
mode causes the console command process to go to sleep until
SynchronizeStart is called.

If you specify the SYNCHRONIZE keyword, the loader does not proceed
until your NLM calls SynchronizeStart. Without SYNCHRONIZE, the
previously loaded NLM might not have executed any of its code before
the loader executes the next command in the AUTOEXEC.NCF file. Use
this technique if you have an NLM that must establish some conditions to
be used by some subsequent command or NLM in your
AUTOEXEC.NCF file. It prevents the loader from proceeding until after
you have called SynchronizeStart.

See Using SynchronizeStart(): Example

NLM Programming

Advanced: Functions 311

UnimportSymbol

Eliminates dependency of an NLM on the specified external symbol

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

SMP Aware: Yes

Service: Advanced

Syntax

#include <nwadv.h>

int UnimportSymbol (
 int NLMHandle,
 char *symbolName);

Parameters

NLMHandle

(IN) Specifies the handle of the NLM for which to unimport the
symbol.

symbolName

(IN) Points to the symbol to unimport.

Return Values

This function returns 0 if successful. Otherwise, it returns an error code.

Remarks

UnimportSymbol reverses the effect of ImportSymbol, ending your the
dependency of your NLM on the NLM that exports the symbol specified
by symbolName. The NLMHandle parameter can be obtained by calling
FindNLMHandle or GetNLMHandle.

See Also

ImportSymbol

NLM Programming

Advanced: Functions 312

UnRegisterConsoleCommand

Unregisters a console command parsing function

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwadv.h>

LONG UnRegisterConsoleCommand (
 struct commandParserStructure *commandParser);

Parameters

commandParser

(IN) Specifies the command parsing function that is to be
unregistered.

Return Values

This function returns a value of 0 if successful. If the specified command
parsing function is not found (has not been registered), it returns a value
of -1.

Remarks

This function should be called to unregister a command parsing function
previously defined with RegisterConsoleCommand.

See Also

RegisterConsoleCommand

NLM Programming

Advanced: Functions 313

UnregisterForEvent

Cancels a previous registration for event notification

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Advanced

Syntax

#include <nwadv.h>

int UnregisterForEvent (
 LONG eventHandle);

Parameters

eventHandle

(IN) Specifies the event handle that was returned by RegisterForEvent
.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns an
error code (nonzero value).

See Also

RegisterForEvent

NLM Programming

Advanced: Functions 314

Advanced: Structures

NLM Programming

Advanced: Structures 315

AESProcessStructure

Defines a process to be called by the Asynchronous Scheduler (AES)

Service: Advanced

Defined In: nwadv.h

Structure

struct AESProcessStructure {
 struct AESProcessStructure *ALink;
 LONG AWakeUpDelayAmount;
 LONG AWakeUpTime;
 void (*AProcessToCall) (void *);
 LONG ARTag;
 LONG AOldLink;
}

Fields

Alink

Set by AES.

AWakeUpDelayAmount

Contains the number of ticks to wait (developer-defined).

AWakeUpTime

Set by AES.

AProcessToCall

Points to the function to call (developer-defined).

ARTag

Contains the resource tag (developer-defined).

AOldLink

Set this field to NULL.

NLM Programming

Advanced: Structures 316

commandParserStructure

Contains information about a developer-defined console command parsing
function

Service: Advanced

Defined In: nwadv.h

Structure

struct commandParserStructure
{
 struct commandParserStructure *Link;
 LONG (*parseRoutine) (
 LONG screenID,
 BYTE *commandLine);
 LONG RTag;
};

Fields

Link

Set by RegisterConsoleCommand.

parseRoutine

Points to a developer-defined parsing routine

RTag

Contains a resource tag (developer-defined).

NLM Programming

Advanced: Structures 317

EventCloseFileInfo

Returns when a file is closed

Service: Advanced

Defined In: nwadv.h

Structure

struct EventCloseFileInfo {
 LONG fileHandle;
 LONG station;
 LONG task;
 LONG fileHandleFlags;
 LONG completionCode;
};

Fields

fileHandle

Handle of the file that was closed.

station

Connection number that closed the file.

task

Task number of the connection that closed the file.

fileHandleFlags

Attributes of the file handle. See fileHandleFlags in nwadv.h for a list of
the flags.

completionCode

Outcome of the close file operation.

NLM Programming

Advanced: Structures 318

EventDateMigrationInfo

Returns for EVEBT_DATA_MIGRATION and DEMIGRATION

Service: Advanced

Defined In: nwadv.h

Structure

struct EventDateMigrationInfo {
 LONG FileSystemTypeID;
 LONG Volume;
 LONG DOSDirEntry;
 LONG OwnerDirEntry;
 LONG OwnerNameSpace;
 BYTE OwnerFileName[256];
};

Fields

FileSystemTypeID

Specifies the file system type (NETWARE386FILESYSTEM,
NETWARENFSFILESYSTEM, NETWARECDROMFILESYSTEM,
IBM_SMB_LAN_SERV_FS--see nwadv.h).

Volume

Specifies on which volume the entry is located.

DOSDirEntry

Directory number of the entry in the DOS name space.

OwnerDirEntry

Directory number of the entry in an other than DOS name space (if
applicable).

OwnerNameSpace

Name space number of this entry.

OwnerFileName

Name of entry in the OwnerNameSpace name space (255 + 1 len byte).

NLM Programming

Advanced: Structures 319

EventModifyDirEntryStruct

Returns for EVEBT_MODIFY_DIR_ENTRY

Service: Advanced

Defined In: nwadv.h

Structure

struct EventModifyDirEntryStruct {
 LONG primaryDirectoryEntry;
 LONG nameSpace;
 LONG modifyBits;
 struct ModifyStructure *modifyVector;
 LONG volumeNumber;
 void *reserved;
};

Fields

primaryDirectoryEntry

Directory number of the entry being modified.

nameSpace

Name space in which the modification is occurring.

modifyBits

 Specifies the fields of the directory entry that are being changed (see
nwdir.h).

modifyVector

 Pointer to the structure that contains the updated fields of the
directory entry (see nwdir.h).

volumeNumber

Specifies on which volume the entry is located.

reserved

Reserved.

NLM Programming

Advanced: Structures 320

EventTrusteeChangeStruct

Returns for EVENT_TRUSTEE_CHANGE

Service: Advanced

Defined In: nwadv.h

Structure

struct EventTrusteeChangeStruct {
 LONG objectID;
 LONG entryID;
 LONG volumeNumber;
 LONG changeFlags;
 LONG newRights;
};

Fields

objectID

Bindery object ID of the trustee being changed.

entryID

Directory number of the file or directory that is having the trustee
changed.

volumeNumber

Specifies on which volume the entry is located.

changeFlags

Specifies the type of change. (the flags are EVENT_NEW_TRUSTEE
and EVENT_REMOVE_TRUSTEE.)

newRights

The new trustee's rights.

NLM Programming

Advanced: Structures 321

T_cacheBufferStructure

Contains cache buffer information returned by an asynchronous read

Service: Advanced

Defined In: nwadv.h

Structure

typedef struct cacheBufferStructure
{
 char *cacheBufferPointer;
 LONG cacheBufferLength;
 int completionCode;
} T_cacheBufferStructure;

Fields

cacheBufferPointer

Contains the address of the first character for the cache buffer.

cacheBufferLength

Contains the number of bytes to be used from the cache buffer.

completionCode

Contains the NetWare error code for the buffer read operation.

NLM Programming

Advanced: Structures 322

T_DYNARRAY_BLOCK

Defines a dynamic array block (DAB)

Service: Advanced

Defined In: nwdnarr.h

Structure

typedef struct tagT_DYNARRAY_BLOCK
{
 void *DABarrayP;
 int DABnumSlots;
 int DABelementSize;
 void *(*DABrealloc) (void *, size_t);
 int DABgrowAmount;
 int DABnumEntries;
} T_DYNARRAY_BLOCK;

Fields

DABarrayP

Points to the dynamic array.

DABnumSlots

DABelementSize

DABrealloc

Points to a memory allocation function. This function is normally
realloc, but you can define your own function.

DABgrowAmount

Contains the number of elements by which to increase the dynamic
array when more elements are needed.

DABnumEntries

Contains the number of entries in the dynamic array.

NLM Programming

Advanced: Structures 323

T_mwriteBufferStructure

Contains information about a buffer to be used by gwrite

Service: Advanced

Defined In: nwadv.h

Structure

typedef struct mwriteBufferStructure
{
 char *mwriteBufferPointer;
 LONG mwriteBufferLength;
 int reserved;
} T_mwriteBufferStructure;

Fields

mwriteBufferPointer

Points to a buffer.

mwriteBufferLength

Contains the size of the buffer.

NLM Programming

Advanced: Structures 324

Bit Array

NLM Programming

 325

Bit Array: Functions

NLM Programming

Bit Array: Functions 326

BitClear

Clears the specified bit

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: Bit Array

Syntax

#include <nwbitops.h>

void BitClear (
 void *bitArray,
 LONG bitNumber);

Parameters

bitArray

(IN) Points to the bit array.

bitNumber

(IN) Specifies an index into the bit array.

Return Values

None

Remarks

The bitArray parameter specifies the target array. The bit number can be
greater than 32, targeting a bit well into the target array.

See Also

BitSet

Example

BitClear

#include <nwbitops.h>
void *bitArray;
LONG bitNumber;
BitClear (bitArray, bitNumber);

NLM Programming

Bit Array: Functions 327

BitClear (bitArray, bitNumber);

NLM Programming

Bit Array: Functions 328

BitSet

Sets the target bit

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: Bit Array

Syntax

#include <nwbitops.h>

void BitSet (
 void *bitArray,
 LONG bitNumber);

Parameters

bitArray

(IN) Points to the bit array.

bitNumber

(IN) Specifies an index into the bit array.

Return Values

None

Remarks

The bitArray parameter specifies the target array. The bit number can be
greater than 32, targeting a bit well into the target array.

See Also

BitClear, BitTest

Example

BitSet

#include <nwbitops.h>
void *bitArray;
LONG bitNumber;
BitSet (bitArray, bitNumber);

NLM Programming

Bit Array: Functions 329

BitSet (bitArray, bitNumber);

NLM Programming

Bit Array: Functions 330

BitTest

Determines whether the specified bit is set

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: Bit Array

Syntax

#include <nwbitops.h>

LONG BitTest (
 void *bitArray,
 LONG bitNumber);

Parameters

bitArray

(IN) Points to the bit array.

bitNumber

(IN) Specifies an index into the bit array.

Return Values

This function returns a bit value of 0 if the specified bit is cleared.
Otherwise, it returns a value of 1.

Remarks

The bitArray parameter specifies the target array. The bit number can be
greater than 32, targeting a bit well into the target array.

See Also

BitClear, BitSet

Example

BitTest

#include <nwbitops.h>
LONG bitValue;
void *bitArray;

NLM Programming

Bit Array: Functions 331

void *bitArray;
LONG bitNumber;
bitValue = BitTest (bitArray, bitNumber);

NLM Programming

Bit Array: Functions 332

BitTestAndClear

Returns the current value of the specified bit and then clears the bit (if the bit
was not already cleared)

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: Bit Array

Syntax

#include <nwbitops.h>

LONG BitTestAndClear (
 void *bitArray,
 LONG bitNumber);

Parameters

bitArray

(IN) Points to the bit array.

bitNumber

(IN) Specifies an index into the bit array.

Return Values

This function returns an old bit value of 0 if the specified bit is cleared.
Otherwise, it returns a value of 1.

Remarks

The bitArray parameter specifies the target array. It can be byte-aligned
and can point to an array of up to 232 - 1 bits.

See Also

BitTestAndSet

Example

BitTestAndClear

#include <nwbitops.h>
LONG oldBitValue;

NLM Programming

Bit Array: Functions 333

LONG oldBitValue;
void *bitArray;
LONG bitNumber;
oldBitValue = BitTestAndClear (bitArray, bitNumber);

NLM Programming

Bit Array: Functions 334

BitTestAndSet

Returns the current value of the specified bit and then sets the bit (if the bit
was not already set)

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: Bit Array

Syntax

#include <nwbitops.h>

LONG BitTestAndSet (
 void *bitArray,
 LONG bitNumber);

Parameters

bitArray

(IN) Points to the bit array.

bitNumber

(IN) Specifies an index into the bit array.

Return Values

This function returns an old bit value of 0 if the specified bit is cleared.
Otherwise, it returns a value of 1.

Remarks

The bitArray parameter specifies the target array. It can be byte-aligned
and can point to an array of up to 232 - 1 bits.

See Also

BitTestAndClear

Example

BitTestAndSet

#include <nwbitops.h>
LONG oldBitValue;

NLM Programming

Bit Array: Functions 335

LONG oldBitValue;
void *bitArray;
LONG bitNumber;
oldBitValue = BitTestAndSet (bitArray, bitNumber);

NLM Programming

Bit Array: Functions 336

ScanBits

Scans a bit array to find the first bit set

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: Bit Array

Syntax

#include <nwbitops.h>

LONG ScanBits (
 void *bitArray,
 LONG startingBitNumber,
 LONG totalBitCount);

Parameters

bitArray

(IN) Points to the bit array.

startingBitNumber

(IN) Specifies the index number of the bit to start searching on.

totalBitCount

(IN) Specifies the size of the bit array.

Return Values

This function returns a bit index (relative to the beginning of the array) to
the first bit set, or a value of -1 if no bit is set.

Remarks

The bitArray parameter specifies the target array, which can begin on a
byte boundary. A bit array can be as large as 232 - 1 bits in length.

The totalBitCount parameter specified the total number of bits from the
beginning of the array to the end of the search area. Therefore, if the
search area is from bit index 5 to bit index 11, the startingBitNumber
would be 5 and the totalBitCount would be 12 (the bit index +1).

NLM Programming

Bit Array: Functions 337

See Also

ScanClearedBits

Example

ScanBits

#include <nwbitops.h>
LONG bitNumber;
void *bitArray;
LONG startingBitNumber;
LONG totalBitCount;
bitNumber = ScanBits (bitArray, startingBitNumber, totalBitCount);

NLM Programming

Bit Array: Functions 338

ScanClearedBits

Scans a bit array to find the first bit that has been cleared

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Bit Array

Syntax

#include <nwbitops.h>

LONG ScanClearedBits (
 void *bitArray,
 LONG startingBitNumber,
 LONG totalBitCount);

Parameters

bitArray

(IN) Points to the bit array.

startingBitNumber

(IN) Specifies the index number of the bit to start searching on.

totalBitCount

(IN) Specifies the size of the bit array.

Return Values

This function returns a bit index (relative to the beginning of the array) to
the first bit cleared, or a value of -1 if no bit is cleared.

Remarks

The bitArray parameter specifies the target array, which can begin on a
byte boundary. A bit array can be as large as 232 - 1 bits in length.

The totalBitCount parameter specified the total number of bits from the
beginning of the array to the end of the search area. Therefore, if the
search area is from bit index 5 to bit index 11, the startingBitNumber
would be 5 and the totalBitCount would be 12 (the bit index +1).

NLM Programming

Bit Array: Functions 339

See Also

ScanBits

Example

ScanClearedBits

#include <nwbitops.h>
LONG bitNumber;
void *bitArray;
LONG startingBitNumber;
LONG totalBitCount;
bitNumber = ScanClearedBits (bitArray, startingBitNumber, totalBitCount);

NLM Programming

Bit Array: Functions 340

Character Manipulation

NLM Programming

 341

Character Manipulation: Functions

NLM Programming

Character Manipulation: Functions 342

isalnum

Tests for an alphanumeric character (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Character Manipulation

Syntax

#include <ctype.h>

int isalnum (
 int c);

Parameters

c

(IN) Specifies the character to be tested.

Return Values

This function or macro returns a value of 0 if the argument is neither an
alphabetic character nor a digit. Otherwise, a nonzero value is returned.

Remarks

The isalnum function or macro tests if the argument c is an alphanumeric
character (a to z, A to Z, or 0 to 9). An alphanumeric character is any
character for which isalpha or isdigit is true.

See Also

isalpha, isdigit, islower

Example

isalnum

#include <ctype.h>
#include <stdio.h>
main ()
{
 printf ("%d %d \w", isalnum ('Q'), isalnum ('!'));

NLM Programming

Character Manipulation: Functions 343

}

produces the following:

1 0

NLM Programming

Character Manipulation: Functions 344

isalpha

Tests for an alphabetic character (a to z or A to Z) (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Character Manipulation

Syntax

#include <ctype.h>

int isalpha (
 int c);

Parameters

c

(IN) Specifies the character to be tested.

Return Values

isalpha returns a value of 0 if the argument is not an alphabetic
character. Otherwise, a nonzero value is returned.

Remarks

The isalpha function or macro tests for an alphabetic character (a to z or A
to Z). An alphabetic character is any character for which isupper or
islower is true.

See Also

isalnum, iscntrl, isdigit, islower, isprint, ispunct, isspace, isupper,
isxdigit, tolower, toupper

Example

isalpha

#include <ctype.h>
#include <stdio.h>

main ()

NLM Programming

Character Manipulation: Functions 345

{
 printf ("%d %d %d", isalpha ('2'), isalpha ('Q'), isalpha ('!'));
}

produces the following:

0 1 0

NLM Programming

Character Manipulation: Functions 346

isascii

Tests for an ASCII character (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <ctype.h>

int isascii (
 int c);

Parameters

c

(IN) Specifies the character to be tested.

Return Values

The isascii function or macro returns a nonzero value when the character
is in the range from 0 to 127. Otherwise, a value of 0 is returned.

Remarks

The isascii function or macro tests for a character in the range from 0 to
127.

See Also

isalpha, isalnum, iscntrl, isdigit, islower, isprint, ispunct, isspace,
isupper, isxdigit, tolower, toupper

Example

isascii

#include <ctype.h>
#include <stdio.h>

main ()
{

NLM Programming

Character Manipulation: Functions 347

 printf ("%d %d %d \u", isascii ('\u'), isascii ('\f'), isascii ('A'));
}

produces the following:

1 1 1

NLM Programming

Character Manipulation: Functions 348

iscntrl

Tests for a control character (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <ctype.h>

int iscntrl (
 int c);

Parameters

c

(IN) Specifies the character to be tested.

Return Values

The iscntrl function or macro returns a nonzero value when the
argument is a control character. Otherwise, a value of 0 is returned.

Remarks

A control character is any character whose value is from 0 to 31.

See Also

isalnum, isalpha, isdigit, islower, isprint, ispunct, isspace, isupper,
isxdigit, tolower, toupper

Example

iscntrl

#include <ctype.h>
#include <stdio.h>

main ()
{
 printf ("%d %d %d \u", iscntrl ('\u'), iscntrl ('\A'), iscntrl ('f'));

NLM Programming

Character Manipulation: Functions 349

}

produces the following:

1 0 1

NLM Programming

Character Manipulation: Functions 350

isdigit

Tests for a decimal-digit character (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <ctype.h>

int isdigit (
 int c);

Parameters

c

(IN) Specifies the character to be tested.

Return Values

isdigit returns a nonzero value when the argument is a digit. Otherwise,
a value of 0 is returned.

Remarks

The isdigit function or macro tests for any decimal-digit character (0 to 9).

See Also

isalnum, isalpha, iscntrl, islower, isprint, ispunct, isspace, isupper,
isxdigit, tolower, toupper

Example

isdigit

#include <stdio.h>
#include <ctype.h>

main ()
{
 char *s, *p = "QRSTU1234ABC";

NLM Programming

Character Manipulation: Functions 351

 for (s = p; *s; s++)
 printf ("%d", isdigit (*5));
}

produces the following:

0 0 0 0 0 1 1 1 1 0 0 0

NLM Programming

Character Manipulation: Functions 352

isgraph

Tests for any printable character (except a space character) (function or
macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <ctype.h>

int isgraph (
 int c);

Parameters

c

(IN) Specifies the character to be tested.

Return Values

This function or macro returns a nonzero value when the argument is a
printable character (except a space character). Otherwise, a value of 0 is
returned.

Remarks

The isgraph function or macro tests for any printable character (except a
space character). The isprint function is similar, except that the space
character is also included in the character set being tested.

See Also

isalnum, isalpha, iscntrl, islower, isprint, ispunct, isspace, isupper,
isxdigit, tolower, toupper

NLM Programming

Character Manipulation: Functions 353

islower

Tests for a lowercase character (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <ctype.h>

int islower (
 int c);

Parameters

c

(IN) Specifies the character to be tested.

Return Values

islower returns a nonzero value when the argument is a lowercase
character. Otherwise, a value of 0 is returned.

Remarks

The islower function or macro tests for any lowercase character (a to z) in
the ASCII code set.

See Also

isalnum, isalpha, iscntrl, isdigit, isprint, ispunct, isspace, isupper,
isxdigit, tolower, toupper

NLM Programming

Character Manipulation: Functions 354

isprint

Tests for a printable character (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <ctype.h>

int isprint (
 int c);

Parameters

c

(IN) Specifies the character to be tested.

Return Values

isprint returns a nonzero value when the argument is a printable
character. Otherwise, a value of 0 is returned.

Remarks

The isprint function or macro tests for any printable character, including
a space character.

See Also

isalnum, isalpha, iscntrl, isdigit, islower, ispunct, isspace, isupper,
isxdigit, tolower, toupper

Example

isprint

#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>

main()

NLM Programming

Character Manipulation: Functions 355

{
 int i;
 while((i = getch()) != '0')
 printf("%s\r\n",isprint(i) ? "yes" : "no");
}

NLM Programming

Character Manipulation: Functions 356

ispunct

Tests for a punctuation character (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <ctype.h>

int ispunct (
 int c);

Parameters

c

(IN) Specifies the character to be tested.

Return Values

ispunct returns a nonzero value when the argument is a punctuation
character. Otherwise, a value of 0 is returned.

Remarks

The ispunct function or macro tests for any punctuation character, such as
a comma (,) or a period (.).

See Also

isalnum, isalpha, iscntrl, isdigit, islower, isprint, isspace, isupper,
isxdigit, tolower, toupper

NLM Programming

Character Manipulation: Functions 357

isspace

Tests for a white-space character (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <ctype.h>

int isspace (
 int c);

Parameters

c

(IN) Specifies the character to be tested.

Return Values

isspace returns a nonzero value when the argument is one of the
indicated white-space characters. Otherwise, a value of 0 is returned.

Remarks

The isspace function or macro tests for the following white-space
characters:

` ' Space

\f Formfeed

\n Newline or line feed

\r Carriage return

\t Horizontal tab

\v Vertical tab

See Also

isalnum, isalpha, iscntrl, isdigit, islower, isprint, ispunct, isupper,
isxdigit, tolower, toupper

NLM Programming

Character Manipulation: Functions 358

Example

isspace

#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>

main()
{
 int i;
 while((i = getch()) != '0')
 printf("%s\r\n",isspace(i) ? "yes" : "no");
}

NLM Programming

Character Manipulation: Functions 359

isupper

Tests for an uppercase character (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <ctype.h>

int isupper (
 int c);

Parameters

c

(IN) Specifies the character to be tested.

Return Values

isupper returns a nonzero value when the argument is an uppercase
character. Otherwise, a value of 0 is returned.

Remarks

The isupper function or macro tests for any uppercase character (A to Z)
in the ASCII code set.

See Also

isalnum, isalpha, iscntrl, isdigit, islower, isprint, ispunct, isspace,
isxdigit, tolower, toupper

NLM Programming

Character Manipulation: Functions 360

isxdigit

Tests for a hexadecimal-digit character (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <ctype.h>

int isxdigit (
 int c);

Parameters

c

(IN) Specifies the character to be tested.

Return Values

isxdigit returns a nonzero value when the argument is a hexadecimal
digit. Otherwise, a value of 0 is returned.

Remarks

The isxdigit function or macro tests for any hexadecimal-digit character.
These characters include digits (0 to 9) and letters (a to f or A to F).

See Also

isalnum, isalpha, iscntrl, isdigit, islower, isprint, ispunct, isspace,
isupper, tolower, toupper

NLM Programming

Character Manipulation: Functions 361

mblen

Determines the number of bytes comprising the multibyte character
(nonoperational in NetWare® versions 3.11 and earlier)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <stdlib.h>

int mblen (
 const char *s,
 size_t n);

Parameters

s

(IN) Points to the array of multibyte characters.

n

(IN) Specifies the number of bytes of the array pointed to by s to be
examined.

Return Values

This function returns a value of 0 for any of the following conditions:

s = NULL pointer

s[0] = NULL

n = 0

Remarks

At most, n bytes of the array pointed to by s are examined.

See Also

mbstowcs, mbtowc, wcstombs, wctomb

NLM Programming

Character Manipulation: Functions 362

mbstowcs

Converts a sequence of multibyte characters into their corresponding
wide-character codes and stores them in an array (nonoperational in
NetWare versions 3.11 and earlier)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <stdlib.h>

size_t mbstowcs (
 wchar_t *pwcs,
 const char *s,
 size_t n);

Parameters

pwcs

(OUT) Points to the array of wide-character codes.

s

(IN) Points to the array of multibyte characters to be converted.

n

(IN) Specifies the number of codes to be stored in the array pointed to
by pwcs.

Return Values

mbstowcs returns the actual number of bytes that have been copied from
the array pointed to by s to the array pointed to by pwcs. The returned
value is always less than n.

Remarks

The mbstowcs function converts a sequence of multibyte characters
pointed to by s into their corresponding wide-character codes and stores
not more than n codes into the array pointed to by pwcs.

The mbstowcs function does not convert any multibyte characters
beyond the NULL character. At most, n elements of the array pointed to
by pwcs are modified.

NLM Programming

Character Manipulation: Functions 363

This function is currently implemented for single-byte character coding
only.

See Also

mblen, mbtowc, wcstombs, wctomb

NLM Programming

Character Manipulation: Functions 364

mbtowc

Converts a single multibyte character into the wide-character code that
corresponds to that multibyte character (nonoperational in NetWare
versions 3.11 and earlier)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <stdlib.h>

int mbtowc (
 wchar_t *pwc,
 const char *s,
 size_t n);

Parameters

pwcs

(OUT) Points to a wide-character code.

s

(IN) Points to the array of multibyte characters to be converted.

n

(IN) Specifies the number of bytes of the array pointed to by s to be
examined.

Return Values

This function returns a value of 0 for any of the following conditions:

s = NULL pointer

s[0] = NULL

n = 0

Remarks

The mbtowc function converts a single multibyte character pointed to by s
into the wide-character code that corresponds to that multibyte character.

The code for the NULL character is zero. If the multibyte character is
valid and pwc is not a NULL pointer, the code is stored in the object

NLM Programming

Character Manipulation: Functions 365

pointed to by pwc. At most, n bytes of the array pointed to by s are
examined.

This function is currently implemented for single-byte character coding
only.

See Also

mblen, mbstowcs, wcstombs, wctomb

NLM Programming

Character Manipulation: Functions 366

tolower

Converts an uppercase character to the corresponding lowercase character

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <ctype.h>

int tolower (
 int c);

Parameters

c

(IN) Specifies the character to be converted to lowercase.

Return Values

The tolower function returns the corresponding lowercase character
when the argument is an uppercase character. Otherwise, the original
character is returned.

Remarks

The tolower function converts an uppercase character to the
corresponding lowercase character in the ASCII code set.

See Also

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit, strlwr, strupr, toupper

Example

tolower

#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>

NLM Programming

Character Manipulation: Functions 367

main()
{
 char s[] = "THIRD QUARTER REPORT";
 int i;
 for(i=0;s[i];i++) s[i] = tolower(s[i]);
 printf("%s\r\n",s);
 getch();
}

NLM Programming

Character Manipulation: Functions 368

toupper

Converts a lowercase character to the corresponding uppercase character

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <ctype.h>

int toupper (
 int c);

Parameters

c

(IN) Specifies the character to be converted to uppercase.

Return Values

The toupper function returns the corresponding uppercase character
when the argument is a lowercase letter. Otherwise, the original character
is returned.

Remarks

The toupper function converts a lowercase character to the corresponding
uppercase character in the ASCII code set.

See Also

isalnum, isalpha, iscntrl, isdigit, isgraph, islower, isprint, ispunct,
isspace, isupper, isxdigit, strlwr, strupr, tolower

Example

toupper

#include <stdlib.h>
#include <ctype.h>
#include <stdio.h>

NLM Programming

Character Manipulation: Functions 369

main()
{
 char s[] = "third quarter report";
 int i;
 for(i=0;s[i];i++) s[i] = toupper(s[i]);
 printf("%s\r\n",s);
 getch();
}

NLM Programming

Character Manipulation: Functions 370

wcstombs

Converts a sequence of wide-character codes from an array into a sequence
of multibyte characters (nonoperational in NetWare versions 3.11 and
earlier)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <stdlib.h>

size_t wcstombs (
 char *s,
 const wchar_t *pwcs,
 size_t n);

Parameters

s

(OUT) Points to the array of multibyte characters.

pwcs

(IN) Points to the array of wide-character codes to be converted.

n

(IN) Specifies the number of bytes of the array pointed to by s to be
modified.

Return Values

This function returns the actual number of bytes that have been copied
from the array pointed to by pwcs to the array pointed to by s. The
returned value is always less than n.

Remarks

The wcstombs function converts a sequence of wide-character codes from
the array pointed to by pwcs into a sequence of multibyte characters and
stores them in the array pointed to by s. The wcstombs function stops if a
multibyte character would exceed the limit of n total bytes, or if the
NULL character is stored. At most, n bytes of the array pointed to by s are
modified.

NLM Programming

Character Manipulation: Functions 371

See Also

mblen, mbstowcs, mbtowc, wctomb

NLM Programming

Character Manipulation: Functions 372

wctomb

Determines the number of bytes required to represent the multibyte
character corresponding to the specified code (nonoperational in NetWare
versions 3.11 and earlier)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Character Manipulation

Syntax

#include <stdlib.h>

int wctomb (
 char *s,
 wchar_t wchar);

Parameters

s

(OUT) Points to the array of multibyte characters.

wchar

(IN) Specifies the wide-character code.

Return

wctomb returns a value of 0 when s is a NULL pointer. Otherwise, it
returns a value of 1.

Remarks

The wctomb function determines the number of bytes required to
represent the multibyte character corresponding to the code contained in
wchar. If s is not a NULL pointer, the multibyte character representation is
stored in the array pointed to by s. At most, MB_CUR_MAX characters
are stored.

wctomb is currently implemented for single-byte character coding only.

See Also

mblen, mbstowcs, mbtowc, wcstombs

NLM Programming

Character Manipulation: Functions 373

Device I/O

NLM Programming

 374

Device I/O: Functions

NLM Programming

Device I/O: Functions 375

cgets

Gets a string of characters directly from the current screen and stores the
string and its length in an array

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Device I/O

Syntax

#include <nwconio.h>

char *cgets (
 char *buf);

Parameters

buf

(IN) Points to the array.

Return Values

*cgets returns a pointer to the start of the string, which is at buf[2].

Remarks

The first element of the array buf[0] must contain the maximum length in
characters of the string to be read. The array must be big enough to hold
the string, a terminating null character, and two additional bytes.

The cgets function reads characters until a carriage-return/line-feed
combination is read, or until the specified number of characters is read.
The string is stored in the array starting at buf[2]. The
carriage-return/line-feed combination, if read, is replaced by a null
character. The actual length of the string read is placed in buf[1].

See Also

getch, getche, gets

Example

cgets

NLM Programming

Device I/O: Functions 376

#include <nwconio.h>
#include <stdio.h>

main ()
{
 char buffer[82];
 buffer[0]=80;
 cgets (buffer);
 cprintf ("%s\r\n", &buffer[2]);
}

NLM Programming

Device I/O: Functions 377

cprintf

Writes output directly to the current application screen under format control

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: Device I/O

Syntax

#include <nwconio.h>

int cprintf (
 const char *format,
 ...);

Parameters

format

(IN) Points to the format specification string.

Return Values

Returns the number of characters written.

Remarks

The cprintf function outputs the formatted data directly to the console
screen.

See Also

NWcprintf, printf, vfprintf

Example

cprintf

#include <nwconio.h>
#include <stdio.h>

main ()
{
 char *weekday, *month;

NLM Programming

Device I/O: Functions 378

 int day, year;
 weekday="Saturday";
 month="April";
 day=18;
 year=1991;
 cprintf ("%s, %s %d, %d\n", weekday, month, day, year);
}

produces the following:

Saturday, April 18, 1991

NLM Programming

Device I/O: Functions 379

cputs

Writes a specified character string directly to the current screen

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Device I/O

Syntax

#include <nwconio.h>

int cputs (
 const char *buf);

Parameters

buf

(IN) Points to a character string.

Return Values

cputs returns a nonzero value if an error occurs. Otherwise, it returns a
value of 0. When an error has occurred, errno is set.

Remarks

The carriage-return and line-feed characters are not appended to the
string. The terminating NULL character is not written.

See Also

fputs, putch

Example

cputs

#include <nwconio.h>

main ()
{
 char buffer[82];
 buffer[0]=80;

NLM Programming

Device I/O: Functions 380

 cgets (buffer);
 cputs (&buffer[2]);
 putch ('\r');
 putch ('\n');
}

NLM Programming

Device I/O: Functions 381

cscanf

Scans input from the current screen under format control

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: Device I/O

Syntax

#include <nwconio.h>

int cscanf (
 const char *format,
 ...);

Parameters

format

(IN) Points to the format specification string.

Return Values

cscanf returns EOF when the scanning is terminated by reaching the end
of the input screen. Otherwise, the number of input arguments for which
values have been successfully scanned and stored is returned. When a
file input error occurs, errno is set.

Remarks

Following the format string is a list of addresses to receive values. The
scanf function uses the function getche to read characters from the
console.

See Also

fscanf, scanf

Example

cscanf

To scan a date in the form "Saturday, April 18 1990":

#include <nwconio.h>

NLM Programming

Device I/O: Functions 382

#include <nwconio.h>

main ()
{
 int day, year;
 char weekday[10], month[12];
 cscanf ("%s %s %d %d", weekday, month, &day, &year);
}

NLM Programming

Device I/O: Functions 383

_disable

Removed from the documentation because, in order for the NetWare® API
to be SFTIII™ compliant, this function will not be supported in the future

NLM Programming

Device I/O: Functions 384

_enable

Removed from the documentation because, in order for the NetWare API to
be SFTIII compliant, this function will not be supported in the future

NLM Programming

Device I/O: Functions 385

getch

Obtains the next available keystroke from the current screen

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Device I/O

Syntax

#include <nwconio.h>

int getch (void);

Return Values

This function returns a value of EOF when an error is detected.
Otherwise, the getch function returns the value of the keystroke (or
character).

When the keystroke represents an extended key (for example, a function
key, a cursor-movement key, or the Alt key with a letter or a digit), a
value of 0 is returned, and the next call to getch returns a value for the
extended function. When an error occurs, errno is set.

Remarks

The getch function reads from the current screen. Nothing is echoed on
the screen (getche echoes the keystroke, if possible). When no keystroke
is available, the function waits until a key is depressed.

Use the kbhit function to determine if a keystroke is available.

See Also

getche, kbhit

Example

getch

#include <nwconio.h>
main ()
{
 int keyStroke;
 keyStroke = getch ();

NLM Programming

Device I/O: Functions 386

}

NLM Programming

Device I/O: Functions 387

getche

Obtains the next available keystroke from the current screen and echoes the
keystroke on the screen

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Device I/O

Syntax

#include <nwconio.h>

int getche (void);

Return Values

getche returns a value of EOF when an error is detected. Otherwise, the
getche function returns the value of the keystroke (or character).

When the keystroke represents an extended key (for example, a function
key, a cursor-movement key, or the Alt key with a letter or a digit), a
value of 0 is returned, and the next call to getche returns a value for the
extended function. When an error occurs, errno is set.

Remarks

The getche function reads from the current screen. The function waits
until a keystroke is available. That character is echoed on the screen at the
position of the cursor. Use the getch function when it is not desired to
echo the keystroke.

Use the kbhit function to determine if a keystroke is available.

See Also

getch, kbhit, ungetch

Example

getche

#include <stdlib.h>
#include <nwconio.h>

main ()

NLM Programming

Device I/O: Functions 388

{
 int keyStroke;
 while((keyStroke = getche()) != '0')
 printf ("%d\r\n",keyStroke);
}

NLM Programming

Device I/O: Functions 389

inp

Reads 1 byte from the specified hardware port

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Device I/O

Syntax

#include <nwconio.h>

unsigned int inp (
 int port);

Parameters

port

(IN) Specifies the hardware port.

Return Values

The value returned is the byte that was read.

Remarks

The inp function reads 1 byte from the hardware port whose number is
given by port.

A hardware port is used to communicate with a device. One byte can be
read and/ or written from each port, depending on the hardware.
Consult the technical documentation for your computer in order to
determine the port numbers for a device and the expected usage of each
port for a device.

See Also

inpd, inpw, outp, outpd, outpw

Example

inp

#include <nwconio.h>

NLM Programming

Device I/O: Functions 390

main ()
{
 /* turn off speaker */
 outp (0x61,inp (0x61) & 0xFC);
}

NLM Programming

Device I/O: Functions 391

inpd

Reads a double word (4 bytes) from the specified hardware port

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Device I/O

Syntax

#include <nwconio.h>

unsigned int inpd (
 int port);

Parameters

port

(IN) Specifies the hardware port.

Return Values

The value returned is the double word that was read.

Remarks

The inpd function reads a double word (4 bytes) from the hardware port
whose number is given by port.

A hardware port is used to communicate with a device. One to 4 bytes
can be read and/or written from each port, depending on the hardware.
Consult the technical documentation for your computer in order to
determine the port numbers for a device and the expected usage of each
port for a device.

See Also

inp, outp, outpd, outpw

Example

inpd

#include <nwconio.h>
#define DEVICE 34

NLM Programming

Device I/O: Functions 392

#define DEVICE 34

main ()
{
 unsigned int transmitted;
 transmitted=inpd (DEVICE);
}

NLM Programming

Device I/O: Functions 393

inpw

Reads a word (2 bytes) from the specified hardware port

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Device I/O

Syntax

#include <nwconio.h>

unsigned int inpw (
 int port);

Parameters

port

(IN) Specifies the hardware port.

Return Values

The value returned is the word that was read.

Remarks

The inpw function reads a word (2 bytes) from the hardware port whose
number is given by port.

A hardware port is used to communicate with a device. One or 2 bytes
can be read and/or written from each port, depending on the hardware.
Consult the technical documentation for your computer in order to
determine the port numbers for a device and the expected usage of each
port for a device.

See Also

inp, inpd, outp, outpd, outpw

Example

inpw

#include <nwconio.h>
#define DEVICE 34

NLM Programming

Device I/O: Functions 394

#define DEVICE 34

main ()
{
 unsigned int transmitted;
 transmitted=inpw (DEVICE);
}

NLM Programming

Device I/O: Functions 395

kbhit

Tests whether a keystroke is currently available

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Device I/O

Syntax

#include <nwconio.h>

int kbhit (void);

Return Values

kbhit returns TRUE or FALSE, depending on availability of keystrokes.
When a keystroke is available, TRUE is returned. If an error is detected or
if no keystrokes are available, FALSE (0) is returned. When an error
occurs, errno is set.

Remarks

When a keystroke is available, you can call getch or getche to obtain the
keystroke. With a stand-alone program, you can call kbhit continuously
until a keystroke is available.

See Also

getch, getche, putch, ungetch

Example

kbhit

#include <stdlib.h>
#include <nwconio.h>
#include <stdio.h>

main ()
{
 while(!kbhit());
 printf ("the character is ");
 getche ();
 getch ();

NLM Programming

Device I/O: Functions 396

}

NLM Programming

Device I/O: Functions 397

NWcprintf

Writes output directly to the current application screen under format
control; enabled for internationalization

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: Device I/O

Syntax

#include <nwconio.h>

int NWcprintf (
 const char *format,
 ...);

Parameters

format

(IN) Points to the format specification string.

Return Values

NWcprintf returns the number of characters written.

Remarks

The NWcprintf function is identical to the cprintf function, except that
NWcprintf is enabled for internationalization.

See Also

printf, vfprintf, cprintf

Example

cprintf

#include <nwconio.h>
#include <stdio.h>

main ()
{

NLM Programming

Device I/O: Functions 398

 char *weekday, *month;
 int day, year;
 weekday="Saturday";
 month="April";
 day=18;
 year=1991;
 cprintf ("%s, %s %d, %d\n", weekday, month, day, year);
}

produces the following:

Saturday, April 18, 1991

NLM Programming

Device I/O: Functions 399

outp

Writes 1 byte, determined by value, to the hardware port whose number is
given by port

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Device I/O

Syntax

#include <nwconio.h>

unsigned int outp (
 int port,
 int value);

Parameters

port

(IN) Specifies the hardware port.

Return Values

The value transmitted is returned.

Remarks

A hardware port is used to communicate with a device. One byte can be
read and/ or written from each port, depending upon the hardware.
Consult the technical documentation for your computer in order to
determine the port numbers for a device and the expected usage of each
port for a device.

See Also

inp, inpd, inpw, outpd, outpw

Example

outp

#include <nwconio.h

NLM Programming

Device I/O: Functions 400

main ()
{
 /* turn off speaker */
 outp (0x61,inp (0x61) & 0xFC);
}

NLM Programming

Device I/O: Functions 401

outpd

Writes a double word (4 bytes), determined by value, to the hardware port
whose number is given by port

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Device I/O

Syntax

#include <nwconio.h>

unsigned int outpd (
 int port,
 unsigned int value);

Parameters

port

(IN) Specifies the hardware port.

Return Values

The value transmitted is returned.

Remarks

A hardware port is used to communicate with a device. One to 4 bytes
can be read and/or written from each port, depending upon the
hardware. Consult the technical documentation for your computer in
order to determine the port numbers for a device and the expected usage
of each port for a device.

See Also

inp, inpw, outp

Example

outpd

#include <nwconio.h>
#define DEVICE 34

NLM Programming

Device I/O: Functions 402

main ()
{
 outpd (DEVICE, 0x1234);
}

NLM Programming

Device I/O: Functions 403

outpw

Writes a word (2 bytes), determined by value, to the hardware port whose
number is given by port

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Device I/O

Syntax

#include <nwconio.h>

unsigned int outpw (
 int port,
 unsigned int value);

Parameters

port

(IN) Specifies the hardware port.

Return Values

The value transmitted is returned.

Remarks

A hardware port is used to communicate with a device. One or 2 bytes
can be read and/or written from each port, depending upon the
hardware. Consult the technical documentation for your computer in
order to determine the port numbers for a device and the expected usage
of each port for a device.

See Also

inp, inpd, inpw, outp, outpd

Example

outpw

#include <nwconio.h>
#define DEVICE 34

NLM Programming

Device I/O: Functions 404

main ()
{
 outpw (DEVICE, 0x1234);
}

NLM Programming

Device I/O: Functions 405

putch

Writes a specified character to the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Device I/O

Syntax

#include <nwconio.h>

int putch (
 int charToOutput);

Parameters

charToOutput

(IN) Specifies the character to be written.

Return Values

If successful, putch returns the character written. If a write error occurs,
the error indicator is set and putch returns EOF.

Remarks

The putch function writes the character specified by the charToOutput
parameter to the current screen.

putch becomes a blocking function if the character to be written out is the
newline character

See Also

getch, getche, ungetch

Example

putch

#include <stdlib.h>
#include <nwconio.h>

main ()

NLM Programming

Device I/O: Functions 406

main ()
{
 putch ('a');
 putchar ('b');
 getch ();
}

NLM Programming

Device I/O: Functions 407

ungetch

Pushes a specified character back onto the input stream for the current
screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Device I/O

Syntax

#include <nwconio.h>

int ungetch (
 int charToPushBack);

Parameters

charToPushBack

(IN) Specifies the character to be pushed back to the console.

Return Values

ungetch returns the character pushed back to the console if successful.

Remarks

ungetch pushes the character specified by the charToPushBack parameter
onto the input stream for the current screen. This character is returned by
the next read from the console (by the getch or getche functions) and is
detected by the kbhit function. Only the last character returned in this
way is remembered.

ungetch clears the end-of-file indicator, unless the value of the
charToPushBack parameter is EOF.

ungetch also pushes extended keystrokes. The following table lists
extended keys and their "ungetch" values:

F1 0x3B00

F2 0x3C00

F3 0x3D00

F4 0x3E00

NLM Programming

Device I/O: Functions 408

F5 0x3F00

F6 0x4000

F7 0x4100

F8 0x4200

F9 0x4300

F10 0x4400

HOME 0x4700

UP 0x4800

PGUP 0x4900

LEFT 0x4B00

RIGHT 0x4D00

END 0x4F00

DOWN 0x5000

PGDOW
N

0x5100

INSERT 0x5200

DELETE 0x5300

See Loading an NLM from an NLM: Example.

See Also

getch, getche

NLM Programming

Device I/O: Functions 409

vcprintf

Writes output to the console under format control

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: Device I/O

Syntax

#include <stdarg.h>
#include <stdio.h>

int vcprintf (
 const char *format,
 va_list arg);

Parameters

format

(IN) Points to the format control string.

arg

(IN) Specifies a variable argument.

Return Values

The vcprintf function returns the number of characters written, or a
negative value if an output error occurred. If an error occurs, errno is set.

Remarks

The vcprintf function writes output to the console under control of the
argument format. The format string is described under the description for
printf. The vcprintf function is similar to printf, with the variable
argument list replaced with arg, which has been initialized by the
va_start macro.

See Also

fprintf, printf, sprintf, va_arg, va_end, va_start, vprintf

Example

vcprintf

NLM Programming

Device I/O: Functions 410

vcprintf

The following example shows the use of vcprintf in a general error message
routine.

#include <stdarg.h>
#include <stdio.h>

void errmsg (char *format, ...)
{
 va_list arglist;
 ConsolePrintf ("Error: ");
 va_start (arglist, format);
 vcprintf (format, arglist);
 va_end (arglist);
}

NLM Programming

Device I/O: Functions 411

vcscanf

Scans input from the console under format control

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: Device I/O

Syntax

#include <stdarg.h>
#include <stdio.h>

int vcscanf (
 const char *format,
 va_list arg);

Parameters

format

(IN) Points to the format control string.

arg

(IN) Specifies the variable argument.

Return Values

The vsscanf function returns EOF when the scanning is terminated by
reaching the end of the input stream. Otherwise, the number of input
arguments for which values were successfully scanned and stored is
returned.

Remarks

The vsscanf function scans input from the console under control of the
argument format. The format list is described with the scanf function.

The vcscanf function is similar to the scanf function, with a variable
argument list replaced with arg, which has been initialized using the
va_start macro.

See Also

fscanf, scanf, va_arg, va_end, va_start, vscanf

NLM Programming

Device I/O: Functions 412

Example

vcscanf

#include <stdio.h>
#include <stdarg.h>

void find (char *format, char *arg, ...)
{
 va_list arglist;
 va_start (arglist, arg);
 vcscanf (format, arglist);
 va_end (arglist);
}

NLM Programming

Device I/O: Functions 413

Library

NLM Programming

 414

Library: Guides

Library: Concept Guide

The Library API functions are for use by library NLM™ applications (NLM
applications that export functions to be called by other NLM applications).

Unique Problems of Library NLM Applications

Library API Example

Library Function List

Library: Functions

NLM Programming

Library: Guides 415

Library: Concepts

Unique Problems of Library NLM Applications

NLM applications that are libraries pose a few unique problems:

If a library NLM allocates resources such as memory on behalf of another
NLM, the library NLM needs to know when its clients are unloaded or
otherwise terminated so that it can free any resources it allocated on the
client's behalf.

In many cases, a library NLM needs to have a different instance of data
structures for each of its clients. The library needs some way of
associating or getting to the proper client data structure whenever it is
called by a client.

Sometimes, a library NLM may want to allocate resources on a client's
behalf; other times, it may want to allocate resources on its own behalf
even though it has been called by a client.

The Library API solves these problems as follows:

It allows a library to register a cleanup function that executes whenever
one of its clients terminates.

It allows you to save and retrieve a data area pointer on a per-client NLM
basis.

It allows you to specify which NLM resources are allocated when the
library allocates resources.

NOTE: It is possible to write a library NLM without using the Library
API.

Library API Example

The following example demonstrates how the Library API functions might
be used in a "typical" library (Library X). In this example, Library X exports
three functions:

LoginToX

DoTheWorkOfX

LogoutFromX

NLM Programming

Library: Concepts 416

Library X does any internal initialization before it is called by any NLM
applications:

int main (int argc, char * argv[])
{

/* Initialize myself */
.
.
.

Library X registers itself with the NetWare® API (CLIB) using
RegisterLibrary. RegisterLibrary must be called prior to other functions
that require a library handle.

Library X saves its own NLM ID for later use. The library specifies which
cleanup function should be called whenever a library client is terminated.

XNLMID = GetNLMID ();

AtUnload (LibraryXunloadFunc); /* Define function to be
 executed if Library X is
 ever UNLOADed.*/
.
.
.
XLibHandle = RegisterLibrary (LibraryXClientCleanupFunc);

The library terminates its initial thread since it is not needed. (The library's
functions are run by the client's thread of execution.)

.

.

.
ExitThread (TSR_THREAD, 0);
}

TSR_THREAD specifies to terminate the thread, but not to terminate the
NLM, even if the last thread of the NLM is being terminated.

Whenever a client NLM wants to use Library X, the client NLM must first
call LoginToX. This is not a restriction of the NetWare API, but a
requirement that Library X imposes.

int LoginToX (int parm1, char * parm2, etc.)
{

In LoginToX, Library X allocates one ClientStruct for each client:

ClientStruct *newClientStructPtr;
newClientStructPtr = (ClientStruct *) malloc (
 sizeof (clientStruct));
if (newClientStructPtr == NULL)

NLM Programming

Library: Concepts 417

 return -1; /* Code defined by Library X.
 Returned if LoginToX fails.*/

Library X uses one of the Library API functions, SaveDataAreaPtr , to
associate the new ClientStruct with this particular client:

if (SaveDataAreaPtr (XLibHandle, newClientStructPtr))
 return -1; /* Error code defined by Library X.
 Returned if LoginToX fails.*/

LoginToX is successful, so it returns its success code:

return 0;
}

A Library X client then calls DoTheWorkOfX, which does the real work of
Library X:

int DoTheWorkOfX (long parm1, short parm2, etc.)

DoTheWorkOfX calls the Library API function GetDataAreaPtr to retrieve
the pointer to the ClientStruct that was saved when this client called
LoginToX:

ClientStruct *clientStructPtr;
clientStructPtr = GetDataAreaPtr (XLibHandle);

if (clientStructPtr == NULL)
 return -2; /* Return code defined by Library
 X. Passed back when
 DoTheWorkOfX is called
 without first calling LoginToX.*/

DoTheWorkOfX performs the work, which includes allocating another data
structure for the client. This data structure is pointed to by a field in
ClientStruct, which means Library X can later get to this additional structure
because it can get to ClientStruct by calling GetDataAreaPtr.

Suppose also that, during the execution of DoTheWorkOfX, an SPX™
socket must be opened to get data from some other source. Because of the
way Library X is designed (Library X uses the same SPX socket for all
clients, once it is opened), the open SPX socket should be considered a
resource of Library X, not a resource of the client NLM. If the socket was a
resource of the client, the socket would be closed when the client was
terminated, which would be inappropriate with the way Library X is
designed. So Library X does the following to cause the SPX socket to be
counted as Library X's own resource:

clientNLMID = SetNLMID (XNLMID); /* Switch to Library X.*/

if (SpxOpenSocket (&Xsocket) != 0)

 /* Do the action for failure of SpxOpen

NLM Programming

Library: Concepts 418

SetNLMID (clientNLMID); /* Switch back to client.*/

NOTE: Switching back to clients is very important. If this is not done,
any resources the client allocates are considered Library X's resources.

After DoTheWorkOfX completes, it returns to the client. The client calls
DoTheWorkOfX as many times as it needs to. When the client no longer
needs to use Library X, it calls LogoutFromX. Calling LogoutFromX is part
of the design of Library X, not of the NetWare API.

int LogoutFromX (int parm1, char * parm2, etc.)

ClientStruct *clientStructPtr;
clientStructPtr = GetDataAreaPtr (XLibHandle);
if (clientStructPtr == NULL)
 return -2;

/* Cleanup all the resources allocated for the client */
.
.
.
/* Indicate that this client NLM is no longer a client */
 SaveDataAreaPtr(XLibHandle, NULL);

return 0; /* Successfully logged out from X.*/

If the client of Library X was UNLOADed (or otherwise terminated) before
it called LogoutFromX, then Library X's client cleanup function (
LibraryXClientCleanupFunc) would be called. The client cleanup function
receives one argument, which is the work area pointer (clientStructPtr)
saved by Library X when it called SaveDataAreaPtr in LoginToX:

int LibraryXClientCleanupFunc (ClientStruct *clientStructPtr)
{

/*
 Clean up all the resources allocated for the client
 Very similar to LogoutFromX
*/
.
.
.
/*
 Not necessary to call SaveDataAreaPtr (XLibHandle, NULL)
 here, because it is done automatically when a client
 terminates
*/

return 0; /* Zero indicates success.
 Nonzero indicates failure.
 This return code is ignored at present.*/
}

NLM Programming

Library: Concepts 419

Library X can service many client NLM applications. In many cases, Library
X stays loaded as long as the server is up. In some cases, Library X can be
UNLOADed. When it is, its function, LibraryXUnloadFunc, is called
because Library X called AtUnload to define an UNLOAD function:

void LibraryXUnloadFunc (void)
{

/*
 Clean up any resources allocated on Library X's own behalf
 such as the SPX socket mentioned earlier
*/
.
.
.
SpxCloseSocket (XSocket);
.
.
.

/*
 Deregister Library X as a library with the
 NetWare API Library
*/

DeregisterLibrary (XLibHandle);

return;
}

This completes the example of a typical library NLM.

Library Function List

DeregisterLibrary

Deregisters a previously registered library NLM.

GetDataAreaPtr

Returns a saved data area pointer for the current NLM.

RegisterLibrary

Registers an NLM as a library with NetWare® API.

SaveDataAreaPtr

Associates a data area pointer with a client NLM.

NLM Programming

Library: Concepts 420

Library: Functions

NLM Programming

Library: Functions 421

DeregisterLibrary

Deregisters a previously registered library NLM™ application

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Library

Syntax

#include <nwlib.h>

int DeregisterLibrary (
 LONG libraryHandle);

Parameters

libraryHandle

(IN) Specifies the handle returned by RegisterLibrary.

Return Values

0 (0x00) ESUCCES
S

2
2

(0x16) EBADHN
DL

Invalid library.handle was passed in.

Remarks

Typically, the DeregisterLibrary function is called from the library's
AtUnload function.

See Also

RegisterLibrary

NLM Programming

Library: Functions 422

GetDataAreaPtr

Returns a previously saved data area pointer for the current NLM

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Library

Syntax

#include <nwlib.h>

void *GetDataAreaPtr (
 LONG libraryHandle);

Parameters

libraryHandle

(IN) Specifies the handle returned by a call to RegisterLibrary.

Return Values

This function returns the data area pointer if successful. If a library has
called SetNLMID before calling GetDataAreaPtr, this function can
return NULL.

If an error occurs, it returns EFAILURE and sets errno to:

2
2

(0x1
6)

EBADHN
DL

Invalid library handle was passed in.

Remarks

GetDataAreaPtr returns the data area pointer saved by a previous
SaveDataAreaPtr call for the current NLM (usually the NLM calling the
library; however, see GetNLMID and SetNLMID) and for the specified
library (specified by the libraryHandle parameter).

See Also

GetNLMID, SaveDataAreaPtr , SetNLMID

Example

NLM Programming

Library: Functions 423

GetDataAreaPtr

#include <nwlib.h>

ClientStruct *dataAreaPtr;
LONG libraryHandle;
dataAreaPtr = GetDataAreaPtr (libraryHandle);

NLM Programming

Library: Functions 424

RegisterLibrary

Registers an NLM as a library with the NetWare® API

Local Servers: blocking

Remote Servers: nonblocking

Classification: 3.x, 4.x

SMP Aware: No

Service: Library

Syntax

#include <nwlib.h>

LONG RegisterLibrary (
 int (*clientCleanupFunc) (void *));

Parameters

clientCleanupFunc

(IN) Specifies a function to be called whenever one of the clients of the
library is terminated by either an UNLOAD command or because the
NLM terminated itself by calling exit, abort, ExitThread, or so on (see
"Note" below).

Return Values

This function returns a library handle or a value of 0xFFFFFFFF if an
error occurs.

Remarks

The RegisterLibrary function must be called prior to any other function
requiring a library handle.

NOTE: The prototype of the clientCleanupFunc indicates that it returns
a value of type (int). Although NetWare currently ignores this value,
clientCleanupFunc functions should always return ESUCCESS (or zero).

NOTE: It is possible to write a library NLM without using the Library
functions.

For an NLM to be considered a client of a registered library by the
NetWare API, the library must call SaveDataAreaPtr with a nonNULL
data area pointer while the client NLM is the current NLM (this is usually
done when the client makes its first call to the library). Only NLM
applications that are clients of registered library NLM applications cause
a client cleanup function to be called when they terminate.

NLM Programming

Library: Functions 425

NOTE: The library clean-up routines must be given CLIB context if
they use NLM API functions that require context. You can set the
context using SetThreadGroupID but you must set it to a thread group
ID that is part of the library, since the cleanup routine is part of the
library, not part of your NLM. You should save the default thread
group ID when you enter your routine and restore it, using
SetThreadGroupID, before you leave your routine.

See Also

DeregisterLibrary, SaveDataAreaPtr

Example

RegisterLibrary

EXAMPLE OF A LIBRARY NLM

#include <stdio.h>
#include <nwconio.h>
#include <nwlib.h>

int LibHandle;
int threadGroupID;

/*........................*/
int LibCleanupFunc
(
void *data
)
{
 int curThreadGroupID;
 void *dataAreaPtr;

 data = data;
 /*...we must establish context for the thread running
 the cleanup function...*/

 curThreadGroupID = SetThreadGroupID(threadGroupID);
 printf("Data ptr : %lX\n\n", data);
 printf("%lX Client closed.\n\n", GetThreadID());

 /*...restore the running thread's original context...*/
 SetThreadGroupID(curThreadGroupID);
 return(0);
}
/*........................*/

main()
{

NLM Programming

Library: Functions 426

 /*...save the thread group ID of the main lib thread group...*/
 threadGroupID = GetThreadGroupID();
 LibHandle = RegisterLibrary(LibCleanupFunc);
 if (LibHandle != -1)
 SuspendThread(GetThreadID());
 else
 ConsolePrintf("\n\nUnable to register library.\n\n");
}
/*........................*/

EXAMPLE OF A CLIENT NLM

#include <stdio.h>
#include <nwconio.h>
#include <nwlib.h>
extern int LibHandle;
/*........................*/
main()
{
 void *dataAreaPtr;
 dataAreaPtr = (void *)0x11223344;
 /*...become a client of the library...*/
 if (SaveDataAreaPtr(LibHandle, dataAreaPtr))
 ConsolePrintf("\n\nUnable to get data area ptr for the
 library.\n\n");
 getch();
}
/*........................*/

NLM Programming

Library: Functions 427

SaveDataAreaPtr

Associates a data area pointer with a particular client NLM

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Library

Syntax

#include <nwlib.h>

int SaveDataAreaPtr (
 LONG libraryHandle,
 void *dataAreaPtr);

Parameters

libraryHandle

(IN) Specifies the handle returned by calling RegisterLibrary.

dataAreaPtr

(IN) Points to a client NLM data area.

Return Values

0 (0x00) ESUCCE
SS

5 (0x5) ENOME
M

Not enough memory.

Remarks

For a client NLM to be considered a client of a registered library by the
NetWare API, the library must call SaveDataAreaPtr with a nonNULL
data area pointer while the client is the current NLM (this is usually done
when the client makes its first call to the library).

This function is normally used by library NLM applications to save a
pointer to a data area the library allocates for each client. However, the
dataAreaPtr parameter does not necessarily have to be a pointer, it can be
an index into an array or anything else the library wants to associate with
each client.

NLM Programming

Library: Functions 428

See Also

GetDataAreaPtr

NLM Programming

Library: Functions 429

Mathematical Computation

NLM Programming

 430

Mathematical Computation:
Functions

NOTE: The Mathematical Computation functions are exported by
MATHLIB.NLM and MATHLIBC.NLM.

Use MATHLIBC if an 80387 numeric data processor is not installed.

Use MATHLIB if an 80387 numeric data processor is installed.

NLM Programming

Mathematical Computation: Functions 431

abs

Returns the absolute value of its integer argument

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <stdlib.h>

int abs (
 int j);

Parameters

j

(IN) Specifies an integer argument.

Return Values

abs returns the absolute value of its integer argument.

Remarks

abs returns the absolute value of its integer argument j.

See Also

fabs, labs

Example

abs

#include <stdlib.h>
#include <stdio.h>

main ()
{
 printf ("%d %d %d\n", abs (-5), abs (0), abs (5));
}

produces the following:

NLM Programming

Mathematical Computation: Functions 432

produces the following:

5 0 5

NLM Programming

Mathematical Computation: Functions 433

acos

Computes the principal value of the arc cosine of the specified argument

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double acos (
 double x);

Parameters

x

(IN) Specifies an argument to compute the arc cosine for.

Return Values

The acos function returns the arc cosine in the range (0,p). When the
argument is outside the permissible range, errno is set and matherr is
called.

Remarks

A domain error occurs for arguments not in the range (-1,1).

See Also

asin, atan, atan2, matherr

Example

acos

#include <math.h>
#include <stdio.h>

main ()
{
 printf ("%f\n", acos (.5));

NLM Programming

Mathematical Computation: Functions 434

}

produces the following:

1.047197

NLM Programming

Mathematical Computation: Functions 435

asin

Computes the principal value of the arc sine of the specified argument.

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double asin (
 double x);

Parameters

x

(IN) Specifies an argument whose arc sine is to be computed.

Return Values

The asin function returns the arc sine in the range (-pi/, 2pi/2). When the
argument is outside the permissible range, errno is set and matherr is
called.

Remarks

A domain error occurs for arguments not in the range (-1,1).

See Also

acos, atan, atan2, matherr

Example

asin

#include <math.h>
#include <stdio.h>

main ()
{
 printf ("%f\n", asin (.5));

NLM Programming

Mathematical Computation: Functions 436

}

produces the following:

0.523599

NLM Programming

Mathematical Computation: Functions 437

atan

Computes the principal value of the arc tangent of the specified argument

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double atan (
 double x);

Parameters

x

(IN) Specifies an argument whose arc tangent is to be computed.

Return Values

The atan function returns the arc tangent in the range (-pi/2, pi/2).

See Also

acos, asin, atan2

Example

atan

#include <math.h>
#include <stdio.h>

main ()
{
 printf ("%f\n", atan(.5));
}

produces the following:

0.463648

NLM Programming

Mathematical Computation: Functions 438

atan2

Computes the principal value of the arc tangent of y/x, using the signs of
both arguments to determine the quadrant of the return value

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double atan2 (
 double y,
 double x);

Parameters

x and y

(IN) Specifies the arguments whose arc tangent is to be computed.

Return Values

The atan2 function returns the arc tangent of y/x, in the range (-pi,pi).
When the arguments are outside the permissible range, errno is set and
matherr is called.

Remarks

A domain error occurs if both arguments are zero.

See Also

acos, asin, atan, matherr

Example

atan2

#include <math.h>
#include <stdio.h>

main ()

NLM Programming

Mathematical Computation: Functions 439

{
 printf ("%f\n", atan2 (.5, 1.));
}

produces the following:

0.463648

NLM Programming

Mathematical Computation: Functions 440

Bessel Functions

Returns the result of the desired Bessel function of the specified argument

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Mathematical Computation

Syntax

#include <math.h>

double j0 (
 double x);

double j1 (
 double x);

double jn (
 int n,
 double x);

double y0 (
 double x);

double y1 (
 double x);

double yn (
 int n,
 double x);

Return Values

The result of the desired Bessel function of the argument x is returned.
For y0, y1, or yn, if x is negative the routine sets errno to EDOM, prints a
DOMAIN error message to stderr, and returns -HUGE_VAL.

Remarks

Functions j0, j1, and jn return Bessel functions of the first kind.

Functions y0, y1, and yn return Bessel functions of the second kind. The
argument x must be positive.

See Also

NLM Programming

Mathematical Computation: Functions 441

matherr

Example

Bessel Functions

#include <math.h>
#include <stdio.h>

main ()
{
 double x, y, z;
 x = j0(2.4);
 y = y1(1.58);
 z = jn(3, 2.4);
 printf("j0(2.4) = %f, y1(1.58) = %f\n", x, y);
 printf("jn(3,2.4) = %f\n", z);
}

NLM Programming

Mathematical Computation: Functions 442

cabs

Computes the absolute value of the complex number value by a square root
calculation

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double cabs (
 struct complex value);

Parameters

value

(IN) Value of the complex number.

Return Values

The absolute value is returned.

Remarks

The struct complex structure is defined as

 struct complex
 {
 double real;
 double imag;
 };

where real is the real part and imag is the imaginary part. In certain cases,
overflow errors can occur that cause the matherr routine to be invoked.

The cabs function computes the absolute value of the complex number
value by a calculation that is equivalent to

sqrt ((value.real * value.real) + (value.imag * value.imag))

Example

NLM Programming

Mathematical Computation: Functions 443

cabs

#include <math.h>
#include <stdio.h>

main ()
{
 struct complex c = {-3.0, 4.0};
 printf ("%f\n", cabs (c));
}

produces the following:

5.000000

NLM Programming

Mathematical Computation: Functions 444

ceil

Computes the smallest integer not less than x

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double ceil (
 double x);

Parameters

x

(IN) Specifies an argument.

Return Values

The ceil function returns the smallest integer not less than x, expressed as
a double type.

Remarks

The ceil function (ceiling function) computes the smallest integer not less
than x:

(ceil (x) ::= -floor (-x))

See Also

floor

Example

ceil

#include <math.h>
#include <stdio.h>

main ()
{

NLM Programming

Mathematical Computation: Functions 445

{
 printf ("%f %f %f %f %f\n", ceil (-2.1), ceil (-2.),
 ceil (0.0), ceil (2.), ceil (2.1));
}

produces the following:

-2.000000 -2.000000 0.000000 2.000000 3.000000

NLM Programming

Mathematical Computation: Functions 446

cos

Computes the cosine of the argument

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double cos (
 double x)

Parameters

x

(IN) Argument whose cosine is to be computed.

Return Values

The cos function returns the cosine value.

Remarks

The cos function computes the cosine of x (measured in radians). A large
magnitude argument can yield a result with little or no significance.

See Also

acos, sin, tan

Example

cos

#include <math.h>
#include <stdio.h>

main ()
{
 double value;
 value = cos (3.1415278);

NLM Programming

Mathematical Computation: Functions 447

}

NLM Programming

Mathematical Computation: Functions 448

cosh

Computes the hyperbolic cosine of the argument

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double cosh (
 double x);

Parameters

x

(IN) Specifies the argument whose hyperbolic cosine is to be
computed.

Return Values

The cosh function returns the hyperbolic cosine value. When the
argument is outside the permissible range, errno is set and matherr is
called.

Remarks

The cosh function computes the hyperbolic cosine of x. A range error
occurs if the magnitude of x is too large.

See Also

matherr, sinh, tanh

Example

cosh

#include <math.h>
#include <stdio.h>

main ()

NLM Programming

Mathematical Computation: Functions 449

{
 printf ("%f\n", cosh (.5));
}

produces the following:

1.127626

NLM Programming

Mathematical Computation: Functions 450

difftime

Calculates the difference between two calendar times (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <time.h>

double difftime (
 time_t time1,
 time_t time0);

Parameters

time1

(IN) Specifies the calendar time to compare to time0.

time0

(IN) Specifies the calendar time to compare to time1

Return Values

difftime returns the difference between the two times in seconds as a
double type.

Remarks

The difftime function or macro calculates the difference between time1
and time0 (time1 - time0).

See Also

asctime, asctime_r, clock, ctime, ctime_r, gmtime, gmtime_r, localtime,
localtime_r, mktime, strftime, time

Example

difftime

#include <stdio.h>
#include <time.h>

NLM Programming

Mathematical Computation: Functions 451

#include <time.h>

void time_test ()
{
 extern compute ();
 time_t start_time, end_time;
 start_time = time (NULL);
 compute();
 end_time = time (0);
 printf("Elapsed time: %u seconds", (unsigned int) difftime(end_time,
 start_time));
}

produces the following:

Elapsed time: 14 seconds

NLM Programming

Mathematical Computation: Functions 452

div

Calculates the quotient and remainder (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <stdlib.h>

div_t div (
 int number,
 int denom);

Parameters

numer

(IN) Specifies the numerator.

denom

(IN) Specifies the denominator.

Return Values

div returns a structure of type div_t, which contains the fields quot and
rem.

Remarks

The div function or macro calculates the quotient and remainder of the
division of the numerator numer by the denominator denom.

See Also

ldiv

Example

div

#include <stdlib.h>
#include <stdio.h>

NLM Programming

Mathematical Computation: Functions 453

void print_time (int seconds)
{
 auto div_t min_sec;
 min_sec = div (seconds, 60);
 printf ("It took %d minutes and %d seconds\n",
 min_sec.quot, min_sec.rem);
}

produces the following:

It took 2 minutes and 23 seconds

NLM Programming

Mathematical Computation: Functions 454

exp

Computes the exponential function of the argument

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double exp (
 double x);

Parameters

x

(IN) Specifies the argument whose exponential function is to be
computed.

Return Values

The exp function returns the exponential value. When the argument is
outside the permissible range, errno is set and matherr is called.

Remarks

The exp function computes the exponential function of x. A range error
occurs if the magnitude of x is too large.

See Also

log, matherr

Example

exp

#include <math.h>
#include <stdio.h>

main ()
{

NLM Programming

Mathematical Computation: Functions 455

 printf ("%f\n", exp (.5));
}

produces the following:

1.648721

NLM Programming

Mathematical Computation: Functions 456

fabs

Computes the absolute value of the argument (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double fabs (
 double x);

Parameters

x

(IN) Specifies an argument whose absolute value is to be computed.

Return Values

The fabs function or macro returns the absolute value of x.

Example

fabs

#include <math.h>
#include <stdio.h>

main ()
{
 printf ("%f %f\n", fabs (.5), fabs (-.5));
}

produces the following:

0.500000 0.500000

NLM Programming

Mathematical Computation: Functions 457

floor

Computes the largest integer not greater than the argument

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double floor (
 double x);

Parameters

x

(IN) Specifies an argument.

Return Values

The floor function computes the largest integer not greater than x,
expressed as a double type.

Remarks

The floor function computes the largest integer not greater than x.

See Also

ceil, fmod

Example

floor

#include <math.h>
#include <stdio.h>

main ()
{
 printf ("%f\n", floor (-3.14));
 printf ("%f\n", floor (-3.));

NLM Programming

Mathematical Computation: Functions 458

 printf ("%f\n", floor (0.));
 printf ("%f\n", floor (3.14));
 printf ("%f\n", floor (3.));
}

produces the following:

-4.000000
-3.000000
 0.000000
 3.000000
 3.000000

NLM Programming

Mathematical Computation: Functions 459

fmod

Computes the floating-point remainder of x/y

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double fmod (
 double x,
 double y);

Parameters

x and y

(IN) Specifies the arguments for which the floating-point remainder is
to be computed.

Return Values

The fmod function returns the value x - (i * y), for some integer i such
that, if y is nonzero, the result has the same sign as x and a magnitude
less than the magnitude of y. If the value of y is zero, then the value
returned is zero.

Remarks

The fmod function computes the floating-point remainder of x/y, even if
the quotient x/y is not representable.

See Also

ceil, fabs, floor

Example

fmod

#include <math.h>
#include <stdio.h>

NLM Programming

Mathematical Computation: Functions 460

main ()
{
 printf ("%f\n", fmod (4.5, 2.0));
 printf ("%f\n", fmod (-4.5, 2.0));
 printf ("%f\n", fmod (4.5, -2.0));
 printf ("%f\n", fmod (-4.5, -2.0));
}

produces the following:

 0.500000
 -0.500000
 0.500000
 -0.500000

NLM Programming

Mathematical Computation: Functions 461

frexp

Breaks a floating-point number into a normalized fraction and an integral
power of 2

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double frexp (
 double value,
 int *exp);

Parameters

value

(IN) Original double value.

exp

(OUT) Receives a pointer to the object.

Return Values

The frexp function returns the value of x, such that x is a double with
magnitude in the interval (0.5,1) or zero, and value equals x times 2 raised
to the power *exp. If value is zero, then both parts of the result are zero.

Remarks

The frexp function breaks a floating-point number into a normalized
fraction and an integral power of 2. It stores the integral power of 2 in the
int object pointed to by exp.

See Also

ldexp, modf

Example

frexp

NLM Programming

Mathematical Computation: Functions 462

#include <math.h>
#include <stdio.h>

main ()
{
 int expon;
 printf ("%f %d\n", frexp (4.25, &expon), expon);
 printf ("%f %d\n", frexp (-4.25, &expon), expon);
}

produces the following:

 0.531250 3
-0.531250 3

NLM Programming

Mathematical Computation: Functions 463

hypot

Computes the length of the hypotenuse of a right triangle whose sides are x
and y adjacent to that right angle

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Mathematical Computation

Syntax

#include <math.h>

double hypot (
 double x,
 double y);

Parameters

x and y

(IN) Sides of a right triangle adjacent to the right angle.

Return Values

The value of the hypotenuse is returned. When an error has occurred,
errno is set.

Remarks

The hypot function computes the length of the hypotenuse of a right
triangle whose sides are x and y adjacent to that right angle. The
calculation is equivalent to

 sqrt (x*x + y*y)

The computation might cause an overflow, in which case matherr is
called.

Example

hypot

#include <math.h>
#include <stdio.h>

NLM Programming

Mathematical Computation: Functions 464

main ()
{
 printf ("%f\n", hypot (3.0, 4.0));
}

produces the following:

5.000000

NLM Programming

Mathematical Computation: Functions 465

j0, j1, jn

See Bessel Functions

NLM Programming

Mathematical Computation: Functions 466

labs

Returns the absolute value of its argument (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <stdlib.h>

long int labs (
 long int j);

Parameters

j

(IN) Specifies the argument for which the absolute value is to be
returned.

Return Values

The labs function or macro returns the absolute value of its argument.
There is no error return.

Remarks

The labs function or macro returns the absolute value of argument j.

See Also

abs, fabs

Example

labs

#include <stdlib.h>
#include <stdio.h>

main ()
{
 long x, y;

NLM Programming

Mathematical Computation: Functions 467

 x = -50000L;
 y = labs (x);
}

NLM Programming

Mathematical Computation: Functions 468

ldexp

Multiplies a floating-point number by an integral power of 2

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Mathematical Computation

Syntax

#include <math.h>

double ldexp (
 double x,
 int exp);

Parameters

j

(IN) Specifies the floating-point number to be multiplied by an
integral power of 2.

exp

(IN) Specifies the integral power of 2.

Return Values

The ldexp function returns the value of x times 2 raised to the power exp.

Remarks

The ldexp function multiplies a floating-point number by an integral
power of 2. A range error can occur.

See Also

frexp, modf

Example

ldexp

#include <math.h>
#include <stdio.h>

NLM Programming

Mathematical Computation: Functions 469

main ()
{
 double value;
 value=ldexp(4.7072345, 5);
 printf ("%f\n", value);
}

produces the following:

150.631504

NLM Programming

Mathematical Computation: Functions 470

ldiv

Calculates the quotient and remainder of the division of a number

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <stdlib.h>

ldiv_t ldiv (
 long int numer,
 long int denom);

Parameters

numer

(IN) Specifies the numerator.

denom

(IN) Specifies the denominator.

Return Values

This function returns a structure of type ldiv_t that contains the fields quot
and rem, which are both of type long int.

Remarks

The ldiv function calculates the quotient and remainder of the division of
the numerator numer by the denominator denom.

See Also

div

Example

ldiv

#include <stdlib.h>
#include <stdio.h>

NLM Programming

Mathematical Computation: Functions 471

void print_time (long int ticks);
{
 ldiv_t sec_ticks;
 ldiv_t min_sec;
 sec_ticks = ldiv (ticks, 100L);
 min_sec = ldiv (sec_ticks.quot, 60L);
 printf ("It took %ld minutes and %ld seconds\n",
 min_sec.quot, min_sec.rem);
}

produces the following:

It took 14 minutes and 27 seconds

NLM Programming

Mathematical Computation: Functions 472

log

Computes the natural logarithm (base e) of x

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double log (
 double x);

Parameters

x

(IN) Specifies the argument for which the natural logarithm is to be
computed.

Return Values

The log function returns the natural logarithm of the argument. When the
argument is outside the permissible range, errno is set and matherr is
called. Unless matherr is replaced, matherr prints a diagnostic message
using the stderr stream.

Remarks

A domain error occurs if the argument is negative. A range error occurs if
the argument is zero.

See Also

exp, log10, matherr, pow

Example

log

#include <math.h>
#include <stdio.h>

NLM Programming

Mathematical Computation: Functions 473

main ()
{
 printf ("%f\n", log (.5));
}

 produces the following:

-0.693147

NLM Programming

Mathematical Computation: Functions 474

log10

Computes the logarithm (base 10) of x

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double log10 (
 double x);

Parameters

x

(IN) Specifies the argument for which the logarithm is to be computed.

Return Values

The log10 function returns the logarithm (base 10) of the argument. When
an error has occurred, errno is set.

Remarks

The log10 function computes the logarithm (base 10) of x. A domain error
occurs if the argument is negative. A range error occurs if the argument is
zero.

See Also

exp, log, pow

Example

log10

#include <math.h>
#include <stdio.h>

main()
{

NLM Programming

Mathematical Computation: Functions 475

 printf ("%f\n", log10 (.5));
}

produces the following:

-0.301030

NLM Programming

Mathematical Computation: Functions 476

matherr

Invoked each time an error is detected by functions in the math library

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

int matherr (
 struct exception *err_info);

Parameters

err_info

(OUT) Receives a pointer to the exception structure that contains
information about the detected error.

Return Values

The matherr function returns zero when an error message is to be
printed; otherwise it returns a nonzero value. The default matherr always
returns zero.

Remarks

The matherr function is invoked each time an error is detected by
functions in the math library. The default matherr supplied in the library
returns zero, which causes an error message to be displayed upon stderr
and errno to be set with an appropriate error value. An alternative version
of this function can be provided, so that mathematical errors are handled
by an application.

By calling RegisterMatherrHandler, you can provide a
developer-written version of matherr to take any appropriate action
when an error is detected. When zero is returned, an error message is
printed upon stderr and errno is set as was the case with the default
function. When a nonzero value is returned, no message is printed and
errno is not changed. The value err_info->retval is used as the return value
for the function in which the error was detected.

The matherr function is passed a pointer to a structure of type struct
exception, which contains information about the error that has been

NLM Programming

Mathematical Computation: Functions 477

detected:

struct exception
{
 int type; /* Type of error */
 char *name; /* Name of function */
 double arg1; /* First argument to function */
 double arg2; /* Second argument to function */
 double retval; /* Default return value */
};

See exception. Only retval can be changed by a developer-supplied
version of matherr.

See Also

RegisterMatherrHandler

Example

matherr

#include <math.h>
#include <string.h>
#include <stdio.h>

/*
 Demonstrate error routine in which negative
 arguments to "sqrt" are treated as positive
*/
int main ()
{
 RegisterMatherrHandler (altmatherr);
 printf ("%e\n", sqrt (-5e0));
 exit (0);
}

int altmatherr (struct exception *err);
{
 if (strcmp (err->name, "sqrt") == 0)
 {
 if (err->type == DOMAIN)
 {
 err->retval = sqrt (- (err->arg1));
 return (1);
 }
 else
 return (0);
 }
 else
 return (0);

NLM Programming

Mathematical Computation: Functions 478

}

NLM Programming

Mathematical Computation: Functions 479

max

Returns the larger of two integers

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <stdlib.h>

int max (
 int a,
 int b);

Parameters

a

(IN) Specifies the first integer.

b

(IN) Specifies the second integer.

Return Values

The max function returns the larger of the two integers.

See Also

min

Example

max

#include <stdlib.h>

external int ComputeValue1 (void);
external int ComputeValue2 (void);

main()
{
 int maxValue;
 value1 = ComputeValue1();

NLM Programming

Mathematical Computation: Functions 480

 value2 = ComputeValue2();
 maxValue = max (value1, value2);
}

NLM Programming

Mathematical Computation: Functions 481

min

Returns the smaller of two integers

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <stdlib.h>

int min (
 int a,
 int b);

Parameters

a

(IN) Specifies the first integer.

b

(IN) Specifies the second integer.

Return Values

The min function returns the smaller of the two integers.

See Also

max

Example

min

#include <stdlib.h>

external int ComputeValue1 (void);
external int ComputeValue2 (void);

main()
{
 int minValue;
 value1 = ComputeValue1();

NLM Programming

Mathematical Computation: Functions 482

 value2 = ComputeValue2();
 minValue = min (value1, value2);
}

NLM Programming

Mathematical Computation: Functions 483

modf

Breaks the argument value into integral and fractional parts

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double modf (
 double value,
 double *iptr);

Parameters

value

(IN) Specifies the value to be broken into integral and fractional parts.

iptr

(OUT) Receives a pointer to the object into which the integral part is
stored as a double.

Return Values

The modf function returns the signed fractional part of value.

Remarks

The modf function breaks the argument value into integral and fractional
parts, each of which has the same sign as the argument. It stores the
integral part as a double in the object pointed to by iptr.

See Also

frexp, ldexp

Example

modf

#include <math.h>
#include <stdio.h>

NLM Programming

Mathematical Computation: Functions 484

#include <stdio.h>

main ()
{
 double integral_value, fractional_part;
 fractional_part = modf (4.5, &integral_value);
 printf ("%f %f\n", fractional_part, integral_value);
 fractional_part = modf (-4.5, &integral_value);
 printf ("%f %f\n", fractional_part, integral_value);
}

produces the following:

 0.500000 4.000000
-0.500000 -4.000000

NLM Programming

Mathematical Computation: Functions 485

pow

Computes x raised to the power y

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double pow (
 double x,
 double y);

Parameters

x

(IN) Specifies the argument to be raised to the power y.

y

(IN) Specifies the integral power.

Return Values

The pow function returns the value of x raised to the power y. When the
argument is outside the permissible range, errno is set and matherr is
called. Unless the function is replaced, matherr prints a diagnostic
message using the stderr stream.

Remarks

The pow function computes x raised to the power y. A domain error
occurs if x is zero and y is less than or equal to 0, or if x is negative and y
is not an integer. A range error can occur.

See Also

exp, log, sqrt

Example

pow

NLM Programming

Mathematical Computation: Functions 486

#include <math.h>
#include <stdio.h>
main ()
{
 printf ("%f\n", pow (1.5, 2.5));
}

produces the following:

2.755676

NLM Programming

Mathematical Computation: Functions 487

rand, rand_r

Computes a sequence of pseudo-random integers in the range 0 to
RAN_MAX (32767)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

Platform: NLM

SMP Aware: No

Service: Mathematical Computation

Syntax

#include <stdlib.h>

int rand (void);

#include <stdlib.h>

int rand_r (
 unsigned long *seed,
 int *value);

Parameters

seed

(IN/OUT) Points to a seed value (updated with each iteration).

value

(OUT) Points to a place to store the returned value.

Return Values

Returns the value stored in the value parameter (representing a
pseudo-random integer).

If the seed parameter is set to NULL, -1 will be returned and errno will be
set to EINVAL.

If the value parameter is set to NULL, a value will be returned but the
value will not be stored.

Remarks

rand_r is the same as rand except that the caller passes storage for the
seed and the result rather than relying on a global variable (which has
the potential of being modified by subsequent calls to rand by other

NLM Programming

Mathematical Computation: Functions 488

threads in the same NLM).

rand_r is supported only in CLIB V 4.11 or above.

The sequence of pseudo-random integers can be started at different
values by calling the srand function.

See Also

srand

NLM Programming

Mathematical Computation: Functions 489

RegisterMatherrHandler

Substitutes a custom routine for matherr

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

int RegisterMatherrHandler (
 int (*newFunc) (
 struct exception *));

Parameters

newFunc

(IN) Points to the routine to be used as matherr.

Return Values

RegisterMatherrHandler returns zero if successful. If a nonzero value is
returned, an error occurred resulting in an error handler being registered.
If an error occurs, it is most likely because the calling thread does not
have CLib context.

Remarks

RegisterMatherrHandler registers a routine (newFunc) to be called in
place of matherr.

If a routine has already been registered, RegisterMatherrHandler
returns a nonzero value. The following deregisters a previously
registered matherr handler:

 RegisterMatherrHandler(NULL);

The routine that is registered must meet the requirements of matherr.

See Also

matherr

NLM Programming

Mathematical Computation: Functions 490

Example

See the example for matherr.

NLM Programming

Mathematical Computation: Functions 491

sin

Computes the sine of the argument (in radians)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double sin (
 double x);

Parameters

x

(IN) Specifies the argument whose sine is to be computed.

Return Values

The sin function returns the sine value.

Remarks

The sin function computes the sine of x (measured in radians). A large
magnitude argument can yield a result with little or no significance.

See Also

acos, asin, atan, atan2, cos, tan

Example

sin

#include <math.h>
#include <stdio.h>

main ()
{
 printf ("%f\n", sin (.5));
}

NLM Programming

Mathematical Computation: Functions 492

produces the following:

0.479426

NLM Programming

Mathematical Computation: Functions 493

sinh

Computes the hyperbolic sine of the specified argument

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double sinh (
 double x);

Parameters

x

(IN) Argument whose hyperbolic sine is to be computed.

Return Values

The sinh function returns the hyperbolic sine value. When the argument
is outside the permissible range, errno is set and matherr is called. Unless
the function is replaced, matherr prints a diagnostic message using the
stderr stream.

Remarks

The sinh function computes the hyperbolic sine of x. A range error occurs
if the magnitude of x is too large.

See Also

cosh, matherr, tanh

Example

sinh

#include <math.h>
#include <stdio.h>

main ()

NLM Programming

Mathematical Computation: Functions 494

{
 printf ("%f\n", sinh (.5));
}

produces the following:

0.521095

NLM Programming

Mathematical Computation: Functions 495

sqrt

Computes the non-negative square root of the specified argument

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double sqrt (
 double x);

Parameters

x

(IN) Specifies the argument for which the nonnegative square root is to
be computed.

Return Values

The sqrt function returns the value of the square root. When the
argument is outside the permissible range, errno is set and matherr is
called. Unless the function is replaced, matherr prints a diagnostic
message using the stderr stream.

Remarks

The sqrt function computes the nonnegative square root of x. A domain
error occurs if the argument is negative.

See Also

exp, log, matherr, pow

Example

sqrt

#include <math.h>
#include <stdio.h>

NLM Programming

Mathematical Computation: Functions 496

main ()
{
 printf ("%f\n", sqrt (.5));
}

produces the following:

0.707107

NLM Programming

Mathematical Computation: Functions 497

srand

Starts a new sequence of pseudo-random integers to be returned by
subsequent calls to the rand function

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

Platform: NLM

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <stdlib.h>

void srand (
 unsigned int seed);

Parameters

seed

(IN) Specifies the initial seed value passed in by the user.

Return Values

None

Remarks

A particular sequence of pseudo-random integers can be repeated by
calling srand with the same seed parameter value.

See Also

rand, rand_r

NLM Programming

Mathematical Computation: Functions 498

tan

Computes the tangent of the specified argument

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double tan (
 double x);

Parameters

x

(IN) Specifies the argument whose tangent is to be computed.

Return Values

The tan function returns the tangent value. When an error has occurred,
errno is set.

Remarks

The tan function computes the tangent of x (measured in radians). A large
magnitude argument can yield a result with little or no significance.

See Also

atan, atan2, cos, sin, tanh

Example

tan

#include <math.h>
#include <stdio.h>

main ()
{
 printf ("%f\n", tan (.5));

NLM Programming

Mathematical Computation: Functions 499

}

produces the following:

0.546302

NLM Programming

Mathematical Computation: Functions 500

tanh

Computes the hyperbolic tangent of the specified argument

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Mathematical Computation

Syntax

#include <math.h>

double tanh (
 double x);

Parameters

x

(IN) Specifies the argument whose hyperbolic tangent is to be
computed.

Return Values

The tanh function returns the hyperbolic tangent value. When an error
has occurred, errno is set.

Remarks

The tanh function computes the hyperbolic tangent of x.

When the x argument is large, partial or total loss of significance can
occur. The matherr function is called in this case.

See Also

cosh, sinh, matherr

Example

tanh

#include <math.h>
#include <stdio.h>

main ()

NLM Programming

Mathematical Computation: Functions 501

main ()
{
 printf ("%f\n", tanh (.5));
}

produces the following:

0.462117

NLM Programming

Mathematical Computation: Functions 502

y0, y1, yn

See Bessel Functions

NLM Programming

Mathematical Computation: Functions 503

Mathematical Computation:
Structures

NLM Programming

Mathematical Computation: Structures 504

complex

Represents a complex number

Service: Math

Defined In: math.h

Structure

struct complex {
 double real;
 double imag;
 };

Fields

real

Contains the real part of the complex number.

imag

Contains the imaginary part or the complex number.

NLM Programming

Mathematical Computation: Structures 505

div_t

Contains the results of a division in type int

Service: Math

Defined In: stdlib.h

Structure

typedef struct {
 int quot;
 int rem;
} div_t;

Fields

quot

Contains the quotient of a division.

rem

Contains the remainder of a division.

Remarks

Used by div.

NLM Programming

Mathematical Computation: Structures 506

exception

Contains error information used by matherr

Service: Math

Defined In: math.h

Structure

struct exception
{
 int type;
 char *name;
 double arg1;
 double arg2;
 double retval;
};

Fields

type

Contains the error type.

The type field contains one of the following values:

DOMAIN A domain error has occurred, such as sqrt(-1e0).

SING A singularity would result, such as pow(0e0,-2).

OVERFLOW An overflow would result, such as pow(10e0,100).

UNDERFLO
W

An underflow would result, such as pow
(10e0,-100).

TLOSS Total loss of significance would result, such as
exp(1000).

PLOSS Partial loss of significance would result, such as
sin(10e70).

name

Points to a string containing the name of the function that detected the
error.

arg1

Contains the first argument to the function.

arg2

Contains the second argument to the function.

retval

NLM Programming

Mathematical Computation: Structures 507

Contains the default return value. This is the only field that can be
changed by a developer-supplied version of matherr.

NLM Programming

Mathematical Computation: Structures 508

ldiv_t

Contains the results of a division in type long

Service: Math

Defined In: stdlib.h

Structure

typedef struct {
 long quot;
 long rem;
} ldiv_t;

Fields

quot

Contains the quotient of a division.

rem

Contains the remainder of a division.

Remarks

Used by ldiv.

NLM Programming

Mathematical Computation: Structures 509

Memory Allocation

NLM Programming

 510

Memory Allocation: Functions

NLM Programming

Memory Allocation: Functions 511

alloca

Allocates and clears memory space for a block of memory on the stack

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Memory Allocation

Syntax

#include <nwmalloc.h>

void *alloca (
 size_t size);

Parameters

size

(IN) Specifies the size (in bytes) of the block of memory.

Return Values

alloca returns a pointer to the start of the allocated memory. The return
value is NULL if insufficient memory is available or if the value of the
size parameter is 0.

Remarks

Memory allocation is not limited to 64 KB. The size parameter is 32 bits.

The alloca function allocates memory space for an object of size bytes from
the stack. The allocated space is automatically discarded when the
current function exits.

The alloca function should not be used in an expression that is an
argument to a function, because the alloca function manipulates the
stack.

See Also

free, malloc, NWGarbageCollect

Example

alloca

NLM Programming

Memory Allocation: Functions 512

 #include stdio.h
 #include string.h
 #include nwmalloc.h
 FILE *open_err_file (char *name)
 {
 char *buffer; /* Allocate temp buffer for file name */
 buffer = alloca (strlen (name) + 5);--
 if (buffer)
 {
 sprintf ("buffer, %s.err", name);
 return (fopen (buffer, "w"));
 }
 return (NULL);
 }

NLM Programming

Memory Allocation: Functions 513

calloc

Allocates and clears memory space for an array of objects

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Memory Allocation

Syntax

#include <stdlib.h>
#include <nwmalloc.h>

void *calloc (
 size_t n,
 size_t size);

Parameters

n

(IN) Specifies the number of objects.

size

(IN) Specifies the size (in bytes) of each object.

Return Values

calloc returns a pointer to the start of the allocated memory. The return
value is NULL if insufficient memory is available or if the value of the
size parameter is 0.

Remarks

The calloc function initializes all the memory to binary zeroes.

Memory allocation is not limited to 64 KB. The size parameter is 32 bits.

The calloc function calls the malloc function.

A block of memory allocated using the calloc function should be freed
using the free function.

See Also

free, malloc

NLM Programming

Memory Allocation: Functions 514

Example

calloc

#include <nwmalloc.h>
#include <stdlib.h>

main ()
{
 int *memoryPointer;
 size_t n;
 memoryPointer = calloc (n, sizeof (int));
}

NLM Programming

Memory Allocation: Functions 515

free

Frees a previously allocated memory block

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Memory Allocation

Syntax

#include <stdlib.h>
#include <nwmalloc.h>

void free (
 void *ptr);

Parameters

ptr

(IN) Points to a memory block previously allocated by a call to calloc,
malloc, or realloc.

Return Values

The free function returns no value.

Remarks

When the value of ptr is NULL, the free function does nothing; otherwise,
the free function deallocates the memory block located by the ptr
parameter. The ptr parameter is 32 bits.

After a call to free, the freed memory block is available for allocation.

See Also

calloc, malloc, NWGarbageCollect, realloc

Example

free

#include <nwmalloc.h>
#include <stdlib.h>

NLM Programming

Memory Allocation: Functions 516

main ()
{
 char *ptr;
 free (ptr);
}

NLM Programming

Memory Allocation: Functions 517

malloc

Allocates a block of memory

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Memory Allocation

Syntax

#include <nwmalloc.h>
#include <stdlib.h>

void *malloc (
 size_t size);

Parameters

size

(IN) Specifies the size (in bytes) of the memory block.

Return Values

malloc returns a pointer to the start of the newly allocated memory. The
return value is NULL if insufficient memory is available or if the
requested size is 0.

Remarks

Memory allocation is not limited to 64 KB. The size parameter is 32 bits.

The malloc function blocks only if the allocated block is greater than or
equal to the size of cache_buffer+constant.

See Also

calloc, free, realloc

Example

malloc

#include <nwmalloc.h>
#include <stdlib.h>

NLM Programming

Memory Allocation: Functions 518

main ()
{
 char *memoryPointer;
 size_t size;
 memoryPointer = malloc (size);
}

NLM Programming

Memory Allocation: Functions 519

_msize

Returns the size of a memory block (implemented for NetWare® 3.11 and
above)

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Memory Allocation

Syntax

#include <nwmalloc.h>

size_t _msize (
 void *buffer);

Return Values

The _msize function returns the size of the memory block pointed to by
buffer.

Remarks

The _msize function returns the size of the memory block pointed to by
buffer that was allocated by a call to calloc, malloc, or realloc.

See Also

calloc, malloc, realloc

Example

_msize

#include <nwmalloc.h>

main ()
{
 void *buffer;
 buffer = malloc (999);
 printf ("Size of block is %u bytes\n", _msize (buffer));
}

produces the following:

Size of block is 1000 bytes

NLM Programming

Memory Allocation: Functions 520

The size of the memory is larger than the requested size due to space
required for alignment.

NLM Programming

Memory Allocation: Functions 521

NWGetAvailableMemory

Returns the number of bytes of memory available on the server

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Memory Allocation

Syntax

#include <nwmalloc.h>

LONG NWGetAvailableMemory (
 void);

Return Values

NWGetAvailableMemory returns the amount of memory (in bytes)
available on the server.

Remarks

The amount of memory returned by NWGetAvailableMemory is the
number of current cache buffers mutliplied by the size of a cache buffer.
The amount available will usually not be allocatable as one large chunk
as it will usually not be contiguous.

NLM Programming

Memory Allocation: Functions 522

__qcalloc

Allocates memory space for an array of objects

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Memory Allocation

Syntax

#include <nwmalloc.h>

void *__qcalloc (
 size_t n,
 size_t el_size);

Parameters

n

(IN) Specifies the number of objects.

el_size

(IN) Specifies the size (in bytes) of the object.

Return Values

_qcalloc returns a pointer to the start of the allocated memory.

Remarks

The _qcalloc function initializes all the memory to binary zeroes. The
_qcalloc function calls the malloc function.

See Also

malloc, realloc

Example

__qcalloc

#include <nwmalloc.h>

int memoryPtr;
size_t n;

NLM Programming

Memory Allocation: Functions 523

size_t n;
size_t el_size;
memoryPtr = _ _qcalloc (n, el_size);

NLM Programming

Memory Allocation: Functions 524

__qmalloc

Allocates memory for an object

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11. 3.12, 4.x

SMP Aware: No

Service: Memory Allocation

Syntax

#include <nwmalloc.h>

void *__qmalloc (
 size_t size);

Parameters

size

(IN) Specifies the size (in bytes) of the object.

Return Values

_qmalloc returns a pointer to the start of the newly allocated memory.

Remarks

The cache buffer size can be viewed or changed with the SET console
command. The default cache buffer size is 4,096 bytes.

See Also

__qcalloc, realloc

Example

__qmalloc

#include <nwmalloc.h>

int memoryPtr;
size-t size;
memoryPtr = _ _qmalloc (size);

NLM Programming

Memory Allocation: Functions 525

__qrealloc

Reallocates memory space for an object

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Memory Allocation

Syntax

#include <nwmalloc.h>

void *__qrealloc (
 void *old,
 size_t size);

Parameters

old

(IN) Points to a previously allocated memory block.

size

(IN) Specifies the size (in bytes) of an object.

Return Values

__qrealloc returns a pointer to the start of the reallocated memory.

Remarks

The __qrealloc function calls the __qmalloc function to enlarge a block of
memory.

See Also

calloc, malloc

Example

__qrealloc

#include <nwmalloc.h>

char memoryPtr;
char old;

NLM Programming

Memory Allocation: Functions 526

char old;
size_t size;
memoryPtr = __qrealloc (old, size);

NLM Programming

Memory Allocation: Functions 527

realloc

Reallocates a block of memory

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Memory Allocation

Syntax

#include <nwmalloc.h>
#include <stdlib.h>

void *realloc (
 void *oldBlk,
 size_t size);

Parameters

oldBlk

(IN) Points to a previously allocated memory block.

size

(IN) Specifies the size (in bytes) of the memory block.

Return Values

realloc returns a pointer to the start of the reallocated memory. The return
value is NULL if there is insufficient memory available or if the
requested size is 0.

Remarks

The realloc function calls the malloc function to enlarge a block of
memory.

Memory allocation is not limited to 64 KB. The size parameter is 32 bits.

When the value of the oldBlk parameter is NULL, a new block of memory
of size bytes is allocated. Otherwise, the realloc function reallocates space
of an object of size bytes by either:

Shrinking the allocated size of the allocated memory block oldBlk when
size is sufficiently smaller than the size of oldBlk.

Allocating a new block and copying the contents of oldBlk to the new
block when size is not sufficiently smaller than the size of oldBlk.

NLM Programming

Memory Allocation: Functions 528

Because it is possible that a new block can be allocated, no other pointers
should point into the memory of oldBlk. When a new block is allocated,
these pointers point to freed memory, with possibly disastrous results.

See Also

calloc, free, malloc

Example

realloc

#include <nwmalloc.h>
#include <stdlib.h>

main ()
{
 char *memoryPointer;
 char *oldBlk;
 size_t size;
 memoryPointer = realloc (oldBlk, size);
}

NLM Programming

Memory Allocation: Functions 529

stackavail

Returns the number of bytes currently available in the stack

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: Memory Allocation

Syntax

#include <nwmalloc.h>

size_t stackavail (void);

Return Values

The stackavail function returns the number of bytes currently available
in the stack.

See Also

alloca, calloc, malloc

NLM Programming

Memory Allocation: Functions 530

Memory Manipulation

NLM Programming

 531

Memory Manipulation: Functions

NLM Programming

Memory Manipulation: Functions 532

memchr

Locates the first occurrence of the specified character (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Memory Manipulation

Syntax

#include <string.h>

void *memchr (
 const void *buf,
 int ch,
 size_t length);

Parameters

buf

(IN) Points to the object to be searched.

ch

(IN) Specifies the character to be located.

length

(IN) Specifies the number of bytes to search.

Return Values

memchr returns a pointer to the located character or NULL if the
character does not occur in the object.

Remarks

The memchr function or macro locates the first occurrence of ch
(converted to an unsigned char) in the first length characters of the object
pointed to by buf.

See Also

memcmp, memcpy, memset

Example

NLM Programming

Memory Manipulation: Functions 533

memchr

#include <string.h>
#include <stdio.h>

main ()
{
 char *where;
 char buffer[80];
 where = memchr (buffer, 'x', 6);
 if (where == NULL)
 {
 printf ("'x' not found\n");
 }
}

NLM Programming

Memory Manipulation: Functions 534

memcmp

Compares (with case sensitivity) two blocks of memory (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Memory Manipulation

Syntax

#include <string.h>

int memcmp (
 const void *s1,
 const void *s2,
 size_t length);

Parameters

s1

(IN) Points to the first object.

s2

(IN) Points to the second object.

length

(IN) Specifies the number of bytes to compare.

Return Values

memcmp returns an integer less than, equal to, or greater than zero,
indicating that the object pointed to by s1 is less than, equal to, or greater
than the object pointed to by s2.

Remarks

The memcmp function or macro compares the first length characters of the
object pointed to by s1 to the object pointed to by s2.

See Also

memchr, memcpy, memicmp, memset

Example

NLM Programming

Memory Manipulation: Functions 535

memcmp

#include <string.h>
#include <stdio.h>

main ()
{
 char buffer[80];
 if (memcmp (buffer, "Hello ", 6) < 0)
 {
 printf ("Less than\n");
 }
}

NLM Programming

Memory Manipulation: Functions 536

memcpy

Copies length characters from one buffer to another buffer (function or
macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

SMP Aware: Yes

Service: Memory Manipulation

Syntax

#include <string.h>

void *memcpy (
 void *dst,
 const void *src,
 size_t length);

Parameters

dst

(IN) Points to a buffer into which to copy the characters.

src

(IN) Points to a buffer containing the characters to be copied.

length

(IN) Specifies the number of characters to copy.

Return Values

memcpy returns dst.

Remarks

The memcpy function or macro copies length characters from the buffer
pointed to by src into the buffer pointed to by dst. Copying of overlapping
objects have undefined results. See the memmove function to copy
objects that overlap.

See Also

memchr, memcmp, memmove, memset

NLM Programming

Memory Manipulation: Functions 537

Example

memcpy

#include <string.h>

main ()
{
 char buffer[80];
 memcpy (buffer, "Hello", 5);
}

NLM Programming

Memory Manipulation: Functions 538

memicmp

Compares, with case insensitivity (uppercase and lowercase characters are
equivalent), the first length characters of two objects

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

SMP Aware: Yes

Service: Memory Manipulation

Syntax

#include <string.h>

int memicmp (
 const void *s1,
 const void *s2,
 size_t length);

Parameters

s1

(IN) Points to the first object.

s2

(IN) Points to the second object.

length

(IN) Specifies the number of characters to compare.

Return Values

The memicmp function returns an integer less than, equal to, or greater
than zero, indicating that the object pointed to by s1 is less than, equal to,
or greater than the object pointed to by s2.

Remarks

The memicmp function compares, with case insensitivity (uppercase and
lowercase characters are equivalent), the first length characters of the
object pointed to by s1 to the object pointed to by s2.

See Also

memchr, memcmp, memcpy, memset

NLM Programming

Memory Manipulation: Functions 539

Example

memicmp

#include <string.h>
#include <stdio.h>

main ()
{
 char buffer[80];
 if (memicmp (buffer, "Hello", 5) < 0)
 {
 printf ("Less than\n");
 }
}

NLM Programming

Memory Manipulation: Functions 540

memmove

Copies length characters from one buffer to another buffer

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

SMP Aware: Yes

Service: Memory Manipulation

Syntax

#include <string.h>

void *memmove (
 void *dst,
 const void *src,
 size_t length);

Parameters

dst

(IN) Points to a buffer into which to copy the characters.

src

(IN) Points to a buffer containing the characters to be copied.

length

(IN) Specifies the number of characters to move.

Return Values

The memmove function returns dst.

Remarks

The memmove function copies length characters from the buffer pointed
to by src to the buffer pointed to by dst. The dst buffer is an exact copy of
the src buffer. Copying of overlapping objects guarantees a buffer fill. See
memcpy to copy objects that do not overlap.

See Also

memcpy, memset

Example

NLM Programming

Memory Manipulation: Functions 541

memmove

#include <string.h>

main ()
{
 char buffer[80];
 memmove (buffer+1, buffer, 79);
 buffer[0] = '*';
}

NLM Programming

Memory Manipulation: Functions 542

memset

Fills the first length characters of an object with a specified value (function or
macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

SMP Aware: Yes

Service: Memory Manipulation

Syntax

#include <string.h>

void *memset (
 void *s,
 int c,
 size_t length);

Parameters

s

(IN) Points to the object.

c

(IN) Specifies the value of the character.

length

(IN) Specifies the number of characters to set.

Return Values

memset returns s.

Remarks

The memset function or macro fills the first length characters of the object
pointed to by s with the value c.

See Also

memchr, memcmp, memcpy, memmove

Example

NLM Programming

Memory Manipulation: Functions 543

memset

#include <string.h>

main ()
{
 char buffer[80];
 memset (buffer, '=', 80);
}

NLM Programming

Memory Manipulation: Functions 544

NLM Debug

NLM Programming

 545

NLM Debug: Functions

NLM Programming

NLM Debug: Functions 546

assert

Identifies program logic errors

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

Platform: NLM

SMP Aware: Yes

Service: NLM Debug

Syntax

#include <assert.h>

void assert (
 int expression);

Parameters

expression

(IN) Specifies an expression to test assertion.

Return Values

assert returns no values. Because assert uses the printf function to display
errors, errno can be set when an output occurs.

Remarks

assert prints a diagnostic message upon the stderr stream and terminates
the program if expression is FALSE (0). The diagnostic message has the
following form:

 Assertion failed: expression, file filename, line
 linenumber

filename Specifies the name of the source file.

linenum
ber

Specifies the line number of the assertion that failed in the
source file.

The filename and linenumber values are the values of the preprocessing
macros __FILE__ and __LINE__, respectively. No action is taken if
expression is TRUE (nonzero).

NLM Programming

NLM Debug: Functions 547

The given expression should be chosen so that it is true when the
program is functioning as intended. After the program has been
debugged, the special "no debug" identifier NDEBUG can be used to
remove assert functions from the program when it is recompiled. If
NDEBUG is defined (with any value) with a -d command line option or
with a #define directive, the C preprocessor ignores all assert functions in
the program source.

NLM Programming

NLM Debug: Functions 548

BumpFunctionCount

Increments a counter for developer-coded functions for use with
NLMDebug.NLM

Local Servers: blocking

Remote Servers: N/A

Classification: NetWare 4.11

SMP Aware: Yes

Service: NLM Debug

Syntax

#include <nwdebug.h>

int BumpFunctionCount (
 const char *name);

Parameters

name

(IN) Specifies the name of the function or another object to count
(maximum length of any registered name is 100 characters).

Return Values

None

Remarks

BumpFunctionCount registers and/or increments a counter to record th
enumber of times the object specified in the name parameter has been
accessed.

BumpFunctionCount is for use by the developer and implements simple
profiling as do the server libraries. BumpFunctionCount is primarily
intended to be called at the beginning of each function.

The source code (including nwdebug.h) must be compiled with the
preprocessor symbol Debug defined for BumpFunctionCount to have
any impact.

name is a character string that designates any object that needs to be
counted. The count of all objects is displayed by NLMDebug.NLM.

See Also

NWEnableDebugProfile, NWValidateDebugProfile

NLM Programming

NLM Debug: Functions 549

EnterDebugger

Enters system debugger

Local Servers: N/A

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: NLM Debug

Syntax

#include <nwdebug.h>

int EnterDebugger (void);

Return Values

None

NLM Programming

NLM Debug: Functions 550

NWClearBreakpoint

Dynamically clears the breakpoint set with NWSetBreakpoint

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: NLM Debug

Syntax

#include <nwdebug.h>

void NWClearBreakpoint (
 int breakpoint);

Parameters

breakpoint

(IN) Specifies the breakpoint to clear.

Return Values

None

Remarks

NWClearBreakpoint clears the breakpoint set with NWSetBreakpoint.
The value for the breakpoint parameter is the return value from successful
completion of NWSetBreakpoint.

See Also

NWSetBreakpoint

NLM Programming

NLM Debug: Functions 551

NWDebugPrintf

Implements printf-style output in the NetWare System Debugger

Local Servers: blocking

Remote Servers: N/A

Classification: NetWare 4.11

SMP Aware: No

Service: NLM Debug

Syntax

#include <nwdebug.h>

int NWDebugPrintf (
 const char *format,
 ...);

Parameters

format

(IN) Specifies the format of the output.

suceeding parameters

(IN) See the documentation for printf.

Return Values

NWDebugPrintf returns the number of characters written, or it returns a
negative value if an output error occurred.

errno is not set because no CLib context is available; instead, the absolute
value of the returned value is equivalent to errno.

Remarks

NWDebugPrintf is intended for use from a registered alternate
debugger.

NWDebugPrintf writes output to the NetWare System Debugger screen
under control of the parameter format. The format string operates the
same as for printf except only the following pronouns are supported
(while some new ones have been added which are not suggested for the
ANSI function).

Format Control StringsThe valid conversion type specifiers are:

NLM Programming

NLM Debug: Functions 552

c An argument of type int is converted to a value of type char and
the corresponding ASCII character code is written to the output
stream.

d, i An argument of type int is converted to a signed decimal notation
and written to the output stream. The default precision is 1, but if
more digits are required, leading zeros are added.

o An argument of type int is converted to an unsigned octal
notation and written to the output stream. The default precision
is 1, but if more digits are required, leading zeros are added.

s Characters from the string specified by an argument of type char
*, up to, but not including, the terminating NULL character (\0),
are written to the output stream. If a precision is specified, no
more than that many characters are written.

S Characters from a length-preceded string are written to the
output stream. If a precision is specified, no more than that many
characters are written.

u An argument of type int is converted to an unsigned decimal
notation and written to the output stream. The default precision
is 1, but if more digits are required, leading zeros are added.

x,
X

An argument of type int is converted to an unsigned hexadecimal
notation and written to the output stream. The default precision
is 1, but if more digits are required, leading zeros are added.
Hexadecimal notation uses digits (0 through 9) and characters (a
through f or A through F) for x or X conversions respectively, as
the hexadecimal digits. Subject to the alternate-form control flag,
0x or 0X is affixed to the output.

b An argument of type int is converted to binary representation
and written to the debugger screen. Length is specified using an
integer corresponding to the number of 1s and 0s desired. If the
length is prefixed with a 0, leading zeros are retained. See
NWDisplayBinaryAtAddr.

Left justifies the value being printed. For example:

NWDebugPrintf("%4b", 4) yields `100'

NWDebugPrintf("%04b", 4) yields `0100'

NWDebugPrintf("%4b", 4 + 0xf0) yields `11110100'

t,T An argument of any type is converted to a Boolean (truth value)
representation and displayed as `TRUE' or `FALSE'. (No
localization of these values is supported.) The maximum possible
width of t or T is 90.

p,
P

Identical to x, X. Do not use far pointers.

NLM Programming

NLM Debug: Functions 553

Any other conversion type specifier character, including another percent
(%) character, is written to the output stream with no special
interpretation.

The arguments must correspond with the conversion type specifiers, left
to right in the string; otherwise, indeterminate results occur.

WARNING: NWDebugPrintf is provided `as is' and is not
expressly supported. Bug reports will be gladly accepted and will be
fixed on a low-priority basis. Extending the NetWare System
Debugger is hazardous; therefore, you must take full responsibility
for what your code does or does not do at this level. Novell is trying
to open up to you the capability to extend this debugger.

See Also

NWDisplayBinaryAtAddr, NWDisplayDoubleAtAddr,
NWDisplayLConvAtAddr, NWDisplayStringAtAddr,
NWDisplayTMAtAddr, NWDisplayUnicodeAtAddr

NLM Programming

NLM Debug: Functions 554

NWDisplayBinaryAtAddr

Displays an address to a Unicode string in the NetWare System Debugger

Local Servers: blocking

Remote Servers: N/A

Classification: NetWare 4.11

SMP Aware: No

Service: NLM Debug

Syntax

#include <nwdebug.h>

void NWDisplayBinaryAtAddr (
 void *addr);

Parameters

addr

(IN) Specifies the address of string to be displayed.

Return Values

None

Return Values

NWDisplayBinaryAtAddr displays the long word starting at address
addr in binary. This is the function called when the command

binary <address>

is issued to the NetWare System Debugger once Threads.NLM is loaded.

NWDisplayBinaryAtAddr is intended to be called from a registered
alternate debugger.

NLM Programming

NLM Debug: Functions 555

NWDisplayDoubleAtAddr

Displays an address to specified double in the NetWare System Debugger

Local Servers: blocking

Remote Servers: N/A

Classification: NetWare 4.11

SMP Aware: No

Service: NLM Debug

Syntax

#include <nwdebug.h>

void NWDisplayDoubleAtAddr (
 void *addr);

Parameters

addr

(IN) Specifies the address of double to be displayed.

Return Values

None

Remarks

NWDisplayDoubleAtAddr displays a double in binary. The sign
occupies the first bit, the exponent occupies the next 11 bits, while the
mantissa occupies the remaining 52 bits.

NWDisplayDoubleAtAddr is the function called when the command

double <address>

is called from the NetWare System Debugger once Threads.NLM is
loaded.

NWDisplayDoubleAtAddr is intended to be called from a registered
alternate debugger.

NLM Programming

NLM Debug: Functions 556

NWDisplayLConvAtAddr

Displays an ANSI locale structure in the NetWare System Debugger

Local Servers: blocking

Remote Servers: N/A

Classification: NetWare 4.11

SMP Aware: No

Service: NLM Debug

Syntax

#include <nwdebug.h>
#include <locale.h>

void NWDisplayLConvAtAddr (
 void *lc);

Parameters

lc

(IN) Specifies the address of the structure to be displayed.

Return Values

None

Remarks

NWDisplayLConvAtAddr displays the ANSI locale structure (struct
lconv) starting at the address specified by lc.

NWDisplayLConvAtAddr is the function called when the command

lconv <address>

is called from the NetWare System Debugger once CLib.NLM is loaded.

NWDisplayLConvAtAddr is intended to be called from a registered
alternate debugger.

NLM Programming

NLM Debug: Functions 557

NWDisplayStringAtAddr

Displays an address to an ASCIIZ string in the NetWare System Debugger

Local Servers: blocking

Remote Servers: N/A

Classification: NetWare 4.11

SMP Aware: No

Service: NLM Debug

Syntax

#include <nwdebug.h>

void NWDisplayStringAtAddr (
 void *s,
 size_t len);

Parameters

s

(IN) Specifies the address of the string to be displayed.

len

(IN) Specifies the length of string in bytes.

Return Values

None

Remarks

NWDisplayStringAtAddr displays characters starting at address s and
extending for len characters or until a null character is encountered
(whichever is less).

NWDisplayStringAtAddr is the function called when the command

string <address> [length]

is called from the NetWare System Debugger once Threads.NLM is
loaded.

NWDisplayStringAtAddr is intended to be called from a registered
alternate debugger.

NLM Programming

NLM Debug: Functions 558

NWDisplayTMAtAddr

Displays an ANSI time break-down structure in the NetWare System
Debugger

Local Servers: blocking

Remote Servers: N/A

Classification: NetWare 4.11

SMP Aware: No

Service: NLM Debug

Syntax

#include <nwdebug.h>
#include <time.h>

void NWDisplayTMAtAddr (
 void *tm);

Parameters

tm

(IN) Specifies the address of the structure to be displayed.

Return Values

None

Remarks

NWDisplayTMAtAddr displays the ANSI time break-down structure
(struct tm) starting at the address specified by tm.

NWDisplayTMAtAddr is the function called when the command

tm <address>

is called from the NetWare System Debugger once CLib.NLM is loaded.

NWDisplayTMAtAddr is intended to be called from a registered
alternate debugger.

NLM Programming

NLM Debug: Functions 559

NWDisplayUnicodeAtAddr

Displays an address to a Unicode string in the NetWare System Debugger

Local Servers: blocking

Remote Servers: N/A

Classification: NetWare 4.11

SMP Aware: No

Service: NLM Debug

Syntax

#include <nwdebug.h>

void NWDisplayUnicodeAtAddr (
 void *s,
 size_t len);

Parameters

s

(IN) Specifies the address of the string to be displayed.

len

(IN) Specifies the length of the string in Unicode characters.

Return Values

None

Remarks

NWDisplayUnicodeAtAddr displays Unicode characters starting at the
address specified by s and extending for len characters or until a null
word <0000> is encountered (whichever is less) as ASCII characters
intermixed with numeric representation in the form <nn>.

NWDisplayUnicodeAtAddr is the function called when the command

unicode <address> [length]

is called from the NetWare System Debugger once Threads.NLM is
loaded.

NWDisplayUnicodeAtAddr is intended to be called from a registered
alternate debugger.

NLM Programming

NLM Debug: Functions 560

NWEnableDebugProfile

Toggles between enabling or disabling the profiling of developer-coded
function calls

Local Servers: blocking

Remote Servers: N/A

Classification: NetWare 4.11

SMP Aware: No

Service: NLM Debug

Syntax

#include <nwdebug.h>

void NWEnableDebugProfile (
 int flag);

Parameters

flag

(IN) Specifies either TRUE or FALSE indicating whether calls to
developer-coded functions should be counted.

Return Values

None

Remarks

NWEnableDebugProfile enables or disables function call profiling for
server-library functions to be counted and displayed by the
Function-Call Profiler option in NLMDebug.NLM. Only functions or
other objects counted by calling BumpFunctionCount are tabulated.

See Also

NWValidateDebugProfile

NLM Programming

NLM Debug: Functions 561

NWSetBreakpoint

Sets a breakpoint programmatically

Local Servers: nonblocking

Local Servers: blocking

Classification: 3.x, 4.x

SMP Aware: No

Service: NLM Debug

Syntax

#include <nwdebug.h>

int NWSetBreakpoint (
 LONG address,
 int breakType;

Parameters

address

(IN) Specifies the location of the breakpoint to set.

breakType

(IN) Specifies the breakpoint type.

Return Values

0-3 indicate success.

-1 indicates failure.

Remarks

NWSetBreakpoint provides a programmatic way to set a breakpoint
dynamically.

For the address parameter, pass in a pointer to data if you are setting a
write or a read/write breakpoint. Pass in a pointer to code if you are
setting an execution breakpoint.

For the breakType parameter, pass in one of the following three constants,
according to the type of breakpoint you are setting:

Constant Name: Defined Value:

EXECUTION_BREAKP
OINT

0

NLM Programming

NLM Debug: Functions 562

WRITE_BREAKPOINT 1

READ_WRITE_BREAK
POINT

3

If fewer than four breakpoints are set, NWSetBreakpoint returns the
next higher zero-based count of breakpoints and sets the requested
breakpoint. If all four breakpoints are already set when you call
NWSetBreakpoint, the function fails and returns -1.

See Also

NWClearBreakpoint

NLM Programming

NLM Debug: Functions 563

NWValidateDebugProfile

Determines whether profiling is active for developer code

Local Servers: blocking

Remote Servers: N/A

Classification: NetWare 4.11

SMP Aware: No

Service: NLM Debug

Syntax

#include <nwdebug.h>

int NWValidateDebugProfile (void);

Return Values

NWValidateDebugProfile returns non-zero whenever
NLMDebug.NLM has been used to turn on function-call profiling in the
NLM to be debugged (as named in NLMDebug.NLM, option:
Function-Call Profiling).

Remarks

NWValidateDebugProfile is not typically called directly. Instead, it is
usually called by BumpfunctionCount.

See Also

BumpFunctionCount, NWEnableDebugProfile

NLM Programming

NLM Debug: Functions 564

perror

Prints an error message

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

Platform: NLM

SMP Aware: Yes

Service: NLM Debug

Syntax

#include <stdio.h>

void perror (
 const char *prefix);

Parameters

prefix

(IN) Specifies the error message to print.

Return Values

perror returns no values. Because perror uses the fprintf function, errno
can be set when an error is detected during the execution of the function.

Remarks

The perror function prints, on the file designated by stderr, the error
message corresponding to the error number contained in errno.

See Also

strerror

NLM Programming

NLM Debug: Functions 565

NWSNUT

NLM Programming

 566

NWSNUT: Guides

NWSNUT: Concept Guide

NWSNUT provides the developer with the tools needed to create a user
interface similar to that of many NetWare® utilities, such as PCONSOLE.
This interface allows the user to manipulate data by using menus, lists and
forms.

General Information

The NWSNUT Environment

Zones

Other NWSNUT Functions

NWSNUT Example

NWSNUT Function List

Portals

Portals

Basic Steps for Using Portals

Special Purpose Portals

Lists

Lists

Basic Steps for Using Lists

Handling Lists

Manipulating List Elements

Marking Lists

Routines for List Elements

Saving Lists

Sorting Lists

Specialized Lists

Menus

NLM Programming

NWSNUT: Guides 567

Menus

Basic Steps for Using Menus

Forms

Forms

Basic Steps for Using Forms

Text in NWSNUT

Text in NWSNUT

NWSNUT Messages

Help Screens

Additional Links

NWSNUT: Functions

NWSNUT: Structures

NWSNUT: Task Guide

Basic Steps for Using Portals

Basic Steps for Using Lists

Basic Steps for Using Menus

Basic Steps for Using Forms

Additional Links

NWSNUT: Functions

NWSNUT: Structures

NLM Programming

NWSNUT: Guides 568

NWSNUT: Tasks

Basic Steps for Using Forms

The four steps below summarize the basic steps for using forms. The
examples are taken from ndemo.c, which can be found in the EXAMPLES
directory.

1. Initialize the form.

 NWSInitForm (handle);

NWSInitForm initializes the pointers for the current form.

2. Build the form by adding fields to it.

 line = 0;
 NWSAppendCommentField (line, 1, "Boolean Field:", handle);
 NWSAppendBoolField (line, 25, NORMAL_FIELD, &myBoolean,
 NULL, handle);
 line += 2;
 NWSAppendCommentField (line, 1, "Integer Field:", handle);
 NWSAppendIntegerField (line, 25, NORMAL_FIELD, &myInteger,
 0, 9999, NULL, handle);

To build the form, you must call one of the "append" functions for each
of the fields that you want to add to the form. Specify the placement of
each field within the form by specifying the portal line and column.
Each field type limits the kind of input that the user can enter for the
field and the actions that can be associated with it. You can assign a help
context to most fields. There are 12 types of fields that can be used in a
form as shown in Form Field Types.

For more information, see the following:

Form Field Types

Field Structure

Prompt Fields

Menu Fields

Custom Fields

Form Editing Functions

NLM Programming

NWSNUT: Tasks 569

3. Display the form and allow the user to edit it.

 NWSEditPortalForm (FORM_HEADER, 11, 40, 16, 50, F_NOVERIFY,
 FORM_HELP, EXIT_FORM_MSG, handle);

Once the form is built, a form editing function is called to display the
form and allow the user to access, modify and enter data into it.
NWSNUT provides functions for editing a form (see Form Editing
Functions).

4. Destroy the form.

 NWSDestroyForm (handle);

NWSDestroyForm frees all of the fields in the current form and
reinitializes form pointers.

Basic Steps for Using Lists

The four steps below summarize the basic steps for using lists. The
examples are taken from ndemo.c, which can be found in the EXAMPLES
directory.

1. Initialize the list.

 NWSInitList (handle, Free);

This function initializes a LISTPTR structure.

NOTE: If a list has previously been created, it must be saved or
destroyed before creating a new list.

2. Add items to the list.

 NWSAppendToList (NWSGetMessage (LIST_ITEM_1,
 &handle->messages),
 (void *) 0, handle);
 NWSAppendToList (NWSGetMessage (LIST_ITEM_2,
 &handle->messages),
 (void *) 0, handle);
 NWSAppendToList (NWSGetMessage (LIST_ITEM_3,
 &handle->messages),
 (void *) 0, handle);
 NWSAppendToList (NWSGetMessage (LIST_ITEM_4,
 &handle->messages),
 (void *) 0, handle);

NWSInsertInList or NWSInsertInPortalList can also be used to add
items to a list.

3. Display the list and allow the user to access it.

NLM Programming

NWSNUT: Tasks 570

 NWSList (LIST_HEADER, 10, 40, 4,
 strlen (NWSGetMessage (LIST_HEADER,
 &handle->messages)) + 4,
 M_ESCAPE | M_SELECT, NULL, handle,
 NULL, ListAction, 0);

NWSList displays the list and allows the user to access it. NWSNUT has
control of the process while the user makes a selection. Control is turned
over to the ListAction routine when the user selects a list item.

When a list element is created, custom data may be attached to it by
using the otherInfo parameter. This data is put in the otherInfo field of the
LIST structure for the new list element. This custom data can be any
type, including another list. If you attach a list to another list or to a
form, you must first call NWSInitListPtr to initialize a LISTPTR
structure for it.

4. Destroy the list.

 NWSDestroyList (handle);

This function frees all of the list nodes and initializes the list pointers.

Parent Topic: Lists

Basic Steps for Using Menus

The four steps below summarize the basic steps for using menus. The
examples are taken from ndemo.c, which can be found in the EXAMPLES
directory.

1. Initialize the menu.

 NWSInitMenu (handle);

NWSInitMenu initializes the pointers for the new menu.

2. Add options to the menu.

 NWSSetDynamicMessage(DYNAMIC_MESSAGE_ONE,
 "Menu Item 1 ", &handle->messages);
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_TWO,
 "Menu Item 2 ", &handle->messages);
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_THREE,
 "Menu Item 3 ", &handle->messages);
 NWSAppendToMenu (DYNAMIC_MESSAGE_ONE, 1, handle);
 NWSAppendToMenu (DYNAMIC_MESSAGE_TWO, 2, handle);
 NWSAppendToMenu (DYNAMIC_MESSAGE_THREE, 3, handle);

NWSAppendToMenu adds an option to the menu. You assign an
option value to each menu item when it is added to the menu. When the
user selects this option, its value is passed to the action routine specified

NLM Programming

NWSNUT: Tasks 571

when NWSMenu is called.

3. Display the menu and allow the user to choose from its options.

 NWSMenu (MENU_HEADER, 10, 40, NULL, MenuAction, handle,
 (void *)handle);

When you call NWSMenu, you specify an action routine for the menu.
The action routine receives the value of the option that the user chooses.

4. Destroy the menu.

 NWSDestroyMenu (handle);

NWSDestroyMenu frees the nodes and menu pointers for the menu.

Parent Topic: Menus

Basic Steps for Using Portals

The four steps below summarize the basic steps for using portals. The
examples are taken from ndemo.c, which can be found in the EXAMPLES
directory.

1. Create a portal.

 portalNumber = NWSCreatePortal(portalTop, portalLeft,
 portalFrameHeight, portalFrameWidth, portalVirtualHeight,
 portalVirtualWidth, SAVE, "Demonstration Portal", 0,
 DOUBLE, 0, CURSOR_ON, VIRTUAL, handle);

The following properties can be specified for the portal:

Frame size

Virtual display area size

Border type and video attribute

Whether to write directly to the physical screen or to the virtual
display area

Header text and attribute

Cursor state

Whether to save screen data beneath the portal

Notice that the frameHeight and frameWidth parameters include the
width of the portal border and header (see the NWSNUT Screen
Displaying a Portal figure). Therefore, the portal's physical display area
is smaller than its frame area. The terms portal line and portal column

NLM Programming

NWSNUT: Tasks 572

refer to a line and column inside this portal display area.

See the following topics for more information:

Video Attribute

Positioning the Portal

Screen Palette

2. Convert the portal number to a PCB.

 NWSGetPCB (&pPtr, portalNumber, handle);

This function returns the PCB for the portal, which is required for all
functions that write to portals.

3. Write data to the portal.

 /******** clear the portal, and bring it to the front ******/
 NWSClearPortal (pPtr);
 NWSSelectPortal (portalNumber, handle);
 ptr = "This is a portal";
 NWSShowPortalLine (0, 0, ptr, strlen (ptr), pPtr);
 ptr = "It may contain any type of data";
 NWSShowPortalLine (2, 0, ptr, strlen (ptr), pPtr);
 NWSUpdatePortal (pPtr); /**** cause it to be displayed on the screen ****/

The example shows just one way to write to a portal. See Basic Portal
Activities for a summary of functions used for writing to portals.

For more information, see the following:

Selecting Portals

The Portal Cursor

Scrolling the Portal

Line Drawing Characters

4. Destroy the portal.

 NWSDestroyPortal (portalNumber, handle);

NWSDestroyPortal destroys the portal and cleans up all resources used
by the portal.

Parent Topic: Portals

NLM Programming

NWSNUT: Tasks 573

NWSNUT: Concepts

Alerts and Errors

NWSNUT has two displays for informing the user of errors---alerts and
error portals. Alerts are created and displayed by calling NWSAlert or
NWSAlertWithHelp. Error portals are created with NWSDisplayErrorText
and NWSDisplayErrorCondition.

NWSAlert displays the alert message in a portal appropriately sized for the
message that you pass it. It displays until the user presses Esc or Enter.

NWSDisplayErrorText and NWSDisplayErrorCondition display the error
text, along with a message indicating the severity of the error, and an
optional message identifier for the error message. The two functions are
similar, but NWSDisplayErrorCondition allows you to display the name of
the procedure that resulted in the error and to create an error list for the
procedure. These two functions also optionally display the name and
version number of the NLM with the error number. If you do not want this
information displayed, call NWSSetErrorLabelDisplayFlag .

Parent Topic: NWSNUT Messages

Basic Portal Activities

NWSShowPortalLine

Displays a line of text. Portal line and column can be specified.

NWSShowPortalLineAttribute

Changes the video attribute of a specified portion of a portal line.

NWSDisplayTextInPortal

Displays text in an existing portal. Starting portal line for text and
indent level can be specified.

NWSDisplayTextJustifiedInPortal

Same as above, but text width and video attribute can be specified.

NWSFillPortalZone

Fills a specified region of the portal with a character.

NWSFillPortalZoneAttribute

Fills a specified region of the portal with a video attribute.

NLM Programming

NWSNUT: Concepts 574

NWSClearPortal

Blanks out a portal.

NWSUpdatePortal

Redraws a virtual portal to show changes since creation or last update.

NWSDrawPortalBorder

Redraws the border of a portal.

Parent Topic: Basic Steps for Using Portals

Confirmation of a Decision

NWSNUT provides a function that creates a special-purpose portal to allow
a user to confirm a decision. NWSConfirm displays a portal that contains a
menu with only "yes" and "no" options.

Parent Topic: User Input

Creating Messages

Messages can be created by using the Message Librarian (MSGLIB.EXE).
This allows messages to be segregated from the code for easier translation.
Each message is given a message name, also known as a message identifier.
For example, you might assign the message identifier WAIT_MSG to the
message "Please wait".

Many NWSNUT functions request the message identifier for the message,
but some request a pointer to BYTE. If this is the case, the message can be
retrieved from the message table by calling NWSGetMessage. For example:

 NWSAppendToList (NWSGetMessage (LIST_ITEM_1,
 &handle->messages), (void *) 0, handle);

After the messages are created, they must be imported for NWSNUT using
the NetWare Message Internationalization Tools.

Parent Topic: NWSNUT Messages

Custom Fields

NWSAppendToForm allows the developer to create a specialized field if
necessary. This function allows you to:

Fill fieldXtra and fieldData of the FIELD structure

NLM Programming

NWSNUT: Concepts 575

Specify routines for formatting, key input, input verification, and
memory release for the fieldData and fieldXtra fields

Specify action keys for the field

Assign a video attribute to the field

Custom routines for a field can also be set by calling
NWSSetFieldFunctionPtr, and retrieved by calling
NWSGetFieldFunctionPtr.

Parent Topic: Forms

Direct Portals

Direct portals do not have a "staging area" as do virtual portals. Data
written to the portal is written directly to the screen. Therefore, the display
area of a direct portal is the portal frame size minus the header and borders.
The size of a direct portal is limited by the size of the screen.

Parent Topic: Portals

Dynamic Messages

In addition to the message table specified when NWSInitializeNut is
called, you can specify messages by using the dynamic messages held in the
MessageInfo structure. Call NWSSetDynamicMessage to enter a message
into this structure. If you are hard-coding your messages into the NLM, you
can use dynamic messages for those functions that require a message
identifier. For example:

 NWSSetDynamicMessage(DYNAMIC_MESSAGE_ONE,
 "Menu Item 1 ", &handle->messages);
 NWSAppendToMenu (DYNAMIC_MESSAGE_ONE, 1, handle);

Parent Topic: NWSNUT Messages

Editing a String

NWSNUT provides two functions that allow the user to edit a string---
NWSEditString and NWSEditText. Both functions create a portal in which
the user can edit a string, but NWSEditString allows you to specify an
insertion routine and an action routine.

Parent Topic: User Input

NLM Programming

NWSNUT: Concepts 576

Field Structure

Each "append" function creates a structure of type FIELD, defined in
nwsnut.h. The FIELD structure is defined in as follows:

typedef struct fielddef {
 LIST *element;
 LONG fieldFlags;
 LONG fieldLine;
 LONG fieldColumn;
 LONG fieldWidth;
 LONG fieldAttribute;
 int fieldActivateKeys;
 void (*fieldFormat)(struct fielddef *field,
 BYTE *text, LONG buffLen);
 LONG (*fieldControl)(struct fielddef *field,
 int selectKey, int *fieldChanged,
 NUTInfo *handle);
 int (*fieldVerify)(struct fielddef *field,
 BYTE *data, NUTInfo *handle);
 void (*fieldRelease)(struct fielddef *field);
 BYTE *fieldData;
 BYTE *fieldXtra;
 int fieldHelp;
 struct fielddef *fieldAbove;
 struct fielddef *fieldBelow;
 struct fielddef *fieldLeft;
 struct fielddef *fieldRight;
 struct fielddef *fieldPrev;
 struct fielddef *fieldNext;
 void (*fieldEntry)(struct fielddef *field,
 void *fieldData, NUTInfo *handle);
 void *customData;
 void (*customDataRelease)(
 void *fieldCustomData,
 NUTInfo *handle);
 NUTInfo *nutInfo;
} FIELD

NOTE: Fields in this structure should not be changed directly. Use
NWSNUT functions for building and manipulating forms.

Most of these fields can be changed by using various form functions.
Exceptions are nutInfo and fields having to do with a field's relationship to
other fields in the form (fieldAbove, fieldBelow, and so on).

The element field points to a list structure.

The fieldFlags field is set with most "append" functions and can have the

NLM Programming

NWSNUT: Concepts 577

values summarized in the following table.

Table auto. Field Flags

Value Meaning

NORMAL_FIELD Normal, editable field.

LOCKED_FIELD Inaccessible field.

SECURE_FIELD Noneditable field.

REQURED_FIELD Verify field on form exit.

HIDDEN_FIELD Hidden fields are not seen by the user.
These fields are also locked.

PROMPT_FIELD Prompt fields cannot be selected by the
user. These fields are also locked.

ULOCKED_FIELD Field locked by user.

FORM_DESELECT Causes form deselection before action and
verify routines are called.

NO_FORM_DESELECT Form is not deselected before action and
verify routines are called.

DEFAULT_FORMAT Normal field-controlled justification.

RIGHT_FORMAT Right justification.

LEFT_FORMAT Left justification.

CENTER_FORMAT Centered.

Prompt and comment fields are automatically locked and inaccessible to the
user.

The fieldLine and fieldColumn fields position the form field. The fieldLine field
contains the portal line on which the form field is located. The fieldColumn
field contains the portal column on which the left-most character of the field
is located. The fieldWidth field contains the maximum width of the form
field. Each "append" function allows you to set the fieldLine and fieldColumn.

The fieldAttribute field contains the video attribute for the form field.

The fieldActivateKeys field contains the keys that activate the form field.

The following fields contain information about what routines are used for
the form field:

The fieldFormat field points to the routine used to format the form field.

The fieldControl field points to the routine that is called when the form
field is selected.

The fieldVerify field points to the routine used to verify input to the form
field.

NLM Programming

NWSNUT: Concepts 578

The fieldRelease field points to the routine called to release memory
allocated for fieldData and fieldXtra.

The customDataRelease field points to a routine to release data in
customData. The parameters match NWSFree so that NWSAlloc can be
used to allocate memory for customData, further guaranteeing that
memory is freed.

The fieldEntry field points to a routine called when any field in the form is
entered.

The fieldData field points to data associated with the form field. The fieldXtra
field points to additional control information associated with the form field.

The fieldHelp field contains the help context for the form field. Each of the
"append" functions allows you to set the help context.

The customData field contains user-defined data to be attached to the form
field.

Parent Topic: Forms

Form Editing Functions

NWSEditForm

Allows the user to edit the form.

NWSEditPortalForm

Same as NWSEditForm, but allows you to specify help context for the
form.

NWSEditPortalFormField

Same as NWSEditForm, but allows you to specify help context and
first field to highlight.

NWSSetFormRepaintFlag

Repaints the form to refect changes made to the form.

Parent Topic: Forms

Form Field Types

Field Function Use

Boolean NWSAppendBoolField Creates a special
menu list where the
choices are yes and

NLM Programming

NWSNUT: Concepts 579

no.

Comment NWSAppendCommentField Creates a field with
a prompt. The user
cannot edit this
field.

Custom NWSAppendToForm Creates a field that
is
developer-defined.

Hexadecimal NWSAppendHexField Creates a field that
accepts only
hexadecimal input
from the user.

Hot Spot NWSAppendHotSpotField Creates a field that
calls a "spot action"
routine when
selected.

Integer NWSAppendIntegerField Creates a field that
accepts only an
integer as input
from the user.

Menu NWSAppendMenuField Creates a field that
displays a menu
when selected.

Password NWSAppendPasswordField Creates an edit field
for password input.

Prompt NWSAppendPromptField Creates a field with
a prompt. The user
cannot edit this
field.

Scrollable
String

NWSAppendScrollableString
Field

Creates a scrollable
field containing an
editable string.

String NWSAppendStringField Creates a field
containing an
editable string.

Unsigned
Integer

NWSAppendUnsignedInteger
Field

Creates a field that
accepts only an
unsigned integer as
input from the user.

Parent Topic: Forms

Forms

NLM Programming

NWSNUT: Concepts 580

A form is another specific type of list. Forms are designed to allow the user
to input various types of data.

Related Topics

Basic Steps for Using Forms

Form Field Types

Field Structure

Prompt Fields

Menu Fields

Custom Fields

Form Editing Functions

Function Keys

NWSNUT allows you to enable or disable function keys, either one at a time
or in groups. A set of function keys can be saved so that it can be used
again. See the following table for a list of NWSNUT's Function Key
functions.

NWSDisableAllFunctionKeys

Disables all function keys.

NWSDisableFunctionKey

Disables a single function key.

NWSEnableAllFunctionKeys

Enables all function keys.

NWSEnableFunctionKey

Enables a single function key.

NWSEnableFunctionKeyList

Enables a list of function keys.

NWSSaveFunctionKeyList

Saves a list of function keys.

Parent Topic: User Input

Handling Lists

NWSSetList makes a list current. To obtain the pointers for a list, call

NLM Programming

NWSNUT: Concepts 581

NWSGetList. To obtain a pointer to the head or tail of a list, call
NWSGetListHead or NWSGetListTail, respectively.

Related Topic: Saving Lists

Parent Topic: Lists

Help Screens

Help screens are created with helplib.exe. The help file for the various
languages is located in the same directory as the message file for that
language. In addition, a help file can be linked to the NLM with NLMLINK.
As with the message files, you can pass a pointer to the help file (after it is
loaded into memory) when NWSNUT is initialized with NWSInitializeNut,
or you can pass a NULL for the helpScreens parameter and let NWSNUT
retrieve the appropriate help file for you.

The helpOffset required with any of the help functions (for example,
NWSPushHelpContext), is the offset or help identifier assigned to the help
screen in the nlmname.hlh file produced by helplib.exe.

To use help, call NWSPushHelpContext. This enables the specified help
screen until another help screen is pushed, or until the previous help screen
is popped. When the user presses F1 NWSNUT displays the current help
screen (the last one pushed). After the help is no longer needed, pop it from
the help stack by calling NWSPopHelpContext. For example:

#include "myNLM.HLH" // includes definition for MY_FIRST_HELP

 NWSPushHelpContext (MY_FIRST_HELP, handle);

 /*
 from this point on, whenever the user presses F1, the
 help screen identified by MY_FIRST_HELP will be displayed
 */

 NWSPopHelpContext (handle);

 // the previous help is now in force.

A specific help screen can be displayed without pushing it onto the help
stack by calling NWSDisplayHelpScreen.

Pre-Help Portals

In addition to help, NWSNUT allows the creation of "pre-help" portals. A
pre-help portal is a portal with a message that remains on the screen for a
long period of time, such as "Press <F1> for help." To display a pre-help

NLM Programming

NWSNUT: Concepts 582

message, call NWSDisplayPreHelp. To remove a pre-help portal, call
NWSRemovePreHelp.

Parent Topic: Text in NWSNUT

Interrupt Keys

An interrupt key is a key that is assigned a procedure, so that the procedure
is called when the interrupt key is pressed. NWSNUT provides four
functions dealing with interrupt keys, as listed in the following table.

NWSDisableAllInterruptKeys

Disables all interrupt keys.

NWSEnableInterruptKey

Enables in interrupt key and associates that key with a routine.

NWSEnableInterruptList

Enables a list of interrupt keys.

NWSSaveInterruptList

Saves a list of interrupt keys.

Parent Topic: User Input

Keyboard Input in NWSNUT

The following table lists functions that deal with keyboard input.

NWSGetKey

Reads one key from the keyboard buffer.

NWSKeyStatus

Indicates whether a key is waiting in the keyboard buffer.

NWSUngetKey

Inserts a key into the keyboard buffer.

NWSWaitForEscape

Waits for the Esc key to be pressed.

NWSWaitForEscapeOrCancel

Waits for either the Esc or cancel (F7) key to be pressed.

NWSWaitForKeyAndValue

Waits for one of the keys in a specified set to be pressed.

Parent Topic: User Input

NLM Programming

NWSNUT: Concepts 583

Line Drawing Characters

To obtain line drawing characters for drawing in a portal, call
NWSGetLineDrawCharacter (see "character and key constants" in
NWSNUT.H).

Parent Topic: Basic Steps for Using Portals

Lists

A list is a data structure that NWSNUT uses to allow the user to select from
a number of items or options. A list is displayed in an updated virtual
portal. The user can scroll the portal and select one or more items. The
format, presentation, and content of a list are controlled by the calling NLM.
This is done by using either default NWSNUT routines or NWSNUT
client-specified routines to format, present, and verify the list contents.

A list is made up of a LISTPTR structure and a number of LIST structures
that are linked together. The LISTPTR structure contains pointers to the first
and last elements of the list (the head and tail fields of LISTPTR). Each list
element in the list is defined by a LIST structure which contains pointers to
both the previous and following elements in the list. The first list element
points to NULL as its previous element (LIST.prev), and the last list element
points to NULL as its following list element (LIST.next). See the following
figure for a representation of the list elements and their relationship to the
LISTPTR structure. The LIST and LISTPTR structures are defined in
nwsnut.h.

Figure 18. List Structure

NLM Programming

NWSNUT: Concepts 584

NOTE: Fields in the LISTPTR and LIST structures should not be
changed directly. NWSNUT functions keep the information in these
structures current.

Related Topics

Basic Steps for Using Lists

Manipulating List Elements

Handling Lists

Routines for List Elements

Saving Lists

Specialized Lists

NLM Programming

NWSNUT: Concepts 585

Manipulating List Elements

Once a list is created, its elements can be manipulated in several ways.
Elements can be added, deleted, modified, marked and sorted.

The following lists functions used to add, delete and modify list elements:

NWSAppendToList

Adds an element to the end of the current list

NWSInsertInList, NWSInsertInPortalList

Inserts an element into a list at a specific location

NWSDeleteFromPortalList

Deletes current and marked list elements

NWSDeleteFromList

Delete a specified list element

NWSModifyInPortalList

Modifies the text field of a list element

Related Topics

Marking Lists

Sorting Lists

Parent Topic: Lists

Marking Lists

The user marks a list item by pressing F5. The marked item is displayed
with a reverse normal video attribute and the marked field of the associated
LIST structure is set. In this way, the user can select several list elements to
perform an action on at one time. The following table summarizes functions
that deal with marking list elements:

NWSIsAnyMarked

Determines whether any items in a list are marked

NWSUnmarkList

Changes the status of all list elements to unmarked

NWSPushMarks

Saves the marked status of all list elements in the current list

NWSPopMarks

Retrieves the saved marked status of all list elements in the current list.

NLM Programming

NWSNUT: Concepts 586

Parent Topic: Manipulating List Elements

Menu Fields

Creating a menu field is more complicated than creating other fields. To
create a menu field, you must complete the following steps:

Initialize the menu field by calling NWSInitMenuField.

Build the menu by calling NWSAppendToMenuField once for each
menu option in the menu field.

Append the menu field to the form by calling NWSAppendMenuField.

The following example from NDEMO.C illustrates this process:

 mfctl = NWSInitMenuField (FORM_MENU_HEADER, 10, 40,
 FormMenuAction, handle);
 NWSAppendToMenuField (mfctl, MENU_TEXT_ONE, 1, handle);
 NWSAppendToMenuField (mfctl, MENU_TEXT_TWO, 2, handle);
 menuChoice = 1; /* display the text for option one */
 line += 2;
 NWSAppendCommentField (line, 1, "Menu Field:", handle);
 NWSAppendMenuField (line, 25, NORMAL_FIELD, &menuChoice,
 mfctl, NULL, handle);

When the user selects the menu field, the menu appears and behaves like a
stand-alone menu.

Parent Topic: Forms

NWSNUT Example

To get a basic idea of how NWSNUT works, examine ndemo.c, which can be
found in the EXAMPLES directory. Please note that this example
demonstrates several different ways of handling messages in an NWSNUT
NLM. Therefore, it is not as consistent as a typical NLM.

See Using NWSNUT Interface: Example.

NWSNUT Function List

NOTE: NWSNUT functions require that NWSNUT.NLM be loaded on
the server. NetWare 3.12 requires that AFTER311.NLM be loaded also.
NWSNUT works with NetWare 3.11 if AFTER311.NLM is loaded.

NLM Programming

NWSNUT: Concepts 587

However, take into consideration that the end user might not have
AFTER311.NLM.

NWSAlert

Displays an alert portal.

NWSAlertWithHelp

Displays an alert portal with access to help.

NWSAlloc

Allocates memory for NWSNUT purposes.

NWSAppendBoolField

Adds a yes/no field to a form.

NWSAppendCommentField

Adds a comment field to a form.

NWSAppendHexField

Adds a form field that accepts only hexadecimal input.

NWSAppendHotSpotField

Adds a form field that calls a routine when selected.

NWSAppendIntegerField

Adds a form field that accpts only a digital number as input.

NWSAppendMenuField

Adds a form field that displays a menu when selected.

NWSAppendPasswordField

Adds a form field that enables password input.

NWSAppendPromptField

Adds a prompt field to a form.

NWSAppendScrollableStringField

Appends a form field into which scrollable text can be entered.

NWSAppendStringField

Adds a form field containing an editable string.

NWSAppendToForm

Adds a customized field to a form.

NWSAppendToList

Adds an element to the current list.

NWSAppendToMenu

Adds an option to a menu.

NWSAppendToMenuField

Adds an option to a menu field.

NWSAppendUnsignedIntegerField

NLM Programming

NWSNUT: Concepts 588

Adds a form field that only accepts an unsigned integer as input.

NWSAsciiHexToInt

Converts an ASCII-represented hexadecimal number to an integer.

NWSAsciiToInt

Converts an ASCII-represented decimal number to an integer.

NWSAsciiToLONG

Converts an ASCII-represented number to type LONG.

NWSClearPortal

Blanks out a portal.

NWSComputePortalPosition

Calculates the screen line and column for positioning a portal given its
size.

NWSConfirm

Displays a yes/no portal allowing the user to confirm a decision.

NWSCreatePortal

Creates a portal.

NWSDeleteFromList

Deletes an element from a list.

NWSDeleteFromPortalList

Deletes current and marked elements from a list.

NWSDeselectPortal

Makes a portal inactive.

NWSDestroyForm

Destroys a form.

NWSDestroyList

Destroys a list.

NWSDestroyMenu

Destroys a menu.

NWSDestroyPortal

Destroys a portal.

NWSDisableAllFunctionKeys

Disables all function keys.

NWSDisableAllInterruptKeys

Disables all interrupt keys.

NWSDisableInterruptKey

Disables a specified interrupt key.

NWSDisableFunctionKey

NLM Programming

NWSNUT: Concepts 589

Disables a function key.

NWSDisablePortalCursor

Disables the portal cursor.

NWSDisplayErrorCondition

Displays an error portal listing the routine that resulted in the error
condition.

NWSDisplayErrorText

Displays an error portal.

NWSDisplayHelpScreen

Displays a help portal.

NWSDisplayInformation

Displays text in a portal. Palette, video attribute, and behavior can be
specified.

NWSDisplayInformationInPortal

Displays text in a new portal. Justification of portal with respect to the
screen, minimum and maximum size of portal, justification style of
text, portal palette, video attribute of text, and minimization of text can
be specified.

NWSDisplayPreHelp

Displays a pre-help message.

NWSDisplayTextInPortal

Displays text in an existing portal. Starting portal line for text and
indent level can be specified.

NWSDisplayTextJustifiedInPortal

Same as above, but text width and video attribute can be specified.

NWSDrawPortalBorder

Redraws the border of a portal.

NWSEditForm

Displays a form and allows the user to edit it.

NWSEditPortalForm

Same as NWSEditForm, but help context can be specified.

NWSEditPortalFormField

Same as NWSEditForm, but help context and first field to highlight
can be specified.

NWSEditString

Displays a string inside a portal and allows the user to edit it. Prompt
text, input character restrictions, and action routines can be specified.

NWSEditText

Displays a string inside a portal and allows the user to edit it using the

NLM Programming

NWSNUT: Concepts 590

NWSNUT screen editor.

NWSEditTextWithScrollBars

Allows the user to edit scrollable text within a portal.

NWSEnableAllFunctionKeys

Enables all function keys.

NWSEnableFunctionKey

Enables a function key.

NWSEnableFunctionKeyList

Enables a list of function keys.

NWSEnableInterruptKey

Enables an interrupt key and associates that key with a routine.

NWSEnableInterruptList

Enables a list of interrupt keys.

NWSEnablePortalCursor

Enables the portal cursor.

NWSEndWait

Removes a "please wait" portal.

NWSFillPortalZone

Fills a specified region of the portal with a character.

NWSFillPortalZoneAttribute

Fills a specified region of the portal with the video attribute.

NWSFree

Frees memory allocated withNWSAlloc.

NWSGetADisk

Displays a portal prompting the user to insert the specified floppy disk
into the disk drive.

NWSGetDefaultCompare

Obtains the default compare function.

NWSGetFieldFunctionPtr

Obtains the customized routines for the specified field.

NWSGetHandleCustomData

Obtains the function for handling developer-defined data.

NWSGetKey

Reads one key from the keyboard buffer.

NWSGetLineDrawCharacter

Gets a line drawing character.

NWSGetList

NLM Programming

NWSNUT: Concepts 591

Returns the pointers for the current list.

NWSGetListHead

Returns the first element in the current list.

NWSGetListNotifyProcedure

Obtains the routine to be called when a list element is highlighted.

NWSGetListSortFunction

Returns a pointer to the currently set list sort function.

NWSGetListTail

Returns the last element in the current list.

NWSGetMessage

Retrieves the specified message.

NWSGetNUTVersion

Returns the version of NWSNUT the NLM is using.

NWSGetPCB

Obtains the portal control block of a portal.

NWSGetScreenPalette

Returns the current screen palette.

NWSGetSortCharacter

Returns the weighted value used for sorting a given character.

NWSInitForm

Initializes a form.

NWSInitializeNut

Sets up NWSNUT context for your NLM.

NWSInitList

Initializes a list.

NWSInitListPtr

Initializes a list that is appended to another list or form.

NWSInitMenu

Initializes a menu.

NWSInitMenuField

Initializes a menu field for a form.

NWSInsertInList

Inserts an element into a list.

NWSInsertInPortalList

Inserts an element into a list using a specified insertion routine.

NWSIsAnyMarked

Indicates whether any elements in the current list are marked.

NLM Programming

NWSNUT: Concepts 592

NWSIsdigit

Tests whether a character is an ASCII representation of a decimal
number.

NWSIsxdigit

Tests whether a character is an ASCII representation of a hexadecimal
number.

NWSKeyStatus

Indicates whether a key is waiting in the keyboard buffer.

NWSList

Displays a list and allows the user to perform list operations.

NWSMemmove

Copies bytes from one buffer to another.

NWSMenu

Displays a menu and allows the user to choose options from it.

NWSModifyInPortalList

Modifies the text field of a list element.

NWSPopHelpContext

Pops a help context off of the help stack.

NWSPopList

Pops a set of list pointers from the list stack.

NWSPopMarks

Retrieves the marked status of all list elements in the current list.

NWSPositionCursor

Positions the cursor relative to the entire screen.

NWSPositionPortalCursor

Positions the portal cursor within the portal.

NWSPromptForPassword

Enables a console operator to input a password to an NLM, with
optional forced verification.

NWSPushHelpContext

Saves a help context onto the help stack.

NWSPushList

Pushes the current list pointers onto the list stack.

NWSPushMarks

Saves the marked status of all list elements in the current list.

NWSRemovePreHelp

Removes a pre-help portal.

NLM Programming

NWSNUT: Concepts 593

NWSRestoreDisplay

Clears the screen.

NWSRestoreList

Takes the specified list from the save stack and makes it current.

NWSRestoreNut

Cleans up resources allocated by NWSNUT for your NLM.

NWSRestoreZone

Saves data in a buffer to the screen.

NWSSaveFunctionKeyList

Saves a list of function keys.

NWSSaveInterruptList

Saves a list of interrupt keys.

NWSSaveList

Saves the current list into the specified slot in the save stack.

NWSSaveZone

Saves a defined area on the screen to a buffer.

NWSScreenSize

Calculates the screen size.

NWSScrollPortalZone

Scrolls the portal display area the specified direction and number of
lines.

NWSScrollZone

Allows a console operator to scroll the contents of a zone in a defined
screen area, thus creating new lines.

NWSSelectPortal

Makes a portal active.

NWSSetDefaultCompare

Sets the default compare function.

NWSSetDynamicMessage

Stores a dynamic message into the MessageInfo structure.

NWSSetErrorLabelDisplayFlag

Sets the flag that determines whether NWSDisplayErrorCondition
and NWSDisplayErrorText display NLM name and version
information.

NWSSetFieldFunctionPtr

Sets the customized routines for a field.

NWSSetFormRepaintFlag

Repaints the form to show changes made to the form but not yet
reflected on the screen.

NLM Programming

NWSNUT: Concepts 594

reflected on the screen.

NWSSetHandleCustomData

Sets the function for handling developer-defined data.

NWSSetList

Makes the specified list current.

NWSSetListNotifyProcedure

Sets the routine to be called when a list element is highlighted.

NWSSetListSortFunction

Enables the use of a customized list sort function.

NWSSetScreenPalette

Sets the screen palette.

NWSShowLine

Displays text at a specified screen location.

NWSShowLineAttribute

Identical to NWSShowLine, but also allows screen attribute
specification.

NWSShowPortalLine

Displays a line of text. Portal line and column can be specified.

NWSShowPortalLineAttribute

Displays text with a specified screen attribute.

NWSSortList

Sorts list elements.

NWSStartWait

Displays a "please wait" portal.

NWSStrcat

Appends a copy of one string to the end of another.

NWSToupper

Returns the uppercase value of the specified byte.

NWSTrace

Displays an information portal and waits for Esc to be pressed.

NWSUngetKey

Inserts a key into the keyboard buffer.

NWSUnmarkList

Removes marks from a list.

NWSUpdatePortal

Redraws a virtual portal to show changes made since creation or last
update.

NWSViewText

NLM Programming

NWSNUT: Concepts 595

Displays text within a portal.

NWSViewTextWithScrollBars

Displays scrollable text within a portal.

NWSWaitForEscape

Waits for the Esc key to be pressed.

NWSWaitForEscapeOrCancel

Waits for the Esc or Cancel (F7) key to be pressed.

NWSWaitForKeyAndValue

Waits until the user presses one of the keys in a specified set.

Menus

A menu is a specialized form of a list. However, the parameters necessary
for building a menu are fewer than those for a list, since the specifics of the
menu format are built into NWSNUT.

See Basic Steps for Using Menus.

NWSNUT Messages

Text strings displayed as titles (headers) or prompts are referred to as
messages. To allow for translation and management, messages are usually
not embedded (hard-coded) within an NLM, but are read from a message
file.

This message file is located in the SYS:SYSTEM\NLS\nnn directory, where
nnn represents the number representing the language of the message file
(for example, German, French, or English). The message file has the same
name as the NLM with the extension .MSG (for example, the message file
for ndemo.nlm is ndemo.msg). In addition to the message file in the NLS
directory, a default set of messages can be linked to the NLM by using the
Novell® linker NLMLINK.

An NLM using NWSNUT can specify its message file in either of two ways.

If the messageTable parameter for NWSInitializeNut is NULL, then
NWSNUT retrieves the message file for the calling NLM, using the
currently defined NLM language to determine which message file to
read. Should there be no message file for the calling NLM in the
appropriate NLS\nnn directory, NWSNUT uses the default messages
linked to the calling NLM.

Whether the message table is linked to or retrieved from a message file,
the file containing the messages must be built with the Novell Message

NLM Programming

NWSNUT: Concepts 596

Tools.

The calling NLM can pass to NWSNUT a pointer to a pointer to an array
of messages as the messageTable parameter. The format of a message table
passed in this manner is:

 char *programMesgTable[] =
 {
 "NetWare Loadable Module",
 "<Press ESCAPE To Continue>",
 "Please Wait",
 "Error Report"
 };

Whenever NWSNUT requires that a parameter be a message identifier,
such as parameter 1 in NWSInitializeNut, pass the array index (0, 1, and
so on) of the desired message.

Related Topics

Creating Messages

Dynamic Messages

Alerts and Errors

Parent Topic: Text in NWSNUT

Other NWSNUT Functions

Other functions provided by NWSNUT are for getting the version of
NWSNUT the NLM is currently using and for clearing the screen. Call
NWSGetNUTVersion to get the version of NWSNUT the NLM is currently
using and call NWSRestoreDisplay to clear the screen.

Portals

The portal is the central element of NWSNUT. A portal is a rectangle or
"window" in which NWSNUT displays all output to the screen. Text, lists,
menus, and forms are displayed within portals.

When a portal is created, NWSNUT creates a Portal Control Block (PCB) to
manage the information about the portal. The PCB structure is defined in
NWSNUT.H and described in the function description for NWSGetPCB.
This structure holds information about the portal including its position on
the screen, its frame size, and cursor state and position.

NOTE: Fields in the PCB structure should not be changed directly.
NWSNUT functions keep the information in this structure current.

NLM Programming

NWSNUT: Concepts 597

Some of the portal control functions require a portal number. This is the
value returned by NWSCreatePortal. Other portal functions require a
pointer to a PCB. The PCB pointer can be obtained by calling NWSGetPCB.

Portal Types: Portals are classified as one of two types, direct or virtual,
depending on whether the portal's screen access is direct or buffered. The
portal type is determined by the value of the directFlag parameter
(VIRTUAL or DIRECT) that is passed to NWSCreatePortal when the portal
is created. See Virtual Portals and Direct Portals.

Related Topics

Basic Steps for Using Portals

Special Purpose Portals

Positioning the Portal

NWSNUT provides two functions that can help you calculate the
positioning parameters to use when creating portals. NWSScreenSize
returns the number of display lines and columns on the server screen.
NWSComputePortalPosition returns the zero-based top row and left-most
column (the line and column parameters for NWSCreatePortal), given the
desired line and column to center the portal on.

Parent Topic: Basic Steps for Using Portals

Prompt Fields

Notice that NWSAppendCommentField and NWSAppendPromptField do
essentially the same thing. The difference between the two functions is that
NWSAppendCommentField takes a string (type BYTE) as input for its
message, whereas NWSAppendPromptField takes a message identifier (see
NWSNUT Messages).

Parent Topic: Forms

Routines for List Elements

Although the calling NLM turns control over to NWSNUT while the user
makes a selection (when NWSList is called), the NLM can take back control
when a list item is either highlighted or selected. After the NLM routine is
completed, it returns to NWSList. In this manner the caller is not bothered
by presentation specifics, but maintains control of the outcome of list
selection.

NLM Programming

NWSNUT: Concepts 598

By using the list entry procedure, the calling NLM can have control
whenever the user moves the cursor to any item on the list. By using the
action procedure, the calling NLM can have control whenever the user
selects any item on the list. The entry procedure is part of the LIST structure
and is set by calling NWSSetListNotifyProcedure. To obtain the entry
procedure, call NWSGetListNotifyProcedure. The action procedure is
specified when NWSList is called to allow the user to manipulate the list.

Parent Topic: Lists

Saving Lists

There are two ways to save a list. You can save it into the save stack or into
the list stack. The list stack is a LIFO stack, so only the last list saved can be
popped from the stack. You save a list into a specified slot in the save stack,
so that list is available to be pulled from the stack at any time.
NWSPushList and NWSPopList are used to save lists to the list stack.
NWSSaveList and NWSRestoreList are used to save lists to the save stack.
Both stacks are held in the NUTInfo structure.

Parent Topic: Lists

Screen Palette

The screen palette determines the colors of your portal. The screen palette
can be set by calling NWSSetScreenPalette. NWSNUT provides the
following palettes:

NORMAL_PALETTE

INIT_PALETTE

HELP_PALETTE

ERROR_PALETTE

WARNING_PALETTE

OTHER_PALETTE

To obtain the current screen palette, call NWSGetScreenPalette.

Parent Topic: Basic Steps for Using Portals

Scrolling the Portal

NLM Programming

NWSNUT: Concepts 599

You can scroll the display area of a portal up or down by calling
NWSScrollPortalZone. This function moves the display area up or down
the number of lines that you specify. Either a direct or virtual portal can be
scrolled. If a virtual portal is scrolled, you must call NWSUpdatePortal to
transfer the scroll to the physical screen.

Parent Topic: Basic Steps for Using Portals

Selecting Portals

To select a portal, call NWSSelectPortal. Selecting a portal accomplishes the
following:

Brings the portal to the front

Highlights the portal's border and title

Enables the portal cursor if it was flagged CURSOR_ON when the portal
was created (PCB.cursorState == 1)

Deselecting the portal by calling NWSDeselectPortal dims the border and
disables the portal cursor.

Parent Topic: Basic Steps for Using Portals

Sorting Lists

The list can be sorted by calling NWSSortList. This function uses the
defaultCompareFunction from the NUTInfo structure to sort. If you want to
create your own sorting routine, call NWSSetDefaultCompare. To obtain
the current default compare function, call NWSGetDefaultCompare.
NWSGetSortCharacter returns the weighted value used for sorting a given
character. If you want to create you own list sort function call
NWSSetListSortFunction. Call NWSGetListSortFunction to retrieve the
current list sort function being used by the NLM.

NWSGetDefaultCompare

Determines whether any items in a list are marked.

NWSGetListSortFunction

Returns a pointer to the currently set list sort function.

NWSGetSortCharacter

Changes the status of all list elements to unmarked.

NWSSetDefaultCompare

Saves the marked status of all list elements in the current list.

NWSSetListSortFunction

NLM Programming

NWSNUT: Concepts 600

Enables the use of a customized list sort function.

NWSSortList

Retrieves the saved marked status of all list elements in the current list.

Parent Topic: Manipulating List Elements

Special Purpose Portals

In addition to providing functions that allow you to create and manipulate
portals, NWSNUT provides several special purpose portals. Each of these
functions automatically creates a portal. The following summarizes these
functions:

NWSDisplayInformation

Displays text in a portal. Video attribute can be specified for the text
and palette can be specified for the portal.

NWSDisplayInformationInPortal

Displays text in a portal. Justification style, indention, video attribute,
and text minimization style can be specified for the text. Minimum
and maximum size and palette can be specified for the portal.

NWSViewText

Displays text within a portal.

NWSViewTextWithScrollBars

Displays scrollable text within a portal.

NWSShowLine

Displays text at a specified screen location.

NWSShowLineAttribute

Identical to NWSShowLine, but also allows screen attribute
specification.

NWSEditString

Allows the user to edit text within a portal. Insertion and action
routines can be specified, and input type can be restricted.

NWSEditText

Allows the user to edit text within a portal.

NWSEditTextWithScrollBars

Allows the user to edit scrollable text within a portal.

NWSStartWait

Creates a portal containing a "please wait" message.

NWSEndWait

NLM Programming

NWSNUT: Concepts 601

Destroys the portal created by NWSStartWait.

NWSDisplayErrorCondition

Creates an error portal that displays an error message and the name of
the procedure that resulted in the error.

NWSDisplayErrorText

Creates an error portal that displays an error message.

NWSAlert

Creates an alert portal.

NWSAlertWithHelp

Creates an alert portal with help context.

NWSConfirm

Creates a confirm portal.

NWSGetADisk

Creates a portal prompting the user to insert a floppy disk.

NWSTrace

Displays an information portal on the screen.

Some of these functions are mentioned later when user input is discussed.
For detailed information about these functions, see the function descriptions
in NWSNUT: Functions.

Parent Topic: Portals

Specialized Lists

Menus and Forms are special types of lists. They are created with different
functions and are not directly manipulated as lists, but their
NWSNUT-internal structure is based on a list.

Parent Topic: Lists

Text in NWSNUT

As a user interface, NWSNUT interacts with the user by displaying and
receiving user information in the form of text. NWSNUT provides two
primary methods of presenting textual information:

NWSNUT Messages

Help Screens

NLM Programming

NWSNUT: Concepts 602

The NWSNUT Environment

The NWSNUT environment is created by calling NWSInitializeNut. This
function creates the NWSNUT screen with header and a NUTInfo structure
containing NWSNUT data. An example of the NWSNUT screen is
illustrated in the following figure.

Figure 19. NWSNUT Screen Displaying a Portal

The NUTInfo structure is defined in nwsnut.h. This structure is used to keep
track of the status of such things as the current portal, saved lists, help
context, messages, and so forth for your NLM. A pointer to this structure is
passed to various NWSNUT functions to keep track of the current state of
NWSNUT

NOTE: Fields in the NUTInfo structure should not be changed
directly. NWSNUT functions keep the information in this structure

NLM Programming

NWSNUT: Concepts 603

current.

You can also place custom data into the NUTInfo structure and specify a
custom data release function for it by calling NWSSetHandleCustomData.
To retrieve the data and release this function, call
NWSGetHandleCustomData.

When you have finished using the NWSNUT library, call NWSRestoreNut.
This function cleans up resources used by NWSNUT.

The Portal Cursor

When you create a portal, you specify its cursor state as either
CURSOR_ON (enabled) or CURSOR_OFF (disabled). When the portal is
deselected, the cursor is always disabled. When it is selected, the cursor state
is that specified when the portal was created. The following lists functions
that NWSNUT provides for changing the cursor state and manipulating the
cursor.

NWSEnablePortalCursor

Enables the portal cursor.

NWSDisablePortalCursor

Disables the portal cursor.

NWSPositionCursor

Positions the cursor relative to the entire screen.

NWSPositionPortalCursor

Positions the portal cursor within the portal.

User Input

NWSNUT provides several ways to receive user input. You can obtain key
strokes, strings, fill text buffers, use forms, or you may let users choose a yes
or no answer. In addition to regular keys, NWSNUT allows the use of
function keys and interrupt keys.

See the following for information about processing input:

Keyboard Input in NWSNUT

Function Keys

Interrupt Keys

Editing a String

Confirmation of a Decision

NLM Programming

NWSNUT: Concepts 604

Video Attribute

Video attribute refers to the manner in which a character on the screen is
displayed. NWSNUT provides the following video attributes:

VNORMAL (normal)

VINTENSE (brighter)

VREVERSE (reverse video)

VBLINK (blinking characters)

VIBLINK (blinking intense characters)

VRBLINK (blinking reverse characters)

Parent Topic: Basic Steps for Using Portals

Virtual Portals

A virtual portal is an area of memory into which data intended for the
portal is written. When NWSUpdatePortal is called, this data is transferred
to the physical screen.

The size of the virtual display area is determined by the values of the
virtualHeight and virtualWidth parameters passed to NWSCreatePortal. Only
a section of the virtual display area the size of the portal's physical display
area can be viewed on the screen. The portal must be scrolled to view
hidden areas of the virtual display area. Virtual portals can be any size,
regardless of screen size.

Changes to virtual portals are placed in a buffer and are not displayed until
the portal is updated by NWSUpdatePortal.

Parent Topic: Portals

Zones

Zones are used to display text only anywhere on the console screen.
NWSNUT provides three functions for manipulating zones. They are as
follows:

NWSRestoreZone

Restores text saved in a buffer to the screen.

NLM Programming

NWSNUT: Concepts 605

NWSSaveZone

Saves text in a defined area on the screen to a buffer.

NWSScrollZone

Enables text displayed in a defined area on the screen to be scrolled.

NLM Programming

NWSNUT: Concepts 606

NWSNUT: Functions

NLM Programming

NWSNUT: Functions 607

NWSAlert

Displays an alert portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSAlert (
 LONG centerLine,
 LONG centerColumn,
 NUTInfo *handle,
 LONG message,
 ...);

Parameters

centerLine

(IN) Specifies the screen line to center the alert portal on.

centerColumn

(IN) Specifies the screen column to center the alert portal on.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM™ application.

message

(IN) Specifies the message identifier of the alert message.

Return Values

(0xFFFFFF
FF)

Memory allocation error

(0xFFFFFF
FE)

Portal creation error

(0xFF) Escape key was pressed

(0xFE) F7 key was pressed

NLM Programming

NWSNUT: Functions 608

Remarks

NWSAlert draws a portal, beeps the speaker, displays a message within
the portal, and waits for an escape key. When the escape key is hit, it
erases the portal.

NWSAlert uses the WARNING_PALETTE and prints the message in
reverse video.

Optional parameters can be added at the end of the parameter list to
satisfy the requirements of the message parameter (for example, if the
message contains %d or %s).

If an alert portal exists on the screen by reason of a call to this routine, the
errorDisplayActive field in the NUTInfo structure contains a nonzero
value.

To enable the user to access help from the alert portal, call the
NWSAlertWithHelp function.

See Also

NWSAlertWithHelp

NLM Programming

NWSNUT: Functions 609

NWSAlertWithHelp

Displays an alert portal with access to help screens

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSAlertWithHelp (
 LONG centerLine,
 LONG centerColumn,
 NUTInfo *handle,
 LONG message,
 LONG helpContext,
 ...);

Parameters

centerLine

(IN) Specifies the screen line to center the alert portal on.

centerColumn

(IN) Specifies the screen column to center the alert portal on.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

message

(IN) Specifies the message identifier of the alert message.

helpContext

(IN) Specifies the help context.

Return Values

(0xFFFFFF
FF)

Memory allocation error

(0xFFFFFF
FE)

Portal creation error

NLM Programming

NWSNUT: Functions 610

(0xFF) Escape key was pressed

(0xFE) F7 key was pressed

Remarks

NWSAlertWithHelp draws a portal, beeps the speaker, displays a
message within the portal, and waits for an escape key. When the escape
key is hit, it erases the portal. NWSAlertWithHelp is identical to
NWSAlert, except that help can be accessed from the portal. The
helpContext parameter specifies the help context of the portal.

The NWSAlertWithHelp function used the WARNING_PALETTE and
prints the message in reverse video.

Optional parameters can be added at the end of the parameter list to
satisfy the requirements of the message parameter (for example, if the
message contains %d or %s).

If an alert portal exists on the screen by reason of a call to this routine, the
errorDisplayActive field in the NUTInfo structure contains a nonzero
value.

See Also

NWSAlert

NLM Programming

NWSNUT: Functions 611

NWSAlignChangedList

Aligns the list display line with the portal frame

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <.h>

LONG NWSAlignChangedList (
 int oldIndex,
 LIST *newElement,
 LONG oldLine,
 NUTInfo *handle);

Parameters

oldIndex

(IN) Specifies the index within the list of the previously highlighted
element (prior to any changes).

newElement

(IN) Points to the new element to be highlighted.

oldLine

(IN) Specifies the display line within the portal of the previously
highlighted element.

handle

(IN) Points to the NUTInfo structure containing site information
allocated to the calling NLM.

Return Values

Returns the new portal line to highlight if successful. Otherwise, zero is
returned.

Remarks

NWSAlignChangedList is a list display function which calculates the
portal line to be highlighted after insertion or deletion of one or more list
elements.

NLM Programming

NWSNUT: Functions 612

Whenever the size of a list changes, call NWSAlignChangedList.

Call the NWSGetListIndex function to obtain the oldIndex parameter
value before changing the list.

See Also

NWSDeleteFromList, NWSGetListIndex

NLM Programming

NWSNUT: Functions 613

NWSAlloc

Allocates memory for NWSNUT purposes

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void *NWSAlloc (
 LONG numberOfBytes,
 NUTInfo *handle);

Parameters

numberOfBytes

(IN) Specifies the number of bytes to allocate.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

NWSAlloc allocates memory for NWSNUT applications. It can be used
by developers using NWSNUT. All memory allocated by NWSAlloc
should be freed by calling the NWSFree or NWSRestoreNut functions.

See Also

NWSFree

NLM Programming

NWSNUT: Functions 614

NWSAppendBoolField

Appends a boolean choice field to a form

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

FIELD *NWSAppendBoolField (
 LONG line,
 LONG column,
 LONG fflag,
 BYTE *data,
 LONG help,
 NUTInfo *handle);

Parameters

line

(IN) Specifies the portal line for the boolean field.

column

(IN) Specifies the portal column for the boolean field.

fflag

(IN) Specifies the field control flag.

data

(IN/OUT) Points to a byte in which to store the new boolean value.
This value is also displayed on the form.

help

(IN) Specifies the help context for the boolean field.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

NULL Unable to append field to form

NLM Programming

NWSNUT: Functions 615

non
NULL

Pointer to FIELD item that has been appended to form

Remarks

NWSAppendBoolField builds the menu list necessary and then appends
the field to the current form.

The data parameter points to the boolean variable and can be changed.

The fflag parameter sets the value of the fieldFlags field in the FIELD
structure. The fieldFlags field can have the following values:

Value Meaning

NORMAL_FIELD Normal, editable field.

LOCKED_FIELD Nonaccessible field.

SECURE_FIELD Noneditable field.

REQURED_FIELD Verify field on form exit.

HIDDEN_FIELD Hidden fields are not seen by the user. These
fields are also locked.

PROMPT_FIELD Prompt fields cannot be selected by the user.
These fields are also locked.

ULOCKED_FIELD Field locked by user.

FORM_DESELECT Causes form deselection before action and verify
routines are called.

NO_FORM_DESEL
ECT

Form is not deselected before action and verify
routines are called.

DEFAULT_FORMA
T

Normal field-controlled justification.

RIGHT_FORMAT Right justification.

LEFT_FORMAT Left justification.

CENTER_FORMAT Centered.

If help is specified for a form field, it is not displayed unless the user
presses the Enter key, followed by the F1 key.

See Also

NWSInitForm

Example

NLM Programming

NWSNUT: Functions 616

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 617

NWSAppendCommentField

Appends a comment field to the current form

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

FIELD *NWSAppendCommentField (
 LONG line,
 LONG column,
 BYTE *prompt,
 NUTInfo *handle);

Parameters

line

(IN) Specifies the portal line for the comment field.

column

(IN) Specifies the portal column for the comment field.

prompt

(IN) Points to the comment text to be appended to the current form.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

NULL Unable to append field to form

not
NULL

Pointer to FIELD item that has been appended to form

Remarks

The comment field is a text string that appears in a form, but is not

NLM Programming

NWSNUT: Functions 618

available for editing in the form. It is often used as a prompt.

To specify prompt text by a message identifier, call
NWSAppendPromptField.

If help is specified for a form field, it is not displayed unless the user
presses Enter, followed by the F1.

The FIELD structure is described in NWSNUT: Structures.

See Also

NWSAppendPromptField, NWSInitForm

Example

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 619

NWSAppendHexField

Appends a hexadecimal field to the current form

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

FIELD *NWSAppendHexField (
 LONG line,
 LONG column,
 LONG fflag,
 int *data,
 int minimum,
 int maximum,
 LONG help,
 NUTInfo *handle);

Parameters

line

(IN) Specifies the portal line for the hex field.

column

(IN) Specifies the portal column for the hex field.

fflag

(IN) Specifies the field control flag.

data

(IN/OUT) Points to an integer in which to store the value of the new
hex field. This value is also displayed on the form.

minimum

(IN) Specifies the minimum value that can be stored in the new hex
field.

maximum

(IN) Specifies the maximum value that can be stored in the new hex
field.

help

(IN) Specifies the help context for the new hex field.

NLM Programming

NWSNUT: Functions 620

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

NULL Unable to append field to form

not
NULL

Pointer to FIELD item that has been appended to form

Remarks

The Hex field is an integer size variable field that can be edited from a
form. The characters (0 - 9) and (A - F) are the only input allowed when
editing this field. The upper and lower limits on the value that can be
input is specified by the minimum and maximum parameters.

The data parameter points to an integer where the value of the hex field is
stored. This field can be edited.

The fflag parameter sets the fieldFlags field in the FIELD structure. See
NWSAppendBoolField or NWSNUT.H for values.

If help is specified for a form field, it is not displayed unless the user
presses the Enter key, followed by the F1 key.

See Also

NWSAppendUnsignedIntegerField, NWSAppendIntegerField,
NWSInitForm

Example

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 621

NWSAppendHotSpotField

Appends a hot spot field to the current form

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

FIELD *NWSAppendHotSpotField (
 LONG line,
 LONG column,
 LONG fflag,
 BYTE *displayString,
 LONG (*SpotAction) (
 FIELD *fp,
 int selectKey,
 int *changedField,
 NUTInfo *handle),
 NUTInfo *handle);

Parameters

line

(IN) Specifies the portal line for the hot spot field.

column

(IN) Specifies the portal column for the hot spot field.

fflag

(IN) Specifies the field control flag.

displayString

(IN) Specifies the string to be displayed in the form to mark the hot
spot.

SpotAction

(IN) Specifies the routine to be called when the hot spot field is
selected.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

NLM Programming

NWSNUT: Functions 622

Return Values

NULL Unable to append field to form.

not
NULL

Pointer to FIELD item that has been appended to form.

Remarks

The hot spot field is a field in the form that when selected calls a hot spot
action routine. This type of field can be used to accomplish many desired
actions from a form. For example, you can have an action routine that
generates and calls a list.

If the hot spot field calls a list, you must call NWSPushList first, because
the form is a specialized list. Call NWSPopList before returning to the
form.

The fflag parameter sets the fieldFlags field in the FIELD structure. See
NWSAppendBoolField or NWSNUT.H for values.

The SpotAction parameter sets the fieldControl field in the FIELD structure.
This parameter specifies the routine to be called when this form field is
selected.

If help is specified for a form field, it is not displayed unless the user
presses the Enter key, followed by the F1 key.

See Also

NWSInitForm

Example

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 623

NWSAppendIntegerField

Appends an integer field to the current form

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

FIELD *NWSAppendIntegerField (
 LONG line,
 LONG column,
 LONG fflag,
 int *data,
 int minimum,
 int maximum,
 LONG help,
 NUTInfo *handle);

Parameters

line

(IN) Specifies the portal line for the integer field.

column

(IN) Specifies the portal column for the integer field.

fflag

(IN) Specifies the field control flag.

data

(IN/OUT) Points to an integer in which to store the value of the new
hex field. This value is also displayed on the form.

minimum

(IN) Specifies the minimum value that can be stored in the new
integer field.

maximum

(IN) Specifies the maximum value that can be stored in the new
integer field.

help

(IN) Specifies the help context for the new integer field.

NLM Programming

NWSNUT: Functions 624

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

NULL Unable to append field to form.

not
NULL

Pointer to FIELD item that has been appended to form.

Remarks

The comment field is a integer size variable field that can be edited from
a form. The characters (0 - 9) are the only input allowed when editing this
field. The upper and lower limits for input are set by the minimum and
maximum parameters.

The fflag parameter sets the fieldFlags field in the FIELD structure. See
NWSAppendBoolField or NWSNUT.H for values.

If help is specified for a form field, it is not displayed unless the user
presses the Enter key, followed by the F1 key.

See Also

NWSAppendHexField, NWSAppendUnsignedIntegerField,
NWSInitForm

Example

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 625

NWSAppendMenuField

Appends a menu field to a form.

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

FIELD *NWSAppendMenuField (
 LONG line,
 LONG column,
 LONG fflag,
 int data,
 MFCONTROL *menu,
 LONG help,
 NUTInfo *nutInfo);

Parameters

line

(IN) Specifies the portal line for the menu field.

column

(IN) Specifies the portal column for the menu field.

fflag

(IN) Specifies the field attributes.

data

(OUT) Receives the option number of the selected menu option.

menu

(IN) Points to an MFCONTROL structure containing menu option
information.

help

(IN) Specifies the help context for the menu.

nutInfo

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

NLM Programming

NWSNUT: Functions 626

Return Values

NULL Unable to append field to form.

not
NULL

Pointer to FIELD item that has been appended to form.

Remarks

This function appends a menu field to a form. If the menu field is
selected the menu specified by menu is displayed and the user can choose
from the options in the menu.

The data parameter receives the option value for the selected option
(defined by NWSAppendToMenuField). This value is passed to the
action routine associated with the menu (see NWSInitMenuField).

The menu parameter is the menu control structure returned by
NWSInitMenuField. The MFCONTROL structure is described in
NWSInitMenu.

The fflag parameter sets the fieldFlags field in the FIELD structure. See
NWSAppendBoolField or NWSNUT.H for values.

If help is specified for a form field, it is not displayed unless the user
presses the Enter key, followed by the F1 key.

See Also

NWSAppendToMenuField, NWSInitMenuField

Example

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 627

NWSAppendPasswordField

Appends a password field to a form

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

FIELD *NWSAppendPasswordField (
 LONG line,
 LONG column,
 LONG width,
 LONG fflag,
 BYTE *data,
 LONG maxDataLen,
 LONG help,
 LONG verifyEntry,
 LONG passwordPortalHeader,
 LONG maskCharacter,
 NUTInfo *handle);

Parameters

line

(IN) Specifies the line on which the password field appears.

column

(IN) Specifies the column on which the password field begins

width

(IN) Specifies the width of the password field.

fflag

(IN) Specifies the field control flag.

data

(IN) Points to a buffer that receives the password string.

maxDataLen

(IN) Specifies the maximum length of the string to whichdata points.

help

(IN) Specifies the help context.

NLM Programming

NWSNUT: Functions 628

verifyEntry

(IN) Provides for password verification.

passwordPortalHeader

(IN) Specifies the header string for the password box.

maskCharacter

(IN) Designates an optional ASCII character to mask the password.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

NULL Function did not allocate a field structure.

not
NULL

Pointer to FIELD structure that has been allocated to the
NLM.

Remarks

NWSAppendPasswordField sets up a form field that displayed the
password, masked by a character of your choice. The function also
provides a password entry portal that allows you to enter the password
to be displayed in the form field.

You can begin entering the password in two ways. Either press the Enter
key and begin typing the password, or simply begin typing. In the first
case, the Enter key brings up the password entry portal, and the first
alphanumeric character you type starts the password string. In the
second case, the first alphanumeric character both brings up the
password entry portal and starts the password string.

The following information refers to the parameters of
NWSAppendPasswordField:

If you don't want a header for the password box, pass NO_MESSAGE to
passwordPortalHeader.

To enable forced password verification, set forceVerify to TRUE. NULL
disables password verification.

The fflag parameter sets the value of the fieldFlags field in the FIELD
structure. The fieldFlags field can have the following values:

Value Meaning

NORMAL_FIELD Normal field that can be edited.

NLM Programming

NWSNUT: Functions 629

LOCKED_FIELD Nonaccessible field.

SECURE_FIELD Field that cannot be edited.

REQURED_FIELD Verify field on form exit.

HIDDEN_FIELD Hidden fields are not seen by the user. These
fields are also locked.

PROMPT_FIELD Prompt fields cannot be selected by the user.
These fields are also locked.

ULOCKED_FIELD Field locked by user.

FORM_DESELECT Causes form deselection before action and verify
routines are called.

NO_FORM_DESEL
ECT

Form is not deselected before action and verify
routines are called.

DEFAULT_FORMA
T

Normal field-controlled justification.

RIGHT_FORMAT Right justification.

LEFT_FORMAT Left justification.

CENTER_FORMAT Centered.

To accommodate the terminating null byte, make sure that the buffer to
which data points is at least one byte longer than the string limited by
maxDataLen.

NWSAppendPasswordField will display a confirmation portal only if
you pass a nonzero value to verifyEntry. Zero disables the confirmation
portal.

Although the character specified by maskCharacter covers the characters of
the password in the field, no characters are displayed in the entry portal
as the user enters the password.

See Also

NWSPromptForPassword

NLM Programming

NWSNUT: Functions 630

NWSAppendPromptField

Appends a prompt field to the current form

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

FIELD *NWSAppendPromptField (
 LONG line,
 LONG column,
 LONG promptMessageNumber,
 NUTInfo *handle);

Parameters

line

(IN) Specifies the portal line for the prompt field.

column

(IN) Specifies the portal column for the prompt field.

promptMessageNumber

(IN) Specifies the message identifier of the message to be shown in the
prompt field.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

NULL Unable to append field to form.

not
NULL

Pointer to FIELD item that has been appended to form.

Remarks

NLM Programming

NWSNUT: Functions 631

The prompt field is a noneditable field that appears in a form. It can be
used for information or prompts. The promptMessageNumber parameter
specifies the message identifier of the prompt to be displayed.

If help is specified for a form field, it is not displayed unless the user
presses the Enter key, followed by the F1 key.

See Also

NWSAppendCommentField, NWSInitForm

Example

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 632

NWSAppendScrollableStringField

Appends to a form a field into which scrollable text can be entered.

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

FIELD *NWSAppendScrollableStringField (
 LONG line,
 LONG column,
 LONG width,
 LONG fflag,
 BYTE *data,
 LONG maxLen,
 BYTE *cset,
 LONG editFlags,
 LONG help,
 NUTInfo *handle);

Parameters

line

(IN) Specifies the line on which the scrollable field appears.

column

(IN) Specifies the column on which the left-most edge of the scrollable
field appears

width

(IN) Specifies the width of the scrollable field.

fflag

(IN) Specifies the control fieldFlags field in the FIELD structure.

data

(IN/OUT) Points to the BYTE array where the string is stored. The
string is displayed in the form field.

maxLen

(IN) Specifies the maximum number of characters the function will
accept.

NLM Programming

NWSNUT: Functions 633

cset

(IN) Points to a NULL-terminated BYTE array of characters allowed as
input to the string field.

editFlags

(IN) Specifies the text edit flag

help

(IN) Specifies the help context for the scrollable string field.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

NULL Unable to append field to form.

not
NULL

Pointer to FIELD item that has been appended to form.

Remarks

NWSAppendScrollableStringField creates a form field displaying a
character array that can be edited when selected from the form. The
string scrolls horizontally, and thus may be longer than the visible string
field in the form.

The data parameter points to the string to be edited. An existing string can
be specified, or the user can be prompted to enter a new string.

The maxLen parameter specifies the number of characters the function
will accept. Make sure the buffer that accepts the string is at least one
byte longer than maxLen to accommodate the terminating null byte.

The cset parameter defines allowable input for the scrollable field. This
parameter is operative if you pass only EF_SET in the editFlags
parameter; otherwise, editFlags determines allowable input. cset can be
specified by a list of characters, a range of characters, or a combination of
the two. For example, cset could be "ABCDEFG", "A..G", "a..z0..9A..Z",
"0..9+-,.", and so on.

The editFlags parameter stipulates which characters are allowed in the
field. These flags can be ORed, and may include one or more of the
following:

Value Meaning

EF_ANY Allows any ASCII character

NLM Programming

NWSNUT: Functions 634

EF_DECIMA
L

Allows only decimal characters

EF_HEX Allows any hexadecimal character (letters may be
upper or lower case)

EF_NOSPA
CES

Accepts any ASCII character, but disables space bar

EF_UPPER Accepts all ASCII characters except lower case
alphabetic

EF_DATE Accepts only decimal characters, hyphen, and forward
slash

EF_TIME Accepts only decimal characters, colon, period, and
lower case a, p, and m (converts upper case entries to
lower case)

EF_FLOAT Accepts only numerals and period

EF_SET Accepts set defined in cset parameter if no other edit
flag is set

EF_NOECH
O

Disables appearance of the text on the screen as the text
is being keyed in; accepts same character set as
EF_ANY.

EF_FILENA
ME

Accepts all characters except , < > ? " | [] * + and =

If help is specified for a form field, it is not displayed unless the user
presses Enter, followed by F1.

See Also

NWSAppendStringField, NWSEditString

NLM Programming

NWSNUT: Functions 635

NWSAppendStringField

Appends a string field to the current form

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

FIELD *NWSAppendStringField (
 LONG line,
 LONG column,
 LONG width,
 LONG fflag,
 BYTE *data,
 BYTE *cset,
 LONG help,
 NUTInfo *handle);

Parameters

line

(IN) Specifies the portal line for the string field.

column

(IN) Specifies the portal column for the string field.

width

(IN) Specifies the maximum length of the string field.

fflag

(IN) Specifies the field control flag.

data

(IN/OUT) Points to the BYTE array where the string to be edited and
displayed on the form is stored.

cset

(IN) Points to a NULL-terminated BYTE array of characters allowed
for input when editing the new string field.

help

(IN) Specifies the help context for the new string field.

NLM Programming

NWSNUT: Functions 636

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

NULL Unable to append field to form.

not
NULL

Pointer to FIELD item that has been appended to form.

Remarks

A string field is a character array that can be edited when selected from a
form.

The cset can be specified by a list of characters, a range of characters, or a
combination of the two. For example, cset could be "ABCDEFG", "A..G",
"a..z0..9A..Z", "0..9+-,.", and so on.

The data parameter can specify an existing string or the user can be
prompted to enter a new string.

The data in the string field cannot be longer than the value specified by
the width parameter. Otherwise, the string is truncated and not editable.

The fflag parameter sets the fieldFlags field in the FIELD structure. See
NWSAppendBoolField or NWSNUT.H for values.

If help is specified for a form field, it is not displayed unless the user
presses the Enter key, followed by the F1 key.

See Also

NWSInitForm

Example

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 637

NWSAppendToForm

Appends a customized field to a form

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

FIELD *NWSAppendToForm (
 LONG fline,
 LONG fcol,
 LONG fwidth,
 LONG fattr,
 void (*fFormat) (
 struct fielddef *field,
 BYTE *text,
 LONG buffLen),
 LONG (*fControl) (
 struct fielddef *field,
 int selectKey,
 int *fieldChanged,
 NUTInfo *handle),
 int (*fVerify) (
 struct fielddef *field,
 BYTE *data,
 NUTInfo *handle),
 void (*fRelease) (
 struct fielddef *field),
 BYTE *fData,
 BYTE *fXtra,
 LONG fflag,
 LONG fActivateKeys,
 LONG fhelp,
 NUTInfo *handle);

Parameters

fline

(IN) Specifies the portal line for the new field.

fcol

(IN) Specifies the portal column for the new field.

NLM Programming

NWSNUT: Functions 638

fwidth

(IN) Specifies the width in characters of the new field.

fattr

(IN) Specifies the display attribute for field.

fFormat

(IN) Specifies the routine to format field, (NULL for default).

fControl

(IN) Specifies the routine to handle normal key input for this field,
(NULL for default).

fVerify

(IN) Specifies the routine to verify field contents after editing, (NULL
for default).

fRelease

(IN) Specifies the routine to free the fData and fXtra memory and
release these parameters (NULL for default).

fData

(IN/OUT) Specifies data to be displayed in field. If the form is edited
by the user, this field and fXtra can be modified by the user.

fXtra

(IN/OUT) Specifies additional data for field.

fflags

(IN) Specifies the field control flag.

fActivateKeys

(IN) Specifies the bit mask describing possible action keys for the field.

fhelp

(IN) Specifies the help context for the new field.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

NULL Unable to append field to form

not
NULL

Pointer to FIELD item that has been appended to form

Remarks

NLM Programming

NWSNUT: Functions 639

NWSAppendToForm allows the developer to define a special-purpose
field for a form. The developer can specify routines for formatting (
fFormat), key input (fControl), input verification (fVerify), and memory
release (fRelease) for the data in fXtra and fData.

The fattr parameter can have the following values:

VNORM
AL

Normal video

VINTENS
E

Intense video

VREVERS
E

Reverse video

VBLINK Blinking, normal video

VIBLINK Blinking, intense video

VRBLINK Blinking, reverse video

The fActivateKeys parameter specifies the action keys for the field, as
defined in NWSNUT.H. Possible values are:

M_ESCAP
E

Escape key enabled.

M_INSERT Insert key enabled.

M_DELET
E

Delete key enabled.

M_MODIF
Y

Modify key (F3) enabled.

M_SELECT Select key (Enter) enabled.

M_MDELE
TE

Delete key enabled for marked items.

M_CYCLE Tab enabled.

M_MMODI
FY

Modify key enabled for marked items.

M_MSELE
CT

Select key (Enter) enabled for marked items.

M_NO_SO
RT

Do not sort list.

These values can be ORed together to define a combination of action
keys.

The fflag parameter sets the fieldFlags field in the FIELD structure. See

NLM Programming

NWSNUT: Functions 640

NWSAppendBoolField or NWSNUT.H for values.

If help is specified for a form field, it is not displayed unless the user
presses the Enter key, followed by the F1 key.

See Also

NWSInitForm

Example

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 641

NWSAppendToList

Appends an item and its customized data to the current list

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LIST *NWSAppendToList (
 BYTE *text,
 void *otherInfo,
 NUTInfo *handle);

Parameters

text

(IN) Points to a string to be shown when the current list is presented.

otherInfo

(IN) Specifies customized data for the new item that is being
appended to the current list.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

NULL Unable to append item to current list.

not
NULL

Pointer to LIST item that has been appended to the current
list.

Remarks

NWSAppendToList creates a structure of type LIST that defines a list
item within the current list.

The otherInfo parameter is defined by the developer and can point to any

NLM Programming

NWSNUT: Functions 642

kind of information associated with the list item, including other lists.
This parameter sets the otherInfo field in the LIST structure.

See Also

NWSAppendToList, NWSInitList, NWSList,
NWSSetListNotifyProcedure

Example

See the example for NWSInitList.

NLM Programming

NWSNUT: Functions 643

NWSAppendToMenu

Adds an option to the current menu

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LIST *NWSAppendToMenu (
 LONG message,
 LONG option,
 NUTInfo *handle);

Parameters

message

(IN) Specifies the message identifier of the message to be added to the
current menu.

option

(IN) Specifies the value to be returned from the NWSMenu function if
this element is selected.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

NULL Unable to append item to current list.

Non-NU
LL

Pointer to LIST item that has been appended to the current
list.

Remarks

NWSAppendToMenu creates a structure of type LIST that defines a
menu item within the current menu.

NLM Programming

NWSNUT: Functions 644

See Also

NWSDestroyMenu, NWSInitMenu, NWSMenu

Example

See the example for NWSInitMenu.

NLM Programming

NWSNUT: Functions 645

NWSAppendToMenuField

Adds a menu item to a menu associated with a field in a form

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSAppendToMenuField(
 FMCONTROL *m,
 LONG optiontext,
 int option,
 NUTInfo *nutInfo);

Parameters

m

(IN) Points to an MFCONTROL structure containing the menu field
information.

optiontext

(IN) Specifies the message identifier of the menu option text.

option

(IN) Specifies the menu option number.

nutInfo

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

Nonz
ero

Successful.

Zero Not successful.

Remarks

NLM Programming

NWSNUT: Functions 646

NWSAppendToMenuField is used to build a menu that is associated
with a field in a form. Call NWSAppendToMenuField once to add each
option in the menu.

The m parameter is the MFCONTROL structure for the menu field
returned by NWSInitMenuField.

The optiontext parameter specifies the message identifier of the text to
display in the menu for this option.

The option parameter defines the integer to be passed to the menu action
routine when this option is selected.

See Also

NWSAppendMenuField, NWSInitMenuField

Example

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 647

NWSAppendUnsignedIntegerField

Appends an unsigned integer field to the current form

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

FIELD *NWSAppendUnsignedIntegerField (
 LONG line,
 LONG column,
 LONG fflag,
 LONG *data,
 LONG minimum,
 LONG maximum,
 LONG help,
 NUTInfo *handle);

Parameters

line

(IN) Specifies the portal line for the integer field.

column

(IN) Specifies the portal column for the integer field.

fflag

(IN) Specifies the field control flag.

data

(IN/OUT) Points to an unsigned long in which to store the value of
the new integer field. This field can be modified by the user.

minimum

(IN) Specifies the minimum value that can be stored in the new
integer field.

maximum

(IN) Specifies the maximum value that can be stored in the new
integer field.

help

(IN) Specifies the help context for the new integer field.

NLM Programming

NWSNUT: Functions 648

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

NULL Unable to append field to form.

not
NULL

Pointer to FIELD item that has been appended to form.

Remarks

The unsigned integer field is a integer size variable field that can be
edited from a form. The characters (0 - 9) are the only input allowed
when editing this field. Upper and lower limits on the value of the
integer are defined by the minimum and maximum parameters.

The fflag parameter sets the fieldFlags field in the FIELD structure. See
NWSAppendBoolField or NWSNUT.H for values.

If help is specified for a form field, it is not displayed unless the user
presses the Enter key, followed by the F1 key.

See Also

NWSAppendHexField, NWSAppendIntegerField, NWSInitForm

Example

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 649

NWSAsciiHexToInt

Converts an ASCII-represented hexadecimal number to an integer

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSAsciiHexToInt (
 BYTE *data);

Parameters

data

(IN) Points to a string that contains an ASCII-represented hexadecimal
number.

Return Values

A signed integer.

Remarks

This function returns the integer value represented by the ASCII string
data.

See Also

NWSAsciiToInt, NWSAsciiToLONG

NLM Programming

NWSNUT: Functions 650

NWSAsciiToInt

Converts an ASCII-represented decimal number to an integer

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSAsciiToInt (
 BYTE *data);

Parameters

data

(IN) Points to a string that contains an ASCII-represented decimal
number.

Return Values

A signed integer.

Remarks

This function returns the integer value represented by the ASCII string
data.

See Also

NWSAsciiHexToInt, NWSAsciiToLONG

NLM Programming

NWSNUT: Functions 651

NWSAsciiToLONG

Converts an ASCII representation of a number to a number of type LONG

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSAsciiToLONG (
 BYTE *data);

Parameters

data

(IN) Points to a string containing an ASCII representation of a number
of type LONG.

Return Values

A number of type LONG.

Remarks

This function returns the LONG value represented by the ASCII string
data.

See Also

NWSAsciiHexToInt, NWSAsciiToInt

NLM Programming

NWSNUT: Functions 652

NWSClearPortal

Blanks out the specified portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSClearPortal (
 PCB *portal);

Parameters

portal

(IN) Points to a portal control block.

Return Values

None

Remarks

This function blanks out the portal specified by portal. The portal
parameter can be obtained by calling NWSGetPCB.

See Also

NWSCreatePortal, NWSDestroyPortal, NWSGetPCB

NLM Programming

NWSNUT: Functions 653

NWSComputePortalPosition

Calculates the screen line and column for positioning a portal

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSComputePortalPosition (
 LONG centerLine,
 LONG centerColumn,
 LONG height,
 LONG width,
 LONG *line,
 LONG *column,
 NUTInfo *handle);

Parameters

centerLine

(IN) Specifies the vertical line about which to center the portal.

centerColumn

(IN) Specifies the horizontal column about which to center the portal.

height

(IN) Specifies the height of the portal.

width

(IN) Specifies the width of the portal.

line

(OUT) Specifies the zero-based top row of the portal.

column

(OUT) Specifies the zero-based left column of the portal.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

NLM Programming

NWSNUT: Functions 654

0 Success

Nonz
ero

Failure

Remarks

This function calculates the top row (line) and left-most column (column)
for portal placement given its height, width, and which row and column
it should be centered on. The output from this function can be used as
input to NWSCreatePortal.

See Also

NWSCreatePortal

NLM Programming

NWSNUT: Functions 655

NWSConfirm

Draws a yes/no portal and allows the user to confirm a decision

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSConfirm (
 LONG header,
 LONG centerLine,
 LONG centerColumn,
 LONG defaultChoice,
 int (*action) (
 int option,
 void *parameter),
 NUTInfo *handle,
 void *actionParameter);

Parameters

header

(IN) Specifies the message identifier for the header text.

centerLine

(IN) Specifies the row for the center of the confirm portal.

centerColumn

(IN) Specifies the column for the center of the confirm portal.

defaultChoice

(IN) Specifies the option to highlight (0 = No, 1 = Yes).

action

(IN) Specifies the optional action procedure to be called when user
makes a selection (NULL = no action).

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

actionParameter

(IN) Specifies an optional parameter for the action procedure.

NLM Programming

NWSNUT: Functions 656

Return Values

-1 The user pressed ESCAPE.

0 The user selected NO.

1 The user selected YES.

Any other value returned indicates an error.

Remarks

This function draws a yes/no box that allows the user to confirm a
choice. The action parameter specifies a routine to be called if yes or no is
selected. The option parameter passed to the action routine indicates
whether Yes (1) or No (0) was chosen.

NLM Programming

NWSNUT: Functions 657

NWSCreatePortal

Creates a NWSNUT portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSCreatePortal (
 LONG line,
 LONG column,
 LONG frameHeight,
 LONG frameWidth,
 LONG virtualHeight,
 LONG virtualWidth,
 LONG saveFlag,
 BYTE *headerText,
 LONG headerAttribute,
 LONG borderType,
 LONG borderAttribute,
 LONG cursorFlag,
 LONG directFlag,
 NUTInfo *handle);

Parameters

line

(IN) Specifies the screen line to place the top of the portal.

column

(IN) Specifies the screen column to place the left side of the portal.

frameHeight

(IN) Specifies the height of the new portal frame.

frameWidth

(IN) Specifies the width of the new portal frame.

virtualHeight

(IN) Specifies the height of the display area in the new portal.

virtualWidth

(IN) Specifies the width of the display area in the new portal.

NLM Programming

NWSNUT: Functions 658

saveFlag

(IN) Specifies whether to save the current data on the screen under this
portal.

SAVE---saves current screen data.

NO_SAVE---does not save the screen data.

headerText

(IN) Specifies the header to be displayed at the top of the portal.

headerAttribute

(IN) Specifies the screen attribute to display the header with.

borderType

(IN) Specifies the border type of the portal (NOBORDER, SINGLE, or
DOUBLE, as defined in NWSNUT.H).

borderAttribute

(IN) Specifies the Screen attribute for the border when the portal is
selected.

cursorFlag

(IN) CURSOR_ON or CURSOR_OFF when the portal is drawn.

directFlag

(IN) Specifies whether to write to the physical or virtual screen.
DIRECT---write directly to physical screen. VIRTUAL---write to
virtual screen.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

If successful, this function returns the portal index of the new portal.
Otherwise it returns a large value:

(0xFFFFFF
FE)

Unable to allocate memory for PCB, virtual screen, or
save area.

(0xFFFFFF
FF)

Maximum number of portals already defined.

Remarks

This function returns the portal index number of the new portal. To
obtain the portal control block (PCB) of the new portal, call NWSGetPCB
for the portal index number.

NLM Programming

NWSNUT: Functions 659

The size of the virtual display (virtualHeight X virtualWidth) area can be
greater than the size of the portal frame (frameHeight X frameWidth). The
user can display hidden parts of the virtual display area by moving the
cursor to a line or column that is hidden (or, in other words, scroll the text
by positioning the cursor). There is no practical limit to the size of the
virtual screen.

The following illustrates a portal.

The directFlag indicates whether to write to the physical or virtual screen.
If DIRECT is specified, data is written to the physical screen, limiting the
amount of data that can be written. If VIRTUAL is specified, the data
written can be any size, but it is not written until NWSUpdatePortal is
called.

The saveFlag parameter determines whether what is on the screen beneath
the portal is saved. If saveFlag is SAVE, what the portal covers is
redisplayed when the portal is destroyed.

NOTE: If several portals are displayed with the SAVE option, they
must be destroyed in the opposite order from that in which they were
created, because each call to NWSDestroyPortal restores what was on
the screen when that portal was created.

The headerAttribute and borderAttribute parameters can have the following
values:

NLM Programming

NWSNUT: Functions 660

VNORM
AL

Normal video

VINTENS
E

Intense video

VREVERS
E

Reverse video

VBLINK Blinking, normal video

VIBLINK Blinking, intense video

VRBLINK Blinking, reverse video

See Also

NWSClearPortal, NWSDestroyPortal, NWSDisplayTextInPortal,
NWSDisplayTextJustifiedInPortal, NWSUpdatePortal

NLM Programming

NWSNUT: Functions 661

NWSDeleteFromList

Removes the specified element from the current list

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LIST *NWSDeleteFromList (
 LIST *deleteElement,
 NUTInfo *handle);

Parameters

deleteElement

(IN) Points to the element to be deleted.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

If successful, a pointer to the next element in the list is returned.

If this is the last element in the list chain, a pointer to the previous list
element is returned.

If the list is empty after deleting the element, NULL is returned.

Remarks

NWSDeleteFromList removes the element specified by the deleteElement
parameter from the current list.

The deleteElement parameter specifies the LIST structure that was returned
by the NWSAppendToList function when the element was created.

NOTE: NWSDeleteFromList assumes the otherInfo field of the LIST
structure points to one contiguous memory block. If this memory block
contains pointers to additional memory blocks, you must specifically

NLM Programming

NWSNUT: Functions 662

free these memory blocks before calling NWSDeleteFromList.

See Also

NWSAlignChangedList, NWSAppendToList,
NWSDeleteFromPortalList, NWSGetListIndex, NWSInsertInList

NLM Programming

NWSNUT: Functions 663

NWSDeleteFromPortalList

Deletes all selected list elements (that is, current and marked elements) from
the current list

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSDeleteFromPortalList (
 LIST **currentElement,
 int *currentLine,
 LIST *(*deleteProcedure) (
 LIST *el,
 NUTInfo *handle,
 void parameters),
 LONG deleteCurrentMessageID,
 LONG deleteMarkedMessageID,
 NUTInfo *handle,
 void parameters);

Parameters

currentElement

(IN) Specifies the element to be deleted.

currentLine

(IN) Specifies the current line of the list.

deleteProcedure

(IN) Points to the delete routine to be used.

deleteCurrentMessageID

(IN) Specifies the message identifier for the confirmation prompt if
only the current list element is to be deleted.

deleteMarkedMessageID

(IN) Specifies the message identifier for the confirmation prompt if
both the current and marked list elements are to be deleted.

Return Values

NLM Programming

NWSNUT: Functions 664

-1 List is empty, <Esc> was pressed, or "no" was chosen on
confirmation.

0 One or more list items were deleted.

Remarks

This function determines whether more than one item is marked, then
prompts the user with a confirm box to verify the deletion. The confirm
box prompts the user with either the deleteCurrentMessageID (if no items
are marked) or the deleteMarkedMessageID (if one or more items are
marked).

The user marks a list item by highlighting it and pressing <F5>.

See Also

NWSAppendToList, NWSDeleteFromList, NWSInsertInList

NLM Programming

NWSNUT: Functions 665

NWSDeselectPortal

Deselects the currently active portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDeselectPortal (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function deselects the current portal and unhighlights its border.
After this function is called, there is no current portal.

See Also

NWSSelectPortal

NLM Programming

NWSNUT: Functions 666

NWSDestroyForm

Frees all of the fields in the current form and reinitializes the form pointers

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDestroyForm (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function destroys the current form and reinitializes form pointers.

See Also

NWSInitForm

Example

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 667

NWSDestroyList

Frees all of the nodes in the current list and initializes the list pointers

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDestroyList (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function destroys the current list and reinitializes the current list
pointers.

See Also

NWSInitList, NWSList

Example

See the example for NWSInitList.

NLM Programming

NWSNUT: Functions 668

NWSDestroyMenu

Destroys the current menu

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDestroyMenu (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function frees the nodes in the current menu and frees the menu
pointers.

See Also

NWSInitMenu, NWSMenu

Example

See the example for NWSInitMenu.

NLM Programming

NWSNUT: Functions 669

NWSDestroyPortal

Destroys a portal and cleans up all resources used by that portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDestroyPortal (
 LONG portalNumber,
 NUTInfo *handle);

Parameters

portalNumber

(IN) Specifies the portal index of the portal to be destroyed.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

The portal index number is returned by NWSCreatePortal.

See Also

NWSCreatePortal

NLM Programming

NWSNUT: Functions 670

NWSDisableAllFunctionKeys

Disables all function keys

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDisableAllFunctionKeys (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

When the user presses a function key that has been previously defined
and enabled, the computer beeps and ignore the input. The keystroke
does not return from NWSGetKey. If the function key has not been
defined, it is returned from NWSGetKey.

See Also

NWSDisableFunctionKey, NWSEnableAllFunctionKeys,
NWSEnableFunctionKey, NWSEnableFunctionKeyList,
NWSSaveFunctionKeyList

NLM Programming

NWSNUT: Functions 671

NWSDisableAllInterruptKeys

Disables all interrupt keys

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDisableAllInterruptKeys (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function disables all previously defined interrupt keys and destroys
the association between the keys and their associated routines.

See Also

NWSEnableInterruptKey, NWSEnableInterruptList,
NWSSaveInterruptList

NLM Programming

NWSNUT: Functions 672

NWSDisableFunctionKey

Disables a function key which has previously had an interrupt procedure
defined for it

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDisableFunctionKey (
 LONG key,
 NUTInfo *handle);

Parameters

key

(IN) Specifies the key to be disabled.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

If key has ben previously defined and enabled, when the user presses key
the computer beeps and ignore the input. The keystroke does not return
from NWSGetKey. If key has not been defined, it is returned from
NWSGetKey.

See Also

NWSDisableAllFunctionKeys, NWSEnableFunctionKey,
NWSEnableFunctionKeyList, NWSSaveFunctionKeyList

NLM Programming

NWSNUT: Functions 673

NWSDisableInterruptKey

Enables a procedure to be called whenever a given key is pressed

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDisableInterruptKey (
 LONG key,
 NUTInfo *handle);

Parameters

key

(IN) Specifies the interrupt key to disable.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function destroys the association between a defined interrupt key
and an specified function. That association is established by calling
NWSEnableInterruptKey.

See Also

NWSDisableAllInterruptKeys, NWSEnableInterruptList,
NWSEnableInterruptKey, NWSSaveInterruptList

NLM Programming

NWSNUT: Functions 674

NWSDisablePortalCursor

Flags the cursor not to be shown when the specified portal is current

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDisablePortalCursor (
 PCB *portal);

Parameters

portal

(IN) Points to the NWSNUT portal control block of the portal for
which to disable the cursor.

Return Values

None

Remarks

The portal parameter can be obtained by calling NWSGetPCB.

See Also

NWSEnablePortalCursor

NLM Programming

NWSNUT: Functions 675

NWSDisplayErrorCondition

Displays an error box listing the name of the routine which resulted in the
error condition and an appropriate error message

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDisplayErrorCondition (
 BYTE *procedureName,
 int errorCode,
 LONG severity,
 PROCERROR *errorList,
 NUTInfo *handle,
 ...);

Parameters

procedureName

(IN) Specifies the name of the function that resulted in the error
condition.

errorCode

(IN) Specifies the error code that occurred in the routine specified by
procedureName.

severity

(IN) Specifies the severity of the error condition.

errorList

(IN) Points to a list of error codes and associated message identifiers in
an array of type PROCERROR.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

NLM Programming

NWSNUT: Functions 676

Remarks

At the top of the error box this function displays the name of the NLM as
defined to the linker in the "description" line, followed by the version of
the utility, and the message identifier in the message data base. This is
displayed as Name-MajorVersion.MinorVersion-ErrorMessageNumber
(for example, MyNLM-2.00-43). If you do not want this information to be
displayed, call NWSSetErrorLabelDisplayFlag .

The severity parameter indicates the severity of the error and determines
which message about program execution is displayed in addition to your
message. This parameter can have one of the following values:

Severity Message

SEVERITY_INFO
RM

Program execution should continue normally.

SEVERITY_WAR
NING

Program execution may not continue normally.

SEVERITY_FATA
L

Program execution cannot continue normally.

If an error portal is displayed by this function, the errorDisplayActive field
of the NUTInfo structure contains a nonzero value.

The developer builds an array of errors and associated messages for the
errorList parameter. The PROCERROR structure is defined in
NWSNUT.H as follows:

typedef struct PCERR_
{
 int ccodeReturned;
 int errorMessageNumber;
} PROCERROR;

Parameters required by the error message (for example, %s, %d) are
optionally added to the end of the parameter list.

The error list must be terminated with a structure that contains the value
-1 or -2 in the ccodeReturned field. If the value is set to -2, the message
associated with errorMessageNumber is used as the default message for
any error number which does not have a corresponding entry in the list.
If the final entry is -1, a default message is displayed by NWSNUT.

See Also

NWSDisplayErrorText, NWSSetErrorLabelDisplayFlag

NLM Programming

NWSNUT: Functions 677

NWSDisplayErrorText

Displays an error portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDisplayErrorText (
 LONG message,
 LONG severity,
 NUTInfo *handle,
 ...);

Parameters

message

(IN) Specifies the message identifier of the error message.

severity

(IN) Specifies the severity of the error condition.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

At the top of the error box this function displays the name of the NLM as
defined to the linker in the "description" line, followed by the version of
the utility, and the message identifier in the message data base. This is
displayed as Name-MajorVersion.MinorVersion-ErrorMessageNumber
(for example, MyNLM-2.00-43). If you do not want this information to be
displayed, call NWSSetErrorLabelDisplayFlag .

The severity parameter indicates the severity of the error and determines
which message about program execution is displayed in addition to your

NLM Programming

NWSNUT: Functions 678

message. This parameter can have one of the following values:

Severity Message

SEVERITY_INFO
RM

Program execution should continue normally.

SEVERITY_WAR
NING

Program execution may not continue normally.

SEVERITY_FATA
L

Program execution cannot continue normally.

If an error portal is displayed by this function, the errorDisplayActive field
of the NUTInfo structure contains a nonzero value.

Parameters required by message (for example, %s, %d) are optionally
added to the end of the parameter list.

To display more detailed information, see NWSDisplayErrorCondition.

See Also

NWSDisplayErrorCondition, NWSSetErrorLabelDisplayFlag

NLM Programming

NWSNUT: Functions 679

NWSDisplayHelpScreen

Displays a help portal on the screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDisplayHelpScreen (
 LONG offset,
 NUTInfo *handle);

Parameters

offset

(IN) Specifies the help identifier of the help message.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function displays a help screen. The user presses <Escape> to
remove the help screen.

The offset parameter specifies the help identifier assigned to the help
screen when it was created.

See Also

NWSPopHelpContext, NWSPushHelpContext

NLM Programming

NWSNUT: Functions 680

NWSDisplayInformation

Displays text in a portal on the screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSDisplayInformation (
 LONG header,
 LONG pauseFlag,
 LONG centerLine,
 LONG centerColumn,
 LONG palette,
 LONG attribute,
 BYTE *displayText,
 NUTInfo *handle);

Parameters

header

(IN) Specifies the message identifier for the header text.

pauseFlag

(IN) Specifies the behavior of the portal.

centerLine

(IN) Specifies the center row of the portal.

centerColumn

(IN) Specifies the center column of the portal.

palette

(IN) Specifies the palette to use for the display.

attribute

(IN) Specifies the screen attribute for the text.

displayText

(IN) Points the text to be displayed in the portal.

handle

(IN) Points to a NUTInfo structure that contains state information

NLM Programming

NWSNUT: Functions 681

allocated to the calling NLM.

Return Values

(0xFFFFFF
FF)

Error.

(0xFF) pauseFlag != 0 and escape key was hit.

(0xFE) pauseFlag != 0 and F7 key was hit.

If pauseFlag == 0, the portal index is returned.

Remarks

The pauseFlag parameter can have the following values:

Val
ue

Portal Behavior Message Displayed at Bottom
of Portal

0 Draw portal, display
message, return.

(none)

1 Draw portal, display
message, wait for ENTER,
erase portal, return.

<Press ENTER to continue>

2 Draw portal, display
message, wait for ENTER or
F7, erase portal, return.

<Press CANCEL (F7) to abort>

3 Draw portal, enable help key,
wait for ENTER, return

<Press HELP (F1) for more
information>

4 Draw portal, wait for
ESCAPE, return

<Press ESCAPE to continue>

5 Allow both escape and return

The palette parameter can have one of the following values:

NORMAL_PALET
TE

INIT_PALETTE

HELP_PALETTE

ERROR_PALETTE

WARNING_PALE
TTE

NLM Programming

NWSNUT: Functions 682

OTHER_PALETT
E

The attribute parameter can have the following values:

VNORM
AL

Normal video

VINTENS
E

Intense video

VREVERS
E

Reverse video

VBLINK Blinking, normal video

VIBLINK Blinking, intense video

VRBLINK Blinking, reverse video

See Also

NWSDisplayInformationInPortal, NWSDisplayTextInPortal,
NWSDisplayTextJustifiedInPortal, NWSViewText

NLM Programming

NWSNUT: Functions 683

NWSDisplayInformationInPortal

Displays text in a portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSDisplayInformationInPortal (
 LONG header,
 LONG portalJustifyLine,
 LONG portalJustifyColumn,
 LONG portalJustifyType,
 LONG portalPalette,
 LONG portalBorderType,
 LONG portalMaxWidth,
 LONG portalMaxHeight,
 LONG portalMinWidth,
 LONG portalMinHeight,
 LONG textLRJustifyType,
 LONG textLRIndent,
 LONG textTBJustifyType,
 LONG textTBIndent,
 LONG textAttribute,
 LONG textMinimizeStyle,
 BYTE *text,
 NUTInfo *handle);

Parameters

header

(IN) Specifies the message identifier for the portal.

portalJustifyLine

(IN) Specifies the screen line to justify the portal frame against.

portalJustifyColumn

(IN) Specifies the screen column justify the portal frame against.

portalJustifyType

(IN) Specifies the type of justifiction for the portal frame.

portalPalette

NLM Programming

NWSNUT: Functions 684

(IN) Specifies the palette for the portal.

portalBorderType

(IN) Specifies the type of border for the portal (NOBORDER, SINGLE,
or DOUBLE).

portalMaxWidth

(IN) Specifies the maximum width of the portal including borders.

portalMaxHeight

(IN) Specifies the maximum height of the portal including borders and
header.

portalMinWidth

(IN) Specifies the minimum width of the portal including borders.

portalMinHeight

(IN) Specifies the minimum height of the portal including borders and
header.

textLRJustifyType

(IN) Specifies how to justify the text from left to right.

textLRIndent

(IN) Specifies how to indent the text left to right.

textTBJustifyType

(IN) Specifies how to justify the text top to bottom.

textTBIndent

(IN) Specifies how the to indent text top to bottom.

textAttribute

(IN) Specifies the screen attribute for the text.

textMinimizeStyle

(IN) Specifies whether to minimize the text.

text

(IN) Points to the text to display in the portal.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

If successful, this function returns the portal index. Otherwise, one of the
following error values is returned.

-1 The text parameter is a NULL pointer, memory cannot be
allocated, or all portal slots are in use.

NLM Programming

NWSNUT: Functions 685

-2 Memory cannot be allocated for portal creation.

-3 Text does not fit in the specified area.

-4 The portal does not fit on the screen.

If an undefined value is returned, text does not fit in the portal, or text
[0]==0.

Remarks

This function draws a portal, displays text in the portal, and returns
without erasing the portal. This function allows the developer to specify
the following:

Placement of the portal

Justification and indent of text within the portal

Minimization of the text

Minimum and maximum size of the portal

The portalJustifyLine, portalJustifyColumn, and portalJustifyType parameters
position the portal on the screen. The portalJustifyLine is the line for
top-bottom justification of the portal. Line 0 is the line below the screen
header. The portalJustifyColumn is the column for left-right justification of
the portal. Column 0 is the left screen edge. The portalJustifyType can have
the following values:

JTOP

JBOTTOM

JRIGHT

JLEFT

JCENTER

JTOPLEFT

JTOPRIGHT

JBOTTOMLEFT

JBOTTOMRIGHT

The following bits are defined for the palette parameter:

NORMAL_PALETTE

INIT_PALETTE

HELP_PALETTE

ERROR_PALETTE

WARNING_PALETTE

OTHER_PALETTE

NLM Programming

NWSNUT: Functions 686

The portalMaxWidth, portalMaxHeight, portalMinWidth, and
portalMinHeight parameters allow you to restrict the size of your portal. If
you have no size preference, enter 0 for these parameters.

The textMinimizeStyle parameter indicates whether to display the text in
smaller size:

SNORMAL Display the text in normal size.

SMINWID
TH

Display the text with minimum width.

SMINHEIG
HT

Display the text with minimum height.

The textAttribute parameter can have the following values:

VNORM
AL

Normal video

VINTENS
E

Intense video

VREVERS
E

Reverse video

VBLINK Blinking, normal video

VIBLINK Blinking, intense video

VRBLINK Blinking, reverse video

The textLRIndent parameter does different things depending on the text's
left-right justification style (textLRJustifyType). The following summarizes
the meaning of textLRIndent for each value of textLRJustifyType:

textLRJustifyTyp
e

textLRIndent specifies

JCENTER The number of spaces on both beginning and end
of lines

JLEFT The number of spaces on left side of lines

JRIGHT The number of spaces on right side of lines

The textTBIndent parameter does different things depending on the text's
top-bottom justification style (textTBJustifyType). The following
summarizes the meaning of textTBIndent for each value of

NLM Programming

NWSNUT: Functions 687

textTBJustifyType:

textTBJustifyTyp
e

textTBIndent specifies

JCENTER The number of blank lines on both top and
bottom of portal

JTOP The number of blank lines on top of portal

JBOTTOM The number of blank lines on bottom of portal

See Also

NWSDisplayInformation, NWSDisplayTextInPortal,
NWSDisplayTextJustifiedInPortal, NWSViewText

NLM Programming

NWSNUT: Functions 688

NWSDisplayPreHelp

Displays a prehelp portal on the screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDisplayPreHelp (
 LONG line,
 LONG column,
 LONG message,
 NUTInfo *handle);

Parameters

line

(IN) Specifies the line to center the prehelp portal on.

column

(IN) Specifies the column to center the prehelp portal on.

message

(IN) Specifies the message identifier of the prehelp message.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

The prehelp portal is a portal displaying a message that stays on the
screen, such as "Press <F1> for help." To remove the portal, call
NWSRemovePreHelp.

See Also

NLM Programming

NWSNUT: Functions 689

NWSRemovePreHelp

NLM Programming

NWSNUT: Functions 690

NWSDisplayTextInPortal

Displays text in an existing portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSDisplayTextInPortal (
 LONG line,
 LONG indentLevel,
 BYTE *text,
 LONG attribute,
 PCB *portal);

Parameters

line

(IN) Specifies the starting portal line for the text.

indentLevel

(IN) Specifies the number of blank spaces at the beginning of each
line.

text

(IN) Points to the text to display in the portal.

portal

(IN) Specifies the portal control block of the portal to display the text.

Return Values

If successful, this function returns the number of the next available line in
the portal. If -1 is returned, the message does not fit in the portal.

Remarks

This function writes to either the virtual or the physical display area of an
existing portal, depending on the directFlag in the portal's PCB structure
(set by NWSCreatePortal). The text is wrapped if necessary.

NLM Programming

NWSNUT: Functions 691

The indentLevel parameter allows you to indent the text from the edge of
the portal.

See Also

NWSDisplayInformation, NWSDisplayInformationInPortal,
NWSDisplayTextJustifiedInPortal, NWSViewText

NLM Programming

NWSNUT: Functions 692

NWSDisplayTextJustifiedInPortal

Displays justified text in an existing portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSDisplayTextJustifiedInPortal (
 LONG justify,
 LONG line,
 LONG column,
 LONG textWidth,
 BYTE *text,
 LONG attribute,
 PCB *portal);

Parameters

justify

(IN) Specifies the justification style for the text.

line

(IN) Specifies the starting portal line for the text.

column

(IN) Specifies the portal column for text justification.

textWidth

(IN) Specifies the maximum width of the text.

text

(IN) Points to the text to be displayed.

attribute

(IN) Specifies the display attribute for the text.

portal

(IN) Specifies the portal control block of the portal to display the text.

Return Values

NLM Programming

NWSNUT: Functions 693

If successful, this function returns the number of the next available line in
the portal. If -1 is returned, the message does not fit in the portal.

Remarks

This function writes to either the virtual or the physical display area of an
existing portal, depending on the directFlag in the portal's PCB (set by
NWSCreatePortal). The text is wrapped if necessary.

This function is similar to NWSDisplayTextInPortal, but it allows the
developer to specify justification and display attribute information for the
text.

The meaning of the column parameter depends on the justification style
specified by the justify parameter. The following describes the meaning of
column for each value of justify:

justify column specifies

JCENTER The center of each text line.

JLEFT The left side of each text line

JRIGHT The right side of each text line

If 0 is specified for textWidth, the limit on text line width is the portal or
virtual display width.

The attribute parameter can have the following values:

VNORM
AL

Normal video

VINTENS
E

Intense video

VREVERS
E

Reverse video

VBLINK Blinking, normal video

VIBLINK Blinking, intense video

VRBLINK Blinking, reverse video

See Also

NWSDisplayInformation, NWSDisplayInformationInPortal,
NWSDisplayTextInPortal, NWSViewText

NLM Programming

NWSNUT: Functions 694

NWSDrawPortalBorder

Draws a border for the specified portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSDrawPortalBorder (
 PCB *portal);

Parameters

portal

(IN) Specifies the portal control block for the portal to have the border.

Return Values

None

Remarks

This function draws a line box around the portal specified by portal. This
function is often used to redraw portal borders. The portal parameter can
be obtained by calling NWSGetPCB.

NLM Programming

NWSNUT: Functions 695

NWSEditForm

Displays the current form and allows the user to edit it

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSEditForm (
 LONG headernum,
 LONG line,
 LONG col,
 LONG portalHeight,
 LONG portalWidth,
 LONG virtualHeight,
 LONG virtualWidth,
 LONG ESCverify,
 LONG forceverify,
 LONG confirmMessage,
 NUTInfo *handle);

Parameters

headernum

(IN) Specifies the message identifier for the header text.

line

(IN) Specifies the top-most row for the form portal.

col

(IN) Specifies the left-most column for the form portal.

portalHeight

(IN) Specifies the portal height.

portalWidth

(IN) Specifies the portal width.

virtualHeight

(IN) Specifies the displayable area height.

virtualWidth

(IN) Specifies the displayable area width.

NLM Programming

NWSNUT: Functions 696

ESCverify

(IN) Specifies whether to verify when the escape key is hit:

TRUE = verify ESCAPE key.

forceverify

(IN) Specifies whether to verify any changes made to the form:

TRUE = verify regardless of changes.

confirmMessage

(IN) Specifies the message identifier for the exit confirmation message.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

0 Discard form

1 Save form

-1 Memory allocation or other error.

Remarks

This function creates a portal for the form, displays it, and allows the user
to edit it.

The ESCverify and forceverify parameters indicate whether to verify
changes or exit from the form. If either of these parameters are TRUE, a
confirm box with the message specified by confirmMessage is displayed
upon verification.

See Also

NWSEditPortalForm, NWSEditPortalFormField, NWSInitForm

NLM Programming

NWSNUT: Functions 697

NWSEditPortalForm

Displays the current form and allows the user to edit it

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSEditPortalForm (
 LONG header,
 LONG centerLine,
 LONG centerColumn,
 LONG formHeight,
 LONG formWidth,
 LONG controlFlags,
 LONG formHelp,
 LONG confirmMessage,
 NUTInfo *handle);

Parameters

header

(IN) Specifies the message identifier for the header text.

centerLine

(IN) Specifies the screen line to center the form on.

centerColumn

(IN) Specifies the screen column to center the form on.

formHeight

(IN) Specifies the height of the form in screen rows.

formWidth

(IN) Specifies the width of the form in screen columns.

controlFlags

(IN) Specifies format and verification behavior of the form (see
Remarks section below).

formHelp

(IN) Specifies the help context for the form. If no help context is
desired, specify F_NOHELP.

NLM Programming

NWSNUT: Functions 698

confirmMessage

(IN) Specifies the message identifier for the message to be displayed to
allow the user to confirm changes made to the form.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

-2 Portal is too large.

-1 Memory allocation or other error.

0 Discard form

1 Save form

Remarks

This function creates a portal for the form, displays it, and allows the user
to edit it.

This function is similar to NWSEditForm, but requires less input. The
ESCVerify and forceVerify parameters of NWSEditForm are replaced by
F_VERIFY and F_FORCE values for the controlFlags parameter of
NWSEditPortalForm. Moreover, NWSEditPortalForm does not allow the
form to be larger than the portal, as NWSEditForm does.

See Also

NWSEditForm, NWSEditPortalFormField, NWSInitForm

Example

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 699

NWSEditPortalFormField

Displays the current form and allows the user to edit it

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSEditPortalFormField (
 LONG header,
 LONG cline,
 LONG ccol,
 LONG formHeight,
 LONG formWidth,
 LONG controlFlags,
 LONG formHelp,
 LONG confirmMessage,
 FIELD *startField,
 NUTInfo *handle);

Parameters

header

(IN) Specifies the message identifier for the form's header text.

cline

(IN) Specifies the screen line to center the form on.

ccol

(IN) Specifies the screen column to center the form on.

formHeight

(IN) Specifies the height of the form in screen rows.

formWidth

(IN) Specifies the width of the form in screen columns.

controlFlags

(IN) Specifies format and verification behavior of the form (see
Remarks section below).

formHelp

(IN) Specifies the help context for the form. If no help context is

NLM Programming

NWSNUT: Functions 700

desired, specify F_NOHELP.

confirmMessage

(IN) Specifies the message identifier of the text to be displayed to
confirm changes to the form.

startField

(IN) Points to the field to highlight first.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

-2 Portal is too large.

-1 Memory allocation or other error.

0 Discard form

1 Save form

Remarks

This function is similar to NWSEditPortalForm, but
NWSEditPortalFormField allows you to specify the starting field to
highlight (that is, where the cursor is positioned when the user enters the
form).

See Also

NWSEditForm, NWSEditPortalForm, NWSInitForm

NLM Programming

NWSNUT: Functions 701

NWSEditString

Allows the user to edit a string in a portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSEditString (
 LONG centerLine,
 LONG centerColumn,
 LONG editHeight,
 LONG editWidth,
 LONG header,
 LONG prompt,
 BYTE *buf,
 LONG maxLen,
 LONG type,
 NUTInfo *handle,
 int (*insertProc) (
 BYTE *buffer,
 LONG maxLen,
 void *parameters),
 int (*actionProc) (
 LONG action,
 BYTE *buffer,
 void *parameters),
 void *parameters);

Parameters

centerLine

(IN) Specifies the center row of the new portal.

centerColumn

(IN) Specifies the center column of the new portal.

editHeight

(IN) Specifies the height of the new portal.

editWidth

(IN) Specifies the width of the new portal.

NLM Programming

NWSNUT: Functions 702

header

(IN) Specifies the message identifier for header text.

prompt

(IN) Specifies the message identifier for prompt text.

buf

(IN/OUT) On input, this parameter points to the display text. This text
can be changed by the user during the edit process.

maxLen

(IN) Specifies the maximum length of the edit string.

type

(IN) Specifies the characters to accept.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

insertProc

(IN) Points to optional procedure to handle insertion of characters.

actionProc

(IN) Points to optional procedure to be called when user presses a key.

parameters

(IN) Specifies the characters allowed as input for editing the string.

Return Values

This function can return one of the following:

<0 Error

1 E_ESCAP
E

<Escape> was pressed to terminate editing

2 E_SELEC
T

<Select> was pressed to terminate editing

4 E_EMPTY String is empty

8 E_CHAN
GE

String was changed

Otherwise, the value returned from the action procedure (actionProc) is
returned (unless it returns -1, in which case editing continues).

Remarks

This function creates a portal and displays buf in the portal so that it can

NLM Programming

NWSNUT: Functions 703

be edited. The edited string is placed back in buf.

The length of the string can be too long to be displayed at one time in the
portal. The user can move by pressing the left and right arrow keys to
move the visible of the string. If the portal display area is more than one
line tall, the text is wrapped if it overflows the first line.

The following bits have been defined for type parameter:

EF_ANY Any type of input is accepted.

EF_DECIMA
L

Only decimal digits are accepted (0 - 9).

EF_HEX Only hexadecimal digits are accepted (0 - 9, A - F).

EF_NOSPA
CES

Spaces are not accepted.

EF_UPPER Input is be converted to upper case.

EF_DATE The input must be in date format.

EF_TIME The input must be in time format.

EF_FLOAT The input must be a floating-point number.

EF_SET The input must be in the set of characters specified in
parameters

EF_NOECH
O

The input is not echoed to the screen.

The parameters parameter receives a character set that can be accepted for
editing buf. For example, parameters could be "ABCDEFG", "A..G",
"a..z0..9A..Z", "0..9+-,.", and so on.

The insertion procedure insertProc is called if the user presses the Insert
key. If the completion code from insertProc is TRUE, the text is
redisplayed and considered changed.

A completion code of -1 from actionProc causes the user to stay in the
text-edit function. Any other value from actionProc is returned as a return
value of NWSEditString.

See Also

NWSEditText

NLM Programming

NWSNUT: Functions 704

NWSEditText

Allows the user to edit text in a portal with the NWSNUT screen editor

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSEditText (
 LONG centerLine,
 LONG centerColumn,
 LONG height,
 LONG width,
 LONG headerNumber,
 BYTE *textBuffer,
 LONG maxBufferLength,
 LONG confirmMessage,
 LONG forceConfirm,
 NUTInfo *handle);

Parameters

centerLine

(IN) Specifies the center row of the new portal.

centerColumn

(IN) Specifies the center column of the new portal.

editHeight

(IN) Specifies the height of the new portal.

editWidth

(IN) Specifies the width of the new portal.

header

(IN) Specifies the message identifier for header text.

textBuffer

(IN/OUT) On input, this parameter points to the text to display. This
text can be changed by the user during the edit process.

maxLen

(IN) Specifies the maximum length of the edit string.

NLM Programming

NWSNUT: Functions 705

confirmMessage

(IN) Specifies the message identifier for confirmation message when
exiting.

forceConfirm

(IN) Boolean, force confirmation upon exit.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

Any combination of the following can be returned:

<0 Error

1 E_ESCAP
E

<Escape> was pressed to terminate editing

2 E_SELEC
T

<Select> was pressed to terminate editing

4 E_EMPTY String is empty

8 E_CHAN
GE

String was changed

Remarks

This function is similar to NWSEditString, but it does not offer the ability
to specify action or insertion procedures, and you cannot limit the type of
input to the string.

The text does not wrap in this function except on `\n' characters.

See Also

NWSEditString

NLM Programming

NWSNUT: Functions 706

NWSEditTextWithScrollBars

Enables a console operator to input paragraphs of text into an NLM through
a scrollable portal equipped with scrolling location indicator bars.

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSEditTextWithScrollBars (
 LONG centerLine,
 LONG centerColumn,
 LONG height,
 LONG width,
 LONG headerNumber,
 BYTE *textBuffer,
 LONG maxBufferLength,
 LONG confirmMessage,
 LONG forceConfirm,
 LONG scrollBarFlag,
 NUTInfo *handle);

Parameters

centerLine

(IN) Specifies the screen line to center the portal on.

centerColumn

(IN) Specifies the screen column to center the portal on.

height

(IN) Specifies the height of the portal.

width

(IN) Specifies the width of the portal.

headerNumber

(IN) Specifies the message identifier for header text.

textBuffer

(IN/OUT) On input, this parameter points to the text to display. This
text can be changed by the user during the edit process.

NLM Programming

NWSNUT: Functions 707

maxBufferLength

(IN) Specifies the maximum length of the text.

confirmMessage

(IN) Specifies the message identifier for the exit confirmation message.

forceConfirm

(IN) Boolean, specifies whether to confirm changes.

scrollBarFlag

(IN) Specifies the presence and operation of the scroll bars.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

Any combination of the following can be returned:

<0 Error

1 E_ESCAP
E

<Escape> was pressed to terminate editing

2 E_SELEC
T

<Enter> was pressed to terminate editing

4 E_EMPTY String is empty

8 E_CHAN
GE

String was changed

Remarks

The centerLine and centerColumn parameters specify the screen location of
the portal. 0, 0 centers the portal on the screen, excluding the NLM
header. Other values passed to centerLine and centerColumn locate the
center of the portal relative to the top-most line below the NLM header
and the left-most column of the screen. However, since these values
designate the portal center, they must also take into account the
dimensions of the portal itself.

The horizontal scroll bar represents the cursor position relative to the
lines of text shown between the upper and lower portal boundaries,
rather than in the buffer. The vertical scroll bar shows the cursor position
relative to all text lines whether or not all lines are displayed on screen.

For an explanation of the scrollBarFlag parameter, see the "Remarks"
section of NWSViewTextWithScrollBars.

The forceConfirm parameter indicates whether to verify changes on exit

NLM Programming

NWSNUT: Functions 708

from the form. If this parameter is TRUE, a confirm box with the message
specified by confirmMessage is displayed upon verification.

See Also

NWSEditForm, NWSEditText, NWSEditPortalForm,
NWSEditPortalFormField, NWSInitForm

Example

NWSEditTextWithScrollBars

ccode = NWSEditTextWithScrollBars(0, 0, 18, 78, DYNAMIC_MESSAGE_ONE,
 data, fileSize+1, DYNAMIC_MESSAGE_TWO, FALSE, SHOW_VERTICAL_SCROLL_BAR |
 SHOW_HORIZONTAL_SCROLL_BAR | SHOW_CONSTANT_SCROLL_BARS, handle);

NLM Programming

NWSNUT: Functions 709

NWSEnableAllFunctionKeys

Enables all function keys

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSEnableAllFunctionKeys (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function reverses the effect of NWSDisableAllFunctionKeys.

See Also

NWSDisableAllFunctionKeys, NWSDisableFunctionKey,
NWSEnableFunctionKey, NWSEnableFunctionKeyList,
NWSSaveFunctionKeyList

NLM Programming

NWSNUT: Functions 710

NWSEnableFunctionKey

Allows a function key to be used as input to NWSNUT routines

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSEnableFunctionKey (
 LONG key,
 NUTInfo *handle);

Parameters

key

(IN) Function key to be enabled.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function reverses the effect of NWSDisableFunctionKey.

See Also

NWSDisableAllFunctionKeys, NWSDisableFunctionKey,
NWSEnableAllFunctionKeys, NWSEnableFunctionKeyList,
NWSSaveFunctionKeyList

NLM Programming

NWSNUT: Functions 711

NWSEnableFunctionKeyList

Allows a list of function keys to be used as input to NWSNUT routines

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSEnableFunctionKeyList (
 BYTE *keyList,
 NUTInfo *handle);

Parameters

keyList

(IN) Points to a list of keys to be enabled.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function enables the function keys specified by the keyList
parameter.

See Also

NWSDisableAllFunctionKeys, NWSDisableFunctionKey,
NWSEnableAllFunctionKeys, NWSEnableFunctionKey,
NWSSaveFunctionKeyList

NLM Programming

NWSNUT: Functions 712

NWSEnableInterruptKey

Enables a procedure to be called whenever a given key is pressed

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSEnableInterruptKey (
 LONG key,
 void (*interruptProc) (
 void *handle),
 NUTInfo *handle);

Parameters

key

(IN) Specifies the key to link the procedure to.

interruptProc

(IN) Points to the procedure to be called when the interrupt key is
pressed.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function associates interruptProc with key so that the routine specified
by interruptProc is called when key is pressed. To destroy this association,
call NWSDisableInterruptKey.

See Also

NWSDisableAllInterruptKeys, NWSDisableInterruptKey,
NWSEnableInterruptList

NLM Programming

NWSNUT: Functions 713

NWSEnableInterruptList, NWSSaveInterruptList

NLM Programming

NWSNUT: Functions 714

NWSEnableInterruptList

Enables the list of interrupt keys saved in the INTERRUPT structure

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSEnableInterruptList (
 INTERRUPT *interruptList,
 NUTInfo *handle);

Parameters

interruptList

(IN) Points to the first element in an array of pointers to INTERRUPT
structures (see "Remarks" below).

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function enables a list of interrupt keys defined by the user, or more
commonly, retrieved by a call to NWSSaveInterruptList.

The interruptList parameter points to the first element in an array of
pointers to INTERRUPT structures. The size of the array should not
exceed the value MAXFUNCTIONS+1, where MAXFUNCTIONS is a
value defined in NWSNUT.H. The final element in the array should be a
NULL pointer or an INTERRUPT structure in which the interruptProc
field is set to NULL.

The INTERRUPT structure is defined in NWSNUT.H as follows:

typedef struct INT_

NLM Programming

NWSNUT: Functions 715

{
 void (*interruptProc)(void *handle);
 LONG key;
} INTERRUPT;

Functions can be passed to NWSNUT by using NWSEnableInterruptList
.

See Also

NWSDisableAllInterruptKeys, NWSEnableInterruptKey,
NWSSaveInterruptList

NLM Programming

NWSNUT: Functions 716

NWSEnablePortalCursor

Flags the cursor to be shown when the specified portal is current

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSEnablePortalCursor (
 PCB *portal);

Parameters

portal

(IN) Points to a NWSNUT portal control block.

Return Values

None

Remarks

This function enables the cursor of portal. The portal parameter can be
obtained by calling NWSGetPCB.

See Also

NWSDisablePortalCursor

NLM Programming

NWSNUT: Functions 717

NWSEndWait

Removes the wait portal displayed by NWSStartWait

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSEndWait (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function removes a wait portal created by NWSStartWait.

See Also

NWSStartWait

NLM Programming

NWSNUT: Functions 718

NWSFillPortalZone

Fills the specified region of a NWSNUT portal with characters of the
specified attribute

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSFillPortalZone (
 LONG line,
 LONG column,
 LONG height,
 LONG width,
 LONG fillCharacter,
 LONG fillAttribute,
 PCB *portal);

Parameters

line

(IN) Specifies the top-most line of the portal to fill.

column

(IN) Specifies the left-most column of the portal to fill.

height

(IN) Specifies the height of the region to be filled.

width

(IN) Specifies the width of the region to be filled.

fillCharacter

(IN) Specifies the character to fill the region with.

fillAttribute

(IN) Screen attribute of fillCharacter.

portal

(IN) Points to a NWSNUT portal control block.

Return Values

NLM Programming

NWSNUT: Functions 719

None

Remarks

This function allows you to fill a specified region of a portal with
characters of a specific screen attribute. The portal parameter can be
obtained by calling NWSGetPCB.

The fillAttribute parameter can have the following values:

VNORM
AL

Normal video

VINTENS
E

Intense video

VREVERS
E

Reverse video

VBLINK Blinking, normal video

VIBLINK Blinking, intense video

VRBLINK Blinking, reverse video

See Also

NWSFillPortalZoneAttribute

Example

NWSFillPortalZone

#include <nwsnut.h>
#include <string.h>

NUTInfo *handle;

main ()
{
 LONG portalNumber;
 PCB pPtr;
 BYTE *ptr;
 portalNumber = NWSCreatePortal(6, 20, 10, 40, 6, 38,
 SAVE, "Demonstration Portal", 0,
 DOUBLE, 0, CURSOR_ON, VIRTUAL, handle);
 NWSGetPCB (&pPtr, portalNumber, handle);
 NWSClearPortal (pPtr);
 NWSSelectPortal (portalNumber, handle);
 ptr = "Zone below filled with a character";

NLM Programming

NWSNUT: Functions 720

 NWSShowPortalLine (2, 0, ptr, strlen (ptr), pPtr);
 NWSFillPortalZone (3, 0, 3, 38, '@', VINTENSE, pPtr);
 NWSUpdatePortal (pPtr); /* cause it to be displayed on the screen*/
 NWSGetKey (&type, &value, handle); /* wait for a key to be pressed */
 NWSDestroyPortal (portalNumber, handle);

NLM Programming

NWSNUT: Functions 721

NWSFillPortalZoneAttribute

Changes the video attribute of all characters in the specified region of a
NWSNUT portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSFillPortalZoneAttribute (
 LONG line,
 LONG column,
 LONG height,
 LONG width,
 LONG attribute,
 PCB *portal);

Parameters

line

(IN) Specifies the top-most row of the portal zone.

column

(IN) Specfies the left-most column of the portal zone.

height

(IN) Specifies the height of region to be filled.

width

(IN) Specifies the width of region to be filled.

attribute

(IN) Specifies the screen attribute for the fill zone.

portal

(IN) Points to a NWSNUT portal control block.

Return Values

None

NLM Programming

NWSNUT: Functions 722

Remarks

This function allows you to fill a specified region of a portal with a
specific screen attribute. The portal parameter can be obtained by calling
NWSGetPCB.

The attribute parameter can have the following values:

VNORM
AL

Normal video

VINTENS
E

Intense video

VREVERS
E

Reverse video

VBLINK Blinking, normal video

VIBLINK Blinking, intense video

VRBLINK Blinking, reverse video

See Also

NWSFillPortalZone

Example

NWSFillPortalZoneAttribute

#include <nwsnut.h>
#include <string.h>

NUTInfo *handle;

main ()
{
 LONG portalNumber;
 PCB pPtr;
 BYTE *ptr;

 portalNumber = NWSCreatePortal(6, 20, 10, 40, 6, 38,
 SAVE, "Demonstration Portal", 0,
 DOUBLE, 0, CURSOR_ON, VIRTUAL, handle);
 NWSGetPCB (&pPtr, portalNumber, handle);
 NWSClearPortal (pPtr);
 NWSSelectPortal (portalNumber, handle);
 ptr = "This line shows reverse video filling";
 NWSShowPortalLine (0, 0, ptr, strlen (ptr), pPtr);
 NWSFillPortalZoneAttribute (0, 0, 1, 38, VREVERSE, pPtr);
 NWSUpdatePortal (pPtr); /* cause it to be displayed on the screen */

NLM Programming

NWSNUT: Functions 723

 NWSGetKey (&type, &value, handle);
 /* wait for a key to be pressed */
 NWSDestroyPortal (portalNumber, handle);
}

NLM Programming

NWSNUT: Functions 724

NWSFree

Frees memory allocated by NWSAlloc

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSFree (
 void *address,
 NUTInfo *handle);

Parameters

address

(IN) Points to the address of memory to free.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function frees memory allocated by NWSAlloc at address.

See Also

NWSAlloc

NLM Programming

NWSNUT: Functions 725

NWSGetADisk

Prompts the user to insert the specified floppy disk into the disk drive

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSGetADisk (
 BYTE *volName,
 BYTE *prompt,
 NUTInfo *handle);

Parameters

volName

(IN) Specifies the floppy volume name.

prompt

(IN) Specifies the prompt to display.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

`A' (0x41) Successful.

(0xFF) Unsuccessful.

Remarks

This function prompts the user to insert a specific floppy disk into the
disk drive.

NLM Programming

NWSNUT: Functions 726

NWSGetDefaultCompare

Obtains the current routine for comparing list elements

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSGetDefaultCompare (
 NUTInfo *handle,
 int (**defaultCompareFunction)(
 LIST *el1,
 LIST *el2));

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

defaultCompareFunction

(OUT) Receives the current default compare function.

Return Values

None

Remarks

This function returns the current default compare function in the
defaultCompareFunction parameter. To specify a new default compare
function, call NWSSetDefaultCompare.

See Also

NWSSetDefaultCompare, NWSSortList

NLM Programming

NWSNUT: Functions 727

NWSGetFieldFunctionPtr

Obtains the routines associated with the specified field in a form

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSGetFieldFunctionPtr (
 FIELD *fp,
 void (**Format) (
 FIELD*,
 BYTE *text,
 LONG),
 LONG (**Control) (
 FIELD *,
 int,
 int *,
 NUTInfo *),
 int (**Verify) (
 FIELD *,
 BYTE *,
 NUTInfo *),
 void (**Release) (
 FIELD *),
 void (**Entry) (
 FIELD *,
 void *,
 NUTInfo *),
 void (**customDataRelease) (
 void *,
 NUTInfo *));

Parameters

fp

(IN) Points to the field for which to return information.

Format

(OUT) Receives the formatting routine for fp.

Control

NLM Programming

NWSNUT: Functions 728

(OUT) Receives the control routine for fp.

Verify

(OUT) Receives the verify routine for fp.

Release

(OUT) Receives the memory release routine for fp.

Entry

(OUT) Receives the routine to be called for all entries in the form.

customDataRelease

(OUT) Receives the routine to release memory for releasing memory
allocated for custom data for fp.

Return Values

None

Remarks

To set the routines for the field specified by the fp parameter, call
NWSSetFieldFunctionPtr.

See Also

NWSSetFieldFunctionPtr

NLM Programming

NWSNUT: Functions 729

NWSGetHandleCustomData

Obtains the custom data and custom data release function that is held in the
NUTInfo structure

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSGetHandleCustomData (
 NUTInfo *handle,
 void *customData,
 void (*customDataRelease) (
 void *theData,
 NUTInfo *handle));

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

customData

(OUT) Receives the custom data held in the NUTInfo structure.

customDataRelease

(OUT) Receives the custom data release function held in the NUTInfo
structure.

Return Values

None

Remarks

This function returns the contents of the customData and
customDataRelease fields of the NUTInfo structure. To define these values,
call NWSSetHandleCustomData.

See Also

NLM Programming

NWSNUT: Functions 730

NWSSetHandleCustomData

NLM Programming

NWSNUT: Functions 731

NWSGetKey

Reads one key from the keyboard buffer

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSGetKey (
 LONG *type,
 BYTE *value,
 NUTInfo *handle);

Parameters

type

(OUT) Receives the retrieved key type.

value

(OUT) Receives the retrieved key value.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function receives the key type and value of input from the keyboard.

The key type is the K_ constant as defined in NWSNUT.H under
"keyboard constants". The value parameter receives the character
associated with the key.

See Also

NWSKeyStatus, NWSUngetKey

NLM Programming

NWSNUT: Functions 732

NWSGetLineDrawCharacter

Gets a line drawing character

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSGetLineDrawCharacter (
 LONG charIndex);

Parameters

charIndex

(IN) Specifies the index of the line drawing character (0 - 47).

Return Values

If successful, this function returns the line drawing character. Otherwise,
0 is returned.

Remarks

This function returns the line drawing character for the index charIndex.
See the character and key constants defined in NWSNUT.H (F_H1
through F_BG4).

NLM Programming

NWSNUT: Functions 733

NWSGetList

Returns a structure that contains the pointers for the current list

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSGetList (
 LISTPTR *listPtr,
 NUTInfo *handle);

Parameters

listPtr

(IN/OUT) Specifies the address of a pointer that points at the current
list item.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function returns the list pointer to the current list in the listPtr
parameter.

See Also

NWSGetListHead, NWSSetList

NLM Programming

NWSNUT: Functions 734

NWSGetListHead

Returns the first element in the current list

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LIST *NWSGetListHead (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

This function returns the list element that is the head of the current list.

Remarks

This function returns a LIST structure defining the first element in the
current list.

See Also

NWSGetList, NWSGetListTail

NLM Programming

NWSNUT: Functions 735

NWSGetListIndex

Returns the index of the specified list element

Local Servers: blocking

Remote Servers: N/A

NetWare Server: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSGetListIndex (
 LIST *listElement,
 NUTInfo *handle);

Parameters

listElement

(IN) Points to the element of the current list whose index is to be
returned.

handle

(IN) Points to the NUTInfo structure containing state information
allocated to the calling NLM.

Return Values

If successful, returns the index of the specified element. Otherwise, 0 is
returned.

Remarks

List indexes are zero-based; the first element in the list has an index of 0.

See Also

NWSAlignChangedList, NWSGetList, NWSGetListHead,
NWSGetListTail

NLM Programming

NWSNUT: Functions 736

NWSGetListNotifyProcedure

Obtains the routine to be called when a list element is selected

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSGetListNotifyProcedure (
 LIST *el,
 void (**entryProcedure) (
 LIST *element,
 LONG displayLine,
 NUTInfo *handle));

Parameters

el

(IN) Points to the element for which to call the routine.

entryProcedure

(OUT) Receives the currently defined notify procedure.

Return Values

None

Remarks

This function is used to obtain the routine that is called when el is
selected.

The entryProcedure parameter receives the routine that is called when el is
selected. This routine is passed the following parameters:

element The selected list element.

displayLi
ne

The display line of the selected list element.

handle The NUTInfo structure containing NWSNUT state

NLM Programming

NWSNUT: Functions 737

information for your NLM.

See Also

NWSSetListNotifyProcedure

NLM Programming

NWSNUT: Functions 738

NWSGetListSortFunction

Returns a pointer to the currently set list sort function

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSGetListSortFunction (
 NUTInfo *handle,
 void (**listSortFunction)(
 LIST *head,
 LIST *tail,
 NUTInfo *handle));

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

listSortFunction

(IN) Points to the pointer of the currently set list sort function.

Return Values

None

Remarks

This function allows you to obtain a customized list sort function
previously set by NWSSetListSortFunction. The listSortFunction
parameters head and tail designate the first and last links in the list.

See Also

NWSSetListSortFunction

NLM Programming

NWSNUT: Functions 739

NWSGetListTail

Returns the last element in the current list

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LIST *NWSGetListTail (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

This function returns the list element that is the tail of the current list.

Remarks

This function returns a LIST structure defining the last element in the
current list.

See Also

NWSGetListHead

NLM Programming

NWSNUT: Functions 740

NWSGetMessage

Retrieves a message from the specified message buffer

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

BYTE *NWSGetMessage (
 LONG message,
 MessageInfo *messages);

Parameters

message

(IN) Specifies a message identifer: DYNAMIC_MESSAGE_ONE,
DYNAMIC_MESSAGE_TWO, and so on, up to
DYNAMIC_MESSAGE_FOURTEEN.

messages

(IN) Points to a buffer that contains the NWSNUT interface messages.

Return Values

This function returns a pointer to message text.

Remarks

This function returns a pointer to the message text associated with the
message identifier message.

See Also

NWSSetDynamicMessage

NLM Programming

NWSNUT: Functions 741

NWSGetNUTVersion

Returns the version of NWSNUT currently loaded on the server

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSGetNUTVersion (
 LONG *majorVersion,
 LONG *minorVersion,
 LONG *revision);

Parameters

majorVersion

(IN) Points to where to write the major version number.

minorVersion

(IN) Points to where to write the minor version number.

revision

(IN) Points to where to write the revision number.

Return Values

None

Remarks

NWSGetNUTVersion allows you or your NLM to find out which
version of NWSNUT is currently running.

NLM Programming

NWSNUT: Functions 742

NWSGetPCB

Returns a pointer to the portal control block (PCB) for the specified portal

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSGetPCB (
 PCB *pPcb,
 LONG portalNumber,
 NUTInfo *handle);

Parameters

pPcb

(OUT) Points to the PCB of the specified portal.

portalNumber

(IN) Specifies the portal index number of the portal.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function returns a pointer to the PCB structure in the pPcb parameter
for the portal specified by portalNumber. The portal number is returned by
NWSCreatePortal when the portal is created. The PCB structure is
defined in NWSNUT.H.

NOTE: Fields in the PCB structure should not be changed directly. Call
NWSNUT functions for creating and manipulating portals.

See Also

NLM Programming

NWSNUT: Functions 743

NWSCreatePortal

NLM Programming

NWSNUT: Functions 744

NWSGetScreenPalette

Returns the current screen palette

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSGetScreenPalette (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

This function returns the current screen palette.

Remarks

To change the screen palette, call NWSSetScreenPalette.

See Also

NWSSetScreenPalette

NLM Programming

NWSNUT: Functions 745

NWSGetSortCharacter

Returns the weighted value used for sorting a given character

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSGetSortCharacter (
 LONG character);

Parameters

character

(IN) Specifies the character for which to return a value.

Return Values

This function returns the weighted value used for sorting character in the
current OS language.

Remarks

This function is used to determine the weighted values used for sorting
characters used in the current OS language.

NLM Programming

NWSNUT: Functions 746

NWSInitForm

Initializes pointers for the current form

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSInitForm (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function initializes the pointers in the first FIELD structure of a new
form. After it is initialized, the form is built by appending various types
of fields with "append" functions (for example, NWSAppendMenuField
). Once all of the fields have been appended to the form, it is displayed by
calling NWSEditPortalForm.

NOTE: Fields in the FIELD structure should not be changed directly.
Call NWSNUT functions for building and manipulating forms.

See Also

NWSAppendBoolField, NWSAppendCommentField,
NWSAppendHexField, NWSAppendHotSpotField,
NWSAppendIntegerField, NWSAppendMenuField,
NWSAppendStringField, NWSAppendToForm,
NWSAppendToMenuField, NWSAppendUnsignedIntegerField,
NWSEditPortalForm, NWSInitMenuField

NLM Programming

NWSNUT: Functions 747

Example

NWSInitForm

This example is taken from NDEMO.C, which can be found in the
EXAMPLES directory. The message and help files have been included.

#include <stdio.h>
#include <conio.h>
#include <advanced.h>
#include <process.h>
#include <time.h>
#include <nwsnut.h>
#include <string.h>
#include "ndemo.hlh" /* help definitions */
#include "ndemo.mlh" /* message definitions */

/* Global variables in this module */
NUTInfo *handle;

/* prototypes for functions in this module */
LONG HotSpotAction (FIELD *fp, int selectKey, int *changedField,
 NUTInfo *handle);
int FormMenuAction(int option, void *parameter);

void main()
{
 int menuChoice, myInteger = 600, myHexInteger = 0x2ffc, line;
 LONG myOtherInteger = 900;
 BYTE myBoolean, string[200];
 MFCONTROL *mfctl;

 /* start NWSNUT here */
 /* create a form with various types of fields*/
 NWSInitForm (handle);
 line = 0;
 NWSAppendCommentField (line, 1, "Boolean Field:", handle);
 NWSAppendBoolField (line, 25, NORMAL_FIELD, &myBoolean, NULL, handle);
 line += 2;
 NWSAppendCommentField (line, 1, "Integer Field:", handle);
 NWSAppendIntegerField (line, 25, NORMAL_FIELD, &myInteger, 0, 9999,
 NULL, handle);
 line += 2;
 NWSAppendCommentField (line, 1, "String Field:", handle);
 strcpy (string, "Data String");
 NWSAppendStringField (line, 25, 30, NORMAL_FIELD, string, "A..Za..z ", NULL,
 handle);
 line += 2;
 NWSAppendCommentField (line, 1, "Unsigned Integer Field:", handle);
 NWSAppendUnsignedIntegerField (line, 25, NORMAL_FIELD, &myOtherInteger,

NLM Programming

NWSNUT: Functions 748

 0, 99999, NULL, handle);
 line += 2;
 NWSAppendCommentField (line, 1, "Hex Field:", handle);
 NWSAppendHexField (line, 25, NORMAL_FIELD, &myHexInteger, 0, 99999,
 NULL, handle);
 line += 2;
 NWSAppendCommentField (line, 1, "Comment Field:", handle);
 NWSAppendCommentField (line, 25, "A comment", handle);
 line += 2;
 NWSAppendCommentField (line, 1, "Hot Spot Field:", handle);
 NWSAppendHotSpotField (line, 25, NORMAL_FIELD,
 "Hot Field", HotSpotAction, handle);
 mfctl = NWSInitMenuField (FORM_MENU_HEADER, 10, 40, FormMenuAction,
 handle);
 NWSAppendToMenuField (mfctl, MENU_TEXT_ONE, 1, handle);
 NWSAppendToMenuField (mfctl, MENU_TEXT_TWO, 2, handle);
 menuChoice = 1; /* display the text for option one */
 line += 2;
 NWSAppendCommentField (line, 1, "Menu Field:", handle);
 NWSAppendMenuField (line, 25, NORMAL_FIELD, &menuChoice, mfctl,
 NULL, handle);

 /* if no help is desired for the form, pass F_NO_HELP as the help parameter*/
 NWSEditPortalForm (FORM_HEADER, 11, 40, 16, 50, F_NOVERIFY, FORM_HELP,
 EXIT_FORM_MSG, handle);

 /* cleanup and discard this form */
 NWSDestroyForm (handle);

 /* restore NWSNUT here */
}

int FormMenuAction(int option, void *parameter)
{
 parameter = parameter; /* for the compiler */

 /*
 do anything that might be needed by the selection of a given menu option
 and the value returned indicates which data item is to be
 displayed in the menu field on the form
 */
 return option;
}
LONG HotSpotAction (FIELD *fp, int selectKey, int *changedField, NUTInfo *handle)
{
 selectKey = selectKey;
 fp = fp;
 changedField = changedField;
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_ONE,
 "This is your hot spot routine", &handle->messages);
 NWSAlert (0, 0, handle, DYNAMIC_MESSAGE_ONE);
 return K_RIGHT; /* send us to the next field */

NLM Programming

NWSNUT: Functions 749

}

NLM Programming

NWSNUT: Functions 750

NWSInitializeNut

Initializes the NUTInfo structure for use with the NLM

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

long NWSInitializeNut (
 LONG utility,
 LONG version,
 LONG headerType,
 LONG compatibilityType,
 BYTE **messageTable,
 BYTE *helpScreens,
 int screenID,
 LONG resourceTag,
 NUTInfo **handle);

Parameters

utility

(IN) Specifies the message identifier for the name of your NLM.

version

(IN) Specifies the message identifier for the version of your NLM.

headerType

(IN) Specifies the header size.

compatibilityLevel

(IN) Specifies the NWSNUT.NLM revision level that is compatible
with your NLM. This must be the NUT_REVISION_LEVEL as defined
in NWSNUT.H.

messageTable

(IN) Specifies an optional pointer to message table containing program
messages for your NLM (see Remarks below).

helpScreens

(IN) Specifies an optional pointer to help information for your NLM.

screenID

NLM Programming

NWSNUT: Functions 751

(IN) Specifies the screen to use for your NLM.

resourceTag

(IN) Specifies the resource tag to use when allocating memory.

handle

(IN/OUT) Points to a pointer to a NUTInfo structure allocated by the
NWSNUT NLM library.

Return Values

0 Success

Nonzer
o

Failure

Remarks

This function must be called before any other NWSNUT function.

The handle parameter receives a pointer to a NUTInfo structure that
contains NWSNUT context information for your NLM. This parameter is
passed to other NWSNUT functions to maintain context.

The NWSNUT NLM library resolves the messageTable and the helpScreens
from the NLM load definition structure if these parameters are NULL.
This method of text string resolution allows NWSNUT NLM applications
to be enabled for natural language support.

The following values can be specified in the headerType parameter:

NO_HEADER No header

SMALL_HEADE
R

1-line header

NORMAL_HEA
DER

2-line header

LARGE_HEADE
R

3-line header

The screenID parameter is the screen handle returned by CreateScreen.

The resourceTag parameter is obtained by calling AllocateResourceTag.

See Using NWSNUT Interface: Example.

See Also

NLM Programming

NWSNUT: Functions 752

NWSRestoreNut

Example

NWSInitializeNut

#include <stdio.h>
#include <conio.h>
#include <advanced.h>
#include <process.h>
#include <nwsnut.h>

/* Global variables in this module */
NUTInfo *handle;
LONG NLMHandle;
LONG allocTag;
int CLIBScreenID;

void main()
{
 LONG ccode;

 /* get a handle for allocating a resource tag*/
 NLMHandle = GetNLMHandle();

 /* create a screen for displaying our information*/
 CLIBScreenID = CreateScreen("NUT Demo Screen", AUTO_DESTROY_SCREEN);
 if (!CLIBScreenID)
 return;

 /* allocate a resource tag to use for memory allocations */
 allocTag = AllocateResourceTag(NLMHandle, "NUT DEMO Alloc Tag",
 AllocSignature);
 if (!allocTag)
 {
 DestroyScreen(CLIBScreenID);
 return;
 }

 /* initialize the screen interface */
 ccode = NWSInitializeNut(UTILITY_MSG, VERSION_100, NORMAL_HEADER, 0,
 0, 0, CLIBScreenID, allocTag, &handle);
 if (ccode)
 {
 DestroyScreen(CLIBScreenID);
 return;
 }
}

NLM Programming

NWSNUT: Functions 753

NWSInitList

Initializes the current list pointers

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSInitList (
 NUTInfo *handle,
 void (*freeRoutine) (
 void *memoryPointer));

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

freeRoutine

(IN) Points to a routine to be used to free memory allocated to be used
in the current list.

Return Values

None

Remarks

If you have previously built a list, you must save or destroy it before
calling NWSInitList. NWSInitList initializes a new LISTPTR structure,
creating an empty list. The freeRoutine parameter specifies the free routine
to be used for freeing memory allocated by your NLM and passed to
NWSNUT by the NWSAppendToList function in the otherInfo parameter.

See Also

NWSAppendToList, NWSDeleteFromList, NWSDeleteFromPortalList,
NWSDestroyList, NWSGetList, NWSInsertInList,
NWSInsertInPortalList, NWSList, NWSModifyInPortalList,

NLM Programming

NWSNUT: Functions 754

NWSSaveList, NWSRestoreList, NWSSetList

Example

NWSInitList

This example is taken from NDEMO.C, which can be found in the
EXAMPLES directory. The message and help files have been included.

#include <stdio.h>
#include <conio.h>
#include <advanced.h>
#include <process.h>
#include <nwsnut.h>
#include <string.h>
#include "ndemo.hlh" /* help definitions */
#include "ndemo.mlh" /* message definitions */

/* Global variables in this module*/
NUTInfo *handle;

/* prototypes for functions in this module */
int ListAction (LONG keyPressed, LIST **elementSelected, LONG *itemNumber,
 void *listParameter);

void main()
{
 /* start NWSNUT here */
 NWSInitList (handle, Free);
 NWSAppendToList (NWSGetMessage (LIST_ITEM_1, &(handle->messages)),
 (void *) 0, handle);
 NWSAppendToList (NWSGetMessage (LIST_ITEM_2, &(handle->messages)),
 (void *) 0, handle);
 NWSAppendToList (NWSGetMessage (LIST_ITEM_3, &(handle->messages)),
 (void *) 0, handle);
 NWSAppendToList (NWSGetMessage (LIST_ITEM_4, &(handle->messages)),
 (void *) 0, handle);
 NWSList (LIST_HEADER, 10, 40, 4,
 strlen (NWSGetMessage (LIST_HEADER, &(handle->messages))) + 4,
 M_ESCAPE | M_SELECT, NULL, handle, NULL, ListAction, 0);
 /* cleanup and discard this list */
 NWSDestroyList (handle);
 /* restore NWSNUT here */
}
int ListAction (LONG keyPressed, LIST **elementSelected, LONG *itemNumber,
 void *listParameter)
{
 elementSelected = elementSelected;
 listParameter = listParameter;
 if (keyPressed == M_ESCAPE)
 return 1;

NLM Programming

NWSNUT: Functions 755

 switch ((*itemNumber) + 1)
 {
 case 1:
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_ONE,
 "You selected item number 1", &handle->messages);
 break;

 case 2:
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_ONE,
 "You selected item number 2", &handle->messages);
 break;

 case 3:
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_ONE,
 "You selected item number 3", &handle->messages);
 break;

 case 4:
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_ONE,
 "You selected item number 4", &handle->messages);
 break;

 default:
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_ONE,
 "You selected another item", &handle->messages);
 break;
 }
 NWSAlert (0, 0, handle, DYNAMIC_MESSAGE_ONE);
 return -1;
}

NLM Programming

NWSNUT: Functions 756

NWSInitListPtr

Initializes a list that is appended to a form

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSInitListPtr (
 LISTPTR *listPtr);

Parameters

listPtr

(IN) Specifies the list pointer to be initialized.

Return Values

None

Remarks

This function initializes a list that is appended to a form.

No memory is freed by this process, so this function should not be used to
reinitialize a list pointer.

NLM Programming

NWSNUT: Functions 757

NWSInitMenu

Initializes pointers for the current menu

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSInitMenu (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function initializes an MFCONTROL structure for a menu.

To build a list of options for the menu, call NWSAppendToMenu for
each option.

See Also

NWSAppendToMenu, NWSMenu

Example

NWSInitMenu

This example is taken from NDEMO.C, which can be found in the
EXAMPLES directory. The message and help files have been included.

#include <stdio.h>

NLM Programming

NWSNUT: Functions 758

#include <stdio.h>
#include <conio.h>
#include <advanced.h>
#include <process.h>
#include <nwsnut.h>
#include "ndemo.hlh" /* help definitions */
#include "ndemo.mlh" /* message definitions */

/* Global variables in this module*/
NUTInfo *handle;
/* prototypes for functions in this module */
int MenuAction(int option, void *parameter);

void main()
{
 /* start NWSNUT here */
 /* create a menu */
 NWSInitMenu (handle);

 /*
 build the menu items on the fly. These could come from the
 message file just as easily.
 */
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_ONE,
 "Menu Item 1 ", &handle->messages);
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_TWO,
 "Menu Item 2 ", &handle->messages);
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_THREE,
 "Menu Item 3 ", &handle->messages);
 NWSAppendToMenu (DYNAMIC_MESSAGE_ONE, 1, handle);
 NWSAppendToMenu (DYNAMIC_MESSAGE_TWO, 2, handle);
 NWSAppendToMenu (DYNAMIC_MESSAGE_THREE, 3, handle);
 NWSMenu (MENU_HEADER, 10, 40, NULL, MenuAction, handle, (void *)handle);
 NWSDestroyMenu (handle);
 /* restore NWSNUT here */
}

int MenuAction(int option, void *junk)
{
 option = option; /* keep the compiler quiet */
 junk = junk;
 switch (option)
 {
 case 1:
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_ONE,
 "You selected item number 1", &handle->messages);
 break;

 case 2:
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_ONE,
 "You selected item number 2", &handle->messages);
 break;

NLM Programming

NWSNUT: Functions 759

 case 3:
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_ONE,
 "You selected item number 3", &handle->messages);
 break;

 case 4:
 NWSSetDynamicMessage(DYNAMIC_MESSAGE_ONE,
 "You selected item number 4", &handle->messages);
 break;

 default:
 return 0;
 }
 NWSAlert (0, 0, handle, DYNAMIC_MESSAGE_ONE);
 return -1;
}

NLM Programming

NWSNUT: Functions 760

NWSInitMenuField

Initializes a menu field for a form

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

MFCONTROL *NWSInitMenuField (
 LONG headermsg,
 LONG cLine,
 LONG cCol,
 int (*action) (
 int option,
 void *parameter),
 NUTInfo *nutInfo,
 ...);

Parameters

headermsg

(IN) Specifies the message identifier of the menu's header text.

cLine

(IN) Specifies the screen line to center the menu on.

cCol

(IN) Specifies the screen column to center the menu on.

action

(IN) Specifies the routine to be called when a menu item is selected.

nutInfo

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

If successful, this function returns an MFCONTROL structure for the new
menu.

NLM Programming

NWSNUT: Functions 761

Remarks

This function initializes a new MFCONTROL structure for a menu that is
associated with a field in a form.

The headermsg parameter specifies the text to appear in a menu field on
the form. When this field is selected, the menu appears.

Optional parameters for the action routine can be added to the end of the
parameter list.

See Also

NWSAppendMenuField, NWSAppendToMenuField

Example

See the example for NWSInitForm.

NLM Programming

NWSNUT: Functions 762

NWSInsertInList

Inserts a new list element after the specified list element

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LIST *NWSInsertInList (
 BYTE *text,
 BYTE *otherInfo,
 LIST *atElement,
 NUTInfo *handle);

Parameters

text

(IN) Points to the text for the new list element.

otherInfo

(IN) Points to customized data to be associated with the new list
element.

atElement

(IN) Points to a list element that marks the location before the new
element.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

This function returns a pointer to the new list element.

Remarks

This function behaves like NWSAppendToList, except that the location
of the new list element is specified by the atElement parameter.

The atElement parameter is given the LIST structure that was returned

NLM Programming

NWSNUT: Functions 763

when that element was created by NWSAppendToList.

See Also

NWSAppendToList, NWSInsertInPortalList, NWSModifyInPortalList

NLM Programming

NWSNUT: Functions 764

NWSInsertInPortalList

Inserts a new list element at the specified list location using a specified
insertion procedure

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSInsertInPortalList (
 LIST **currentElement,
 int *currentLine,
 int (*InsertProcedure) (
 BYTE *text,
 void **otherInfo,
 void *parameters),
 int (*FreeProcedure) (
 void *otherInfo),
 NUTInfo *handle,
 void *parameters);

Parameters

currentElement

(IN) Points to the current list element. The new list element is inserted
after it.

currentLine

(IN) Points to the current line within the list.

InsertProcedure

(IN) Points to a custom insertion procedure for inserting the new list
element.

FreeProcedure

(IN) Points to a procedure to be used for freeing memory allocated by
InsertProcedure.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

NLM Programming

NWSNUT: Functions 765

Return Values

0 Successful.

Nonzer
o

The value returned from the insert procedure when
unsuccessful.

Remarks

This function inserts a new list element in a list currently displayed in a
portal.

The InsertProcedure parameter is a custom routine written by the
developer. InsertProcedure is passed the following parameters:

text A 256-byte buffer which contains the text for the new
element.

otherInfo A pointer to a character pointer. This parameter shoud be
set to NULL if the otherInfo field for the LIST structure of the
new element is NULL. Otherwise, it should point to
memory allocated to otherInfo.

paramete
rs

Additional parameters for the insert procedure.

The InsertProcedure should return 0 if it successfully gets the text and
otherInfo fields for the new element.

The FreeProcedure specifies a procedure to be used to free memory
allocated to the list element. This function receives the same pointer to
otherInfo as the InsertProcedure.

After insertion, the new element is realigned in the display area so that it
is the currently highlighted element.

See Also

NWSAppendToList, NWSInsertInList, NWSModifyInPortalList

NLM Programming

NWSNUT: Functions 766

NWSIsAnyMarked

Returns a boolean value that indicates whether any elements of the current
list are marked

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSIsAnyMarked (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

0 Nothing is marked

1 One or more elements are marked

Remarks

This function returns the marking status of the current list. If
NWSIsAnyMarked returns 1, 1 or more elements in the current list is
marked.

See Also

NWSPopMarks, NWSPushMarks, NWSUnmarkList

NLM Programming

NWSNUT: Functions 767

NWSIsdigit

Returns a boolean value indicating whether the specified character is an
ASCII number representation

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSIsdigit (
 BYTE character);

Parameters

character

(IN) Specifies the ASCII value of the byte in question.

Return Values

1 character is a digit.

0 character is not a digit.

Remarks

This function returns 1 if character is an ASCII representation of a decimal
digit.

See Also

NWSIsxdigit

NLM Programming

NWSNUT: Functions 768

NWSIsxdigit

Returns a boolean value indicating whether the specified character is an
ASCII representation of a hexadecimal digit

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSIsxdigit (
 BYTE character);

Parameters

character

(IN) Specifies the BYTE in question.

Return Values

1 character is a HEX digit (that is, `0'-`9' or `A'-`F')

0 character is not a HEX digit

Remarks

This function returns 1 if character is an ASCII representation of a
hexadecimal digit.

See Also

NWSIsdigit

NLM Programming

NWSNUT: Functions 769

NWSKeyStatus

Returns a boolean value indicating whether a key is waiting in the
NWSNUT screen keyboard buffer

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSKeyStatus (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

1 A key is waiting

0 No key is waiting

Remarks

This function returns 1 if a key is waiting in the keyboard buffer.

NLM Programming

NWSNUT: Functions 770

NWSList

Displays the current list and allows the user to mark, select and perform
other LIST options on the current list

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSList (
 LONG header,
 LONG centerLine,
 LONG centerColumn,
 LONG height,
 LONG width,
 LONG validKeyFlags,
 LIST **element,
 NUTInfo *handle,
 LONG (*format) (
 LIST *element,
 LONG skew,
 BYTE *displayLine,
 LONG width),
 int (*action) (
 LONG keyPressed,
 LIST **elementSelected,
 LONG *itemLineNumber,
 void *actionParameter),
 void *actionParameter);

Parameters

header

(IN) Specifies the message identifier for the header text.

centerLine

(IN) Specifies the row to center the portal on.

centerColumn

(IN) Specifies the column to center the portal on.

height

NLM Programming

NWSNUT: Functions 771

(IN) Specifies the height of the new portal.

width

(IN) Specifies the width of the new portal.

validKeyFlags

(IN) Specifies the action key mask showing valid action keys as
defined in NWSNUT.H.

element

(IN/OUT) Specifies the element to highlight as default.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

format

(IN) Specifies an optional routine to format list elements.

action

(IN) Specifies an optional routine to be called after key is pressed.

actionParm

(IN) Specifies an optional parameter for the action routine.

Return Values

If an error occurs, M_ESCAPE is returned.

If action is not NULL, the value returned by the action procedure is
returned.

If action is NULL, and no error occurs, the key value is returned
indicating which key the user pressed, and element points at the item the
user selected.

Remarks

This function displays a list and allows the users to manipulate it. If a
wait portal is displayed, it is removed. Then the NWSList function
calculates and draws the list portal. The user is then allowed to
manipulate the list by scanning, inserting, deleting, modifying, or
selecting. If the action routine returns -1, NWSList allows another choice.
Otherwise, NWSList passes the value returned by the action routine to
the calling procedure.

The validKeyflags parameter defines which action keys are valid for the
list. The bits in the validKeyFlags parameter are defined in NWSNUT.H as
follows:

M_ESCAP
E

Escape key enabled.

NLM Programming

NWSNUT: Functions 772

M_INSERT Insert key enabled.

M_DELET
E

Delete key enabled.

M_MODIF
Y

Modify key enabled.

M_SELECT Select key (Enter) enabled.

M_MDELE
TE

Delete key enabled for marked items.

M_CYCLE Tab enabled.

M_MMODI
FY

Modify key enabled for marked items.

M_MSELE
CT

Select key (Enter) enabled for marked items.

M_NO_SO
RT

Do not sort list.

Combinations of keys can be made ORed together to make them active.

The element parameter specifies the list element to highlight by default. If
this parameter is NULL, the first element in the list is highlighted.

The format parameter specifies an optional routine for formatting list
items. If no special formatting is required, format can be NULL. The
following parameters are passed to the format routine:

element The element to format.

skew The horizontal skew value desired for the formatted
elements.

displayLi
ne

The line number in the portal where the element is
displayed.

width The width desired for the formatted elements.

The action parameter specifies an optional action routine. If no action
routine is desired, action can be NULL. The following parameters are
passed to the action routine:

keyPressed The key pressed to initiate the action routine.

elementSelecte
d

The element highlighted.

itemLineNum
ber

The line number of the highlighted element.

NLM Programming

NWSNUT: Functions 773

actionParamet
er

The same parameter that was passed to List.

The actionParameter parameter is an additional optional parameter to be
passed to the action routine.

See Also

NWSAppendToList, NWSDestroyList, NWSInitList

Example

See the example for NWSInitList.

NLM Programming

NWSNUT: Functions 774

NWSMemmove

Copies bytes from one buffer to another buffer

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSMemmove (
 void *dest,
 void *source,
 int len);

Parameters

dest

(OUT) Points to the destination address.

source

(IN) Points to the source address.

len

(IN) Specifies the number of bytes to move.

Return Values

None

Remarks

The two buffers can overlap.

NLM Programming

NWSNUT: Functions 775

NWSMenu

Allows the user to choose from the options in the current menu

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSMenu (
 LONG header,
 LONG centerLine,
 LONG centerColumn,
 LIST *defaultElement,
 int (*action) (
 int option,
 void *parameter),
 NUTInfo *handle,
 void *actionParameter);

Parameters

header

(IN) Specifies the message identifier for header text.

centerLine

(IN) Specifies the center row for the menu portal.

centerColumn

(IN) Specifies the center column for the menu portal.

defaultElement

(IN/OUT) Specifies the element to highlight as the default selection.

action

(IN) Specifies an optional action procedure to be called when an item
is selected.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

actionParameter

(IN) Specifies an optional parameter for the action procedure.

NLM Programming

NWSNUT: Functions 776

Return Values

If an error occurs -2 is returned.

If action is not NULL, then the value returned by the action procedure is
returned.

If action is NULL, and no error occurs, either M_ESCAPE or the value
assigned to the selected menu option (by NWSAppendToMenu) is
returned indicating which key the user pressed, and defaultElement points
at the item the user selected.

If the user presses the Escape key, -1 is returned.

Remarks

The defaultElement parameterspecifies which element is highlighted by
default. If defaultElement is NULL, the first element in the menu is
highlighted.

The action parameter specifies the action routine to be called when an
item is selected. This routine is passed the following parameters:

option The value assigned the menu option by
NWSAppendToMenu.

paramet
er

The same parameter passes to NWSMenu as actionParameter..

An additional parameter can be passed to the action routine through the
actionParameter parameter.

See Also

NWSAppendToMenu, NWSDestroyMenu, NWSInitMenu

Example

See the example for "NWSInitMenu".

NLM Programming

NWSNUT: Functions 777

NWSModifyInPortalList

Modifies the text field of an element

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSModifyInPortalList (
 LIST **currentElement,
 int *currentLine,
 int (*ModifyProcedure) (
 BYTE *text,
 void *parameters),
 NUTInfo *handle,
 void *parameters);

Parameters

currentElement

(IN) Points to the highlighted element in the list.

currentLine

(IN) Points to the line of the current element.

ModifyProcedure

(IN) Points to the procedure to be used to modify the list.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

0 Successful.

-1 The function failed to create the new element.

Othe
r

The value returned by the modify procedure is returned.

NLM Programming

NWSNUT: Functions 778

Remarks

This function modifies the text field of a list element. Since the text size of
a list element is fixed at the time the list element is created, a new element
is created and the old element is deleted.

The ModifyProcedure modifies the text for the list element. This procedure
is passed the following parameters:

text A buffer with a copy of the current text for the list element.

paramete
rs

Same parameter that was passed to
NWSModifyInPortalList

The modify procedure should return 0 if the text is successfully modified.
This causes NWSModifyInPortalList to create a new list element and
distroy the old list element.

See Also

NWSAppendToList, NWSInsertInList, NWSInsertInPortalList

NLM Programming

NWSNUT: Functions 779

NWSPopHelpContext

Removes the last element from the help stack

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSPopHelpContext (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

0 Success

Nonzer
o

Failure

Remarks

This function removes the last help context from the help stack.

See Also

NWSDisplayHelpScreen, NWSPushHelpContext

Example

NWSPopHelpContext

#include <nwsnut.h>

NLM Programming

NWSNUT: Functions 780

#include "myNLM.HLH" /* includes definition for MY_FIRST_HELP*/

 NWSPushHelpContext (MY_FIRST_HELP, handle);
 /*
 from this point on, whenever the user presses F1, the
 help screen identified by MY_FIRST_HELP is displayed
 */
 NWSPopHelpContext (handle);
 /* the previous help is now in force. */

NLM Programming

NWSNUT: Functions 781

NWSPopList

Pops a set of list pointers from the list stack and makes them current

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSPopList (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

0 No more lists to pop.

1 List was popped.

Remarks

This function pops the next set of list pointers from the list stack and uses
those pointers for the context of the current list.

See Also

NWSPushList, NWSRestoreList, NWSSaveList

NLM Programming

NWSNUT: Functions 782

NWSPopMarks

Pops the marked/unmarked status of all elements of the current list

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSPopMarks (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

Marks can be pushed a total of 31 times, or to a level 31 deep. However,
no checking is done to determine the current level. It is possible to issue
an unlimited number of pushes, but only the last 31 are retained.
Therefore, it is possible to push the mark status of the list off the end of
the "stack" and lose it. If the marked status of list elements has been lost,
they is considered unmarked.

See Also

NWSPushMarks

NLM Programming

NWSNUT: Functions 783

NWSPositionCursor

Sets the position of the cursor relative to the entire screen.

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSPositionCursor (
 LONG line,
 LONG column,
 struct ScreenStruct *screenID);

Parameters

line

(IN) Specifies the vertical position of the cursor.

column

(IN) Specifies the horizontal position of the cursor.

screenID

(IN) Specifies the screen to use for your NLM.

Return Values

None

Remarks

Values for line may be 0..24 to position the cursor on the screen; 25 hides
the cursor.

Values for column may be from 0 to 79.

For the screenID parameter, use thescreenID field in NUTInfo, as
illustrated in the example following these remarks.

NWSPositionCursor can work in harmony with any of the related
functions listed in the following "See Also" list.

NLM Programming

NWSNUT: Functions 784

See Also

NWSEnablePortalCursor, NWSDisablePortalCursor,
NWSPositionPortalCursor

Example

NWSPositionCursor

ccode = NWSPositionCursor(12, 40, handle->screenID);

NLM Programming

NWSNUT: Functions 785

NWSPositionPortalCursor

Positions the cursor for a NWSNUT portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSPositionPortalCursor (
 LONG line,
 LONG column,
 PCB *portal);

Parameters

line

(IN) Portal line where cursor is to be positioned.

column

(IN) Portal column where cursor is to be positioned.

portal

(IN) Points to a NWSNUT portal control block.

Return Values

None

Remarks

The portal parameter can be obtained by calling NWSGetPCB.

NLM Programming

NWSNUT: Functions 786

NWSPromptForPassword

Enables a console operator to input a password to an NLM, with optional
forced verification

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSPromptForPassword (
 LONG passwordHeader,
 LONG centerLine,
 LONG centerColumn,
 LONG maxPasswordLen,
 BYTE *passwordString,
 LONG verifyPassword,
 NUTInfo *handle);

Parameters

passwordHeader

(IN) Specifies the header string for the password box.

centerLine

(IN) Specifies the vertical center of the password portal.

centerColumn

(IN) Specifies the horizontal center of the password portal.

maxPasswordLen

(IN) Designated the maximum length of the password string.

passwordString

(IN) Points to a null terminated string to be used as the password.

verifyPassword

(IN) Enables or disables password verification.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

NLM Programming

NWSNUT: Functions 787

Return Values

1 E_ESCAPE (User pressed <Escape>; password string is
empty.)

2 E_SELECT (User pressed <Enter>; string contains valid
password.)

0xFFFFFF
FE

Unable to allocate memory for PCB, virtual screen, or save
area.

0xFFFFFF
FF

Maximum number of portals already defined.

Remarks

NWSPromptForPassword creates a password portal with a specifiable
header. It also allows for optional password verification. The preset
prompt for password entry is "Type the password:".

The string designated by passwordHeader displays a maximum of 40
characters in the password portal.

The maxPasswordLen parameter specifies the number of characters the
function will accept for the password. Make sure the buffer is at least one
byte longer than this value to accommodate the null byte.

The centerLine and centerColumn parameters specify the screen location of
the password portal. 0, 0 centers the portal on the screen, excluding the
NLM header. Other values passed to centerLine and centerColumn locate
the center of the password portal relative to the top-most line below the
NLM header and the left-most column of the screen. However, since
these values designate the portal center, take into account the dimensions
of the password portal itself.

Passing a zero to verifyPassword keeps the function from displaying a
confirmation portal. Nonzero enables confirmation. The header for the
confirmation portal "Retype the password for verification" and the
prompt "Retype the password" are both preset.

See Also

NWSAppendPasswordField

NLM Programming

NWSNUT: Functions 788

NWSPushHelpContext

Saves the help context onto the help stack, making it the current help context
(it is displayed when <F1> is pressed

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSPushHelpContext (
 LONG helpContext,
 NUTInfo *handle);

Parameters

helpContext

(IN) Specifies the help context.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

0 Success.

Nonz
ero

Unable to push help context.

Remarks

This function makes helpContext the current help context and saves it onto
the help stack. If the user presses <F1>, the help message associated with
helpContext is displayed.

The help context is a help message identifier that is associated with a help
message. The help context (help identifiers) is stored in an .HLH file and
the messages are stored in an .HLP file.

NLM Programming

NWSNUT: Functions 789

Up to MAXHELP help contexts can be saved to the help stack.

See Also

NWSDisplayHelpScreen, NWSPopHelpContext

Example

NWSPushHelpContext

#include <nwsnut.h>
#include "myNLM.HLH" /* includes definition for MY_FIRST_HELP*/

 NWSPushHelpContext (MY_FIRST_HELP, handle);
 /*
 from this point on, whenever the user presses F1, the
 help screen identified by MY_FIRST_HELP is displayed
 */
 NWSPopHelpContext (handle);
 /* the previous help is now in force. */

NLM Programming

NWSNUT: Functions 790

NWSPushList

Pushes the current list pointers onto the list stack

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSPushList (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

0 No room on list stack.

1 List was pushed.

Remarks

This function saves the current list to the list stack. Up to MAXLISTS lists
can be saved.

See Also

NWSPopList, NWSRestoreList, NWSSaveList

NLM Programming

NWSNUT: Functions 791

NWSPushMarks

Pushes the marked/unmarked status of all elements of the current list

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSPushMarks (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

Marks can be pushed a total of 31 times, or to a level 31 deep. However,
no checking is done to determine the current level. It is possible to issue
an unlimited number of pushes, but only the last 31 are retained.
Therefore, it is possible to push the mark status of the list off the end of
the "stack" and lose it.

See Also

NWSPopMarks

NLM Programming

NWSNUT: Functions 792

NWSRemovePreHelp

Removes the current pre help portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSRemovePreHelp (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function reverses the effect of NWSDisplayPreHelp.

See Also

NWSDisplayPreHelp

NLM Programming

NWSNUT: Functions 793

NWSRestoreDisplay

Identical to NWSInitDisplay except that it does not return anything. The
function merely clears the screen.

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSRestoreDisplay (
 struct ScreenStruct *screenID);

Parameters

screenID

(IN) Specifies the screen to use for your NLM.

Return Values

Non

NLM Programming

NWSNUT: Functions 794

NWSRestoreList

Makes the specified list the current list

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSRestoreList (
 LONG listIndex,
 NUTInfo *handle);

Parameters

listIndex

(IN) Specifies the index into the save stack of the list to be made
current.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

0 Index out of range

1 Successful

Remarks

This function makes the list specified by listIndex the current list. The
listIndex parameter is the number assigned to the list when NWSSaveList
was called.

See Also

NWSPopList, NWSPushList, NWSSaveList

NLM Programming

NWSNUT: Functions 795

NWSRestoreNut

Cleans up any resources allocated by the NWSNUT library on behalf of the
calling client NLM

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSRestoreNut (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function should be called whenever an NLM that has been using
NWSNUT is unloaded or whenever the NLM is finished using
NWSNUT. This allows NWSNUT to release any memory resources it has
allocated on behalf of the client NLM, and take care of any other cleanup.

See Also

NWSInitializeNut

NLM Programming

NWSNUT: Functions 796

NWSRestoreZone

Restores data in a buffer to the screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSRestoreZone (
 LONG line,
 LONG column,
 LONG height,
 LONG width,
 BYTE *buffer,
 struct ScreenStruct *screenID);

Parameters

line

(IN) Specifies the top-most line of the zone, relative to the entire screen
(range 0 to 24).

column

(IN) Specifies the left-most column of the zone relative to the entire
screen (range 0 to 79).

height

(IN) Specifies the height of the zone in lines.

width

(IN) Specifies the width of the zone in columns.

buffer

(IN) Points to the buffer from which the specified screen area is to be
filled.

screenID

(IN) Specifies the screen to use for your NLM.

Return Values

None

NLM Programming

NWSNUT: Functions 797

Remarks

NWSRestoreZone restores the data from a buffer to the screen. Data can
be saved to the buffer by using NWSSaveZone.

The size of the buffer to which buffer points should be the zone's height
times width times two.

For the screenID parameter, use thescreenID field in NUTInfo, as
illustrated in NWSPositionCursor.

See Also

NWSSaveZone, NWSScrollZone

NLM Programming

NWSNUT: Functions 798

NWSSaveFunctionKeyList

Saves the current list of enabled function key

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSaveFunctionKeyList (
 BYTE *keyList,
 NUTInfo *handle);

Parameters

keyList

(IN) Points to a byte array in which to store the function key list.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function saves saves the enabled function keys into keyList.

See Also

NWSDisableFunctionKey, NWSEnableFunctionKey,
NWSEnableFunctionKeyList

NLM Programming

NWSNUT: Functions 799

NWSSaveInterruptList

Saves the context of the current interrupt keys

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSaveInterruptList (
 INTERRUPT *interruptList,
 NUTInfo *handle);

Parameters

interruptList

(IN/OUT) Points to the first element in an array of pointers to
INTERRUPT structures (see "Remarks" below).

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

The interruptList parameter points to an array of pointers to INTERRUPT
structures. The array should be of size MAXFUNCTINOS+1, where
MAXFUNCTIONS is a value defined in NWSNUT.H.
NWSSaveInterruptList saves information about all currently enabled
interrupt keys into this buffer.

See Also

NWSDisableAllInterruptKeys, NWSEnableInterruptKey,
NWSEnableInterruptList

NLM Programming

NWSNUT: Functions 800

NWSSaveList

Saves the current list into the specified slot in the save stack

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSSaveList (
 LONG listIndex,
 NUTInfo *handle);

Parameters

listIndex

(IN) Specifies the index into the save stack.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

0 The listIndex parameter is out of range.

1 Successful.

Remarks

This function saves the list into the specified slot in the saveStack field of
the NUTInfo structure. The listIndex parameter specifies the slot.

NOTE: Take care that you do not save another list to the same slot,
because the first list is overwritten.

See Also

NWSPopList, NWSPushList, NWSRestoreList

NLM Programming

NWSNUT: Functions 801

NWSSaveZone

Saves a defined area on the screen to a buffer.

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSaveZone (
 LONG line,
 LONG column,
 LONG height,
 LONG width,
 BYTE *buffer,
 struct ScreenStruct *screenID);

Parameters

line

(IN) Specifies the top-most line of the zone, relative to the entire screen
(range of 0 to 24).

column

(IN) Specifies the left-most column of the zone, relative to the entire
screen (range of 0 to 79).

height

(IN) Specifies the height of the zone in lines.

width

(IN) Specifies the width of the zone in columns.

buffer

(IN) Points to the buffer in which the specified screen area is to be
saved.

screenID

(IN) Specifies the screen to use for your NLM.

Return Values

None

NLM Programming

NWSNUT: Functions 802

Remarks

NWSSaveZone saves an defined area of the screen to a buffer. The data
in the buffer can be restored to the screen using NWSRestoreZone.

The buffer to which buffer points should be of the size height times width
times two, relative to the zone to be saved.

For the screenID parameter, use thescreenID field in NUTInfo, as
illustrated in NWSPositionCursor.

See Also

NWSRestoreZone, NWSScrollZone

NLM Programming

NWSNUT: Functions 803

NWSScreenSize

Returns the maximum number of display lines and columns available on
the server screens

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSScreenSize (
 LONG *maxLines,
 LONG *maxColumns);

Parameters

maxLines

(OUT) Points to a LONG variable that receives the maximum number
of lines for the server screen.

maxColumns

(OUT) Points to a LONG variable that receives the maximum number
of columns for the server screen.

Return Values

None

Remarks

This function can be used to determine the maximum portal size that can
be displayed.

NLM Programming

NWSNUT: Functions 804

NWSScrollPortalZone

Scrolls a region in a NWSNUT portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSScrollPortalZone (
 LONG line,
 LONG column,
 LONG height,
 LONG width,
 LONG attribute,
 LONG count,
 LONG direction,
 PCB *portal);

Parameters

line

(IN) Specifies the top-most row of the portal to scroll.

column

(IN) Specifies the left-most column of the portal to scroll.

height

(IN) Specifies the height of the scroll region.

width

(IN) Specifies the width of the scroll region.

attribute

(IN) Specifies the attribute to fill in vacated region.

count

(IN) Specifies the number of lines to scroll.

direction

(IN) Specifies the scroll direction (V_UP or V_DOWN).

portal

(IN) Points the portal control block of the portal to scroll.

NLM Programming

NWSNUT: Functions 805

Return Values

None

Remarks

This function scrolls the display area of a portal up or down the number
of lines specified by count. If the directFlag field of the portal parameter is
DIRECT, the real screen is scrolled. If the directFlag field is VIRTUAL, the
virtual display area of the portal is scrolled. To copy the virtual screen to
the physical screen, use NWSUpdatePortal.

IMPORTANT: As a virtual screen is scrolled, the previous data in
the virtual screen is overwritten.

The attribute parameter can have the following values:

VNORM
AL

Normal video

VINTENS
E

Intense video

VREVERS
E

Reverse video

VBLINK Blinking, normal video

VIBLINK Blinking, intense video

VRBLINK Blinking, reverse video

NLM Programming

NWSNUT: Functions 806

NWSScrollZone

Allows a console operator to scroll the contents of a defined zone in a screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSScrollZone (
 LONG line,
 LONG column,
 LONG height,
 LONG width,
 LONG attribute,
 LONG count,
 LONG direction,
 struct ScreenStruct *screenID);

Parameters

line

(IN) Specifies the top-most line of the zone.

column

(IN) Specifies the left-most column of the zone.

height

(IN) Specifies the height of the zone.

width

(IN) Specifies the width of the zone in columns.

attribute

(IN) Specifies the screen attribute for the new line(s) resulting from the
scroll.

count

(IN) Specifies the number of lines to scroll.

direction

(IN) Specifies the scroll direction (V_UP or V_DOWN).

screenID

NLM Programming

NWSNUT: Functions 807

(IN) Specifies the screen to use for your NLM.

Return Values

None

Remarks

NWSScrollZone scrolls the contents of a screen zone. That is, it
overwrites the lines of a defined screen area in a designated direction (up
or down) with the lines from the direction of the scroll, one or more lines
at a time. It also thus provides blank lines at the top or bottom of the
zone.

The count parameter specifies the number of lines to be cleared, and the
direction parameter specifies whether the blank lines will appear at the
top or the bottom of the zone. (V_UP puts the blanks at the bottom,
V_DOWN at the top.)

The attribute parameter can have the following values:

VNORM
AL

Normal video

VINTENS
E

Intense video

VREVERS
E

Reverse video

VBLINK Blinking, normal video

VIBLINK Blinking, intense video

VRBLINK Blinking, reverse video

For the screenID parameter, use thescreenID field in NUTInfo, as
illustrated in NWSPositionCursor.

See Also

NWSSaveZone, NWSRestoreZone

NLM Programming

NWSNUT: Functions 808

NWSSelectPortal

Selects a portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSelectPortal (
 LONG portalNumber,
 NUTInfo *handle);

Parameters

portalNumber

(IN) Specifies the portal index of the new active portal.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function selects a portal, making it the active portal, bringing it to the
front, and highlighting its border.

The portalNumber parameter is the portal index number returned by
NWSCreatePortal.

See Also

NWSCreatePortal, NWSDeselectPortal

NLM Programming

NWSNUT: Functions 809

NWSSetDefaultCompare

Specifies a routine for sorting list elements

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSetDefaultCompare (
 NUTInfo *handle,
 int (*defaultCompareFunction) (
 LIST *el1,
 LIST *el2));

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

defaultCompareFunction

(IN) Points to the new compare routine.

Return Values

None

Remarks

This function is used to specify a custom compare routine to be used for
comparing list elements. This function is stored in the
defaultCompareFunction field of the NUTInfo structure. To obtain the
current compare function, call NWSGetDefaultCompare.

The default compare function is passed the following parameters:

el1 The list element to compare with el2.

el2 The list element to compare with el1.

NLM Programming

NWSNUT: Functions 810

The return values for the default compare function should be:

-1 If el1 < el2

0 If el1 = el2

1 If el1 > el2

See Also

NWSGetDefaultCompare

NLM Programming

NWSNUT: Functions 811

NWSSetDynamicMessage

Stores dynamic messages in the NWSNUT interface message table

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSetDynamicMessage (
 LONG message,
 BYTE *text,
 MessageInfo *messages);

Parameters

message

(IN) Specifies the message (DYNAMIC_MESSAGE_ONE through
DYNAMIC_MESSAGE_FOURTEEN).

text

(IN) Points to the actual message.

messages

(IN) Points to the MessageInfo structure for the program.

Return Values

None

Remarks

This function does not copy the message text, but sets the appropriate
pointer in the MessageInfo structure to point at the text.

The dynamic message fields in this structure are initially set to
NO_MESSAGE. Specify a message number from
DYNAMIC_MESSAGE_ONE through
DYNAMIC_MESSAGE_FOURTEEN in the message parameter to set the
corresponding dynamic message field in this structure. The text
parameter specifies the message text to be pointed to by the dynamic
message field.

NLM Programming

NWSNUT: Functions 812

See Using NWSNUT Interface: Example.

NLM Programming

NWSNUT: Functions 813

NWSSetErrorLabelDisplayFlag

Sets the displayErrorLabel field of the NUTInfo structure

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSetErrorLabelDisplayFlag (
 LONG flag,
 NUTInfo *handle);

Parameters

flag

(IN) Specifies whether to display NLM version information for error
messages.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function sets the displayErrorLabel field of the NUTInfo structure to
the value of flag. If flag is 1 (the default value),
NWSDisplayErrorCondition and NWSDisplayErrorText display NLM
version information. If flag is set to 0, the version information is not
displayed by the error functions.

See Also

NWSDisplayErrorCondition, NWSDisplayErrorText

NLM Programming

NWSNUT: Functions 814

NWSSetFieldFunctionPtr

Changes functions associated with a field in a form

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSetFieldFunctionPtr (
 FIELD *fp,
 void (*Format) (
 FIELD*,
 BYTE * text,
 LONG),
 LONG (*Control) (
 FIELD *,
 int,
 int *,
 NUTInfo *),
 int (*Verify) (
 FIELD *,
 BYTE *,
 NUTInfo *),
 void (*Release) (
 FIELD *),
 void (*Entry) (
 FIELD *,
 void *,
 NUTInfo *),
 void (*customDataRelease) (
 void *,
 NUTInfo *));

Parameters

fp

(IN) Points to the field to associate the routines with.

Format

(IN) Specifies the format routine for the field. If no routine is wanted,
specify NULL.

NLM Programming

NWSNUT: Functions 815

Control

(IN) Specifies the control routine for the field. If no routine is wanted,
specify NULL.

Verify

(IN) Specifies the verify routine for the field. If no routine is wanted,
specify NULL.

Release

(IN) Specifies the memory release routine for the field. If no routine is
wanted, specify NULL.

Entry

(IN) Specifies a routine to be called for all fields in the form. If no
routine is wanted, specify NULL.

customDataRelease

(IN) Specifies a routine to be used to release memory allocated for
custom data associated with the field. If no routine is wanted, specify
NULL.

Return Values

None

Remarks

This function allows the developer to specify routines associated with a
field. When NULL is specified for a routine, the routine retains its former
value. If you want to delete a routine, assign it to 0.

The following lists the routines that can be specified and the parameters
that are passed to the routines:

Routine Parameter
s

Format FIELD * The field to format.

BYTE *text The text in the field.

LONG The length of text.

Control FIELD The selected field.

int The action key hit.

int Indicates whether the field is changed.

NUTInfo A pointer to a NUTInfo structure that
contains state information allocated to the
calling NLM.

Verify FIELD The field to verify.

BYTE Data to verify.

NLM Programming

NWSNUT: Functions 816

NUTInfo A pointer to a NUTInfo structure that
contains state information allocated to the
calling NLM.

Release FIELD The field to release.

Entry FIELD The selected field.

void Data to be passed to the fieldEntry
routine.

NUTInfo A pointer to a NUTInfo structure that
contains state information allocated to the
calling NLM.

customDataRel
ease

FIELD The field to release custom data for.

NUTInfo A pointer to a NUTInfo structure that
contains state information allocated to the
calling NLM.

See Also

NWSGetFieldFunctionPtr, NWSInitForm

NLM Programming

NWSNUT: Functions 817

NWSSetFormRepaintFlag

Sets a flag that causes the form to be repainted, showing changes made to
the form but not yet reflected on the screen.

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSetFormRepaintFlag (
 LONG value,
 NUTInfo *handle);

Parameters

value

(IN) Sets the redisplayFormFlag field of the NUTInfo structure
containing state information allocated to the calling NLM. Pass TRUE
or FALSE.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

NWSSetFormRepaintFlag allows a form to be redisplayed after you
have made changes such as adjusting the length of a field, changing the
text in a field (for example a prompt field), and so forth. Although these
changes may have been made in the form's code, such changes do not
appear on the screen unless the form is explicitly repainted. Calling
NWSSetFormRepaintFlag and setting the value parameter to TRUE
causes the form to be redisplayed and reflects the changes.

For example, a comment field may prompt the user to enter a password,
then change to thank the user after the password has been entered.
NWSSetFormRepaintFlag enables the change on the comment field to

NLM Programming

NWSNUT: Functions 818

appear on the screen. As this example illustrates, such changes take place
in an intermediate function that has gained temporary control, but that
will return control to one of the functions listed in the following "See
Also" section.

See Also

NWSEditForm, NWSEditPortalForm, NWSEditPortalFormField

NLM Programming

NWSNUT: Functions 819

NWSSetHandleCustomData

Sets the custom data and custom data release function that is held in the
NUTInfo structure

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSetHandleCustomData (
 NUTInfo *handle,
 void **customData,
 void (**customDataRelease) (
 void *theData,
 NUTInfo *handle));

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

customData

(IN) Specifies the custom data to be held in the NUTInfo structure.

customDataRelease

(IN) Specifies the custom data release function to be held in the
NUTInfo structure.

Return Values

None

Remarks

This function sets the the customData and customDataRelease fields of the
NUTInfo structure. This allows you to define customized data for your
NWSNUT NLM. To obtain the values of customData and
customDataRelease, call NWSGetHandleCustomData.

If the memory was not allocated, pass NULL for customDataRelease.

NLM Programming

NWSNUT: Functions 820

See Also

NWSGetHandleCustomData

NLM Programming

NWSNUT: Functions 821

NWSSetList

Changes the current list to point to the new list information

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSetList (
 LISTPTR *listPtr,
 NUTInfo *handle);

Parameters

listPtr

(IN) Specifies the new list pointers to be made current.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function makes the list specified by listPtr the current list. The listPtr
parameter can be obtained from NWSGetList.

See Also

NWSGetList

NLM Programming

NWSNUT: Functions 822

NWSSetListNotifyProcedure

Sets a routine to be called when the specified list entry is selected

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSetListNotifyProcedure (
 LIST *el,
 void (*entryProcedure) (
 LIST *element,
 LONG displayLine,
 NUTInfo *handle));

Parameters

el

(IN) Points to the list element for which to call the entry procedure.

entryProcedure

(IN) Specifies the routine to be called when el is selected.

Return Values

None

Remarks

This function allows the developer to specify a routine to be called when
the list element el is selected. To obtain the current routine, call
NWSGetListNotifyProcedure.

If NULL is specified for entryProcedure, the routine is deleted.

The following parameters are passed to the entryProcedure:

element The selected list element.

displayLi
ne

The display line of the selected list element.

NLM Programming

NWSNUT: Functions 823

handle A pointer to a NUTInfo structure that contains state
information allocated to the calling NLM.

See Also

NWSGetListNotifyProcedure

NLM Programming

NWSNUT: Functions 824

NWSSetListSortFunction

Specifies a custom list sorting function

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSetListSortFunction (
 NUTInfo *handle
 void (*listSortFunction)(
 LIST *head,
 LIST *tail,
 NUTInfo *handle));

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

listSortFunction

(IN) Points to a customized list sort function.

Return Values

None

Remarks

This function allows you to use a customized list sort function in place of
the default list sort function. The listSortFunction parameters head and
tail designate the first and last links in the list.

NWSNUT stores the pointer to the customized sort function in NUTInfo.
listSortFunction.

See Also

NWSGetListSortFunction

NLM Programming

NWSNUT: Functions 825

NWSSetScreenPalette

Changes the screen palette

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSetScreenPalette (
 LONG newPalette,
 NUTInfo *handle);

Parameters

newPalette

(IN) Specifies the palette to change the screen to.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

The following bits are defined for the palette parameter:

NORMAL_PALETTE

INIT_PALETTE

HELP_PALETTE

ERROR_PALETTE

WARNING_PALETTE

OTHER_PALETTE

NLM Programming

NWSNUT: Functions 826

NWSShowLine

Displays a text string at a specified screen location

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSShowLine (
 LONG line,
 LONG column,
 BYTE *text,
 LONG length,
 struct ScreenStruct *screenID);

Parameters

line

(IN) Specifies the line on which the text is to be shown.

column

(IN) Specifies the column at which the text is to begin.

text

(IN) Points to the text to be shown.

length

(IN) Specifies the screen display length in which the string pointed to
by text appears.

screenID

(IN) Specifies the screen to use for your NLM.

Return Values

None

Remarks

NWSShowLine displays a line at a specified location on a specified
screen. You must also specify the length of the display in which the text

NLM Programming

NWSNUT: Functions 827

line appears.

The length parameter specifies the length of the display area. That length
may be shorter than the string to which text points, in which case not all
of the string appears on the screen. However, length may also be longer
than the string, in which case the string and the contents of the remaining
bytes appear. That is, length is not null aware.

For the screenID parameter, use thescreenID field in NUTInfo, as
illustrated in NWSPositionCursor.

NWSShowLine does not alter the attribute bytes. To specify an attribute
in the line to be shown, call NWSShowLineAttribute.

See Also

NWSShowLineAttribute, NWSShowPortalLine

NLM Programming

NWSNUT: Functions 828

NWSShowLineAttribute

Identical to NWSShowLine, but also allows screen attribute specification

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSShowLineAttribute (
 LONG line,
 LONG column,
 BYTE *text,
 LONG length,
 LONG attribute,
 struct ScreenStruct *screenID);

Parameters

line

(IN) Specifies the line on which the text is to be shown.

column

(IN) Specifies the column at which the text is to begin.

text

(IN) Points to the text to be shown.

length

(IN) Specifies the screen display length in which the string pointed to
by text appears.

attribute

(IN) Specifies the screen attribute for the text.

screenID

(IN) Specifies the screen to use for your NLM.

Return Values

None

NLM Programming

NWSNUT: Functions 829

Remarks

NWSShowLineAttribute is identical to NWSShowLine, except that
NWSShowLineAttribute also allows for specification of the screen
attribute for the string to which text points.

The attribute parameter can have the following values:

VNORM
AL

Normal video

VINTENS
E

Intense video

VREVERS
E

Reverse video

VBLINK Blinking, normal video

VIBLINK Blinking, intense video

VRBLINK Blinking, reverse video

For the screenID parameter, use thescreenID field in NUTInfo, as
illustrated in NWSPositionCursor.

See Also

NWSShowLine

NLM Programming

NWSNUT: Functions 830

NWSShowPortalLine

Places screen output in the specified portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSShowPortalLine (
 LONG line,
 LONG column,
 BYTE *text,
 LONG length,
 PCB *portal);

Parameters

line

(IN) Specifies the top-most line within the portal that the text is to
occupy.

column

(IN) Specifies the left-most column within the portal that the text is to
occupy.

text

(IN) Points to the text to be shown in the portal.

length

(IN) Specifies the length of the string to whichtext points.

portal

(IN) Points to a NWSNUT portal control block.

Return Values

None

Remarks

This function places a text line within a portal. To display the changes on

NLM Programming

NWSNUT: Functions 831

the screen, call NWSUpdatePortal.

The portal parameter is the portal control block returned by NWSGetPCB.

See Also

NWSDisplayTextInPortal, NWSDisplayTextJustifiedInPortal,
NWSShowPortalLineAttribute, NWSUpdatePortal

NLM Programming

NWSNUT: Functions 832

NWSShowPortalLineAttribute

Places screen output with a specified screen attribute in the specified portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSShowPortalLineAttribute (
 LONG line,
 LONG column,
 BYTE *text,
 LONG attribute,
 LONG length,
 PCB *portal);

Parameters

line

(IN) Specifies the top-most line within the portal that the text is to
occupy.

column

(IN) Specifies the left-most column within the portal that the text is to
occupy.

text

(IN) Specifies the text to be shown in the portal.

attribute

(IN) Specifies the screen attribute for text display.

length

(IN) Specifies the length of text.

portal

(IN) Points to a NWSNUT portal control block.

Return Values

None

NLM Programming

NWSNUT: Functions 833

Remarks

This function places text with a specified screen attribute within a portal.
To display the changes on the screen, call NWSUpdatePortal.

The portal parameter is the portal control block returned by NWSGetPCB.

The attribute parameter can have the following values:

VNORM
AL

Normal video

VINTENS
E

Intense video

VREVERS
E

Reverse video

VBLINK Blinking, normal video

VIBLINK Blinking, intense video

VRBLINK Blinking, reverse video

See Also

NWSDisplayTextInPortal, NWSDisplayTextJustifiedInPortal,
NWSShowPortalLine, NWSUpdatePortal

NLM Programming

NWSNUT: Functions 834

NWSSortList

Sorts the current list alphabetically

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSSortList (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function sorts the current list using the default compare function in
the NUTInfo structure. The initial default is alphabetical. A custom
sorting routine can be specified by calling NWSSetDefaultCompare.

When the sort is complete, the head and tail of the list have been updated
to reflect the new list order.

See Also

NWSGetDefaultCompare, NWSSetDefaultCompare

NLM Programming

NWSNUT: Functions 835

NWSStartWait

Displays a portal with a <please wait> message on the NWSNUT screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSStartWait (
 LONG centerLine,
 LONG centerColumn,
 NUTInfo *handle);

Parameters

centerLine

(IN) Specifies the center row of the display portal.

centerColumn

(IN) Specifies the center column of the display portal.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

To destroy this portal, call NWSEndWait. Keys are not disabled by this
function.

See Also

NWSEndWait

NLM Programming

NWSNUT: Functions 836

NWSStrcat

Appends a copy of one string to the end of another

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSStrcat (
 BYTE *string,
 BYTE *newStuff);

Parameters

string

(IN/OUT) Points to the string to concatenate to.

newStuff

(IN) Points to the string to append to string.

Return Values

The new length of the string is returned.

Remarks

The string parameter is modified so that it contains the string resulting
from the concatenation.

NLM Programming

NWSNUT: Functions 837

NWSToupper

Returns the uppercase value of the specified byte

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

BYTE NWSToupper (
 BYTE character);

Parameters

character

(IN) Specifies the byte to change to uppercase.

Return Values

An uppercase version of character.

Remarks

This function uses the server character tables, and therefore changes to
uppercase in the language of the server. Passing either the first or second
half of a DBCS character to this routine yields unpredictable results.

NLM Programming

NWSNUT: Functions 838

NWSTrace

Displays an information portal on the screen and waits for an escape key

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSTrace (
 NUTInfo *handle,
 BYTE *message,
 ...);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

message

(IN) Points to the message identifier of the message to display in trace
portal.

Return Values

(0xFFFFFF
FF)

Error

(0xFF) pauseFlag != 0 and escape key was hit

(0xFE) pauseFlag != 0 and F7 key was hit

If pauseFlag == 0, then the portal index is returned.

Remarks

This function is useful for debugging purposes.

Optional parameters can be added to the end of the parameter list as
required by message (for example, %d or %s).

NLM Programming

NWSNUT: Functions 839

NWSUngetKey

Inserts a key into the keyboard type-ahead buffer

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

LONG NWSUngetKey (
 LONG type,
 LONG value,
 NUTInfo *handle);

Parameters

type

(IN) Specifies the key type.

value

(IN) Specifies the key value.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

-1 Keyboard buffer is full

0 Key was inserted

Remarks

This function reverses the effect of NWSGetKey.

See Also

NWSGetKey, NWSKeyStatus

NLM Programming

NWSNUT: Functions 840

NWSUnmarkList

Removes the mark status from the current list

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSUnmarkList (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This removes the marked status from all items in a list.

See Also

NWSIsAnyMarked, NWSPopMarks, NWSPushMarks

NLM Programming

NWSNUT: Functions 841

NWSUpdatePortal

Updates the specified portal's screen display to show changes made to the
portal since its creation or last update

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSUpdatePortal (
 PCB *portal);

Parameters

portal

(IN) Specifies the PCB of the portal.

Return Values

None

Remarks

This function redisplays a portal to reflect changes since its creation or
last update. The portal parameter can be obtained by calling
NWSGetPCB.

NLM Programming

NWSNUT: Functions 842

NWSViewText

Displays text within a portal

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSViewText (
 LONG centerLine,
 LONG centerColumn,
 LONG height,
 LONG width,
 LONG headerNumber,
 BYTE *textBuffer,
 LONG maxBufferLength,
 NUTInfo *handle);

Parameters

centerLine

(IN) Specifies the screen line on which to center the portal.

centerColumn

(IN) Specifies the screen column on which to center the portal.

height

(IN) Specifies the height of the portal.

width

(IN) Specifies the width of the portal.

headerNumber

(IN) Specifies the message identifier for the portal header.

textBuffer

(IN) Points to the buffer containing the text to display.

maxBufferLength

(IN) Specifies the maximum length of the text.

handle

(IN) Points to a NUTInfo structure that contains state information

NLM Programming

NWSNUT: Functions 843

allocated to the calling NLM.

Return Values

This function returns zero if successful.

Remarks

This function displays textBuffer in a portal. The user can position the
cursor, but cannot edit the text.

See Also

NWSDisplayInformation, NWSDisplayInformationInPortal,
NWSDisplayTextInPortal, NWSDisplayTextJustifiedInPortal,
NWSEditText

NLM Programming

NWSNUT: Functions 844

NWSViewTextWithScrollBars

Identical to NWSEditTextWithScrollBars, except that the displayed text can
only be read, not edited.

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSViewTextWithScrollBars (
 LONG centerLine,
 LONG centerColumn,
 LONG height,
 LONG width,
 LONG headerNumber,
 BYTE *textBuffer,
 LONG maxBufferLength,
 LONG scrollBarFlag,
 NUTInfo *handle);

Parameters

centerLine

(IN) Specifies the screen line to center the portal on.

centerColumn

(IN) Specifies the screen column to center the portal on.

height

(IN) Specifies the height of the portal in lines.

width

(IN) Specifies the width of the portal in columns.

headerNumber

(IN) Specifies the message identifier for the portal header.

textBuffer

(IN) Points to the buffer containing the text to display.

maxBufferLength

(IN) Specifies the maximum length of the text.

NLM Programming

NWSNUT: Functions 845

scrollBarFlag

(IN) Specifies the presence and operation of the scroll bars.

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

0 Successful

Remarks

NWSViewTextWithScrollBars allows a console operator to view text
that is horizontally and vertically larger than the portal. The function
scrolls in both directions, but it neither displays a cursor nor allows
editing.

The centerLine and centerColumn parameters specify the screen location of
the portal. 0, 0 centers the portal on the screen, excluding the NLM
header. Other values passed to centerLine and centerColumn locate the
center of the portal relative to the top-most line below the NLM header
and the left-most column of the screen. However, since these values
designate the portal center, they must also take into account the
dimensions of the portal itself.

The scrollBarFlag parameter uses a combination of two sets of flags. The
first set specifies which scroll bar are to appear, and the second set
specifies the conditions of their appearance.

The first set contains only two flags that can be specified separately or
ORed together:

SHOW_VERTICAL_SCROLL_
BAR

Vertical scroll bar appears along the
portal right edge.

SHOW_HORIZONTAL_SCRO
LL_BAR

Horizontal scroll bar appears along
the portal bottom.

The second set contains two flags, only one of which can be ORed at one
time with either or both of the flags in the previous set:

CONSTANT_SCROLL_BARS Scroll bars appear constantly.

TEXT_SENSITIVE_SCROLL_
BARS

Scroll bars appear only when the text
exceeds the portal boundaries
vertically or horizontally.

NLM Programming

NWSNUT: Functions 846

See Also

NWSDisplayInformation, NWSDisplayInformationInPortal,
NWSDisplayTextInPortal, NWSDisplayTextJustifiedInPortal,
NWSEditText, NWSViewText

NLM Programming

NWSNUT: Functions 847

NWSWaitForEscape

Waits for the escape key to be pressed

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

void NWSWaitForEscape (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

None

Remarks

This function waits for the escape key to be pressed before going to the
next instruction.

See Also

NWSWaitForEscapeOrCancel

NLM Programming

NWSNUT: Functions 848

NWSWaitForEscapeOrCancel

Waits for the escape or cancel (F7) key to be pressed

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSWaitForEscapeOrCancel (
 NUTInfo *handle);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

Return Values

0 The escape key was pressed.

1 The cancel key was pressed.

Remarks

This function waits for the escape or cancel key to be pressed before
going to the next instruction.

See Also

NWSWaitForEscape

NLM Programming

NWSNUT: Functions 849

NWSWaitForKeyAndValue

Waits until the user presses one of the keys in a specified set.

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

Service: NWSNUT

SMP Aware: No

Syntax

#include <nwsnut.h>

int NWSWaitForKeyAndValue (
 NUTInfo *handle,
 LONG nKeys,
 LONG keyType[],
 LONG keyValue[]);

Parameters

handle

(IN) Points to a NUTInfo structure that contains state information
allocated to the calling NLM.

nKeys

(IN) Specifies the size of the keyType and keyValue arrays.

keyType

(IN) Specifies an array of key types defined in the NWSNUT.H file.

keyValue

(IN) Specifies an array of values for keys designated by keyType if
keyType is set to K_NORMAL.

Return Values

Index into the keyType array or the keyValue array of the key pressed by
the user.

Remarks

NWSWaitForKeyAndValue allows an NLM to wait until the user
presses a key in a specified set. The keyType parameter specifies an array
of key types, and the keyValue specifies an array associated values.

NLM Programming

NWSNUT: Functions 850

WARNING: Do not set the value of nKeys to be larger than the
number of elements in each (not both) of the keyType and keyValue
arrays, or the server will abend.

To use an ASCII defined alphanumeric character or symbol from the
keyboard as the key for which your NLM waits, specify K_NORMAL as
an element in the keyType array and the ASCII value of the desired key in
a corresponding position as an element in the keyValue array. The
following example initializes to resume operation when the user presses
any lower case letter from a to e:

 LONG count=5;/ * number of members in keyType and keyValue */
 LONG keyType[]={K_NORMAL,K_NORMAL,K_NORMAL,K_NORMAL,K_NORMAL};
 LONG keyValue[]={97,98,99,100,101};/ * ASCII values for a through e */

NWSNUT.H defines a number of keys (K_UP, K_DOWN, and so forth)
that can also be used with NWSWaitForKeyAndValue. To use any of
these---excluding function keys---specify the K_ constant as an element
in the keyType array and zero as an element in a corresponding position
in the keyValue array. The following example initializes to accept Enter,
Esc, Left-arrow, or Right-arrow:

 LONG count=4;
 LONG keyType[]={K_SELECT,K_ESCAPE,K_LEFT,K_RIGHT};
 LONG keyValue[]={0,0,0,0};

To use a function key, specify one of the function constants (K_F2, K_F3,
K_SF4, and so on) from NWSNUT.H as an element in the keyType array 1
in a corresponding position as an element in the keyValue array. The
following example initializes to accept F2, F3, or F4:

 LONG count=3;
 LONG keyType[]={K_F2,K_F3,K_4};
 LONG keyValue[]={1,1,1};

NOTE: Do not specify F1 to resume because F1 is frequently used for
help.

It is also possible to combine the methods illustrated above, provided the
choices are aligned in their respective arrays. The following example
initializes to accept Esc, F3, or lower case e:

 LONG count=3;
 LONG keyType[]={K_ESCAPE,K_F3,K_NORMAL};
 LONG keyValue[]={0,1,101};

See Also

NWSWaitForEscape, NWSWaitForEscapeOrCancel

NLM Programming

NWSNUT: Functions 851

NWSNUT: Structures

NLM Programming

NWSNUT: Structures 852

FIELD

Defines a form field

Service: NWSNUT

Defined In: nwsnut.h

Structure

typedef struct fielddef {
 LIST *element;
 LONG fieldFlags;
 LONG fieldLine;
 LONG fieldColumn;
 LONG fieldWidth;
 LONG fieldAttribute;
 int fieldActivateKeys;
 void (*fieldFormat)(struct fielddef *field,
 BYTE *text, LONG buffLen);
 LONG (*fieldControl)(struct fielddef *field,
 int selectKey, int *fieldChanged,
 NUTInfo *handle);
 int (*fieldVerify)(struct fielddef *field,
 BYTE *data, NUTInfo *handle);
 void (*fieldRelease)(struct fielddef *field);
 BYTE *fieldData;
 BYTE *fieldXtra;
 int fieldHelp;
 struct fielddef *fieldAbove;
 struct fielddef *fieldBelow;
 struct fielddef *fieldLeft;
 struct fielddef *fieldRight;
 struct fielddef *fieldPrev;
 struct fielddef *fieldNext;
 void (*fieldEntry)(struct fielddef *field,
 void *fieldData, NUTInfo *handle);
 void *customData;
 void (*customDataRelease)(
 void *fieldCustomData,
 NUTInfo *handle);
 NUTInfo *nutInfo;
} FIELD;

Fields

NOTE: Fields in this structure should not be changed directly. Use
NWSNUT functions for building and manipulating forms.

element

Contains NWSNUT-internal information.

NLM Programming

NWSNUT: Structures 853

fieldFlags

Set with various "Append" functions (such as NWSAppendBoolField)
and can have the following values:

Value Meaning

NORMAL_FIELD Normal, editable field.

LOCKED_FIELD Nonaccessible field.

SECURE_FIELD Noneditable field.

REQURED_FIELD Verify field on form exit.

HIDDEN_FIELD Hidden fields are not seen by the user.
These fields are also locked.

PROMPT_FIELD Prompt fields cannot be selected by the user.
These fields are also locked.

ULOCKED_FIELD Field locked by user.

FORM_DESELECT Causes form deselection before action and
verify routines are called.

NO_FORM_DESEL
ECT

Form is not deselected before action and
verify routines are called.

DEFAULT_FORMA
T

Normal field-controlled justification.

RIGHT_FORMAT Right justification.

LEFT_FORMAT Left justification.

CENTER_FORMAT Centered.

fieldLine

Contains the portal line on which the form field is located. This field is
set when the field is appended to the form by the various "Append"
functions.

fieldColumn

Contains the portal column on which the field is located. This field is
set when the field is appended to the form by the various "Append"
functions.

fieldWidth

Contains the maximum width of the form field. This field is set when
the field is appended to the form by the various "Append" functions.

fieldAttribute

ontains the display attribute for the form field. This can be set when
appending a custom field with NWSAppendToForm.

fieldActivateKeys

ontains the keys that activate the form field. This field can be set when

NLM Programming

NWSNUT: Structures 854

appending a custom field with NWSAppendToForm.

fieldFormat

Contains the routine used to format the form field.

fieldControl

Contains the routine that is called when the form field is selected.

fieldVerify

Contains the routine that is called when the form field is selected.

fieldRelease

Contains the routine called to release memory allocated for fieldData
and fieldExtra.

fieldData

Contains a pointer to data associated with the form field. This pointer
can be set when a custom field is appended to a form with
NWSAppendToForm.

fieldXtra

Contains additional control information associated with the form field.
This field can be set when a custom field is appended to a form with
NWSAppendToForm.

fieldHelp

Contains the help context for the form field. You can specify the help
context when the form is displayed by NWSEditPortalForm or
NWSEditPortalFormField. A help context can be specified for a field
when it is created by NWSAppendToForm.

fieldAbove

Contains NWSNUT-internal positioning information.

fieldBelow

Contains NWSNUT-internal positioning information.

fieldLeft

Contains NWSNUT-internal positioning information.

fieldRight

Contains NWSNUT-internal positioning information.

fieldPrev

Contains NWSNUT-internal positioning information.

filedNext

Contains NWSNUT-internal positioning information.

fieldEntry

Contains a routine to be called upon entry to each field in the form.

customData

Contains user-defined data to be attached to the form field.

NLM Programming

NWSNUT: Structures 855

customDataRelease

Contains a routine to release data in customData. The parameters
match NWSFree so that NWSAlloc can be used to allocate memory for
customData, further guaranteeing that memory is freed.

nutInfo

Contains NWSNUT context information.

Remarks

The position of the field is set by the "Append" function used to create the
field. The nutInfo, element, fieldAbove, fieldBelow, fieldLeft, fieldRight, fieldPrev,
and fieldNext fields are NWSNUT internal and should not be modified
directly.

The following fields contain information about what routines are used for
the form field:

fieldFormat

fieldControl

fieldVerify

fieldRelease

customDataRelease

fieldEntry

To obtain the routines for a field, call NWSGetFieldFunctionPtr; to
change the routines, call NWSSetFieldFunctionPtr. These fields can also
be set when a custom field is added to a form by NWSAppendToForm.

NLM Programming

NWSNUT: Structures 856

INTERRUPT

Defines an interrupt key

Service: NWSNUT

Defined In: nwsnut.h

Structure

typedef struct INT_ {
 void (*interruptProc)(void *handle);
 LONG key;
} INTERRUPT;

Fields

interruptProc

Points to the interupt routine that you want to use for the specified
key.

key

Contains the interrupt key value.

Remarks

This structure is used by NWSEnableInterruptList.

NLM Programming

NWSNUT: Structures 857

LIST

Defines a list element

Service: NWSNUT

Defined In: nwsnut.h

Structure

typedef struct LIST_STRUCT {
 struct LIST_STRUCT *prev;
 struct LIST_STRUCT *next;
 void *otherInfo;
 LONG marked;
 LONG flags;
 void (*entryProcedure)(
 struct LIST_STRUCT *listElement,
 LONG displayLine,
 void *NUTInfoStructure);
 LONG extra;
 BYTE text[1];
} LIST;

Fields

NOTE: Fields in the LIST structure should not be changed directly.
Call NWSNUT functions for building and manipulating lists.

prev

Points to the previous list element in the list. If prev is NULL, the
element is the first element in the list.

next

Points to the next list element in the list. If next is NULL, the element is
the first element in the list.

otherInfo

Contains developer-defined data set by calling NWSAppendToList.

marked

Indicates whether the item has been marked for future actions. The
user presses F5 to mark the current (highlighted) list item. To remove
marks from all items in a list, call NWSUnmarkList. To determine
whether any items in a list have been marked, call NWSIsAnyMarked
.

flags

Reserved for NWSNUT.

entryProcedure

NLM Programming

NWSNUT: Structures 858

Contains a routine to call if this list item is selected. This field can be
obtained by calling NWSGetListNotifyProcedure and set by
NWSSetListNotifyProcedure.

extra

Reserved for NWSNUT.

text

Reserved for NWSNUT.

Remarks

Note that each list item points to both the previous (prev) and following (
next) list items, linking the list items together. The first list item points to
NULL for its previous item, whereas the last list item points to NULL for
its following list item.The following illustrates the relationship of list
items within a list, and their relationship to the LISTPTR structure
associated with the list:

NLM Programming

NWSNUT: Structures 859

LISTPTR

Defines a list

Service: NWSNUT

Defined In: nwsnut.h

Structure

typedef struct LP_ {
 void *head;
 void *tail;
 int (*sortProc)();
 void (*freeProcedure)(void *memoryPointer);
} LISTPTR;

Fields

NOTE: Fields in this structure should not be changed directly. Use
NWSNUT functions for building and manipulating lists.

head

Points to the first list element.

tail

Points to the last list element.

sortProc

Points to a procedure for sorting list items.

freeProcedure

Points to a procedure for freeing the list. Set this field with
NWSInitList.

NLM Programming

NWSNUT: Structures 860

MessageInfo

Contains messages that can be changed dynamically as your application
runs

Service: NWSNUT

Defined In: nwsnut.h

Structure

typedef struct MI_ {
 BYTE *dynamicMessageOne;
 BYTE *dynamicMessageTwo;
 BYTE *dynamicMessageThree;
 BYTE *dynamicMessageFour;
 BYTE *dynamicMessageFive;
 BYTE *dynamicMessageSix;
 BYTE *dynamicMessageSeven;
 BYTE *dynamicMessageEight;
 BYTE *dynamicMessageNine;
 BYTE *dynamicMessageTen;
 BYTE *dynamicMessageEleven;
 BYTE *dynamicMessageTwelve;
 BYTE *dynamicMessageThirteen;
 BYTE *dynamicMessageFourteen;
 LONG messageCount;
 BYTE **programMesgTable;
} MessageInfo;

Fields

dynamicMessageOne through dynamicMessageFourteen

Point to the dynamic messages. These messages are set by calling
NWSSetDynamicMessage.

messageCount

programMesgTable

NLM Programming

NWSNUT: Structures 861

MFCONTROL

Defines a menu

Service: NWSNUT

Defined In: nwsnut.h

Structure

typedef struct MFC_ {
 LONG headernum;
 LONG centerLine;
 LONG centerColumn;
 LONG maxoptlen;
 int (*action)(int option, void *parameter);
 LONG arg1;
 LONG arg2;
 LONG arg3;
 LONG arg4;
 LONG arg5;
 LONG arg6;
 LISTPTR menuhead;
 NUTInfo *nutInfo;
} MFCONTROL;

Fields

NOTE: Fields in this structure should not be changed directly. Use
NWSNUT functions for building and manipulating menus.

headernum

Contains the message identifier for the menu header (set by
NWSMenu).

centerLine

Contains the screen line the menu is centered on (set by NWSMenu).

centerCoumn

Contains the screen column the menu is centered on (set by
NWSMenu).

maxoptlen

action

Contains the routine to be called when an option is selected (set by
NWSMenu).

arg1

NWSNUT internal; cannot be set.

arg2

NLM Programming

NWSNUT: Structures 862

NWSNUT internal; cannot be set.

arg3

NWSNUT internal; cannot be set.

arg4

NWSNUT internal; cannot be set.

arg5

NWSNUT internal; cannot be set.

arg6

NWSNUT internal; cannot be set.

menuhead

Contains the list pointer structure for the menu list; cannot be set.

nutInfo

Contains NWSNUT context information; cannot be set.

NLM Programming

NWSNUT: Structures 863

NUTInfo

Contains NWSNUT context information

Service: NWSNUT

Defined In: nwsnut.h

Structure

typedef struct NUTInfo_ {
 PCB *portal[MAXPORTALS];
 LONG currentPortal;
 LONG headerHeight;
 LONG waitFlag;
 LISTPTR listStack[MAXLISTS];
 LISTPTR saveStack[SAVELISTS];
 LONG nextAvailList;
 LIST *head, *tail;
 int (*defaultCompareFunction)(LIST *el1,
 LIST *el2);
 void (*freeProcedure)(void *memoryPointer);
 void (*interruptTable)[MAXFUNCTIONS];
 LONG functionKeyStatus[MAXACTIONS];
 MessageInfo messages;
 LONG helpContextStack[MAXHELP];
 LONG currentPreHelpMessage;
 int freeHelpSlot;
 LONG redisplayFormFlag;
 LONG preHelpPortal;
 short helpActive;
 short errorDisplayActive;
 LONG helpPortal;
 LONG waitPortal;
 LONG errorPortal;
 void *resourceTag;
 void *screenID;
 BYTE *helpScreens;
 int helpOffset;
 LONG helpHelp;
 void *allocChain;
 LONG version;
 LONG MyNutInfoStuff[10];
 LONG moduleHandle;
 void *customData;
 void (*customDataRelease)(void *theData,
 struct NUTInfo_ *thisStructure);
 LONG displayErrorLabel;
} NUTInfo;

Fields

NLM Programming

NWSNUT: Structures 864

portal

NWSNUT internal; cannot be set

currentPortal

NWSNUT internal; cannot be set

headerHeight

NWSNUT internal; cannot be set

waitFlag

NWSNUT internal; cannot be set

listStack

NWSNUT internal; cannot be set

saveStack

Points to a stack of lists saved with NWSSaveList. To restore a saved
list, call NWSRestoreList.

nextAvailList

NWSNUT internal; cannot be set

head

NWSNUT internal; cannot be set

tail

NWSNUT internal; cannot be set

defaultCompareFunction

Points to a default compare function used by NWSNUT to sort lists
(that is, the routine that is used by NWSSortList). This function can be
obtained by calling NWSGetDefaultCompare, and set by calling
NWSSetDefaultCompare.

freeProcedure

NWSNUT internal; cannot be set

interruptTable

Points to the interrupt procedures enabled by
NWSEnableInterruptKey. A list of enabled interrupt keys can be
saved by calling NWSSaveInterruptList. A list of interrupt keys can be
activated by calling NWSEnableInterruptList.

functionKeyStatus

Indicates whether function keys are enabled. The following functions
control function key status:

NWSDisableAllFunctionKeys

NWSDisableFunctionKey

NWSEnableAllFunctionKeys

NWSEnableFunctionKey

NWSEnableFunctionKeyList

NLM Programming

NWSNUT: Structures 865

NWSSaveFunctionKeyList

messages

Contains the MessageInfo structure that holds message information for
your NLM. NWSInitializeNut sets the programMesgTable field of
MessageInfo to the value of the messageTable parameter. If messageTable
is NULL, the message table is loaded in the current NLM language of
the OS. For a further information about the MessageInfo structure, see
NWSSetDynamicMessage.

helpContextStack

Saves help context for your NLM. To save a context to the stack, call
NWSPushHelpContext; to remove a context from the stack, call
NWSPopHelpContext. The last help context pushed onto the help
stack is displayed when F1 is pressed.

currentPreHelpMessage

Contains the identifier set by NWSDisplayPreHelp.

freeHelpSlot

NWSNUT internal; cannot be set

redisplayFormFlag

NWSNUT internal; cannot be set

preHelpPortal

NWSNUT internal; cannot be set

helpActive

NWSNUT internal; cannot be set

errorDisplayActive

NWSNUT internal; cannot be set

helpPortal

NWSNUT internal; cannot be set

waitPortal

NWSNUT internal; cannot be set

errorPortal

NWSNUT internal; cannot be set

resourceTag

Set by NWSInitializeNut to the value of the resourceTag parameter.

screenID

NWSNUT internal; cannot be set

helpScreens

Points to the help file for your NLM. It is set by NWSInitializeNut to
the value of the helpScreens parameter. If helpScreens is NULL, the help
file is loaded in the current NLM language of the OS.

helpOffset

NLM Programming

NWSNUT: Structures 866

NWSNUT internal; cannot be set

helpHelp

NWSNUT internal; cannot be set

allocChain

NWSNUT internal; cannot be set

version

Set by NWSInitializeNut to CURRENT_NUT_VERSION, as defined
in NWSNUT.H.

MyNutInfoStuff

NWSNUT internal; cannot be set

NWSNUT internal; cannot be set

moduleHandle

NWSNUT internal; cannot be set

customData

Contains custom data to be passed within the NUTInfo structure. To
obtain this field, call NWSGetHandleCustomData; to set it, call
NWSSetHandleCustomData.

customDataRelease

Points to the function used to release memory allocated to customData.
To obtain this field, call NWSGetHandleCustomData; to set it, call
NWSSetHandleCustomData.

displayErrorLabel

Indicates whether NWSDisplayErrorCondition and
NWSDisplayErrorText displays NLM version information. The
default value for this field is 1, causing version information to be
displayed. To hide version information, call
NWSSetErrorLabelDisplayFlag . This function can be called again to
reset the flag to its original value.

NLM Programming

NWSNUT: Structures 867

PCB

Defines a portal

Service: NWSNUT

Defined In: nwsnut.h

Structure

typedef struct PCB_ {
 LONG frameLine;
 LONG frameColumn;
 LONG frameHeight;
 LONG frameWidth;
 LONG virtualHeight;
 LONG virtualWidth;
 LONG cursorState;
 LONG borderType;
 LONG borderAttribute;
 LONG saveFlag;
 LONG directFlag;
 LONG headerAttribute;
 LONG portalLine;
 LONG portalColumn;
 LONG portalHeight;
 LONG portalWidth;
 LONG virtualLine;
 LONG virtualColumn;
 LONG cursorLine;
 LONG cursorColumn;
 LONG firstUpdateFlag;
 BYTE *headerText;
 BYTE *headerText2;
 BYTE *virtualScreen;
 BYTE *saveScreen;
 void *screenID;
 struct NUTInfo_ *nutInfo;
 LONG sequenceNumber;
 LONG markForReposition;
 LONG DBCSAction;
 LONG borderPalette;
 /* scroll bar oriented stuff */
 LONG showScrollBars;
 LONG lastLine;
 LONG longestLineLen;
 LONG verticalScroll;
 LONG horizontalScroll;
 LONG oldVertical;
 LONG oldHorizontal;
} PCB;

NLM Programming

NWSNUT: Structures 868

Fields

NOTE: Fields in this structure should not be changed directly. Use
NWSNUT functions for creating and manipulating portals.

frameLine

Contains the top-most line of the portal. Set when the portal is created.

frameColumn

Contains the left-most column of the portal. Set when the portal is
created.

frameHeight

Contains the frame height in lines. Set when the portal is created.

frameWidth

Contains the frame width in columns. Set when the portal is created.

virtualHeight

Contains the virtual height of the portal in lines. Set by calling
NWSCreatePortal.

virtualWidth

Contains the virtual width of the portal in columns. Set by calling
NWSCreatePortal.

cursorState

Set when the cursor is enabled (see NWSDisablePortalCursor and
NWSEnablePortalCursor).

borderType

Contains the type of the portal border. Set by calling
NWSCreatePortal.

borderAttribute

Contains the attribute for the portal border. Set by calling
NWSCreatePortal.

saveFlag

Indicates whether the screen area beneath the portal has been saved. If
this flag is set to SAVE, the screen area is redisplayed when the portal
is destroyed. This flag is set by NWSCreatePortal.

directFlag

Indicates whether to write to the physical or virtual display area of the
portal. If set to DIRECT, NWSNUT writes to the physical display area
(defined by portalHeight, portalWidth, portalLine and portalColumn). If set
to VIRTUAL, NWSNUT writes to the virtual display area (defined by
virtualHeight, virtualWidth, virtualLine, and virtualColumn). This flag is
set by NWSCreatePortal.

headerAttribute

NLM Programming

NWSNUT: Structures 869

Contains the screen attribute for the header. Set by calling
NWSCreatePortal.

portalLine

Contains the top-most line of the physical display area within the
frame (the area that can be written to).

portalColumn

Contains the left-most column of the physical display area within the
frame (the area that can be written to).

portalHeight

Contains the number of lines in the physical display area within the
frame (the area that can be written to).

portalWidth

Contains the number of columns in the physical display area within
the frame (the area that can be written to).

virtualLine

Contains the top-most line of the virtual portal. Set by calling
NWSCreatePortal.

virtualColumn

Contains the left-most column of the virtual portal. Set by calling
NWSCreatePortal.

cursorLine

Contains the line that the cursor is on. The cursor position can be
specified by calling NWSPositionPortalCursor.

cursorColumn

Contains the column that the cursor is on. The cursor position can be
specified by calling NWSPositionPortalCursor.

firstUpdateFlag

NWSNUT internal. Cannot be set

headerText

Points to the text for the header. Set by calling NWSCreatePortal.

headerText2

NWSNUT internal. Cannot be set

virtualScreen

Contains the data written to the virtual display area. This field is set by
the various functions that create portals.

saveScreen

Points to the screen area that has been saved if saveFlag has been set.

screenID

NWSNUT internal. Cannot be set.

nutInfo

NLM Programming

NWSNUT: Structures 870

Contains NWSNUT context information.

sequenceNumber

NWSNUT internal. Cannot be set.

markForReposition

NWSNUT internal. Cannot be set.

DBCSAction

NWSNUT internal. Cannot be set.

borderPalette

Contains the palette used for the border. Set by calling
NWSCreatePortal.

showScrollBars

NWSNUT internal. Cannot be set.

lastLine

NWSNUT internal. Cannot be set.

longestLineLen

NWSNUT internal. Cannot be set.

verticalScroll

NWSNUT internal. Cannot be set.

horizontalScroll

NWSNUT internal. Cannot be set.

oldVertical

NWSNUT internal. Cannot be set.

oldHorizontal

NWSNUT internal. Cannot be set.

NLM Programming

NWSNUT: Structures 871

PROCERROR

Associates a return value with an error message

Service: NWSNUT

Defined In: nwsnut.h

Structure

typedef struct PCERR_ {
 int ccodeReturned;
 int errorMessageNumber;
} PROCERROR;

Fields

ccodeReturned

Contains the completion code for the error.

errorMessageNumber

 Contains the message number for the error.

Remarks

This structure is used by NWSDisplayErrorCondition.

NLM Programming

NWSNUT: Structures 872

Screen Handling

NLM Programming

 873

Screen Handling: Guides

Screen Handling: Concept Guide

In the NetWare® 3.x and 4.x environments, Screen Handling Services
enable you to manage the special features of the server's logical screens.
These special features include the ability to create new screens with a
variety of different characteristics, manipulate screen cursors, specify which
screen is to be used when screen I/O is performed, and so on. These
functions supplement the device I/O functions, first-level operating system
I/O functions, and second-level stream I/O functions, all of which can
perform screen I/O.

General Information

Screen Types

Screen Handling Function List

Creating/Destroying Screens

Creating Screens

Screen Names

Screen Attributes

Initial Screen Attribute Settings

Changing Screen Attributes

Type-Ahead and Command History Buffers

Destroying Screens

Screen I/O

Performing Screen I/O

Additional Links

Screen Handling: Functions

NLM Programming

Screen Handling: Guides 874

Screen Handling: Concepts

Automatic Screen Destruction

If AUTO_DESTROY_SCREEN is set, the screen is destroyed when the NLM
terminates. If this attribute is not set, the screen is not destroyed when the
NLM terminates until the "Press any key to close screen" message is
responded to.

Parent Topic: Screen Attributes

Changing Screen Attributes

A screen's attributes can be changed with the following functions:

SetAutoScreenDestructionMode

SetCtrlCharCheckMode

SetCursorCouplingMode

The POP_UP_SCREEN attribute cannot be changed.

Parent Topic: Creating Screens

Control-Character Checking

If DONT_CHECK_CTRL_CHARS is set, control characters <Ctrl><C> and
<Ctrl><S> are not checked for. <Ctrl><C> terminates an NLM abnormally
(using the abort function), and <Ctrl><S> pauses output (output can be
resumed by pressing any key).The following control characters are
recognized whether or not control-character checking is enabled:

Tab

Carriage return

Linefeed

Backspace

Bell

Parent Topic: Screen Attributes

NLM Programming

Screen Handling: Concepts 875

Creating Screens

CreateScreen creates a screen. In addition to the screen's actual contents
(display), a screen is composed of a screen name, a set of screen attributes
(characteristics), a command history buffer, and a type-ahead buffer.

Related Topics

Screen Names

Screen Attributes

Initial Screen Attribute Settings

Changing Screen Attributes

Type-Ahead and Command History Buffers

Cursor Coupling

If UNCOUPLED_CURSORS is set, cursor coupling is disabled. The input
and output cursors for the specified screen occupy separate positions on the
screen. The position of the input cursor indicates the starting column and
row position on the screen where the blinking cursor is located when a
function that takes input from the keyboard is called. The output cursor
indicates the starting column and row position on the screen where the
output goes when a function that writes to the screen is called. When the
cursors are uncoupled, the position of one cursor can be changed without
affecting the other cursor's position.

When cursor coupling is enabled, the input and output cursors for the
specified screen always occupy the same position. In effect, there is only one
cursor for the screen.

Parent Topic: Screen Attributes

Destroying Screens

All of the NLM screens (except the System Console Screen or a screen
inherited from another NLM) are destroyed when the NLM terminates. An
NLM can call DestroyScreen to dispose of a screen at any time.

Initial Screen Attribute Settings

By default, an NLM has one screen for its exclusive use when it begins. This
screen, if it exists, is called the initial screen. The initial attribute settings for

NLM Programming

Screen Handling: Concepts 876

the initial screen are as follows:

The screen is not destroyed when the NLM terminates until a key is
pressed.

Control-character checking is enabled.

The screen is not a popup screen.

Cursor coupling is enabled.

If the SCREENNAME directive specifies "System Console" or "Default," the
initial screen can be the System Console Screen. The initial attribute settings
for the System Console Screen are as follows:

The screen is not destroyed when the NLM terminates.

Control-character checking is disabled.

The screen is not a popup screen.

Cursor coupling is enabled.

Any input attempted from the System Console Screen causes an error. If the
NLM calls any screen input function while the System Console Screen is the
current screen, the function returns an error (-1).

An NLM can call the CreateScreen function to create other screens. If a
screen is created with CreateScreen, then the attributes are specified by the
attributes parameter.

Parent Topic: Creating Screens

Performing Screen I/O

In the NetWare 4.x environment, most functions that deal with a screen
implicitly specify a target screen, although a few functions explicitly specify
the screen.

When a screen is implicitly specified, the current screen is the target
screen. Functions involving screen operations process I/O to and from
the current screen.

 All threads in a thread group have the same screen context. That is, all
screens within a thread group access the current screen.

A screen handle is used when explicitly specifying a target screen.

Any I/O done by a thread causes an implicit thread switch. The thread
switch occurs before the actual I/O is processed. To ensure that the I/O
from a thread that is part of a thread group goes to the correct screen, all
I/O should be performed in critical sections of code. Critical code (bracketed

NLM Programming

Screen Handling: Concepts 877

between the EnterCritSec and ExitCritSec functions) prevents implicit
thread switching from taking place.

Keyboard Input

For each screen, only one thread can wait on keyboard input from a given
screen at a time. Any other thread that attempts input is blocked until the
keyboard is free.

Screen Output

Any number of threads can do output to a single screen at a time. All output
functions in the NetWare API usually complete their output before an
output function called from another thread is allowed to write to the screen.
The exception to this is a single call to a Stream I/O function (such as printf)
that causes more data to be output to the screen than can fit in a Streams
buffer: (default buffer size: 512 bytes). This means that, in general, output
from multiple threads is not scrambled together.

Popup Screens

If POP_UP_SCREEN is set, the screen is a popup screen. (A popup screen
automatically overlays the current screen.) If the popup screen is still
displayed when DestroyScreen or DropPopUpScreen is called, then the
screen that was overlayed is redisplayed.

Parent Topic: Screen Attributes

Screen Attributes

Each screen has a set of attributes that specify the screen's behavior. The
supported screen attributes are as follows:

AUTO_DESTROY_SCREEN (see Automatic Screen Destruction)

DONT_CHECK_CTRL_CHARS (see Control-Character Checking)

POP_UP_SCREEN (see Popup Screens)

UNCOUPLED_CURSORS (see Cursor Coupling)

Parent Topic: Creating Screens

Screen Handling Function List

CheckIfScreenDisplayed

NLM Programming

Screen Handling: Concepts 878

Checks to see if the screen is active.

clrscr

Disables the cursor and clears the current screen.

ConsolePrintf

Writes a message to the System Console Screen.

CopyFromScreenMemory

Copies a rectangular region from screen memory.

CopyToScreenMemory

Copies a rectangular region into screen memory.

CreateScreen

Opens a new screen.

DestroyScreen

Closes a screen.

DisplayInputCursor

Enables the input cursor for the current screen.

DisplayScreen

Displays the specified screen.

DropPopUpScreen

Redisplays the screen that the popup screen covered.

GetCurrentScreen

Retrieves the screen handle of the current screen.

GetCursorCouplingMode

Returns whether cursor coupling is enabled or disabled for the current
screen.

GetCursorShape

Returns the start and end scan line for the cursor.

GetCursorSize

Returns the maximum size of the cursor.

GetPositionOfOutputCursor

Returns the output cursor's current row and column position for the
current screen.

__GetScreenID

Returns the screen ID for a screen handle.

GetScreenInfo

Returns the screen handle associated with the specified screen.

GetSizeOfScreen

Returns the number of rows and columns of the current screen.

NLM Programming

Screen Handling: Concepts 879

gotoxy

Positions the output cursor on the current screen.

HideInputCursor

Disables the input cursor for the current screen.

IsColorMonitor

Determines if a color monitor is being used.

PressAnyKeyToContinue

Writes the message <Press any key to continue> to the current screen.

PressEscapeToQuit

Writes the message <Press Escape to continue> to the current screen.

ScanScreens

Returns the screen handle (a C Library structure) associated with the
specified screen.

ScrollScreenRegionDown

Scrolls down a portion of the current screen (a set of contiguous rows).

ScrollScreenRegionUp

Scrolls up a portion of the current screen (a set of contiguous rows).

SetAutoScreenDestructionMode

Enables or disables autoscreen destruction for the current screen.

SetCtrlCharCheckMode

Enables or disables control-character checking for the current screen.

SetCurrentScreen

Sets the current screen.

SetCursorCouplingMode

Enables or disables input and output cursor coupling for the current
screen.

SetCursorShape

Sets the shape of the cursor.

SetInputAtOutputCursorPosition

Sets the input cursor position to the output cursor position.

SetOutputAtInputCursorPosition

Sets the output cursor position to the input cursor position.

SetPositionOfInputCursor

Sets the input cursor position on the current screen.

SetScreenRegionAttribute

Sets the display adapter attribute bytes for a region of the current
screen (contiguous set of rows).

wherex

NLM Programming

Screen Handling: Concepts 880

Returns the input cursor horizontal position.

wherey

Returns the input cursor vertical position.

Screen Names

Screen names can be specified with the linker directive SCREENNAME or
by CreateScreen. The SCREENNAME directive can be used to specify the
"initial" screen name, the name of the first screen that is automatically
created when the NLM is loaded. If no screen name is specified, then the
NLM description specified by the linker directive FORMAT is used. If the
NLM creates other screens, the names of these screens are specified in the
CreateScreen function using the screenName parameter.

A set of screen names that have special meanings can be used with the
SCREENNAME directive and in the CreateScreen function.

The following screen names are special only if used with the
SCREENNAME directive:

None --- (Case insensitive)

If the SCREENNAME directive specifies "None," the NLM has no
screens when it is started.

Default --- (Case insensitive)

If the SCREENNAME directive specifies "Default," the initial screen of
the NLM is the one that was current when the NLM was started. If the
NLM is started from the system console, then the System Console
Screen is considered current. If the NLM is spawned from another
NLM, the current screen of the spawning NLM is used.

Other screen names are special when used either with the SCREENNAME
directive or with the CreateScreen function. These include:

System Console --- (Case sensitive)

If "System Console" is specified, the System Console Screen is used.

Screen names that start with two underscores (_ _)

These screen names are reserved.

Parent Topic: Creating Screens

Screen Types

Multiple screens can exist on a server running NetWare 3.x or 4.x. The
screen types are described below:

NLM Programming

Screen Handling: Concepts 881

System Console Screen

Server console commands are entered at the command line of the
System Console Screen. This screen is always present.

Debug Screen

The Debug Screen is accessed from within an assembly or C program
or through a special key sequence. This screen is hidden unless the
server is at a breakpoint.

Router Screen

This screen displays whenever the TRACK ON console command is
executed.

NLM™ Screens

An NLM can have zero or more regular or popup screens. Popup
screens, used to present instructional or error messages, are overlaid
on regular screens. In some cases, an NLM may not require a screen (a
library NLM, for example). An NLM may also write to the System
Console Screen or to the screen of another NLM (if the other NLM
cooperates).

Switch between these screens in the following ways:

Use Alt+Esc to switch from one screen to another.

Use Ctrl+Esc to display a menu of screens from which a screen can be
selected.

Type-Ahead and Command History Buffers

Each screen has its own type-ahead buffer and command history buffer.

The type-ahead buffer holds input from the keyboard before it is
processed by the NLM.

The command history buffer saves strings entered from the keyboard.
(The string-oriented input functions support this feature.) Previously
entered strings can be retrieved using the Up- and Down-arrow keys and
then can be edited.

Parent Topic: Creating Screens

NLM Programming

Screen Handling: Concepts 882

Screen Handling: Functions

NLM Programming

Screen Handling: Functions 883

CheckIfScreenDisplayed

Checks whether a screen is active

Local Servers: either blocking or nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int CheckIfScreenDisplayed (
 int screenHandle,
 LONG waitFlag);

Parameters

screenHandle

(IN) Specifies the screen handle of the screen to check if active.

waitFlag

(IN) Specifies whether to wait for the screen to become active
(displayed).

Return Values

When waitFlag = TRUE (1):

0 = Thread did not sleep.

1 = Thread did sleep.

When waitFlag = FALSE (0):

0 = Screen is not active.

1 = Screen is active.

If an error occurs, this function returns a value of -1 and errno is set to:

22 (0x1
6)

EBADHN
DL

Bad screen handle was passed in.

Remarks

The active screen is the screen currently being displayed on the server

NLM Programming

Screen Handling: Functions 884

The active screen is the screen currently being displayed on the server
monitor.

The CheckIfScreenDisplayed function serves one of the following two
purposes based on the value of the waitFlag parameter:

When waitFlag is TRUE, this function suspends the calling thread until
the screen specified by screenHandle is active (displayed). In this case, it
returns TRUE if the calling thread slept and FALSE if the calling
thread did not sleep (the screen was already active).

When waitFlag is FALSE, this function merely checks to see if the
screen specified byscreenHandle is active.

Blocking InformationThis function is nonblocking unless waitFlag is set to
TRUE.

See Also

DisplayScreen, GetCurrentScreen

NLM Programming

Screen Handling: Functions 885

clrscr

Disables the cursor and clears the current screen (implemented for
NetWare® 3.0 and above)

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

void clrscr (void);

Return Values

None

If an error occurs, errno is set to:

23 (0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

The clrscr function clears the current screen and places the cursor
(invisibly) in the upper left-hand corner (at position 0,0).

See Also

DisplayInputCursor

Example

clrscr

#include <stdlib.h>
#include <nwconio.h>
#include <stdio.h>
main()
{
 printf("type any character...");

NLM Programming

Screen Handling: Functions 886

 getch();
 clrscr();
 printf("this should be on a clear screen\r\n");
 getch(); /* getch will reenable cursor */
}

NLM Programming

Screen Handling: Functions 887

ConsolePrintf

Writes a message to the System Console Screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

void ConsolePrintf (
 const char *format,
 ...);

Parameters

format

(IN) Points to the format control string.

Return Values

None

Remarks

The ConsolePrintf function writes output under control of the argument
format. The format string is described under the description of the printf
function.

However, the format string has several limitations from that described
under printf. The limitations are:

Asterisk (*) is not allowed for the width or precision specification.

No type length specifiers are allowed.

The only format control flag allowed is "-", and the following
conversions are not allowed:

e E f F g G i n p X

The \n character only performs a line-feed (with printf, \n performs

NLM Programming

Screen Handling: Functions 888

carriage-return/line-feed.

See Also

printf

NLM Programming

Screen Handling: Functions 889

CopyFromScreenMemory

Copies a rectangular region from screen memory

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

void CopyFromScreenMemory (
 int height,
 int width,
 BYTE *Rect,
 int beg_x,
 int beg_y);

Parameters

height

(IN) Specifies the number of rows in the rectangular region.

width

(IN) Specifies the number of columns in the rectangular region.

Rect

(OUT) Receives the screen memory data.

beg_x

(IN) Specifies the starting column in the rectangular region.

beg_y

(IN) Specifies the starting row in the rectangular region.

Return Values

None

Remarks

The CopyFromScreenMemory function copies a rectangular region,
whose size is specified by width and height, from screen memory, starting
from column beg_x and row beg_y.

Ensure that:

NLM Programming

Screen Handling: Functions 890

beg_x + width is less than the number of columns on the screen
(currently always 80).

beg_y + height is less than the number of rows on the screen (currently
always 25).

The rectangle is clipped to the screen's borders if it is too big.

If either beg_x or beg_y is less than 0 or greater than either
SCREEN_COLUMNS or SCREEN_ROWS, the function returns without
writing anything to the array Rect.

The size of the array Rect must be:

(2 * width * height)

The array Rect is an array of char attribute pairs:

 struct cell
 {
 char charValue;
 char attribute;
 };

See Also

CopyToScreenMemory

NLM Programming

Screen Handling: Functions 891

CopyToScreenMemory

Copies a rectangular region into screen memory

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

void CopyToScreenMemory (
 int height,
 int width,
 BYTE *Rect,
 int beg_x,
 int beg_y);

Parameters

height

(IN) Specifies the number of rows in the rectangular region.

width

(IN) Specifies the number of columns in the rectangular region.

Rect

(IN) Receives the data to be copied into screen memory.

beg_x

(IN) Specifies the starting column in the rectangular region.

beg_y

(IN) Specifies the starting row in the rectangular region.

Return Values

None

Remarks

The CopyToScreenMemory function copies a rectangular region, whose
size is specified by width and height, into screen memory, starting from
column beg_x and row beg_y.

Ensure that:

NLM Programming

Screen Handling: Functions 892

beg_x + width is less than the number of columns on the screen
(currently always 80).

beg_y + height is less than the number of rows on the screen (currently
always 25).

The rectangle is clipped to the screen's borders if it is too big.

If either beg_x or beg_y is less than 0 or greater than either
SCREEN_COLUMNS or SCREEN_ROWS, the function returns without
doing anything to the screen.

The size of the array Rect must be:

(2 * width * height)

The array Rect is an array of char attribute pairs:

 struct cell {
 char charValue;
 char attribute;
 };

See Also

CopyFromScreenMemory

NLM Programming

Screen Handling: Functions 893

CreateScreen

Creates a new screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int CreateScreen (
 char *screenName,
 BYTE attributes);

Parameters

screenName

(IN) Receives the name of the new screen.

attributes

(IN) Specifies the screen attributes.

Return Values

Returns the screen handle if successful or EFAILURE if an error occurs. If
a NULL value is returned, the screen handle cannot be returned and errno
is set to ENOMEM.

Remarks

A new screen is created for use by the NLM™ application. The new
screen is displayed and made the current screen only if no other screens
exist for the NLM when this call is made; otherwise, the current and
displayed screens remain unchanged.

If a screen has the DONT_AUTO_ACTIVATE attribute set, it is not
automatically displayed when it is created, even if it is the only screen for
the NLM.

The supported screen attributes are:

DONT_AUTO_ACTIVAT
E

Prevents auto activation when screens are
created and no other screens exist.

NLM Programming

Screen Handling: Functions 894

DONT_CHECK_CTRL_C
HARS

Turns off Ctrl-C and Ctrl-S processing.

AUTO_DESTROY_SCRE
EN

Prevents the "Press any key to close"
message.

POP_UP_SCREEN Makes the screen a pop up screen.

UNCOUPLED_CURSOR
S

Sets distinct input and output cursors.

A popup screen automatically overlays the currently displayed screen. If
the popup screen is still displayed when the DestroyScreen function or
DropPopUpScreen (for the popup screen) function is called, the screen
that was overlayed is redisplayed.

If screenName is "System Console" (case sensitive), a new screen is not
created, rather the returned screen handle refers to the System Console
Screen. In this case, the attributes should be set to zero. Input is not
allowed from the System Console Screen. (All the input functions return
EFAILURE with errno set to EWRNGKND.)

NOTE: If you pass a valid OS screen ID (usually obtained by other
functions in this module) in the screenName parameter, CreateScreen
creates a C Library screen handle from the given screen ID.

See Loading an NLM from an NLM: Example.

See Also

DestroyScreen, DisplayScreen, GetCurrentScreen, __GetScreenID,
GetScreenInfo, ScanScreens, SetCurrentScreen

Example

CreateScreen

#include <nwconio.h>
char screenName[] = "NLM x New Screen";
int screenHandle;
BYTE attributes = 0;
screenHandle = CreateScreen(screenName, attributes);

NLM Programming

Screen Handling: Functions 895

DestroyScreen

Closes a screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int DestroyScreen (
 int screenHandle);

Parameters

screenHandle

(IN) Specifies the screen handle of the screen being closed.

Return Values

0 (0x0
0)

ESUCCES
S

Successful.

2
2

(0x1
6)

EBADHN
DL

Bad screen handle was passed in.

Remarks

DestroyScreen closes the screen specified by the screenHandle parameter.
The following conditions determine which screen is displayed next:

If the screenHandle parameter specifies the current screen, then a new
current screen is set if the NLM has any screens left.

If the screenHandle parameter specifies the screen that is displayed,
then another one of the screens of the NLM is displayed if any are left.
Otherwise, the System Console Screen is displayed.

If the screenHandle parameter specifies a popup screen that is
displayed, the screen that was covered by the popup screen is
redisplayed if it still exists. Otherwise, the System Console Screen is
displayed.

NLM Programming

Screen Handling: Functions 896

See Also

CreateScreen

NLM Programming

Screen Handling: Functions 897

DisplayInputCursor

Enables the input cursor for the current screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int DisplayInputCursor (void);

Return Values

0 (0x00) ESUCCESS Successful.

1
9

(0x13) EWRKGK
ND

Current screen is the System Console
Screen. Input is not allowed.

2
3

(0x17) ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

This function makes the input cursor of the current screen visible when
the screen is next displayed. If another thread is waiting on the keyboard,
this function waits until the keyboard is free.

See Also

HideInputCursor

NLM Programming

Screen Handling: Functions 898

DisplayScreen

Displays the specified screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int DisplayScreen (
 int screenHandle);

Parameters

screenHandle

(IN) Specifies the screen handle of the screen to display; if NULL is
specified and the current screen is a popup screen, then a
DropPopUpScreen is done on the current screen.

Return Values

0 (0x00) ESUCCES
S

Successful.

2
2

(0x16) EBADHN
DL

Bad screen handle was passed in.

WARNING: An invalid screen handle is not guaranteed to return
EBADHNDL; it can also cause the server to abend. Always pass a
handle returned from CreateScreen or GetScreenInfo.

Remarks

In addition to displaying the specified screen, this function also makes
the specified screen the current screen.

If the screenHandle parameter specifies a popup screen:

The specified popup screen is displayed over the currently displayed
screen (original screen).

NLM Programming

Screen Handling: Functions 899

When the DropPopUpScreen or DestroyScreen function is called for
the popup screen, and the popup screen is displayed, the original
screen, if it still exists, is redisplayed. Otherwise, the System Console
Screen is displayed.

See Also

CheckIfScreenDisplayed, DestroyScreen

NLM Programming

Screen Handling: Functions 900

DropPopUpScreen

Redisplays the screen that the popup screen covered

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int DropPopUpScreen (
 int screenHandle);

Parameters

screenHandle

(IN) Specifies the screen handle of the popup screen.

Return Values

0 (0x00) ESUCCESS Successful.

22 (0x16) EBADHNDL Bad screen handle was
passed in.

105 (0x69) ERR_NOT_A_POPUP_SC
REEN

WARNING: An invalid screen handle is not guaranteed to return
EBADHANDLE; it can also cause the server to abend. Always pass a
handle returned from CreateScreen or GetScreenInfo.

Remarks

This function redisplays the screen the popup screen covered if the
popup screen is the displayed screen when this function is called and the
covered screen still exists. In addition, the screen that was covered is
made current if it is a screen owned by the calling NLM.

See Also

DestroyScreen, DisplayScreen

NLM Programming

Screen Handling: Functions 901

GetCurrentScreen

Returns the screen handle of the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int GetCurrentScreen (void);

Return Values

This function returns the screen handle of the current screen if successful.

If an error occurs this function returns NULL, and errno is set to:

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

GetCurrentScreen returns the handle of the current screen.

NOTE: The handle returned pertains only to the current screen of the
current NLM. It is not necessarily the handle of the screen displayed on
the console.

See Also

SetCurrentScreen

NLM Programming

Screen Handling: Functions 902

GetCursorCouplingMode

Returns whether cursor coupling is enabled or disabled for the current
screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

BYTE GetCursorCouplingMode (void);

Return Values

This function returns the cursor coupling mode if successful; otherwise, it
returns EFAILURE.

If an error occurs, errno is set to:

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

This function returns TRUE if cursor coupling is enabled, and FALSE if
cursor coupling is disabled for the current screen.

See Also

SetCursorCouplingMode

Example

GetCursorCouplingMode

#include <nwconio.h>
BYTE newMode;
newMode = GetCursorCouplingMode();

NLM Programming

Screen Handling: Functions 903

GetCursorShape

Returns the start and end scan line for the cursor

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

WORD GetCursorShape (
 BYTE *startline,
 BYTE *endline);

Parameters

startline

(OUT) Receives the first cursor scan line.

endline

(OUT) Receives the last cursor scan line.

Return Values

This function returns the scan line for the cursor.

Remarks

The GetCursorSize function returns the cursor shape as specified by the
startline and endline parameters.

See Also

GetCursorSize, SetCursorShape

Example

GetCursorShape

#include <nwconio.h>
WORD scanline;
BYTE startline;
BYTE endline;

NLM Programming

Screen Handling: Functions 904

BYTE endline;
scanline = GetCursorShape (&startline, & endline);

NLM Programming

Screen Handling: Functions 905

GetCursorSize

Returns the cursor size

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

WORD GetCursorSize (
 BYTE firstline,
 BYTE lastline);

Parameters

firstline

(OUT) Receives the first cursor scan line.

lastline

(OUT) Receives the last cursor scan line.

Return Values

This function returns the cursor size.

Remarks

The GetCursorSize function returns the maximum (lastline) and
minimum (firstline) values that the cursor scan lines can be set to.

See Also

SetCursorShape

Example

GetCursorSize

#include <nwconio.h>
WORD scanline;
BYTE firstline;
BYTE lastline;

NLM Programming

Screen Handling: Functions 906

BYTE lastline;
scanline = GetCursorSize (&firstline, & lastline);

NLM Programming

Screen Handling: Functions 907

GetPositionOfOutputCursor

Returns the output cursor's current row and column position for the current
screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int GetPositionOfOutputCursor (
 WORD *row,
 WORD *column);

Parameters

row

(OUT) Receives the row on which the cursor is positioned (first row is
0).

column

(OUT) Receives the column on which the cursor is positioned (first
column is 0).

Return Values

0 (0x0
0)

ESUCCES
S

Successful.

2
3

(0x1
7)

ENO_SCR
NS

No screens were open.

Remarks

This function returns the output cursor's position on the current screen; it
also returns the input cursor's position if cursor coupling is enabled for
the current screen.

See Also

gotoxy

NLM Programming

Screen Handling: Functions 908

gotoxy

NLM Programming

Screen Handling: Functions 909

__GetScreenID

Returns the screen ID for a screen handle

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int _ _GetScreenID (
 int screenHandle);

Parameters

screenHandle

(IN) Specifies a handle of a C Library Open Screen Structure.

Return Values

The function returns the OS screen ID related to the C Library screen.

Remarks

The value returned by this function can be passed to functions that take a
screen ID (such as NWSInitializeNut).

See Also

CreateScreen, GetScreenInfo, ScanScreens

NLM Programming

Screen Handling: Functions 910

GetScreenInfo

Returns the screen handle associated with the specified screen (appeared in
the NetWare 3.11 patch as MapScreenIDToHandle)

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int GetScreenInfo (
 int screenID,
 char *name,
 LONG *attrib);

Parameters

screenID

(IN) Specifies a screen ID (an OS structure).

name

(OUT) Specifies the name of the screen. Names of nonC Library
screens are also returned (for example, MONITOR.NLM's screen).

attrib

(OUT) Specifies the attributes of a given screen ID. If there is a valid C
Library screen handle associated with this screen ID, then the screen
handle's attributes are returned as well.

Return Values

This function returns the screen handle associated with the specified
screen. If the screen handle is nonzero, then it can be passed to functions
that take a C Library screen handle. If the function returns a NULL value,
there is no C Library equivalent of the specified screen. That is, the screen
was not opened by CreateScreen.

A return value of -1 indicates the screen ID was not a valid OS screen ID,
and errno is set to EBADHNDL.

WARNING: An invalid screen ID is not guaranteed to return
EBADHANDLE; it can also cause the server to abend.

NLM Programming

Screen Handling: Functions 911

Remarks

You can pass NULL values in any parameter.

The following are C Library settable attribute bits. These can be returned
for C Library screens.

DONT_CHECK_CTRL_C
HARS

Overrides the control characters (Ctrl+C,
Ctrl +S) and tab processing.

AUTO_DESTROY_SCRE
EN

Causes the <Press any key to close>
message.

POP_UP_SCREEN Sets screen to be a popup screen.

UNCOUPLED_CURSOR
S

Sets distinct and separate input and output
cursors.

The following attribute can be set bit if there is a related C Library screen:

HAS_A_CLIB_HANDLE

The following are OS attribute bits. These cannot be set using C Library
APIs.

_KEYBOARD_INPUT_ACTIVE

_PROCESS_BLOCKED_ON_KEYBOARD

_PROCESS_BLOCKED_ON_SCREEN

_INPUT_CURSOR_DISABLED

_SCREEN_HAS_TITLE_BAR

_NON_SWITCHABLE_SCREEN

See Also

CreateScreen, __GetScreenID, ScanScreens

NLM Programming

Screen Handling: Functions 912

GetSizeOfScreen

Returns the number of rows and columns of the current screen.

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int GetSizeOfScreen (
 WORD *height,
 WORD *width);

Parameters

height

(OUT) Receives the number of rows in the screen (first column is 0)

width

(OUT) Receives the number of columns in the screen (first column is 0)

Return Values

(0x00) ESUCCESS

Remarks

This function returns the size of the current screen. Currently all screens
are 25x80.

See Also

DisplayScreen

NLM Programming

Screen Handling: Functions 913

gotoxy

Positions the output cursor on the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

void gotoxy (
 WORD column,
 WORD row);

Parameters

column

(IN) Specifies the column on which to position the cursor.

row

(IN) Specifies the row on which to position the cursor.

Return Values

This function returns no value.

If an error occurs, errno is set to:

2
3

(0x1
7)

ENO_SCR
NS

No screens were open.

Remarks

The output cursor is positioned on the current screen. If cursor coupling
is enabled for the current screen, the input cursor is also positioned.

NOTE: The order of the row and column parameters is different from
all the other functions that take row and column arguments.

See Also

NLM Programming

Screen Handling: Functions 914

SetOutputAtInputCursorPosition, SetPositionOfInputCursor

Example

gotoxy

#include <stdlib.h>
#include <nwconio.h>
main()
{
 gotoxy(10,10);
 printf("A");
 gotoxy(50,10);
 printf("B");
 getch();
}

NLM Programming

Screen Handling: Functions 915

HideInputCursor

Disables the input cursor for the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int HideInputCursor (void);

Return Values

0 (0x0
0)

ESUCCESS Successful.

1
9

(0x1
3)

EWRNGK
ND

Input to System Console was attempted.

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

This function causes the input cursor to be invisible when the current
screen is displayed.

See Also

DisplayInputCursor, GetPositionOfOutputCursor,
SetPositionOfInputCursor

NLM Programming

Screen Handling: Functions 916

IsColorMonitor

Determines whether a color monitor is being used

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: Yes

Service: Screen Handling

Syntax

#include <nwconio.h>

void IsColorMonitor (void);

Return Values

This function returns a value of 1 if the machine is using a color monitor;
otherwise, it returns a value of 0.

NLM Programming

Screen Handling: Functions 917

MapScreenIDToHandle

See GetScreenInfo

NLM Programming

Screen Handling: Functions 918

PressAnyKeyToContinue

Writes the message <Press any key to continue> to the current
screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int PressAnyKeyToContinue (void);

Return Values

0 (0x0
0)

ESUCCESS Successful.

1
9

(0x1
3)

EWRNGK
ND

Input to System Console was attempted.

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

When a key is pressed, the <Press any key to continue> message
is cleared and normal screen activity resumes. The thread is blocked until
a key is pressed.

NOTE: If another thread causes the screen to scroll before a key is
pressed, the <Press any key to continue> message might not be
properly erased.

See Also

getch, PressEscapeToQuit

NLM Programming

Screen Handling: Functions 919

PressEscapeToQuit

Writes the message <Press Escape to quit or any key to
continue> to the current screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int PressEscapeToQuit (void);

Return Values

0 (0x0
0)

ESUCCESS Any key other than Escape was pressed.

1 Escape was pressed.

1
9

(0x1
3)

EWRNGK
ND

Input to System Console was attempted.

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

Pressing the Escape key clears the <Press Escape to quit or any key to
continue> message and the user can terminate the NLM depending on
the return value.

See Also

getch, PressAnyKeyToContinue

NLM Programming

Screen Handling: Functions 920

RingTheBell

Causes the console speaker to beep

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12 and above, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

void RingTheBell (void);

Return Values

This function does not return a value.

Remarks

This function can be repeated several times in a row, to increase the
duration of the beep.

Example

RingTheBell

#include <stdio.h>
#include <nwconio.h>
main()
{
 printf("\nError\n");
 RingTheBell();
}

NLM Programming

Screen Handling: Functions 921

ScanScreens

Returns a screen ID (a pointer to an OS screen structure) associated with the
specified screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int ScanScreens (
 int LastScreenID,
 char *name,
 LONG *attrib);

Parameters

LastScreenID

(IN) Specifies a screen ID obtained by a previous ScanScreens call (or
NULL to get the first screen ID).

name

(OUT) Specifies the name of the screen.

attrib

(OUT) Specifies the attributes of the given screen ID.

Return Values

This function returns the screen ID of the next screen on the list. If it
returns a NULL value, there are no more screen IDs, or an invalid screen
ID has been passed to the function, and errno is set to EBADHNDL.

Remarks

This function is used to get the next member on the list of the OS screen
IDs.

When calling this function, pass a NULL value to obtain the first screen
ID on the list. (Currently, it is always the system console's ID. However,
this might change in the future.)

You can also pass NULL values in the name and attrib parameters.

NLM Programming

Screen Handling: Functions 922

See Also

CreateScreen, MapScreenIDToHandle

Example

ScanScreens

/*
 This example demonstrates using the Screen ID/Screen Handle
 Conversion APIs. This program looks for all the screens
 in the system and then prints on those screens their
 names and attributes.
*/

#include <errno.h>
#include <nwtypes.h>
#include <nwconio.h>
#include <stdio.h>
#include <nwthread.h>
#define property (x) if (att & x) printf ("%-40s\n", #x)
main ()
{
 int sID;
 int sh;
 char buf[80];
 LONG attr;
 for (sID = NULL; sID = ScanScreens (sID, buf, &attr);)
 {
 sh = GetScreenInfo (sID, NULL, NULL);
 /* there is no CLIB equivalent? */
 if (!sh)
 sh = CreateScreen ((char*) sID, 0);
 /* let's create one */
 if (!sh)
 {
 ConsolePrintf ("errno: %d\n", errno);
 abort();
 }
 SetCurrentScreen (sh);
 gotoxy (1,1);
 printf ("This screen is %s with these attributes:\n\r", buf);
 property(HAS_A_CLIB_HANDLE);
 property(_KEYBOARD_INPUT_ACTIVE);
 property(_PROCESS_BLOCKED_ON_KEYBOARD);
 property(_PROCESS_BLOCKED_ON_SCREEN);
 property(_INPUT_CURSOR_DISABLED);
 property(_SCREEN_HAS_TITLE_BAR);
 property(_NON_SWITCHABLE_SCREEN);
 property(DONT_CHECK_CTRL_CHARS);

NLM Programming

Screen Handling: Functions 923

 property(AUTO_DESTROY_SCREEN);
 property(POP_UP_SCREEN);
 property(UNCOUPLED_CURSORS);
 DestroyScreen (sh);
 }
 /* getchar(); It abends if another process is doing input on this screen. */
}

NLM Programming

Screen Handling: Functions 924

ScrollScreenRegionDown

Scrolls down a portion of the current screen (a set of contiguous rows)

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int ScrollScreenRegionDown (
 int firstLine,
 int numberOfLines);

Parameters

firstLine

(IN) Specifies the row number of the first row in the set. The top row of
the screen is 0 (zero).

numberOfLines

(IN) Specifies the number of rows in the region (in set).

Return Values

0 (0x0
0)

ESUCCES
S

Successful.

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

This function scrolls a portion of the screen down. (The bottom line of the
region is replaced by the next-to-the-bottom line. The next-to-the-bottom
line is replaced by the line above it, and so on. Finally, the first line of the
region is cleared.) All of the lines on the screen that are not in the defined
region are not affected.

See Also

CopyToScreenMemory

NLM Programming

Screen Handling: Functions 925

CopyToScreenMemory, SetScreenRegionAttribute

NLM Programming

Screen Handling: Functions 926

ScrollScreenRegionUp

Scrolls up a portion of the current screen (a set of contiguous rows)

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int ScrollScreenRegionUp (
 int firstLine,
 int numberOfLines);

Parameters

firstLine

(IN) Specifies the row number of the first row in the set. The top row of
the screen is 0.

numberOfLines

(IN) Specifies the number of rows in region (in set).

Return Values

0 (0x0
0)

ESUCCES
S

Successful.

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

This function scrolls a portion of the screen up. (The top line of the region
is replaced by the next-to-the-top line. The next-to-the-top line is replaced
by the line below it, and so on. Finally, the bottom line of the region is
cleared.) All of the lines on the screen that are not in the defined region
are not affected.

See Also

CopyToScreenMemory

NLM Programming

Screen Handling: Functions 927

CopyToScreenMemory, SetScreenRegionAttribute

NLM Programming

Screen Handling: Functions 928

SetAutoScreenDestructionMode

Enables or disables auto-screen destruction for the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

BYTE SetAutoScreenDestructionMode (
 BYTE newMode);

Parameters

newMode

(IN) TRUE = Enable auto-screen destruction. FALSE = Disable
auto-screen destruction.

Return Values

This function returns the value of the old auto-screen destruction mode
setting.

If an error occurs, the function returns a value of -1, and errno is set to:

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

If auto-screen destruction is disabled for a particular screen while the
NLM is terminating, that screen remains open with the message <Press
any key to close screen >. The screen does not close and the
NLM does not continue with its termination until a key is pressed on that
screen.

NLM Programming

Screen Handling: Functions 929

SetCtrlCharCheckMode

Enables or disables control-character checking for the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

BYTE SetCtrlCharCheckMode (
 BYTE newMode);

Parameters

newMode

(IN) TRUE = Enable control-character checking. FALSE = Disable
control-character checking.

Return Values

This function returns the value of the old control-character check mode
setting.

If an error occurs, the function returns -1 and errno is set to:

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

Set the newMode parameter to TRUE if control characters are to be
checked for, and FALSE otherwise. The control characters to check for are
Ctrl+C and Ctrl+S.

Ctrl+C terminates the NLM abnormally (via the abort function).

Ctrl+S pauses output (pressing any key resumes output).

NLM Programming

Screen Handling: Functions 930

SetCurrentScreen

Sets the current screen of the thread group belonging to the running thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int SetCurrentScreen (
 int screenHandle);

Parameters

screenHandle

(IN) Specifies the screen handle of the screen to make current.

Return Values

0 (0x0
0)

ESUCCES
S

Successful.

2
2

(0x1
6)

EBANHN
DL

Bad screen handle was passed in.

Remarks

This function sets the screen specified by the screenHandle parameter as
the target of screen I/O functions. It does not change the displayed
screen.

See Loading an NLM from an NLM: Example.

See Also

CreateScreen, DestroyScreen, DisplayScreen

NLM Programming

Screen Handling: Functions 931

SetCursorCouplingMode

Enables or disables input and output cursor coupling for the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

BYTE SetCursorCouplingMode (
 BYTE newMode);

Parameters

newMode

(IN) TRUE = Enable cursor coupling. FALSE = Disable cursor
coupling.

Return Values

This function returns the value of the old cursor-coupling mode setting.

If an error occurs, the function returns a value of -1, and errno is set to:

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

When cursor coupling is disabled, the input and output cursors for the
specified screen occupy separate positions on the screen. The position of
the input cursor indicates the starting column/row position on the screen
where the blinking cursor is located when a function that takes input
from the keyboard is called. The output cursor indicates the starting
column/row position on the screen where the output goes when a
function that writes to the screen is called. The position of one cursor can
be changed without affecting the other cursor's position.

When cursor coupling is enabled, the input and output cursors for the
specified screen always occupy the same position. In effect, there is only
one cursor for the screen.

NLM Programming

Screen Handling: Functions 932

See Also

GetCursorCouplingMode

NLM Programming

Screen Handling: Functions 933

SetCursorShape

Sets the cursor shape

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

WORD SetCursorShape (
 BYTE startline,
 BYTE endline);

Parameters

startline

(IN) Specifies the first cursor scan line.

endline

(IN) Specifies the last cursor scan line.

Return Values

This function returns the old cursor shape.

Remarks

The SetCursorShape function sets the cursor shape as specified by the
startline and endline parameters.

See Also

GetCursorShape

NLM Programming

Screen Handling: Functions 934

SetInputAtOutputCursorPosition

Sets the input cursor position to the output cursor position

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int SetInputAtOutputCursorPosition (void);

Return Values

0 (0x0
0)

ESUCCESS Successful.

1
9

(0x1
3)

EWRNGK
ND

Input from the System Console was
attempted.

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

The input cursor position is set to the output cursor position on the
current screen. If another thread is waiting on the keyboard, the current
thread waits until the keyboard is free.

See Also

DisplayInputCursor, GetPositionOfOutputCursor, gotoxy,
HideInputCursor, SetOutputAtInputCursorPosition, wherex, wherey

NLM Programming

Screen Handling: Functions 935

SetOutputAtInputCursorPosition

Sets the output cursor position to the input cursor position

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int SetOutputAtInputCursorPosition (void);

Return Values

0 (0x0
0)

ESUCCESS Successful.

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

The output cursor position is set to the input cursor position on the
current screen.

See Also

GetPositionOfOutputCursor, gotoxy, SetInputAtOutputCursorPosition
, wherex, wherey

NLM Programming

Screen Handling: Functions 936

SetPositionOfInputCursor

Sets the position of the input cursor on the current screen

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int SetPositionOfInputCursor (
 WORD row,
 WORD column);

Parameters

row

(IN) Specifies the row number on which to position the cursor (top row
is 0).

column

(IN) Specifies the column number on which to position the cursor
(leftmost column is 0).

Return Values

0 (0x0
0)

ESUCCESS Successful.

1
9

(0x1
3)

EWRNGK
ND

Input to System Console was attempted.

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

The application must check that the row and column positions are within
the current screen size.

The SetPositionOfInputCursor function positions the input cursor on the
current screen. It also positions the output cursor if cursor coupling for
the current screen is enabled. If another thread is waiting on the

NLM Programming

Screen Handling: Functions 937

keyboard, the calling thread is blocked until the keyboard is free.

See Also

DisplayInputCursor, HideInputCursor

NLM Programming

Screen Handling: Functions 938

SetScreenAreaAttribute

Sets the display adapter attribute bytes for an area of the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

Long SetScreenAreaAttribute (
 LONG line,
 LONG column,
 LONG numLines,
 LONG numColumns,
 LONG attribute);

Parameters

line

(IN) Specifies the row number of the top line in the screen area.

column

(IN) Specifies the column number of the left column in the screen area.

numLines

(IN) Specifies the number of rows to be included in the screen area.

numColumns

(IN) Specifies the number of columns to be included in the screen area.

attribute

(IN) Specifies the value of the attribute to be set. This value depends
upon the type of monitor present.

Return Values

This function returns a value of ESUCCESS (0) if successful. Otherwise, it
returns a nonzero value.

Remarks

This function changes the attribute for characters that have been sent to
the specified area of the screen. Whenever you send a character to a

NLM Programming

Screen Handling: Functions 939

screen, the output is written with a white-on-black attribute (0x07). If you
want to change the attribute for the characters in that area, you must call
this function after you write the characters to the screen.

See Also

SetScreenCharacterAttribute , SetScreenRegionAttribute

Example

SetScreenAreaAttribute

#include <stdio.h>
#include <stdlib.h>
#include <nwconio.h>
#include <nwthread.h>
main()
{
 int i;
 for (i = 0; i < 14;i++)
 {
 gotoxy(i, i);
 printf("COLOR TEST");
 SetScreenCharacterAttribute(i, i, i);
 SetScreenAreaAttribute(0, 64, i, 14-i, i*16);
 getch() /* to create a pause between colors */
 }
}

NLM Programming

Screen Handling: Functions 940

SetScreenCharacterAttribute

Sets the display adapter attribute bytes for a character on the current screen

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

Long SetScreenCharacterAttribute (
 LONG line,
 LONG column,
 LONG attribute);

Parameters

line

(IN) Specifies the row number of the character's position.

column

(IN) Specifies the column number of the character's position.

attribute

(IN) Specifies the value of the attribute to be set. This value depends
upon the type of monitor present.

Return Values

This function returns a value of ESUCCESS (0) if successful. Otherwise, it
returns a nonzero value.

Remarks

This function changes the attribute for a character that has been sent to
the screen. Whenever you send a character to a screen, the output is
written with a white-on-black attribute (0x07). If you want to change the
attribute for the character, you must call this function after you write the
character to the screen.

See Also

SetScreenAreaAttribute, SetScreenRegionAttribute

NLM Programming

Screen Handling: Functions 941

Example

SetScreenCharacterAttribute

#include <stdio.h>
#include <stdlib.h>
#include <nwconio.h>
#include <nwthread.h>
main()
{
 int i;
 for (i = 0; i < 14;i++)
 {
 gotoxy(i, i);
 printf("COLOR TEST");
 getch(); /* to create a pause between colors */
 SetScreenCharacterAttribute(i, i, i);
 }
}

NLM Programming

Screen Handling: Functions 942

SetScreenRegionAttribute

Sets the display adapter attribute bytes for a region of the current screen
(contiguous set of rows)

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

int SetScreenRegionAttribute (
 int firstLine,
 int numberOfLines,
 BYTE attribute);

Parameters

firstLine

(IN) Specifies the row number of the first row in the set. The top row of
the screen is 0 (zero).

numberOfLines

(IN) Specifies the number of rows in region (in set).

attribute

(IN) Specifies the value of attribute to set; value depends on the type
of monitor that is present (see the IBM Technical Reference for the
Personal Computer XT).

Return Values

0 (0x0
0)

ESUCCESS Successful.

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

Whenever output to a screen is performed, the output is written with
white-on-black attribute (0x07). This nullifies the effect of this function.

NLM Programming

Screen Handling: Functions 943

Therefore, this function should be called after the screen is written to.

See Also

ScrollScreenRegionDown

NLM Programming

Screen Handling: Functions 944

wherex

Returns the horizontal position of the input cursor

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

WORD wherex (void);

Return Values

This function returns the current column of the input cursor if successful.
If an error occurs, it returns EFAILURE.

If an error occurs, errno is set to:

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

The wherex function returns the x coordinate of the current input cursor
position (within the current screen). It also returns the output cursor's
position if cursor coupling for the current screen is enabled.

See Also

SetPositionOfInputCursor, wherey

Example

wherex

#include <stdlib.h>
#include <nwconio.h>
#include <stdio.h>

main()

NLM Programming

Screen Handling: Functions 945

{
 printf("%d,%d\r\n",wherex(),wherey());
 getch();
}

NLM Programming

Screen Handling: Functions 946

wherey

Returns the vertical position of the input cursor

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Screen Handling

Syntax

#include <nwconio.h>

WORD wherey (void);

Return Values

This function returns the current row of the input cursor if successful. If
an error occurs, it returns EFAILURE.

If an error occurs, errno is set to:

2
3

(0x1
7)

ENO_SCR
NS

Screen I/O was attempted when no screens
were open.

Remarks

The wherey function returns the y coordinate of the current input cursor
position (within the current screen). It also returns the output cursor's
position if cursor coupling for the current screen is enabled.

See Also

SetPositionOfInputCursor, wherex

Example

wherey

#include <stdlib.h>
#include <nwconio.h>

main()
{

NLM Programming

Screen Handling: Functions 947

 printf("%d,%d\r\n",wherex(),wherey());
 getch();
}

NLM Programming

Screen Handling: Functions 948

SMP

NLM Programming

 949

SMP: Guides

SMP: General Guide

About the Interface

Introduction to SMP

Getting Started with SMP

SMP Function List

Overview of SMP Modules

SMP Features That Support Existing NetWare Functionality

Threads and Synchronization in SMP

Threads and SMP

User Level Synchronization

General Requirements for Synchronization Objects

Synchronization Granularity and Fairness

Synchronization Performance

Marshalling

SMP Function Groups

Thread Migration in SMP

SMP Spin Lock Functions

SMP Mutex Functions

SMP Recursive Mutex Functions

SMP Semaphore Functions

SMP Read-Write Lock Functions

SMP Condition Functions

SMP Barrier Functions

SMP Program Examples

Spin Lock Examples

NLM Programming

SMP: Guides 950

Mutex Examples

Read-Write Lock Examples

Condition Example

Barrier Example

NLM Programming

SMP: Guides 951

SMP: Concepts

Current NetWare SMP Scalability

NetWare SMP is designed to scale well. All SMP functions and many of the
other functions in this SDK take full advantage of multiple processors.
However, the current NetWare core OS and the major associated resources
such as the file system presently run only on the primary processor
(Processor 0). As a result, any function that requires I/O processing
currently marshals to Processor 0, then migrates back to the processor from
which the function was called.

Processor-intensive functions, such as those used for mathematical
computations, scale very well with NetWare SMP because their work can be
divided between or among processors. On the other hand, functions that
make frequent or extensive I/O calls are largely limited to Processor 0 by
the core OS and closely associated resources. As a result, you might not
presently see significant overall improvement in performance by making
use of multiprocessing functions.

Recommendation: Writing now to NetWare SMP is a good idea, despite the
limitations explained above.

Work is presently underway to develop an SMP enabled NetWare OS and
central associated resources, especially the file system. When these products
are released, applications written with current SMP functionality will
immediately realize significant improvements in performance.

Keep in mind also that the performance of the entire system---hardware,
software, and workload---has more to do with the efficiency of the
underlying software than with the quantity of hardware alone. NetWare on
a single processor already shows superior performance in some ways to a
major competitor running on as many as four processors. When key
components are fully SMP enabled, you might want your applications to
take full advantage of enhanced NetWare performance. If you write to
NetWare SMP now, required modifications then will be minimal, but
resulting increases in perfomance will be immediate and impressive.

Support: Support for developers writing SMP applications is limited to the
API functions and their functionality. Publications that address
development of efficient and scalable SMP applications are available in the
marketplace, but consultation on these topics is in not within the scope of
Novell developer support.

Parent Topic: Introduction to SMP

NLM Programming

SMP: Concepts 952

General Requirements for Synchronization
Objects

In shared-memory multiprocessors each processor directly addresses all
memory available on the system. This uniform access requires an efficient
synchronization mechanism to guarantee consistency of the shared data.
The synchronization mechanism described here is based on the abstraction
of a lock control structure and its associated identifier. The lock control
structure, typically allocated from the OS, is a collection of data defining
precise semantics of each instance within the specified lock type.

The synchronization API has been designed to provide certain basic
capabilities. The user-level synchronization library includes spin locks,
mutex locks (spin-dropping-to-sleep type), read/write locks, condition
variables, and barriers (spin-dropping-to-sleep type). The user-level
synchronization mechanisms include

Spin Locks

Mutex Locks

Recursive Mutex Locks

Read-Write Locks

Condition Variables

Barriers

Getting Started with SMP

SMP is implemented as a series of NLM applications. When loaded on a
NetWare server, these NLM applications create a generic SMP environment
scalable to up to 32 processors. Special features in NetWare 4.1 allow the
SMP modules to be loaded and unloaded dynamically from the server
console without interrupting server operations or performance. However,
platforms must support dynamic interrupt distribution and recovery.

SMP modules are provided on a CD. Follow the instructions that
accompany the CD to install SMP modules onto a server. You must also
install the PSM.NLM supplied by your SMP hardware vendor and copy it to
the DOS partition on which SERVER.EXE resides.

Loading SMP Modules onto an Operating Server

IMPORTANT: Loading must proceed in the order listed here.

Load the following required NLM applications onto an operating server
running NetWare 4.1 or higher:

1. >PSM<.NLM, supplied by hardware vendor

NLM Programming

SMP: Concepts 953

2. SMP.NLM

3. SMP drivers---type load smpdriver all

4. LAN drivers

SMP.NLM contains debugger routines to help you debug applications.

Parent Topic: Introduction to SMP

Introduction to SMP

NetWare® Symmetric Multiprocessing (SMP) was developed to provide
support for multithreaded memory management and concurrent use of
multiple processors in an environment compatible with native NetWare.

Software developers can use the SMP environment to create NLM™
applications that are scalable to up to 32 processors. SMP provides the
functionality needed to develop multiprocessor NetWare services,
multiprocessor communications and management products, and
multiprocessor utilities.

Related Topics

Current NetWare SMP Scalability

Getting Started with SMP

SMP Function List

Overview of SMP Modules

SMP Features That Support Existing NetWare Functionality

Marshalling

Marshalling is a term that refers to where a function is processed. If a
marshalling function is called on processor 1 or higher, the thread
associated with the function marshals---goes to sleep and migrates to
processor 0---before the function is processed. Following processing the
thread goes to sleep again and migrates back to the processor from which it
was called before continuing operation. Marshalling can detract from both
the speed and the scalability of a program because of the migration time.
The level of detraction is dependent upon the caching conditions on
processor 0.

All functions in the NLM Specific Function Reference are labeled for
marshalling. This information is listed just below the blocking and
classification headings, under the heading "SMP Aware:". Functions
marked "No" marshal, and follow the pattern of migration described above.

NLM Programming

SMP: Concepts 954

Functions marked "Yes" run on the processor from which they are called.

Overview of SMP Modules

The following NLM/OS components comprise the NetWare SMP
environment:

NetWare 4.1 (SMP monitoring is included in native NetWare)

SMP.NLM

PSM.NLM (Platform Specific Module; Vendor Supplied Component)

MPDRIVER.NLM

CLIB.NLM

MSM.NLM

SMPMON.NLM (Developer tool)

MONITOR.NLM

Each of these NLM applications is briefly described below.

NetWare 4.1

This is the core software for the NetWare OS.

SMP.NLM

This module contains the NetWare Symmetric MultiProcessing
Kernel, SMP Application Programming Interfaces, and debugging
software provided by Novell®.

PSM.NLM and MPDRIVER.NLM

The platform-specific module is a vendor-supplied component that
allows NetWare SMP to abstract the SMP hardware interface. The
PSM interface defines hardware support for MP interrupt hardware,
processor activation and deactivation, and other platform-specific
functions, such as support for multibus architectures.

The PSM module allows NetWare SMP to use a generic
MPDRIVER.NLM across all SMP hardware platforms. The
MPDRIVER.NLM must be loaded into NetWare as many times as
there are processors in the SMP server. The easiest and most secure
way to do this is to specify the all switch by typing load mpdriver
all.

CLIB.NLM

This module provides the SMP Multithreaded Library support needed
to run CLIB in the SMP environment. In addition, CLIB.NLM exports
SMP functions for migration and locking. It also provides a stub for
each SMP function. On non-SMP platforms these stubs simply return
for void functions; otherwise they return EOK or NULL. When you
load CLIB.NLM, the following NLM applications also load unless they
are already loaded: NIT.NLM, NLMLIB.NLM, FPSM.NLM,
REQUESTR.NLM, and THREADS.NLM.

NLM Programming

SMP: Concepts 955

MSM.NLM

This module provides SMP LAN driver support for the SMP
environment.

Parent Topic: Introduction to SMP

SMP Barrier Functions

Barrier is a synchronization mechanism which guarantees that all
participating threads have reached a specified point in their execution
before any are allowed to proceed.

barrierwait(N)
 {
 count = count + 1;
 if(count == N) then
 {
 Reset count;
 Notify all threads waiting on the barrier;
 }
 else
 Have the calling thread wait at the barrier;
 }

An arriving thread increments the barrier variable. Upon execution of the
barrier by the Nth thread, all N threads are ready to resume. Otherwise, the
resulting value is less than N, the thread polls the barrier flag which is set by
the last thread to reach the barrier. The second step in a barrier, notifying all
threads that the barrier has been reached is called global event notification.

Thus event notification will dominate the latency of the barrier from the
point where the threads wait at the barrier. If the hardware does not provide
an appropriate support, the implementation can entail significant run-time
overhead. This overhead increases linearly, or for the best implementation
logarithmically, with the number of threads synchronizing at the barrier.

One barrier implementation may use a scheme where threads arriving at a
barrier are put to sleep until the last thread arrives. This method avoids the
extra bus/network traffic of polling a barrier flag, but incurs a potentially
high overhead of enqueuing a thread on the barrier. Here, the cost of the
barrier synchronization is mainly because of context switched for the
threads that must be installed. Sleep-barriers can be used for less-
synchronized computations (that is, non-uniform amount of work assigned
to each thread at fan-out time).

Often, the choice of spinning or sleeping cannot be made at compile time
because uncertainty in execution times of processes. For those cases, barriers
will be implemented in such a way that they will appear to be blocking,
however, for optimization the implementation may choose to spin for some
amount of time before blocking. NetWare SMP does not support

NLM Programming

SMP: Concepts 956

nonblocking barriers. All SMP barriers are the blocking type.

SMP Condition Functions

A condition variable is a user-level synchronization mechanism used to
communicate information between cooperating threads. It makes possible
for a thread to suspend its execution while waiting for an event. For
instance, the consumer in a producer-consumer algorithm might need to
wait for the producer.

A condition variable is always associated with some shared variables
protected by a mutex and a predicate based on those shared variables. A
thread acquires the mutex (that is, enters a critical section) and evaluates the
predicate to see if it should call wait on condition to suspend its execution.
To avoid the familiar wakeup-waiting race with NWSMPCondSignal or
NWSMPCondBroadcast, this call must automatically release the mutex
(that is, end the critical section) and suspend execution of the thread.

A thread that changes the shared variables so that the predicate might be
satisfied, acquires the mutex, sets the condition (changes the shared
variables to satisfy the condition), releases the mutex, and calls
NWSMPCondSignal or NWSMPCondBroadcast. Those two operations
allow suspended threads to resume execution and re-acquire the mutex. The
NWSMPCondSignal is used to unblock a single thread sleeping on this
condition; NWSMPCondBroadcast, releases all threads waiting for the
condition. Both these operations are no-ops if there are no threads waiting
on the condition. If NWSMPCondSignal is used, all threads waiting on the
condition variable should be waiting for satisfaction of the same predicate.
If NWSMPCondBroadcast is always used instead, the predicate for
different waiting threads need not all be the same. When a thread returns
from NWSMPCondWait it has reacquired the mutex and is in a new critical
section. It re-evaluates the predicate whether to proceed or to call
NWSMPCondWait again. It is up to the thread waiting on the condition to
decide, based on the predicate, whether to proceed. That decision is not a
responsibility of the signaling thread, as it is with semaphores or other
similar mechanisms. That's because the predicate may become false before a
waiting thread resumes execution (some other thread may enter a critical
section first and invalidate the rededicate). Therefore, return from
NWSMPCondWait is only a hint that must be confirmed, and the waiting
thread must be prepared to test the predicate and perhaps call
NWSMPCondWait again.

SMP Features That Support Existing NetWare
Functionality

Special hooks and dormant tables in NetWare 4.1 allow the SMP modules to
be loaded and unloaded dynamically from the server console without
interrupting server operations and performance, except with platforms that

NLM Programming

SMP: Concepts 957

interrupting server operations and performance, except with platforms that
do not support dynamic interrupt distribution and recovery. All Intel APIC
based systems support dynamic interrupt schemes, as do several other
platforms.

All NLM applications run virtually unmodified within the SMP
environment. For an NLM to take advantage of SMP, the NLM must be
written with the new scheduling functions provided in the SMP Kernel. All
of the CLIB and OS functions are still available to NLM applications.

NetWare SMP supports the following feature set, which enhances both the
performance and scalability of the NetWare environment:

SMP aware LAN drivers

SMP CLIB support for NLM applications

SMP kernel and API for SMP NLM applications

SMP Direct File System for database support

In addition, NetWare SMP supports the following previously existing
services:

All existing NLM applications

All existing LAN drivers

All existing disk drivers

All Novell core OS products except DOMAIN.NLM.

Parent Topic: Introduction to SMP

SMP Function List

The SMP Services provide the functions needed to work with NetWare in a
multiprocessing environment. The SMP functions are summarized in the
following groups:

Table auto. Thread Management Functions

Function Name Job

NWSMPIsAvailable Returns whether SMP is loaded
and enabled on the server

NWSMPThreadToMP Migrates thread to the MP
scheduler.

NWSMPThreadToNetWare Migrates thread to the NetWare
scheduler

NLM Programming

SMP: Concepts 958

Table auto. User-Level Synchronization Functions

Function Name Job

Spin Lock

NWSMPSpinAlloc Allocates a spin lock

NWSMPSpinLock Locks a spin lock

NWSMPSpinTryLock Conditions locking

NWSMPSpinUnlock Releases a spin lock

NWSMPSpinDestroy Destroys a spin lock

Mutex Lock

NWSMPMutexSleep
Alloc

Allocates a sleep mutex lock

NWSMPMutexLock Locks a mutex lock

NWSMPMutexTryLoc
k

Conditions locking lock

NWSMPMutexUnloc
k

Unlocks a mutex lock

NWSMPMutexDestro
y

Destroys a mutex lock

Recursive Mutex Lock

NWSMPRMutexAlloc Allocates a recursive mutex lock

NWSMPRMutexLock Locks a recursive mutex lock

NWSMPRMutexTryL
ock

Conditions locking lock

NWSMPRMutexUnlo
ck

Unlocks a recursive mutex lock

NWSMPRMutexDest
roy

Destroys a recursive mutex lock

NWSMPRMutexOwn
er

Defines the owner of the rmutex lock

Read-Write Lock

NWSMPRWLockAllo
c

Allocates a read-write lock

NWSMPRWReadLoc
k

Acquires a read lock

NWSMPRWWriteLoc
k

Acquires a write lock

NWSMPRWTryRead
Lock

Conditions acquiring a read lock

NWSMPRWTryWrite Conditions acquiring a write lock

NLM Programming

SMP: Concepts 959

Lock

NWSMPRWUnlock Unlocks a read-write lock

NWSMPRWLockDest
roy

Destroys a read-write lock

Condition Variable Lock

NWSMPCondAlloc Allocates a condition variable lock

NWSMPCondSignal Signals a condition variable lock

NWSMPCondBroadca
st

Broadcasts a condition lock

NWSMPCondWait Waits on a condition lock

NWSMPCondDestroy Destroys a condition variable lock

Barrier Lock

NWSMPBarrierAlloc Allocates a barrier lock

NWSMPBarrierWait Blocks at a barrier lock

NWSMPBarrierDestr
oy

Destroys a barrier lock

The following functions provide semaphore capability and are SMP
enabled:

Table auto. Local Semaphore Functions

Function Name Job

CloseLocalSemaphore Closes a local semaphore

ExamineLocalSemaphor
e

Returns the current value of a local
semaphore

OpenLocalSemaphore Allocates a local semaphore and gives the
NLM access to it

SignalLocalSemaphore Increments the semaphore value of the
specified semaphore

TimedWaitOnLocalSem
aphore

Waits on a local semaphore until it is
signalled or the specified time-out elapses

WaitOnLocalSemaphore Decrements the semaphore value of the
specified semaphore

Parent Topic: Introduction to SMP

SMP Mutex Functions

The mutex locks described here provide the basic mutual exclusion

NLM Programming

SMP: Concepts 960

functionality. A mutex, or mutual exclusion lock, guarantees that no two
threads of control can access a shared variable simultaneously. If the mutual
exclusion lock is found unavailable, the mutex operation can either suspend
the caller, or spin until the lock is free. With careful design, spinning can be
useful on a multiprocessor if expected wait time is small enough. Generally,
the lock duration should be small; otherwise it may indicate a design
problem.

Alternatively, the mutex operation can appear to be blocking; however, the
mutex spins for some amount of time before blocking. However, since the
implementation details define its precise semantics the latter alternative will
satisfy only the basic semantics of the mutual exclusion.

Since the precise behavior can vary between implementations, such a
general specification may not always satisfy an application designer. These
functions provide basic functionality on which other synchronization
functions can be built, and the mutex lock described in this document is the
preferred function to use as a base.

SMP Program Examples

Spin Lock Examples

The following examples illustrate typical usages of spin locks. For clarity,
error processing has been omitted. The typical age of a spin lock can be
illustrated by the following example.

In the best case a spin lock on a uniprocessor will waste thread's quantum
slowing down the owner of the lock; in the worst case it will deadlock
(monopolize) the processor.

#include <nwsmp.h>
 spin_t lock; /* spin lock */

main()
 {
 lock=NWSMPSpinAlloc("name"); /* allocate spin lock */
 ...
 NWSMPSpinLock(lock); /* lock critical region */
 ...
 /* Critical region processing. */
 ...
 NWSMPSpinUnlock(lock); /* unlock critical region */
 ...
 NWSMPSpinDestroy(lock); /* destroy spin lock */
 }

While NWSMPSpinLock returns with the lock acquired, the spin-waiting
for the lock may not always be the right choice for an application. In some

NLM Programming

SMP: Concepts 961

cases an application may instead use the operations that make a single
attempt to acquire the lock. This can be illustrated with
NWSMPSpinTryLock by the following example:

 #include <nwsmp.h>
 spin_t lock; /* spin lock */

 main()
 {
 lock=NWSMPSpinAlloc("name"); /* allocate spin lock */
 ...
 if(NWSMPSpinTryLock(lock) == 0) { /* a single attempt lock critical region */
 /* Lock is acquired; Critical region processing. */
 ...
 NWSMPSpinUnlock(lock); /* unlock critical region */
 }
 else {
 ...
 /* Lock could not be acquired; Do something else. */
 ...
 }
 ...
 NWSMPSpinDestroy(lock); /* destroy spin lock */
 }

Mutex Examples

The typical uses for mutex locks are illustrated as follows. For clarity, error
processing has been omitted. The typical usage of a mutex can be illustrated
by the following example:

#include <nwsmp.h>
 mutex_t mutex; /* mutex */

main()
 {
 mutex=NWSMPMutexSleepAlloc("name"); /* allocate mutex */
 ...
 NWSMPMutexLock(mutex); /* lock critical region */
 /* Critical region processing. */
 NWSMPMutexUnlock(mutex); /* unlock critical region */
 ...
 NWSMPMutexDestroy(mutex); /* destroy mutex */
 }

Similarly, conditional locking of a mutex can be illustrated by the following
example:

#include <nwsmp.h>
 mutex_t mutex; /* mutex handle */

main()

NLM Programming

SMP: Concepts 962

 {

 mutex=NWSMPMutexSleepAlloc("name"); /* allocate mutex */
 ...
 if(NWSMPMutexTryLock(mutex) == 0) {
 /* Mutex has been acquired */
 /* Do critical region processing. */
 NWSMPMutexUnlock(mutex); /* unlock critical region */
 }
 else {
 /* Mutex could not be acquired. */
 /* Do something else. */
 }
 ...
 NWSMPMutexDestroy(mutex); /* destroy mutex */
 }

Read-Write Lock Examples

The typical uses for read-write locks are illustrated as follows. For clarity,
error processing has been omitted. A simple sequence of events with the
read-write locks can be illustrated by the following pseudo code:

#include <nwsmp.h>

main()
 {
 rwlock_t rwlock; /* read-write lock */
 /* READER-1 - allocates the lock and acquires it for reading */
 rwlock=NWSMPRWLockAlloc("name");
 NWSMPRWReadLock(rwlock); /* acquire read lock */
 /* reader 1 is reading */ ...
 /* READER-2 - acquires the lock for reading without blocking */
 NWSMPRWReadLock(rwlock); /* acquire read lock */
 /* both reader 1 and reader 2 are reading */
 ...
 /* WRITER - blocks trying to acquire the lock (readers hold the lock) */
 NWSMPRWWriteLock(rwlock); /* attempt to acquire write lock */
 /* READER-1 - releases the lock */
 NWSMPRWUnlock(rwlock); /* release the lock */
 /* READER-2 - releases the lock */
 NWSMPRWUnlock(rwlock); /* release the lock */
 /* WRITER - acquires the lock and is allowed to continue writing */
 ...
 NWSMPRWLockDestroy(rwlock);
 }

Condition Example

The typical uses of condition variables are illustrated as follows. For clarity,

NLM Programming

SMP: Concepts 963

error processing has been omitted. The example involves a simple
consumer-producer problem, where some threads put data on a queue for
other threads to remove it. It is accomplished with three threads:

(1) creates a condition variable;

(2) the producer puts data on the queue Q (sets the condition) and signals
the occurrence of the condition, and

(3) the consumer waits on a condition and takes data out of the queue Q.
Alternatively, to wake up all threads waiting on the condition, the producer
could broadcast the occurrence the condition with NWSMPCondBroadcast.

Note the non-determinism built into condition variables as the
broadcast/signal of the condition is only a hint that the predicate might be
true, therefore the thread must always recheck the predicate after being
awakened on a condition.

#include <nwsmp.h>
 cond_t cond; /* condition variable */
 mutex_t mutex; /* mutex */

main()
 {
 /* Thread 1 - allocate a condition variable and a mutex */
 cond=NWSMPCondAlloc("name");
 mutex=NWSMPMutexSleepAlloc("name"); /* create mutex */

 /* Thread 2 - producer - puts data on queue Q and signals the condition */
 NWSMPMutexLock(mutex);
 putdata(Q, data); /* put data on the queue */
 NWSMPCondSignal(cond);
 NWSMPMutexUnlock(mutex));

 /* Thread 3 - consumer - waits on condition and gets data from queue Q */
 NWSMPMutexLock(mutex);
 while(queue_is_empty(Q)) {
 NWSMPCondWait(cond, mutex); /* thread suspended on condition */
 }
 getdata(Q, data); /* remove data from the queue */
 NWSMPMutexUnlock(mutex); /* unlock the mutex */
 . . .
 NWSMPCondDestroy(cond);
 NWSMPMutexDestroy(mutex);
 }

Barrier Example

The typical usage of barriers is illustrated as follows. For clarity error
processing has been omitted. In this example three threads participate in the
barrier. The first creates the barrier and waits for others. Once the last thread
reaches the barrier all of them can resume execution.

 #include <nwsmp.h>

NLM Programming

SMP: Concepts 964

 barrier_t barrier; /* barrier */

main()
 {
 int count = 3; /* number of threads participating */
 /* Thread 1 initializes the barrier and waits for others to arrive */
 barrier=NWSMPBarrierAlloc(count, "name");
 ...
 NWSMPBarrierWait(barrier); /* wait for others to arrive */
 ...
 /* All three threads at the barrier, continue processing. */
 ...

 /* Thread 2 calls the barrier, and waits for others. */
 ...
 NWSMPBarrierWait(barrier); /* wait for others to arrive */
 /* All three threads at the barrier, continue processing. */
 ...

 /* Thread 3 calls the barrier, and waits for others. */
 ...
 NWSMPBarrierWait(barrier); /* wait for others to arrive */
 /* All three threads at the barrier, continue processing. */
 ...
 NWSMPBarrierDestroy(barrier);
 }

SMP Read-Write Lock Functions

Counting semaphores work well with a single class of resource consumers.
If, however, one class called "reader" references a resource without
modifying its contents, and the other class called "writers" makes
modifications, then another synchronization mechanism can be used. This
mechanism is known as multiple reader / single writer locking or a
read-write lock. Semantically, the class of readers excludes the class of
writers, and any writer excludes both the class of readers and the other
members of the class of writers. The interface does not provide lock
upgrades (from read to write), and lock downgrades (from write to read)
required for two phase locking. These operations are not required since
users can provide their own locking strategy to handle this problem (for
instance, through an auxiliary lock). This allowed us to separate the
interfaces of the read-write locks and optimize their implementation. As in
the case of mutex locks, the read-write locks will appear to be blocking,
however, for optimization the implementation may choose to spin for some
amount of time before blocking.

Semaphores described in the previous section are adequate to solve a wide
variety of synchronization problems by guaranteeing exclusive access to the
shared resources. They are intended however, to operate only with a single
class of the resource consumers. A common synchronization problem occurs

NLM Programming

SMP: Concepts 965

when more than one class of the resource consumers is identified and
allowed to access a shared resource. Each class may use its own definition of
access semantics to the resource it controls.

The P(), V() operations must commute to avoid the race condition between a
waiter that is being blocked and the owner of the lock attempting to unblock
the waiter. For instance, one class may allow its members concurrent access
to a resource, while excluding members of other classes. Note that in a
general case, there is no limitation on a number of defined classes, as there is
no limitation on type of semantics that can be associated with such a
construct. The most common example presenting this construct is the
"read-write" problem ensuring that the class of "readers" excludes the class
of "writers," and that any member of writers excludes both the class of
readers and the other members of the class of writers.

Although the problem is easy to understand, and typically expressed in the
lock() and unlock() operations, the proposed solutions are quite complex.
The reason for this complexity is that while semaphores are well suited to
inhibiting other threads within a single class, they cannot directly be used
by one class to inhibit other classes. The two common approaches to
read-write locking are: (1) reader priority, and (2) writer priority. NetWare
SMP uses writer priority.

The goal of the reader priority solution is to ensure minimum delay for
readers. This can be described by the following pseudo code:

READERS
 P(mutex);
 readers = readers + 1;
 if readers = 1 then P(w);
 V(mutex);
 reading
 . . .
 P(mutex);
 readers = readers - 1;
 if readers = 0 then V(w);
 V(mutex);
 WRITERS
 P(extra);
 P(w);
 writing
 . . .
 V(w);
 V(extra);

By nesting writer code within P/V pair of an additional binary semaphore
extra, the readers will be given priority over the writers. While a writer is in
its writing region all other writers are queued on extra, not on writer. Thus
when w is released the waiting reader, if any, will be awakened. The
solution ensures that readers exclude writers and that a writer inhibits other
writers with extra before contending with readers. The problem with this
solution is that it can potentially starve the writers. A similar problem exists
with the writer priority solution. In this case the readers can potentially be

NLM Programming

SMP: Concepts 966

starved.

An additional problem here is that even the application developer would
not always be able to make the right choice. That is because some
applications behavior, aside from its design characteristics, will depend, in
some loose sense, on the external environment (that hardware
configuration, usage profile, etc.) and irrespective of the selected solution
can potentially starve either readers, or writers. An alternative, and the
simplest solution is FIFO ordering, where the access to a resource is
provided to all readers on the queue up to the first encountered writer. An
apparent weakness of this approach is that it will not always provide as
much of parallelism as either reader or writer priority. It does however,
simplify the problem and avoids both readers and writers starvation. The
thread selection algorithm may further depend on a particular scheduling
policy. For those reasons, under time-sharing policy the read-write locks
described in the next section employs FIFO ordering as the algorithm for the
thread selection. Under other scheduling policies the thread selection
algorithm maybe policy specific.

SMP Recursive Mutex Functions

A mutex can also be defined as recursive: if the rmutex is already locked by
the calling thread, the recursive depth is incremented and control is
returned to the caller, as if the lock had just been acquired.

SMP Semaphore Functions

CLib semaphores that map to SMP functionality are aimed at processes that
do not share memory. Thus by definition, they do not perform as the
synchronization functions covered in this section, so duplication of
semaphore operations is not a concern. The parameter count supplied
during allocation defines the initial count of resources protected by the
semaphore.

A semaphore is a user-level synchronization mechanism that sleeps in the
NetWare SMP environment. Sleeping semaphores are particularly well
suited for mutual exclusion and event synchronization and are included in
the set of user- level synchronization operations. Unlike spin locks, sleeping
semaphores are not wasteful of processor cycles while a thread is waiting,
but the higher level functionality that they provide usually results in a
lower efficiency. Sleeping semaphores are used to block-wait for an event,
or when a critical section is long.

Since blocking on a semaphore involves context switch, much stronger
support from the operating system is required. The system must provide a
mechanism for detecting when a condition is met, and means of selecting
among the waiting processes (e.g., from an associated queue). Like spin
locks, there are several variations of semaphores; however, functionality of

NLM Programming

SMP: Concepts 967

the blocking operation is the same. Counting semaphores limited to 0 and 1
are called binary semaphores. Those initialized to n are general or counting
semaphores and are useful when multiple instances of a shared resource are
present. When a semaphore has a value greater than 0 it is open; otherwise
it is closed. The value of the semaphore after the increment/decrement
operation specifies the action of the semaphore function.

Thus assuming an initial value of one for a semaphore, the P() operation
inhibits all threads except the first from continuing, and the V() operation
releases a single thread (if one is waiting) from its inhibited condition.

Two operations on semaphores P() and V() are defined as follows:

P(S)
 {
 S = S - 1;
 if(S < 0) {
 block(Delay the calling thread and append it to the semaphore queue.);
 }
 }

The P() operation attempts to acquire a resource under the semaphore
control by decrementing the value of the semaphore. If the resulting value is
less than 0, the caller is suspended, and added to the queue of threads
sleeping on this semaphore else, it acquired the semaphore resource and the
caller is allowed to continue. If a thread blocks, it will be implicitly awarded
the resource when it is re-activated.

V(S)
 {
 S = S + 1;
 if(S < 0) {
 unblock(Remove a thread from the semaphore queue and append it to th
 }
 }

The V() operation releases the lock by incrementing the value of the
semaphore. If the resulting value is less than or equal to 0, it removes the
next thread from the semaphore queue and appends it to the ready queue.
The resource is implicitly awarded to the newly-activated thread. These P()
and V() operations are sometimes provided as multiprocessor instructions
or microcode routines, or operating system calls to the process manager. In
either case, they must commute in the sense that V() wakes up exactly one
process and that the sequence `P(); V()' has the same net effect as "V(); P()".

SMP Spin Lock Functions

The spin lock is a particular implementation of a mutex. Spin locks should
be used very sparingly because applications seldom have asynchronous
processes to unlock the thread waiting on the spin. The interfaces described

NLM Programming

SMP: Concepts 968

here are intended to provide the basic functionality and the minimum
complexity. Spin locks can be used only when there is a guarantee that a
thread will not be preempted or blocked while holding a spin lock. They are
exclusively intended for the applications demanding high efficiency on a
multiprocessor and should never be used on uniprocessor systems.

The simplest user-level synchronization mechanism is a spin-mutex called
spin lock. It is an atomically modified boolean value that is set to 1 when the
lock is held and reset to 0 when the lock is free. When a thread requests the
lock that is already held by another thread, it spins in a loop
(`busy-waiting') testing whether the lock has become available.

Such spinning wastes processor cycles and can slow processors doing useful
work, including the one holding the lock, by consuming communication
bandwidth. Since spin locks are the basic building blocks for other locking
mechanisms efficiency, as opposed to fairness is the rule for their
implementation. For this reason, spin locks are often implemented with
machine instructions with minimal state.

The two basic spin lock operations are Lock and Unlock as illustrated below:

Lock:

 spinlock(S)
 {
 while(TEST&SET(S) == 1)
 continue;
 }

Set the lock variable value S to 1 if and only if its original value is 0,
otherwise spin until the holder of the lock releases it (resets it to 0).

Unlock:

 spinunlock(S)
 {
 S = 0;
 }

Reset the lock value to 0, allowing spinners to acquire the lock.

The major assumption here regarding spin locks is that they are never held
across sleep/blocking operations. This makes sense given that they are
considered to be critical resources that must be accessed frequently for a
short period of time. It will be the responsibility of each application to
unlock all spin locks before calling sleep or sleep-blocking on a
synchronization operation.

Spin-waiting wastes computing resources and its precise impact on the
system behavior varies along several architectural dimensions: how
processors are connected to memory, whether or not each processor has a
hardware-managed coherent private cache, and if so, the coherence
protocol. If spin-waiting is consuming communication bandwidth it can
slow processors doing useful work, including the one holding the lock.

NLM Programming

SMP: Concepts 969

If two or more threads are spinning on a lock, it may cause a lock
contention, which if high enough may cause the addition of processors to
produce no net gain in effective processing power. Lock contention depends
on the length of time threads hold each lock and the rate at which they
obtain each lock. Independent studies reviewed spin locks algorithms and
their trade-offs in terms of memory requirements, impact on
communication bandwidth, uncontested latency, and contribution to the
critical section time.

Locks that may encounter contention should be protected with some form of
collision avoidance (for instance, adaptive backoff). Adaptive backoff is
recommended for general use. Even though spin-waiting is wasteful, spin
locks are useful when sleep is not permitted. Using spin locks on a
uniprocessor can lead to serious side-effects including deadlocks, especially
when the critical section is small, so that the expected spin on CPU is less
costly than blocking and resuming the process. In the case of NetWare,
deadlocks on a uniprocessor or multiprocessor configuration with spin locks
will generate a server abend.

Since a wide spread perception of a spin lock as a very fast synchronization
function may frequently lead to its misuse and exposure of unaware users to
serious side-effects. The use of spin locks carries the explicit warning of
possible serious side-effects. Mutex lock is the preferred interface of mutual
exclusion. For most input/output and communications applications, spin
locks provide the best solution. Interrupt paths should always use spin
locks.

Synchronization Granularity and Fairness

The most important attribute of any synchronization protocol is an efficient
implementation which determines the level of granularity that such a
protocol can be used. Since usually on a multiprocessor, a busy wait
implementation of a synchronization operation is more efficient than its
sleep wait equivalent, the busy wait can be used with finer grain of
parallelisms.

 NetWare SMP implements synchronization fairness as FIFO (meaning first
requested, first obtained) or FIFO with designated priority. For some
functions, fairness is not an issue. Spin locks, semaphore locks, and mutex
locks use FIFO fairness. Read/write locks use FIFO fairness, with writers
having priority over readers. Fairness does not apply to condition variables
or barriers.

Synchronization Performance

The paramount concern for synchronization operations is efficiency. Even
applications with sufficient parallelism can fail to achieve substantial

NLM Programming

SMP: Concepts 970

speed-up because of the synchronization overhead.

The performance of a tightly coupled shared-memory multiprocessor
system may be highly dependent on the amount of overhead incurred due
to synchronization.

To minimize the run-time overhead the synchronization operations issue
system calls only when absolutely necessary (for example, when blocking).

The delay between when a lock is released and when it is reacquired by a
thread must also be minimized. Such a delay, termed the lock latency, is
important to applications with high synchronization rate with little
contention.

Thread Migration in SMP

Threads must be created under the context of CLib by way of the existing
BeginThread and BeginThreadGroup functions. For appropriate
information, see Thread and NLM Code Development.

For threads to take advantage of SMP in NetWare, following creation,
threads should call NWThreadToMP from the running thread. Any thread
that calls this function migrates into the context of the SMP kernel. Calling
NWThreadToNetWare schedules an SMP thread back to the NetWare
kernel. Threads should generally migrate to MP and stay there until
termination. Migrating threads back to NetWare results in a heavier
performance penalty than migrating threads to MP.

The thread migration functions allow application programs to move threads
between the SMP and the native NetWare environments without converting
or altering the data. This functionality enables native NetWare modules
such as CLib to process portions of a large job, then move threads in a
suspended or sleep mode over to SMP where threads can be quickly
processed by multiple processors. No action is taken upon threads yielded
into the new environment during migration. It is as if they went to sleep in
one environment and awakened in another.

Threads and SMP

Effectively extending parallel execution beyond uniprocessing requires a
mechanism to cooperate easily in sharing memory and other resources. This
extension mechanism is typically called a thread or thread of control and is
the basic unit of processor utilization. A thread is an abstract concept of
execution in a shared address space---a sequence of instructions executed as
an independent entity, scheduled and synchronized by kernel software.

A major objective for using threads is to enhance performance. Algorithms
used in multi-processing, parallel computing, and distributed operating
systems are often more simply expressed as threads of control that share

NLM Programming

SMP: Concepts 971

address space and file descriptors. Threads are a convenient way to process
coarse- to medium-grained parallel algorithms. The SMP API is the
interface that manages, schedules, migrates, and synchronizes threads on a
multiprocessor platform.

Threads and Synchronization in SMP

NetWare SMP provides a generic, shared memory, multi-processor
environment for the NetWare distributed operating system. SMP gives
users the ability to execute multiple threads simultaneously on multiple
processors within a single address space. Threads are discussed in the
following paragraphs.

Related Topics

Threads and SMP

User Level Synchronization

General Requirements for Synchronization Objects

Synchronization Granularity and Fairness

Synchronization Performance

Marshalling

User Level Synchronization

Synchronization serves the dual purpose of ensuring the mutually exclusive
access to shared variables and enforcing the correct sequencing of threads.

The first form of synchronization, mutual exclusion, is implemented by
some form of a mutual exclusion lock---mutex lock for short---and provides
atomic access to shared resources. The second form, event synchronization,
is used to signal/wait the occurrence of (possibly state-less) events.

Although individual synchronization functions are more naturally used as
one of the two forms of synchronization, some functions can be used as
either mutexes or events. For example, a semaphore initialized to `1' can act
as a mutex if the operation decrementing the semaphore value (P()
operation) is used to acquire the exclusive access to a shared object, and the
operation incrementing the semaphore value (V() operation) is used to
release the mutex. Similarly, a semaphore initialized to `0' can act as an
event if the P() operation is used to await an event, while the V() operation
is used to signal the event. Uniprocessors typically handle mutual exclusion
using disabling interrupts at appropriate times to avoid concurrent (strictly
speaking reentrant) access to the shared data. However, this method is not
sufficient in a multiprocessing environment, since multiple activities may be

NLM Programming

SMP: Concepts 972

accessing and modifying shared data concurrently. Access must be
controlled by a set of synchronization protocols.

The synchronization protocols are implemented in two basic ways: 1) busy
wait and 2) sleep wait. Synchronization operations can be optimized by
creating hybrids---called adaptive wait---of these two basic protocols.

If the wait for the exclusive access to a shared object is expected to be short,
the function will busy wait; that is, it will continue to run by repeatedly
checking the value of the synchronization variables until they reach the
desired state. Busy wait can slow processors doing useful work, including
the one operating on the shared variable, and may lead to memory
contentions known as hot spots. The benefit of busy wait is that any change
to the synchronization variable is detected quickly, so the overall latency
before the lock is captured is short.

If the wait for the exclusive access to a shared object is expected to be long,
the caller can be switched out of the processor and sleep wait on a queue,
allowing other activities to run on that processor until a certain condition is
true. This synchronization protocol requires much stronger system support
than busy waiting. The system must provide a mechanism for detecting
when a condition is met, and the means of selecting among the waiting
processes (for instance, from an associated queue). In the hybrid of busy
wait to sleep wait, adaptive wait, the caller busy waits for a while before
sleep waiting for a condition; when the condition occurs the sleeping caller
wakes up, rechecks the condition and proceeds.

Memory contentions can be dealt with either at the software level by
changing the locking granularity, or at the hardware level by combining, in
which several requests for the same variable can be combined into a single
request. Combining requests reduces communication traffic and reduces
memory accesses. Since combined requests can themselves be combined,
any number of concurrent memory references to the same location can be
satisfied in the time required for one central memory access. This permits
contention-free implementation of many synchronization protocols.
Unfortunately, combining is expensive, due to the actual implementation
costs and the performance penalty for requests that don't use the combining
feature.

NLM Programming

SMP: Concepts 973

SMP: Functions

NLM Programming

SMP: Functions 974

NWSMPBarrierAlloc

Allocates and initializes a barrier

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

barrier_t NWSMPBarrierAlloc (
 nuint32 count,
 pnstr name);

Parameters

count

(IN) Specifies the number of threads that must rendezvous at the
barrier.

name

(IN) Points to a text string containing the name of the barrier object.

Return Values

On success, NWSMPBarrierAlloc returns a barrier. Otherwise, the
function fails and returns NULL.

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPBarrierAlloc allocates a barrier to a known state. Thereafter, it
can be used any number of times to synchronize execution of the count
threads.

See Also

NWSMPBarrierDestroy, NWSMPBarrierWait

NLM Programming

SMP: Functions 975

NWSMPBarrierDestroy

Destroys a barrier

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPBarrierDestroy (
 barrier_t barrier);

Parameters

barrier

(IN) Points to the barrier.

Return Values

0x000
0

EOK Success

0x000
1

EBUSY An attempt to destroy barrier was made while the
barrier was referenced by other threads.

0xFFF
F

EINVA
L

Bad parameter

WARNING: The EBUSY error return cannot be made fully reliable;
application code must ensure that no thread attempt to destroy the
barrier while it is in use.

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPBarrierDestroy destroys barrier. This includes invalidating
barrier and freeing any associated dynamically allocated resources.

See Also

NLM Programming

SMP: Functions 976

NWSMPBarrierWait

NLM Programming

SMP: Functions 977

NWSMPBarrierWait

Blocks the calling thread at a barrier

Local Servers: blocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPBarrierWait (
 barrier_t barrier);

Parameters

barrier

(IN) Points to the barrier.

Return Values

0x000
0

EOK Success

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPBarrierWait provides a simple coordination mechanism for
threads. The caller is blocked at the barrier until all count threads reach
the barrier. (Count was defined with NWSMPBarrierAlloc.). When the
last thread reaches the barrier, all count blocked threads are released
from the barrier and are allowed to resume execution. The barrier is
automatically reinitialized after the waiting threads are released.

See Also

NWSMPBarrierDestroy

NLM Programming

SMP: Functions 978

NWSMPCondAlloc

Allocates a condition variable to a known state

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

cond_t NWSMPCondAlloc (
 pnstr name);

Parameters

name

(IN) Points to a text string containing the name of the condition object.

Return Values

On success, NWSMPCondAlloc returns a condition variable. Otherwise,
the function fails and returns NULL.

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPCondAlloc allocates a condition variable to a known state. Once
created, the condition can be used any number of times.

See Also

NWSMPCondBroadcast, NWSMPCondDestroy, NWSMPCondSignal,
NWSMPCondWait

NLM Programming

SMP: Functions 979

NWSMPCondBroadcast

Wakes up all the threads waiting on a condition variable

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPCondBroadcast (
 cond_t cond);

Parameters

cond

(IN) Points to the condition variable.

Return Values

0x000
0

EOK Success

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPCondBroadcast wakes up all the threads waiting on the
condition cond. This function wakes up all threads if more than one thread
is waiting.

NWSMPCondBroadcast has no effect if there are no threads waiting on
the indicated condition.

NWSMPCondBroadcast will typically be more efficient if the associated
mutex used by waiters is held across the call.

See Also

NLM Programming

SMP: Functions 980

NWSMPCondDestroy, NWSMPCondSignal, NWSMPCondWait

NLM Programming

SMP: Functions 981

NWSMPCondDestroy

Destroys a condition variable

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPCondDestroy (
 cond_t cond);

Parameters

cond

(IN) Points to the condition variable.

Return Values

0x000
0

EOK Success

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPCondDestroy destroys the condition variable pointed to by cond.
This includes invalidating cond and freeing any associated dynamically
allocated resources.

See Also

NWSMPCondBroadcast, NWSMPCondSignal, NWSMPCondWait

NLM Programming

SMP: Functions 982

NWSMPCondSignal

Wakes up a single thread waiting on a condition variable

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPCondSignal (
 cond_t cond);

Parameters

cond

(IN) Points to the condition variable.

Return Values

0x000
0

EOK Success

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPCondSignal wakes up a single thread, if one exists, waiting on
the condition cond. NWSMPCondSignal has no effect if there are no
threads waiting on the indicated condition.

NWSMPCondSignal will typically be more efficient if the associated
mutex used by waiters is held across the call.

See Also

NWSMPCondBroadcast, NWSMPCondDestroy, NWSMPCondWait

NLM Programming

SMP: Functions 983

NWSMPCondWait

Waits on a condition

Local Servers: blocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPCondWait (
 cond_t cond,
 mutex_t mutex);

Parameters

cond

(IN) Points to the condition variable.

mutex

(IN) Points to the mutex.

Return Values

0x000
0

EOK Success

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPCondWait allows the caller to wait for the occurrence of a
condition at the condition variable pointed to by cond.

The mutual exclusion variable [mutex] pointed to by mutex must be
locked by the calling thread upon entry to NWSMPCondWait, otherwise
the behavior will be unpredictable.

NWSMPCondWait automatically releases the mutex, causes the calling
thread to wait on the condition variable cond, and when the condition is

NLM Programming

SMP: Functions 984

signaled or the wait is interrupted reacquires the mutex and returns to
the caller.

Since a potential race condition exists between the time the condition is
signaled and the mutex is relocked, the calling thread always check the
indicated condition upon return. The calling thread is allowed to resume
execution when the condition is signaled or broadcast, or when
interrupted.

The logical condition should be checked on return, as a turn may not
have been caused by a change in the condition.

See Also

NWSMPCondBroadcast, NWSMPCondDestroy, NWSMPCondSignal

NLM Programming

SMP: Functions 985

NWSMPIsAvailable

Checks to see whether SMP is loaded and enabled on the server

Local Servers: TBD

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <mwsmp.h>

nuint32 NWSMPIsAvailable (void);

Return Values

0x00000
001

TRUE SMP is loaded and enable

0x00000
000

FALS
E

SMP is not loaded or not enabled

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPIsAvailable checks to determine whether SMP is loaded and
enabled to the server. If SMP is both loaded and enabled, this function
returns TRUE. If SMP is either not loaded or loaded but not enabled, this
function returns FALSE.

See Also

NWSMPThreadToMP

NLM Programming

SMP: Functions 986

NWSMPMutexDestroy

Destroys a mutex lock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPMutexDestroy (
 mutex_t mutex);

Parameters

mutex

(IN) Points to the mutex lock handle.

Return Values

0x000
0

EOK Success

0x000
1

EBUSY An attempt to destroy mutex was made while the
mutex was locked by another thread.

0xFFF
F

EINVA
L

Bad parameter

WARNING: The EBUSY error return cannot be made fully reliable;
application code must ensure there are no thread attempt to destroy
the mutex while it is in use.

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPMutexDestroy destroys the mutex pointed to by mutex. This
includes invalidating the mutex and freeing any associated
implementation-allocated dynamic resources.

Any user-allocated dynamic storage is unaffected by
NWSMPMutexDestroy and must be explicitly released by the program.

NLM Programming

SMP: Functions 987

See Also

NWSMPMutexLock, NWSMPMutexTryLock, NWSMPMutexUnlock

NLM Programming

SMP: Functions 988

NWSMPMutexLock

Locks a mutex lock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPMutexLock (
 mutex_t mutex);

Parameters

mutex

(IN) Points to the mutex.

Return Values

On successful completion, NWSMPMutexLock leaves the mutex in the
locked state and returns zero to the caller. Otherwise, an appropriate
error indicator value is returned.

0x000
0

EOK Success

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPMutexLock is used to acquire the mutex pointed to by mutex.

See Also

NWSMPMutexDestroy, NWSMPMutexTryLock,
NWSMPMutexUnlock

NLM Programming

SMP: Functions 989

NWSMPMutexSleepAlloc

Allocates and initializes a mutex lock

Local Servers: blocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

mutex_t NWSMPMutexSleepAlloc (
 pnstr name);

Parameters

name

(IN) Points to a text string containing the name of the mutex object.

Return Values

On success NWSMPMutexSleepAlloc returns a mutex object. Otherwise
the function returns NULL.

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPMutexSleepAlloc allocates and initializes a mutex in the
unlocked state. Once allocated, the mutex can be used any number of
times.

Operations on locks allocated and initialized with
NWSMPMutexSleepAlloc are not recursive---a thread will block itself if
it attempts to reacquire a mutex lock that it already has acquired.

See Also

NWSMPMutexDestroy, NWSMPMutexLock, NWSMPMutexTryLock,
NWSMPMutexUnlock

NLM Programming

SMP: Functions 990

NWSMPMutexTryLock

Conditionally locks a mutex lock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPMutexTryLock (
 mutex_t mutex);

Parameters

mutex

(IN) Points to the mutex.

Return Values

0x000
0

EOK Success

0x000
1

EBUSY The mutex was already locked by another thread at
entry.

0xFFF
F

EINVA
L

Bad parameter

Remark

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPMutexTryLock attempts once to acquire the mutual exclusion
lock [mutex] pointed to by mutex.

If the lock is already locked upon entry, NWSMPMutexTryLock
immediately returns to the caller without acquiring the lock.

For consistency, locks acquired with NWSMPMutexTryLock should be
released with NWSMPMutexUnlock.

See Also

NLM Programming

SMP: Functions 991

NWSMPMutexDestroy, NWSMPMutexLock, NWSMPMutexUnlock

NLM Programming

SMP: Functions 992

NWSMPMutexUnlock

Erases the lock applied by NWSMPMutexLock and
NWSMPMutexTryLock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPMutexUnlock (
 mutex_t mutex);

Parameters

mutex

(IN) Points to the mutex.

Return Values

0x000
0

EOK Success

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPMutexUnlock unlocks the mutex pointed to by mutex. The locks
acquired with NWSMPMutexLock and NWSMPMutexTryLock should
be released with NWSMPMutexUnlock.

If there is one or more threads waiting for the mutex when
NWSMPMutexUnlock is called, at least one waiting thread is allowed to
attempt acquisition of the mutex.

The requirement that at least one waiting thread is allowed to attempt
acquisition is sufficient if no interruption takes place in
NWSMPMutexLock code.

NLM Programming

SMP: Functions 993

See Also

NWSMPMutexDestroy, NWSMPMutexLock, NWSMPMutexTryLock

NLM Programming

SMP: Functions 994

NWSMPRMutexAlloc

Allocates an initializes a recursive mutex lock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

rmutex_t NWSMPRMutexAlloc (
 pnstr name);

Parameters

name

(IN) Points to a text string containing the name of the rmutex object.

Return Values

On success NWSMPRMutexAlloc returns an rmutex. Otherwise the
function returns NULL.

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPRMutexAlloc allocates a recursive mutex and initializes it to the
unlocked state.

All operations on locks allocated and initialized with
NWSMPRMutexAlloc are recursive.

See Also

NWSMPRMutexLock, NWSMPRMutexTryLock,
NWSMPRMutexUnlock, NWSMPRMutexDestroy

NLM Programming

SMP: Functions 995

NWSMPRMutexDestroy

Destroys a recursive mutex lock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPRMutexDestroy (
 rmutex_t rmutex);

Parameters

rmutex

(IN) Points to the rmutex.

Return Values

0x000
0

EOK Success

0x000
1

EBUSY An attempt to destroy rmutex was made while
rmutex was locked by another thread.

0xFFF
F

EINVA
L

Bad parameter

WARNING: The EBUSY error return cannot be made fully reliable;
application code must ensure that no thread attempt to destroy the
rmutex while it is in use.

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPMutexDestroy destroys the recursive mutex rmutex. This
includes freeing any dynamically allocated resources associated with
rmutex and invalidates rmutex.

See Also

NLM Programming

SMP: Functions 996

NWSMPRMutexLock, NWSMPRMutexUnlock, NWSMPMutexDestroy

NLM Programming

SMP: Functions 997

NWSMPRMutexLock

Locks a recursive mutex lock

Local Servers: blocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPRMutexLock (
 rmutex_t rmutex);

Parameters

rmutex

(IN) Points to the rmutex.

Return Values

0x000
0

EOK Success

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPRMutexLock, similarly to NWSMPMutexLock, acquires the
recursive recursive mutex pointed to by rmutex.

If the recursive mutex is already locked by another thread upon entry,
the calling thread is blocked until the lock becomes available.

If the recursive mutex is already held by the calling thread, the recursive
depth is incremented and control is returned to the caller, just as if the
lock had just been acquired.

The locks acquired with NWSMPRMutexLock should be released with
NWSMPRMutexUnlock.

NLM Programming

SMP: Functions 998

See Also

NWSMPRMutexTryLock, NWSMPRMutexUnlock,
NWSMPRMutexDestroy

NLM Programming

SMP: Functions 999

NWSMPRMutexOwner

Defines the thread (resource) that is the owner (controller) of the mutex

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

thread_desc_t NWSMPRMutexOwner (
 rmutex_t rmutex);

Parameters

rmutex

(IN) Points to the rmutex.

Return Values

0x000
0

EOK Success

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPRMutexOwner defines the thread (resource) that has ownership
or control of the rmutex. Separations on rmutex locks are not recursive.

The thread_desc_t data type specifies the ID of the owner thread.

See Also

NWSMPRMutexLock, NWSMPRMutexUnlock,
NWSMPRMutexTryLock, NWSMPRMutexDestroy

NLM Programming

SMP: Functions 1000

NWSMPRMutexTryLock

Conditionally locks a recursive mutex lock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPRMutexTryLock (
 rmutex_t rmutex);

Parameters

rmutex

(IN) Points to the rmutex.

Return Values

0x000
0

EOK Success

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPRMutexTryLock, is used to conditionally acquire the recursive
mutex pointed to by rmutex.

If the recursive mutex is already held by another thread,
NWSMPRMutexTryLock immediately returns to the caller without
acquiring the lock. If the recursive mutex is already held by the calling
thread, the recursive depth is incremented and control is returned to the
caller, exactly as if the lock had just been acquired.

The locks acquired with NWSMPRMutexTryLock should be released
with NWSMPRMutexUnlock.

NLM Programming

SMP: Functions 1001

See Also

NWSMPRMutexLock, NWSMPRMutexUnlock,
NWSMPRMutexDestroy

NLM Programming

SMP: Functions 1002

NWSMPRMutexUnlock

Releases recursive locks acquired by NWSMPRMutexLock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPRMutexUnlock (
 rmutex_t rmutex);

Parameters

rmutex

(IN) Points to the rmutex.

Return Values

0x000
0

EOK Success

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPRMutexUnlock releases the rmutex applied by a previous call
to NWSMPRMutexLock. The operation checks the identity of the caller
and if the caller is the current owner of the rmutex it checks the depth
count. If the depth count is greater than 0, it decrements the count and
returns to the caller without releasing the mutex. When the depths count
is found to be 0, the mutex is released.

If there is at least one thread waiting for mutex when the mutex is
unlocked, at least one waiting thread is called to attempt acquisition of
the mutex. NWSMPRMutexUnlock fails when applied to a rmutex not
locked previously by the caller.

NLM Programming

SMP: Functions 1003

See Also

NWSMPRMutexLock, NWSMPRMutexTryLock,
NWSMPRMutexDestroy

NLM Programming

SMP: Functions 1004

NWSMPRWLockAlloc

Allocates a read-write lock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

rwlock_t NWSMPRWLockAlloc (
 pnstr name);

Parameters

name

(IN) Points to a text string containing the name of the read-write lock
object.

Return Values

On success NWSMPRWLockAlloc returns a read-write lock. Otherwise,
the function fails and returns NULL.

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPRWLockAlloc allocates a read-write lock.

These locks are to be used where distinguishing type of the access will
enhance concurrence. Once allocated, the lock can be used any number of
times.

Operations on read-write locks are not recursive---a thread will block
itself if it attempts to reacquire a lock that it already has acquired.

See Also

NWSMPRWLockDestroy, NWSMPRWReadLock,
NWSMPRWTryReadLock, NWSMPRWTryWriteLock,
NWSMPRWUnlock, NWSMPRWWriteLock

NLM Programming

SMP: Functions 1005

NWSMPRWLockDestroy

Destroys a read-write lock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPRWLockDestroy (
 rwlock_t lock);

Parameters

lock

(IN) Points to the lock.

Return Values

0x000
0

EOK Success

0x000
1

EBUSY An attempt to destroy the lock was made while the
lock was locked or referenced by another thread.

0xFFF
F

EINVA
L

Bad parameter

WARNING: The EBUSY error return cannot be made fully reliable;
application code must ensure that no thread attempt to destroy the
read-write lock while it is in use.

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPRWLockDestroy destroys the read-write lock pointed to by lock.
This includes invalidating the lock and freeing any associated
dynamically allocated resources.

See Also

NLM Programming

SMP: Functions 1006

NWSMPRWReadLock, NWSMPRWTryReadLock,
NWSMPRWTryWriteLock, NWSMPRWUnlock,
NWSMPRWWriteLock

NLM Programming

SMP: Functions 1007

NWSMPRWReadLock

Acquires a read-write lock in read mode

Local Servers: blocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPRWReadLock (
 rwlock_t lock);

Parameters

lock

(IN) Points to the lock.

Return Values

0x000
0

EOK Success

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPRWReadLock acquires the read-write lock pointed to by lock in
read mode.

If the lock is currently held by another reader and there are no writers
waiting, the thread proceeds by incrementing the reader count. However,
if a writer holds the lock, the caller blocks. If a reader holds the lock the
caller blocks only if doing so would cause the reader to block behind a
waiting writer.

NWSMPRWReadLock is particularly useful for controlling access to the
resources that are frequently read, but infrequently updated.

NLM Programming

SMP: Functions 1008

See Also

NWSMPRWLockDestroy, NWSMPRWTryReadLock,
NWSMPRWTryWriteLock, NWSMPRWUnlock,
NWSMPRWWriteLock

NLM Programming

SMP: Functions 1009

NWSMPRWTryReadLock

Conditionally acquires a read-write lock in read mode

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPRWTryReadLock (
 rwlock_t lock);

Parameters

lock

(IN) Points to the lock.

Return Values

0x000
0

EOK Success

0x000
1

EBUSY The read-write lock pointed to by lock is already
locked.

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPRWTryReadLock makes a single attempt to acquire the
read-write lock pointed to by lock in read mode. If the lock cannot be
acquired, NWSMPRWTryReadLock immediately returns to the caller.

If the lock is currently held by another reader and there are no writers
waiting, NWSMPRWTryReadLock increments the reader count and
returns success. If the lock is currently held by a writer, or there are
writers waiting and the thread would have to block,
NWSMPRWTryReadLock immediately returns to the requester with a
failed.

NLM Programming

SMP: Functions 1010

NWSMPRWTryReadLock is particularly useful for controlling access to
the resources that are frequently read, but infrequently updated.

The locks acquired with NWSMPRWTryReadLock should be released
with NWSMPRWUnlock.

See Also

NWSMPRWLockDestroy, NWSMPRWReadLock,
NWSMPRWTryWriteLock, NWSMPRWUnlock,
NWSMPRWWriteLock

NLM Programming

SMP: Functions 1011

NWSMPRWTryWriteLock

Conditionally acquires a read-write lock in write mode

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPRWTryWriteLock (
 rwlock_t lock);

Parameters

lock

(IN) Points to the lock.

Return Values

0x000
0

EOK Success

0x000
1

EBUSY The read-write lock pointed to by lock is already
locked.

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPRWTryWriteLock makes a single attempt to acquire the
read-write lock in write mode pointed to by lock. If the lock cannot be
acquired, NWSMPRWTryWriteLock immediately returns to the caller.

The parameter lock points to the read-write lock on which the write lock is
to be applied. A write request succeeds only when there are no other
readers or writers already holding the lock.

The locks acquired with NWSMPRWTryWriteLock should be released
with NWSMPRWUnlock.

NLM Programming

SMP: Functions 1012

See Also

NWSMPRWLockDestroy, NWSMPRWReadLock,
NWSMPRWTryReadLock, NWSMPRWUnlock, NWSMPRWWriteLock

NLM Programming

SMP: Functions 1013

NWSMPRWUnlock

Releases a read-write lock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPRWUnlock (
 rwlock_t lock);

Parameters

lock

(IN) Points to the lock.

Return Values

0x000
0

EOK Success

0x000
1

EBUSY Lock is held currently by a reader of a writer

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPRWUnlock releases a lock acquired by a previous call to
NWSMPRWReadLock, NWSMPRWWriteLock,
NWSMPRWTryReadLock, or NWSMPRWTryWriteLock. It can
determine the type of the lock that is being released by the current state
of the lock. When the request is made by a reader, the reader count is
decremented and if still more readers claim the lock, the lock is not
released. The dequeuing can proceed only when there are no more
readers holding the lock.

Should the unlock leave the lock released, the first waiting thread is

NLM Programming

SMP: Functions 1014

activated. If the thread activated is a reader, all subsequent readers are
activated (up to the next writer or end of queue) and the count of readers
holding the lock is changed to reflect this. If the thread activated is a
writer, no other threads are activated and the lock is marked as being
held by a writer. Writer starvation is prevented because writers always
have higher priority than readers during process wake-up.

See Also

NWSMPRWLockDestroy, NWSMPRWReadLock,
NWSMPRWTryReadLock, NWSMPRWTryWriteLock,
NWSMPRWWriteLock

NLM Programming

SMP: Functions 1015

NWSMPRWWriteLock

Acquires a read-write lock in write mode

Local Servers: blocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPRWWriteLock (
 rwlock_t lock);

Parameters

lock

(IN) Points to the read-write lock.

Return Values

0x000
0

EOK Success

0x000
2

EDEADLO
CK

Deadlock

0xFFF
F

EINVAL Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPRWWriteLock acquires the read-write lock in write mode
pointed to by lock.

The request succeeds only when the lock is free of another write lock and
of all read locks. The request will wait for any current readers to finish
before acquiring the lock. All other write and read requests for the lock
remain blocked until the lock is available again.

See Also

NLM Programming

SMP: Functions 1016

NWSMPRWLockDestroy, NWSMPRWReadLock,
NWSMPRWTryReadLock, NWSMPRWTryWriteLock,
NWSMPRWUnlock

NLM Programming

SMP: Functions 1017

NWSMPSpinAlloc

Allocates a spin lock and initializes it to the unlocked state

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

spin_t NWSMPSpinAlloc (
 pnstr name);

Parameters

name

(IN) Points to a text string containing the name of the spin lock object.

Return Values

On success this function returns a spin lock. Otherwise, it fails and
returns NULL.

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPSpinAlloc allocates a spin lock in the unlocked state. Once
allocated, the spin lock can be used any number of times. All operations
on locks allocated with NWSMPSpinAlloc are nonrecursive.

See Also

NWSMPSpinLock, NWSMPSpinTryLock, NWSMPSpinUnlock,
NWSMPSpinDestroy

NLM Programming

SMP: Functions 1018

NWSMPSpinDestroy

Destroys the lock, including invalidating the lock and freeing any
associated dynamically allocated resources

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPSpinDestroy (
 spin_t lock);

Parameters

lock

(IN) Points to the spin lock.

Return Values

0x000
0

EOK Success

0x000
1

EBUSY An attempt to destroy a spin lock was made while
the spin lock was locked by another thread.

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

_spin_destory destroys the lock, including invalidating the lock and
freeing any associated dynamically allocated resources.

See Also

NWSMPSpinLock, NWSMPSpinTryLock, NWSMPSpinUnlock

NLM Programming

SMP: Functions 1019

NWSMPSpinLock

Acquires a spin lock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPSpinLock (
 spin_t lock);

Parameters

lock

(IN) Points to the spin lock.

Return Values

0x000
0

EOK Success

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPSpinLock acquires a spin lock. The parameter lock points to the
spin lock on which the lock is to be applied. If the lock is already locked,
the calling thread loops until the lock can be acquired. In general, this
operation is used when the resources are exclusively held for such short
durations that releasing the processor via a context switch may not be
optimal. The locks acquired with NWSMPSpinLock should be released
with NWSMPSpinUnlock.

See Also

NWSMPSpinTryLock, NWSMPSpinUnlock, NWSMPSpinDestroy

NLM Programming

SMP: Functions 1020

NWSMPSpinTryLock

Makes a single attempt to acquire a spin lock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPSpinTryLock (
 spin_t lock);

Parameters

lock

(IN) Points to the spin lock.

Return Values

0x000
0

EOK Success

0x000
1

EBUSY Failed to get the lock

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPSpinTryLock makes a single attempt to acquire the spin lock
pointed to by lock. If the spin lock is already locked, the option
immediately returns to the caller without acquiring the lock.

In general, NWSMPSpinTryLock, like NWSMPSpinLock, is used when
the resources are exclusively held for such short durations that releasing
the processor via a context switch may not be optimal. The locks acquired
with NWSMPSpinTryLock are released with NWSMPSpinUnlock.

NLM Programming

SMP: Functions 1021

See Also

NWSMPSpinLock, NWSMPSpinUnlock, NWSMPSpinDestroy

NLM Programming

SMP: Functions 1022

NWSMPSpinUnlock

Releases locks acquired with NWSMPSpinLock and NWSMPSpinTryLock

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

nuint32 NWSMPSpinUnlock (
 spin_t lock);

Parameters

lock

(IN) Points to the spin lock.

Return Values

0x000
0

EOK Success

0xFFF
F

EINVA
L

Bad parameter

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

A spin lock acquired with NWSMPSpinLock and NWSMPSpinTryLock
should be released with NWSMPSpinUnlock.

See Also

NWSMPSpinLock, NWSMPSpinTryLock, NWSMPSpinDestroy

NLM Programming

SMP: Functions 1023

NWSMPThreadToMP

Migrates the thread to the MP scheduler

Local Servers: TBD

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

void NWSMPThreadToMP (void);

Return Values

None

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPThreadToMP should be used only to initially force threads into
the SMP environment.

NWSMPThreadToMP causes a significant performance overhead.

NWSMPThreadToMP causes the calling thread to switch environment
context from uniprocessing under native NetWare to multiprocess in the
SMP environment. No action is taken if the thread yields into the new
environment. That is, the calling thread's execution is halted and the
thread after awakening is placed in a runnable state in the SMP context.

The criteria for choosing a thread to run after the calling thread has
yielded are not specified. It is possible for the calling thread to be
rescheduled immediately, even if other runnable threads exist.

NWSMPThreadToMP should be viewed as a hint from the caller to the
system, indicating that the caller has reached a point at which it is
convenient to yield the processor to other threads.

NWSMPThreadToMP is used by multithreaded applications which need
to exercise control over their scheduling. No privilege or special
permission is required for NWSMPThreadToMP.

See Also

NWSMPThreadToNetWare

NLM Programming

SMP: Functions 1024

NLM Programming

SMP: Functions 1025

NWSMPThreadToNetWare

Migrates the thread to the NetWare scheduler

Local Servers: TBD

Remote Servers: N/A

SMP Aware: Yes

Service: SMP

Syntax

#include <nwsmp.h>

void NWSMPThreadToNetWare (void);

Return Values

None

Remarks

NOTE: For current expectations about NetWare SMP scaling, see
Current NetWare SMP Scalability.

NWSMPThreadToNetWare should be used only to explicitly force
threads into the NetWare environment for performance related tuning.

NWSMPThreadToNetWare causes a significant performance overhead.

NWSMPThreadToNetWare causes the calling thread to switch
environment context from multiprocessing under SMP to uniprocess in
the native NetWare environment. No action is taken if the thread yields
into the new environment. That is, the calling thread's execution is halted
and the thread after awakening is placed in a runnable state in the native
NetWare context.

The criteria for choosing a thread to run after the calling thread has
yielded are not specified. It is possible for the calling thread to be
rescheduled immediately, even if other runnable threads exist.

NWSMPThreadToNetWare should be viewed as a hint from the caller to
the system, indicating that the caller has reached a point at which it is
convenient to yield the processor to other threads.

NWSMPThreadToNetWare is used by multithreaded applications
which need to exercise control over their scheduling. No privilege or
special permission is required for NWSMPThreadToNetWare.

See Also

NLM Programming

SMP: Functions 1026

NWSMPThreadToMP

NLM Programming

SMP: Functions 1027

String Conversion

NLM Programming

 1028

String Conversion: Functions

NLM Programming

String Conversion: Functions 1029

ASCIIZToLenStr

Converts an ASCIIZ (NULL-terminated) string to a length-preceded string

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: Yes

Service: String Conversion

Syntax

#include <nwstring.h>

int ASCIIZToLenStr (
 char *destStr,
 char *srcStr);

Parameters

destStr

(OUT) Specifies the destination string.

srcStr

(IN) Specifies the source string in ASCIIZ format.

Return Values

0 (0x0
0)

ESUCCESS

1 (0x0
1)

ERR_STRING_EXCEEDS_LE
NGTH

Longer than 255 characters.

Remarks

ASCIIZToLenStr converts an ASCIIZ (NULL-terminated) string to a
length-preceded string. A length-preceded string has the length of the
string in the first byte, followed by the characters of the string.

The destStr and srcStr parameters might not point at the same string.

NLM Programming

String Conversion: Functions 1030

ASCIIZToMaxLenStr

Converts an ASCIIZ (NULL-terminated) string to a length-preceded string
that is not longer than the specified maximum length

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

SMP Aware: Yes

Service: String Conversion

Syntax

#include <nwstring.h>

int ASCIIZToMaxLenStr (
 char *lenString,
 char *ASCIIZstring,
 int maximumLength);

Parameters

lenString

(OUT) Specifies the destination (length-preceded) string.

ASCIIZstring

(IN) Specifies the source string in ASCIIZ format.

maximumLength

(IN) Specifies the maximum number of characters to place in the new
string.

Return Values

-1 EFAILU
RE

The ASCIIZ string was longer than the mamimumLength
.

0 ESUCCE
S

Remarks

A length-preceded string has the length of the string in the first byte,
followed by the characters in the string; it cannot exceed 255 characters. If
the ASCIIZstring string is longer that 255 characters, this function returns
EFAILURE, and lenString contains maximumLength characters. The

NLM Programming

String Conversion: Functions 1031

remaining characters of the ASCIIZstring are not copied to lenString.

Since length-preceded strings only have one byte to store the size of the
string, the maximum size of the string is 255. Passing a maximum size
larger than 255 produces unpredictable results.

Example

ASCIIZToMaxLenStr

#include <nwstring.h>
#include <errno.h>

main()
{
 char srcString[256];
 char destString[256];
 int ccode;
 int maxSize;
 strcpy(srcString,"This is the message");
 maxSize = 100;
 ccode = ASCIIZToMaxLenStr(destString, srcString, maxSize);
 if(ccode == ESUCCESS)
 printf("The string fit\n");
 else
 printf("The string was too long to fit in the allotted space.\n");
}

NLM Programming

String Conversion: Functions 1032

atof

Converts a string to double representation

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Conversion

Syntax

#include <stdlib.h>

double atof (
 const char *ptr);

Parameters

ptr

(IN) Points to the string to be converted.

Return Values

atof returns the converted value. A value of 0 is returned when the input
string cannot be converted. When an error has occurred, errno is set

Remarks

The atof function converts the string pointed to by ptr to double
representation.

See Also

sscanf, strtod

Example

atof

#include <stdlib.h>

main ()
{
 double x;
 x=atof("3.1415926");

NLM Programming

String Conversion: Functions 1033

}

NLM Programming

String Conversion: Functions 1034

atoi

Converts a string to integer representation

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Conversion

Syntax

#include <stdlib.h>

int atoi (
 const char *ptr);

Parameters

ptr

(IN) Points to the string to be converted.

Return Values

atoi returns the converted value.

Remarks

The atoi function converts the string pointed to by ptr to int
representation.

See Also

sscanf, strtoi, strtol

Example

atoi

#include <stdlib.h>

main ()
{
 int x;
 x=atoi("-289");
}

NLM Programming

String Conversion: Functions 1035

atol

Converts a string to long integer representation

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Conversion

Syntax

#include <stdlib.h>

long int atol (
 const char *ptr);

Parameters

ptr

(IN) Points to the string to be converted.

Return Values

atol returns the converted value.

Remarks

The atol function converts the string pointed to by ptr to long integer
representation.

See Also

sscanf, strtol

Example

atol

#include <stdlib.h>

main ()
{
 long int x;
 x = atol("-289");
}

NLM Programming

String Conversion: Functions 1036

ecvt

Converts a floating-point number into a character string

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Conversion

Syntax

#include <stdlib.h>

char *ecvt (
 double value,
 int ndigits,
 int *dec,
 int *sign);

Parameters

value

(IN) Specifies the value to be converted into a string.

ndigits

(IN) Specifies the desired total number of significant digits.

dec

(OUT) Receives a pointer to the decimal point position relative to the
first digit.

sign

(OUT) Receives a pointer to a positive or negative sign:

0 = Positive

Nonzero = Negative

Return Values

The ecvt function returns a pointer to a static buffer containing the
converted string of digits. Note, both ecvt and fcvt use the same static
buffer, except if you are using CLIB V 4.11 or above.

Remarks

The parameter ndigits specifies the number of significant digits desired.
The converted number is rounded to ndigits of precision.

NLM Programming

String Conversion: Functions 1037

The character string contains only digits and is terminated by a NULL
character. The integer pointed to by dec is filled in with a value indicating
the position of the decimal point relative to the start of the string of digits.
A zero or negative value indicates that the decimal point lies to the left of
the first digit. The integer pointed to by sign contains 0 if the number is
positive, and nonzero if the number is negative.

See Also

fcvt, gcvt, printf

Example

ecvt

#include <stdio.h>
#include <stdlib.h>

main()
{
 char str;
 int dec, sign;
 str = ecvt(123.456789, 6, &dec, &sign);
 printf("str=%s, dec=%d, sign=%d\n", str,dec, sign);
}
produces the following:
str=123457, dec=3, sign=0

NLM Programming

String Conversion: Functions 1038

fcvt

Converts the floating-point number value into a character string

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Conversion

Syntax

#include <stdlib.h>

char *fcvt (
 double value,
 int ndigits,
 int *dec,
 int *sign);

Parameters

value

(IN) Specifies the value to be converted into a string.

ndigits

(IN) Specifies the desired total number of significant digits to the right
of the decimal point.

dec

(OUT) Receives a pointer to the decimal point position relative to the
first digit.

sign

(OUT) Receives a pointer to a positive or negative sign: 0 = Positive;
Nonzero = Negative

Return Values

The fcvt function returns a pointer to a static buffer containing the
converted string of digits. Note, both ecvt and fcvt use the same static
buffer, except if you are using CLIB V 4.11 or above.

Remarks

The difference between the fcvt and ecvt functions is that the parameter
ndigits for the fcvt function specifies the number of digits desired to the
right of the decimal point. The converted number is rounded to this

NLM Programming

String Conversion: Functions 1039

position.

The character string contains only digits, and it is terminated by a NULL
character. The integer pointed to by dec is filled in with a value indicating
the position of the decimal point relative to the start of the string of digits.
A zero or negative value indicates that the decimal point lies to the left of
the first digit. The integer pointed to by sign contains 0 if the number is
positive, and nonzero if the number is negative.

See Also

ecvt, gcvt, printf

Example

fcvt

#include <stdio.h>
#include <stdlib.h>

main()
{
 char *str;
 int dec, sign;
 str=fcvt(-123.456789, 5, &dec, &sign) ;
 printf("str=%s, dec=%d, sign=%d\n", str,dec,sign) ;
}

produces the following:

str=12345679, dec=3, sign=-1

NLM Programming

String Conversion: Functions 1040

gcvt

Converts the floating-point number value into a character string and stores
the result in a buffer

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Conversion

Syntax

#include <stdlib.h>

char *gcvt (
 double value,
 int ndigits,
 char *buffer);

Parameters

value

(IN) Specifies the value to be converted into a string.

ndigits

(IN) Specifies the desired total number of significant digits.

buffer

(OUT) Receives the character string.

Return Values

The gcvt function returns a pointer to the string of digits.

Remarks

The parameter ndigits specifies the number of significant digits desired.
The converted number are rounded to this position.

If the exponent of the number is less than -4 or is greater than or equal to
the number of significant digits wanted, then the number is converted
into E-format. Otherwise, the number is formatted using F-format.

See Also

ecvt, fcvt, printf

NLM Programming

String Conversion: Functions 1041

Example

gcvt

#include <stdio.h>
#include <stdlib.h>

main()
{
 char buffer [80] ;
 printf("%s\n", gcvt(-123.456789, 5, buffer));
 printf("%s\n", gcvt(123.456789E+12, 5, buffer));
}
produces the following:
-123.46
1.2346E+014

NLM Programming

String Conversion: Functions 1042

itoa

Converts an integer to a string

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Conversion

Syntax

#include <stdlib.h>

char *itoa (
 int value,
 char *buffer,
 int radix);

Parameters

value

(IN) Specifies the integer value to be converted.

buffer

(OUT) Receives a pointer to the character array.

radix

(IN) Specifies the base to be used in converting the integer.

Return Values

itoa returns the pointer to the result.

Remarks

The itoa function converts the integer value into the equivalent string in
base radix notation, storing the result in the character array pointed to by
buffer. A NULL character is appended to the result.

The size of buffer must be at least (8 * sizeof (int) + 1) bytes when
converting values in base 2. That makes the size 17 bytes on 16-bit
machines and 33 bytes on 32-bit machines. If the value of radix is 10 and
value is negative, a minus sign (-) is prepended to the result.

See Also

atoi, strtol, utoa

NLM Programming

String Conversion: Functions 1043

Example

itoa

#include <stdio.h>
#include <stdlib.h>

int main()
{
 char buffer[20];
 int base;
 for (base=8; base<=16; base=base+2)
 printf ("%2d %s\n", base, itoa (12765, buffer, base));
}

produces the following:

 8 30735
 10 12765
 12 7479
 14 491b
 16 31dd

NLM Programming

String Conversion: Functions 1044

LenToASCIIZStr

Converts a length-preceded string to an ASCIIZ (NULL-terminated)

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: String Conversion

Syntax

#include <nwstring.h>

int LenToASCIIZStr (
 char *destStr,
 char *srcStr);

Parameters

destStr

(OUT) Specifies the destination string.

srcStr

(IN) Specifies the source string.

Return Values

(0x0
0)

ESUCCESS

The srcStr is only copied up to the first NULL character or the length
specified, whichever is shorter. If the string is not converted (due to a
NULL being encountered), the value returned is the number of
characters not copied to the destination string.

Remarks

LenToASCIIZStr call copies and converts a length-preceded string to an
ASCIIZ (NULL-terminated) string.

The srcStr parameter is an ASCII string with the length of the string of the
first byte and the actual characters of the string following it.

The srcStr can be the same as the destStr.

NLM Programming

String Conversion: Functions 1045

ltoa

Converts a long integer to a string

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Conversion

Syntax

#include <stdlib.h>

char *ltoa (
 long int value,
 char *buffer,
 int radix);

Parameters

value

(IN) Specifies the integer value to be converted.

buffer

(OUT) Receives a pointer to the character array.

radix

(IN) Specifies the base to be used when converting the integer.

Return Values

ltoa returns a pointer to the result.

Remarks

The ltoa function converts the integer value into the equivalent string in
base radix notation, storing the result in the character array pointed to by
buffer. A NULL character is appended to the result. The size of buffer must
be at least 33 bytes when converting values in base 2. If the value of radix
is 10 and value is negative, then the result is prefixed with a minus sign
(-).

See Also

atol, strtol, strtoul, ultoa

NLM Programming

String Conversion: Functions 1046

Example

ltoa

#include <stdlib.h>

void print_value (long value)
{
 int base;
 char buffer[33];
 for (base=8; base<=16; base=base+2)
 printf ("%2d %s\n", base, ltoa (value, buffer, base));
}

produces the following:

 8 30735
10 12765
12 7479
14 491b
16 31dd

NLM Programming

String Conversion: Functions 1047

strtod

Converts a string to double representation

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Conversion

Syntax

#include <limits.h>
#include <stdlib.h>

double strtod (
 const char *ptr,
 char **endptr);

Parameters

ptr

(IN) Points to the string to be converted.

endptr

(OUT) Receives a pointer to the first unrecognized character.

Return Values

strtod returns the converted value. If the correct value causes overflow,
plus or minus HUGE_VAL is returned according to the sign, and errno is
set to ERANGE. If the correct value causes underflow, a value of 0 is
returned, and errno is set to ERANGE. A value of 0 is returned when the
input string cannot be converted.

Remarks

The strtod function converts the string pointed to by ptr to double
representation. The function recognizes a string containing:

Optional white space

An optional plus (+) or minus (-) sign

A sequence of digits containing an optional decimal point

An optional e or E followed by an optionally signed sequence of digits

The conversion ends at the first unrecognized character. A pointer to that

NLM Programming

String Conversion: Functions 1048

character is stored in the object to which endptr points if endptr is not
NULL.

See Also

atof

Example

strtod

#include <limits.h>
#include <stdlib.h>

double convert_pi ()
{
 double pi;
 pi = strtod ("3.141592653589793", NULL)
 return (pi);
}

NLM Programming

String Conversion: Functions 1049

strtoi

Converts an ASCII string to an integer

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Conversion

Syntax

#include <stdlib.h>

int strtoi (
 const char *str,
 int base);

Parameters

str

(IN) Specifies a pointer to the string to convert to an integer.

base

(IN) Specifies the number base of the string.

Return Values

strtoi returns the integer value for the input ASCII string and base. This
value is inaccurate if a value in str is outside the range of the value
specified in base. If a character in p is encountered outside the range of
base, the function returns the value computed up to that point.

The base parameter can be 0, in which case base is given one of the
following values:

16---if str begins with 0x, 0X, or contains any alphabetic characters

8---if str begins with 0 or 10.

See Also

atoi, strtol

Example

strtoi

NLM Programming

String Conversion: Functions 1050

#include <stdlib.h>

main()
{
 int decimal_value;
 int hex_value;
 decimal_value = strtoi("1234567", 10);

 /* decimal_value is printed as: 1234567 */
 printf("decimal_value = %d\n", decimal_value);
 decimal_value = strtoi ("123a4567\n", 10);

 /* decimal_value is printed as: 123 */
 printf ("decimal_value = %d\n", decimal_value);
 hex_value = strtoi ("abc123", 16);

 /* hex_value is printed as: abc123 */
 printf ("hex_value = %x\n", hex_valu);
 hex_value = strtoi ("abch123", 16);

 /* hex_value is printed as: abc */
 printf ("hex_value = %x\n", hex_value);
}

NLM Programming

String Conversion: Functions 1051

strtol

Converts a string to an object of type long int

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Conversion

Syntax

#include <limits.h>
#include <stdlib.h>

long int strtol (
 const char *ptr,
 char **endptr,
 int base);

Parameters

ptr

(IN) Points to the string to be converted to an object.

endptr

(OUT) Receives a pointer to the first unrecognized character.

base

(IN) Specifies the base of the value being converted.

Return Values

strtol returns the converted value. If the correct value would cause
overflow, LONG_MAX or LONG_MIN is returned according to the sign,
and errno is set to ERANGE. If base is out of range, zero is returned and
errno is set to EDOM. A value of 0 is returned when the input string
cannot be converted. When an error has occurred, errno is set.

Remarks

The strtol function converts the string pointed to by ptr to an object of
type long int. The function recognizes a string containing:

Optional white space

An optional plus (+) or minus (-) sign

A sequence of digits and letters

NLM Programming

String Conversion: Functions 1052

The conversion ends at the first unrecognized character. A pointer to that
character is stored in the object to which endptr points if endptr is not
NULL.

The base parameter must have a value between 2 and 36. The letters a
through z and A through Z represent the values 10 through 35. Only
those letters whose designated values are less than base are permitted. If
the value of base is 16, the characters 0x or 0X can optionally precede the
sequence of letters and digits.

See Also

ltoa, strtoul

Example

strtol

#include <limits.h>
#include <stdlib.h>

main ()
{
 long int v;
 v = strtol ("12345678", NULL, 10);
}

NLM Programming

String Conversion: Functions 1053

strtoul

Converts a string to an unsigned long integer.

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Conversion

Syntax

#include <limits.h>
#include <stdlib.h>

unsigned long int strtoul (
 const char *ptr,
 char **endptr,
 int base);

Parameters

ptr

(IN) Points to the string to be converted.

endptr

(OUT) Receives a pointer to the first unrecognized character.

base

(IN) Specifies the base of the value being converted.

Return Values

strtoul returns the converted value. If the correct value would cause
overflow, ULONG_MAX is returned and errno is set to ERANGE. If base is
out of range, a value of 0 is returned and errno is set to EDOM. A value of
0 is returned when the input string cannot be converted. When an error
has occurred, errno is set.

Remarks

The strtoul function converts the string pointed to by ptr to an unsigned
long integer. The function recognizes a string containing optional white
space, followed by a sequence of digits and letters. The conversion ends
at the first unrecognized character. A pointer to that character is stored in
the object to which endptr points if endptr is not NULL.

If base is zero, the first characters determine the base used for the

NLM Programming

String Conversion: Functions 1054

conversion. If the first characters are 0x or 0X, the digits are treated as
hexadecimal. If the first character is 0, the digits are treated as octal.
Otherwise, the digits are treated as decimal.

If base is not zero, it must have a value of between 2 and 36. The letters a
through z and A through Z represent the values 10 through 35. Only
those letters whose designated values are less than base are permitted. If
the value of base is 16, the characters 0x or 0X can optionally precede the
sequence of letters and digits.

See Also

ltoa, strtol, ultoa

Example

strtoul

#include <limits.h>
#include <stdlib.h>

main ()
{
 unsigned long int v;
 v = strtoul ("12345678", NULL, 10);
}

NLM Programming

String Conversion: Functions 1055

ultoa

Converts an unsigned long integer into the equivalent string in base
notation

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Conversion

Syntax

#include <stdlib.h>

char *ultoa (
 unsigned long int value,
 char *buffer,
 int radix);

Parameters

value

(IN) Specifies an unsigned long value.

buffer

(OUT) Receives a pointer to the character array.

radix

(IN) Specifies the base to be used when converting the integer.

Return Values

ultoa returns the pointer to the result.

Remarks

The ultoa function converts the unsigned long integer value into the
equivalent string in base radix notation, storing the result in the character
array pointed to by buffer. A NULL character is appended to the result.
The size of buffer must be at least 33 bytes when converting values in
base 2.

See Also

atol, ltoa, strtol, strtoul, utoa

NLM Programming

String Conversion: Functions 1056

Example

ultoa

#include <stdlib.h>

void print_value (unsigned long int value)
{
 int base;
 char buffer[33];
 for (base=2; base<36; ++base)
 printf ("%s\n", ultoa (value, buffer, base));
}

NLM Programming

String Conversion: Functions 1057

utoa

Converts an unsigned integer into the equivalent string in base notation

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Conversion

Syntax

#include <stdlib.h>

char *utoa (
 unsigned int value,
 char *buffer,
 int radix);

Parameters

value

(IN) Specifies an unsigned integer value.

buffer

(OUT) Receives a pointer to the character array.

radix

(IN) Specifies a base radix notation.

Return Values

utoa returns the pointer to the result.

Remarks

The utoa function converts the unsigned integer value into the equivalent
string in base radix notation, storing the result in the character array
pointed to by buffer. A NULL character is appended to the result. The size
of buffer must be at least 17 bytes when converting values in base 2.

See Also

atoi, itoa, strtol, strtoul

Example

NLM Programming

String Conversion: Functions 1058

utoa

#include <stdlib.h>

void print_value (unsigned int value)
{
 int base;
 char buffer[18];
 for (base=2; base<36; ++base)
 printf ("%s\n", utoa (value, buffer, base));
}

NLM Programming

String Conversion: Functions 1059

String Manipulation

NLM Programming

 1060

String Manipulation: Functions

NLM Programming

String Manipulation: Functions 1061

LenStrCat

Concatenates two length-preceded ASCII strings

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <nwstring.h>

char *LenStrCat (
 char *destStr,
 char *srcStr);

Parameters

destStr

(IN/OUT) Specifies the destination string.

srcStr

(IN) Specifies the source string.

Return Values

LenStrCat returns the address of the destination string.

Remarks

LenStrCat concatenates the srcStr onto the end of the destStr. The source
and destination strings are two ASCII strings with the length of the string
being the first byte of the string. NULL characters are copied the same as
any other value. It is the programmer's job to make sure the destination
string is large enough to hold the concatenated string.

NLM Programming

String Manipulation: Functions 1062

LenStrCmp

Compares two length-preceded ASCII strings

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <nwstring.h>

int LenStrCmp (
 char *string1,
 char *string2);

Parameters

string1

(IN) Specifies the first string to be compared.

string2

(IN) Specifies the second string to be compared.

Return Values

A value < 0 if string1 < string2

A value = 0 if string1 = string2

A value > 0 if string1 > string2

Remarks

LenStrCmp compares two ASCII strings preceded by a byte length. The
string1 and string2 parameters are two ASCII strings with the length of
the string being the first byte of the string. This function emulates the
standard strcmp function but works with length-preceded strings rather
than NULL-terminated strings.

NLM Programming

String Manipulation: Functions 1063

LenStrCpy

Copies a length-preceded ASCII string to another string

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <nwstring.h>

char *LenStrCpy (
 char *destStr,
 char *srcStr);

Parameters

destStr

(OUT) Specifies the destination string.

srcStr

(IN) Specifies the source string.

Return Values

LenStrCpy returns a pointer to destStr.

Remarks

The developer must ensure that the destStr parameter is large enough to
contain the srcStr parameter. The source and destination strings are two
ASCII strings with the length of the string being the first byte of the
string. This function is similar to the standard strcpy function but works
with length-preceded strings rather than NULL-terminated strings.

NLM Programming

String Manipulation: Functions 1064

sprintf

Writes output to a specified character array under format control

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <stdio.h>

int sprintf (
 char *buf,
 const char *format,
 ...);

Parameters

buf

(OUT) Specifies the character array into which to place the output.

format

(IN) Points to the format control string.

Return Values

The sprintf function returns the number of characters written into the
array, not counting the terminating NULL character. An error can occur
while converting a value for output.

Remarks

The sprintf function is equivalent to fprintf, except that the argument buf
specifies a character array into which the generated output is placed,
rather than to a file. A NULL character is placed at the end of the
generated character string. The format string is described under the
description for the printf function.

See Also

fprintf, printf, vsprintf

Example

NLM Programming

String Manipulation: Functions 1065

sprintf

To create a temporary file name using a counter:

#include <stdio.h>
char *make_temp_name ()
{
 static int tempCount=0;
 static char namebuf[13];
 sprintf (namebuf, "ZZ%o6d.TMP", tempCount++);
 return (namebuf);
}

main ()
{
 int i;
 for (i=0; i<3; i++)
 printf ("%s\n", make_temp_name());
}

NLM Programming

String Manipulation: Functions 1066

sscanf

Scans input from a character string under format control

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <stdio.h>

int sscanf (
 const char *in_string,
 const char *format,
 ...);

Parameters

in_string

(IN) Specifies a character string to scan.

format

(IN) Points to the format control string.

Return Values

The sscanf function returns EOF when scanning is terminated by
reaching the end of the input string. Otherwise, the number of input
arguments for which values were successfully scanned and stored is
returned.

Remarks

The sscanf function scans input from the character string in_string under
control of the argument format. Following the format string is the list of
addresses of items to receive values. The format string is described under
the description of the scanf function.

See Also

fscanf, scanf, vsscanf

Example

NLM Programming

String Manipulation: Functions 1067

sscanf

To scan the date in the form "Friday August 14 1991":

#include <stdio.h>
main ()
{
 int day, year;
 char weekday[20], month[20];
 sscanf ("Friday August 0014 1991", "%s %s %d %d",
 &weekday, &month, &day, &year);
 printf ("%s %s %d %d\n", weekday, month, day, year);
}

produces the following:

Friday August 14 1991

NLM Programming

String Manipulation: Functions 1068

strcat

Appends a copy of one string to the end of a second string (function or
macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strcat (
 char *dst,
 const char *src);

Parameters

dst

(OUT) Specifies the string to which to append a copy of another string.

src

(IN) Specifies the string to be copied.

Return Values

strcat returns the value of dst.

Remarks

The strcat function or macro appends a copy of the string pointed to by src
(including the terminating NULL character) to the end of the string
pointed to by dst. The first character of src overwrites the NULL character
at the end of dst.

See Also

strncat

Example

strcat

#include <string.h>

NLM Programming

String Manipulation: Functions 1069

#include <string.h>

#include <stdio.h>
main ()
{
 char buffer[80];
 strcpy (buffer, "Hello ");
 strcat (buffer, "world");
 printf ("%s\n", buffer);
}

produces the following:

Hello world

NLM Programming

String Manipulation: Functions 1070

strchr

Locates the first occurrence of a specified character in a string (function or
macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strchr (
 const char *s,
 int c);

Parameters

s

(IN) Specifies the string containing characters for which to search.

c

(IN) Specifies the character for which to search.

Return Values

strchr returns a pointer to the located character, or NULL if the character
does not occur in the string.

Remarks

The strchr function or macro locates the first occurrence of c (converted to
a char) in the string pointed to bys. The terminating NULL character is
considered to be part of the string.

See Also

memchr, strcspn, strrchr, strspn, strstr, strtok

Example

strchr

#include <string.h>

NLM Programming

String Manipulation: Functions 1071

#include <string.h>
#include <stdio.h>

main ()
{
 char buffer[80];
 char *where;
 strcpy (buffer, "01234ABCD");
 where = strchr (buffer, 'x');
 if (where == NULL)
 {
 printf (" 'x' not found\n");
 }

}

NLM Programming

String Manipulation: Functions 1072

strcmp

Compares two strings (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

int strcmp (
 const char *s1,
 const char *s2);

Parameters

s1

(IN) Specifies the string to be compared to the string pointed to by s2.

s2

(IN) Specifies the string to be compared to the string pointed to by s1.

Return Values

strcmp returns an integer less than, equal to, or greater than zero,
indicating that the string pointed to by s1 is less than, equal to, or greater
than the string pointed to by s2.

Remarks

The strcmp function or macro compares the string pointed to by s1 to the
string pointed to by s2.

See Also

stricmp, strncmp, strnicmp

Example

strcmp

#include <string.h>
#include <stdio.h>

NLM Programming

String Manipulation: Functions 1073

#include <stdio.h>

main ()
{
 printf ("%d\n", strcmp ("abcdef", "abcdef"));
 printf ("%d\n", strcmp ("abcdef", "abc"));
 printf ("%d\n", strcmp ("abc", "abcdef"));
 printf ("%d\n", strcmp ("abcdef", "mnopqr"));
 printf ("%d\n", strcmp ("mnopqr", "abcdef"));
}

produces the following:

0
1
-1
-1
1

NLM Programming

String Manipulation: Functions 1074

strcmpi

Compares, with case insensitivity, two strings (implemented for NetWare®
3.11 and above)

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

int strcmpi (
 const char *s1,
 const char *s2);

Return Values

The strcmpi function returns an integer less than, equal to, or greater than
0, indicating that the string pointed to by s1 is less than, equal to, or
greater than the string pointed to by s2. All uppercase characters from s1
and s2 are mapped to lowercase characters for the purposes of doing the
comparison.

Remarks

The strcmpi function compares, with case insensitivity, the string pointed
to by s1 to the string pointed to by s2.

See Also

strcmp, stricmp, strncmp, strnicmp

Example

strcmpi

#include <string.h>
main()
{
 printf("%d\n", stricmp("AbCDEF", "abcdef"));
 printf("%d\n", stricmp("abcdef", "ABC"));
 printf("%d\n", stricmp("abc", "ABCdef"));
 printf("%d\n", stricmp("Abcdef", "mnopqr"));

NLM Programming

String Manipulation: Functions 1075

 printf("%d\n", stricmp("Mnopqr", "abcdef"));
}

produces the following:

0
100
-100
-12
12

NLM Programming

String Manipulation: Functions 1076

strcoll

Compares two strings using the collating sequence of the current locale

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: String Manipulation

Syntax

#include <string.h>

int strcoll (
 const char *s1,
 const char *s2);

Parameters

s1

(IN) Specifies the string to be compared to the string pointed to by s2.

s2

(IN) Specifies the string to be compared to the string pointed to by s1.

Return Values

The strcoll function returns an integer less than, equal to, or greater than
0, indicating that the string pointed to by s1 is less than, equal to, or
greater than the string pointed to by s2, according to the collating
sequence selected.

Remarks

The strcoll function compares the string pointed to by s1 to the string
pointed to by s2. The comparison uses the collating sequence selected by
setlocale. The function is equivalent to strcmp when the collating
sequence is selected from the "C" locale.

See Also

NWLstrcoll, NWLsetlocale, setlocale, strcmp

Example

strcoll

NLM Programming

String Manipulation: Functions 1077

strcoll

#include <string.h>

main ()
{
 char buffer[80];
 if (strcoll (buffer, "Hello") < 0)
 printf ("Less than\n");
}

NLM Programming

String Manipulation: Functions 1078

strcpy

Copies a string into an array (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strcpy (
 char *dst,
 const char *src);

Parameters

dst

(OUT) Specifies the array into which to copy the string.

src

(IN) Specifies the string to be copied.

Return Values

strcpy returns the address of dst.

Remarks

The strcpy function or macro copies the string pointed to by src (including
the terminating NULL character) into the array pointed to by dst.
Copying of overlapping objects is not guaranteed to work properly. See
the description for the memmove function to copy objects that overlap.

See Also

memmove, strncpy

Example

strcpy

#include <string.h>
main ()

NLM Programming

String Manipulation: Functions 1079

main ()
{
 char buffer[80];
 strcpy (buffer, "Hello ");
}

NLM Programming

String Manipulation: Functions 1080

strcspn

Computes the length of the initial segment of a string consisting of
characters not from a given set

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

size_t strcspn (
 const char *str,
 const char *charset);

Parameters

str

(IN) Specifies the string to be scanned.

charset

(IN) Specifies the set of characters for which to search.

Return Values

The strcspn function returns the offset position in a string where the first
occurrence of charset begins.

Remarks

The strcspn function computes the length of the initial segment of the
string pointed to by str, which consists entirely of characters not from the
string pointed to by charset. The terminating NULL character is not
considered part of str.

See Also

strspn

Example

strcspn

NLM Programming

String Manipulation: Functions 1081

#include <string.h>

main ()
{
 printf ("%d\n", strcspn ("abcbcadef", "cba"));
 printf ("%d\n", strcspn ("xxxbcadef", "cba"));
 printf ("%d\n", strcspn ("123456789", "cba"));
}

produces the following:

0
3
9

NLM Programming

String Manipulation: Functions 1082

strdup

Creates a duplicate of a string

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strdup (
 const char *src);

Parameters

src

(IN) Specifies the string to be copied.

Return Values

The strdup function returns the pointer to the new copy of the string if
successful; otherwise, it returns NULL.

Remarks

The strdup function creates a duplicate of the string pointed to by src and
returns a pointer to the new copy. The memory for the new string is
obtained by using the malloc function and can be freed using the free
function.

See Also

strcpy

Example

strdup

#include <string.h>
#include <stdio.h>

main ()

NLM Programming

String Manipulation: Functions 1083

{
 char *new;
 new = strdup ("Make a copy");
 printf (new);
 free (new);
}

NLM Programming

String Manipulation: Functions 1084

strerror

Maps an error number to an error message

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strerror (
 int errnum);

Parameters

errnum

(IN) Specifies the error number to be mapped to an error message.

Return Values

The strerror function returns a pointer to the error message. The array
containing the error string should not be modified by the program. This
array can be overwritten by a subsequent call to the strerror function.

Remarks

The strerror function maps the error number contained in errnum to an
error message.

See Also

perror

Example

strerror

#include <string.h>
#include <errno.h>

main ()
{

NLM Programming

String Manipulation: Functions 1085

 FILE *fp;
 fp = fopen ("file.nam", "r");
 if (fp == NULL)
 printf ("Unable to open file: %s\n", strerror (errno));
}

NLM Programming

String Manipulation: Functions 1086

stricmp

Compares, with case insensitivity, two strings

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

int stricmp (
 const char *s1,
 const char *s2);

Parameters

s1

(IN) Specifies the string to be compared to the string pointed to by s2.

s2

(IN) Specifies the string to be compared to the string pointed to by s1.

Return Values

The stricmp function returns an integer less than, equal to, or greater than
zero, indicating that the string pointed to by s1 is less than, equal to, or
greater than the string pointed to by s2.

Remarks

The stricmp function compares, with case insensitivity, the string pointed
to by s1 to the string pointed to by s2.

See Also

strcmp, strncmp, strnicmp

Example

stricmp

#include <string.h>

NLM Programming

String Manipulation: Functions 1087

main ()
{
 printf ("%d\n", stricmp ("AbCDEF", "abcdef"));
 printf ("%d\n", stricmp ("abcdef", "ABC"));
 printf ("%d\n", stricmp ("abc", "ABCdef"));
 printf ("%d\n", stricmp ("Abcdef", "nopqr"));
 printf ("%d\n", stricmp ("Mnopqr", "abcdef"));
}

produces the following:

0
100
-100
-12
12

NLM Programming

String Manipulation: Functions 1088

strlen

Computes the length of a string (function or macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

size_t strlen (
 const char *s);

Parameters

s

(IN) Specifies the string whose length is to be computed.

Return Values

 strlen returns the number of characters that precede the terminating
NULL character.

Remarks

The strlen function or macro computes the length of the string pointed to
by s.

Example

strlen

#include <string.h>
#include <stdio.h>

main ()
{
 printf ("%d\n", strlen ("Howdy"));
 printf ("%d\n", strlen ("Hello world\n"));
 printf ("%d\n", strlen (""));
}

produces the following:

NLM Programming

String Manipulation: Functions 1089

5
12
0

NLM Programming

String Manipulation: Functions 1090

strlist

Appends multiple strings together.

Local Servers: nonblocking

Remote Servers: N/A

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strlist (
 char *dst,
 const char *src1,
 ...);

Parameters

dst

(OUT) Specifies the string to which to append a copy of another string.

src1 ... srcn

(IN) Specifies the strings to be appended.

Return Values

strlist returns the value of dst.

Remarks

The strlist function appends multiple strings pointed to by src1, src2, ...,
srcn to the string pointed to by dst. srcn, the last argument in the function,
must be NULL. This function is only supported in CLIB V 4.11 or above.

NLM Programming

String Manipulation: Functions 1091

strlwr

Replaces each character of a string with its lowercase equivalent

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>
char *strlwr (
 char *str);

Parameters

str

(IN) Specifies the string to be converted to lowercase characters.

Return Values

The address of the converted string is returned.

Remarks

strlwr replaces the string str with lowercase characters by invoking the
tolower function for each character in the string.

See Also

strupr

Example

strlwr

#include <string.h>
#include <stdio.h>

char source[] = { "A mixed-case STRING" };
main ()
{
 printf ("%s\n", source);
 printf ("%s\n", strlwr (source));

NLM Programming

String Manipulation: Functions 1092

 printf ("%s\n", source);
}

produces the following:

A mixed-case STRING
a mixed-case string
a mixed-case string

NLM Programming

String Manipulation: Functions 1093

strncat

Appends a specified number of characters of one string to another string

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strncat (
 char *dst,
 const char *src,
 size_t n);

Parameters

dst

(OUT) Specifies the string to which to append the characters.

src

(IN) Specifies the string containing the characters to be appended to
the string pointed to by dst.

n

(IN) Specifies the maximum number of characters to append.

Return Values

The strncat function returns the value of dst.

Remarks

The strncat function appends not more thann characters of the string
pointed to by src to the end of the string pointed to by dst. The first
character of src overwrites the NULL character at the end of dst. A
terminating NULL character is always appended to the result.

See Also

strcat

Example

NLM Programming

String Manipulation: Functions 1094

strncat

#include <string.h>
#include <stdio.h>

char buffer[80];
main ()
{
 strcpy (buffer, "Hello ");
 strncat (buffer,"world", 8);
 printf ("%s\n", buffer);
 strncat (buffer, "*************", 4);
 printf ("%s\n", buffer);
}

produces the following:

Hello world
Hello world****

NLM Programming

String Manipulation: Functions 1095

strncmp

Compares a specified number of characters between two strings

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

int strncmp (
 const char *s1,
 const char *s2,
 size_t n);

Parameters

s1

(IN) Specifies the string to be compared to the string pointed to by s2.

s2

(IN) Specifies the string to be compared to the string pointed to by s1.

n

(IN) Specifies the number of characters to be compared.

Return Values

The strncmp function returns an integer less than, equal to, or greater
than 0, indicating that the string pointed to by s1 is less than, equal to, or
greater than the string pointed to by s2.

Remarks

The strncmp function compares not more than n characters from the
string pointed to by s1 to the string pointed to by s2.

See Also

strcmp, stricmp, strnicmp

Example

NLM Programming

String Manipulation: Functions 1096

strncmp

#include <string.h>
#Include <stdio.h>

main ()
{
 printf ("%d\n", strncmp ("abcdef", "abcDEF", 10));
 printf ("%d\n", strncmp ("abcdef", "abcDEF", 6));
 printf ("%d\n", strncmp ("abcdef", "abcDEF", 3));
 printf ("%d\n", strncmp ("abcdef", "abcDEF", 0));
}

produces the following:

 1
 1
 0
 0

NLM Programming

String Manipulation: Functions 1097

strncpy

Copies a specified number of characters from one string to another string

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strncpy (
 char *dst,
 const char *src,
 size_t n);

Parameters

dst

(OUT) Specifies the array into which to copy the characters.

src

(IN) Specifies the string containing the characters to copy.

n

(IN) Specifies the number of characters to copy.

Return Values

The strncpy function returns the value of dst.

Remarks

The strncpy function copies no more than n characters from the string
pointed to by src into the array pointed to by dst. Copying of overlapping
objects is not guaranteed to work properly. See the "memmove" function
if you want to copy objects that overlap.

If the string pointed to by src is shorter than n characters, NULL
characters are appended to the copy in the array pointed to by dst, until n
characters in all have been written. If the string pointed to by src is longer
than n characters, only n characters are copied. No NULL characters are
placed in dst.

See Also

NLM Programming

String Manipulation: Functions 1098

strcpy, strdup

Example

strncpy

#include <string.h>
#include <stdio.h>

main ()
{
 char buffer[15];
 printf ("%s\n", strncpy(buffer, "abcdefg", 10));
 printf ("%s\n", strncpy(buffer, "1234567", 6));
 printf ("%s\n", strncpy(buffer, "abcdefg", 3));
 printf ("%s\n", strncpy(buffer, "*******", 0));
}

produces the following:

abcdefg
123456g
abc456g
abc456g

NLM Programming

String Manipulation: Functions 1099

strnicmp

Compares, with case insensitivity, a specified number of characters in one
string to another string

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

int strnicmp (
 const char *s1,
 const char *s2,
 size_t len);

Parameters

s1

(IN) Specifies the string to be compared to the string pointed to by s2.

s2

(IN) Specifies the string to be compared to the string pointed to by s1.

len

(IN) Specifies the number of characters to compare.

Return Values

The strnicmp function returns an integer less than, equal to, or greater
than 0, indicating that the string pointed to by s1 is less than, equal to, or
greater than the string pointed to by s2.

Remarks

The strnicmp function compares, with case insensitivity, the string
pointed to by s1 to the string pointed to by s2, for at most len characters.

See Also

strcmp, stricmp, strncmp

Example

NLM Programming

String Manipulation: Functions 1100

strnicmp

#include <string.h>
#Include <stdio.h>

main ()
{
 printf ("%d\n", strnicmp ("abcdef", "ABCXXX", 10));
 printf ("%d\n", strnicmp ("abcdef", "ABCXXX", 6));
 printf ("%d\n", strnicmp ("abcdef", "ABCXXX", 3));
 printf ("%d\n", strnicmp ("abcdef", "ABCXXX", 0));
}

produces the following:

-20
-20
0
0

NLM Programming

String Manipulation: Functions 1101

strnset

Sets a specified number of characters in a string to a given character

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strnset (
 char *s1,
 int fill,
 size_t len);

Parameters

s1

(OUT) Specifies the string to be filled with the specified character.

fill

(IN) Specifies the character be copied.

len

(IN) Specifies the number of bytes into which the fill character is to be
copied.

Return Values

The address of the original string s1 is returned.

Remarks

strnset fills the string s1 with the value of the argument fill, converted to
be a character value. When the value of len is greater than the length of
the string, the entire string is filled. Otherwise, that number of characters
at the start of the string is set to the fill character.

See Also

memset, strset

Example

NLM Programming

String Manipulation: Functions 1102

strnset

#include <string.h>

char source[] = {"A sample STRING"};

main ()
{
 printf ("%s\n", source);
 printf ("%s\n", strnset (source, `=', 100));
 printf ("%s\n", strnset (source, `*', 7));
}

produces the following:

A sample STRING
===============
*******========

NLM Programming

String Manipulation: Functions 1103

strpbrk

Locates the first occurrence in one string of any character from another
string

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strpbrk (
 const char *str,
 const char *charset);

Parameters

str

(IN) String for which to locate the first occurrence of any character
from the string pointed to by charset.

charset

(IN) String containing the characters to be located in the string pointed
to by str.

Return Values

The strpbrk function returns a pointer to the located character or NULL if
no character from charset occurs in str.

Remarks

The strpbrk function locates the first occurrence in the string pointed to
by str of any character from the string pointed to by charset.

See Also

strchr, strcspn, strrchr, strtok

Example

strpbrk

NLM Programming

String Manipulation: Functions 1104

#include <string.h>

main ()
{
 char *p;
 p = "Find all vowels";
 while (p != NULL)
 {
 printf ("%s\n", p);
 p = strpbrk (p+1, "aeiouAEIOU");
 }
}

produces the following:

 Find all vowels
 ind all vowels
 all vowels
 owels
 els

NLM Programming

String Manipulation: Functions 1105

strrchr

Locates the last occurrence of a specified character in a string

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strrchr (
 const char *s,
 int c);

Parameters

s

(IN) Specifies the string containing characters to be searched.

c

(IN) Specifies the character to locate.

Return Values

The strrchr function returns a pointer to the located character or a NULL
pointer if the character does not occur in the string.

Remarks

The strrchr function locates the last occurrence of c (converted to a char)
in the string pointed to by s. The terminating NULL character is
considered to be part of the string.

See Also

strchr, strpbrk

Example

strrchr

#include <stdio.h>
#include <string.h>

NLM Programming

String Manipulation: Functions 1106

#include <string.h>

main ()
{
 printf ("%s\n", strrchr ("abcdeabcde", 'a'));
 if (strrchr ("abcdeabcde",`x') == NULL)
 printf ("NULL\n");
}

produces the following:

abcde
NULL

NLM Programming

String Manipulation: Functions 1107

strrev

Reverses the character order in a string

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strrev (
 char *s1);

Parameters

s1

(IN) Specifies the string to be replaced.

Return Values

The address of the original string s1 is returned.

Remarks

strrev replaces the string s1 with a string whose characters are in the
reverse order.

Example

strrev

#include <string.h>

char source[] = {"A sample STRING"};

main ()
{
 printf ("%s\n", source);
 printf ("%s\n", strrev (source));
 printf ("%s\n", strrev (source));
}

produces the following:

NLM Programming

String Manipulation: Functions 1108

A sample STRING
GNIRTS elpmas A
A sample STRING

NLM Programming

String Manipulation: Functions 1109

strset

Fills a string with a specified character

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strset (
 char *s1,
 int fill);

Parameters

s1

(IN) Specifies the string to be filled with the specified character.

fill

(IN) Specifies the character to be used in filling the string.

Return Values

The address of the original string s1 is returned.

Remarks

strset fills the string s1 with the character fill. The terminating NULL
character in the original string remains unchanged.

See Also

strnset

Example

strset

#include <string.h>
#include <stdio.h>

char source[] = {"A sample STRING"};

NLM Programming

String Manipulation: Functions 1110

char source[] = {"A sample STRING"};

main ()
{
 printf ("%s\n", source);
 printf ("%s\n", strset (source, '='));
 printf ("%s\n", strset (source, '*'));
}

produces the following:

A sample STRING
===============

NLM Programming

String Manipulation: Functions 1111

strspn

Computes the length of the initial segment of a string consisting of
characters from a given set

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

size_t strspn (
 const char *str,
 const char *charset);

Parameters

str

(IN) Specifies the string for which to compute the length of the initial
segment.

charset

(IN) Specifies a set of characters.

Return Values

The strspn function returns the offset from the beginning of the string str
where the characters in charset have ended.

Remarks

The strspn function computes the length of the initial segment of the
string pointed to by str, which consists of characters from the string
pointed to by charset. The terminating NULL character is not considered
to be part of charset.

See Also

strcspn, strpbrk

Example

strspn

NLM Programming

String Manipulation: Functions 1112

strspn

#include <string.h>
#Include <stdio.h>

main ()
{
 printf ("%d\n", strspn ("out to lunch", "aeiou"));
 printf ("%d\n", strspn ("out to lunch", "xyz"));
}

produces the following:

 2
 0

NLM Programming

String Manipulation: Functions 1113

strstr

Scans a string for the first occurrence of a given substring

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strstr (
 const char *str,
 const char *substr);

Parameters

str

(IN) Specifies the string to be scanned.

substr

(IN) Specifies the substring for which to search.

Return Values

The strstr function returns a pointer to the located string, or NULL if the
string is not found.

Remarks

The strstr function locates the first occurrence in the string pointed to by
str of the sequence of characters (excluding the terminating NULL
character) in the string pointed to by substr.

See Also

strcspn, strpbrk

Example

strstr

#include <string.h>
#include <strio.h>

NLM Programming

String Manipulation: Functions 1114

#include <strio.h>

main ()
{
 printf ("%s\n", strstr ("This is an example", "is"));
}

produces the following:

is is an example

NLM Programming

String Manipulation: Functions 1115

strtok

Breaks a string into a sequence of tokens, each of which is delimited by a
character from another string

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strtok (
 char *s1,
 const char *s);

Parameters

s1

(IN) Specifies the string to be broken into a sequence of tokens.

s2

(IN) Specifies the string containing the delimiter characters.

Return Values

The strtok function returns a pointer to the first character of a token or
NULL if no token is found.

Remarks

The strtok function is used to break the string pointed to by s1 into a
sequence of tokens, each of which is delimited by a character from the
string pointed to by s2. The first call to strtok returns a pointer to the first
token in the string pointed to by s1. Subsequent calls to strtok must pass a
NULL pointer as the first argument, in order to get the next token in the
string. The set of delimiters used in each of these calls to strtok can be
different from one call to the next.

The first call in the sequence searches s1 for the first character that is not
contained in the current delimiter string s2. If no such character is found,
then there are no tokens in s1 and the strtok function returns a NULL
pointer. If such a character is found, it is the start of the first token.

The strtok function then searches from there for a character that is

NLM Programming

String Manipulation: Functions 1116

contained in the current delimiter string. If no such character is found,
the current token extends to the end of the string pointed to by s1. If such
a character is found, it is overwritten by a NULL character, which
terminates the current token. The strtok function saves a pointer to the
following character, from which the next search for a token starts when
the first argument is a NULL pointer.

Because strtok can modify the original string, that string should be
duplicated if the string is to be reused.

See Also

strcspn, strpbrk

Example

strtok

#include <string.h>
main ()
{
 char *p;
 char *buffer;
 char *delims = { " .," };
 buffer = strdup ("Find words, all of them.");
 printf ("%s\n", buffer);
 p = strtok (buffer, delims);
 while (p != NULL)
 {
 printf ("word: %s\n", p);
 p = strtok (NULL, delims);
 }
 printf ("%s\n", buffer);
}

produces the following:

Find words, all of them.
word: Find
word: words
word: all
word: of
word: them
Find

NLM Programming

String Manipulation: Functions 1117

strupr

Replaces each character of a string with its uppercase equivalent

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

char *strupr (
 char *s1);

Parameters

s1

(IN) Specifies the string to be replaced with uppercase characters.

Return Values

The address of the original string s1 is returned.

Remarks

strupr replaces the string s1 with uppercase characters by invoking the
toupper function for each character in the string.

See Also

strlwr

Example

strupr

#include <string.h>

char source[] = { "A mixed-case STRING" };

main ()
{
 printf ("%s\n", source);

NLM Programming

String Manipulation: Functions 1118

 printf ("%s\n", strupr (source));
 printf ("%s\n", source);
}

produces the following:

A mixed-case STRING
A MIXED-CASE STRING
A MIXED-CASE STRING

NLM Programming

String Manipulation: Functions 1119

strxfrm

Transforms a specified number of characters from one string to another
string

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: String Manipulation

Syntax

#include <string.h>

size_t strxfrm (
 char *dst,
 const char *src,
 size_t n);

Parameters

dst

(OUT) Specifies the array into which to place the transformed
characters.

src

(IN) Specifies the string to be transformed.

n

(IN) Specifies the number of characters to transform.

Return Values

The strxfrm function returns the length of the transformed string. If this
length is more than n, the contents of the array pointed to by dst are
indeterminate.

Remarks

The strxfrm function transforms, for no more than n characters, the string
pointed to by src to the buffer pointed to by dst. The transformation uses
the collating sequence selected by setlocale so that two transformed
strings compare identically (using strncmp) to a comparison of the
original two strings using strcoll. The function is equivalent to strncpy
(except there is no padding of the dst argument with NULL characters
when the argument src is shorter than n characters) when the collating
sequence is selected from the "C" locale.

NLM Programming

String Manipulation: Functions 1120

To determine how much room ia needed to store the results of the
function, set dst to NULL and n to 0 and call the function with src
specifying the strint to convert.

See Also

setlocale, strcoll

Example

strxfrm

#include <stdio.h>
#include <string.h>

main ()
{
 char dst[] = {"This is the string"};
 char src [] = {"EXAMPLE"};
 int n=4;
 printf ("%s\n", dst);
 printf ("%d\n", strxfrm (dst, src, n));
 printf ("%s\n", dst);
 printf ("%s\n", src);
}

produces the following:

This is the string
EXAM is the string
EXAMPLE

NLM Programming

String Manipulation: Functions 1121

swab

Copies bytes (which must be an even number of bytes) from a source buffer
to a destination buffer, swapping every pair of characters

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Manipulation

Syntax

For CLIB V 4.11 or above:

#include <string.h>

void swab (
 cinst void *src,
 void *dst,
 size_t n);

For all other CLIB versions:

#include <string.h>

void swab (
 char *src,
 char *dst,
 int *n);

Parameters

src

(IN) Specifies the string to be transformed.

dst

(OUT) Specifies the array into which to place the transformed
characters.

n

(IN) Specifies the number of characters to transform.

Return Values

None

Remarks

NLM Programming

String Manipulation: Functions 1122

The swab function copies n bytes (which should be even) from src to dst
swapping every pair of characters. This is useful for preparing binary
data to be transferred to another machine that has a different byte
ordering.

WARNING: The bytes copied must be of an even number, or the
server will abend.

Example

swab

#include <string.h>
#include <stdio.h>

char *msg = "hTsim seasegi swspaep.d";
#define NBYTES 24

main()
{
 auto char buffer[80];
 printf("%s\n", msg);
 memset(buffer, `\0', 80);
 swab(msg, buffer, NBYTES);
 printf("%s\n", buffer);
}

produces the following:

hTsim seasegi swspaep.d
This message is swapped.

NLM Programming

String Manipulation: Functions 1123

swaw

Copies words (which should be even) from a source buffer to a destination
buffer, swapping every two pairs of characters

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <string.h>

void swaw (
 const void *src,
 void *dst,
 size_t n);

Parameters

src

(IN) Specifies the string to be transformed.

dst

(OUT) Specifies the array into which to place the transformed
characters.

n

(IN) Specifies the number of words to transform.

Return Values

None

Remarks

The swaw function copies n words (which should be even) from src to dst
swapping every two pairs of characters. This is useful for preparing
binary data to be transferred to another machine that has a different byte
ordering. This function is only supported in CLIB V 4.11 or above.

Example

swaw

NLM Programming

String Manipulation: Functions 1124

#include <string.h>
#include <stdio.h>

char *msg = "hTsim seasegi swspaep.d";
#define NBYTES 12

main()
{
 auto char buffer[80];
 printf("%s\n", msg);
 memset(buffer, `\0', 80);
 swaw(msg, buffer, NBYTES);
 printf("%s\n", buffer);
}

produces the following:

isThes mgesas iapswd.pe
This message is swapped.

NLM Programming

String Manipulation: Functions 1125

vsprintf

Formats data under control of the format control string

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <stdarg.h>
#include <stdio.h>

int vsprintf (
 char *buf,
 const char *format,
 va_list arg);

Parameters

buf

(OUT) Specifies the buffer to which to write the result.

format

(IN) Points to the format control string.

arg

(IN) Specifies a variable argument.

Return Values

The vsprintf function returns the number of characters written, or a
negative value if an output error occurred.

Remarks

The vsprintf function formats data under control of the format control
string and writes the result to buf. The format string is described under
the description for printf. The vsprintf function is equivalent to sprintf,
with the variable argument list replaced with arg, which has been
initialized by the va_start macro.

See Also

fprintf, printf, sprintf, va_arg, va_end, va_start

NLM Programming

String Manipulation: Functions 1126

Example

vsprintf

This example shows the use of vsprintf in a general error message routine.

#include <stdarg.h>
#include <stdio.h>
#include <striup.h>

char msgbuf[80];
char *fmtmsg (char *format, ...)

{
 va_list arglist;
 va_start (arglist, format);
 strcpy (msgbuf, "Error: ");
 vsprintf (&msgbuf[7], format, arglist);
 va_end (arglist);
 return (msgbuf);
}

NLM Programming

String Manipulation: Functions 1127

vsscanf

Scans input from a string under format control

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: Yes

Service: String Manipulation

Syntax

#include <stdio.h>
#include <stdarg.h>

int vsscanf (
 const char *in_string,
 const char *format,
 va_list arg);

Parameters

in_string

(IN) Specifies the string to be scanned.

format

(IN) Points to the format control string.

arg

(IN) Specifies the variable argument.

Return Values

The vsscanf function returns EOF when the scanning is terminated by
reaching the end of the input string. Otherwise, the number of input
arguments for which values were successfully scanned and stored is
returned.

Remarks

The vsscanf function scans input from the string designated by in_string
under control of the argument format. The format list is described with the
scanf function.

The vsscanf function is equivalent to the sscanf function, with a variable
argument list replaced with arg, which has been initialized using the
va_start macro.

NLM Programming

String Manipulation: Functions 1128

See Also

fscanf, scanf, sscanf, va_arg, va_end, va_start

Example

vsscanf

#include <stdio.h>
#include <stdarg.h>
.
.
.
int Input (in_data, format, ...)
char *in_data, format;

{
 va_list arglist;
 va_start (arglist, format);
 return (vsscanf (in_data, format, arglist));
}

NLM Programming

String Manipulation: Functions 1129

Thread

NLM Programming

 1130

Thread: Guides

Thread: General Guide

This is not a complete discussion of threads. For more detailed information
about using threads, see NLM Code Development.

In the NetWare OS, a thread is a process that represents a single path of
execution. An NLM can have more than one thread. The Thread Services
functions allow you to start up and stop threads and perform various other
thread-related operations as needed. They also allow you to start other NLM
applications.

About Threads and Thread Management

Threads

Thread Management in NetWare 3.x

Thread Management in NetWare 4.x

When to Schedule a Routine as Work

When to Schedule a Routine as a Thread

Creating and Terminating Threads

Thread Groups

Creating and Terminating Thread Groups

Thread Function List

Thread Priority

Temporarily Handicapping Threads

Permanently Handicapping Threads

Low Priority Threads

Global Data

NetWare Global Data

Thread Global Data

Thread Group Global Data

NLM Global Data

NLM Programming

Thread: Guides 1131

Hierarchy of Global Data

Synchronization

Interprocess Synchronization

Additional Links

Thread: Functions

NLM Programming

Thread: Guides 1132

Thread: Concepts

Hierarchy of Global Data

The different scope levels of the global data items in the NetWare API form
a three-tier hierarchy. The thread global data items comprise the bottom
level of the hierarchy. At the middle level are the thread group global data
items. The top level of the hierarchy includes NLM global data items.

For example, consider the organization of a hypothetical NLM that services
requests from multiple clients, as shown in the following figure.

Figure 20. Hierarchy of Global Data Items

NLM Programming

Thread: Concepts 1133

Bottom Level---Thread Global Data Items: Each of the four threads has its
own set of global data items. The global data items in one thread cannot be
referenced by any of the other threads.

Middle Level---Thread Group Global Data Items: The global data items
for the Control Thread Group are common to two threads: the Console
Handler Thread and the Communications Manager Thread. The global
items for the worker Thread Group #1 can be referenced only by worker
Thread #1. The global items for the worker Thread Group #2 can be
referenced only by Worker Thread #2.

Top Level---NLM Global Data Items: The global data items for the Server
NLM are common to all the thread groups and threads.

Parent Topic: NetWare Global Data

Interprocess Synchronization

Use local semaphores to control finite resources, to synchronize execution
among threads, or to queue threads that need to use critical code sections. A
semaphore has an associated signed 32-bit value.

Local semaphores can be used only by NLM applications running on a
particular server (as opposed to network semaphores, which can be used by
all NLM applications executing on, and all workstations attached to, the
server).

The following Execution Thread functions deal with local semaphores:

CloseLocalSemaphore

ExamineLocalSemaphore

OpenLocalSemaphore

SignalLocalSemaphore

WaitOnLocalSemaphore

The OpenLocalSemaphore function allocates a semaphore and gives the
NLM access (a handle) to it.

A thread can use the WaitOnLocalSemaphore call to gain access to the
associated resource or to wait for the resource to become available.
WaitOnLocalSemaphore can also be used to cause one thread to wait for
another thread to signal it to continue. WaitOnLocalSemaphore decrements
the semaphore's associated value.

NLM Programming

Thread: Concepts 1134

When a thread is finished using a semaphore's resource, it typically calls
SignalLocalSemaphore to increment the semaphore's value. A thread can
also use this function to cause a thread that is waiting on a semaphore to
resume execution. SignalLocalSemaphore increments the semaphore's
associated value.

The ExamineLocalSemaphore call allows a thread to retrieve a semaphore's
value. The semaphore value can be positive or negative (from -231 through 2
31 -1). A negative value means that one or more threads are waiting on the
semaphore.

Low Priority Threads

(NetWare 4.x only) Low priority threads run when there is nothing to run
except hardware polling routines and temporarily handicapped threads.
Currently, no NetWare applications are designed to run as low priority
threads. Possible future programs are file compression utilities, once-a-week
backup and cleanup utilities.

A thread can reschedule itself as a low priority thread by calling
ThreadSwitchLowPriority.

To maintain a thread as low priority when you relinquish control, you must
use ThreadSwitchLowPriority. If you use ThreadSwitch, the thread
becomes a regular thread.

Parent Topic: When to Schedule a Routine as a Thread

NetWare 4.x Global Data

The NetWare API for NetWare 4.x has added custom data areas to the
thread and tread group contexts. These custom data areas can be referenced
with the following variables:

Table auto. Custom Data

Variable Description

threadCustomDataPtr A void pointer that points to a data area
always associated with the current thread
group. You can use this area to associate
data with a thread.

threadCustomDataSize The size (in bytes) of the data area pointed
to by threadCustomDataPtr. This variable is a
LONG.

threadGroupCustomData
Ptr

A void pointer that points to a data area
always associated with the current thread
group. You can use this area to associate

NLM Programming

Thread: Concepts 1135

data with a thread group.

threadGroupCustomDataS
ize

The size (in bytes) of the data area pointed
to by threadGroupCustomDataPtr. This
variable is a LONG.

When a thread is running it can use the custom data associated with its
thread and thread group. You can use these data areas to store in memory
information associated with a thread or a thread group.

threadCustomDataPtr and threadGroupCustomDataPtrpoint to areas in
memory that the NetWare API has set aside. Before using the data areas
these pointers point to, you should check threadCustomDataSize and
threadGroupCustomDataSize to see if the available space is sufficient. (These
data areas may shrink with future versions of the OS.)

NOTE: You should not change these pointers to point to data that you
have allocated. However, you can use the data areas to hold the
addresses to data that you have allocated.

Parent Topic: NetWare Global Data

NetWare Global Data

Because NLM applications can vary widely in their design and purpose, the
NetWare API maintains a variety of global data items for NLM
applications. These data items are divided into the following categories:

Thread Global Data

Thread Group Global Data

NLM Global Data

These global data items can be set and queried by various functions in the
NetWare API. Each category of global data items represents a different level
of scope or context.

Related Topics

NetWare 4.x Global Data

Hierarchy of Global Data

NLM Global Data

These data items have only one value for the entire NLM. The data items are
global to all the thread groups and threads in the NLM. Any changes made
to the values of NLM global data items affect all the thread groups and

NLM Programming

Thread: Concepts 1136

to the values of NLM global data items affect all the thread groups and
threads in the NLM.

Table auto. Global Data Item Examples

Data Item Description

active
"Advertisers"

Each NLM may have a set of active "advertisers"
(started by AdvertiseService).

argv Array This is the argv array passed to main.

atexit, AtUnload Registers functions that are to be called when the
NLM exits normally or is unloaded.

Libraries' Work
Areas Pointers

Pointers to the data areas of any NLM libraries
that the NLM has called (see Library for more
information on library work areas).

locale Settings Used by the locale functions.

Open Directories The set of directories (opened by opendir) that
the NLM has opened.

Open IPX/SPX
Sockets

The set of IPX/SPX™ sockets that the NLM has
opened.

Open Files The set of files the NLM has opened. First-level
open files include those opened with open,
sopen, create; second-level files include those
opened with fopen, fdopen, freopen.

Open Network
Semaphores

The set of network semaphores (opened by
OpenSemaphore) the NLM has opened.

Open Screens The set of screens the NLM has opened.

Original Command
Line

A copy of the original command line that was
entered when the NLM was started is saved
(used by getcmd).

Resource Tag A tag used whenever the NLM allocates
memory.

Thread Name Pattern used for naming new threads (used by
BeginThread and BeginThreadGroup).

Parent Topic: NetWare Global Data

Permanently Handicapping Threads

(NetWare 4.x only) If a particular NLM is being "bad" and does not yield
often enough, the OS places a handicap in the thread's process control block
(PCB), which prevents the thread from being rescheduled immediately. For
example, it the OS places a handicap of 100 on the "bad" thread, 100 other
pieces of work or threads run and yield before the "bad" thread is

NLM Programming

Thread: Concepts 1137

rescheduled in the RunList Queue.

A thread can also handicap itself by calling SetThreadHandicap.

Parent Topic: When to Schedule a Routine as a Thread

Temporarily Handicapping Threads

(NetWare 3.x and 4.x) If a thread needs a resource that will not be ready for
a moment, but you do not want it to assume the overhead of sleeping on a
semaphore or doing busy waiting, you can have the thread reschedule itself
with a temporary handicap using ThreadSwitchWithDelay.

An example of busy waiting is the following:

 while (!finished)
 ThreadSwitchWithDelay();

Temporarily handicapped threads are not placed in the Run Queue until
their handicap has expired. Upon expiration, they are rescheduled at the
end of the Run Queue. Letting threads temporarily handicap themselves
prevents needless rescheduling overhead caused by a busy-waiting
condition.

Temporarily handicapping threads is an issue for NetWare 4.x OS since the
Low-Priority Queue does not gain control of the CPU unless there is nothing
else for the CPU to do. If a thread does "busy waiting", continually
rescheduling itself on the Run Queue (by using ThreadSwitch), the
Low-Priority Queue cannot gain control of the CPU.

Parent Topic: When to Schedule a Routine as a Thread

Thread Function List

Table auto. Thread Services Functions

Function Purpose

abort Terminates an NLM abnormally.

atexit Creates a list of functions that are
executed on a last-in, first-out basis
when the NLM exits normally or is
unloaded.

AtUnload Registers a function that is called if
the NLM is unloaded with the
UNLOAD console command.

BeginThread Initiates a new thread within the

NLM Programming

Thread: Concepts 1138

current thread group.

BeginThreadGroup Establishes a new thread within a
new thread group.

Breakpoint Suspends NLM execution and causes
a break into the NetWare Internal
Debugger.

ClearNLMDontUnloadFlag Sets a flag in the NLM header to
allow the NLM to be unloaded with
the UNLOAD console command.

delay Suspends execution for an interval
(milliseconds).

EnterCritSec Prevents all other threads in the
NLM from being scheduled.

exit Causes the NLM to terminate
normally.

exit Terminates the NLM without
executing atexit functions or flushing
buffers.

ExitCritSec Allows other threads in the NLM to
run.

ExitThread Terminates either the current thread
or the NLM.

FindNLMHandle Returns the handle of a loaded NLM.

getcmd Returns the command line it its
original format (unparsed).

getenv Searches the environment area for
the environment variable and
returns its value (presently
environment variables are not
supported).

GetNLMHandle Returns the handle of the current
NLM.

GetNLMID Returns the ID of the current NLM.

GetNLMNameFromNLMID Returns the name of an NLM.

GetPrty Returns the execution priority for a
thread (NetWare 3.x).

GetThreadContextSpecifier Returns the CLIB context used by
callback routines scheduled by the
specified thread.

GetThreadGroupID Returns the ID of the current thread
group.

GetThreadHandicap Gets the number of context switches
a thread is delayed before being
rescheduled.

NLM Programming

Thread: Concepts 1139

GetThreadID Returns the thread ID of the current
thread.

GetThreadName Returns the name of a thread.

longjmp Restores a saved environment.

main A developer-supplied function
where NLM execution begins.

MapNLMIDToHandle Returns the handle associated with
the NLM ID.

raise Sends a signal to the executing
program.

RenameThread Renames a thread.

ResumeThread Allows a previously suspended
thread to run.

RetunNLMVersionInfoFromF
ile

Returns version information for a
loaded NLM that corresponds to the
specified file.

ReturnNLMVersionInformati
on

Returns version information for a
loaded NLM that corresponds to a
specified NLM handle.

ScheduleWorkToDo Schedules a routine as work, which
puts it on the highest priority queue
(NetWare 4.x only).

setjmp Saves its calling environment in its
jmp_buf for subsequent use by
longjmp.

SetNLMDontUnloadFlag Sets a flag in the NLM header to
prevent the NLM from being
unloaded with the UNLOAD console
command.

SetNLMID Changes the current NLM.

SetPrty Sets a new execution priority for a
thread (NetWare 3.x).

SetThreadContextSpecifier Determines the CLIB context that is
used by all callback routines
scheduled by the specified thread
(NetWare 4.x only).

SetThreadGroupID Changes the current thread group.

SetThreadHandicap Sets the number of context switches a
thread is permanently handicapped
(delayed) before being rescheduled
(NetWare 4.x only).

signal Specifies an action to take place
when certain conditions are detected
(signalled).

NLM Programming

Thread: Concepts 1140

spawnlp, spawnvp Creates and executes a new child
process.

SuspendThread Prevents a thread from being
scheduled.

system Used to execute OS commands.

ThreadSwitch Allows other threads a chance to run,
where no natural break in the
running thread would normally
occur.

ThreadSwitchLowPriority Reschedules a thread onto the
low-priority queue (NetWare 4.x
only).

ThreadSwitchWithDelay Reschedules a thread to be place on
the RunList after a specified number
of switches have taken place
(NetWare 4.x only).

Local Semaphore Functions:

CloseLocalSemaphore Closes a local semaphore.

ExamineLocalSemaphore Returns the current value of a
semaphore.

OpenLocalSemaphore Allocates a local semaphore and
gives the NLM access to it.

SignalLocalSemaphore Increments a semaphore's value.

TimedWaitOnLocalSemaphor
e

Waits on a local semaphore until it is
signalled or the specified timeout
elapses.

WaitOnLocalSemaphore Decrements a semaphore's value.

WaitOnLocalSemaphore Decrements a semaphore's value

Thread Global Data

Each thread has its own set of data items. The data items are global only
within that thread. That is, they have separate values for each thread. The
data items of one thread cannot be referenced by another thread.

A thread is the lowest level within an NLM, and its context can consist of
the following data items:

Table auto. Data Item Examples

Data Item Description

asctime, asctime_r Only allocated if asctime is called. The asctime

NLM Programming

Thread: Concepts 1141

char String Pointer function returns a char *.

Critical Section
Count

Contains the number of outstanding
EnterCritSec calls against a thread.

ctime, ctime_r,
gmtime, gmtime_r,
and localtime,
localtime_r tm
Structure Pointer

The ctime, ctime_r, gmtime, gmtime_r, and
localtime, localetime_r functions return a
pointer to a tm structure. Each thread has its
own tm structure. The tm structure is allocated
only if one of these three functions is called.

errno Some functions set the errno return code to the
last error code that was detected.

Last Value from the
rand Function

Each thread has its own seed value (to start or
continue a sequence of random numbers).

NetWareErrno A NetWare specific error code. Some functions
set both NetWareErrno and errno

stack This points to the block of memory that
BeginThread allocated for the thread's stack.

strtok Pointer The strtok function maintains a pointer into the
string being parsed.

t_errno Used with Transport Level Interface (TLI)
functions. chapter).

Thread Custom
Data Area Pointer
and Size

The threadCustomDataPtr points to space that the
NetWare API allocates to be associated with an
individual thread. The threadCustomDataPtrSize
variable specifies the size (in bytes) of this data.

Suspend Count This count contains the number of outstanding
SuspendThread calls against a thread.

Parent Topic: NetWare Global Data

Thread Group Global Data

One instance of the following data items exists for each thread group. Any
change that one thread makes to the value of a thread group global data
item affects all the threads in the group. All threads within a thread group
share the same thread group context.

Table auto. Data Item Examples

Data Item Description

Current
Connection

The current connection number is described in
Connection Number and Task Management.

Current Screen The current screen is the target of screen I/O
functions (see Screen Handling).

NLM Programming

Thread: Concepts 1142

Current Task The current task number is described in
Connection Number and Task Management.

CWD Current working directory (see File System).

Current User The "current user" is the user context used in
Directory Services functions.

signal Settings Signal handler functions are set by the signal
function. (See signal and raise.)

stdin, stdout, stderr These data items are the second-level standard
I/O handles (see Stream I/O).

Thread Group
Custom Data Area
Pointer and Size

The threadGroupCustomDataPtr points to space
that the NetWare API allocates to be associated
with a thread group. The
threadGroupCustomDataPtrSize variable specifies
the size (in bytes) of this data.

umask Flags These flags are set by the umask function (see
File System).

Parent Topic: NetWare Global Data

Thread Groups

Each NLM can have more than one thread group, and each thread group
may consist of one or more threads, as defined by the programmer. When
an NLM is started, it has one thread group that includes the thread that
executes the user-supplied main function.

Threads are created by the NetWare® API in four ways, which determine
the thread group:

By default, a thread is started at the function main. This thread belongs to
a default thread group.

BeginThread is called, creating a new thread that belongs to the current
thread group.

BeginThreadGroup is called, creating a new thread group with one new
thread belonging to it.

ScheduleWorkToDo is called, creating a new thread that belongs to the
current thread group. ScheduleWorkToDo is new to the NetWare 4.x OS.

The following figure shows a sample multithreaded NLM™ configuration.
Threads 1 and 2 belong to the same group, Thread Group 1. All other
numbered threads belong to Thread Group 2. This means threads 1 and 2
share the same thread group level context information (where their CWD
could be \MYDIR1) and threads 3 through n share a different thread group
level context (where their CWD could be \MYDIR2). Developers must

NLM Programming

Thread: Concepts 1143

level context (where their CWD could be \MYDIR2). Developers must
understand that when there is more than one thread in a thread group,
changing the context (such as CWD) for one thread changes the context for
all of the threads in the group. For example, if thread 3 changes its CWD, it
also changes the CWD of threads 4 through n.

Figure 21. Multithreaded NLM Configuration

Because the display and input threads work together to handle server
commands, the two threads have been assigned to the same thread group.
This allows them to share the current working directory and current screen,
among other resources.

Creating and Terminating Threads

The BeginThread function creates a thread. A thread can terminate itself
using the ExitThread function as follows:

 ExitThread(EXIT_THREAD, ...)
 ExitThread(TSR_THREAD, ...)

A return statement from the original function (the function that was started
by BeginThread) also terminates the thread.

Creating and Terminating Thread Groups

NLM Programming

Thread: Concepts 1144

A single thread or multiple threads can be grouped to have a unique
context.

The BeginThreadGroup function creates a thread group. A thread group
can be terminated using the ExitThread function as follows:

ExitThread(EXIT_THREAD, ...)
in the last thread in the group
ExitThread(TSR_THREAD, ...)
in the last thread in the group,

A return statement from the original function (the function that was started
by BeginThread) in the last thread in the group also terminates the thread
group.

Thread Management in NetWare 3.x

The thread management for the NetWare 3.x OS is different from that of the
NetWare 4.x OS. The following figure illustrates thread management in the
NetWare 3.x OS.

Figure 22. NetWare 3.x Thread Management

NLM Programming

Thread: Concepts 1145

In the NetWare 3.x OS, threads waiting to be executed are placed in a Run
Queue, which is serviced on a FIFO (first in, first out) order.

Threads waiting for resources to become available are placed in a blocked
list, yielding the CPU to other threads in the Run Queue. When the needed
resources become available, the thread moves from a blocked list to the end
of the Run Queue.

Each time a thread becomes the current (executing) thread, or changes from
the current thread to another state, a context switch occurs.

Parent Topic: Threads

Thread Management in NetWare 4.x

The NetWare 4.0 OS introduces new features that add flexibility to thread
management. The following figure illustrates thread management in the
NetWare 4.x OS.

Figure 23. NetWare 4.x Thread Management

NLM Programming

Thread: Concepts 1146

The NetWare 4.0 OS introduces the concept of work. Each work unit has a
routine and data associated with it, but the work unit is not a thread. To
handle these work units, the OS reserves a pool of worker threads that are
dedicated to running work.

When a work unit is scheduled, it is placed on the Work To Do List, and is
serviced immediately after the current thread relinquishes the CPU. If the
current thread is already a worker thread, the worker thread does not
relinquish control; instead, it executes the next work unit, thereby avoiding
a context switch.

Because worker threads avoid unnecessary context switching, single threads
running many separate work units provide higher performance.

NOTE: Novell® recommends that work units be short, discrete
routines that can complete quickly. If the work code calls a function that
relinquishes control of the CPU, the worker thread is transformed into a
regular thread.

Worker threads wait in their own pool. Regular (not worker) threads wait in
the Run Queue, the Low-Priority Queue, or the Delay List, queues that are
serviced on a FIFO order by the CPU.

The Work To Do List has the highest priority, followed by the Run Queue
and the Low-Priority Queue. The Delay List has a variable priority status,
and is usually serviced after the Low-Priority Queue has gained control of
the CPU.

The Low-Priority Queue does not gain control of the CPU unless there is
nothing else for the CPU to do. If a thread does "busy waiting" (looping
while waiting for a resource to become available, for example), continually
rescheduling itself on the Run Queue, the Low-Priority Queue cannot gain
control of the CPU.

Following is an example of busy waiting:

 while (!finished)
 ThreadSwitchWithDelay();

To allow the Low-Priority Queue to be serviced by the CPU, threads that do
busy waiting should be rescheduled on the Delay List. After a thread has
been scheduled on the Delay List, it waits for a number of context switches
(50 is the default), then is placed at the end of the Run Queue. While threads
wait in the Delay List, the Low-Priority Queue has a chance to be serviced
by the CPU.

As in NetWare 3.x, each time a thread becomes the current thread, or
changes from the current thread to another state, a context switch occurs.

For more information about programming with threads, see NLM Code
Development.

NLM Programming

Thread: Concepts 1147

Parent Topic: Threads

Threads

A thread is simply a NetWare kernel process. NetWare kernel processes are
referred to as threads instead of processes on the basis of the following two
assumptions:

A process typically saves most of the processor's state when it is swapped
out and a thread typically saves less of the processor's state.

Processes are usually preemptive (they take control of all resources) and
threads are nonpreemptive. NetWare kernel processes typically match
the characteristics of threads; they save only part of the processor's state
and are nonpreemptive.

The NetWare OS allows NLM applications to establish multiple threads,
each representing a single path of execution. An NLM usually contains at
least one thread to accommodate the main function. (This is not true if the
NLM is a library, such as CLIB.NLM.)

Only one thread can run at a time. While a thread is running, it has control
of the CPU. The NetWare OS is a nonpreemptive ("good guy") scheduling
environment. When a thread gains control of the CPU, the thread remains
in control until it has run to the end of its execution or until it calls a function
that 'blocks'---that is, relinquishes control of the CPU. (Blocking functions
are identified in the function reference manuals.)

No other thread can interfere with an active thread, regardless of priority.
Only a hardware interrupt can temporarily interrupt a currently running
thread.

NOTE: The NetWare 4.x OS has the ability to handicap a thread that
does not relinquish the CPU in a timely manner. After this "bad" thread
yields, the OS does not reschedule it right away; instead, the OS
handicaps the "bad" thread, allowing a certain number of other threads
to run before the "bad" thread is rescheduled. For this reason, a thread is
more responsive in the long run if it takes the initiative to yield control
of the CPU often.

Related Topics

Thread Management in NetWare 3.x

Thread Management in NetWare 4.x

When to Schedule a Routine as a Thread

The following conditions serve as guidelines for when to schedule a routine

NLM Programming

Thread: Concepts 1148

as a thread:

The routine is a long-term process

It needs a very large stack

It needs to deliberately handicap itself temporarily to avoid spin-waiting
(being rescheduled while waiting for something needed to complete
execution).

If a routine is a long-term process, little benefit results from scheduling it as
work because work that yields cannot be rescheduled as work. Instead, it is
rescheduled on the Run Queue at the same priority as a normal thread.

All work is given a single stack size; but you can specify a stack size for
threads. If you need to specify the stack size, you must schedule your
routine as a thread.

If your routine is a polling process or one that does spin-waiting, you
should schedule it as a thread.

In general, if your NLM already uses the NetWare 3.x process-scheduling
scheme---which can still be carried out in the NetWare 4.x kernel---and its
routines are mostly long-term, continue to schedule the routines as threads.
But if any of the routines are short-term, you can reschedule them as work.

NOTE: If your NLM is going to run in the NetWare 3.x environment
as well as in the NetWare 4.x environment, you cannot schedule any
threads as work, since work does not exist in the NetWare 3.x
environment. Schedule all threads then as normal threads.

Changing Thread Priority: It is possible to change the priority of a thread in
one of the following ways:

Temporarily Handicapping Threads

Permanently Handicapping Threads

Low Priority Threads

When to Schedule a Routine as Work

The following criteria can help determine when you should schedule a
routine as work:

The routine has a high priority.

It needs to gain control of the processor quickly, that is, get in and run
with as little scheduling overhead as possible.

Examples

NLM Programming

Thread: Concepts 1149

A database request routine needs to gain access to the processor quickly and
does not need to yield before it is completed. The performance of the
database would be enhanced by scheduling requests as work, so that the
work is serviced quickly and the CPU is relinquished to the next thread.

Similarly, scheduling end-of-routine cleanup as work enhances the
operation of all threads in the kernel. A task such as freeing up the stack
needs to be executed immediately after a routine ends, and is quick.

Other candidates for work are service routines, which check and update an
item regularly. A service routine that updates object information for
network management, for example, could be scheduled as work.

In general, NLM applications benefit when lower-level services are
scheduled as work. For example, repetitive services such as disk reads could
be scheduled as work. NetWare typically does a lot of disk reading. The
entire operation usually completes without yielding because the data is
found in cache memory.

NOTE: Work is unique to the 4.x OS. If your NLM is going to run on
3.x servers, you cannot schedule threads as work.

NLM Programming

Thread: Concepts 1150

Thread: Functions

NLM Programming

Thread: Functions 1151

abort

Terminates an NLM™ application abnormally

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Thread

Syntax

#include <assert.h>
#include <nwthread.h>
#include <stdlib.h>

void abort (void);

Return Values

None

Remarks

This function causes the NLM to be terminated abnormally. It writes the
following termination message to the System Console Screen:

 ABNORMAL NLM TERMINATION in: NLMname

The abort function then raises SIGABRT and calls _exit(3).

The following sequence of events occurs when the NLM is terminated
abnormally:

All threads in the NLM are destroyed.

Cleanup routines are called for any libraries that have registered
cleanup routines and that the NLM has called. (For more information,
see Library.)

All screens are closed.

All first-level files (opened with open, sopen, create), including UNIX
STREAMS, and also including files opened as a result of second-level
I/O (opened with fopen, fdopen, freopen), are closed; however, the
buffers of these are not flushed.

All open directories are closed.

All service advertising (started by AdvertiseService) is terminated.

NLM Programming

Thread: Functions 1152

All memory allocated by the NLM is freed.

The NLM is unloaded.

See Also

exit, _exit, ExitThread, raise

Example

abort

#include <assert.h>
#include <nwthread.h>
#include <stdlib.h>
#include <nwconio.h>

main()
{
 printf("this should print\r\n");
 getch();
 abort();
 printf("this should not print\r\n");
 getch();
}

NLM Programming

Thread: Functions 1153

atexit

Creates a list of functions that are executed on a "last-in, first-out" basis
when the NLM exits normally or is unloaded ---THIS IS NOT AN NLM
CLEANUP ROUTINE (See "Remarks" below)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>
#include <stdlib.h>

int atexit (
 void (*func) (void));

Parameters

func

(IN) Specifies the function to be registered as an exit function.

Return Values

0 (0x0
0)

ESUCCE
SS

Registration was successful.

-1 EFAILU
RE

Registration failed (32 functions are already
registered).

Remarks

WARNING: The atexit function is designed to be used by drivers.
Do not use it as an NLM cleanup routine. A server abend may result
for this reason:

CLIB context does not exist for a thread that is running an atexit or
AtUnload routine, since all NLM thread groups have been destroyed by
the time these functions are called. Thus any saved thread group ID is
invalid, and neither atexit nor AtUnload routines can use
SetThreadGroupID to establish CLIB context for the thread. They
therefore also cannot use NetWare API functions that require thread
group or thread level context.

NLM Programming

Thread: Functions 1154

It is wise programing practice to have one exit point for a program,
which could be the cleanup routine for the NLM. The "Remarks" section
of AtUnload gives suggestions for developing a cleanup routine to be
executed when an NLM is manually unloaded. The same routine can be
used when exit is called from your program.

The atexit function is called when an NLM is terminated normally.

Successive calls to atexit create a list of functions that are executed on a
"last-in, first-out" basis when:

The NLM calls exit.

The NLM calls ExitThread and it causes the NLM to be terminated.

The last thread in the NLM returns from its original function.

The NLM is unloaded with the UNLOAD command.

No more than 32 functions can be registered with atexit. The functions
have no parameters and do not return values. Such functions can use
only NLM (OS) level context.

See Using atexit() functions: Example.

See Also

AtUnload, exit, _exit, ExitThread

NLM Programming

Thread: Functions 1155

AtUnload

Registers a function that is called if the NLM is unloaded with the
UNLOAD command---THIS IS NOT AN NLM CLEANUP ROUTINE (See
"Remarks" below)

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int AtUnload (
 void (*func) (void));

Parameters

func

(IN) Specifies the function to be registered.

Return Values

0 (0x0
0)

ESUCCE
SS

Registration was successful.

-1 EFAILU
RE

Function was already registered.

Remarks

WARNING: AtUnload was designed for use with drivers when an
NLM is unloaded with the UNLOAD command. Do not use it as a
cleanup routine for NLM applications. CLIB context does not exist for
a thread that is running an atexit or AtUnload routine, and a server
abend may result.

The cleanup routine to be run at NLM unload time should be registered
as a signal handler using signal with the condition SIGTERM. This signal
handler can use the thread group ID from the main NLM to switch to a
CLIB context, allowing it to call any CLIB function. Ensure that the signal
handler routine always restores the original thread group ID before
exiting. Also take care that the main NLM does not exit before the signal

NLM Programming

Thread: Functions 1156

handler exits. You can do this with a global variable modified by the
signal handler, which is monitored by the main NLM before exiting (see
GetThreadGroupID and SetThreadGroupID).

The AtUnload function is passed the address of a function to be called
when the NLM is unloaded. Such functions can use only NLM (OS) level
context.

Only one function can be registered with AtUnload.

See Using AtUnload() functions: Example.

See Also

atexit, exit, _exit, ExitThread

NLM Programming

Thread: Functions 1157

BeginThread

Initiates a new thread of execution within the current thread group

Local Servers: blocking

Local Servers: nonblocking

Classification: 3.x, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int BeginThread (
 void (*func) (void *),
 void *stack,
 unsigned stackSize,
 void *arg);

Parameters

func

(IN) Points to the function to execute as the new thread.

stack

(IN) Points to a block of memory to use for the new thread's stack.

stackSize

(IN) Specifies the size (in bytes) of the stack.

arg

(IN) Points to an argument to be passed to the new thread.

Return Values

This function returns the new thread's ID if successful. It returns
EFAILURE if an error occurs.

If an error occurs, errno is set to:

5 ENOME
M

Not enough memory.

9 EINVAL Invalid argument was passed in.

Remarks

NLM Programming

Thread: Functions 1158

The new thread begins execution at the specified function (func). The
function func receives arg as a parameter. The stack parameter is a pointer
to a block of memory that the new thread uses as its stack.

If stack is NULL, a block of memory (as specified by the stackSize
parameter) is allocated.

If stack is NULL and the specified stack size is too small, the size for the
new thread stack is increased automatically.

If stack is not NULL and the specified stack size is too small, the
function fails and errno is set to EINVAL. The minimum stack size for
the 3.x OS is 2,064 bytes and 16,384 bytes for the NetWare 4.x OS.

If stackSize is zero and stack is NULL, then the default stack size (8,192
bytes for 3.x or 16,384 bytes for 4.x) is used.

The arg parameter is any 32-bit quantity, although typically some sort of
pointer is passed, or NULL is passed if the specified function does not
take any arguments.

If the newly created thread returns from the function func, it is be
equivalent to its having executed the ExitThread function with an action
code of EXIT_THREAD.

To begin a thread in a new thread group, call BeginThreadGroup.

See Also

BeginThreadGroup, ExitThread

Example

BeginThread

#include <nwthread.h>

void newThreadFunc (char *funcArg);
int completionCode;
.
.
.
completionCode = BeginThread (newThreadFunc, NULL, 8192, /A/Q "input.fil");
.
.
.
void newThreadFunc (char *arg)
{
 printf ("in new thread\n");
}

NLM Programming

Thread: Functions 1159

BeginThreadGroup

Establishes a new thread within a new thread group

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int BeginThreadGroup (
 void (*func) (void*),
 void *stack,
 unsigned stackSize,
 void *arg);

Parameters

func

(IN) Points to the function to execute as the new thread.

stack

(IN) Points to a block of memory to use for the new thread's stack.

stackSize

(IN) Specifies the size (in bytes) of the stack.

arg

(IN) Points to an argument to be passed to the new thread.

Return Values

This function returns the new thread group's ID if successful. It returns
EFAILURE if an error occurs.

If an error occurs, errno is set to:

5 ENOME
M

Not enough memory.

9 EINVAL Invalid argument was passed in.

Remarks

NLM Programming

Thread: Functions 1160

The BeginThreadGroup function creates a new thread group which
contains one thread defined by func. Other than putting the new thread
in its own thread group, this function is identical to BeginThread. A
thread group can consist of one or more threads as defined by the
programmer, and an NLM can have more than one thread group.

The new thread group is not the current thread group. To create more
threads within the new thread group, you must make the new thread
group current by calling SetThreadGroupID with the thread group ID
returned by BeginThreadGroup. You can then create more threads
within the new thread group by calling BeginThread for each additional
thread for the new thread group.

The new thread begins execution at the specified function (func). The
function func receives arg as a parameter. The stack parameter is a pointer
to a block of memory that the new thread uses as its stack.

If stack is NULL, a block of memory (as specified by the stackSize
parameter) is allocated.

If stack is NULL and the specified stack size is too small, the size for the
new thread stack is increased automatically.

If stack is not NULL and the specified stack size is too small, the
function fails and errno is set to EINVAL. The minimum stack size for
the 3.x OS is 2,064 bytes and 8,192 bytes for the 4.x OS.

If stackSize is zero and stack is NULL, then the default stack size (8,192
bytes for 3.x and for 4.x) is used.

The arg parameter is any 32-bit quantity, although typically some sort of
pointer is passed, or NULL is passed if the specified function does not
take any arguments.

If the newly created thread returns from the function func, it is be
equivalent to its having executed the ExitThread function with an action
code of EXIT_THREAD.

See Also

BeginThread

Example

BeginThreadGroup

#include <nwthread.h>
#include <stdio.h>

void newThreadFunc (char *funcArg);

NLM Programming

Thread: Functions 1161

int completionCode;
.
.
.
completionCode = BeginThreadGroup (newThreadFunc, NULL, 8192, "/A/Q input.fil");
.
.
.
void newThreadFunc(char *arg)
{
 printf ("in new thread group\n");
}

NLM Programming

Thread: Functions 1162

Breakpoint

Suspends the execution of an NLM and causes a break into the NetWare
Internal Debugger

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

void Breakpoint (
 int breakFlag);

Parameters

breakFlag

(IN) Indicates whether or not to take a breakpoint.

Return Values

None

Remarks

This function causes a breakpoint in the program if breakFlag is nonzero.
The breakpoint occurs at the instruction following the call to Breakpoint.
The breakFlag parameter can be any nonzero value to cause a breakpoint.
The breakFlag value is loaded into the EDI register.

NOTE: If your application relies on the EDI register, you should not
call Breakpoint with a nonzero value. Rather, call EnterDebugger,
which merely enters the system debugger.

NLM Programming

Thread: Functions 1163

ClearNLMDontUnloadFlag

Sets a flag in the header of an NLM to allow it to be unloaded with the
UNLOAD command at the system console

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int ClearNLMDontUnloadFlag (
 int NLMID);

Parameters

NLMID

(IN) The ID of the NLM that is to be made so it can be unloaded from
the system console. This ID can be obtained from the GetNLMID
function.

Return Values

-1 EFAILU
RE

NLMID was an invalid NLM ID.

0 (0x0
0)

ESUCCE
SS

The don't unload flag has been set.

Remarks

This function reverses the effects of the SetNLMDontUnloadFlag
function.

If SetNLMDontUnloadFlag is called, the NLM cannot be unloaded until
ClearNLMDontUnloadFlag is called.

For more information unloading NLM applications, see CHECK Function
.

See Also

NLM Programming

Thread: Functions 1164

SetNLMDontUnloadFlag, GetNLMID

Example

See example for SetNLMDontUnloadFlag.

NLM Programming

Thread: Functions 1165

CloseLocalSemaphore

Closes a local semaphore

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwsemaph.h>

int CloseLocalSemaphore (
 LONG semaphoreHandle);

Parameters

semaphoreHandle

(IN) Specifies the semaphore handle of an open semaphore.

Return Values

0 (0x0
0)

ESUCCESS

WARNING: A bad semaphore handle causes the server to abend.

Remarks

This function closes an open semaphore and makes any threads waiting
on the semaphore runnable. After this function is called, the semaphore
handle is no longer valid and should not be used again.

See Also

ExamineLocalSemaphore, OpenLocalSemaphore,
SignalLocalSemaphore, TimedWaitOnLocalSemaphore,
WaitOnLocalSemaphore

NLM Programming

Thread: Functions 1166

delay

Suspends execution for an interval (milliseconds)

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

void delay (
 unsigned milliseconds);

Parameters

milliseconds

(IN) Specifies the number of milliseconds the calling thread is to be
delayed.

Return Values

This function returns no value. If an error occurs, errno is set to:

-1 ENOME
M

Not enough memory.

Remarks

The delay function puts the calling thread to sleep for the amount of time
specified by the milliseconds parameter.

The actual time the thread is delayed is rounded to an integral number of
system clock ticks.

A thread blocked on delay can be restarted (the delay function is
cancelled) by calling ResumeThread.

NOTE: The actual minimum delay granularity is 1/8 sec., therefore, if
the millisecond parameter passed is 2, the actual delay time would be 55
milliseconds.

NLM Programming

Thread: Functions 1167

See Also

EnterCritSec, SuspendThread, ThreadSwitch

Example

delay

#include <nwthread.h>
#include <stdio.h>
#include <nwconio.h>

main()
{
 printf("start");
 delay(10000);
 printf("end");
 getch();
}

NLM Programming

Thread: Functions 1168

EnterCritSec

Prevents all other threads in the NLM from being scheduled

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int EnterCritSec (void);

Return Values

0 (0x0
0)

ESUCCE
SS

Threads were suspended in a critical section.

Remarks

The EnterCritSec function suspends all the other threads in the NLM.

After executing EnterCritSec, the current thread runs exclusively until it
calls ExitCritSec. The ExitCritSec function makes the other threads in the
NLM runnable again.

The EnterCritSec function maintains a count of the number of
outstanding EnterCritSec requests. The count is increased with each
EnterCritSec function call and decreased with each call to ExitCritSec.
An equal number of calls to EnterCritSec and ExitCritSec must be
performed to restore normal thread dispatching. This allows calls to
EnterCritSec and ExitCritSec to be nested.

The maximum number of concurrent critical sections is 4 billion.

Since NetWare 3.x and 4.x are nonpreemptive operating systems, NLM
applications very rarely need to use this function. The only time it is
needed is when a critical section of code calls a function which might
relinquish control.

Additionally, use of the EnterCritSec function should be avoided in favor
of using locks or semaphores.

NOTE: If a new thread is started while the NLM is in a critical section,

NLM Programming

Thread: Functions 1169

the thread is in the critical section.

See Also

ExitCritSec

NLM Programming

Thread: Functions 1170

ExamineLocalSemaphore

Returns the current value of a local semaphore

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwsemaph.h>

int ExamineLocalSemaphore (
 LONG semaphoreHandle);

Parameters

semaphoreHandle

(IN) Specifies the semaphore handle of an open semaphore.

Return Values

If successful, this function returns the current value of a semaphore.

WARNING: If a bad semaphore handle is specified, the server
abends.

Remarks

This function returns the current value of a semaphore. The semaphore
value is decremented for each WaitOnLocalSemaphore and incremented
for each SignalLocalSemaphore. A positive semaphore value indicates
that the thread can access the associated resource. If the semaphore value
is zero or negative, the thread must either enter a waiting queue by
calling the function WaitOnLocalSemaphore, or temporarily abandon its
attempt to access the resource.

A semaphore handle is obtained by calling OpenLocalSemaphore.

See Also

CloseLocalSemaphore, OpenLocalSemaphore, SignalLocalSemaphore,
TimedWaitOnLocalSemaphore, WaitOnLocalSemaphore

NLM Programming

Thread: Functions 1171

exit

Causes the NLM to terminate normally

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>
#include <stdlib.h>
#include <unistd.h>

void exit (
 int status);

Parameters

status

(IN) Specifies the NLM's return code. (Currently, the status is
ignored.)

Return Values

None

Remarks

The exit function causes a normal termination consisting of the following
sequence of events:

All threads in the NLM are destroyed.

This function calls the atexit functions, which are executed in "last-in,
first-out" order.

Cleanup routines are called for any libraries that have registered
cleanup routines and that the NLM has called. (For more information,
see Library.)

I/O buffers are flushed, and all second-level files (opened with fopen,
fdopen, freopen) are closed. Any files created by tmpfile are deleted
and purged.

All screens are closed.

NLM Programming

Thread: Functions 1172

All remote sessions are terminated.

All other resources allocated by the NLM are freed.

The NLM is unloaded.

See Also

abort, atexit, _exit, ExitThread, RegisterLibrary

NLM Programming

Thread: Functions 1173

_exit

Terminates the NLM without executing atexit functions or flushing buffers

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

void _exit (
 int status);

Parameters

status

(IN) Specifies the NLM's return code (currently, the status is ignored.)

Return Values

This function does not return to its caller.

Remarks

The _exit function causes a normal termination consisting of the
following sequence of events:

All threads in the NLM are destroyed.

Cleanup routines are called for any libraries that have registered
cleanup routines and that the NLM has called. (For more information,
see Library.)

All second-level files (opened with fopen, fdopen, freopen) are closed;
however, the buffers of these are not flushed. Any files created by
tmpfile are deleted and purged.

All screens are closed.

All remote sessions are terminated.

All other resources allocated by the NLM are freed.

The NLM is unloaded.

NLM Programming

Thread: Functions 1174

See Also

abort, exit, ExitThread, RegisterLibrary

Example

_exit

#include <nwthread.h>
#include <stdio.h>

int main (int argc, char **argv)
{
 FILE *fp;
 atexit (myFunction); /* myFunction declared elsewhere */
 fp = fopen (argv[1], "r");
 if (fp == NULL)
 {
 fprintf (stderr, Unable to open '%s'\n, argv[1]);
 _exit (1);
 }
 fclose (fp);
 exit (0);
}

NLM Programming

Thread: Functions 1175

ExitCritSec

Allows other threads in the NLM to run

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int ExitCritSec (void);

Return Values

0 (0x0
0)

ESUCCESS Threads were suspended in a critical section.

1
9

EWRNGK
ND

One or more threads in the NLM were not in
a critical section.

Remarks

The ExitCritSec function reverses the effect of the EnterCritSec function.

NOTE: If a thread is created (with BeginThread or
BeginThreadGroup) while the NLM is in a critical section, ExitCritSec
returns EWRNGKND. However, the function still works normally in
this case with respect to all of the old threads.

See Also

EnterCritSec, ResumeThread

NLM Programming

Thread: Functions 1176

ExitThread

Terminates either the current thread or the NLM

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

void ExitThread (
 int action_code,
 int status);

Parameters

action_code

(IN) Action code:

TSR_THREAD (-1)---Terminate only the current thread.

EXIT_THREAD (0)---Terminate the current thread; if the current
thread is also the last thread, terminate the NLM.

EXIT_NLM (1)---Terminate the entire NLM.

status

(IN) The return code of the NLM (currently, the status is ignored).

Return Values

None

Remarks

The action code determines whether to destroy the current thread or the
NLM:

Action code TSR_THREAD terminates only the current thread and
should only be used in NLM applications that are libraries (that is,
they export symbols).

Action code EXIT_THREAD is used to terminate the current thread. If
the current thread is also the only thread of the NLM, the NLM itself is
terminated.

NLM Programming

Thread: Functions 1177

Action code EXIT_NLM is equivalent to the exit function.

The ExitThread function causes a normal NLM termination consisting of
the following sequence of events:

All threads in the NLM are destroyed.

This function calls the atexit functions, which are executed in "last-in,
first-out" order.

Cleanup routines are called for any libraries that have registered
cleanup routines and that the NLM has called. (For more information,
see Library.)

I/O buffers are flushed, and all second-level files (opened with fopen,
fdopen, freopen) are closed. Any files created by tmpfile are deleted
and purged.

All screens are closed.

All remote sessions are terminated.

All other resources allocated by the NLM are freed.

The NLM is unloaded.

NOTE: Executing the following statement

 return (completionCode);

from the function (including main) where a thread began is equivalent
to the following:

 ExitThread (EXIT_THREAD, completionCode);

See Also

abort, exit, _exit, RegisterLibrary

NLM Programming

Thread: Functions 1178

FindNLMHandle

Returns the handle of a loaded NLM

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

unsigned int FindNLMHandle (
 char *moduleName);

Parameters

moduleName

(IN) Specifies the full filename (including the extension) of the NLM
whose handle is desired.

Return Values

If the NLM is loaded, its handle is returned. Otherwise, NULL is
returned.

Remarks

This function searches the list of loaded NLM applications, comparing
their names to the specified moduleName. If a match is found, the handle
for that NLM is returned.

See Also

GetNLMHandle

Example

FindNLMHandle

#include <nwthread.h>
#include <stdio.h>

unsigned int moduleHandle;

NLM Programming

Thread: Functions 1179

moduleHandle = FindNLMHandle ("TEST.NLM");
if (NLMHandle == NULL)
 printf ("This NLM is not loaded!\n");

NLM Programming

Thread: Functions 1180

getcmd

Returns the command line parameters in their original format (unparsed)

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

char *getcmd (
 char *originalCmdLine);

Parameters

originalCmdLine

(OUT) Points to a buffer into which to copy the command line
parameters.

Return Values

The address of originalCmdLine is returned if originalCmdLine is not NULL.
Otherwise, the address of the system's copy of the original command line
is returned.

Remarks

The getcmd function copies the command line, with the "load" command
and the program name removed, into a buffer specified by
originalCmdLine (if originalCmdLine is not NULL).

If originalCmdLine is NULL, getcmd returns a pointer to the system's copy
of the original command line (without the "load" command or the
program name). The system's copy should not be written over.

The information is terminated with a \0 character. This provides a
method of obtaining the original parameters to a program unchanged
(with the white space intact).

This information can also be obtained by examining the argv vector of
program parameters passed to the main function in the program.

See Also

NLM Programming

Thread: Functions 1181

spawnlp, spawnvp

Example

getcmd

#include <stdio.h>
#include <string.h>
#include <nwthread.h>

main()
{
 char originalCmdLine[80];
 char cmdPtr;
 getcmd(originalCmdLine)
 printf("%s\n",originalCmdLine);
 cmdPtr=getcmd(NULL);
 printf("%s\n", cmdPtr);

/* If the load command is:
 "load test param1 param2 param3"
 The output is:
 param1 param2 param3
 param1 param2 param3
*/
}

NLM Programming

Thread: Functions 1182

getenv

Searches the environment area for the environment variable and returns the
environment variable's value (presently, environment variables are not
supported)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Thread

Syntax

#include <stdlib.h>

char *getenv (
 const char * varname);

Parameters

varname

(IN) Points to an environment variable.

Return Values

This function returns a pointer to the string assigned to the environment
variable if found, and NULL if no match was found. Currently, NULL is
always returned.

Remarks

The matching is case-insensitive; all lowercase letters are treated as if they
were uppercase.

NLM Programming

Thread: Functions 1183

GetNLMHandle

Returns the handle of the current NLM

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

unsigned int GetNLMHandle (void);

Return Values

Returns the handle of the current NLM.

Remarks

Ordinarily, the current NLM is the NLM that owns the currently running
thread.

See Importing a Function: Example.

See Also

FindNLMHandle

NLM Programming

Thread: Functions 1184

GetNLMID

Returns the ID of the current NLM

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

int GetNLMID (void);

Return Values

This function returns the ID of the current NLM.

Remarks

Ordinarily, the current NLM is the NLM that owns the currently running
thread. The current NLM identifies which NLM owns any subsequently
allocated resources.

NOTE: The current NLM is usually the client even though the client
might be executing a library's code.

See Also

SetNLMID

NLM Programming

Thread: Functions 1185

GetNLMIDFromThreadID

Returns the ID of the NLM that the specified thread currently belongs to

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int GetNLMIDFromThreadID (
 int threadID,
 char *fileName);

Parameters

threadID

(IN) Specifies the ID of the thread.

fileName

(IN) Receives the name of the file that the associated NLM was loaded
from.

Return Values

If successful, GetNLMIDFromThreadID returns the ID of the NLM that
the thread is associated with. On failure, it returns EFAILURE and errno is
set to EBADHNDL.

Remarks

An NLM, such as a library NLM, can take over ownership of another
NLM's threads by calling SetNLMID or SetThreadGroupID. However,
an NLM must ensure that it owns all of its threads before unloading.

An NLM can keep track of the IDs of the threads it originates and can use
GetNLMIDFromThreadID to determine if it still owns the threads. If at
unload time, an NLM determines that it does not own its threads, the
NLM must wait until ownership of the threads is returned to it. Then it
can safely unload.

GetNLMIDFromThreadID returns the NLM ID only for threads that
have CLIB context. This function returns EFAILURE if passed the ID of a
thread that is running as an OS thread.

NLM Programming

Thread: Functions 1186

An example of an OS thread is a procedure scheduled with
ScheduleSleepAESProcessEvent and with the registering thread's
context specifier set to NO_CONTEXT. The registered thread does not
have CLIB context when it runs.

NOTE: The interface to this function might change in the next release
of the NetWare API to also return the name of the NLM. Currently, the
name it returns is the name of the file that the NLM was loaded from.
(An NLM can have a different name from its file name.)

See Also

GetThreadID

NLM Programming

Thread: Functions 1187

GetNLMNameFromNLMID

Returns the name of a C Library NLM

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int GetNLMNameFromNLMID (
 int NLMID,
 char *NLMFileName,
 char *NLMName);

Parameters

NLMID

(IN) Specifies an NLM ID.

NLMFileName

(OUT) Points to the NLM filename used in the linker file.

NLMName

(OUT) Points to the descriptive name of the NLM.

Return Values

This function returns the NLM name. If an invalid NLM ID is passed, it
returns a value of -1 and errno is set to EBADHNDL.

Remarks

This function returns the long name (as it appears on the module listing)
and the short name (as specified in the NAME directive in the linker
directive file) of the NLM. For example, if you specify the ID for
CLIB.NLM for the NLMID parameter, on return NLMFileName points to
CLIB.NLM and NLMName points to NLM.

See Also

MapNLMIDToHandle

NLM Programming

Thread: Functions 1188

GetPrty

Discontinued; see GetThreadHandicap

NLM Programming

Thread: Functions 1189

GetThreadContextSpecifier

Returns the CLIB context that is used by callback routines scheduled by the
specified thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

int GetThreadContextSpecifier (
 int threadID);

Parameters

threadID

(IN) Gives the ID of the thread whose context specifier you want to
get.

Return Values

-1 EFAILURE

0 (0x0
0)

NO_CONTEXT

1 (0x0
1)

USE_CURRENT_CONTEXT

Other values are valid thread group IDs.

Remarks

Many of the functions that are registered as callbacks run as OS threads.
These threads need CLIB context to use the NetWare API functions. The
function SetThreadContextSpecifier can be set to give these threads
context when the callbacks are registered. This function lets you find out
what those settings were.

If additional callbacks are registered, their context run as part of the
thread group that corresponds to the thread group ID that is returned by
this function.

NLM Programming

Thread: Functions 1190

For more information about CLIB context, see NLM Code Development.

See Also

SetThreadContextSpecifier

NLM Programming

Thread: Functions 1191

GetThreadGroupID

Returns the ID of the current thread group

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

int GetThreadGroupID (void);

Return Values

This function returns the ID of the current thread group.

Remarks

Ordinarily, the current thread group is the thread group that the
currently running thread belongs to. The current thread group identifies
which thread group's current connection, current task, current screen,
and so on is active. (See Thread Groups.)

See Also

SetThreadGroupID

NLM Programming

Thread: Functions 1192

GetThreadHandicap

Gets the number of context switches a thread is delayed before being
rescheduled

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

LONG GetThreadHandicap (
 int threadID);

Parameters

threadID

(IN) Specifies a thread ID.

Return Values

This function returns the current handicap for the specified thread.

Remarks

A context switch is the task switching enacted by the OS when swapping
the current thread.

See Also

ThreadSwitchWithDelay

NLM Programming

Thread: Functions 1193

GetThreadID

Returns the thread ID of the currently executing thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

int GetThreadID (void);

Return Values

The thread ID is returned.

Remarks

This function is used to get a thread ID for those functions which require
a thread ID.

See Also

GetNLMID, GetThreadGroupID, SuspendThread

NLM Programming

Thread: Functions 1194

GetThreadName

Returns the name of a C Library thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

int GetThreadName (
 int threadID,
 char *tName);

Parameters

threadID

(IN) Specifies a thread ID.

tName

(OUT) Specified the name of the thread.

Return Values

This function returns the name of a thread. If an invalid thread ID is
passed, it returns an EBADHNDL error.

Remarks

This function returns the name of the specified C Library thread in tName.
The tName parameter can hold up to 17+1 characters.

See Also

GetThreadID, RenameThread

NLM Programming

Thread: Functions 1195

longjmp

Restores a saved environment

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Thread

Syntax

#include <setjmp.h>

void longjmp (
 jmp_buf env,
 int value);

Parameters

env

(IN) Specifies the environment to be restored.

value

(IN) Specifies the value to return.

Return Values

This function returns no value.

Remarks

The longjmp function restores the environment saved by the most recent
call to setjmp with the corresponding jmp_buf argument. After longjmp
restores the environment, program execution continues as if the
corresponding call to setjmp has just returned the value specified by
value.

The setjmp function must be called before longjmp. The routine that
called setjmp and set up env must still be active and cannot have
returned before longjmp is called. If this happens, the results are
unpredictable. If value is 0, the value returned is 1.

See Also

setjmp

NLM Programming

Thread: Functions 1196

main

A user-supplied function where NLM execution begins

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int main (
 int argc,
 const char *argv[]);

int main (void);

void main (
 int argc,
 const char *argv[]);

void main (void);

Parameters

argc

(IN) Specifies the number of arguments on the command line.

argv

(IN) Points to the array of command line arguments pointers.

Syntax

The syntax for the main function can be any of the following:

Return Values

Currently, the return code from main is ignored.

Remarks

The main function is a user-written function that is executed as the initial
thread of the NLM.

Prior to the main function receiving control, the _Prelude function (in

NLM Programming

Thread: Functions 1197

PRELUDE.OBJ) does the following:

The current connection is set to 0 and a unique task number is
allocated.

A new screen is created. The screen name is the name specified by the
linker directive SCREENNAME. If the screen name is not specified,
the description text specified in the FORMAT directive is used as the
screen name. If the screen name is "none," "default," or "System
Console," no new screen is created.

A new thread is started with the specified stack size. If no stack size is
specified, then the default stack size (8192 bytes) is used.

The thread's name is the name specified by the linker directive
THREADNAME. The thread name can be up to 16 characters long.
The first thread name is generated by appending "0" to the specified
thread name, the second by appending "1", and so on. If the thread
name is not specified, the name specified with the linker directive
NAME (with .NLM appended) is used as the pattern for generating
thread names.

If the main function returns with a return code of rc, it is equivalent to
its executing ExitThread (EXIT_THREAD, rc). See the discussion of
the ExitThread function.

The command line to the program is assumed to be a sequence of
tokens separated by blanks. The tokens are passed to the main
function as an array of pointers to character strings in the argv
parameter. The first element of argv is a pointer to a character string
containing the program name, including the full path. The last
element of the array pointed to by argv is a NULL pointer (argv[argc] is
NULL). Arguments that contain blanks can be passed to the main
function by enclosing them within double quote characters (which are
removed from that element in the argv vector).

The command line can also be obtained in its original format by using the
getcmd function.

See Also

abort, _exit, exit, ExitThread

Example

main

#include <nwthread.h>

int main (int argc, char *argv[])
{
 /* Do the work */

NLM Programming

Thread: Functions 1198

 .
 .
 .
 /* Terminate thread and NLM */
 return 0;
}

NLM Programming

Thread: Functions 1199

MapNLMIDToHandle

Returns the handle associated with the NLM ID

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int MapNLMIDToHandle (
 int NLMID);

Parameters

NLMID

(IN) Specifies an NLM ID (C Library structure).

Return Values

This function returns the handle associated with the specified NLM ID. It
returns a value of -1 if an invalid NLM ID was passed.

Remarks

This function can be used in registered LOAD and UNLOAD event
handlers to compare known C Library NLM IDs with the NLM handle
that the event handler function is passed with.

See Also

FindNLMHandle, GetNLMID, RegisterForEvent

NLM Programming

Thread: Functions 1200

NWSMPIsLoaded

Returns whether the SMP kernel is loaded

Local Servers: N/A

Remote Servers: N/A

Classification: 4.x SMP

SMP Aware: Yes

Service: Thread

Syntax

#include <nwsmp.h>

int NWSMPIsLoaded (
 void);

Return Values

TRUE Returned if the SMP kernel is loaded

FALS
E

Returned if the SMP kernel is not loaded

Remarks

The SMP kernel is loaded by loading smp.nlm in the startup.ncf file of a
4.x file server.

The value returned by NWSMPIsLoaded is not an indicator that more
than one processor has been brought online. It is only an indicator the
kernel is loaded.

MPDRIVER.NLM must be loaded in order to have multiple processors
available to the SMP kernel.

NLM Programming

Thread: Functions 1201

NWThreadToMP

Migrates a NetWare thread from the Netware kernel to the SMP kernel

Local Servers: N/A

Remote Servers: N/A

Classification: 4.x SMP

SMP Aware: Yes

Service: Thread

Syntax

#include <nwsmp.h>

void NWThreadToMP (
 void);

Return Values

None

Remarks

NWThreadToMP takes the currently running thread that was created by
BeginThread, BeginThreadGroup, or ScheduleWorkToDo and migrates
it to the SMP kernel. The SMP kernel then owns the thread scheduling
and state context switches for that thread.

A thread migrated to the SMP kernel is still capable of having a CLib
context. You can use the same CLib context functions to manipulate the
CLib context.

Should an SMP thread call NWThreadToMP, the thread remains an SMP
thread.

NWThreadToMP is exported by THREADS.NLM of the CLib suite.

See Also

NWThreadToNetWare

NLM Programming

Thread: Functions 1202

NWThreadToNetWare

Migrates an SMP thread managed by the SMP kernel to the NetWare kernel
as a NetWare thread

Local Servers: N/A

Remote Servers: N/A

Classification: 4.x SMP

SMP Aware: Yes

Service: Thread

Syntax

#include <nwsmp.h>

void NWThreadToNetWare (
 void);

Return Values

None

Remarks

NWThreadToNetWare takes a thread previously migrated to the SMP
kernel, and puts it back on the NetWare kernel as a NetWare thread on
the end of the run queue. A NetWare thread that calls
NWThreadToNetWare will remain on the NetWare run queue.

NWThreadToNetWare is exported by THREADS.NLM of the CLib suite.

SMP threads are created by first creating a NetWare thread by calling
BeginThread, BeginThreadGroup, or ScheduleWorkToDo and then
migrating the thread to the SMP kernel by calling NWThreadToMP.

See Also

NWThreadToMP

NLM Programming

Thread: Functions 1203

OpenLocalSemaphore

Allocates a local semaphore and gives the NLM access to it

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwsemaph.h>

LONG OpenLocalSemaphore (
 LONG initialValue);

Parameters

initialValue

(IN) Specifies the value to assign the semaphore.

Return Values

This function returns the semaphore handle.

Remarks

This function creates and initializes the semaphore to initialValue. The
initialValue parameter indicates the number of threads that can access the
resource at a time. A call to SignalLocalSemaphore increments this
value. A call to WaitOnLocalSemaphore decrements this value.

WARNING: Developers must make sure to close local semaphores
that are opened in an NLM because they are not automatically closed
when an NLM unloads. If a local semaphore is opened but not closed
before the NLM unloads, the server abends.

See Also

CloseLocalSemaphore, ExamineLocalSemaphore,
SignalLocalSemaphore, TimedWaitOnLocalSemaphore,
WaitOnLocalSemaphore

NLM Programming

Thread: Functions 1204

raise

Sends a signal to the executing program

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Thread

Syntax

#include <signal.h>

int raise (
 int condition);

Parameters

condition

(IN) Specifies the condition for which to raise a signal.

Return Values

This function returns a value of 0 when the condition is successfully
raised and a nonzero value otherwise.

Remarks

The raise function signals the exception condition indicated by the
condition parameter. The signal function can be used to specify the action
to take place when a signal is raised. See the discussion of the signal
function for a list of the possible conditions.

There can be no return of control following a call to the raise function if
the action for that condition is to terminate the program or to transfer
control using longjmp .

See Also

longjmp, signal

NLM Programming

Thread: Functions 1205

RenameThread

Renames a C Library thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

int RenameThread (
 int threadID,
 char *newName);

Parameters

threadID

(IN) Specifies a thread ID.

newName

(IN) Specifies the new thread name.

Return Values

This function returns ESUCCESS if it completes successfully. It returns
EBADHNDL if an invalid thread ID is passed.

Remarks

This function renames a C Library thread. The new name can be up to 17
characters long.

NLM Programming

Thread: Functions 1206

ResumeThread

Allows a previously suspended thread to run

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

int ResumeThread (
 int threadID);

Parameters

threadID

(IN) Specifies the ID of the thread to be resumed.

Return Values

0 (0x00) ESUCCESS Thread was resumed.

9 EINVAL Thread tried to resume itself.

1
9

EWRNGK
ND

Thread was not suspended.

2
2

(0x16) EBADHND
L

Bad thread ID was passed in.

Remarks

The ResumeThread function reverses the effect of SuspendThread.

CAUTION: Your application must be aware of how its threads are
suspended and must call ResumeThread only when it is appropriate.
For example, if your application suspends a thread, it is appropriate
for your application to resume the thread. However, it is not
appropriate for your application to call ResumeThread for one of its
threads that has been suspended by the OS, while the thread is
running in OS code. Calling ResumeThread at an inappropriate time
will cause unpredictable behavior.

NLM Programming

Thread: Functions 1207

See Also

ExitCritSec, SuspendThread

NLM Programming

Thread: Functions 1208

ReturnNLMVersionInfoFromFile

Returns version information for a loaded NLM that corresponds to a
specified file

Local Servers: blocking

Remote Servers: blocking

Classification: 3.12, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int ReturnNLMVersionInfoFromFile (
 BYTE *__pathName
 LONG *majorVersion,
 LONG *minorVersion,
 LONG *revision,
 LONG *year,
 LONG *month,
 LONG *day,
 BYTE *copyrightString
 BYTE *description);

Parameters

__pathName

(IN) Specifies the path to the NLM file whose version information is to
be returned.

majorVersion

(OUT) Receives the major version number of the NLM.

minorVersion

(OUT) Receives the minor version number of the NLM.

revision

(OUT) Receives the revision number of the NLM.

year

(OUT) Receives the number of the year that the NLM was created.

month

(OUT) Receives the number of the month that the NLM was created.

day

(OUT) Receives the number of the day that the NLM was created.

NLM Programming

Thread: Functions 1209

copyrightString

(OUT) Points to a buffer that receives an ASCIIZ string containing the
copyright string of the NLM. Buffer size should be 256 bytes.

description

(OUT) Points to a buffer that receives an ASCIIZ string containing the
name that is displayed when the NLM is loaded. Buffer size should be
128 bytes.

Return Values

-1 EFAILU
RE

An invalid NLM handle was specified.

0 ESUCCE
S

Remarks

While __pathName must be supplied, the other parameters can be set to
NULL if you do not want the information they return.

The NLM specified by __pathName does not need to be running for this
function to retrieve its information.

The information for majorVersion, minorVersion, revision, copyrightString,
and description are set with linker options when the NLM applications are
linked. For more information about the linker options, see NLM Linkers.

The buffer description points to should be at least 128 bytes.

For the NetWare 3.11 OS, this function was made available in
CLIB.NLM, version 3.11b.

See Also

MapNLMIDToHandle, FindNLMHandle,
ReturnNLMVersionInformation

NLM Programming

Thread: Functions 1210

ReturnNLMVersionInformation

Returns version information for a loaded NLM that corresponds a specified
NLM handle

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.12, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int ReturnNLMVersionInformation (
 int NLMHandle,
 LONG *majorVersion,
 LONG *minorVersion,
 LONG *revision,
 LONG *year,
 LONG *month,
 LONG *day,
 BYTE *copyrightString,
 BYTE *description);

Parameters

NLMHandle

(IN) Gives the handle of the NLM for which to return version
information. This handle can be obtained by calling FindNLMHandle
or MapNLMIDToHandle.

majorVersion

(OUT) Receives the major version number of the NLM.

minorVersion

(OUT) Receives the minor version number of the NLM.

revision

(OUT) Receives the revision number of the NLM.

year

(OUT) Receives the number of the year that the NLM was created.

month

(OUT) Receives the number of the month that the NLM was created.

day

(OUT) Receives the number of the day that the NLM was created.

NLM Programming

Thread: Functions 1211

copyrightString

(OUT) Points to a buffer that receives an ASCIIZ string containing the
copyright string of the NLM. Buffer size should be 256 bytes.

description

(OUT) Points to a buffer that receives an ASCIIZ string containing the
name that is displayed when the NLM is loaded. Buffer size should be
128 bytes.

Return Values

-1 EFAILUR
E

An invalid NLM handle was specified.

0 ESUCCES
S

Remarks

While NLMHandle must be supplied, the other parameters can be set to
NULL if you do not want the information they return.

The information for majorVersion, minorVersion, revision, copyrightString,
and description are set with linker options when the NLM applications are
linked. For more information about the linker options, see NLM Linkers.

For the NetWare 3.11 OS, this function was made available in
CLIB.NLM, version 3.11b.

See Also

MapNLMIDToHandle, FindNLMHandle,
ReturnNLMVersionInfoFromFile

NLM Programming

Thread: Functions 1212

ScheduleWorkToDo

Schedules a routine as work, which puts it on the highest priority queue, the
WorkToDoList

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

int ScheduleWorkToDo (
 void (*ProcedureToCall) () ,
 void *workData,
 WorkToDo *workToDo);

Parameters

ProcedureToCall

(IN) Points to the routine being scheduled as work.

workData

(IN) Points to the data to be passed to the worker thread.

workToDo

(IN) Points to a WorkToDo structure.

Return Values

0 Success

5 ENOMEM

Remarks

This function schedules work to be executed by an OS worker thread.

The ProcedureToCall parameter points to the procedure to be scheduled as
work. Work is a high-priority, low overhead procedure. See When to
Schedule a Routine as Work.

The workData parameter contains the data to be passed to ProcedureToCall.

NLM Programming

Thread: Functions 1213

The workToDo parameter is a structure used by CLIB.NLM to set up
WorkToDo process scheduling. The structure must be allocated before
calling this function and released afterward (for example, by calling
malloc and free). Other than allocating workToDo, the developer does not
need to be concerned with the details of this stucture since the only
user-defined fields in the structure are set by the ProcedureToCall and
workData parameters. WorkToDo is defined in nwthread.h.

Since the work that is scheduled is done by an OS worker thread, it is not
be able to use the NetWare API functions that use context, unless context
is given to the OS worker thread.

The context that is given to the OS worker thread is determined by the
value in the registering thread's context specifier. You can set the context
specifier to one of the following options:

NO_CONTEXT---Callbacks registered with this option are not given
CLIB context. The advantage here is that you avoid the overhead
needed for setting up CLIB context. The disadvantage is that without
the context the callback is only able to call NetWare API functions that
manipulate data or manage local semaphores.

Once inside of your callback, you can manually give your callback
thread CLIB context by calling SetThreadGroupID and passing in a
valid thread group ID. If you manually set up your context, you need
to reset its context to its original context, by setting the thread group ID
back to its original value.

USE_CURRENT_CONTEXT---Callbacks registered with a thread that
has its context specifier set to USE_CURRENT_CONTEXT have the
thread group context of the registering thread.

A valid thread group ID---This is to be used when you want the
callbacks to have a different thread group context than the thread that
schedules them.

When a new thread is started with BeginThread, BeginThreadGroup or
ScheduleWorkToDo, its context specifier is set to
USE_CURRENT_CONTEXT by default.

You can determine the current setting of the registering thread's context
specifier by calling GetThreadContextSpecifier. You use
SetThreadContextSpecifier to set the registering thread's context
specifier to one of the above options.

For more information on using CLIB context, see Context Problems with
OS Threads.

See Also

BeginThread, BeginThreadGroup

NLM Programming

Thread: Functions 1214

Example

ScheduleWorkToDo

#include <stdio.h>
#include <nwthread.h>
#include <nwconio.h>

int count = 0;

/*........................*/
void ScreenUpdater(void *data)
{
 data = data;
 count++;
 clrscr();
 printf("You could use a work to do thread\n\n");
 printf("to do screen updates. %i.\n\n\n", count);
 printf("Work to do threads get into the\n\n");
 printf("system fast and are useful to\n\n");
 printf("accomplish finite definable tasks.");
}

/*........................*/
main()
{
 WorkToDo screenWork;
 char ch = 0;
 SetAutoScreenDestructionMode(TRUE);
 while (ch != 'q')
 {
 ScheduleWorkToDo(ScreenUpdater, NULL, &screenWork);

 /* ThreadSwitch makes sure work to do gets a chance to run. */
 ThreadSwitch();
 if (!kbhit())
 ThreadSwitchWithDelay();
 else
 ch = getch();
 }
}
/*........................*/

NLM Programming

Thread: Functions 1215

setjmp

Saves its calling environment in its env parameter for subsequent use by the
longjmp function

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Thread

Syntax

#include <setjmp.h>

int setjmp (
 jmp_buf env);

Parameters

env

(OUT) Specifies the buffer in which to save environment.

Return Values

This function returns a value of 0 when it is initially called. The return
value is nonzero if the return is the result of a call to the longjmp
function. An if statement is often used to handle these two returns. When
the return value is 0, the initial call to setjmp has been made; when the
return value is nonzero, a return from a longjmp has just occurred.

Remarks

In some cases, error handling can be implemented by using setjmp to
record the point to which a return occurs following an error. When an
error is detected in a called function, that function uses longjmp to jump
back to the recorded position. The original function which called setjmp
must still be active (it cannot have returned to the function which called
it).

Special care must be exercised to ensure that any side effects that have
occurred (such as allocated memory and opened files) are satisfactorily
handled.

See Also

longjmp

NLM Programming

Thread: Functions 1216

SetNLMDontUnloadFlag

Sets a flag in the header of an NLM to prevent the NLM from being
unloaded with the UNLOAD command at the system console

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int SetNLMDontUnloadFlag (
 int NLMID);

Parameters

NLMID

(IN) The ID of the NLM that is to be made so it cannot be unload from
the command line.

Return Values

-1 EFAILU
RE

NLMID was an invalid NLM ID.

0 (0x0
0)

ESUCCE
SS

The don't unload flag has been set.

Remarks

A console operator can unload an NLM from the system console
command line by issuing the following command:

 UNLOAD NLM_NAME

where NLM_NAME is the name of the NLM being unloaded.

If there is a check function for the NLM (declared with the OPTION
CHECK directive), it is called when the "UNLOAD NLM_NAME"
command is entered. This function then must decide if it is safe to unload
the NLM. If it is safe to unload the NLM, the function returns 0 and the
NLM is unloaded. If the function determines that the NLM should not be

NLM Programming

Thread: Functions 1217

unloaded, it returns a nonzero value and the following prompt is
displayed on the system console:

 UNLOAD module anyway? n

In this case, the console operation can choose to unload the NLM
anyway, by pressing the "y" key, instead of the "n" key.

If SetNLMDontUnloadFlag is called, the NLM can only be unloaded
after ClearNLMDontUnloadFlag is called.

For more information about unloading NLM applications, see CHECK
Function.

See Also

ClearNLMDontUnloadFlag, GetNLMID

Example

SetNLMDontUnloadFlag

#include <nwconio.h>
#include <errno.h>
#include <stdio.h>
#include <nwthread.h>

main()
{
 int NLMID, result;
 NLMID=GetNLMID();
 result=SetNLMDontUnloadFlag(NLMID);
 if(result==ESUCCESS)
 {
 printf("DONTUNLD.NLM cannot be unloaded now.\n");
 printf("Press any key to be able to unload this NLM\n");
 getch();
 ClearNLMDontUnloadFlag(NLMID);
 printf("\nYou can unload DONTUNLD.NLM now.\n");
 getch();
 }
 else
 printf("Could not set the don't unload flag.\n");
}

NLM Programming

Thread: Functions 1218

SetNLMID

Chanages the current NLM ID

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int SetNLMID (
 int newNLMID);

Parameters

newNLMID

(IN) Specifies the ID of NLM to make current (returned by a previous
call to SetNLMID or GetNLMID.

Return Values

This function returns the ID of the previously current NLM if successful.
Otherwise, it returns EFAILURE and sets errno to:

2
2

(0x1
6)

EBADHN
DL

Invalid NLM ID was passed in.

Remarks

The current NLM determines which NLM "owns" resources that are
subsequently allocated. (See Connection Number and Task Management
for a discussion of resources.)

The main implication of "ownership" of resources is the automatic
cleanup performed by the NetWare API when an NLM terminates. In the
case of a library/client relationship:

If a library allocates resources while being called by a client, by default
(without calling SetNLMID), the resources are owned by the client.

If the library calls SetNLMID to make itself the current NLM and then
allocates resources, the library owns the resources.

NLM Programming

Thread: Functions 1219

NOTE: A library should save and restore the client's NLM ID when it
changes the current NLM ID.

See Also

GetNLMID

NLM Programming

Thread: Functions 1220

SetPrty

Discontinued; see SetThreadHandicap

NLM Programming

Thread: Functions 1221

SetThreadContextSpecifier

Determines the CLIB context that is to be used by all callback routines
scheduled by the specified thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int SetThreadContextSpecifier(
 int threadID,
 int contextSpecifier);

Parameters

threadID

(IN) Gives the ID of the thread whose context specifier you want to
get.

contextSpecifier

(IN) Gives the context to give callback threads.

Return Values

-1 EFAILURE

0 (0x0
0)

ESUCCESS

Remarks

Many of the functions that are registered as callbacks run as OS threads.
These threads need CLIB context to use the NetWare API functions, such
as printf. This function is used to determine what context is given to
callbacks when they are registered by the calling thread.

The default setting is for callbacks to have the context of the thread that
calls them.

The thread context specifier is set on a per-thread basis. Changing the

NLM Programming

Thread: Functions 1222

context specifier for one thread does not change it for any of the other
threads. The threadID parameter specifies which thread should have its
context specifier set.

The contextSpecifier parameter tells what the context should be. It can be
one of the following:

NO_CONTEXT---Do not give CLIB context to callback functions when
they are registered. You would use this option when your callback is
not going to use any NetWare API functions other than local
semaphore calls and SetThreadGroupID, which then creates context.
You could also use this if you want to manually set the callbacks
function with a call to SetThreadGroupID.

USE_CURRENT_CONTEXT---Set the context of the callback being
scheduled to be the same as the thread that is scheduling the callback.
This is the default setting that exists when a new thread is started.

A valid thread group ID---Set the context of the callback to this thread
group ID. The ID of the current thread group can be returned with a
call to GetThreadGroupID.

See Also

GetThreadContextSpecifier, SetThreadGroupID, GetThreadGroupID

NLM Programming

Thread: Functions 1223

SetThreadGroupID

Changes the thread group ID of the running thread

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int SetThreadGroupID (
 int newThreadGroupID);

Parameters

newThreadGroupID

(IN) Specifies the ID of the thread group to make current (returned by
a previous call to SetThreadGroupID or GetThreadGroupID.

Return Values

This function returns the ID of the previously current thread group if
successful. Otherwise, it returns EFAILURE and sets errno to:

2
2

(0x1
6)

EBADHN
DL

Invalid thread group ID was passed in.

Remarks

The SetThreadGroupID function determines which instance of the
current connection, current task, current screen, and so on, is used. (See
Thread Groups.) Since a thread group is owned by a particular NLM, this
function also sets the current NLM ID to the NLM that owns the thread
group that is being made current.

NOTE: A library should save and restore the thread group ID
whenever it changes the current thread group.

See Also

GetThreadGroupID, SetNLMID

NLM Programming

Thread: Functions 1224

Example

SetThreadGroupID

#include <nwthread.h>

int currentThreadGroupID;
int newThreadGroupID;
currentThreadGroupID = SetThreadGroupID (newThreadGroupID);

NLM Programming

Thread: Functions 1225

SetThreadHandicap

Sets the number of context switches a thread is permanently handicapped
(delayed) before being rescheduled

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

void SetThreadHandicap (
 int threadID,
 int handicap);

Parameters

threadID

(IN) Specifies a thread ID.

handicap

(IN) Specifies the number of context switches the thread waits before
being put on the Run Queue.

Return Values

None

Remarks

This function sets the value used to determine the number of context
switches a thread waits before being put on the Run Queue. This sets the
permanent handicap.

See Also

GetThreadHandicap, ThreadSwitchWithDelay

NLM Programming

Thread: Functions 1226

signal

Specifies an action to take place when certain conditions are detected
(signalled) while a program executes

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Thread

Syntax

#include <signal.h>

void (*signal (
 int sig,
 void (*func) (
 int)))
 (int);

Parameters

sig

(IN) Specifies the condition being signalled.

func

(IN) Points to the function to be called when the signalled condition
occurs.

Return Values

Returns the previous setting if successful or SIG_ERR if a failure
occurred.

Remarks

signal is used to specify an action to take place when certain conditions
are detected while a program executes. These conditions are defined to
be:

SIGABRT Abnormal termination, caused by the abort function.

SIGFPE An erroneous floating-point operation occurs, such as
division by zero, overflow and underflow (supported
only for compiler option / fpc; not supported for
options /fpi, /7, /fpi87).

NLM Programming

Thread: Functions 1227

SIGILL An illegal instruction is encountered. (Currently not
supported.)

SIGINT Raised if the Ctrl+C keys are pressed during screen
output (other than to the System Console Screen).

SIGSEGV An illegal memory reference is detected. (Currently
not supported.)

SIGTERM An UNLOAD command has been entered for the NL.

The func parameter is used to specify an action to take for the specified
condition:

When the func parameter is a function name, that function is called
equivalently to the following code sequence.

 /*"sig" is the condition being signalled*/
 signal (sig, SIG_DFL);
 (*func) (sig);

The function specified by the func parameter can terminate the program
by calling the exit, _exit, ExitThread, or abort functions. It can also call the
longjmp function or it can return. Because the next signal is handled with
default handling, the program must again call signal if it is desired to
handle the next condition of the type that has been signalled.

NOTE: The exit, _exit, ExitThread, and abort functions cannot be
called from the context of a SIGTERM handler or the server console will
be inoperational.

A registered SIGTERM signal handler in NetWare 3.11 and 4.x is on a
per-NLM basis.You only have to register your SIGTERM handler once for
the NLM. The other signals are on a per-threadgroup basis. For these
signals, you have to register your signal handler every time you start a
new thread group (by calling the BeginThreadGroup function). If not,
your signal handler is not called.

SIG_IGN This value causes the indicated condition to be ignored.

SIG_DFL This value causes the default action for the condition to
occur.

The initial settings for the NetWare API are as follows:

 SIGABRT SIG_DFL
 SIGFPE SIG_IGN
 SIGILL SIG_IGN
 SIGINT SIG_DFL
 SIGSEGV SIG_IGN
 SIGTERM SIG_DFL

NLM Programming

Thread: Functions 1228

A condition can be generated by a program by calling the raise function.

The default action for the SIGABRT action is to call _exit(3). The default
action for SIGINT is to call abort(). The default action for the other
conditions is to ignore the condition.

The functions registered with signal run as callbacks, so CLIB context is
an issue. If a callback does not have CLIB context, it cannot make calls to
the NetWare API functions that require context.

The functions registered for SIGFPE, SIGILL, SIGINT, SIGSEGV, and
SIGTERM have the thread group context of the thread that was running
when the signal condition was detected. They can use the NetWare API
functions without additional setup.

However, you do need to set up context for the functions registered for
SIGABRT.

For 3.11 NLM applications, you must manually create the thread group
context in your callback functions, by calling SetThreadGroupID and
passing a valid thread group ID. Before this thread returns, it should
reset its context to its original context, by setting the thread group ID back
to its original value.

For 4.x NLM applications, the context that is given to the callbacks when
they are registered is determined by the value in the registering thread's
context specifier. You can set the context specifier to one of the following
options:

NO_CONTEXT---Callbacks registered with this option are not given
CLIB context. The advantage here is that you avoid the overhead
needed for setting up CLIB context. The disadvantage is that without
the context the callback is only able to call NetWare API functions that
manipulate data or manage local semaphores.

Once inside of your callback, you can manually give your callback
thread CLIB context by calling SetThreadGroupID and passing in a
valid thread group ID. If you manually set up your context, you need
to reset its context to its original context, by setting the thread group ID
back to its original value.

USE_CURRENT_CONTEXT---Callbacks registered with a thread that
has its context specifier set to USE_CURRENT_CONTEXT have the
thread group context of the registering thread.

A valid thread group ID---This is to be used when you want the
callbacks to have a different thread group context than the thread that
schedules them.

When a new thread is started with BeginThread, BeginThreadGroup or
ScheduleWorkToDo, its context specifier is set to
USE_CURRENT_CONTEXT by default.

You can determine the current setting of the registering thread's context

NLM Programming

Thread: Functions 1229

specifier by calling GetThreadContextSpecifier. You use
SetThreadContextSpecifier to set the registering thread's context
specifier to one of the above options.

For more information on using CLIB context, see Context Problems with
OS Threads.

See Also

abort, _exit, longjmp, raise, setjmp

NLM Programming

Thread: Functions 1230

SignalLocalSemaphore

Increments the semaphore value of the specified semaphore

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwsemaph.h>

int SignalLocalSemaphore (
 LONG semaphoreHandle);

Parameters

semaphoreHandle

(IN) Specifies the semaphore handle of an open semaphore.

Return Values

If successful, this function returns zero.

WARNING: A bad semaphore handle causes the server to abend.

Remarks

A thread normally call this function when finished accessing the resource
associated with the semaphore.

A thread can also use this function to restart another thread waiting on
the semaphore, as a means of interprocess synchronization.

If there are threads waiting on the semaphore (the semaphore value is
negative), the first thread in the queue is released (made runnable).

A semaphore handle can be obtained by calling OpenLocalSemaphore.

See Also

CloseLocalSemaphore, ExamineLocalSemaphore,
OpenLocalSemaphore, TimedWaitOnLocalSemaphore,
WaitOnLocalSemaphore

NLM Programming

Thread: Functions 1231

spawnlp, spawnvp

Execute a new NLM

Local Servers: blocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Thread

Syntax

#include <nwthread.h>

int spawnlp (
 int mode,
 const char *path,
 char *arg0,
 ...);

int spawnvp (
 int mode,
 const char *path,
 char **argv);

Parameters

mode

(IN) Specifies how the invoking program behaves after it is initiated.

path

(IN) Points to the name of the compiled program to be started.

arg0

(IN) Points to the first of a list of arguments to be passed to the
invoked program.

argv

(IN) Points to an array of pointers to arguments to be passed to the
invoked program.

Return Values

0 (0x00) ESUCCES
S

Program was successfully loaded.

-1 (0xFF) EFAILUR
E

The function failed.

NLM Programming

Thread: Functions 1232

On errno is set to one of the following values:

1 (0x01) ENOENT

3 (0x03) ENOEXEC

5 (0x05) ENOMEM

6 (0x06) EACCES

9 (0X09
)

EINVAL (See note below)

1
6

(0x10) EINUSE

1
9

(0x13) EWRNGKND

2
1

(0x15) ERESOURCE

2
8

(0x1C
)

EIO

3
7

(0x25) EALREADY

Through a Novell internal conversion process, NwErrno may also be set to
one of the following values:

1 (0x01) LOAD_COULD_NOT_FIND_FILE

2 (0x02) LOAD_ERROR_READING_FILE

3 (0x03) LOAD_NOT_NLM_FILE_FORMAT

4 (0x04) LOAD_WRONG_NLM_FILE_VERSION

5 (0x05) LOAD_REENTRANT_INITIALIZE_FAILURE

6 (x006) LOAD_CAN_NOT_LOAD_MULTIPLE_COPIES

7 (0x07) LOAD_ALREADY_IN_PROGRESS

8 (0x08) LOAD_NOT_ENOUGH_MEMORY

9 (0x09) LOAD_INITIALIZE_FAILURE

10 (0x0A
)

LOAD_INCONSISTENT_FILE_FORMAT

11 (0x0B) LOAD_CAN_NOT_LOAD_AT_STARTUP

12 (0x0C
)

LOAD_AUTO_LOAD_MODULES_NOT_LOADED

13 (0x0D
)

LOAD_UNRESOLVED_EXTERNAL

NLM Programming

Thread: Functions 1233

14 (0x0E) LOAD_PUBLIC_ALREADY_DEFINED

NOTE: The errno code EINVAL indicates only that code was set to
other than P_NOWAIT.

Remarks

The value of mode determines how the program is loaded and how the
invoking program behaves after the it is initiated:

P_NOWA
IT

The invoked program is loaded into available memory
and is executed. The original program executes
simultaneously with the invoked program.

Arguments are passed to the child process by supplying one or more
pointers to character strings as arguments in the spawn call. These
character strings are concatenated with spaces inserted to separate the
arguments to form one argument string for the child process. The length
of this concatenated string must not exceed 128 bytes.

The arguments can be passed as a list of arguments (spawnlp) or as a
vector of pointers (spawnvp). At least one argument, arg0 or argv[0], must
be passed to the child process. By convention, this first argument is the
name of the program.

If the arguments are passed as a list, there must be a NULL pointer to
mark the end of the argument list.

See Also

abort, atexit, exit, _exit, getcmd, getenv, main, system

Example

spawnlp, spawnvp

(spawnlp)

#include <nwthread.h>

int completionCode:
completionCode = spawnlp (P_NOWAIT, "helper.NLM", NULL);

(spawnvp)

#include <nwthread.h>

NLM Programming

Thread: Functions 1234

int completionCode;
char *argv[5];
completionCode = spawnvp (P_NOWAIT, "helper.nlm", argv);

NLM Programming

Thread: Functions 1235

SuspendThread

Prevents a specified thread in the NLM from being scheduled

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

int SuspendThread (
 int threadID);

Parameters

threadID

(IN) Specifies the ID of the thread to be suspended.

Return Values

0 (0x00) ESUCCES
S

Thread was suspended.

22 (0x16) EBADHN
DL

A bad thread ID was passed in.

Remarks

This function causes a specified thread to be suspended. ResumeThread
makes the thread runnable once again.

SuspendThread maintains a count of the number of times a thread is
suspended. An equal number of calls to ResumeThread must be
performed for the thread to run again. This allows calls to
SuspendThread and ResumeThread to be nested.

Blocking Information SuspendThread does not block when suspending
other threads, but blocks when suspending itself.

See Also

NLM Programming

Thread: Functions 1236

EnterCritSec, ResumeThread

NLM Programming

Thread: Functions 1237

system

Executes operating system commands

Local Servers: blocking

Remote Servers: N/A

Classification: ANSI

NetWare Server: 3.x, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <stdlib.h>
#include <nwthread.h>

int system (
 const char *command);

Parameters

command

(IN) Specifies a command to execute.

Return Values

A success code (0) is always returned. However, errors in executing the
NetWare 3.x OS command are shown on the system console screen.

Remarks

This function always echoes input directly to the system console screen.
Errors in executing the NetWare 3.x OS command are shown on the
system console screen.

NOTE: If the console operator is typing, your string will be intermixed
with his.

See Also

abort, atexit, exit, _exit, spawnlp, spawnvp

Example

system

NLM Programming

Thread: Functions 1238

#include <stdio.h>
#include <stdlib.h>
#include <nwthread.h>

/*----------------------------------*/
main ()
{
 .
 .
 .
 system ("LOAD MONITOR");
 .
 .
 .
}
/*----------------------------------*/

NLM Programming

Thread: Functions 1239

ThreadSwitch

Allows other runnable threads a chance to get some work done, where no
natural break in the currently running thread would normally occur

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

void ThreadSwitch (void);

Return Values

None

Remarks

The NetWare 3.x and 4.x environment is a nonpreemptive environment
in which threads can only relinquish control via system calls. Unless an
executing thread relinquishes control, other threads do not have the
opportunity to work.

If no natural break occurs via a system call in a particular thread,
ThreadSwitch can be used to cause that thread to relinquish control and
allow other runnable threads to execute.

NOTE: If you are using "busy waiting" or "spin locks" you should use
ThreadSwitchWithDelay instead of ThreadSwitch because threads
preempted with ThreadSwitch still have higher priority than threads on
the low priority queue. These low priority threads (such as those doing
file compression in the OS) still need an opportunity to run in the
nonpreemptive 4.x environment.

NLM Programming

Thread: Functions 1240

ThreadSwitchLowPriority

Reschedules a thread onto the low-priority queue

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

void ThreadSwitchLowPriority (void);

Return Values

None

Remarks

The ThreadSwitchLowPriority function can be used to schedule a thread
to run only when there is nothing but hardware polling routines and
temporarily handicapped threads to run. Routines suitable for this
priority level would be once-a-week backup, file compression utilities,
low-priority clean-up utilities, and so forth.

NLM Programming

Thread: Functions 1241

ThreadSwitchWithDelay

Reschedules the thread to be placed on the RunList after n number of
context switches have taken place

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwthread.h>

void ThreadSwitchWithDelay (void);

Return Values

None

Remarks

If a thread needs a resource that will not be ready for a moment but does
not want the overhead of sleeping on a semaphore, rather than
rescheduling itself repetitively the thread can reschedule itself with a
temporary handicap.

Temporarily handicapped threads are scheduled on a waiting queue, the
DelayedList, until their handicap has expired. Upon expiration, they are
rescheduled at the end of the RunList. Letting threads temporarily
handicap themselves prevents needless rescheduling caused by a
spin-waiting condition.

The number of switches in each temporary handicap is a tunable
parameter inside the NetWare OS.

NLM Programming

Thread: Functions 1242

TimedWaitOnLocalSemaphore

Waits on a local semaphore until it is signalled or the specified timeout
elapses

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwsemaph.h>

int TimedWaitOnLocalSemaphore (
 LONG semaphoreHandle,
 LONG timeout);

Parameters

semaphoreHandle

(IN) Specifies the handle of the semaphore to wait on.

timeout

(IN) Specifies the maximum time, in milliseconds, to wait on the
semaphore.

Return Values

0 (0x00) ESUCCESS

25
4

(0xFE
)

ERR_TIMEOOUT_FAILURE

WARNING: A bad semaphore handle causes the server to abend.

Remarks

This function is similar to WaitOnLocalSemaphore except that a timeout
is specified. If the semaphore is not signalled prior to the expiration of
the timeout period, the function returns with an error at that point in time.

See Also

CloseLocalSemaphore

NLM Programming

Thread: Functions 1243

OpenLocalSemaphore, SignalLocalSemaphore,
WaitOnLocalSemaphore

NLM Programming

Thread: Functions 1244

WaitOnLocalSemaphore

Decrements the semaphore value of the specified semaphore

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Thread

Syntax

#include <nwsemaph.h>

int WaitOnLocalSemaphore (
 LONG semaphoreHandle);

Parameters

semaphoreHandle

(IN) Specifies the semaphore handle of an open semaphore.

Return Values

If successful, this function returns zero.

WARNING: A bad semaphore handle causes the server to abend.

Remarks

A thread would typically call this function before accessing the resource
associated with the semaphore. An NLM can also use this function to
cause a thread to wait until another thread signals it to resume.

If the semaphore value is still greater than or equal to zero after the
function decrements it, the thread is not suspended. If the semaphore
value is negative, the thread is suspended until the semaphore is
signalled one more time than there are threads ahead of the current
thread on the specified semaphore's queue.

A semaphore handle can be obtained by calling OpenLocalSemaphore.

See Also

CloseLocalSemaphore, ExamineLocalSemaphore,
OpenLocalSemaphore, SignalLocalSemaphore,
TimedWaitOnLocalSemaphore

NLM Programming

Thread: Functions 1245

Variable Length Argument Lists

NLM Programming

 1246

Variable Length Argument Lists:
Functions

NLM Programming

Variable Length Argument Lists: Functions 1247

va_arg

Obtains the next argument in a list of variable arguments (macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Variable Length Argument Lists

Syntax

#include <stdarg.h>

type va_arg (
 va_list param,
 type);

Parameters

param

(IN) Specifies a variable argument.

type

(IN) Specifies the argument type.

Return Values

va_arg returns the value of the next variable argument, according to type
passed as the second parameter.

Remarks

The macro va_arg can be used to obtain the next argument in a list of
variable arguments. It must be used with the associated macros va_start
and va_end. A sequence such as:

 va_list curr_arg;
 type next_arg;
 next_arg = va_arg (curr_arg, type);

causes next_arg to be assigned the value of the next variable argument.
The type is the type of the argument originally passed.

The macro va_start must be executed first in order to properly initialize
the variable next_arg and the macro va_end should be executed after all
arguments have been obtained.

The data item curr_arg is of type va_list which contains the information

NLM Programming

Variable Length Argument Lists: Functions 1248

to permit successive acquisitions of the arguments.

See Also

va_end, va_start, vfprintf, vprintf, vsprintf

Example

va_arg

#include <stdarg.h>

void test_fn (const char *msg, const char *types, ...);

int main ()
{
 printf ("VA...TEST\n");
 test_fn ("PARAMETERS: 1, \"abc\", 546", "isi", 1, "abc", 546);
 test_fn ("PARAMETERS: \"def\", 789", "si", "def", 789);
}

static void test_fn (

const char *msg, /* Message to be printed */
const char *types, /* Parameter types (i,s) */
 ...) /* Variable arguments */

{
 va_list argument;
 int arg_int;
 char *arg_string;
 char *types_ptr;
 types_ptr = types;
 printf ("\n%s -- %s\n", msg, types);
 va_start (argument, types);
 while (*types_ptr != `\0')
 {
 if (*types_ptr == `i')
 {
 arg_int = va_arg (argument, int);
 printf ("integer: %d\n", arg_int);
 }
 else if (*types_ptr == `s')
 {
 arg_string = va_arg (argument, char *);
 printf ("string: %s\n", arg_string);
 }
 ++types_ptr;
 }
 va_end (argument);

NLM Programming

Variable Length Argument Lists: Functions 1249

}

produces the following:

PARAMETERS: 1, "abc", 546
integer: 1
string: abc
integer: 546
PARAMETERS: "def", 789
string: def
integer: 789

NLM Programming

Variable Length Argument Lists: Functions 1250

va_end

Completes the acquisition of arguments from a list of variable arguments
(macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Variable Length Argument Lists

Syntax

#include <stdarg.h>

void va_end (
 va_list param);

Parameters

param

(IN) Specifies a variable argument.

Return Values

None

Remarks

The macro va_end is used to complete the acquisition of arguments from
a list of variable arguments. It must be used with the associated macros
va_start and va_arg. See the description for va_arg for complete
documentation on these macros.

See Also

va_arg, va_start, vfprintf, vprintf, vsprintf

NLM Programming

Variable Length Argument Lists: Functions 1251

va_start

Starts the acquisition of arguments from a list of variable arguments (macro)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Variable Length Argument Lists

Syntax

#include <stdarg.h>

void va_start (
 va_list param,
 previous);

Parameters

param

(IN) Specifies a variable argument.

previous

(IN) Specifies the previous argument being passed to the called
function.

Return Values

None

Remarks

The macro va_start is used to start the acquisition of arguments from a list
of variable arguments. The param argument is used by the va_arg macro
to locate the current acquired argument. The previous argument is the
argument that immediately precedes the "..." notation in the original
function definition. It must be used with the associated macros va_arg
and va_end. See the description of va_arg for complete documentation on
these macros.

See Also

va_arg, va_end, vfprintf, vprintf, vsprintf

NLM Programming

Variable Length Argument Lists: Functions 1252

