
NDS and Bindery
Service Group

NDS and Bindery Service Group

 1

NDS/Bindery Overview

NDS

NDS™ is a complex database system that allows information to be stored,
replicated, and accessed across an entire network or intranetwork. NDS is
available on NetWare® versions 4.0 and higher. To access infomation about
NDS development, begin with NDS: Guides.

Bindery

The bindery is a flat, server-centric database for managing objects on
NetWare 2.x and 3.x servers. To access information about developent for the
bindery, begin with Bindery: Guides.

NDS and Bindery Service Group

 2

Bindery

NDS and Bindery Service Group

 3

Bindery: Guides

NetWare® 3.x servers use the bindery database to identify and store
information about network objects. Bindery functions enable applications to
read and modify standard information stored in the bindery and to create
and manage their own Bindery object data.

Bindery Overview

Bindery: Task Guide

Bindery: Concept Guide

Bindery: Functions

Bindery: Task Guide

Bindery Objects

Creating a Bindery Object

Scanning for Bindery Objects

Scanning the Bindery: Example

Bindery Properties

Checking for a Member of a Set Property

Reading the Value of a Bindery Property

Scanning Bindery Properties

Scanning the Bindery: Example

Bindery: Concept Guide

General Information

Bindery Overview

Bindery vs. NDS

Bindery Files

Bindery Objects

NDS and Bindery Service Group

Bindery: Guides 4

Bindery Properties

Bindery: Functions

Bindery Objects

Bindery Objects

Object ID Bindery Parameter

Object Type Bindery Parameter

Object Name Bindery Parameter

Object Flags Bindery Parameter

Object Security Bindery Parameter

Bindery Object Security Table

Bindery Properties

Bindery Properties

Bindery Property Parameters

Property Name Bindery Parameter

Property Flags Bindery Parameter

Static and Dynamic Properties in a Bindery

Item Property in the Bindery

Set Property Bindery Parameter

Property Security Bindery Parameter

Bindery Properties Associated with NetWare Security

USER_DEFAULTS and LOGIN_CONTROL Bindery Properties

OLD_PASSWORDS Bindery Property

NODE_CONTROL Bindery Property

ACCT_LOCKOUT Bindery Property

Bindery Functions

Types of Bindery Functions

Bindery Status Functions

Bindery Object Functions

Bindery Property Functions

Bindery Password Functions

NDS and Bindery Service Group

Bindery: Guides 5

Bindery Object Information Functions

Wildcard Characters in Bindery Functions

NDS and Bindery Service Group

Bindery: Guides 6

Bindery: Tasks

Checking for a Member of a Set Property

The NWIsObjectInSet function provides a simple method for determining
whether an object is a member of a set property without your having to read
the property value. Specify the object name, type, and property to be
searched and the name and type of the member object. The object is a
member if the NWIsObjectInSet function returns successfully.

Related Topics:

Reading the Value of a Bindery Property

Creating a Bindery Object

When creating a bindery object, the client application is responsible not only
for creating the object itself, but also for adding any associated properties
and defining their values. The bindery does not check the state of the object
or verify that it has the necessary property values.

To create an object:

1. Call the NWCreateObject function.

2. Call the NWCreateProperty function.

3. Call the NWWritePropertyValue function.

The NWCreateObject function assigns the object its name, type, object flags,
and object security. The NWCreateProperty function adds associated
properties to the object. As with the object definition, you must specify the
name, flags, and security for each object. The NWWritePropertyValue
function assigns specific values to the object.

Related Topics:

Scanning for Bindery Objects

Reading the Value of a Bindery Property

To read a property, call the NWReadPropertyValue function (no wild
characters are allowed). Set properties are assumed to be arrays of bindery

NDS and Bindery Service Group

Bindery: Tasks 7

object IDs and are returned accordingly. No assumptions are made about
item properties. If a property value exceeds 128 bytes, you must call the
NWReadPropertyValue function iteratively and read the value in 128-byte
segments.

Related Topic:

Checking for a Member of a Set Property

Scanning Bindery Properties

Scanning Bindery Properties

To find the properties of an object or to verify that a particular property is
assigned to an object, call the NWScanProperty function which allows you
to match property names with wild characters.

To get information about all properties assigned to an object, call the
NWScanProperty function iteratively:

1. On the initial call, set the oject name and type appropriately, and set
the search property name to the asterisk wild card.

2. On the initial call, also set the iterHandle parameter to -1.

3. When the function returns, check the moreFlag parameter.

If the moreFlag parameter is set to 0xFF, there are more properties.
The iterHandle parameter will be set in preparation for the next call to
the NWScanProperty function.

If there are no more properties, the moreFlag parameter is set to 0.

Related Topics:

Checking for a Member of a Set Property

Reading the Value of a Bindery Property

Scanning the Bindery: Example

Scanning for Bindery Objects

The NWScanObject function lets you scan the bindery of a server for objects
matching a specified name and type. For each match, the NWScanObject
function returns the has-properties flag, object flags, and object security field
for the object. It also returns the name and type of the next matching object.

The name can be expressed using the asterisk (*) and question mark (?) as
wild characters. The asterisk matches 0 or more characters. The question
mark matches exactly one character. Below are some matching examples:

NDS and Bindery Service Group

Bindery: Tasks 8

"*" Matches any object name.

"S*" Matches any object name beginning with S.

"??" Matches any two-character object name.

The type can be any object type including the wild type, 0xFFFF.

To scan the bindery for multiple objects, call the NWScanObject function
iteratively until it returns NO_SUCH_OBJECT. This error indicates no more
objects matching the specified name and type exist in the bindery.

Related Topics:

Creating a Bindery Object

Scanning the Bindery: Example

Setting Bindery Emulation

For bindery emulation to be operative, two conditions must be met:

Bindery emulation must be set

The server must have a valid replica of the organization to be emulated
in bindery (flat) mode

To set bindery emulation, include the following line in the autoexec.ncf file:

set Bindery Context = o = MyOrg (where "MyOrg" is a
organization having a valid replica on the server being set).

Bindery context can also be set from the server command line with the same
command, but including the command in the autoexec.ncf file is preferred.

NOTE: It is possible to enter the command with an invalid
organization. The command returns a message that bindery context is
set to the invalid organization, but only the bindery string is
set---bindery emulation remains unset. Any calls to bindery functions
then fail and return errors.

To verify that bindery emulation is actually set, at the server command
prompt, type config. The displayed configuration includes a report of
all valid bindery emulation settings.

For further information on bindery emulation setting, consult the NetWare®
server documentation.

NDS and Bindery Service Group

Bindery: Tasks 9

Bindery: Concepts

ACCT_LOCKOUT Bindery Property

ACCT_LOCKOUT specifies intruder lockout values. Intruder detection is
active only if this property is assigned to the server object and is in the
following format:

S
i
z
e

Field: Description

n
u
i
n
t
1
6

allowed login attempts:
Maximum number of
incorrect login attempts
before intruder detection
is in effect. 0 causes
intruder detection on the
first bad login attempt.

n
u
i
n
t
1
6

reset minutes: Number of
minutes that must pass
without a bad login
attempt before the bad
login attempts field in the
LOGIN_CONTROL
property is reset to 0

n
u
i
n
t
1
6

lockout minutes: Number
of minutes an account
should remain locked if
an intruder is detected.
Nonzero indicates the
account is locked.

Related Topics:

Bindery Properties Associated with NetWare Security

Activity Coordination

NDS and Bindery Service Group

Bindery: Concepts 10

Bindery makes no attempt to coordinate activities among multiple stations
that concurrently read or write data to a single property. One workstation
might read a partially updated property and get inconsistent data if the data
of the property extends across multiple segments. Coordination on Reads
and Writes must be handled by application programs. Logical record locks
can be used to coordinate activities among applications.

Bindery Files

Each NetWare server maintains a bindery database. One server cannot
coordinate its bindery data with other servers on the network. For NetWare
2.2, the bindery database consists of two files:

net$bind.sys

net$bval.sys

For NetWare 3.11, the bindery consists of three files:

net$obj.sys

net$prop.sys

net$val.sys

Bindery files are hidden in the SYS:SYSTEM directory.

Bindery allows applications to open and close the bindery so that these files
can be archived, but an application must have supervisor equivalence to
open and close the bindery. When the files are closed, many server
operations become disabled so take precautions. NetWare 4.x Bindery will
not open or close the bindery.

Related Topics:

Bindery: Concept Guide

Bindery Object Functions

These functions perform operations on bindery objects:

NWChangeObjectSecurity

NWCreateObject

NWDeleteObject

NWRenameObject

NWScanObject

Related Topics:

Types of Bindery Functions

NDS and Bindery Service Group

Bindery: Concepts 11

Bindery Object Information Functions

These functions return information related to bindery objects:

NWGetBinderyAccessLevel

NWGetObjectDiskSpaceLeft

NWGetObjectEffectiveRights

NWGetObjectID

NWGetObjectName

NWScanObjectTrusteePaths

Related Topics:

Types of Bindery Functions

Bindery Object Properties

Each bindery object can be assigned one or more properties. Properties
identify categories of information associated with an object. For example, a
user object has a GROUPS_I'M_IN property, an ACCOUNT_BALANCE
property, and a PASSWORD property. Each property provides storage
space appropriate to the associated values. All properties are assigned the
following information:

Property Name

Property Flags

Property Security

Related Topics:

Property Name Bindery Parameter

Property Flags Bindery Parameter

Property Security Bindery Parameter

Bindery Objects

Bindery Objects

All bindery objects must be assigned the following information:

Object ID

Object Type

NDS and Bindery Service Group

Bindery: Concepts 12

Object Name

Object Flags

Object Security

Has-Properties Flag

Related Topics:

Extended Object Type Values

Object ID Bindery Parameter

Object Type Bindery Parameter

Object Name Bindery Parameter

Object Flags Bindery Parameter

Object Security Bindery Parameter

Has-Properties Flag Bindery Parameter

Bindery: Concept Guide

Bindery Overview

NetWare® 3.x servers use the bindery database to identify and store
information about network objects. Bindery allows applications to read and
modify standard information stored in the bindery and to create and
manage their own object data.

The bindery serves many purposes. It is the basis for identifying users of the
file system, both through login control and file trustee rights. Users, user
groups, print servers, and other objects that require access to the NetWare
file system must be represented in the bindery.

Another use of the bindery is network advertising. The bindery advertises
services and circulates their network addresses to NetWare servers and
other network services.

A third role for the bindery is storing application-specific data. For example,
applications often use the bindery to maintain lists of users that can access
the application services.

Bindery Password Functions

These functions perform operations on object passwords:

NWChangeObjectPassword

NDS and Bindery Service Group

Bindery: Concepts 13

NWDisallowObjectPassword

NWVerifyObjectPassword

Related Topics:

Types of Bindery Functions

Bindery Properties

The standard properties defined by NetWare for managing user and group
access to the NetWare server are defined as follows:

Name Fla
gs

Object
Type:
Description

ACCO
UNT_B
ALAN
CE

stat
ic/i
tem

user

ACCO
UNT_
HOLD
S

dyn
ami
c/it
em

user

ACCO
UNT_S
ERVER
S

stat
ic/s
et

server

ACCT_
LOCK
OUT

stat
ic/i
tem

server

BLOCK
S_REA
D

stat
ic/i
tem

server

BLOCK
S_WRI
TTEN

stat
ic/i
tem

server

CONN
ECT_TI
ME

stat
ic/i
tem

server

DISK_S
TORA
GE

stat
ic/i
tem

server

GROU
P_ME
MBERS

stat
ic/s
et

user group:
List of users
that are

NDS and Bindery Service Group

Bindery: Concepts 14

members of
a user group

GROU
PS_I'M
_IN

stat
ic/s
et

user: List of
user groups
of which a
user is a
member

IDENT
IFICAT
ION

stat
ic/i
tem

user: User of
users group
full name

LOGIN
_CONT
ROL

stat
ic/i
tem

user

NET_A
DDRES
S

dyn
ami
c/it
em

server

NODE
_CONT
ROL

stat
ic/i
tem

user

OLD_P
ASSW
ORDS

stat
ic/i
tem

user

OPERA
TORS

stat
ic/s
et

server: List
of objects
that are
console
operators

PASS
WORD

stat
ic/i
tem

user:
Encrypted
password of
an object

Q_DIR
ECTOR
Y

stat
ic/i
tem

queue

Q_OPE
RATO
RS

stat
ic/s
et

queue

Q_SER
VERS

stat
ic/s
et

queue

Q_USE
RS

stat
ic/s
et

queue

REQUE
STS_M
ADE

stat
ic/i
tem

server

NDS and Bindery Service Group

Bindery: Concepts 15

SECUR
ITY_E
QUAL
S

stat
ic/s
et

user: List of
objects that
are
equivalent to
the
associated
object

USER_
DEFA
ULTS

stat
ic/i
tem

supervisor

Related Topics:

Bindery: Concept Guide

Bindery Properties Associated with NetWare
Security

The following properties are associated with NetWare security:

LOGIN_CONTROL

OLD_PASSWORDS

NODE_CONTROL

ACCT_LOCKOUT

Related Topics:

ACCT_LOCKOUT Bindery Property

USER_DEFAULTS and LOGIN_CONTROL Bindery Properties

OLD_PASSWORDS Bindery Property

NODE_CONTROL Bindery Property

Bindery Properties

Bindery Property Functions

These functions operate on bindery properties:

NWAddObjectToSet

NWChangePropertySecurity

NWCreateProperty

NWDeleteObjectFromSet

NDS and Bindery Service Group

Bindery: Concepts 16

NWDeleteProperty

NWIsObjectInSet

NWReadPropertyValue

NWScanProperty

NWWritePropertyValue

Related Topics:

Types of Bindery Functions

Bindery Status Functions

Bindery Status Functions open and close the bindery files on a specified
server and are not supported by NetWare 4.x Bindery:

NWCloseBindery

NWOpenBindery

Related Topics:

Types of Bindery Functions

Bindery vs. NDS

The NetWare 4.0 OS replaced the bindery with NDS (a new object
database). NDS offers many advantages over the bindery, including a
hierarchical structure and global naming.

However, to maintain compatibility with bindery-based servers and to work
effectively with such NetWare features as file trustee rights, NDS provides
built-in bindery context. This is provided by a bindery-like database
maintained by NDS for objects contained in the local directory partitions of
a server.

NDS generates object IDs through NetWare 4.x Bindery and makes them
available to Bindery clients using the local file system, queue management
system, and other bindery-oriented services. These values, however, are
dynamic, not remaining consistent over time. NDS object IDs and the object
IDs returned by Bindery are the same.

Related Topics:

Bindery: Concept Guide

Extended Object Type Values

Use the Wild object type (0xFFFF) when scanning the bindery.

NDS and Bindery Service Group

Bindery: Concepts 17

P
a
s
c
a
l

 Values

0
x
2

$
2

OT_TIME_SYNCHRON
IZATION_SERVER

0
x
2
E
0
0

$
2
E
0
0

OT_ARCHIVE_SERVER
_DYNAMIC_SAP

0
x
4
7
0
0

4
7
0
0

OT_ADVERTISING_PR
INT_SERVER

0
x
5
0
0
0

$
5
0
0
0

OT_BTRIEVE_VAP

0
x
5
3
0
0

$
5
3
0
0

OT_PRINT_QUEUE_US
ER

Has-Properties Flag Bindery Parameter

The hasPropertiesFlag parameter is a single-byte flag indicating whether any
properties are associated with the object:

00h No properties

FFh 1 or more properties

Related Topics:

Bindery Objects

NDS and Bindery Service Group

Bindery: Concepts 18

Item Property in the Bindery

The item property parameter is a 128-byte string and can take up as much of
this space as necessary. For example, the property ACCOUNT_BALANCE
is an item property that contains a monetary balance in the first few bytes.
The remainder of the 128 bytes is zeroed out and must be interpreted by the
application.

Related Topics:

Property Flags Bindery Parameter

USER_DEFAULTS and LOGIN_CONTROL Bindery
Properties

The USER_DEFAULTS property is used by system utilities to initialize the
LOGIN_CONTROL property.

The LOGIN_CONTROL property tracks the current state of security for the
associated account and contains the following fields:

Si
ze

Field: Description

n
ui
nt
8[
3]

account expiration date:
Date the account expires

n
ui
nt
8

account disabled flag:
Whether the accound is
enabled (0x00) or
disabled (0xFF).
NetWare checks the
value every half hour. If
set to 0xFF since a user
logged into an account,
NetWare asks the user to
log out. Within five
minutes, NetWare will
clear the connection.

n
ui
nt
8[
3]

password expiration
date: Date the password
expires

NDS and Bindery Service Group

Bindery: Concepts 19

n
ui
nt
8

grace logins remaining:
Number of times a user
can log in using an
expired password. If set
to 0xFF, it is not
decremented. Otherwise,
it is decremented each
time the user logs in after
the password expired. If
set to 0, the user cannot
log in.

n
ui
nt
16

password expiration
interval: Number of days
between password
expiration dates. In 4.x, it
must be nonzero to
check the old password
list when changing a
password.

n
ui
nt
8

grace login reset value:
Reset value for the grace
logins remaining field
after a password change

n
ui
nt
8

mininum password
length: Minimum length
permitted for a
password. If 0, no
password is needed. In
4.x, it must be nonzero to
check the old password
list when changing a
password.

n
ui
nt
16

maximum concurrent
connections: Maximum
conconcurrent
connections allowed per
user. If 0, the limit is the
maximum supported by
the server.

n
ui
nt
8[
42
]

allowed login time bit
map: 336 half-hour
periods during a week
when a user can login to
the server. Bit 1 of byte 0
represents 12:00 to 12:29
am Sunday. Bit 2 of byte
0 is 12:30 to 12:59 am
Sunday. Setting the bit
permits logins during
the corresponding

NDS and Bindery Service Group

Bindery: Concepts 20

period.

n
ui
nt
[6
]

last login date and time:
Most recent time the user
logged in

n
ui
nt
8

restriction flags: Who is
allowed to change the
password on the
account: 0x00 Anyone,
0x01 Supervisor. 0x02 is
set if the
OLD_PASSWORDS
property exists for the
account. In 3.x and 4.x, it
must be 0x02 to keep an
old passwords list.

n
ui
nt
8

reserved

n
ui
nt
32

maximum disk usage (in
blocks): Number of 4K
disk blocks that may be
used by the account. If
0x7FFFFFFF, there is no
limit.

n
ui
nt
16

bad login count: Number
of bad login attempts
since the last reset time.
(Intruder detection is
active only if the
ACCT_LOCKOUT
property is assigned to
the file server object).
The field is reset when a
successful login occurs or
the number of minutes
in the reset minutes
parameter of
ACCT_LOCKOUT
expires. If the account is
locked because of
intruder detection, it is
set to 0xFFFF.

n
ui
nt
32

next reset time: Time
when the bad login
count should be set to 0

NDS and Bindery Service Group

Bindery: Concepts 21

n
ui
nt
8[
12
]

bad login address:
Address of the station
making the last bad
login attempt or
provoked an account
lockout

For all 3-byte date values, the first byte contains the year (0=1900, 1=1901,
2=1902, etc.), the second byte contains the month, and the third byte
contains the day. No date is defined if all three bytes are 0.

Related Topics:

Bindery Properties Associated with NetWare Security

Maximum Rights Mask Values

TA_OPEN is obsolete in 3.x and above.

Bit

TA_NONE

TA_READ

TA_WRITE

TA_OPEN

TA_CREATE

TA_DELETE

TA_OWNERSHIP

TA_SEARCH

TA_MODIFY

TA_ALL

NODE_CONTROL Bindery Property

The NODE_CONTROL property is a list of network addresses from which
the account can login. The addresses are 10 bytes each (a 4-byte network
address and 6-byte node address). Each data segment holds up to 12
addresses. (The last 8 bytes of each segment are not used.) The list
terminates with a zero address or with the last data segment. If a node
address is set to 0xFFFFFFFFFF, the account can log in from any station.

Related Topics:

NDS and Bindery Service Group

Bindery: Concepts 22

Bindery Properties Associated with NetWare Security

Object Flags Bindery Parameter

The objectFlags parameter is a single-byte flag specifying whether the object
is static:

00h Static

01h Dynamic

A static object exists in a bindery until an application intentionally deletes it.
A dynamic object disappears from a network server bindery when the
network server is rebooted.

Objects placed in the bindery by SAP are dynamic. The NetWare server
closely monitors such objects. The service provider must advertise
periodically or the NetWare server deletes the object.

Related Topics:

Bindery Objects

Object ID Bindery Parameter

The objectID parameter is a 4-byte number uniquely identifying the object
within a particular network server bindery and is not recognized by other
NetWare servers. The NetWare operating system (not the application) will
assign this number.

Related Topics:

Bindery Objects

Object Name Bindery Parameter

The objectName parameter is a 48-byte string (including a NULL terminator)
containing the name of the object. The name consists of only printable
characters and cannot include spaces or any of the following characters:

/ slash

\ backslash

: colon

; semicolon

, comma

* asterisk

? question mark

NDS and Bindery Service Group

Bindery: Concepts 23

IMPORTANT: Object names are recorded in uppercase in the
bindery.

Related Topics:

 Bindery Objects

Object Security Bindery Parameter

The object security parameter is a single-byte flag that determines object
access. The low-order nibble determines who can read (scan for and find)
the object. The high-order nibble determines who can write to the object
(add or delete properties). The table below shows the values defined for
each nibble.

Table auto. Bindery Object Security Table

Bit Security Level Description

0x
00

BS_ANY_READ Anyone can read the object, even users
who aren't logged in.

0x
01

BS_LOGGED_REA
D

Only clients logged in to the server can
read the object.

0x
02

BS_OBJECT_READ Only clients logged in to the server with
this object's name, type, and password can
read the object.

0x
03

BS_SUPER_READ Only clients with supervisor equivalence
can read the object.

0x
04

BS_BINDERY_REA
D

Only the NetWare operating system can
read the object.

0x
00

BS_ANY_WRITE Anyone can modify the object, even users
who aren't logged in.

0x
10

BS_LOGGED_WRI
TE

Only clients logged in to the server can
modify the object.

0x
20

BS_OBJECT_WRIT
E

Only clients logged in to the server with
this object's name, type, and password can
modify the object.

0x
30

BS_SUPER_WRITE Only clients with supervisor equivalence
can modify the object.

0x
40

BS_BINDERY_WRI
TE

Only the NetWare operating system can
modify the object.

Parent Topic:

Bindery Objects

NDS and Bindery Service Group

Bindery: Concepts 24

Object Type Bindery Parameter

The objectType parameter is a 2-byte number classifying the object. The
bindery expects these values to be expressed in high-low format. The values
shown are in high-low format and do not need to be swapped:

P
a
s
c
a
l

Name

0
x
F
F
F
F

$
F
F
F
F

OT_WILD

0
x
0
0
0
0

$
0
0
0
0

OT_UNKNOWN

0
x
0
1
0
0

$
0
1
0
0

OT_USER

0
x
0
2
0
0

$
0
2
0
0

OT_USER_GROUP

0
x
0
3
0
0

$
0
3
0
0

OT_PRINT_QUEUE

0
x
0
4
0

$
0
4
0
0

OT_FILE_SERVER

NDS and Bindery Service Group

Bindery: Concepts 25

0

0
x
0
5
0
0

$
0
5
0
0

OT_JOB_SERVER

0
x
0
6
0
0

$
0
6
0
0

OT_GATEWAY

0
x
0
7
0
0

$
0
7
0
0

OT_PRINT_SERVER

0
x
0
8
0
0

$
0
8
0
0

OT_ARCHIVE_QUEUE

0
x
0
9
0
0

$
0
9
0
0

OT_ARCHIVE_SERVER

0
x
0

$
0

OT_JOB_QUEUE

0
x
0
B
0
0

$
0
B
0
0

OT_ADMINISTRATIO
N

0
x
2
1
0
0

$
2
1
0
0

OT_NAS_SNA_GATE
WAY

0
x

$
2

OT_REMOTE_BRIDGE_
SERVER

NDS and Bindery Service Group

Bindery: Concepts 26

2
6
0
0

6
0
0

0
x
2
7
0
0

$
2
7
0
0

OT_TCPIP_GATEWAY

Related Topics:

Extended Object Type Values

OLD_PASSWORDS Bindery Property

The OLD_PASSWORDS property is a list of 8 previous passwords. The list
is stored in the first data segment.

Related Topics:

Bindery Properties Associated with NetWare Security

Property Name Bindery Parameter

The propertyName parameter is a 15-byte string (including a NULL
terminator) containing the name of the property. See Object Name Bindery
Parameter.

IMPORTANT: Property names are recorded in uppercase in the
bindery.

Related Topics:

 Bindery Properties

Property Flags Bindery Parameter

The propertyFlags parameter is a single-byte flag with bits 0 and 1 defined.
Bit 0 is the static/dynamic toggle flag, and bit 1 is the item/set toggle flag.
The flags are combined so that both set and item properties can be static or
dynamic. The bits are defined as follows:

Bit 0:

0 Static

NDS and Bindery Service Group

Bindery: Concepts 27

1 Dynamic

Bit 1:

0 Item

1 Set

Related Topics:

Bindery Properties

Property Security Bindery Parameter

The property security parameter is a single-byte string that determines who
can access the property. The low-order nibble determines who can scan for
and find the property (read security). The high-order nibble determines
who can add values to the property (write security). Possible values for this
flag correspond to those defined for the object security field. See the Object
Security Bindery Parameter table.

Related Topics:

Bindery Properties

Security Rights Mask Values

Read
Value

Write
Value

Access:
Description

BS_A
NY_R
EAD

BS_A
NY_W
RITE

Anyone:
Access
allowed to all
clients, even if
the client has
not logged in
to the server

BS_L
OGGE
D_RE
AD

BS_L
OGGE
D_WR
ITE

Logged:
Access
allowed to all
clients logged
in to the
server

BS_O
BJECT
_REA
D

BS_O
BJECT
_WRI
TE

Object: Access
allowed only
to clients who
have logged
in to the
server with
the name,

NDS and Bindery Service Group

Bindery: Concepts 28

type, and
password of
the object

BS_SU
PER_
READ

BS_SU
PER_
WRIT
E

SUPERVISOR
: Access
allowed only
to clients who
have logged
in to the
server as
SUPERVISOR
, or as a
bindery
object that is
security-equi
valent to
SUPERVISOR

BS_BI
NDER
Y_RE
AD

BS_BI
NDER
Y_WR
ITE

NetWare:
Access
allowed only
to NetWare

Values can be ORed together. A bindery object with BS_SUPER_WRITE
ORed with BS_LOGGED_READ indicates any user logged in to the
NetWare server can view an object or property, but only the SUPERVISOR
can add or change a property.

The newPropertySecurity, accessLevel, propertySecurity, objSecurity, and
newObjSecurity parameters are bytes in which the low nibble controls Read
security and the high nibble controls Write security.

Set Property Bindery Parameter

The setProperty parameter contains a list of 1 to 32 object IDs in a 128-byte
segment. Each object ID is 4 bytes. The property GROUPS_I'M_IN is an
example of a Set property. This property contains the object IDs (from 1 to
32) of user groups to which the user belongs. The values of a Set property
are always object IDs grouped into one or more 128-byte segments.

Related Topics:

Property Flags Bindery Parameter

Static and Dynamic Properties in a Bindery

The Static property is recorded in server memory and remains a part of the
bindery until the property is explicitly deleted.

NDS and Bindery Service Group

Bindery: Concepts 29

bindery until the property is explicitly deleted.

In contrast, the Dynamic property is created during the course of a bindery
session and is deleted from the bindery of a network server when the server
is rebooted.

Related Topics:

 Property Flags Bindery Parameter

Types of Bindery Functions

The types of Bindery Functions follow:

Bindery Status Functions

Bindery Object Functions

Bindery Object Information Functions

Bindery Password Functions

Bindery Property Functions

Wildcard Characters in Bindery Functions

The asterisk matches 0 or more characters while the question mark matches
exactly one character:

"*" Matches any characters in
a string (such as an object
name)

"S*
"

Matches any characters in
a string beginning with S
(such as a property name)

"??
"

Matches any two
characters

NDS and Bindery Service Group

Bindery: Concepts 30

Bindery: Functions

NDS and Bindery Service Group

Bindery: Functions 31

NWAddObjectToSet

Adds a member to a bindery property of type SET

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWAddObjectToSet (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnstr8 propertyName,
 pnstr8 memberName,
 nuint16 memberType);

Pascal Syntax

#include <nwbindry.inc>

Function NWAddObjectToSet
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 propertyName : pnstr8;
 memberName : pnstr8;
 memberType : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare® server connection handle.

objName

(IN) Points to the new SET object name.

objType

(IN) Specifies the SET object type.

propertyName

NDS and Bindery Service Group

Bindery: Functions 32

(IN) Points to the property name of the set.

memberName

(IN) Points to the name of the bindery object being added to the set.

memberType

(IN) Specifies the bindery object type of the member being added.

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x89
96

SERVER_OUT_OF_MEMORY

0x89
E8

WRITE_PROPERTY_TO_GROUP

0x89
E9

MEMBER_ALREADY_EXISTS

0x89
EA

NO_SUCH_MEMBERS

0x89
EB

NOT_GROUP_PROPERTY

0x89
EC

NO_SUCH_SEGMENT

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
F8

NO_PROPERTY_WRITE_PRIVILEGE

0x89
FB

NO_SUCH_PROPERTY

0x89
FC

NO_SUCH_OBJECT

0x89
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

Remarks

A client must have write access to the SET property to call
NWAddObjectToSet.

NDS and Bindery Service Group

Bindery: Functions 33

The objName, objType, propertyName, memberName, and memberType
parameters must uniquely identify the property and cannot contain
wildcard characters.

NWAddObjectToSet searches consecutive segments of the property
value for an open slot where it can record the unique bindery object
identification of the new member and records the bindery object
identification in the first available slot. If NWAddObjectToSet finds no
available slot, a new segment is created, the new unique bindery object
identification of the member is written into the first slot of the new
segment, and the rest of the segment is filled with zeros.

NCP Calls

0x2222 23 65 Add Bindery Object To Set

See Also

NWDeleteObjectFromSet, NWIsObjectInSet

NDS and Bindery Service Group

Bindery: Functions 34

NWChangeObjectPassword

Changes the specified password of an object to a new password

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWChangeObjectPassword (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnstr8 oldPassword,
 pnstr8 newPassword);

Pascal Syntax

#include <nwbindry.inc>

Function NWChangeObjectPassword
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 oldPassword : pnstr8;
 newPassword : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle corresponding to
the server to receive the change.

objName

(IN) Points to the name of the object whose password is to be changed.

objType

(IN) Specifies the type of the object.

oldPassword

(IN) Points to the old password.

NDS and Bindery Service Group

Bindery: Functions 35

newPassword

(IN) Points to the new password.

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x89
D7

PASSWORD_NOT_UNIQUE

0x89
D8

PASSWORD_TOO_SHORT

0x89
DC

ACCOUNT_DISABLED

0x89
DE

PASSWORD_HAS_EXPIRED_NO_GRACE

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
FB

INVALID_PARAMETER

0x89
FF

NO_SUCH_OBJECT_OR_BAD_PASSWORD

Remarks

NWChangeObjectPassword does not require the old password to be
known.

For NWChangeObjectPassword to work properly, LOGIN_CONTROL
must be set appropriately.

NWChangeObjectPassword attempts to change the password by using
encryption. If the server does not support encryption,
NWChangeObjectPassword attempts to change the password without
using encryption.

Clients can change their own password. To change the password for
other bindery objects, the client must be a SUPERVISOR or SUPERVISOR
equivalent.

See Object Type Bindery Parameter.

NCP Calls

NDS and Bindery Service Group

Bindery: Functions 36

0x2222 23 23 Get Login Key

0x2222 23 53 Get Bindery Object ID

0x2222 23 75 Keyed Change Password

See Also

NWCreateObject, NWCreateProperty

NDS and Bindery Service Group

Bindery: Functions 37

NWChangeObjectSecurity

Changes the security access mask of a bindery object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWChangeObjectSecurity (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 nuint8 newObjSecurity);

Pascal Syntax

#include <nwbindry.inc>

Function NWChangeObjectSecurity
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 newObjSecurity : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to a string containing the name of the object whose security
is to be changed.

objType

(IN) Specifies the bindery object type.

newObjSecurity

(IN) Specifies the new security access mask for the specified object.

NDS and Bindery Service Group

Bindery: Functions 38

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
F1

INVALID_BINDERY_SECURITY

0x89
F5

NO_OBJECT_CREATE_PRIVILEGE

0x89
FC

NO_SUCH_OBJECT

0x98
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

Remarks

The objName and objType parameters must uniquely identify the bindery
object and cannot contain wildcard characters.

NWChangeObjectSecurity cannot set or clear bindery Read or Write
security. Only SUPERVISOR or a bindery object that is security
equivalent to SUPERVISOR can change security for a bindery object.

See Security Rights Mask Values.

See Object Type Bindery Parameter.

See Extended Object Type Values.

NCP Calls

0x2222 23 56 Change Bindery Object Security

See Also

NWGetObjectID

NDS and Bindery Service Group

Bindery: Functions 39

NWChangePropertySecurity

Changes the security access mask of a property in a bindery object on the
NetWare server associated with the given connection identification

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWChangePropertySecurity (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnstr8 propertyName,
 nuint8 newPropertySecurity);

Pascal Syntax

#include <nwbindry.inc>

Function NWChangePropertySecurity
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 propertyName : pnstr8;
 newPropertySecurity : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle on which the
security property should be changed.

objName

(IN) Points to the name of the bindery object associated with the
property whose security is being changed.

objType

(IN) Specifies the type of the object described by the objName
parameter.

NDS and Bindery Service Group

Bindery: Functions 40

propertyName

(IN) Points to the name of the affected property.

newPropertySecurity

(IN) Specifies the new security access mask for the property.

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
F1

INVALID_BINDERY_SECURITY

0x89
F2

NO_OBJECT_READ_PRIVILEGE

0x89
F5

NO_OBJECT_CREATE_PRIVILEGE

0x89
F6

NO_PROPERTY_DELETE_PRIVILEGE

0x89
FC

NO_SUCH_PROPERTY

0x89
FC

NO_SUCH_OBJECT

0x98
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

Remarks

NWChangePropertySecurity requires Write access to the bindery object
and Read and Write access to the property.

The objName, objType, and propertyName parameters must uniquely
identify the property and cannot contain wildcards.

NDS and Bindery Service Group

Bindery: Functions 41

NWChangePropertySecurity cannot set or clear bindery Read or Write
security. The requesting process cannot change the security of a property
to a level greater than the property access of the process.

See Security Rights Mask Values.

See Object Type Bindery Parameter.

See Extended Object Type Values.

NCP Calls

0x2222 23 59 Change Property Security

See Also

NWChangeObjectSecurity

NDS and Bindery Service Group

Bindery: Functions 42

NWCloseBindery

Closes the bindery

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCloseBindery (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwbindry.inc>

Function NWCloseBindery
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

NDS and Bindery Service Group

Bindery: Functions 43

Remarks

NWCloseBindery allows the SUPERVISOR to close and unlock the
bindery. The bindery can then be archived.

NWCloseBindery is not supported on NetWare 4.x since 4.x only
supports bindery emulation. Direct access of the bindery is not possible
on NetWare 4.x. and above.

Because the bindery files contain all the information about the NetWare
clients for a server, the bindery should be archived on a regular basis. For
bindery files to be archived, the bindery must be closed by calling
NWCloseBindery since the NetWare server keeps bindery files opened
and locked at all times so that they cannot be accessed directly.

After the bindery files have been archived, calling the NWOpenBindery
function returns control of the bindery files to the NetWare server. While
the bindery is closed, much of the functionality of the network is
disabled.

NCP Calls

0x2222 23 68 Close Bindery

See Also

NWOpenBindery

NDS and Bindery Service Group

Bindery: Functions 44

NWCreateObject

Creates a bindery object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCreateObject (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 nuint8 objFlags,
 nuint8 objSecurity);

Pascal Syntax

#include <nwbindry.inc>

Function NWCreateObject
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 objFlags : nuint8;
 objSecurity : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to the string containing the new object name.

objType

(IN) Specifies the bindery type of the new object.

objFlags

(IN) Specifies whether the new object is dynamic:

BF_DYNAMIC

NDS and Bindery Service Group

Bindery: Functions 45

BF_DYNAMIC

BF_STATIC

objSecurity

(IN) Specifies the access rights mask of the new object.

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
E7

E_NO_MORE_USERS

0x89
EE

OBJECT_ALREADY_EXISTS

0x89
EF

INVALID_NAME

0x89
F1

INVALID_BINDERY_SECURITY

0x89
F5

NO_OBJECT_CREATE_PRIVILEGE

0x89
FC

NO_SUCH_OBJECT

0x89
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

Remarks

NWCreateObject requires SUPERVISOR or equivalent rights.

The objName and objType parameters must uniquely identify the bindery
object and cannot contain wildcards.

The bindery object must have a PASSNWOBJ_TYPE to log in to a
NetWare server. PASSNWOBJ_TYPE is created by calling the
NWChangeObjectPassword function.

See Security Rights Mask Values.

NDS and Bindery Service Group

Bindery: Functions 46

See Object Type Bindery Parameter.

NCP Calls

0x2222 23 50 Create Bindery Object

See Also

NWChangeObjectPassword, NWCreateProperty

NDS and Bindery Service Group

Bindery: Functions 47

NWCreateProperty

Adds a property to a bindery object on the NetWare server associated with
the given connection handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCreateProperty (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnstr8 propertyName,
 nuint8 propertyFlags,
 nuint8 propertySecurity);

Pascal Syntax

#include <nwbindry.inc>

Function NWCreateProperty
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 propertyName : pnstr8;
 propertyFlags : nuint8;
 propertySecurity : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to the object name receiving the new property.

objType

(IN) Specifies the type of the affected bindery object.

NDS and Bindery Service Group

Bindery: Functions 48

propertyName

(IN) Points to the name of the property being created.

propertyFlags

(IN) Specifies the bindery flags of the new property (ORed with
BF_ITEM or BF_SET):

BF_DYNAMIC

BF_STATIC

propertySecurity

(IN) Specifies the security access mask of the new property.

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
ED

PROPERTY_ALREADY_EXISTS

0x89
EF

INVALID_NAME

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
F1

INVALID_BINDERY_SECURITY

0x89
F2

NO_OBJECT_READ_PRIVILEGE

0x89
F6

NO_PROPERTY_DELETE_PRIVILEGE

0x89
F7

NO_PROPERTY_CREATE_PRIVILEGE

0x89
FB

N0_SUCH_PROPERTY

0x89
FC

NO_SUCH_OBJECT

0x89
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

NDS and Bindery Service Group

Bindery: Functions 49

Remarks

NWCreateProperty requires Write access to the bindery object.

The requesting process cannot create properties having a greater security
level than the access level of the process.

The PASSNWOBJ_TYPE property is created by calling the
NWChangeObjectPassword function, rather than by calling
NWCreateProperty.

See Security Rights Mask Values.

See Object Type Bindery Parameter.

NCP Calls

0x2222 23 57 Create Property

See Also

NWChangeObjectPassword, NWCreateObject

NDS and Bindery Service Group

Bindery: Functions 50

NWDeleteObject

Deletes a bindery object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDeleteObject (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType);

Pascal Syntax

#include <nwbindry.inc>

Function NWDeleteObject
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to the object name being deleted.

objType

(IN) Specifies the type of the object being deleted.

Return Values

These are common return values. See Return Values.

0x00 SUCCESSFUL

NDS and Bindery Service Group

Bindery: Functions 51

00

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
F4

NO_OBJECT_DELETE_PRIVILEGE

0x89
FC

NO_SUCH_OBJECT

0x89
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

Remarks

NWDeleteObject requires SUPERVISOR or equivalent rights.

The objName and objType parameters must uniquely identify the bindery
object and cannot contain wildcard characters.

See Object Type Bindery Parameter.

NCP Calls

0x2222 23 51 Delete Bindery Object

See Also

NWDeleteObjectFromSet

NDS and Bindery Service Group

Bindery: Functions 52

NWDeleteObjectFromSet

Deletes a member from a bindery property of type SET on the NetWare
server associated with the given connection handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDeleteObjectFromSet (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnstr8 propertyName,
 pnstr8 memberName,
 nuint16 memberType);

Pascal Syntax

#include <nwbindry.inc>

Function NWDeleteObjectFromSet
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 propertyName : pnstr8;
 memberName : pnstr8;
 memberType : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to the name of the bindery object whose set is being
affected.

objType

(IN) Specifies the object type of the bindery object whose set is being

NDS and Bindery Service Group

Bindery: Functions 53

affected.

propertyName

(IN) Points to the name of the property (of type SET) from which the
member is being deleted.

memberName

(IN) Points to the name of the bindery object being deleted from the
set.

memberType

(IN) Specifies the object type of the member being deleted.

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
EA

NO_SUCH_MEMBER

0x89
EB

NOT_GROUP_PROPERTY

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
F4

NO_OBJECT_DELETE_PRIVILEGE

0x89
F8

NO_PROPERTY_WRITE_PRIVILEGE

0x89
FB

N0_SUCH_PROPERTY

0x89
FC

NO_SUCH_OBJECT

0x89
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

Remarks

NDS and Bindery Service Group

Bindery: Functions 54

See Object Type Bindery Parameter.

NCP Calls

0x2222 23 66 Delete Bindery Object From Set

See Also

NWDeleteObject, NWDeleteProperty

NDS and Bindery Service Group

Bindery: Functions 55

NWDeleteProperty

Removes a property from a bindery object associated with the specified
connection handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDeleteProperty (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnstr8 propertyName);

Pascal Syntax

#include <nwbindry.inc>

Function NWDeleteProperty
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 propertyName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to the name of the object whose property is being deleted.

objType

(IN) Specifies the type of the object whose property is being deleted.

propertyName

(IN) Points to the property name to be deleted.

NDS and Bindery Service Group

Bindery: Functions 56

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
F1

INVALID_BINDERY_SECURITY

0x89
F6

NO_PROPERTY_DELETE_PRIVILEGE

0x89
FB

NO_SUCH_PROPERTY

0x89
FC

NO_SUCH_OBJECT

0x89
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

Remarks

NWDeleteProperty requires Write access to the bindery object and the
property.

The objName and objType parameters must uniquely identify the bindery
object and cannot contain wildcard characters.

All matching properties of the bindery object are deleted when the
propertyName parameter contains wildcard characters.

See Object Type Bindery Parameter.

NCP Calls

0x2222 23 58 Delete Property

See Also

NWDeleteObjectFromSet, NWDeleteObject

NDS and Bindery Service Group

Bindery: Functions 57

NWDisallowObjectPassword

Prevents use of the specified password by the specified object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWDisallowObjectPassword (
 NWCONN_HANDLE conn,
 pnstr8 *objName,
 nuint16 objType,
 pnstr8 *disallowedPassword);

Pascal Syntax

#include <nwbindry.inc>

Function NWDisallowObjectPassword
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 disallowedPassword : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to the name of the object whose password is being
disallowed.

objType

(IN) Specifies the type of the object whose password is being
disallowed.

disallowedPassword

(IN) Points to the password that is being disallowed.

NDS and Bindery Service Group

Bindery: Functions 58

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x00
FF

BINDERY_FAILURE

0x88
01

INVALID_CONNECTION

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
FB

INVALID_PARAMETERS

0x89
FC

NO_SUCH_OBJECT

0x89
FF

HARDWARE_FAILURE

Remarks

The objName and objType parameters must be specific and cannot contain
wildcards.

For NWDisallowObjectPassword to work properly, LOGIN_CONTROL
must be set appropriately.

NWDisallowObjectPassword adds an encrypted password to the list of
old passwords maintained in the OLD_PASSWORDS property. If the
OLD_PASSWORDS property does not exist,
NWDisallowObjectPassword will check UNIQUE_PASSWORDS of the
restriction flags in the LOGIN_CONTROL property. If the
UNIQUE_PASSWORDS is set, the OLD_PASSWORDS property will be
created. Otherwise, a BINDERY_FAILURE error code will be returned.

See Object Type Bindery Parameter.

NCP Calls

0x2222 23 53 Get Bindery Object ID

0x2222 23 57 Create Property

0x2222 23 61 Read Property Value

0x2222 23 62 Write Property Value

See Also

NDS and Bindery Service Group

Bindery: Functions 59

NWChangeObjectPassword, NWLoginToFileServer

NDS and Bindery Service Group

Bindery: Functions 60

NWGetBinderyAccessLevel

Returns the access level of the current logged-in entity based on the
specified connection handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetBinderyAccessLevel (
 NWCONN_HANDLE conn,
 pnuint8 accessLevel,
 pnuint32 objID);

Pascal Syntax

#include <nwbindry.inc>

Function NWGetBinderyAccessLevel
 (conn : NWCONN_HANDLE;
 accessLevel : pnuint8;
 objID : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

accessLevel

(OUT) Points to the current security access mask for the given
connection (optional).

objID

(OUT) Points to the object ID of the current logged in entity (optional).

Return Values

These are common return values. See Return Values.

NDS and Bindery Service Group

Bindery: Functions 61

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

Remarks

The access level of a process determines which bindery objects and
properties the process can find and manipulate.

See Security Rights Mask Values.

NCP Calls

0x2222 23 70 Get Bindery Access Level

NDS and Bindery Service Group

Bindery: Functions 62

NWGetObjectDiskSpaceLeft

Returns the remaining disk space for a specified object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetObjectDiskSpaceLeft (
 NWCONN_HANDLE conn,
 nuint32 objID,
 pnuint32 systemElapsedTime,
 pnuint32 unusedDiskBlocks,
 pnuint8 restrictionEnforced);

Pascal Syntax

#include <nwbindry.inc>

Function NWGetObjectDiskSpaceLeft
 (conn : NWCONN_HANDLE;
 objID : nuint32;
 systemElapsedTime : pnuint32;
 unusedDiskBlocks : pnuint32;
 restrictionEnforced : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objID

(IN) Specifies the ID of the object in question.

systemElapsedTime

(OUT) Points to the time the NetWare server has been up.

unusedDiskBlocks

(OUT) Points to the number of blocks the NetWare server must
allocate to a bindery object.

NDS and Bindery Service Group

Bindery: Functions 63

restrictionEnforced

(OUT) Points to a flag indicating whether the NetWare server
operating system can limit disk resources:

0x0000 Enforced

0x00FF Not enforced

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
C6

NO_CONSOLE_PRIVILEGES

0x89
FC

NO_SUCH_OBJECT

Remarks

NWGetObjectDiskSpaceLeft returns the systemElapsedTime parameter in
approximately 1/18 second units and determines the amount of elapsed
time between consecutive calls. When the systemElapsedTime parameter
reaches 0xFFFF, it resets to zero.

NCP Calls

0x2222 23 230 Get Object's Remaining Disk Space

NDS and Bindery Service Group

Bindery: Functions 64

NWGetObjectEffectiveRights

Returns the effective rights of an object in the specified directory or file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetObjectEffectiveRights (
 NWCONN_HANDLE conn,
 nuint32 objID,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 pnuint16 rightsMask);

Pascal Syntax

#include <nwbindry.inc>

Function NWGetObjectEffectiveRights
 (conn : NWCONN_HANDLE;
 objID : nuint32;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 rightsMask : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objID

(IN) Specifies the ID of the object in the specified directory or file.

dirHandle

(IN) Specifies the NetWare directory handle associated with the
directory path for which the effective rights are desired.

path

(IN) Points to the absolute path (or a path relative to the dirhandle

NDS and Bindery Service Group

Bindery: Functions 65

parameter) of the directory or file whose effective rights mask is being
reported.

rightsMask

(OUT) Points to the rights mask.

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
A8

ERR_ACCESS_DENIED

0x89
FB

INVALID_PARAMETERS

0x89
FC

NO_SUCH_OBJECT

Remarks

To determine the effective rights of the requesting workstation,
NWGetObjectEffectiveRights performs a logical AND between the
maximum rights mask of the directory and the current trustee rights of
the workstation.

The current trustee rights of the workstation are obtained by performing
a logical OR between a trustee access mask of the workstation and the
trustee access mask of any object to which the process is security
equivalent. The current trustee rights of the workstation may be explicitly
listed in the directory or inherited from the parent directory. The
maximum rights masks of parent directories do not affect inherited
trustee rights.

The rightsMask parameter returned to the client indicates which of the
eight possible directory rights the client has in the targeted directory. If
the rightsMask parameter is zero, the client has no rights in the target
directory.

NDS and Bindery Service Group

Bindery: Functions 66

See Maximum Rights Mask Values.

NCP Calls

0x2222 22 50 Get Object Effective Rights For Directory Entry

See Also

NWGetEffectiveRights

NDS and Bindery Service Group

Bindery: Functions 67

NWGetObjectID

Looks up an object ID in the bindery on the network server associated with
the given connection handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetObjectID (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnuint32 objID);

Pascal Syntax

#include <nwbindry.inc>

Function NWGetObjectID
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 objID : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to the name of the object in the search.

objType

(IN) Specifies the type of the object in the search.

objID

(OUT) Points to the ID of the found object.

NDS and Bindery Service Group

Bindery: Functions 68

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
F1

INVALID_BINDERY_SECURITY

0x89
FC

NO_SUCH_OBJECT

0x89
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

Remarks

Since each network server contains its own bindery, object IDs are not
consistent across network servers.

The objName and objType parameters must uniquely identify the bindery
object and cannot contain wildcard characters.

The requesting process must be logged in to the network server and have
Read access to the bindery object for NWGetObjectID to be successful.

NWGetObjectID can be called even if a connection is not authenticated.

See Object Type Bindery Parameter.

NCP Calls

0x2222 23 53 Get Bindery Object ID

See Also

NWChangeObjectSecurity, NWCreateObject

NDS and Bindery Service Group

Bindery: Functions 69

NWGetObjectName

Returns the name and object type of a bindery object on the network server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetObjectName (
 NWCONN_HANDLE conn,
 nuint32 objID,
 pnstr8 objName,
 pnuint16 objType);

Pascal Syntax

#include <nwbindry.inc>

Function NWGetObjectName
 (conn : NWCONN_HANDLE;
 objID : nuint32;
 objName : pnstr8;
 objType : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objID

(IN) Specifies the object ID.

objName

(OUT) Points to the object name (minimum buffer size=48).

objType

(OUT) Points to the object type (optional).

Return Values

NDS and Bindery Service Group

Bindery: Functions 70

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
F1

INVALID_BINDERY_SECURITY

0x89
FC

NO_SUCH_OBJECT

0x89
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

Remarks

For NWGetObjectName to be successful, the requesting process must be
logged in to the network server and have Read access to the bindery
object.

All parameter positions must be filled.

See Object Type Bindery Parameter.

NCP Calls

0x2222 23 54 Get Bindery Object Name

See Also

NWChangeObjectSecurity, NWCreateObject, NWGetObjectID

NDS and Bindery Service Group

Bindery: Functions 71

NWIsObjectInSet

Searches a property of type SET for a specified object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWIsObjectInSet (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnstr8 propertyName,
 pnstr8 memberName,
 nuint16 memberType);

Pascal Syntax

#include <nwbindry.inc>

Function NWIsObjectInSet
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 propertyName : pnstr8;
 memberName : pnstr8;
 memberType : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to the name of the object containing the property being
searched.

objType

(IN) Specifies the type of the object containing the property being
searched.

NDS and Bindery Service Group

Bindery: Functions 72

propertyName

(IN) Points to the property name of the set being searched.

memberName

(IN) Points to the name of the bindery object being searched.

memberType

(IN) Specifies the bindery type of the member being searched.

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
EA

NO_SUCH_MEMBER

0x89
EB

NOT_GROUP_PROPERTY

0x89
EC

NO_SUCH_SEGMENT

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
FB

N0_SUCH_PROPERTY

Remarks

NWIsObjectInSet requires Read access to the SET property.

The objName, objType, propertyName, memberName, and memberType
parameters must uniquely identify the property and cannot contain
wildcard characters.

NWIsObjectInSet does not expand members of type GROUP in an
attempt to locate a specific member; objects must be explicitly in the
group. For example, assume the following bindery objects and properties
exist:

Object Property Property Value

NDS and Bindery Service Group

Bindery: Functions 73

JOAN

SECRETA
RIES

GROUP_MEM
BERS

The object ID of JOAN

EMPLOYE
ES

GROUP_MEM
BERS

The object ID of SECRETARIES

JOAN is not considered a member of EMPLOYEES; she is not explicitly
listed in GROUP_MEMBERS of EMPLOYEES. The bindery does not
check for recursive (direct or indirect) membership definitions.

See Object Type Bindery Parameter.

NCP Calls

0x2222 23 67 Is Bindery Object In Set

See Also

NWAddObjectToSet, NWDeleteObjectFromSet

NDS and Bindery Service Group

Bindery: Functions 74

NWOpenBindery

Reopens a NetWare server bindery closed by calling the NWCloseBindery
function

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWOpenBindery (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwbindry.inc>

Function NWOpenBindery
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
FF

HARDWARE_FAILURE

NDS and Bindery Service Group

Bindery: Functions 75

Remarks

NWOpenBindery is not supported on NetWare 4.x since 4.x only
supports bindery emulation. Direct access of the bindery is not possible
on NetWare 4.x and above.

The bindery files are normally kept open and locked. Calling
NWOpenBindery is required only after calling the NWCloseBindery
function.

Only SUPERVISOR or a bindery object with SUPERVISOR security
equivalence can open the bindery.

NCP Calls

0x2222 23 69 Open Bindery

NDS and Bindery Service Group

Bindery: Functions 76

NWReadPropertyValue

Reads the property value of a bindery object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWReadPropertyValue (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnstr8 propertyName,
 nuint8 segmentNum,
 pnuint8 segmentData,
 pnuint8 moreSegments,
 pnuint8 flags);

Pascal Syntax

#include <nwbindry.inc>

Function NWReadPropertyValue
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 propertyName : pnstr8;
 segmentNum : nuint8;
 segmentData : pnuint8;
 moreSegments : pnuint8;
 flags : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to the object name containing the property.

NDS and Bindery Service Group

Bindery: Functions 77

objType

(IN) Specifies the type of the object containing the property.

propertyName

(IN) Points to the name of the property whose information is being
retrieved.

segmentNum

(IN) Specifies the segment number of the data (128-byte blocks) to be
read (set to 1 initially).

segmentData

(OUT) Points to the 128-byte buffer receiving the property data.

moreSegments

(OUT) Points to a flag indicating if there are more segments to be
returned:

0x00 No more segments to be read

0xFF More segments to be read

flags

(OUT) Points to the property type (optional):

BF_ITEM

BF_SET

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
88

INVALID_FILE_HANDLE

0x89
93

NO_READ_PRIVILEGES

0x89
96

SERVER_OUT_OF_MEMORY

0x89
EC

NO_SUCH_SEGMENT

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
F1

INVALID_BINDERY_SECURITY

0x89 NO_PROPERTY_READ_PRIVILEGES

NDS and Bindery Service Group

Bindery: Functions 78

F9

0x89
FB

N0_SUCH_PROPERTY

0x89
FC

NO_SUCH_OBJECT

0x89
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

Remarks

Read access to the property is required to successfully call
NWReadPropertyValue.

Each subsequent call to NWReadPropertyValue will increment the
segmentNum parameter until the moreSegments parameter is set to 0 or
until NO_SUCH_SEGMENT is returned.

The objName, objType, and propertyName parameters must uniquely
identify the property and cannot contain wildcard characters.

If the property is of type SET, the data returned in the segmentData
parameter is an array of bindery object IDs. The bindery attaches no
significance to the contents of a property value if the property is of type
ITEM.

See Object Type Bindery Parameter.

See Activity Coordination.

NCP Calls

0x2222 23 61 Read Property Value

See Also

NWWritePropertyValue

NDS and Bindery Service Group

Bindery: Functions 79

NWRenameObject

Renames an object in the bindery on the server associated with the
connection handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWRenameObject (
 NWCONN_HANDLE conn,
 pnstr8 oldObjName,
 pnstr8 newObjName,
 nuint16 objType);

Pascal Syntax

#include <nwbindry.inc>

Function NWRenameObject
 (conn : NWCONN_HANDLE;
 oldObjName : pnstr8;
 newObjName : pnstr8;
 objType : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

oldObjName

(IN) Points to the name of the currently defined object in the bindery.

newObjName

(IN) Points to the new object name.

objType

(IN) Specifies the type of the object.

NDS and Bindery Service Group

Bindery: Functions 80

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
EE

OBJECT_ALREADY_EXISTS

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
F3

NO_OBJECT_RENAME_PRIVILEGE

0x89
FC

NO_SUCH_OBJECT

0x89
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

Remarks

The oldObjName, newObjName, and objType parameters must uniquely
identify the bindery object and cannot contain wildcard characters.
WILD_CARD_NOT_ALLOWED will be returned if the name field
strings are not recognized.

Only SUPERVISOR or a bindery object security equivalent to
SUPERVISOR can rename bindery objects.

See Object Type Bindery Parameter.

NCP Calls

0x2222 23 52 Rename Object

See Also

NWScanObject

NDS and Bindery Service Group

Bindery: Functions 81

NWScanObject

Searches for a bindery object name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWScanObject (
 NWCONN_HANDLE conn,
 pnstr8 searchName,
 nuint16 searchType,
 pnuint32 objID,
 pnstr8 objName,
 pnuint16 objType,
 pnuint8 hasPropertiesFlag,
 pnuint8 objFlags,
 pnuint8 objSecurity);

Pascal Syntax

#include <nwbindry.inc>

Function NWScanObject
 (conn : NWCONN_HANDLE;
 searchName : pnstr8;
 searchType : nuint16;
 objID : pnuint32;
 objName : pnstr8;
 objType : pnuint16;
 hasPropertiesFlag : pnuint8;
 objFlags : pnuint8;
 objSecurity : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

searchName

NDS and Bindery Service Group

Bindery: Functions 82

(IN) Points to the object name for which to search (wildcards are
allowed).

searchType

(IN) Specifies the object type used in the search (wildcards are
allowed).

objID

(OUT) Points to the last object ID (-1 is assumed if no value is
specified).

objName

(OUT) Points to the name of the next matching object (optional).

objType

(OUT) Points to the 2-byte type of the next matching object (optional).

hasPropertiesFlag

(OUT) Points to the properties flag (optional):

0x00 Matching object has no properties

0xFF Matching object has properties

objFlags

(OUT) Points to the object flag byte (optional):

BF_STATIC

BF_DYNAMIC

objSecurity

(OUT) Points to the security mask of the matching object (optional).

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
EF

INVALID_NAME

0x89
FC

NO_SUCH_OBJECT

0x89
FE

BINDERY_LOCKED

0x89 HARDWARE_FAILURE

NDS and Bindery Service Group

Bindery: Functions 83

FF

Remarks

NWScanObject iteratively scans the bindery for all objects matching both
the objName and objType parameters.

Upon return, the objID parameter receives a number to be used as the
object identification for the next call.

The requesting process must be logged in to the NetWare server and
have Read access to the bindery object.

All parameter positions must be filled.

See Security Rights Mask Values.

See Object Type Bindery Parameter.

NCP Calls

0x2222 23 55 Scan Bindery Object

NDS and Bindery Service Group

Bindery: Functions 84

NWScanObjectTrusteePaths

Returns the directory paths to which an object has trustee rights

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWScanObjectTrusteePaths (
 NWCONN_HANDLE conn,
 nuint32 objID,
 nuint16 volNum,
 pnuint16 iterHandle,
 pnuint8 accessRights,
 pnstr8 dirPath);

Pascal Syntax

#include <nwbindry.inc>

Function NWScanObjectTrusteePaths
 (conn : NWCONN_HANDLE;
 objID : nuint32;
 volNum : nuint16;
 iterHandle : pnuint16;
 accessRights : pnuint8;
 dirPath : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objID

(IN) Specifies the object ID of the user or group for which the trustee
information is to be found.

volNum

(IN) Specifies the volume number of the volume being searched.

NDS and Bindery Service Group

Bindery: Functions 85

iterHandle

(IN) Points to the sequence number (set to -1 initially).

accessRights

(OUT) Points to the access mask of the trustee.

dirPath

(OUT) Points to the directory DOS path name of the current trustee
(should be at least 270 bytes).

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9C

NO_MORE_TRUSTEES

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
F2

NO_OBJECT_READ_PRIVILEGE

0x89
FC

NO_SUCH_OBJECT

Remarks

NWScanObjectTrusteePaths iteratively determines all of the directory
paths of the bindery object trustee and corresponding access masks.

Upon return, the iterHandle parameter is automatically incremented to
point to the next directory path. When all valid directory paths have been
returned, SUCCESS is returned and the first character of the dirPath
parameter is set to zero.

To use the DOS path returned by the dirPath parameter in subsequent
calls, you might have to convert the DOS path to the default name space
compatible path.

Only SUPERVISOR, the object, or a bindery object with SUPERVISOR

NDS and Bindery Service Group

Bindery: Functions 86

security equivalence can scan the directory paths of an object trustee.

NWScanObjectTrusteePaths was originally written for the 2.x platform
and does not handle 3.x and 4.x rights perfectly. For example,
NWScanObjectTrusteePaths does not return the 2.x "Supervisory" right.
To retrieve the correct trustee rights on the 3.x and 4.x platforms, call
NWScanObjectTrusteePaths to obtain a path. Then call the
NWIntScanForTrustees function to return the rights of the object to the
path.

See Maximum Rights Mask Values.

NCP Calls

0x2222 23 71 Scan Bindery Object Trustee Paths

See Also

NWIntScanForTrustees

NDS and Bindery Service Group

Bindery: Functions 87

NWScanProperty

Scans the given bindery object for properties matching the property name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWScanProperty (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnstr8 searchPropertyName,
 pnuint32 iterHandle,
 pnstr8 propertyName,
 pnuint8 propertyFlags,
 pnuint8 propertySecurity,
 pnuint8 valueAvailable,
 pnuint8 moreFlag);

Pascal Syntax

#include <nwbindry.inc>

Function NWScanProperty
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 searchPropertyName : pnstr8;
 iterHandle : pnuint32;
 propertyName : pnstr8;
 propertyFlags : pnuint8;
 propertySecurity : pnuint8;
 valueAvailable : pnuint8;
 moreFlag : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

NDS and Bindery Service Group

Bindery: Functions 88

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to the object name of the set.

objType

(IN) Specifies the object type of the set.

searchPropertyName

(IN) Points to the property name for which to search (wildcards are
allowed).

iterHandle

(OUT) Points to the iteration handle to use when making repeated
calls (if not specified, -1 is assumed).

propertyName

(OUT) Points to the name of the next matching property (up to 15
characters including the NULL terminator or NULL).

propertyFlags

(OUT) Points to the status flag (optional):

0x00 BF_STATIC

0x00 BF_ITEM

0x01 BF_DYNAMIC

0x02 BF_SET

propertySecurity

(OUT) Points to the security mask (optional).

valueAvailable

(OUT) Points to a flag indicating whether the property has value
(optional):

0x00 Property has no value

0xFF Property has value

moreFlag

(OUT) Points to the more properties flag (optional):

0x00 No more properties exist for object

0xFF More properties exist

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

NDS and Bindery Service Group

Bindery: Functions 89

0x89
96

SERVER_OUT_OF_MEMORY

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
FB

NO_SUCH_PROPERTY

0x89
FC

NO_SUCH_OBJECT

0x89
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

Remarks

Upon return, the moreFlag parameter contains 0xFF if the matched
property is not the last property, and the iterHandle parameter contains
the number to use in the next call.

NWScanProperty requires Read access to the bindery object as well as
the property.

The objName and objType parameters must uniquely identify the bindery
object and cannot contain wildcard characters.

For parameters not desired in the return, NULL can be substituted. All
parameter positions must be filled.

See Security Rights Mask Values.

See Object Type Bindery Parameter.

NCP Calls

0x2222 23 60 Scan Property

See Also

NWReadPropertyValue, NWWritePropertyValue

NDS and Bindery Service Group

Bindery: Functions 90

NWVerifyObjectPassword

Verifies the password of a bindery object on the specified NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWVerifyObjectPassword (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnstr8 password);

Pascal Syntax

#include <nwbindry.inc>

Function NWVerifyObjectPassword
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 password : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle whose password
is to be verified.

objName

(IN) Points to the name of the object whose password is to be verified.

objType

(IN) Specifies the type of object.

password

(IN) Points to the password to be verified.

NDS and Bindery Service Group

Bindery: Functions 91

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
FB

INVALID_PARAMETERS

0x89
FC

NO_SUCH_OBJECT

0x89
FF

NO_SUCH_OBJECT_OR_BAD_PASSWORD

Remarks

The requesting workstation does not have to be logged in to the NetWare
server to call NWVerifyObjectPassword.

If the server supports encrypted passwords, the password is encrypted. If
the server does not support encryption, password verification is
attempted without encryption.

The objName and objType parameters must uniquely identify the bindery
object and cannot contain wildcards.

A bindery object without a PASSWORD is different from a bindery object
with a PASSWORD having no value. A workstation is not allowed to log
in to a NetWare server as a bindery object that does not have a
PASSWORD. A workstation can log in without a password if the bindery
object has been given a PASSWORD containing no value.

See Object Type Bindery Parameter.

NCP Calls

0x2222 23 23 Get Login Key

0x2222 23 53 Get Bindery Object ID

0x2222 23 74 Keyed Verify Password

See Also

NWLoginToFileServer

NDS and Bindery Service Group

Bindery: Functions 92

NWWritePropertyValue

Writes the property data of a bindery object on the NetWare server
associated with the given connection handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Bindery

Syntax

#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWWritePropertyValue (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnstr8 propertyName,
 nuint8 segmentNum,
 pnuint8 segmentData,
 nuint8 moreSegments);

Pascal Syntax

#include <nwbindry.inc>

Function NWWritePropertyValue
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 propertyName : pnstr8;
 segmentNum : nuint8;
 segmentData : pnuint8;
 moreSegments : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to the name of the object.

objType

NDS and Bindery Service Group

Bindery: Functions 93

(IN) Specifies the type of the object.

propertyName

(IN) Points to the property name of the object.

segmentNum

(IN) Specifies the segment number of the 128-byte data blocks (set to 1
initially).

segmentData

(IN) Points to the 128-byte buffer containing the data.

moreSegments

(IN) Specifies whether more segments are being written:

0xFF More segments are being written

0x00 The last segment is being written

Return Values

These are common return values. See Return Values.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
E8

WRITE_PROPERTY_TO_GROUP

0x89
EC

NO_SUCH_SEGMENT

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
F8

NO_PROPERTY_WRITE_PRIVILEGE

0x89
FB

N0_SUCH_PROPERTY

0x89
FC

NO_SUCH_OBJECT

0x89
FE

BINDERY_LOCKED

0x89
FF

HARDWARE_FAILURE

NDS and Bindery Service Group

Bindery: Functions 94

Remarks

A client must have Write access to the property to call
NWWritePropertyValue.

When NWWritePropertyValue returns, any remaining segments are
truncated and the extra segments discarded.

Create property value segments sequentially. Before segment N can be
created, all segments from 1 to N-1 must be created. However, once all
segments of a property value have been established, segments can be
written at random. If the segment data is longer than 128 bytes, it is
truncated and the 128th byte is NULL.

NOTE: Keep property values to a single segment (128 bytes) to
improve bindery efficiency.

The objName, objType, and propertyName parameters must uniquely
identify the property and cannot contain wildcard characters.

See Object Type Bindery Parameter.

See Activity Coordination.

NCP Calls

0x2222 23 62 Write Property Value

See Also

NWReadPropertyValue

NDS and Bindery Service Group

Bindery: Functions 95

NDS

NDS and Bindery Service Group

 96

NDS: Guides

Introduction to NDS Development: Guide

NDS Architecture: Concepts Guide

NDS Context: Guides

NDS Access: Guides

NDS Partition: Guides

NDS Schema: Guides

NDS Security: Concepts Guide

Introduction to NDS Development: Guide

The information in the following topics are provided for the benefit of
developers who are new to NDS programming and those who want a
non-technical overview of the subject.

NDS Introduction

Types of Information Stored in NDS

Names Stored in NDS

Addresses Stored in NDS

Lists Stored in NDS

Descriptions Stored in NDS

Retrieval of Information from NDS

Lookup in NDS

Browsing NDS

Searching NDS

Security of Information in NDS

Security through NDS Authentication

Security through Access Control

Administration of Information in NDS

NDS and Bindery Service Group

NDS: Guides 97

Administration of Information in NDS

NDS Compliance to X.500 Standard

Benefits of NDS

Developing in a Loosely Consistent Environment

Advantages of Loose Consistency

Disappearing NDS Objects

Another Cause of Disappearing NDS Objects

NDS Functions and Structures

NDS: Functions

NDS: Structures

NDS Schema Definitions

NDS Object Class Definitions

Graphical View of NDS Object Class Definitions

NDS Attribute Type Definitions

NDS Attribute Syntax Definitions

NDS Architecture: Concepts Guide

The following topics provide information about NDS architecture:

Architecture Concepts

NDS Architecture Introduction

NDS Workstation Components

Workstation Applications for NDS

Application Programming Interfaces for NDS

Shell Components for NDS

NDS Server Components

Table of NDS Server Utilities

NDS Agents

NDS Bindery

NDS and Bindery Service Group

NDS: Guides 98

Directory Information Base

Related Topics:

NDS Schema Definitions: Guide

NDS Functions and Structures

NDS: Functions

NDS: Structures

NDS Access: Guides

Information in NDS is organized by objects. An object is a collection of
attributes. Each object includes an object class attribute that specifies the
other attributes associated with the object.

NDS lets you create and modify objects and read their attributes. The most
common types of NDS operations include reading, modifying, and
searching for information.

NDS Access lets you authenticate to NDS, read and modify NDS objects,
and configure the input and output buffers needed to read from and write
to the NDS directory.

The procedures for accessing an object depend to a large extent on the
object's class. You must know which attributes are assigned to an object and
the associated attribute types and syntaxes. NDS includes a standard set of
object classes and attribute types referred to as the NDS Schema.

Before you can access an object, you must first gain access to an NDS tree.

The following topics provide information to help you manage and
understand NDS Access.

Guides to NDS Access Tasks

Managing Connections to NDS

Managing Buffers

Managing Objects

Managing Object Attributes

Searching NDS

Guides to NDS Access Concepts

Connection Management

Buffer Management

NDS and Bindery Service Group

NDS: Guides 99

Object Management

Object Attribute Management

Search Management

NDS Access Functions and Structures

Managing Connections to NDS

Authenticating to NDS

Retrieving Addresses of a Connected Server

Managing Buffers

Preparing NDS Input Buffers

Preparing NDS Output Buffers

Retrieving Results from NDS Output Buffers

Freeing NDS Buffers

Managing Objects

Listing Objects in an NDS Container

Listing Objects in an NDS Container: Example 2

Adding an NDS Object

Adding an NDS Object: Example

Modifying an NDS Object

Modifying an NDS Object: Example

Deleting an NDS Object

Determining the Effective Rights of an Object

Finding the Host Server of an Object

Managing Object Attributes

Reading Attributes of NDS Objects

Reading Attributes of NDS Objects: Example

Comparing Attribute Values

NDS and Bindery Service Group

NDS: Guides 100

NDS Searches

Searching NDS

Searching for an NDS Object: Example

Connection Management

Authentication

Authentication Introduction

Authentication Requirements

Authentication Process

Background Authentication

Authentication of Client Applications

Encryption in NDS

Public and Private Key Pairs

Password Changing in NDS

Multiple Tree Functions

Buffer Management

NDS Buffer Management Introduction

Buffer Size in NDS

Initialization Operations for NDS Buffers

DEFAULT_MESSAGE_LEN Constant

Buffer Allocation Types and Related Functions

Structure of Output Buffers

NDS Buffer Allocation and Initialization Functions

NDS Input Buffer Functions

NDS Output Buffer Functions

Object Management

NDS and Bindery Service Group

NDS: Guides 101

Controlling Iterations

Read Requests

Notes About Adding NDS Objects

Change Types for NWDSPutChange

Determining Access Privileges Required for an Operation

NDS List Functions

NDS Read Functions

Configurable NDS Functions

Object Attribute Management

Controlling Iterations

Attribute Value Comparisons

Search Management

NDS Search Introduction

Buffers Needed for NDS Searches

Expression Filters for NDS Searches

Search Parameters

Search Filters

Relational Operators for NDS Searches

Logical Operators for NDS Searches

Search Expression Trees

NDS Access Functions and Structures

NDS: Functions

NDS: Structures

Multiple Tree Functions

NDS Buffer Allocation and Initialization Functions

NDS Input Buffer Functions

NDS and Bindery Service Group

NDS: Guides 102

NDS Output Buffer Functions

NDS List Functions

NDS Read Functions

Configurable NDS Functions

Related Topics:

NDS Schema: Guides

NDS Context: Guides

An NDS directory context is a memory structure that explains how and
where an object fits within a tree. When the context is created, NDS returns
a context handle that points to the memory location of the context structure.
Most NDS functions require a context handle as a parameter.

The NDS directory context structure is not exposed, and therefore, you can't
manipulate it directly. NDS provides functions that allow you to create,
read, and modify directory context structures.

The following guide topics provide information to help you manage and
understand NDS context.

Guides to NDS Context Tasks

Managing Context

Guides to NDS Context Concepts

Context Naming

Context Management

Managing Context

NDS Context manages directory context memory structures based on a
flexable naming structure. The following topics explain the typical tasks it
allows you to perform.

Creating a Context

Reading Context Information

Modifying Context Information

Freeing a Context

Context Handling: Example

Context Naming

NDS and Bindery Service Group

NDS: Guides 103

NDS Names

Hierarchical Naming

Typeless Names

Canonicalized Names

Default Typing Rule

Name Caching

Name Expansion

Alias Naming

Name Functions

Context Management

NDS Context

Context Key Values

Context Flags

Context Name

Country Name

Attribute Type Abbreviations

Character Encoding

Context Settings

NDS Functions and Structures

NDS: Functions

NDS: Structures

Name Functions

NDS Partition: Guides

An NDS database can be sectioned off into managable components called
partitions. Each partition contains a part of the overall NDS database that
makes business sense to manage as a group. For example, development

NDS and Bindery Service Group

NDS: Guides 104

might be in one partition and operations in another. Partitions are replicated
throughout the network. Through replication, members of one partition can
have access to the services offered in other partitions without the constant
necessity of dealing with the entire network.

The following topics provide information to help you create and manage
partitions. They also help you understand NDS partition by describing the
distributed nature of the NDS database and explaining how NDS partitions
are replicated throughout the network.

Guides to NDS Partition Tasks

Managing Partitions

Managing Replication

Guides to NDS Partition Concepts

Partition Management

Replication Management

Other Partition Concepts

NDS Partition Functions and Structures

Managing Partitions

Adding a Partition

Listing Partitions

Listing Partitions: Example

Retrieving Partition Information from a Server

Joining Partitions

Splitting Partitions

Removing Partitions

Examples

Synchronizing with NDS Database - part 1: Example

Synchronizing with NDS Database - part 2: Example

Synchronizing with NDS Database - part 3: Example

Managing Replication

Adding a Replica

Changing the Type of a Replica

NDS and Bindery Service Group

NDS: Guides 105

Removing Replicas

Partition Management

Partition Management Introduction

Partitions

Subordinate Partitions

Partition Information

Partition Class

Mandatory Partition Attributes

Optional Partition Attributes

Replica Attribute

Convergence Attribute

All Up To Attribute

Splitting and Joining Partitions

Partition Synchronization

Partition Functions

Replication Management

Replicas

Replica Information

Replica State

Replica Type

Partition Replication

Replica Synchronization

Replication Functions

Other Partition Concepts

Name Server Information

Tree Walking

NDS and Bindery Service Group

NDS: Guides 106

Progress Reports

Distribution of Access Control Information

Distribution of Schema Information

NDS Partition Functions and Structures

NDS: Functions

NDS: Structures

Partition Functions

Replication Functions

NDS Schema: Guides

The NDS Schema is a set of rules for adding, deleting, and managing
information objects in NDS. Through these rules, the schema sets the
pattern of organization for an NDS database. The schema controls not only
the structure of individual objects, but also the relationship among objects in
the NDS tree.

The following topics provide information to help you understand NDS
Schema.

NDS Schema Overview

Introduction to the NDS Schema

NDS Schema Components

NDS Schema Definitions: Guide

Guides to NDS Schema Tasks

Managing Attribute Definitions

Managing Class Definitions

Working with Syntax Definitions

Guides to NDS Schema Concepts

Class Definition Management

Attribute Definition Management

Schema Extensions

Schema Definition Changes

NDS Schema Functions and Structures

NDS and Bindery Service Group

NDS: Guides 107

NDS Schema Definitions: Guide

Managing Attribute Definitions

Creating an Attribute Definition

Reading an Attribute Definition

Deleting an Attribute Definition

Managing Class Definitions

Creating a Class Definition

Modifying a Class Definition

Reading a Class Definition

Deleting a Class Definition

Listing Containable Classes

Working with Syntax Definitions

Retrieving Syntax Names and Definitions

NDS Functions and Structures

NDS: Functions

NDS: Structures

NDS Schema Definitions: Guide

NDS Object Class Definitions

Graphical View of NDS Object Class Definitions

NDS Attribute Type Definitions

NDS Attribute Syntax Definitions

Class Definition Management

Object Classes in NDS

Object Class Rules

Structure Rules

NDS and Bindery Service Group

NDS: Guides 108

Containment Classes

Contained By Classes

Name Rules

Super Class Structure

Inheritance

Class Inheritance Rules

Effective and Noneffective Classes

Class Definition Creation

Class Maintenance Information

Restrictions on New Classes

NDS Class Functions

Attribute Definition Management

Attribute Types and Attribute Syntax

Attribute Syntax

Attribute Constraints

Mandatory and Optional Attributes

Attribute Type Information

Attributes and Classes

NDS Attribute Functions

Schema Extensions

NDS Schema Extensions

Registering Attribute Types and Class Definitions

Distribution of the NDS Schema

Schema Definition Changes

Schema Changes for NetWare 4.01

Schema Changes for NetWare 4.1

NDS and Bindery Service Group

NDS: Guides 109

NDS Schema Functions and Structures

NDS: Functions

NDS: Structures

NDS Class Functions

NDS Attribute Functions

NDS Security: Concepts Guide

NDS Security controls access to objects in NDS and their attributes. The
following topics provide information to help you understand NDS Security.

Introduction to NDS Security

NDS Security Introduction

Access Control Lists and Inheritance

Access Control Lists

Default ACL Templates

Inheritance in NDS

Inheritance Masks

NDS Privileges

Rights to an NDS Object

Access Privileges

Rights to the Properties of an NDS Object

Giving Rights in NDS

Effective Rights Calculations

Other NDS Security Topics

Trustees

Equivalence in NDS

NDS and Bindery Service Group

NDS: Guides 110

NDS in Security Applications

Object Management in NDS

NDS Access and the File System

NDS Security Function

NDS Functions and Structures

NDS: Functions

NDS: Structures

NDS Security Function

NDS and Bindery Service Group

NDS: Guides 111

NDS: Tasks

Adding a Partition

Follow this procedure to create a new partition along with its root object.

1. Allocate the request buffer by calling NWDSAllocBuf.

2. Initialize the request buffer for an DSV_ADD_PARTITION
operation by calling NWDSInitBuf.

3. Place the name of one of the object's attributes in the request buffer
by calling NWDSPutAttrName.

4. Place a value for the attribute (in step 3) in the buffer by calling
NWDSPutAttrVal.

5. Loop to step 3 until the names and values for all of the desired
attributes have been placed in the buffer.

6. Add the new partition by calling NWDSSplitPartition.

7. Free the request buffer when it is no longer needed by calling
NWDSFreeBuf.

Since each partition contains a root object, NWDSSplitPartition also creates
the root object for the new partition. You must provide the name and
attribute values for the new object. In addition to any attributes required by
the object's base class, supply a Convergence value for the partition. All
other partition attributes are assigned values automatically. The initial
replica attribute for a new partition is always type master replica.

Related Topics:

Listing Partitions

Partition Information

NDS Partition: Guides

Adding a Replica

Add a replica of an existing partition to a server by calling
NWDSAddReplica.

This function only adds replicas of type secondary or read-only. You

NDS and Bindery Service Group

NDS: Tasks 112

This function only adds replicas of type secondary or read-only. You
identify the partition to be replicated by supplying the name of the
partition's root object.

Related Topics:

Changing the Type of a Replica

NDS Partition: Guides

Adding an NDS Object

To add an object to NDS, follow these steps:

1. Allocate memory for the request buffer by calling NWDSAllocBuf.

2. Set the iterationHandle to NO_MORE_ITERATIONS.

3. Initialize the request buffer for a DSV_ADD_ENTRY (7) operation
by calling NWDSInitBuf.

4. For each attribute to be supplied for the object, first store the
attribute's name in the result buffer by calling NWDSPutAttrName.
Then store the associated value(s) in the result buffer by calling
NWDSPutAttrVal once for each value.

You must supply the mandatory values for the object class as dictated
by the schema.

5. Create the new object by calling NWDSAddObject.

6. Free the request buffer by calling NWDSFreeBuf.

NOTE: The name of the object is specified by objectName. The naming
attribute is mandatory, but it is speechified in the call. It is does not have
to be explicitly placed in the objectInfo buffer.

Related Topics:

Adding an NDS Object: Example

Notes About Adding NDS Objects

NDS Access: Guides

Authenticating to NDS

Most client workstations log in to the network when they are booted making
it unnecessary for many client applications to perform this task. See
Authentication of Client Applications.

If you want your application to have full responsibility for accessing the

NDS and Bindery Service Group

NDS: Tasks 113

network, or if you are writing an NLM™ application that must access NDS
or another NLM on a different server, you can control the authentication
process by following these steps.

1. Initialize an NDS context by calling NWDSCreateContextHandle.

2. If needed, call NWDSSetContext to change context values.

For information about changing your context, see NDS Context and
Modifying Context Information.

3. Log in to NDS by calling NWDSLogin.

4. Open a new connection by calling either
NWDSOpenConnToNDSServer, NWCCOpenConnByName, or
NWCCOpenConnByRef.

5. Authenticate and license the new connection by calling
NWDSAuthenticate.

NOTE: The process of authenticating to NDS is the same for client
applications and NLMs. The only difference is that NLMs do not inherit
the credentials of the computer they are running on.

Although an NLM has administrator rights to the local file system
directory, it is not authenticated to NDS as "admin"; it is authenticated
as "public". If you want to do anything with NDS other than read public
information, you must log in. The authentication credentials are stored
on the thread group level and are only accessible by the OS.

Related Topics:

Retrieving Addresses of a Connected Server

NDS Access: Guides

Changing the Type of a Replica

Change a replica's type by calling NWDSChangeReplicaType.

You identify the replica by passing in the name of the server containing the
replica and the name of the partition's root object. If you change a replica's
type to master, the current master replica will be changed to a secondary
replica.

Related Topics:

Removing Replicas

NDS Partition: Guides

Comparing Attribute Values

NDS and Bindery Service Group

NDS: Tasks 114

Comparing Attribute Values

Follow these steps to compare an object's attribute value with another value:

1. Allocate a request buffer by calling NWDSAllocBuf.

2. Initialize the request buffer for a DSV_COMPARE operation by
calling NWDSInitBuf.

3. Place the name of the attribute whose value you want to compare into
the request buffer by calling NWDSPutAttrName.

4. Place the value you want to compare into the buffer by calling
NWDSPutAttrVal.

5. Compare the values by calling NWDSCompare.

6. Check matched to see if the values matched.

7. Free the request buffer by calling NWDSFreeBuf.

Related Topics:

Searching NDS

NDS Access: Guides

Creating a Class Definition

Defining a new object class for the NDS Schema is done with the following
steps:

1. Allocate a request buffer by calling NWDSAllocBuf.

2. Initialize the request buffer for a DSV_DEFINE_CLASS operation by
calling NWDSInitBuf.

3. Prepare the request buffer for storing object-class names in the Super
Class Names list by calling NWDSBeginClassItem.

4. Place the desired object-class names in the Super Class List by calling
NWDSPutClassItem once for each object-class name to be placed in
the list.

5. Prepare the request buffer for storing object-class names in the
Containment Class Names list by calling NWDSBeginClassItem.

6. Place the desired object-class names in the Containment Class Names
list by calling NWDSPutClassItem once for each object-class name to
be placed in the list.

7. Prepare the request buffer for storing naming-attribute names in the
Naming Attributes List by calling NWDSBeginClassItem.

NDS and Bindery Service Group

NDS: Tasks 115

8. Place the desired naming-attribute names in the Naming Attributes
List by calling NWDSPutClassItem once for each naming-attribute
name to be placed in the list.

9. Prepare the request buffer for storing attribute names in the
Mandatory Attribute Names list by calling NWDSBeginClassItem.

10. Place the desired attribute names in the Mandatory Attribute Names
list by calling NWDSPutClassItem once for each attribute name to be
placed in the list.

11. Prepare the request buffer for storing attribute names in the Optional
Attribute Names list by calling NWDSBeginClassItem.

12. Place the desired attribute names in the Optional Attribute Names
list by calling NWDSPutClassItem once for each attribute name to be
added to the list.

13. Add the object-class definition to the NDS Schema by calling
NWDSDefineClass.

14. Free the request buffer by calling NWDSFreeBuf.

NOTE: If you do not have any object names or attribute names you
want to add to one of the lists, you must still call
NWDSBeginClassItem to move to the list. You then immediately call
NWDSBeginClassItem again to move to the next list.

Related Topics:

Creating a Class Definition: Example

NDS Schema: Guides

Creating a Context

Call NWDSCreateContextHandle to create a context as follows:

NWDSCCODE ccode;NWDSContextHandle context; ccode = NWDSCr

 /* handle creation error */

Related Topics:

Reading Context Information

Modifying Context Information

Freeing a Context

Context Handling: Example

NDS Context: Guides

NDS and Bindery Service Group

NDS: Tasks 116

Creating an Attribute Definition

1. Declare a structure of type NWATTR_INFO and fill it in.

For example, suppose you wanted to create an attribute called "Toast
Setting". You would declare a structure and fill it in, as follows:

NWDSCCODE ccode; // Declare new attribute
NWATTR_INFO toastSet;
structure

toastSet.attrFlags=DS_SINGLE_VALUED_ATTR // Constraints set to single
value
toastSet.attr
SyntaxID=SYN_INTEGER // Syntax set to integer
toastSet.attrLower=-10; // Lower value limit set to -10
toastSet.attrUpper=10; // Upper value limit set to +10
toastSet.asn1ID.length=0; // Not used in this example
toastSet.asn1ID.data[0]=0; // Not used in this example

2. Create a new attribute definition to define the attribute using
NWDSDefineAttr, as illustrated in the following example:

ccode = NWDSDefineAttr(context, "Toast Setting", &toastSet);
if (ccode != 0)
 printf("Error while defining attribute: d%\n", ccode);

NWDSDefineAttr requires three arguments: the directory context
handle, the name of the new attribute in a string, and the address of the
data structure of the attribute.

Related Topics:

Reading an Attribute Definition

NDS Schema: Guides

Deleting a Class Definition

You can delete a class definition using a straightforward function called
NWDSRemoveClassDef, as shown in the following example:

ccode = NWDSRemoveClassDef(context, "Toaster");
if (ccode != 0)
 printf("Error while deleting class definition: %d\n", ccode);

NWDSRemoveClassDef requires two arguments: the NDS context handle
and the name of the class to be deleted.

NDS and Bindery Service Group

NDS: Tasks 117

NOTE: You cannot remove Base class definitions, nor can you remove
any class until all of the objects associated with that class have been
removed from the NDS tree.

Related Topics:

Listing Containable Classes

NDS Schema: Guides

Deleting an Attribute Definition

Delete an attribute definition by calling NWDSRemoveAttrDef. If you
wanted to delete the attribute "Toast Setting", you would enter the following
code:

ccode = NWDSRemoveAttrDef(context, "Toast Setting");
if (ccode != 0)
 printf("Error while removing attribute: %d\n", ccode);

This function only requires two arguments: the NDS context handle and the
name of the attribute to be deleted.

NOTE: You cannot remove an attribute that is part of the Base class,
nor can you remove an attribute that you have added to the Base class
definition.

Related Topics:

Creating a Class Definition

NDS Schema: Guides

Deleting an NDS Object

There is no need to prepare a buffer when performing this task.

To Delete an Object, call NWDSRemoveObject, which requires only the
context handle and the name of the object to be removed, as shown in the
following example:

ccode = NWDSRemoveObject(contextHandle, objectName);

NOTE: You cannot remove an object that contains subordinates. All
objects in a container must be removed before the container object can
be removed.

Related Topics:

Determining the Effective Rights of an Object

NDS and Bindery Service Group

NDS: Tasks 118

Reading Effective Rights: Example

Deleting a User Object: Example

NDS Access: Guides

Determining the Effective Rights of an Object

Determine an object's effective privileges on another object by following
these steps:

1. Allocate the result buffer by calling NWDSAllocBuf. This buffer does
not need to be initialized since it is a result buffer.

2. If you want to retrieve information for selected attributes, complete
steps 3 through 5. To retrieve information for all of the object's
attributes, skip to step 6.

3. Allocate the request buffer by calling NWDSAllocBuf.

4. Initialize the request buffer for a DSV_READ operation by calling
NWDSInitBuf.

5. Place the attribute names in the request buffer by calling
NWDSPutAttrName once for each attribute name.

6. Set interationHandle to NO_MORE_ITERATIONS.

7. Call NWDSListAttrsEffectiveRights.

8. Determine the number of attributes in the result buffer by calling
NWDSGetAttrCount.

9. For each attribute in the result buffer, retrieve the information by
calling NWDSGetAttrVal.

10. If the iteration handle is not equal to NO_MORE_ITERATIONS,
loop to step 7. Otherwise, go to step 11.

11. Free the request buffer by calling NWDSFreeBuf.

12. Free the result buffer by calling NWDSFreeBuf.

NDS fills results buffers with discrete units of information. If the whole unit
cannot fit into the buffer, the entire unit will be withheld until the next
iteration. For NWDSListAttrsEffectiveRights, a unit of information consists
of an attribute name and privilege.

Aborting Iterative Operations

If you need information on aborting an iterative operation, see Controlling
Iterations.

Related Topics:

NDS and Bindery Service Group

NDS: Tasks 119

Finding the Host Server of an Object

NDS Access: Guides

Finding the Host Server of an Object

The steps for determining the addresses on a server where an object is
located are as follows:

1. Allocate a result buffer by calling NWDSAllocBuf. This buffer does
not need to be initialized since it is a result buffer.

2. Call NWDSGetObjectHostServerAddress.

3. Call NWDSGetAttrCount to determine the number of attributes
stored in the result buffer.

4. Call NWDSGetAttrName to retrieve the attribute name (network
address) and the count of attribute values.

5. For each attribute value, call NWDSComputeAttrValSize to find the
size of the current address in the result buffer.

6. Allocate a block of memory the size of the attribute value.

7. Retrieve the current address from the result buffer by calling
NWDSGetAttrVal and passing in the pointer allocated in step 5.

8. When NWDSGetAttrVal returns, typecast the pointer to be a pointer
to Net_Address_T, to access the information.

9. Free the allocated memory before retrieving the next address.
(Network addresses can be different sizes.)

10. Loop to step 4 until all addresses have been removed from the result
buffer.

Related Topics:

Reading Attributes of NDS Objects

NDS Access: Guides

Freeing a Context

Call NWDSFreeContext to free the context memory as follows:

NWDSCCODE err;
...
// Now free the context before exiting the program.

NDS and Bindery Service Group

NDS: Tasks 120

err = NWDSFreeContext(context);
if(!err)
 printf("\n\nContext was freed\n");
else
 printf("\n\nError <%d> occurred while freeing context\n", err);

Related Topics:

Context Handling: Example

Creating a Context

NDS Context: Guides

Freeing NDS Buffers

This task releases a buffer allocated by NWDSAllocBuf. After you have
executed an operation using a buffer and retrieved the information from the
output buffer (if applicable), always free the buffer memory.

Free buffer memory by calling NWDSFreeBuf, as shown in the following
example:

NWDSFreeBuf(outBuf); // Always returns successful

Related Topics:

Listing Objects in an NDS Container

NDS Access: Guides

Joining Partitions

Join a subordinate partition to its parent by calling NWDSJoinPartitions.

You can perform this operation only on master replicas residing on the same
server. You can join two partitions only if there are no secondary or
read-only replicas of either partition. The two partitions must include a
subordinate partition and its parent.

Related Topics:

Splitting Partitions

NDS Partition: Guides

Listing Containable Classes

Use this procedure to list the object classes that can be contained by (are

NDS and Bindery Service Group

NDS: Tasks 121

subordinate to) a specified object.

1. Allocate a result buffer by calling NWDSAllocBuf. (The buffer does
not need to be initialized since it is a result buffer.)

2. Set iterationHandle to NO_MORE_ITERARTIONS.

3. Retrieve the object classes the parent object can contain by calling
NWDSListContainableClasses.

4. Determine the number of object-class names contained in the buffer
by calling NWDSGetClassItemCount.

5. For each object class name in the result buffer, retrieve the name by
calling NWDSGetClassItem.

6. If the value of the iteration handle is not equal to
NO_MORE_ITERATIONS, go to step 3. Otherwise, go to step 7.

7. Free the result buffer by calling NWDSFreeBuf.

Aborting Iterative Operations

If you need information on aborting an iterative operation, see Controlling
Iterations.

Related Topics:

Retrieving Syntax Names and Definitions

NDS Schema: Guides

Listing Objects in an NDS Container

This task finds all of the immediate subordinates of an object.

1. Allocate memory for the output buffer by calling NWDSAllocBuf.

2. Set the iteration handle to NO_MORE_ITERATIONS.

3. Call NWDSList.

4. Determine the number of subordinate objects in the output buffer by
calling NWDSGetObjectCount.

5. Call NWDSGetObjectName for each subordinate object in the output
buffer.

6. If the iteration handle is not equal to NO_MORE_ITERATIONS,
loop to step 3. Otherwise, go to step 7.

7. Free the output buffer by calling NWDSFreeBuf.

Aborting Iterative Operations

NDS and Bindery Service Group

NDS: Tasks 122

If you need information on aborting an iterative operation, see Controlling
Iterations.

Related Topics:

Listing Objects in an NDS Container: Example 2

NDS List Functions

NDS Access: Guides

Listing Partitions

List the partitions stored on a particular server by calling
NWDSListPartitions.

The results include the partition name and replica type.

Related Topics:

Listing Partitions: Example

NWDSListPartitionsExtInfo

NDS Partition: Guides

Modifying a Class Definition

Optional attributes can be added to an object-class definition by using the
following steps:

1. Allocate a request buffer by calling NWDSAllocBuf.

2. Initialize the request buffer for a DS_MODIFY_CLASS_DEF
operation by calling NWDSInitBuf.

3. For each optional attribute to be added to the class definition, store
the attribute's name in the request buffer by calling
NWDSPutAttrName.

4. Modify the object-class definition by calling NWDSModifyClassDef.

5. Free the request buffer by calling NWDSFreeBuf.

Related Topics:

Reading a Class Definition

NDS Schema: Guides

NDS and Bindery Service Group

NDS: Tasks 123

Modifying an NDS Object

Modifying objects that already exist in NDS is very similar to adding a new
object.

1. Allocate a data buffer by calling NWDSAllocBuf.

2. Initialize the buffer for a DSV_MODIFY_ENTRY (9) operation by
calling NWDSInitBuf.

3. For each attribute value to be modified, place the desired changes
into the buffer using NWDSPutChange and NWDSPutAttrVal.

NWDSPutChange is used to indicate which attribute is to be modified,
and NWDSPutAttrVal places the new attribute value into the buffer.

4. Make the modification by calling NWDSModifyObject.

The attrName parameter simply refers to a text string containing the attribute
name (for example "Surname"). The buf parameter points to a buffer that has
been allocated by calling NWDSAllocBuf and initialized by calling
NWDSInitBuf. Make sure you use the DSV_MODIFY_ENTRY operation
when you initialize the buffer. The changeType parameter refers to an integer
value that defines what type of operation will be made on the named
attribute. See Change Types for NWDSPutChange.

Remember, if an attempt is made to modify the Object Class attribute, an
error is returned. Also, a value can be modified by placing a combination of
DS_REMOVE_VALUE and DS_ADD_VALUE change records in the same
request buffer. This allows the operations to be completed by calling
NWDSModifyObject once.

After putting the change record in the buffer, call NWDSPutAttrVal to put
the value of the attribute in the buffer.

Related Topics:

Modifying an NDS Object: Example

NDS Access: Guides

Modifying Context Information

Call NWDSSetContext to modify context information as follows:

NWDSCCODE err;
char newContextName[MAX_DN_CHARS+1]; /* ((MAX_DN_CHARS+1)*2)for unicode */
/* change the context name */
printf("\n\nEnter a new name context: \n");
gets(newContextName);
err=NWDSSetContext(context,DCK_NAME_CONTEXT,newContextName);
if(err)

NDS and Bindery Service Group

NDS: Tasks 124

{
 printf("\n\nNWDSSetContext returned error <%d>",err);
}
else
{
 printf("\n\nNWDSSetContext returned <%d>",err);
 printf("\nName context is set.");
}

Related Topics:

Freeing a Context

Reading Context Information

Context Key Values

Context Handling: Example

NDS Context: Guides

Preparing NDS Input Buffers

This task prepares a memory buffer for writing data to the NDS directory.

1. Allocate memory for the input buffer by calling NWDSAllocBuf. The
following code allocates a buffer of size DEFAULT_MESSAGE_LEN
Constant.

pBuf_T inputBuffer;

ccode = NWDSAllocBuf (DEFAULT_MESSASE_LEN, &inputBuffer);
if (ccode)
 printf("Error while allocating buffer: %d\n", ccode);

2. Initialize the input buffer by calling NWDSInitBuf. Choose one of
the Initialization Operations for NDS Buffers according to the
intended operation. The following code initializes an input buffer for
a read operation.

ccode = NWDSInitBuf(context, DSV_READ, &inputBuffer);
if (ccode)
 printf("Error while initializing buffer: %d\n", ccode);

3. Place the input data into the buffer using the NDS Input Buffer
Functions that correspond to the data type you are handling.

ccode = NWDSAllocBuf (DEFAULT_MESSAGE_LEN, &inputBuffer);
if (!ccode)
{ ccode = NWDSInitBuf (context, DSV_READ, &inputBuffer);
 ccode = NWDSPutAttrName (context, inputBuffer, "surname");
 ccode = NWDSPutAttrName (context, inputBuffer, "CN");

NDS and Bindery Service Group

NDS: Tasks 125

 ccode = NWDSPutAttrName (context, inputBuffer, "Login Script");
 ccode = NWDSPutAttrName (context, inputBuffer, "Language");
 ccode = NWDSPutAttrName (context, inputBuffer, "Email Address");

}

NOTE: Don't add data to a buffer directly. NDS contains a complete
set of input buffer functions that operate on buffers allowing you to
enter data. To add data to the Buffer, you must use the function that
corresponds to the data type you are handling.

Related Topics:

Preparing NDS Output Buffers

Freeing NDS Buffers

NDS Access: Guides

Preparing NDS Output Buffers

This task prepares a buffer for retrieving data from an NDS directory.

Allocate memory for the input buffer by calling NWDSAllocBuf. The
following code allocates a buffer of size DEFAULT_MESSAGE_LEN
Constant.

pBuf_T outputBuffer;

ccode = NWDSAllocBuf (DEFAULT_MESSASE_LEN, &outputBuffer);
if (ccode)
 printf("Error while allocating buffer: %d\n", ccode);

NOTE: Unlike an input buffer, you don't need to initialize an output
buffer.

Don't retrieve or delete data from a buffer directly. NDS contains a
complete set of NDS Output Buffer Functions that operate on buffers
allowing you to retrieve data. To read data from the Buffer, you must
use the function that corresponds to the data type you are handling.

Related Topics:

Retrieving Results from NDS Output Buffers

Preparing NDS Input Buffers

NDS Access: Guides

Reading a Class Definition

NDS and Bindery Service Group

NDS: Tasks 126

If you want to determine the names of all of the classes and their definitions,
use NWDSReadClassDef as follows:

ccode = NWDSReadClassDef(context, DS_CLASS_DEF_NAMES, TRUE, NULL,
 &iterationHandle, outBuffer);
if (ccode != 0)
 printf("Error while reading class definition: %d\n", ccode);

NWDSReadClassDef requires six arguments: the NDS context handle, the
information type specifier (names only, or names and definitions), the
all-classes flag set, NULL instead of a pointer to an input buffer, the address
of the iteration handle, and a pointer to the output buffer.

Read each class entry from the output buffer using
NWDSGetClassDefCount and NWDSGetClassDef, followed by five
consecutive calls to NWDSGetClassItemCount and NWDSGetClassItem.

NOTE: A call to NWDSReadClassDef returns only the attributes that
were defined for that particular class. It does not return the attributes
that were inherited, but it does return the name of the super class. To
find all of the attributes available for a class, call NWDSReadClassDef
for each super class until you reach Top.

Related Topics:

Creating a Class Definition: Example

NDS Schema: Guides

Reading an Attribute Definition

Reading an attribute definition by using NWDSReadAttrDef is shown in
the following example:

ccode = NWDSReadAttrDef(context, DS_ATTR_DEFS, FALSE, inBuf,
 &iterationHandle, outBuf);
if (ccode != 0)
 printf("Error reading attribute definition: %d\n", ccode);

NWDSReadAttrDef requires five arguments: the NDS context handle, the
type of information required, the all-attributes flag cleared, a pointer to the
request buffer that contains the name of the attribute, the address of the
iteration handle, and a pointer to the output buffer that receives the
attribute definition.

Related Topics:

Reading a Class Definition: Example

Reading an Attribute Definition: Example

Reading Non-attribute Object Information: Example

NDS and Bindery Service Group

NDS: Tasks 127

NDS Schema: Guides

Reading Attributes of NDS Objects

Read the attributes of an object by following these steps:

1. Allocate memory for the output buffer by calling NWDSAllocBuf.

2. If you are requesting information for all attributes, skip to step 6.

3. Call NWDSAllocBuf to allocate memory for the input buffer.

4. Call NWDSInitBuf to initialize the input buffer for a DSV_READ
operation.

5. Call NWDSPutAttrName once for each attribute name being placed
in the input buffer.

6. Set iteration handle to NO_MORE_ITERATIONS.

7. Call NWDSRead.

8. Call NWDSGetAttrCount to determine the number of attributes in
the output buffer.

9. Call NWDSGetAttrName to retrieve the name of the current attribute
and the number of its values from the output buffer.

10. Determine the size of the attribute value; then call
NWDSComputeAttrValSize to allocate a block of memory that size.

11. Call NWDSGetAttrVal to read the attribute value. For multivalued
attributes, call this function for each of the values.

12. Free the memory that was allocated in step 10.

13. If all of the attribute information has not been read from the output
buffer, loop to step 9.

14. If the iteration handle is not equal to NO_MORE_ITERATIONS,
loop to step 7.

15. If an input buffer was allocated, free the input buffer by calling
NWDSFreeBuf.

16. Free the output buffer by calling NWDSFreeBuf.

The results of NWDSRead are not ordered and might not appear in
alphabetical order.

If infotype is set to DS_ATTRIBUTE_VALUES, specifying the Read operation
should return both attribute names and values. You must retrieve the
information in the correct order; attribute name first, then all of the values

NDS and Bindery Service Group

NDS: Tasks 128

associated with the attribute. Then you must retrieve the next attribute
name and its values and so on. Otherwise, NWDSGetAttrName will return
erroneous information.

Aborting Iterative Operations

If you need information on aborting an iterative operation, see Controlling
Iterations.

Related Topics:

Reading Attributes of NDS Objects: Example

Read Requests

NDS Read Functions

NDS Access: Guides

Reading Context Information

Call NWDSGetContext to read context information as follows:

void ShowNameContext(NWDSContextHandle context)
{
 NWDSCCODE err;
 char name[MAX_DN_CHARS+1]; /* ((MAX_DN_CHARS+1)*2)for unicode */
 err = NWDSGetContext(context, DCK_NAME_CONTEXT, name);
 if(err)
 {
 printf("\n\nNWDSSetContext returned error <%d>",err);
 }
 else
 {
 printf("\nCurrent Name Context: %s",name);
 }
}

Related Topics:

Modifying Context Information

Freeing a Context

Context Key Values

Context Handling: Example

NDS Context: Guides

Removing Partitions

NDS and Bindery Service Group

NDS: Tasks 129

Delete a partition by calling NWDSJoinPartitions.

You can remove a partition only if there are no secondary or read-only
replicas of the partition.

Related Topics:

Adding a Replica

NDS Partition: Guides

Removing Replicas

Delete a replica of a partition by calling NWDSRemoveReplica.

You identify the replica by supplying the name of the server and the name
of the partition's root object. This function can remove only secondary and
read-only replicas.

NOTE: NWDSJoinPartition can remove the master replica.

Related Topics:

Adding a Partition

Adding a Replica

NDS Partition: Guides

Retrieving Addresses of a Connected Server

To determine the network addresses for a server associated with a
connection, follow these steps:

1. Allocate a result buffer by calling NWDSAllocBuf. This buffer does
not need to be initialized since it is a result buffer.

2. Call NWDSGetServerAddresses.

3. Determine the number of addresses stored in the result buffer by
calling NWDSGetAttrCount.

4. Call NWDSComputeAttrValSize to find the size of the address data
in the buffer.

5. Allocate a contiguous block of memory the size of the attribute value,
and set a void pointer to point to that block.

6. Call NWDSGetAttrVal, passing in the pointer to the allocated
memory.

NDS and Bindery Service Group

NDS: Tasks 130

7. When NWDSGetAttrVal returns, typecast the pointer to be a pointer
to Net_Address_T, and retrieve the information.

8. Before retrieving the next address, free the allocated memory.
(Addresses can be different sizes.)

9. Loop to step 4 until all addresses have been removed from the result
buffer.

10. Free the result buffer by calling NWDSFreeBuf.

When all addresses have been retrieved, free the result buffer pointer to
netAddresses.

Related Topics:

Preparing NDS Input Buffers

NDS Access: Guides

Retrieving Partition Information from a Server

Partition information is retrieved by using the following steps:

1. Allocate a result buffer to receive the results by calling
NWDSAllocBuf. (The buffer does not need to be initialized since it is
a result buffer.)

2. Set the iteration handle to NO_MORE_ITERATIONS.

3. Obtain the partition information by calling NWDSListPartitions.

4. Determine the number of partitions whose information is stored in
the request buffer by calling NWDSGetServerName.

5. For each partition whose information is stored in the buffer, retrieve
the partition information by calling NWDSGetPartitionInfo.

6. If the iteration handle is set to NO_MORE_ITERATIONS, go to step
7; otherwise, loop to step 3.

7. Free the buffer when it is no longer needed by calling NWDSFreeBuf.

If you decide to stop retrieving partition information before iterationHandle
is set to NO_MORE_ITERATIONS, call NWDSCloseIteration to free
memory and state information associated with the partition listing
operation.

Related Topics:

Joining Partitions

NDS Access: Guides

NDS and Bindery Service Group

NDS: Tasks 131

Retrieving Results from NDS Output Buffers

This task reads data from an output buffer.

1. Determine the number of objects in the buffer by calling
NWDSGetObjectCount.

2. Determine the amount of memory required for each object attribute
by calling NWDSComputeAttrValSize.

3. Allocate memory to receive the attribute data.

4. Retrieve the attribute data from the buffer by calling the NDS Output
Buffer Functions that correspond to the data type you are handling.

5. Loop through steps 2, 3, and 4 until all attributes of every object in the
buffer has been retrieved.

NOTE: Data must be read from an output buffer sequentially. Do not
skip an item, even if you already know its value.

Related Topics:

Freeing NDS Buffers

NDS Access: Guides

Retrieving Syntax Names and Definitions

To retrieve names and definitions for all syntaxes in the NDS Schema, use
the following steps:

1. Allocate memory for the result buffer by calling NWDSAllocBuf.
(This buffer does not need to be initializes, since it is a result buffer.)

2. Set the contents of the iteration handle to NO_MORE_ITERATIONS.

3. Call NWDSReadSyntaxes with infoType=DS_SYNTAX_DEFS,
allSyntaxes=TRUE, and syntaxNames=NULL.

4. Determine the number of syntax definitions in the result buffer by
calling NWDSGetSyntaxCount.

5. For each syntax in the result buffer, retrieve the syntax name and
definition by calling NWDSGetSyntaxDef.

6. If the contents of the iteration handle is not set to
NO_MORE_ITERATIONS, loop to step 3. Otherwise, go to step 7.

7. Free the result buffer by calling NWDSFreeBuf.

NDS and Bindery Service Group

NDS: Tasks 132

If both syntax names and values are stored in the buffer, the names and
values must be pulled from the buffer. If both names and values are
requested and names only are extracted, erroneous information results.

To retrieve all information about specific syntaxes in the NDS Schema, do
the following:

1. Allocate memory for the request buffer by calling NWDSAllocBuf.

2. Initialize the request buffer for a DSV_READ_SYNTAXES operation
by calling NWDSInitBuf.

3. For each syntax whose information you want to retrieve, store the
syntax's name in the request buffer by calling NWDSPutSyntaxName
.

4. Allocate memory for the result buffer by calling NWDSAllocBuf.
(This buffer does not need to be initialized since it is a result buffer.)

5. Set the contents of the iteration handle to NO_MORE_ITERATIONS.

6. Call NWDSReadSyntaxes with infoType=DS_SYNTAX_DEFS,
allSyntaxes=FALSE, and syntaxNames=the address of the request
buffer.

7. Determine the number of syntax definitions in the result buffer by
calling NWDSGetSyntaxCount.

8. For each syntax in the buffer, retrieve the syntax name and definition
by calling NWDSGetSyntaxDef.

9. If the contents of the iteration handle is not set to
NO_MORE_ITERATIONS, loop to step 6. Otherwise, go to step 10.

10. Free the request buffer by calling NWDSFreeBuf.

11. Free the result buffer by calling NWDSFreeBuf.

Related Topics:

Creating an Attribute Definition

NDS Schema: Guides

Searching NDS Guide

Searching NDS is presented here as a sequential list of subordinate tasks to
accomplish.

Follow these steps to search a region of NDS:

1. Call NWDSAllocBuf to allocate the result buffer. This buffer does not

NDS and Bindery Service Group

NDS: Tasks 133

need to be initialized because it is a result buffer.

2. To search selected attributes, go to step 3. Otherwise, go to step 6.

3. Call NWDSAllocBuf to allocate the request buffer.

4. Call NWDSInitBuf to initialize the request buffer for a
DSV_SEARCH operation.

5. Call NWDSPutAttrName once for each attribute name to place the
names of the desired attributes into the request buffer.

6. To specify a search filter, go to step 7. Otherwise, go to step 11.

7. Call NWDSAllocFilter to allocate a filter expression tree.

8. Call NWDSAddFilterToken once for each search token to place the
search-filter conditions in the expression tree.

9. Call NWDSAllocBuf to allocate a filter buffer.

10. Call NWDSPutFilter to store the search-filter expression tree in the
filter buffer.

11. Call NWDSSearch to initiate the search.

12. Call NWDSGetObjectCount to determine the number of objects
whose information is stored in the buffer.

13. Call NWDSGetObjectName to get the name of the current object in
the buffer and the count of attributes associated with the object.

14. Call NWDSGetAttrName to retrieve the name of the attribute and the
count of values associated with the attribute.

15. For each value associated with the attribute, call NWDSGetAttrVal to
retrieve the value.

16. Loop to step 14 until all attribute information for the object has been
read.

17. Loop to step 13 until the information for all objects in the buffer has
been retrieved.

18. Call NWDSFreeBuf to free the filter buffer.

19. Call NWDSFreeBuf to free the request buffer.

20. Call NWDSFreeBuf to free the reply buffer.

You must pull all information from the result buffer even if you do not plan
to use it.

Currently, because of aliasing, searching a subtree can result (1) in duplicate
entries or (2) in an infinite loop.

NDS and Bindery Service Group

NDS: Tasks 134

Aborting Iterative Operations

If you need information on aborting an iterative operation, see Controlling
Iterations.

Related Topics:

Searching for an NDS Object: Example

NDS Search Introduction

Expression Filters for NDS Searches

NDS Access: Guides

Splitting Partitions

Divide a partition at a specified object by calling NWDSSplitPartition.

You can split a partition only if there are no secondary or read-only replicas
of the partition. The specified object becomes the root object of the
subordinate partition.

Related Topics:

Removing Partitions

NDS Partition: Guides

NDS and Bindery Service Group

NDS: Tasks 135

NDS: Concepts

Access Control Lists

Access to an object and its attributes is based on an Access Control List
(ACL). In the NDS Schema, the ACL is an attribute type assigned as an
optional attribute to the object class Top. Since all object classes inherit the
characteristics of Top, all objects may have an ACL attribute.

There are two types of ACLs in NDS. The first one is an ACL; the second is
an Inherited ACL. The Inherited ACL is an attribute of each partition root
object. Standard ACLs are attributes of any object. Both types of ACLs are
multivalued attributes that contain access control information.

Each ACL contains a list of subjects for which access has been defined. Each
value of an ACL has a subject name, a protected attribute name, and a
privilege set:

Subject Name---This field is a complete name of a specific object in NDS, or
it can be a special entry name such as "[Inheritance Mask]", "[Public]",
"[Root]", "[Creator]", or "[Self]". An ACL entry with "[Inheritance Mask]" in
this field is used to mask or filter privileges granted to an object.

Protected Attribute---This field is the name of the attribute that the
privilege set applies to. It may instead be an identifier such as "[Entry
Rights]", "[All Attributes Rights]" or "[SMS Rights]". If this field is "[Entry
Rights]" the access privileges apply to the object that this ACL is an attribute
of.

Privilege Set---This field enumerates the set of privileges that have been
granted to the subject. If "[Inheritance Mask]" is being specified, it
enumerates the allowable privileges.

The Inherited ACLs are maintained by a NDS background process. When
ACL modifications are made this process initiates a summarization of the
ACL for any replicas that are affected by the change and that are stored on
the server. The result of this summarization is forwarded to any subordinate
partition object. Within the partition, inherited ACL information is
propagated among replicas by the partition's synchronization processes.

Inherited ACLs are automatically created by the NDS server at the time a
new partition is created.

ACLs are created by an administrator to define privilege sets associated
with a given object, or a given attribute, or all the attributes of an object, or
to define inheritance filters applicable to a given protected object or

NDS and Bindery Service Group

NDS: Concepts 136

attribute.

Since ACLs are attributes and are used to define access to individual
attributes, they can be used to define access to themselves. The section on
managing objects discusses this further.

After creation of a new partition, the administrator may create specific ACL
values and define inheritance filters (if so desired) at the object and attribute
levels.

Access privileges are given to an object by calling NWDSModifyObject to
update or add to the value of the ACL attribute.

Related Topics:

Default ACL Templates

Reading the Access Control List: Example

NDS Security: Concepts Guide

Access Privileges

The set of access privileges (or rights) are shown in the following table.

Object Privileges Attribute Privileges SMS Privileges

BROWSE (the object) COMPARE (the
attribute and values)

SCAN

ADD (subordinates) READ (the attribute
and values)

BACKUP

DELETE (the object) WRITE (add and
delete the attribute
and values)

RESTORE

RENAME (the object) SELF (add and delete
yourself to the value)

RENAME

SUPERVISOR (implies
all entry and all
attribute rights)

SUPERVISOR (implies
all attribute rights)

DELETE

ADMINISTRATOR

An important aspect of the privilege set is the relationship between the Read
and Compare privileges. Compare is considered a subset of the Read
privilege. If a subject has the Read privilege, it also has the Compare
privilege, whether or not Compare has been explicitly assigned to the
subject. However, having the Compare privilege alone does not grant the
subject the Read privilege.

NDS and Bindery Service Group

NDS: Concepts 137

The following figure shows how an Access Control List operates. In the
figure, an ACL entry has been defined for a printer object. Attributes
defined for the printer include the class, the ACL, the serial number, and the
owner.

Figure 1. Access Control List

The ACL contains the names of subjects and their privileges. Hector appears
as subject two times in the list: once each for "[Entry Rights]" and serial
number. At the object level ("[Entry Rights]"), Hector is assigned the
Rename, Add, Browse, and Delete privileges. He is also assigned Compare
and Read on the serial number attribute. These are his privileges regarding
this particular printer as an NDS object. This access is to the NDS
Information Base, not the printer or its queues. The printer and queue access
are controlled by the printer's access control mechanisms, not NDS's.

NDS and Bindery Service Group

NDS: Concepts 138

Related Topics:

Rights to the Properties of an NDS Object

NDS Security: Concepts Guide

Addresses Stored in NDS

Like a published directory, NDS provides additional identifying or
qualifying information about an object. Some examples are postal
addresses, electronic mail addresses, telephone numbers, physical locations,
and network addresses.

You might need to change the location information from time to time. Such
changes to an object are synchronized throughout NDS. By specifying an
object by name, a user can reliably locate the object despite alterations in the
object's physical location or changes to the physical layout of the network.

Related Topics:

Lists Stored in NDS

Types of Information Stored in NDS

Administration of Information in NDS

Administration can be understood broadly as managing the information
paths within the network. Information paths can be both physical and
logical. Attaching a printer to the network is a physical task. Assigning
users to a print queue is a logical task. By organizing the names of objects
into hierarchies, administrators create logical paths that can facilitate or
restrict the flow of information within the network.

The paradigm for the administrative tool is a global tree of objects called the
NDS tree, or more commonly referred to simply as NDS. The following
figure shows an example tree. The layout of a tree is an administrative
responsibility. NDS defines a flexible hierarchy of object classes from which
an administrator can choose in developing a tree. This hierarchy definition
is called the NDS Schema. Objects such as organizations can appear under
the root of the tree. Subordinate to these objects can be objects such as
organizations or individuals. Consequently, NDS encourages
administrators to create a model that reflects the boundaries naturally
occurring in their administrative organizations.

Figure 2. A NDS Tree

NDS and Bindery Service Group

NDS: Concepts 139

Information associated with NDS objects, such as addresses and
descriptions, can be used to map the NDS tree onto the network's physical
topography. For example, a user might be able to query NDS for all the
printers associated with the user's department and then read a description

NDS and Bindery Service Group

NDS: Concepts 140

printers associated with the user's department and then read a description
of each printer and where it is found. A user's ability to view regions within
the tree is subject to privileges granted by an administrator.

The NetWare bindery can be used to illustrate the kind of administrative
problems addressed by NDS. Although the bindery is an effective tool for
managing individual servers, it has significant shortcomings in supporting
multiserver networks. Since each bindery is an isolated database, each
server maintains its own logical reference for each object it administers.
Consequently, on a multiserver network there is no single global reference
to refer to a physical object. If a network has 10 servers, one user might be
managed as 10 objects.

An additional problem is that the bindery is a flat database that poorly
represents the relationships between objects. The bindery can show that a
user is a member of a group, but not that the group is part of a department
in an organization of a company. Furthermore, some objects, such as
printers, are not represented in the bindery at all. All these shortcomings
give an administrator a limited and distorted view of a network's
organization.

For example, to print a document a user might want to know where the
printers in a certain building are. Next, the user needs to know which
queues are servicing the desired printer. The user might need to find
someone who can grant the user access to the queue. The user might even
need to find a supervisor to create a new user account on the server where
the queue resides.

In a bindery-based network, the answers to these problems are not easily
found. Querying the network can provide some clues, but other clues are
likely to come from querying various people. Using NDS, however, an
administrator can make all this information conveniently available.

Related Topics:

NDS Compliance to X.500 Standard

Introduction to NDS Development: Guide

Advantages of Loose Consistency

Loose consistency has the advantage of allowing NDS servers to be
connected to the network with different types of media. For example, a
company might connect parts of its network together by using a satellite
link. Data travelling over a satellite link experiences transmission delays, so
any update to the database on one side of the satellite link is delayed in
reaching the database on the other side of the satellite link. However, these
transmission delays do not interfere with the normal operation of the
network because the database is loosely consistent. The new information
arrives over the satellite link and is propagated through the network at the
next synchronization interval.

NDS and Bindery Service Group

NDS: Concepts 141

Another advantage to loose consistency becomes apparent when
communication problems cause a number of the servers on a network to
become unavailable. Any changes made to NDS during the time that the
servers were out of operation are not lost. When the problem is resolved, the
replicas on the affected servers receive updates.

Related Topics:

Developing in a Loosely Consistent Environment

Disappearing NDS Objects

Alias Naming

An alias is a name that can be used as another name for identifying an
object. The alias provides an alternate naming path for locating the object in
NDS. Any object in NDS can be aliased. If an object has subordinates, its
alias appears to have the same subordinates. However, the location of the
alias itself must be a leaf node (a node having no subordinates) in the NDS
tree.

The following figure illustrates how aliases can be used. In this example, the
server FS1 is found in the subtree "Engineering." However, if users in the
"Marketing" subtree access this server often, they may find it convenient to
create an alias for the server under "Marketing". That way, the server FS1
can be referenced relative to a local name context
("OU=Marketing.O=WimpleMakers") that is already set rather than
establishing a new context ("OU=Engineering.O=WimpleMakers").

Figure 3. Using Alias Names

NDS and Bindery Service Group

NDS: Concepts 142

Aliasing is a convenience that has many applications. For example, aliases
can be used to simplify searches of NDS. Suppose an administrator creates
aliases in a particular subtree for all the modems on the network. Users,
then, only have to search this one subtree to receive information about all
available modems.

Related Topics:

Name Functions

NDS Context: Guides

All Up To Attribute

This attribute contains a vector of timestamps indicating the time of the last
update to the local partition that all other replicas in the partition are
guaranteed to have received. The time stamp is incremented with each fully
completed update. All entries that are marked to be purged are purged at
this time.

Related Topics:

Partition Information

Splitting and Joining Partitions

NDS Partition: Guides

Another Cause of Disappearing NDS Objects

Your program module might fail to find objects that you believe to exist
even though your module did not create of the object. If while attempting to
read an object you get a NO_SUCH_ENTRY (-601) error when there is good
reason to believe the object exists, it might not have been propagated to the
replica from which you are reading.

The simplest solution to this problem would be to wait until after the next
synchronization interval. If you don't want to wait, you could call
NWDSSyncPartition, which signals the synchronization engine to update
the specified partition. In other words, NWDSSyncPartition causes a
specified partition to be synchronized without waiting the next
synchronization time. This function has four input parameters: the context
handle, the name of the server where the partition resides, the name of the
partition root, and the number of seconds to wait before beginning the
update.

Before calling NWDSSyncPartition, you should call
NWDSGetPartitionRoot to get the name of the partition root. It requires a

NDS and Bindery Service Group

NDS: Concepts 143

context handle and the name of the object in the partition, and it returns the
name of the partition root. The following code segment shows how to make
these calls:

ccode = NWDSGetPartitionRoot(context, objectName, partitionRoot);
ccode = NWDSSyncPartition(context, serverName, partitionRoot, 0);
if (ccode)
 printf("Error, sync partition failed. %d\n", ccode);

There is one other possible solution to this problem, which might work well
in some situations. The partition root object, as a member of the Partition
class, has a Replica attribute. The Replica attribute is a multivalued attribute
that contains a list of servers that store a replica of the partition. After
reading the Replica attribute of the partition Root object, you could attempt
to read the object you are looking for on each of the servers that contain a
replica of that partition until you find the object.

Unfortunately, this last solution does not scale well. On large networks with
many replicas of a single partition, this process could take more time than it
would save.

Related Topics:

Developing in a Loosely Consistent Environment

Disappearing NDS Objects

Application Programming Interfaces for NDS

The application libraries include many functions, including NDS functions,
that can be linked into executable programs. The function requests are
completed by using NetWare's DOS Redirector. Some NDS requests can be
handled at the workstation and some are sent to an NDS server.

Related Topics:

NDS Workstation Components

Shell Components for NDS

Attribute Constraints

Attribute constraints are flags that you can define for an attribute that give
the attribute certain characteristics. Constraints can also be described as
restrictions affecting the attribute value. Here are some examples of
attribute constraints:

DS_SINGLE_VALUED_ATTR

When this flag is set, the attribute can contain only one value. When
the flag is cleared, the attribute can contain multiple values.

NDS and Bindery Service Group

NDS: Concepts 144

DS_SYNC_IMMEDIATE

When NDS makes a modification to an attribute with this constraint,
other replicas containing the object are synchronized immediately
rather than at the next synchronization interval.

DS_PUBLIC_READ

When this flag is set, anyone can read the attribute as long as they are
attached to a server, even if they are not authenticated.

The complete list of attribute constraints are defined in NWDSDEFS.H.

Related Topics:

Mandatory and Optional Attributes

NDS Schema: Guides

Attribute Syntax

An attribute syntax defines a data type for the attribute. The standard
attribute syntax definitions are contained in NDS Attribute Syntax
Definitions. NDS does not allow extension of these syntaxes. You most
commonly use syntaxes when you are performing a search. They provide
the criteria for the search. The following three examples are selected from
the many attribute syntaxes provided by NDS:

SYN_CI_STRING

The Case Ignore String syntax is used in attributes whose values are
strings and the case (upper or lower) is not significant.

SYN_INTEGER

The Integer syntax is used for attributes whose values are signed
integers.

SYN_TEL_NUMBER

The Telephone Number syntax is used for attributes whose values are
telephone numbers.

NDS defines a standard group of attribute syntaxes. An attribute syntax
consists of one or more data types for which syntax matching rules have
been specified. Matching rules indicate the characteristics that are
significant when comparing two values of the same syntax. There are three
matching rules: equality, substrings, and ordering. Any number of the rules
can apply to the syntax.

To match for equality, two equal values must conform to the data type of
the attribute syntax. Most syntaxes specify a match for equality. NDS
confirms that the values being matched conform to the data type of the
syntax. NDS does not attempt to match two values of a syntax that does not
specify a match for equality.

NDS and Bindery Service Group

NDS: Concepts 145

To match for ordering, a syntax must be open to comparisons of "less than",
"equal to", and "greater than."

An example of an attribute syntax is Case Ignore String. Two substrings of
this syntax can be matched for equality. When compared, only the
characters themselves are tested; the case is ignored.

Search patterns can include asterisks (*).

String syntaxes can include the asterisk (*) wildcard in the pattern to be
matched. For example, N*V*L would match NAVAL, NAVEL, or NOVEL.

Related Topics:

Attribute Constraints

NDS Attribute Syntax Definitions

NDS Schema: Guides

Attribute Type Abbreviations

For convenience, NDS uses abbreviations for the name types that are used
most often. The following table shows the accepted abbreviations for
directory attribute types.

Attribute Type Abbreviation

Country C

Organization O

Organizational Unit OU

State or Province Name S

Locality L

Common Name CN

Street Address SA

NOTE: Types are only assigned to partial names that are typeless.
Partial names that include types are not modified.

Related Topics:

Character Encoding

Typeless Names

Default Typing Rule

NDS Context: Guides

NDS and Bindery Service Group

NDS: Concepts 146

NDS Context: Guides

Attribute Type Information

Classes are formed from standard attribute types defined by the schema.
You can read existing attribute types and create new ones. You can also
remove attribute types, but only nonstandard ones and only if the attribute
type isn't assigned to a class. You can't remove any of the standard attribute
types.

Once an attribute type has been created, it can't be modified. Attribute type
information includes the following:

Attribute Syntax ID

Attribute Flags

ANS.1 ID

NWATTR_INFO contains the attribute type information. The following
table lists the attribute flags.

Table auto. Attribute Flags

Flag Comment

DS_SINGLE_VALUED_ATTR If TRUE, the attribute is
single-valued, otherwise the attribute
is multi-valued.

DS_SIZED_ATTR If TRUE, the attribute has length or
range limits.

DS_NONREMOVABLE_ATTR If TRUE, the attribute can't be
deleted. (This flag is for system
attributes.)

DS_READ_ONLY_ATTR If TRUE, clients can't add the
attribute to an object, but can read its
value.

DS_HIDDEN_ATTR If TRUE, clients can neither read nor
write the attribute.

DS_STRING_ATTR If TRUE, the attribute syntax is a
string. Only attributes with this bit
set can be naming attributes.

DS_SYNC_IMMEDIATE If TRUE, changes to the attribute's
value should be immediately
synchronized across partitions.

DS_PUBLIC_READ If TRUE, anyone can read the
attribute.

DS_SERVER_READ If TRUE, server class objects can read

NDS and Bindery Service Group

NDS: Concepts 147

the attribute even though the
privilege to read has not been
inherited or explicitly granted.

If the DS_SIZED_ATTR flag is set, the attribute's range or length is limited.
If the attribute syntax is a string, the lower and upper range of acceptable
lengths is assigned to the attribute. If the attribute is an integer, the range of
acceptable values is assigned.

Related Topics:

Attributes and Classes

NDS Attribute Syntax Definitions

NDS Schema: Guides

Attribute Types and Attribute Syntax

An attribute type is based on standard Attribute Syntax and Attribute
Constraints. The attribute type definition identifies the attribute syntax to be
used and specifies constraints that are imposed on the syntax. For example,
a constraint might specify whether the attribute is single- or multi-valued,
or what range or size limits are placed on the values defined in the syntax.

An example of an attribute type is CN (Common Name) which uses the "Case
Ignore String" syntax. CN (Common Name) constrains this syntax to a range
of from 1 to 64 elements.

Related Topics:

Attribute Syntax

Mandatory and Optional Attributes

Attributes and Classes

NDS Attribute Type Definitions

NDS Attribute Syntax Definitions

NDS Schema: Guides

Attribute Value Comparisons

NWDSCompare compares a given value with the values assigned to a
specified attribute. For example, you could ask NDS to compare whether
the Member attribute of a particular group is equal to the name of some
User. If the comparison is TRUE, the user is a member of the group.

NDS and Bindery Service Group

NDS: Concepts 148

NWDSCompare can be a useful alternative to reading an object's attributes
since it requires less effort on your part to examine the results of the request.
Also, depending on your access control rights, you may be able to perform a
comparison when you can't read the information directly.

You initialize buf for a DSV_COMPARE operation and then put an attribute
name and value into the buffer. If the proposed value is found, matched
returns TRUE; otherwise matched returns FALSE.

Related Topics:

NDS Search Introduction

NDS Access: Guides

Attributes and Classes

When an attribute is first defined, it is not associated with any object class.
Remember, even if you successfully create an attribute definition, it really is
not useful until you associate it with a class.

In other words, you could create a set of attributes such as Eyes, Nose, and
Mouth. By themselves, they aren't useful. When you define an object class
such as Face, you tell it what attributes it is going to have. The attributes
now take on a meaning and give dimensions to the object class.

Related Topics:

NDS Attribute Functions

NDS Object Class Definitions

NDS Attribute Type Definitions

Reading an Attribute Definition: Example

NDS Schema: Guides

Authentication

Authentication provides verification that requests received are from valid
clients. The term authentication is most often used to describe the process of
attaching, logging in, authenticating, and licensing a connection. The
following topics describe NDS authentication:

Authentication Introduction

Authentication Requirements

Authentication Process

NDS and Bindery Service Group

NDS: Concepts 149

Background Authentication

Authentication of Client Applications

Encryption in NDS

Public and Private Key Pairs

Related Topics:

Authentication Introduction

NDS Access: Guides

NDS Access: Guides

Authentication Introduction

Before you can access any information from the network, you must attach to
an NDS™ server and log in to the NDS tree. Attaching to a server
establishes a connection. When you login you establish your credentials.
You can access only "public" information in NDS if you have not yet
authenticated your connection. Your connection must be authenticated in
order for you to access all of the NDS information for which you have
rights. Lastly, your connection must be licensed for you to access file system
information.

Authentication has two phases:

Login---Gets the private key.

Authentication---Uses the signature to generate a proof that is used to
authenticate (establish identity).

Authentication is transparent to the user. During login, the user enters a
password, and the remainder of the operation is performed in the
"background" by the authentication functions. (Background authentication
refers to subsequent authentication to additional services after the initial
login operation.) The user indicates the party to which it needs
authentication, and the authentication functions do the rest. The user does
not need to retype a password.

Authentication is session-oriented. The data that provides the basis of
authentication is valid only for the duration of the current login session. The
critical data used to create authenticated messages for a particular user is
never transmitted across the network.

Related Topics:

Authentication

Authentication Requirements

NDS and Bindery Service Group

NDS: Concepts 150

Authentication of Client Applications

Most client workstations run LOGIN.EXE when they are booted.
LOGIN.EXE establishes an authenticated connection to NDS and a licensed
connection to the network server you are attached to.

If your application is meant to run on a client workstation, you might either
assume a licensed connection has been established, or run LOGIN.EXE to
establish a licensed connection. In either case, your burden has been greatly
reduced.

The authentication problem that you will most likely encounter is the need
to establish a second connection to another server. For example, your
program might read a File object and discover that it refers to the file system
of a server to which you have not established a licensed connection.

To gain access to another server, your application can open another
connection using NWDSOpenConnToNDSServer and then authenticate
the connection using NWDSAuthenticate.

NWDSAuthenticate does not only authenticate the connection, it also
licenses the connection so that you can access the file system. The following
code segment demonstrates how to attach and authenticate to a server when
you are already authenticated to NDS:

ccode = NWDSOpenConnToNDSServer(context, serverName, connHandle);
ccode = NWDSAuthenticate(connHandle, 0, NULL);
if (ccode)
 printf("Error while authenticating connection:%d\n",ccode);

Related Topics:

Encryption in NDS

Authentication

Authenticating to NDS

Authentication Process

Having constructed the credential and the signature, the client agent can
now authenticate itself to an NDS server on the network.

The client agent's request for authentication is accompanied by a proof. The
proof is constructed from values derived from both the signature and the
request data (message) itself. The following figure shows the principal items
used to construct the proof.

Figure 4. Items Used to Form a Proof

NDS and Bindery Service Group

NDS: Concepts 151

NDS and Bindery Service Group

NDS: Concepts 152

A proof is a part of all authentication dialogues. A proof ties the clients'
signature to both the current request (message) and the current session, thus
making each proof unique to the request it accompanies. The proof also
makes it unnecessary to transmit the signature.

The request for authentication is transmitted to Authentication (a part of
NDS) along with the proof and the unencrypted credential. (See the
following figure.) When Authentication receives the message, the service is
able to mathematically verify that the proof is valid. The proof always
assures the recipient that the message has not been modified since it was
sent.

Figure 5. Items Used to Confirm Authentication

To summarize, a valid authentication provides the following guarantees:

Only the purported sender could have constructed the message.

The message came from the workstation where the authentication data
was created.

The message pertains to the current session between client and server.

The message contains no information counterfeited from another session.

The message has not been tampered with or corrupted.

The following figure summarizes the steps involved in initial
authentication.

Figure 6. Logging in and Authentication Summary

NDS and Bindery Service Group

NDS: Concepts 153

Related Topics:

Background Authentication

Authentication

Authentication Requirements

Before you can authenticate to NDS, you need a credential and a signature.
You can obtain these by logging in to the network.

NDS and Bindery Service Group

NDS: Concepts 154

The credential is a data structure made up of a validation period and other
user identification information. The signature is the result of a private-key
encryption of the credential data.

This section examines the initial exchange that occurs between
Authentication and a client agent to prepare the credential and the
signature. In response to a login request, Authentication sends the client
agent a private key that has been encrypted and stored in NDS. The client
agent receives the password from the user. Nothing more is requested of the
user from this point on. The client agent decrypts the private key.

The client agent then creates the credential with data unique to this session
and encrypts it with the private key, thus creating the signature. Once the
signature is created, the private key is erased from memory, but the
signature and credential are retained. The following figure shows the
principal items used to form the signature.

Figure 7. Items Used to Form a Signature

The signature is the important mechanism used in the authentication
process. A signature is an encryption of data unique to the client. In many
systems, a signature is itself the authentication mechanism and accompanies
a message to its destination (with the NetWare® OS, this is not the case as is
explained). The signature typically enables the recipient to verify that the
message originated from its purported sender, by virtue of the fact that the
receiver can decrypt it.

However, Authentication extends the concept of a signature further by
using proofs. A proof is data derived from both the signature and the
message. It is transmitted on the network with the request or message. Its
use adds an extra measure of security by keeping the signature itself off the
network. More is said about proofs below.

NDS and Bindery Service Group

NDS: Concepts 155

Related Topics:

Authentication Process

Authentication

Background Authentication

Background authentication with other participating services on the network
can be accomplished in a manner similar to the initialization process. In
background authentication, the client agent already has the authentication
materials (credential and signature) on hand, and wants to authenticate
itself to a new service. For example, the client agent may be seeking an
attachment to a server. Since the client agent has already acquired the
authentication materials, it can perform the authentication to the server
without disturbing the user.

The client agent begins by sending a request to the desired service. In
response, the service sends the client agent a challenge (nonce). The nonce is
a random number generated for the current transaction only. The same
nonce is not used again.

The client agent computes a proof of the credential and nonce using the
signature, and then sends the nonce, the credential, and the proof to the
service.

The service then verifies that the proof was legitimately generated from the
nonce and credential. This establishes the client's authenticity. The nonce
ensures that the message was created for the current request and is not data
from another session. The service returns a confirmation. The following
figure shows the exchange that occurs during background authentication.

Figure 8. Background Authentication Summary

NDS and Bindery Service Group

NDS: Concepts 156

Related Topics:

Authentication of Client Applications

Authentication

Benefits of NDS

What benefits does NDS provide to users, administrators, and developers?

Some of the key features of NDS are:

Single login/administration

Runtime stability

NDS and Bindery Service Group

NDS: Concepts 157

Ease of administration (single location of data)

Speed

Fault tolerance

With NDS, a user or application need only log in once to access all servers
and/or services that reside at the user's security level on the network. NDS
manages the authentication details and thus frees applications and users
from having to navigate or even understand network configurations. NDS is
runtime scalable; whether you want to store four pieces of information or
400, NDS handles it with ease. And NDS provides interfaces that
applications and administrators can use to modify NDS information on the
fly, without affecting other users.

Administrators find NDS easy to administer because it provides them with
a single entry that they can modify to control the network. If an
administrator wants to give a new user rights on several systems, he or she
can update the NDS data rather than the user data on each system.

NDS provides real fault tolerance. Although data need only be updated in
one place, NDS replicates the data for easier access and greater security.
Parts or all of the information stored in NDS can be copied to other locations
to provide faster service to remote users and redundancy when servers
break down.

Thousands of users are becoming networked each day, and these users need
directory services in order to easily get access to the network resources they
need. Often, their needs will be satisfied by applications---applications of
the future. We hope that this NDS Developer's Guide will help developers
design, create, and launch quality NDS aware applications onto the net.

Related Topics:

Developing in a Loosely Consistent Environment

Introduction to NDS Development: Guide

Browsing NDS

At times a user might want to browse areas of NDS. Perhaps the user does
not know the precise name for an object but has an idea of where the object
is located in NDS. Or, a user might simply be interested in learning what
objects are found in a given part of NDS. Browsing, like lookup, requires
that the user has sufficient privileges with respect to the area of NDS the
user is investigating. Browsing is supported by the List and Search detailed
in the NDS API.

Related Topics:

Searching NDS

NDS and Bindery Service Group

NDS: Concepts 158

Retrieval of Information from NDS

Buffer Allocation Types and Related Functions

Value Allocation Type Related Function

3 DSV_READ NWDSExtSyncRead

NWDSListAttrsEffectiveRig
hts

NWDSRead

NWDSReadReferences

4 DSV_COMPARE NWDSCompare

6 DSV_SEARCH NWDSExtSyncList

NWDSExtSyncSearch

NWDSListByClassAndNam
e

NWDSListContainers

NWDSPutFilter

NWDSSearch

7 DSV_ADD_ENTRY NWDSAddObject

9 DSV_MODIFY_ENTRY NWDSModifyObject

12 DSV_READ_ATTR_DEF NWDSReadAttrDef

14 DSV_DEFINE_CLASS NWDSDefineClass

15 DSV_MODIFY_CLASS_DEF NWDSModifyClassDef

16 DSV_LIST_CONTAINABLE_C
LASSES

NWDSListContainableClass
es

18 DSV_ADD_PARTITION NWDSAddPartition
(obsolete 9/97)

Related Topics:

NDS Buffer Management Introduction

Structure of Output Buffers

NDS Buffer Allocation and Initialization Functions

Buffer Size in NDS

To allocate an input or output buffer, call NWDSAllocBuf. All input and
output buffers are of type Buf_T. You must specify the size of the buffer to
allocate. Rather than trying to determine the exact buffer size required for a

NDS and Bindery Service Group

NDS: Concepts 159

particular operation, it's usually more convenient to define a standard
buffer length that will be adequate for most operations.

NOTE: The size of an output buffer affects how the server processes a
request. A server will continue adding data to the buffer until the buffer
is full or the request is satisfied. Consequently, if you use a very large
input buffer, you may wait longer for initial results than if you use a
small buffer. At the same time, a larger buffer may require fewer
transmissions than a smaller buffer.

Related Topics:

NDS Buffer Management Introduction

Initialization Operations for NDS Buffers

Preparing NDS Input Buffers

Preparing NDS Output Buffers

Buffers Needed for NDS Searches

You need three types of buffers to search NDS using NWDSSearch, two
input buffers (called NameBuffer and FilterBuffer in this example) and an
output buffer (called ResultBuffer). The purpose of these buffers are
summarized below.

NameBuffer

Restricts the search results to certain attributes only.

FilterBuffer

Contains the search expression.

ResultBuffer

Stores the search results.

You need to allocate memory space for all three buffers, and verify that
memory is allocated successfully. The following code segment demonstrates
how this is done. The data structure for these buffers is Buf_T, which is
defined in NWDSBUFT.H.

retcode = NWDSAllocBuf(DEFAULT_MESSAGE_LEN,&NameBuffer);
retcode = NWDSAllocBuf(DEFAULT_MESSAGE_LEN,&FilterBuffer);
retcode = NWDSAllocBuf(DEFAULT_MESSAGE_LEN,&ResultBuffer);

Since NameBuffer and FilterBuffer are input buffers, they need to be
initialized. The output buffer does not need to be initialized.

The following code initializes NameBuffer to the DSV_SEARCH operation.

retcode = NWDSInitBuf(context, DSV_SEARCH, NameBuffer);

NDS and Bindery Service Group

NDS: Concepts 160

The requested attributes should be stored in NameBuffer. In this case, only
the attribute Surname is requested.

retcode = NWDSPutAttrName(context, NameBuffer, "Surname");

FilterBuffer is initialized to the DSV_SEARCH_FILTER operation:

retcode = NWDSInitBuf(context, DSV_SEARCH_FILTER, FilterBuffer);

Finally, you should allocate a filter cursor and initialize the cursor to the
current insertion point. The data structure for the filter cursor is
Filter_Cursor_T, which is defined in NWDSFILT.H.

retcode = NWDSAllocFilter(&FilterCursor);

Related Topics:

Expression Filters for NDS Searches

Searching NDS

NDS Search Introduction

Canonicalized Names

Canonicalized Names are Context Names that are fully distinguished. Context
names are set to canonicalized with DCV_CANONICALIZE_NAMES (see
Context Flags).

There two definitions of what a name in canonical form means. If you are
talking about NDS in general, then a name in canonical form is a name that
is fully distinguished and that is fully typed. If you are talking about context
flags (specifically the DCV_CANONICALIZE_NAMES flag), a name in
canonical form is a name that is fully distinguished only.

The DCV_CANONICALIZE_NAMES flag can appear to be working in a
completely opposite way than you might expect. When this flag is set, the
libraries expect and return partial names. This means that any name you
pass through the functions is going to have the context appended on the end
(unless the name is preceded by a period). When this flag is clear, the
libraries are going to expect and return fully distinguished names.

If a name in the canonical form means it is fully distinguished, why do the
libraries expect and return fully distinguished names when the
DCV_CANONICALIZE_NAMES flag is turned off? Think of this flag as a
switch that turns on and off a machine that canonicalizes names. When the
switch is turned off, the libraries do not touch the name you pass in and just
hand it off to NDS. In other words, the name "canonicalizer" is turned off.
Because of this, you must pass in fully distinguished names because that is
all NDS really knows how to handle. When the switch is turned on, the
name "canonicalizer" is turned on and appends the context to any name
passed in that is not preceded by a period.

NDS and Bindery Service Group

NDS: Concepts 161

Related Topics:

Default Typing Rule

NDS Context: Guides

Change Types for NWDSPutChange

Table auto. NWDSPutChange Change Types

Value Change Type Description

0x00 DS_ADD_ATTRIBUT
E

Adds a new attribute to an object.
Adding an attribute requires the
attribute name. An attempt to add an
already existing attribute results in
an error.

0x01 DS_REMOVE_ATTRI
BUTE

Removes an attribute from an object.
Removing an attribute requires to
attribute name. An attempt to
remove a nonexistent attribute
results in an error. This operation is
not allowed if the attribute is present
in the RDN.

0x02 DS_ADD_VALUE Adds a value to an attribute. Adding
values requires the attribute name.
Attribute values inserted in the
buffer following the change record
are added to the specified attribute.
An attempt to add an already
existing value results in an error. An
attempt to add a value to a
nonexistent attribute results in an
error.

0x03 DS_REMOVE_VALUE Removes values from an attribute.
Removing values requires the
attribute name. Attribute values put
in the buffer following this change
record are removed from the
specified attribute. If the values are
not present in the attribute, an error
results. This operation is not allowed
if one of the values is present in the
RDN.

0x04 DS_ADDITIONAL_V
ALUE

Adds an additional value to a
multivalued attribute.

0x05 DS_OVERWRITE_VA
LUE

Modifies an attribute value without
needing to remove the old value first

NDS and Bindery Service Group

NDS: Concepts 162

and then add the new value.

0x06 DS_CLEAR_ATTRIBU
TE

Modifies an attribute value without
needing to remove the old value first.

0x07 DS_CLEAR_VALUE Clears an attribute value without
checking to see if the value exists.

Related Topics:

Determining Access Privileges Required for an Operation

NDS Access: Guides

Character Encoding

Character sets familiar to humans are represented in computers by a
sequence of bit settings. A complete set of computer representations
mapped to human readable characters is stored in memory in what is called
a code page.

Unfortunately, the same set of characters may have different computer
representations. One computer might send a set of bits with binary value 65
representing the letter "A" but the receiving computers code page interprets
65 as something entirely different.

To resolve this and other multilingual translation problems, a group of
responsible and influential computer companies formed the Unicode*
Consortium. They established a 16-bit representation for almost every
character used in any language. Subsequently, the ISO adopted the Unicode
set as a subset of its 10646 specification, which is meant to do the same thing.

All NDS information is stored and transmitted in Unicode representation.
Since not all computers today know how to convert Unicode into human
readable characters, a translation from Unicode to the computer's local code
page representation is often needed. By default, the library converts all
strings from Unicode to the local code page representation, but this
conversion can be disabled if desired.

Related Topics:

Context Settings

NDS Context: Guides

Class Definition Creation

To create a new object class, you must follow a five-step process:

1. Declare the needed variables.

NDS and Bindery Service Group

NDS: Concepts 163

2. Allocate and initialize a request buffer.

3. Fill out the class information structure.

4. Place the attribute information into the request buffer.

5. Create the new object definition.

Suppose you wanted to create a new class called "Toaster" class. Your first
step would be to declare the needed variables:

NWDSCCODE ccode;
NWCLASS_INFO toastInfo; // class info structure
NWDS_BUFFER *toastBuffer; // request buffer

A buffer of type NWDS_BUFFER is needed as a request buffer and a
structure of type NWCLASS_INFO is needed to store the class information.

The next step is to allocate and initialize the request buffer:

ccode = NWDSAllocBuf(DEFAULT_MESSAGE_LEN, &toastBuffer);
ccode = NWDSInitBuf(context, DSV_DEFINE_CLASS, toastBuffer);

Once the buffer has been initialized, your next step is to fill out the class
information structure:

toastInfo.classFlags = DS_EFFECTIVE_CLASS; // Set flags to effective class
toastInfo.ans1ID.length = 0; // Not used in this example
toastInfo.ans1ID.data[0] = 0; // Not used in this example

With the structure filled out, your next step is to start placing the attribute
information into the request buffer. There are five categories of class items
that you must place into the class buffer. You call NWDSBeginClassItem to
start a new category. In fact, this function must be called for each category,
even if you are not going to add items to it. To add items to a category, you
call NWDSPutClassItem for each item added. Here are the five categories
of class items in the order they are called:

1. Super class names

2. Containment class names

3. Naming attribute names

4. Mandatory attribute names

5. Optional attribute names

ccode = NWDSBeginClassItem(context, toastBuffer); // Super class names
ccode = NWDSPutClassItem(context, toastBuffer, "Device");

ccode = NWDSBeginClassItem(context, toastBuffer); // Containment class
 // No new Containment class names

NDS and Bindery Service Group

NDS: Concepts 164

ccode = NWDSBeginClassItem(context, toastBuffer); // Naming attributes
 // No new Containment class names

ccode = NWDSBeginClassItem(context, toastBuffer); // Mandatory attributes
 // No new Mandatory attributes

ccode = NWDSBeginClassItem(context, toastBuffer); //Optional attributes
ccode = NWDSPutClassItem(context, toastBuffer, "Toast Setting");
ccode = NWDSPutClassItem(context, toastBuffer, "Status");

Mandatory attributes must be added during the creation of a class
definition. You cannot go back later and use NWDSModifyClassDef to add
a mandatory attribute. Nevertheless, you should be very conservative about
making an attribute mandatory.

The final step is to create the new object class definition:

ccode = NWDSDefineClass(context, "Toaster", &toastInfo, toastBuffer);
if (ccode < 0)
 printf("Error while creating class: %d\n", ccode);

NWDSDefineClass requires four arguments: the NDS context handle, the
name of the new class, the address of the class information structure, and a
pointer to the request buffer.

Related Topics:

Class Maintenance Information

Creating a Class Definition

Creating a Class Definition: Example

Reading a Class Definition: Example

NDS Object Class Definitions

NDS Schema: Guides

Class Inheritance Rules

Class inheritance is determined by a class's super class list. Class inheritance
is illustrated in the following figure by the relationship between the classes
Top, Device (Class) and Computer. Computer has Device as a super class
and inherits all the features defined by Device. Device and Computer inherit
from Top, because Top is a superclass of Device.

Figure 9. NetWare 4.0 Class Inheritance for Computer Class

NDS and Bindery Service Group

NDS: Concepts 165

A computer is a special kind of device. The Computer class uses all of the
attributes from the Device class but adds several attributes to accommodate
the needs of computers. A different type of device adds different attributes
than a computer, but the new class and the Computer class inherits all of the

NDS and Bindery Service Group

NDS: Concepts 166

than a computer, but the new class and the Computer class inherits all of the
attributes from the Device class.

In the example, the Computer class inherits all of the attributes defined by
the Device class, including the containment classes Organization and
Organizational Unit, and a naming attribute, Common Name. To the
definition of Device, Computer adds a few optional attributes (such as
Server and Status) that accommodate the needs of computer objects.

According to the object class definition, a Computer object could appear
only as a subordinate of objects belonging to either the Organization or the
Organizational Unit class. The object would be recognized by its common
name and might be assigned various optional attributes. In this case,
Computer refines the definition of the Device to serve a particular class of
devices.

Related Topics:

Structure Rules

Super Class Structure

Class Maintenance Information

In addition to the basic types of information used to construct a class, NDS
stores additional information to maintain the class. NWCLASS_INFO
contains the class maintenance information.

Class maintenance information includes the classes ASN.1 ID and a set of
class flags identifying the status of the class. The following table lists the set
of class flags.

Table auto. Class Flags

Flag Comment

DS_CONTAINER_CLASS If TRUE, objects of the class can
have subordinates.

DS_EFFECTIVE_CLASS If TRUE, the class can be used
as a base class.

DS_NONREMOVABLE- _CLASS If TRUE, the class definition
can't be removed from the
schema.

DS_AMBIGUOUS_NAMING If TRUE, the class can't be used
as a base class.

DS_AMBIGUOUS_CONTAINMENT If TRUE, the class can't be used
as a base class.

The ASN.1 ID is an object identifier created according to the rules specified

NDS and Bindery Service Group

NDS: Concepts 167

in the ASN.1 standard. The object identifier is encoded using the
ASN.1-BER rules. It is optional. If no ASN.1 object identifier has been
registered for the attribute, a zero-length octet string is specified.

Related Topics:

Restrictions on New Classes

NDS Schema: Guides

Configurable NDS Functions

NWDSRead is a representative of NDS functions that are configurable.
(Others include NWDSSearch, NWDSReadClassDef, and
NWDSReadAttrDef.) These functions let you configure the results to be
returned.

In configurable functions, infoType and allAttrs act as configuration flags.

infoType lets you define the extent of the information returned. If infoType
is DS_ATTRIBUTE_NAMES (0), only the names of attributes are
returned. If infoType is DS_ATTRIBUTE_VALUES (1), the attribute
names are accompanied by their attribute values.

allAttrs defines the scope of the request. If allAttrs is TRUE (1),
information is returned for all attributes associated with the object. If
allAttrs is FALSE (0), you must specify the attributes to be read.

Results are returned in an output buffer that must be allocated by the
application. Depending on the size of the output buffer and the amount of
information returned, you may need to call a function several times to
retrieve all the results.

Related Topics:

Controlling Iterations

NDS: Functions

NDS Access: Guides

Contained By Classes

The following table shows both types of objects and the object types they
can be contained by.

Object Class Contained Classes

AFP Server Organization

Organizational Unit

NDS and Bindery Service Group

NDS: Concepts 168

Alias Special

Bindery Object Organization

Organizational Unit

Bindery Queue Organization

Organizational Unit

Computer Organization

Organizational Unit

Country Top

Directory Map Organization

Organizational Unit

External Entity Organization

Organizational Unit

Group Organization

Organizational Unit

List Organization

Organizational Unit

Locality Country

Organization

Organizational Unit

Message Routing Group
(Class)

Organization

Organizational Unit

NCP Server Organization

Organizational Unit

Organization Country

Locality

Top

Organizational Role Organization

Organizational Unit

Organizational Unit Locality

Organization

Organizational Unit

Print Server (Class) Organization

Organizational Unit

Printer (Class) Organization

Organizational Unit

Profile (Class) Organization

Organizational Unit

Queue (Class) Organization

Organizational Unit

Top None

NDS and Bindery Service Group

NDS: Concepts 169

Unknown (Class) None

User (Class) Organization

Organizational Unit

Volume (Class) Organization

Organizational Unit

Noneffective classes are not represented in this chapter since they cannot be
used to create objects in NDS. They are only used to define rules for other
object classes to inherit.

Related Topics:

Containment Classes

Structure Rules

Containment Classes

Objects that can contain other objects are called container objects. Container
objects are the branches of the NDS tree and provide a structure that is
similar to a directory in a file system. Objects that cannot contain other
objects are called noncontainer or leaf objects. Leaf objects represent the
actual network resources that perform some function in the NDS tree, such
as Users, Printers, Modems, Servers, or Volumes.

Containment rules of an object limit the possible locations for the object in
the NDS tree. An object can be contained by only those objects listed among
the containment classes of the object. Container objects are also called
parent objects.

For each object class, a list of containment classes specifies where an object
of that class may appear in the hierarchical structure of the NDS tree. An
object can be immediately subordinate to only those objects whose classes
appear in the containment list of the object's expanded class definition.
Containment classes limit the possible locations of an object in the NDS tree,
thus restricting the order and types of partial names that appear in the
object's complete name.

Containment helps to ensure that the NDS tree expands in a consistent and
logical fashion. For example, a Country object can only be subordinate to the
root of the tree. Consequently, where the name of a country is present in a
complete name, it is always the most significant component. The name of a
country can never be subordinate to the name of an organization or a
locality. Other objects, however, can also be subordinate to the root, so a
country name is not necessarily the most significant component of a
complete name.

Containment classes, while helping to control the structure of NDS, must
also be flexible enough to accommodate a variety of organizational

NDS and Bindery Service Group

NDS: Concepts 170

problems. An example is the relationship between the classes Organization
and Locality. Each class specifies the other as a containment class. This
allows an administrator to decide which hierarchical order best represents
his organization.

The following table shows the containment classes, and the object types that
they can contain.

Object Class Contained Classes

Top Country

Organization Organizational Unit

Country Locality

Organization Organizational Unit

Locality Organization

Organizationa
l Unit

Organization

Organizationa
l Unit

Leaf objects

Locality Organizational Unit

Related Topics:

Name Rules

Contained By Classes

Structure Rules

Context Flags

Context Flags, which are associated with the DCK_FLAGS context key,
determine how requests made to NDS are processed and how data is
returned from the functions. For more information see Context Key Values.

Each context you create has its own set of flags that govern the way the
functions return information. The data type that defines a context flag is a
nuint32 (unsigned 32-bit integer).

There are two flags that you will deal with all the time,
DCV_TYPELESS_NAMES (see Typeless Names) and
DCV_CANONICALIZE_NAMES (see Canonicalized Names).

The following table defines the flags of a context:

Define Name Bit Initia Definition

NDS and Bindery Service Group

NDS: Concepts 171

l
Valu
e

DCV_DEREF_ALIASES 0 1 If set, libraries act on
objects referenced by
alias, not on the alias
object.

DCV_XLATE_STRINGS 1 1 If set, libraries return
values in the local code
page.

DCV_TYPELESS_NAME
S

2 0 If set, libraries return
typeless names.

DCV_ASYNC_MODE 3 n/a Reserved.

DCV_CANONICALIZE_
NAMES

4 1 If set, libraries
canonicalize names
passed in and return
partial names.

DCV_DEREF_BASE_CLA
SS

5 0 If set, an alias object's
base class is set with the
dereferenced value
instead of "Alias". This
flag affects List, Read,
and Search operations.

DCV_DISALLOW_REFE
RRALS

6 0 Is set, the NDS agent is
disallowed from referring
the client agent to a
differenct NDS agent.
This restricts the name
resolution to the NDS
agent being addressed.

The following example demonstrates how to work with context flags. First,
we create a context. We then read the flags, clear the
DCV_DEREF_ALIASES flag, set the DCV_TYPELESS_NAMES flag. When
finished, we free the context.

NWDSCCODE ccode;
NWDSContextHandle context;
nuint32 flags;

context = NWDSCreateContext();
if(context == (NWDSContextHandle)ERR_CONTEXT_CREATION)
 /* HANDLE ERROR */

ccode = NWDSGetContext(context, DCK_FLAGS, &flags);
if(ccode)
 /* HANDLE ERROR */

NDS and Bindery Service Group

NDS: Concepts 172

flags &= ~DCV_DEREF_ALIASES;
flags |= DCV_TYPELESS_NAMES;

ccode = NWDSSetContext(context, DCK_FLAGS, &flags);
if(ccode)
 /* HANDLE ERROR */

/* NDS Code */

NWDSFreeContext(context);

Related Topics:

Context Name

NDS Context: Guides

Context Key Values

Context Key Values explains the key parameter required for Reading Context
Information or for Modifying Context Information.

The two functions for getting and setting different aspects of the context are
NWDSGetContext and NWDSSetContext. Because both of these functions
require a key value as a parameter.

The key parameter acts as an index into the context structure. The keys that
can be used here are defined in the following table along with the
description of what each key does. The two parts of the context that you
deal with the most are the context flags and the context name.

Table auto. Context Key Table

Key Name Description

DCK_FLAGS Context
Flags

Determines how requests made to
NDS are processed and how data
is returned from the functions.

DCK_CONFIDENCE Confide
nce

Determines what replica type to
use when processing requests.

DCK_NAME_CONTE
XT

Context
Name

The current view of the NDS tree.
Much as your current path
changes as you run applications,
your context changes as you
access data in the tree.

DCK_TRANSPORT_T
YPE

Transpor
t Type

Allows for an implementation of
NDS on some other protocol to
interface with NDS.

DCK_REFERRAL_SC
OPE

Referral
Scope

For future use. NDS does not
currently use this variable.

NDS and Bindery Service Group

NDS: Concepts 173

OPE Scope currently use this variable.

DCK_LAST_CONNEC
TION

Last
Connecti
on

Contains the connection handle of
the last server to which the library
sent a request. This variable is
cleared when the tree name is
changed.

DCK_TREE_NAME Tree
Name

Contains the name of the tree in
the current context.

Related Topics:

Context Flags

NDS Context: Guides

Context Name

Context Name is one of the Context Key Values. Changing the Context Name
changes your location in the NDS directory tree.

The context name is the most visible part of the context structure. The
context name is the parameter that is set in the client configuration.
Changing this value is like changing directories on a file system.

The context name is stored in memory as a text string, so any value is valid.
The context could be set to "Mickey Mouse and Goofy Too" and
NWDSSetContext would not fail. If you set the context without types, the
context is returned without types.

The following code segment shows how to get and set the context name.

NWDSCCODE ccode;
NWDSContextHandle context;
nstr8 context_name[MAX_DN_CHARS+1];

context = NWDSCreateContext();
if(context == (NWDSContextHandle)ERR_CONTEXT_CREATION)
 /* HANDLE ERROR */

ccode = NWDSGetContext(context, DCK_NAME_CONTEXT, context_name);
if(ccode)
 /* HANDLE ERROR */

strcpy(context_name, "OU=ENGINEERING.O=ACME");

ccode = NWDSSetContext(context, DCK_NAME_CONTEXT, context_name);
if(ccode)
 /* HANDLE ERROR */

/* NDS Code */

NDS and Bindery Service Group

NDS: Concepts 174

NWDSFreeContext(context);

Related Topics:

Country Name

NDS Context: Guides

Context Settings

Context Settings briefly lists the possible Context Key Values and Context
Flags with their default values if applicable.

When you create a new context variable with NWDSCreateContextHandle,
you get a handle to the newly created context. The context handle settings
are as follows:

DCK_FLAGS = The context flags

DCV_DEREF_ALIASES = ON

DCV_XLATE_STRINGS = ON

DCV_TYPELESS_NAMES = OFF

DCV_ASYNC_MODE = OFF

DCV_CANONICALIZE_NAMES = ON

DCV_DEREF_BASE_CLASS = OFF

DCV_DISALLOW_REFERRALS = OFF

DCK_CONFIDENCE = DCV_LOW_CONF (0)

DCK_NAME_CONTEXT = The default name context held by the
requester or, if the platform is NLM, the bindery context of the server.
Otherwise, set to [Root].

DCK_TRANSPORT_TYPE = NT_IPX (0)

DCK_REFERRAL_SCOPE = DCV_ANY_SCOPE (0)

DCK_DEREF_BASE_CLASS = -1 (Invalid connection)

DCK_TREE_NAME = The preferred tree according to the requester or, if
the platform is NLM, the name of the tree to which the server belongs.

Related Topics:

NDS Context

NDS Context: Guides

NDS and Bindery Service Group

NDS: Concepts 175

Controlling Iterations

The iterationHandle parameter controls the retrieval of output data that is
larger than the output buffer pointed to by the subordinates parameter.
Before the initial call to an iterative function like NWDSList, you should set
the contents of the iteration handle pointed to by the iterationHandle
parameter to NO_MORE_ITERATIONS.

When the function returns from its initial call, if the output buffer holds the
complete results, the value of iterationHandle is set to
NO_MORE_ITERATIONS. If the iteration handle is not set to
NO_MORE_ITERATIONS, make another call to the function to obtain
another portion of the results. When the results are completely retrieved, the
value of the iteration handle is once more set to NO_MORE_ITERATIONS.

If you want to end an iterative operation before the complete results have
been retrieved, call NWDSCloseIteration with a value of DSV_LIST to free
memory associated with the list operation.

Related Topics:

Read Requests

NDS Access: Guides

Convergence Attribute

With multiple replicas of the same information existing on the network, it is
inevitable that for brief periods of time the information in one replica differs
from that in the others. When the information in a partition is changed, that
replica is not synchronized with the other replicas. When this occurs, an
immediate (within 10 seconds) effort is initiated to update all replicas so
they all have the same information. Any writable replica can be changed
and initiate this synchronization process.

Related Topics:

All Up To Attribute

Partition Information

Country Name

The client agent expands any partial names into complete names before
submitting the names to NDS. If part of the complete name is a Country
name, the client agent also checks the Country name length. If the Country
name length is not exactly two letters, the client agent does not submit the

NDS and Bindery Service Group

NDS: Concepts 176

request to NDS. This is because all valid Country names are two letters in
length.

The client agent does not check the value of the abbreviation to determine if
it is one of the valid Country names. The client agent considers any two
letters to be a legal Country name (although the letters themselves may not
specify a legal Country name).

The two-letter country codes are taken from ISO 3166.

Related Topics:

Attribute Type Abbreviations

NDS Context: Guides

Default ACL Templates

In order to guarantee a minimum amount of functionality and access
security for newly created objects NDS provides a few default ACL
templates. These templates are included in the Schema definitions. If during
creation of an object no ACLs are specified then the default ACL templates
are used to create an ACL for the object. The templates specify ACL values
that will give the object being created a functional degree of NDS security.

If an ACL attribute is specifically created when an object is created then the
templates are not used at all. NDS automatically checks to see if an ACL is
created and creates one based on the templates if it does not exist.

Related Topics:

Inheritance in NDS

Access Control Lists

NDS Security: Concepts Guide

Default Typing Rule

If an application requests the library to apply name types to a typeless
name, the following rule is applied:

Default Typing Rule

The most significant (rightmost) component is an Organization (O).

The least significant (leftmost) component is a Common Name (CN).

All intervening components (in the middle) are Organizational Units
(OU).

NDS and Bindery Service Group

NDS: Concepts 177

The library adds types to any components of a name that are passed into the
API without a type. If you pass in a name like "JRoss.Engineering.ACME"
the libraries prepend types to each component and forward the name to
NDS as "CN=JRoss.OU=Engineering.O=ACME". The library does not know
the correct types to apply to names nor can it "look them up"; it simply
follows the Default Typing Rule.

NOTE: Fully typed named were required for NetWare 4.0 and 4.01
only. Support for typeless names is available in all other versions of
NetWare 4.x.

Related Topics:

Name Expansion

NDS Context: Guides

DEFAULT_MESSAGE_LEN Constant

The DEFAULT_MESSAGE_LEN constant is defined as 4 K. You could
allocate more or less than this, but there is a trade-off. The size of an output
buffer affects how the server processes a request. A server continues adding
data to the buffer until either the buffer is full or the request is satisfied.
Consequently, if you use a very large input buffer, you might wait longer
for initial results than if you use a small buffer. However, a larger buffer
might require fewer transmissions than a smaller buffer.

Related Topics:

Buffer Allocation Types and Related Functions

Preparing NDS Input Buffers

Preparing NDS Output Buffers

NDS Buffer Management Introduction

Descriptions Stored in NDS

NDS can be used to store object descriptions. A Description property can be
used to associate a descriptive string with an NDS object. The string can
contain any information that describes the object. There are various
properties that provide specific kinds of descriptive information, such as the
serial number of a device or the fonts supported by a printer.

Related Topics:

Retrieval of Information from NDS

Types of Information Stored in NDS

NDS and Bindery Service Group

NDS: Concepts 178

Determining Access Privileges Required for an
Operation

Since a subject can receive privileges to both an object and its attributes, the
combination of these privileges may determine the operations available to
the subject. Some operations on attributes require that privileges be
assigned at both the object and the attribute levels.

Also, some operations (such as search, list, or move) can involve more than
one object. It may be useful to take a closer look at the privileges involved in
specific operations. Each of the following cases explains the privileges
required at both the object and attribute level to perform a particular
operation. The following table summarizes the discussion on how privileges
are applied.

Table auto. Required Access Privileges

Operation Object
Privileges

Attribute Privileges

Compare attribute
value

NONE AN
D

Read or Compare

Read attribute value NONE AN
D

Read

List Subordinates Browse AN
D

NONE

Add object Add (on the
parent object)

AN
D

NONE

Search Browse on
each object

AN
D

Compare on each
attribute in filter; Read
on each attribute
returned.

Add attribute to
object

NONE AN
D

Write

Add value to
attribute

NONE AN
D

Write

Delete attribute NONE AN
D

Write

Delete value of
attribute

NONE AN
D

Write

Delete object Delete AN
D

Write on each present
attribute

Move object Delete (at the
source
location); Add
(at the

AN
D

Write on each present
attribute

NDS and Bindery Service Group

NDS: Concepts 179

destination)

Write self NONE AN
D

Self

Modify Name
(RDN)

Rename AN
D

NONE

It should be noted that the Supervisor privilege on an object or attribute
gives the subject all privileges allowing any of the functions to be
performed. However, the Supervisor privilege if inherited can be restricted
by an inheritance mask.

Related Topics:

NDS List Functions

NDS Access: Guides

Developing in a Loosely Consistent Environment

NDS™ is described as a loosely consistent environment, which means that
there is no guarantee that all replicas hold the same data at any one moment
in time. In other words, partition replicas are not instantaneously updated,
and a change made to one replica must be synchronized with other replicas.

The synchronization interval is established by the network administrator
and can be as short as ten seconds or as long as five minutes. In computer
program terms, even an interval of ten seconds seems like an eternity.

For a developer who is new to the NDS environment, developing can
present many new challenges. A program that works well in the test
environment can suddenly become unreliable when installed on a real
network. Or a program that seems to work on a small network might not
work at all on a large busy network. Taking time now to consider some of
the implications of working in a loosely consistent environment can save
many hours of grief later.

Related Topics:

Advantages of Loose Consistency

Disappearing NDS Objects

Another Cause of Disappearing NDS Objects

Introduction to NDS Development: Guide

Directory Information Base

NDS and Bindery Service Group

NDS: Concepts 180

The Directory Information Base (DIB) is another name for NDS. The DIB is
implemented as a set of data files managed by the NDS record manager.

Related Topics:

NDS Architecture Introduction

NDS Architecture: Concepts Guide

Disappearing NDS Objects

Let's suppose that your program creates an object in the NDS tree. After
creating the object, the program collects data that it needs to modify the
attributes of the object. This data could come from any server on the
network. Now that your program has the data it needs, the program calls
NWDSModifyObject, which returns a NO_SUCH_ENTRY (-601) error.

"You mean to tell me that even if I successfully create an object, I might not
be able to find it when I want to access it?" Yes. In the example cited above,
the operations used to correct the data for the attributes of the new object
changed the context variable that pointed to the server that contained the
replica where the new object was created. When the program attempted to
modify the object, it accessed another server containing a copy of the right
replica, but this replica had not yet been updated with the information for
the new object.

You can avoid this problem by caching the contents of the context variable
called DCK_LAST_CONNECTION immediately after creating the object.
This variable contains the name of the server where you created the object.

Another way to avoid this problem would be to create a separate context
handle for operations that deal with other objects. This would insure the
context handle for the object that was just added would not be changed.

Related Topics:

Another Cause of Disappearing NDS Objects

Developing in a Loosely Consistent Environment

Distribution of Access Control Information

By inheritance, access control information defined at one point in the NDS
tree is applied to all subordinate regions of the tree. The effect of inheritance
is cumulative. If a subject receives privileges as a user at one place in the
tree and as a group member at another point in the tree, the sum of these
privileges is available to the subject at lower points in the tree. (Inheritance
may be limited by an Inherited Rights Filter.)

The partitioning of NDS creates gaps in the flow of access control

NDS and Bindery Service Group

NDS: Concepts 181

information downward through the tree. It would be inconvenient to try to
assess a subject's inherited privileges across several partitions for each
request that the subject initiated on a particular partition. NDS alleviates
this problem through Inherited Access Control Lists (ACLs).

The Inherited ACL is an attribute attached to each partition root object. Like
a regular object ACL, each entry in the Inherited ACL has a subject field, a
protected attribute field, and a privileges field. The Inherited ACL has an
entry for every subject for which privileges have been defined in the
superior partitions.

When a name server is calculating the effective rights of a subject in relation
to a protected object, the name server begins with the Inherited ACL. To any
privileges found in the Inherited ACL, the name server adds any additional
privileges found in the given partition leading down to the protected object.

Related Topics:

Distribution of Schema Information

NDS Partition: Guides

Distribution of Schema Information

Schema information represents an important category of partition
information. The schema defines the data types for information that can be
added to the NDS tree.

Each name server maintains its own copy of the NDS schema. Changes to
the NDS schema can be made only on a server that stores a writable replica
of the NDS directory root ([root]) partition.

The background process on the server where the changes are made
propagates the schema update to all servers in the tree.

Related Topics:

Distribution of Access Control Information

NDS Partition: Guides

Distribution of the NDS Schema

The NDS schema is global. Each server stores a replica of the schema in its
entirety. The schema replica is stored separately from the partitions that
contain directory objects. Changes to any one schema replica are
propagated to the other replicas. You can perform modifications to the
schema only through a server that stores a writable replica of the root
partition. Servers storing read-only replicas of the root partition can read
but not modify schema information.

NDS and Bindery Service Group

NDS: Concepts 182

Related Topics:

NDS Schema Extensions

NDS Schema: Guides

DSI Flags

The DSI Flags affect the information returned by the NWDSSetContext,
NWDSGetContext, NWDSReadObjectInfo, NWDSList,
NWDSReadObjectDSIInfo, and NWDSGetDSIInfo functions.

If you remove the default flags from the context handle, the
NWDSReadObjectInfo and NWDSGetDSIInfo functions that follow the
NWDSList function will be affected.

If you add flags to the context handle, you can access the additional
information by calling the NWDSReadObjectDSIInfo function or by
calling the NWDSList, NWDSGetObjectNameAndInfo, and
NWDSGetDSIInfo functions in this specific order.

Valid DSI Flags follow:

00001
h

uint32 DSI_OUTPUT_FIELDS

00002
h

uint32 DSI_ENTRY_ID

00004
h

uint32 DSI_ENTRY_FLAGS: 0001h DS_ALIAS_ENTRY
0002h DS_PARTITION_ROOT 0004h
DS_CONTAINER_ENTRY 0008h
DS_CONTAINER_ALIAS 0010h
DS_MATCHES_LIST_FILTER 0020h
DS_REFERENCE_ENTRY 0040h
DS_40X_REFERENCE_ENTRY

00008
h

uint32 DSI_SUBORDINATE_COUNT: 1 if unknown

00010
h

Time DSI_MODIFICATION_TIME: 0 if unknown

00020
h

Timesta
mp

DSI_MODIFICATION_TIMESTAMP: 0 if
unknown

00040
h

Timesta
mp

DSI_CREATION_TIMESTAMP: 0 if unknown

00080
h

uint32 DSI_PARTITION_ROOT_ID: Entry ID of the
partition root entry

00100
h

uint32 DSI_PARENT_ID

NDS and Bindery Service Group

NDS: Concepts 183

00200
h

uint32 DSI_REVISION_COUNT

00400
h

uint32 DSI_REPLICA_TYPE: 0 RT_MASTER 1
RT_SECONDARY 2 RT_READONLY 3
RT_SUBREF

00800
h

Ustring DSI_BASE_CLASS

01000
h

Ustring DSI_ENTRY_RDN

02000
h

Ustring DSI_ENTRY_DN

04000
h

Ustring DSI_PARTITION_ROOT_DN

08000
h

Ustring DSI_PARENT_DN

10000
h

Time DSI_PURGE_TIME

20000
h

Ustring DSI_DEREFERENCE_BASE_CLASS

Related Topics:

DSP Flags

DSP Flags

The DSP Flags affect the information returned by the
NWDSListPartitionsExtInfo, NWDSGetPartitionExtInfoPtr, and
NWDSGetPartitionExtInfo functions and do not affect any previous
functions.

You can access the additional information by calling the
NWDSListPartitionsExtInfo, NWDSGetPartitionExtInfoPtr, and
NWDSGetPartitionExtInfo functions in this specific order.

Related Topics:

DSI Flags

Effective and Noneffective Classes

Object classes can be either effective or noneffective. The term effective
class means that you can actually create an instance of the defined object in
the NDS tree. The term noneffective class means that the class is only used
to define other classes. You cannot create an object of a noneffective class.

NDS and Bindery Service Group

NDS: Concepts 184

The Computer class, for example, is an effective class. You could create a
Computer object on the NDS tree using the Computer class. The Device
class is a noneffective class. You could not create a Device object because it
would have no real function. However, the Device class is a super class of
the Computer class and helps to define the attributes needed by the
Computer class.

Effective or noneffective status is assigned to a class when the class is
defined by NWDSDefineClass. Schema Services define a structure,
NWCLASS_INFO, that is used to flag the class effective or noneffective. This
value cannot be modified after the class is created.

Related Topics:

Class Definition Creation

Creating a Class Definition: Example

Reading a Class Definition: Example

Super Class Structure

Effective Rights Calculations

Everything described in the sections titled Rights to an NDS Object, Rights to
the Properties of an NDS Object, and Giving Rights in NDS is used by NDS
to calculate the Effective Rights of an object to another object. Inherited
Rights Filters can mask out rights that are inherited from higher up in the
tree, but may be overridden by explicitly assigned rights and security
equivalences below the Inherited Rights Filter. The important thing is to be
familiar with how each of the rights-assignment methods work. Then you
will understand how to design an NDS tree with the security implemented
as you want it, and without confusion as to why a user does or does not
have the rights you desired.

Related Topics:

Trustees

Reading Effective Rights: Example

NDS Security: Concepts Guide

Encryption in NDS

Authentication relies on encryption systems, procedures that allow
information to be transmitted in unreadable forms. (The information is
unreadable in the sense that, in its encrypted form, it is not meaningful to
anyone except to someone who has the key to decrypt it.) Authentication

NDS and Bindery Service Group

NDS: Concepts 185

uses encryption to produce the information that can authenticate a client to a
service. Encrypted information is used during the initialization phase of
authentication, as well as in the authentication itself.

Typically, an encryption process uses two inputs: the data to be encrypted
and an encryption key. The result is an unreadable message called the
ciphertext. Additional input, such as a session identification, can also be
added to the encryption process to provide an additional context for the
message. The session value ensures that the message is part of a current,
ongoing dialogue and has not been counterfeited from another session.

Deciphering an encrypted message is called decryption. Decryption
reverses the encryption process. The ciphertext and the decryption key are
fed into the decryption process, and the result is the original message. The
message can be reassembled from the ciphertext only by using the correct
decryption key.

Encryption systems can be symmetrical or asymmetrical. In a symmetrical
system, the same key is used in both the encryption and decryption
processes (The following figure shows the symmetrical encryption process).
Symmetrical encryption is fast and efficient. However, it has a significant
drawback: the key itself must somehow be distributed among the parties
exchanging messages. As a result, a medium other than the network, such as
a courier, is required to safely distribute the key among the participants.
Arranging a special distribution process can be both inconvenient and risky.

Figure 10. Symmetrical Encryption

An asymmetrical system solves this problem by using two keys, one to
encrypt and the other to decrypt. The relationship between the two keys is
mathematically complex, so it is virtually impossible to infer the value of
one key from the other. Consequently, one key can be made public without

NDS and Bindery Service Group

NDS: Concepts 186

the risk of exposing the other key. Hence, asymmetrical encryption is
referred to as public key encryption.

The one that wants to receive messages generates a key pair and distributes
the public key. Those that want to send encrypted messages do so with the
public key. Only the holder of the private key can decrypt the messages.

If you have the public key, you can encrypt messages to a client that
possesses the matching private key. You cannot use the public key to
decrypt messages that have been encrypted with the public key. Only the
private key can decrypt the messages encrypted with the public key. Since
only one person has the private key, only one person can decrypt your
messages.

Conversely, a sender can encrypt data using the private key. The recipients
of this message use the public key to decrypt the message. If the decryption
is successful, the recipient can be sure that the message was encrypted with
the corresponding private key. In this case many people can decrypt the
message, but only the holder of the private key could have generated the
message.

This application of public key encryption is the method used for creating a
digital signature for data. The primary application of public key encryption
in the NDS™ architecture is in Authentication, and is covered in detail later.

The following figure shows how asymmetrical encryption is used to create a
digital signature. Note that in this example, only the checksum is encrypted.
The encrypted checksum is sent along with clear-text (unencrypted) data.

Figure 11. Asymmetrical Encryption and Digital Signatures

NDS and Bindery Service Group

NDS: Concepts 187

NDS uses a combination of symmetrical and asymmetrical encryption to
create a procedure that is both practical and secure.

Related Topics:

Public and Private Key Pairs

Authentication

Equivalence in NDS

It is possible for an object to be associated with other objects listed in an
ACL. The association of one object with another for security purposes is
called a security equivalence.

One method for creating a security equivalence is to make one (principal)
object a member of another (secondary) object's Security Equals attribute
list. Access to a protected object can then be granted to the principal object
by granting privileges to the secondary object. If the principal is also
granted explicit access to the object, then the access privileges are the sum of
the two privilege sets. The resulting privileges after all inheritance filters are

NDS and Bindery Service Group

NDS: Concepts 188

applied are called the principal's effective privileges (or effective rights). A
principal object will receive equivalences from as many objects as it is
security equivalent to.

An object can be made security equivalent to a group object. Using the
NetWare® utilities an object is made security equivalent to any group it is
made a member of. Simply being a member of a group, however, does not
give an object privileges of the group. It is having the group in the object's
security equals list that makes the object security equivalent.

Security equivalences are also formed by virtue of a subject being a member
of a particular subtree. All objects in the tree are equivalent to their
superiors. Any privileges assigned to a parent object will be inherited by the
subordinate objects.

Security privileges can be assigned all objects in the tree by granting
privileges to [Root]. This method uses the [Root] name as the subject of the
privilege set. All objects are subordinate to the [Root] object by default so
any privileges assigned to [Root] are applied to all objects. Similarly all
NetWare 4.x objects are implicitly equivalent to [Public]. Even users not
logged in to the NetWork (not authenticated) can be given privileges to
objects in NDS by adding an ACL entry with [Public] as the subject of a
privilege set.

The following figure shows how the accumulated privileges for Hector are
determined regarding a particular protected object. Hector is the equivalent
of 4 objects: [Public], Wimple Dev Group, WimpleMakers, and Marketing.
Note that he is equivalent to WimpleMakers and Marketing by virtue of his
being subordinate to these objects in NDS. He is equivalent to [Public] by
definition and to Wimple Dev Group because his Security Equivalents
attribute includes them (though this graphic does not show it). Even though
no privileges are assigned explicitly to Hector, his aggregate privileges are
the sum of all of his equivalences. Hectors effective privileges will be his
aggregate privileges as long as no inheritance filters restrict them.

Figure 12. Security Equivalences

NDS and Bindery Service Group

NDS: Concepts 189

Related Topics:

NDS in Security Applications

NDS Security: Concepts Guide

Expression Filters for NDS Searches

You can build the search expression tree using the filter management
functions. A search expression is formed from sub-expressions that can be
linked by the logical nodes OR and AND. Each sub-expression, which
might or might not be enclosed in parenthesis, takes the form: (attribute
name token CONDITION attribute value). The condition is usually
a relational node such as EQ, GE, LE, or APPROX.

NDS and Bindery Service Group

NDS: Concepts 190

Let's look first at a simple example. The following expression sets up a
search for objects with a Device attribute with a value equal to "toaster".

Device EQ "toaster"

The next example builds a search expression that looks for user objects with
a Surname attribute not equal to "brown".

NOT(Surname EQ "brown")

Given the variety of tokens available, expressions can become quite
complex, as shown below:

(Object_class EQ "user" AND Title EQ "department head") AND
(Location EQ "provo" OR Location EQ "orem")

Tokens are the basic building blocks that convert search expressions into
search filters. A list of possible tokens follows. The token definitions can be
found in NWDSFILT.H.

FTOK_END 0 // Terminates the expression tree.
FTOK_OR 1 // Link comparison statements
FTOK_AND 2
FTOK_NOT 3
FTOK_LPAREN 4 // Group comparisons and relational arguments
FTOK_RPAREN 5
FTOK_AVAL 6 // Allows an entry to represent a value
FTOK_EQ 7 // Logical operators
FTOK_GE 8
FTOK_LE 9
FTOK_APPROX 10 // Approximate actually is a string matching operator
FTOK_ANAME 14 // Associates an attribute name with a value
FTOK_PRESENT 15 // Tests if attribute value is assigned
FTOK_RDN 16 // Used to search for an object without authentication
FTOK_BASECLS 17 // Used to search for a class without authentication
FTOK_MODTIME 18 // Returns objects modified since this time
FTOK_VALTIME 19 // Returns objects with this value that have been modified
 // since this time

Once you form a search expression, you can build the expression tree of the
search filter using NWDSAllocFilter and NWDSAddFilterToken.
NWDSAddFilterToken adds a token to the search filter. Each token
represents a node on the expression tree. If the token is an attribute name or
an attribute value, a syntax ID is required. For example, a CN (Common
Came) attribute or value is associated with the CIString (Case Ignore String)
syntax. The following code segment demonstrates how to get the syntaxID:

retcode = NWDSGetSyntaxID(context,attribute-name, &syntaxID);
NWDSAddFilterToken(FilterCursor, token, value, syntaxID);

If the token is neither an attribute name nor an attribute value, the third and
fourth parameters should be NULL, as follows:

NDS and Bindery Service Group

NDS: Concepts 191

NWDSAddFilterToken(cur,token,NULL,NULL);

NWDSAllocFilter allocates a filter expression and initializes the cursor.

The following code segment demonstrates how to build an expression into
an expression tree.

Expression:
 NOT(Surname EQ "brown')

Code Example:
 NWDSAllocFilter(&FilterCursor);
 NWDSAddFilterToken(FilterCursor, FTOK_NOT, NULL,NULL);
 NWDSAddFilterToken(FilterCursor, FTOK_LPAREN, NULL,NULL);
 NWDSGetSyntaxID(context ,"surname",&syntaxID);
 NWDSAddFilterToken(FilterCursor, FTOK_ANAME,"surname', syntaxID);
 NWDSAddFilterToken(FilterCursor, FTOK_EQ, NULL,NULL);
 NWDSAddFilterToken(FilterCursor, FTOK_AVAL,"brown", syntaxID);
 NWDSAddFilterToken(FilterCursor, FTOK_RPAREN, NULL,NULL);
 NWDSAddFilterToken(FilterCursor, FTOK_END,NULL,NULL);

After you have added all of the filter tokens to the cursor, your next task is
to store the filter expression into the filter buffer.

NWDSPutFilter(context, filterBuffer, FilterCursor, FreeValuePointer);

The FreeValuePointer parameter can be passed either NULL or a pointer to a
function that frees the attribute values.

Related Topics:

Search Parameters

Searching NDS

Giving Rights in NDS

The flexibility and power of NDS security is due not only to the rights listed
above, but in how they can be given to other objects. An object's rights can
come through five basic methods.

Explicit Rights

Explicit rights are those rights specifically given the user to an object or
its properties.

Inherited Rights

When a user is given [Object Rights] or [All Property Rights] to a
container object, the user is given the same rights to all of the
subordinate objects of that container. These rights are called Inherited
Rights because they are not explicitly given to the subordinate objects,
but are received (or inherited) from the container object.

NDS and Bindery Service Group

NDS: Concepts 192

 Note that if the user is given specific property rights, and not [All
Property Rights], those rights do not flow down to the subordinate
objects of the container. In other words, if the user has Read rights to
the Name property of a container, the user does not have Read rights
to the Name property of objects subordinate to the container.
However, if the user has [All Property Rights] to the container, the
user has [All Property Rights] to all objects subordinate to that
container as well.

Inherited Rights Filters

Inheritance of rights adds significantly to the flexibility and ease of
administration in NDS security. However, it is sometimes necessary to
stop the inheritance of certain rights. For example, suppose user Joe is
given [Object Rights] of Browse, Create, and Rename to a container.
This particular container has four subordinate container objects, each
of which has other subordinate objects. We want Joe to inherit his
rights from the first container down to all of the subcontainers except
one. In this one subcontainer, we don't want Joe to be able to create
subordinate objects. We're in a mess if we don't have a way to filter out
Joe's [Object Rights].

This is where Inherited Rights Filters (IRFs) come in. We can place an
IRF on the subcontainer where we want to filter the rights coming
down. If we place an IRF at this container that filters out the Create
[Object Rights], then all objects that have the Create [Object Rights] to
the parent of this container, do not inherit the Create right to this
container.

The IRF actually shows up in the ACL for the object. The Property is
either [Object Rights] or [All Property Rights]. The Rights part of the
ACL entry specifies which rights are allowed to be inherited. Any
rights not listed in the ACL cannot be inherited.

Security Equivalence

Security Equivalence is an easy way to grant rights to users or other
objects. When a user (in this case, a user object only) is made Security
Equivalent to another object, that user has the same rights to the same
objects as the object the user was made Security Equivalent to.

Every user object is made Security Equivalent to [Public]. The user is
also Security Equivalent to each of the objects in its Security Equals
property. Lastly, each time a user is added to a group, the user is made
Security Equivalent to that group.

Although the [Public] Security Equivalence is a special case, all other
Security Equivalence creates backlinks to other objects in the NDS tree
that must be resolved each time NDS needs to calculate the effective
rights of an object. Resolving backlinks involves lookups of objects in
the tree that aren't cached on partition boundaries. This creates
network traffic on the wire. Also, NDS is constantly verifying
backlinks in the background to make sure that any object changes in
other parts of the tree are reflected in the Security Equals property of
user objects. As more users are assigned Security Equivalence, more

NDS and Bindery Service Group

NDS: Concepts 193

network traffic is generated, and NDS must do more background
processing to maintain the backlinks.

Containment

Containment, although similar in some ways to Security Equivalence,
is much more efficient with network resources. Containment basically
means that all objects in the NDS tree are automatically assigned the
same rights as all objects that appear in their fully distinguished NDS
names. In plain language, this means that every user has the same
rights as each of its parent containers. So the user
Joe.Sales.MyCompany has the same rights as Sales and MyCompany.
Whatever rights are assigned to the Sales and MyCompany containers
are inherited by Joe. This is pretty simple. What is not as obvious is
that Joe also inherits the rights assigned to [Root]. The [Root] object is
merely a container that holds all objects in the tree. Since [Root] is
always there, it is not necessary to specify it in the distinguished
network name.

Using containment effectively causes much less network traffic than
does Security Equivalence because the information used in
containment is cached on partition boundaries, and does not create the
backlink maintenance that must be handled by NDS.

Related Topics:

Effective Rights Calculations

Reading Effective Rights: Example

NDS Security: Concepts Guide

Graphical View Explanation

The Graphical View of NDS Object Class Definitions module provides a
visual representation of the Base Schema. It shows the object classes in the
structure of the class hierarchy, rather than in alphabetical order presented
by the text in NDS Object Class Definitions. The purpose of this appendix is
to provide a visual view of the object classes, super classes, and inheritance.

Each object class is represented by a box that contains the name of the object
class, its immediate super class, and a listing of the containment rules and
attributes that are defined for that object class. This view does not show the
default ACL templates that are listed in NDS Object Class Definitions, nor
does it provide comments about the attributes.

In this view, the object classes that are placed above an object class are its
super classes. The object classes that are below an object class are its
subordinates. An object class inherits the rules and attributes defined by all
of its super classes, the arrows show the direction of flow for inheritance.

Objects inherit from their super classes but they do not inherit from their
subordinates. For example, Device (Class) inherits from Top, but it does not

NDS and Bindery Service Group

NDS: Concepts 194

subordinates. For example, Device (Class) inherits from Top, but it does not
inherit from Computer. However, Computer inherits from Top and from
Device.

Each object class has the following information listed:

Super Classes. Objects of the class inherit information types and attributes
from classes listed here. All object classes must have one or more super
classes, except Top, which is a super class to all classes. (In this view, Top is
shown multiple times, since it is a super class to all classes.) These listings
just list the object's immediate super class.

Containment. Objects of the class may be created as subordinates in the
NDS tree to objects of the classes listed here. An object of the class may not
be subordinate to any object that is of a class not listed here.

Named By. The partial name or Relative Distinguished Name (RDN) of
objects of the class consists of at least one of the attributes listed here. These
attributes can be either mandatory or optional attributes, but at least one
must be given a value when creating an object of the class. If the only Named
By attribute is optional, it is in effect mandatory.

Mandatory and Optional Attributes. All attributes are either mandatory or
optional. If an attribute is mandatory, a value must be assigned to that
attribute. If an attribute is optional, an assigned value is not required, unless
it is the only Named By attribute.

The Containment classes and Named By attributes of a class comprise a set
of structure rules that define an object's relation to other objects in NDS. An
object's RDN is determined by its Named By attributes; its distinguished
name is determined by the objects it is subordinate, to which must be of a
class found in the Containment classes. Hence, structure rules effectively
control the formation of the distinguished names.

Related Topics:

NDS Object Class Definitions

NDS Attribute Type Definitions

Graphical View of NDS Object Class Definitions

Hierarchical Naming

The arrangement of names in the NDS tree reflects the hierarchical
relationships that exist among objects. The following figure shows an
example of a NDS tree. All the objects of this particular tree are subordinate
to the Organization (O) WimpleMakers, which is referred to as the partition
root.

Figure 13. Example NDS Tree

NDS and Bindery Service Group

NDS: Concepts 195

NDS and Bindery Service Group

NDS: Concepts 196

WimpleMakers is actually subordinate to an object called [root] All NDS
trees have [root] as the topmost object.

The Organization Unit (OU) Marketing is subordinate to WimpleMakers. At
the bottom of the tree are the names of three employees.

As you study this tree, you can observe several things. First, if you begin
with any object in the tree and follow the names back to the root, you trace a
unique path of names. For example, the naming path for Bob would include
Bob, Marketing, and WimpleMakers. The complete naming path from a
particular object to the root of NDS is called the object's distinguished name
(DN), or complete name. The distinguished name forms a unique reference
that identifies the location and identity of an object in NDS.

Another feature of the tree is that each name is identified by type. The name
WimpleMakers is of type Organization, Marketing is of type Organization
Unit, and so on. The Schema specifies the rules for object relativity within
the tree. For example, an object of type Common Name can be subordinate
to an Organizational Unit, but not the other way around.

The individual name assigned to an object is called the object's relative
distinguished name (RDN), or partial name. The partial name must be
unique in relation to the object's superior. In our example, there can be only
one object named Marketing that is subordinate to WimpleMakers, one
object named Bob that is subordinate to Marketing, and so on.

A partial name can include the name's type specification. The type and its
value are joined by an equal sign:

Common Name=Bob

Using an abbreviated attribute type, the above name is:

CN=Bob

If a partial name includes more than one naming attribute, the names are
separated by a plus sign:

L=NPD+S=Utah

When expressing part or all of a complete name, the partial names are
separated by periods. A complete name requires type specifications for each
partial name that can be specified explicitly, as shown below:

CN=Bob.OU=Marketing.O=WimpleMakers

Names without the types explicitly shown are called typeless names as
shown below:

Bob.Marketing.WimpleMakers

The types are implied based on the default context:

Components of a complete name that are further from the root are referred

NDS and Bindery Service Group

NDS: Concepts 197

to as less significant, while those closer to the root are more significant.
Thus, Bob is the least significant component in the complete name above,
while WimpleMakers is the most significant.

NDS reserves a few character symbols, for denotative purposes. The
reserved characters are the period (.), the comma (,), the equal sign (=), the
plus sign (+), and the backslash (\).

If these characters are a part of a name, then they must be escaped with a
backslash (\). To show the period in "Inc." you would use the backslash, as
shows in the following example:

OU=Bearskins, Busbies, and Green Berets, Inc\..O=WimpleMakers

Related Topics:

Typeless Names

Attribute Type Abbreviations

NDS Context

NDS Context: Guides

Inheritance

Suppose you wanted to create a Toaster object class and give it attributes
that apply only to toasters. You could assign your Toaster object class to the
Device class for inheritance purposes. The Device class contains attributes
that would be relevant to any device on the network, such as computers,
printers, modems, or even toasters. The Toaster class would inherit the
attributes of the Device class.

Here is a partial listing of the attributes of the Device object class: CN
(Common Name), Object Class, ACL, Description, Locality Name, Network
Address, and Serial Number. Two of these attributes, Object Class and ACL,
were inherited from Top, which is the super class of Device. The Top object
class contains attributes that are relevant to all objects on the network.

The principle of inheritance from super classes saves you from the task of
redefining every attribute that your class needs. You are free to define only
those attributes that are unique to your new class.

Related Topics:

Class Inheritance Rules

Super Class Structure

Inheritance in NDS

NDS and Bindery Service Group

NDS: Concepts 198

Access control privileges are applied according to the hierarchical structure
of NDS. For example, if a subject has been granted the Browse privilege for
an object, the subject will also have the privilege to Browse that object's
subordinates. Applying a particular trustee privilege set to the protected
object's subordinates is called rights inheritance.

Privileges assigned at the object level can be inherited in this manner.
Trustee assignments made to all attributes can be inherited as well.
However, trustee assignments given for individual attributes do not flow
down the tree to subordinate object's attributes.

Inheritance can be restricted by Inheritance Masks. An inheritance mask is
an entry in the ACL whose subject field contains a special inheritance mask
name. The privilege set in the inheritance mask lists those privileges that
may be granted through inheritance. Inheritance masks can be defined at
both the object level and the attribute level. Inheritance at the object level
and the attribute level are kept separate.

The following figure shows how inheritance operates. In this figure, a
subject is assigned privileges to one object that is the superior of another
object. The subject has not been assigned privileges (R, D, A, and B) to the
subordinate object. By inheritance, the subject would normally have the
same rights on the subordinate object. The subordinate object, however, has
an inheritance mask that allows only B to be inherited. As a result, the R, D,
and A privileges are not allowed and only the masked privilege is inherited.
If the inheritance bit is set the privilege is inheritable.

Figure 14. Inheriting Access Privileges

NDS and Bindery Service Group

NDS: Concepts 199

An inheritance mask applies only to inherited rights. If a subject receives
privileges to a protected object by explicit values in the ACL, inheritance
does not apply and the inheritance mask is ignored. However, where no
ACL value is defined for a subject, the inheritance mask indicates which
privileges may be inherited. Assigning an inheritance mask to an object or
attribute is optional. If no inheritance mask exists all inherited privileges are
granted.

Related Topics:

Inheritance Masks

NDS Security: Concepts Guide

Inheritance Masks

Inheritance Masks control the inheritance of privileges. This implies that
Inheritance Masks are used to selectively filter privileges down the NDS
tree. Inheritance Masks are stored as ACL values of NDS objects. NDS uses
this mask to compute the effective rights one object has on another object or
attribute.

NDS and Bindery Service Group

NDS: Concepts 200

Inheritance Masks can be defined for objects, individual attributes, or all
attributes of an object. Inheritance Masks are optional. In some Novell
literature these masks are referred to as Inherited Rights Filters (IRFs). When
programmers request creation of one of these masks they must specify
[Inheritance Mask] as the Subject Name of the ACL value.

Related Topics:

Rights to an NDS Object

Inheritance in NDS

NDS Security: Concepts Guide

Initialization Operations for NDS Buffers

Value Operation Type

1 DSV_RESOLVE_NAME

2 DSV_READ_ENTRY_INFO

3 DSV_READ

4 DSV_COMPARE

6 DSV_SEARCH

7 DSV_ADD_ENTRY

8 DSV_REMOVE_ENTRY

9 DSV_MODIFY_ENTRY

10 DSV_MODIFY_RDN

11 DSV_DEFINE_ATTR

12 DSV_READ_ATTR_DEF

13 DSV_REMOVE_ATTR_DEF

14 DSV_DEFINE_CLASS

15 DSV_READ_CLASS_DEF

16 DSV_MODIFY_CLASS_DEF

17 DSV_REMOVE_CLASS_DEF

18 DSV_LIST_CONTAINABLE_CLASSES

19 DSV_GET_EFFECTIVE_RIGHTS

20 DSV_ADD_PARTITION

21 DSV_REMOVE_PARTITION

22 DSV_LIST_PARTITIONS

23 DSV_SPLIT_PARTITION

NDS and Bindery Service Group

NDS: Concepts 201

24 DSV_JOIN_PARTITIONS

25 DSV_ADD_REPLICA

26 DSV_REMOVE_REPLICA

27 DSV_OPEN_STREAM

28 DSV_SEARCH_FILTER

31 DSV_CHANGE_REPLICA_TYPE

38 DSV_SYNC_PARTITION

39 DSV_SYNC_SCHEMA

40 DSV_READ_SYNTAXES

41 DSV_GET_REPLICA_ROOT_ID

42 DSV_BEGIN_MOVE_ENTRY

43 DSV_FINISH_MOVE_ENTRY

44 DSV_RELEASE_MOVED_ENTRY

45 DSV_BACKUP_ENTRY

46 DSV_RESTORE_ENTRY

50 DSV_CLOSE_ITERATION

53 DSV_GET_SERVER_ADDRESS

54 DSV_SET_KEYS

55 DSV_CHANGE_PASSWORD

56 DSV_VERIFY_PASSWORD

57 DSV_BEGIN_LOGIN

58 DSV_FINISH_LOGIN

59 DSV_BEGIN_AUTHENTICATION

60 DSV_FINISH_AUTHENTICATION

61 DSV_LOGOUT

62 DSV_REPAIR_RING

63 DSV_REPAIR_TIMESTAMPS

69 DSV_DESIGNATE_NEW_MASTER

72 DSV_CHECK_LOGIN_RESTRICTIONS

Related Topics:

DEFAULT_MESSAGE_LEN Constant

Preparing NDS Input Buffers

NDS Buffer Management Introduction

Introduction to the NDS Schema

NDS and Bindery Service Group

NDS: Concepts 202

NDS™ is governed by a set of rules that define the types of objects that can
exist in an NDS tree. This set of rules is called the Schema.

The schema defines how objects in the NDS database are created and
managed through the following information types:

Object Classes, which describe the types of objects that can exist in the
database

Attribute Types, which provide particular information in an object class

Attribute Syntaxes, which define the type of data stored in an attribute
type

Each object belongs to an object class that specifies what attributes can be
associated with the object. All attributes are based on a set of attribute types
that are, in turn, based on a standard set of attributes syntaxes.

NDS has a set of built-in classes and attribute types that accommodate
general categories of network objects such as organizations, users, and
devices. This set is called the base schema. As a developer, you can build on
the base schema to create new classes for specific kinds of objects.

The NDS Schema not only controls the structure of individual objects, but it
also controls the relationship among objects in the NDS tree. The Schema
rules allow some objects to contain other subordinate objects. Thus the
Schema gives structure to the NDS tree.

The figure below shows how the Schema components and the NDS
components are interrelated. The vertical arrows indicate the structure
dependencies from the basic building blocks up to the NDS Schema and the
NDS tree, respectively. The horizontal arrows denote the Schema rules that
apply to the respective NDS components.

NDS and Bindery Service Group

NDS: Concepts 203

Related Topics:

NDS Schema Components

Synchronizing with NDS Database - part 1: Example

Synchronizing with NDS Database - part 2: Example

Synchronizing with NDS Database - part 3: Example

NDS and Bindery Service Group

NDS: Concepts 204

Lists Stored in NDS

NDS is a convenient place to store lists. A list is associated directly with a
specific object. Typically these lists contain names of other objects in NDS.
These lists might be used for distribution or authorization purposes. For
example, a distribution list can be used to determine who should receive
electronic mail messages or who is qualified to perform a specific function.
A list name identifies it as a property of an object. The list itself is the value
of the property.

If desired, members in the list can be granted the privilege of adding or
deleting themselves from the list. This privilege can be used to make a list
self-moderating. Members of the list can decide for themselves whether or
not they want to be on the list and receive the related information.

For authorization purposes, a membership list might be used to define the
objects that have access to a resource. For example, a server can have a list of
operators who are authorized to maintain it. Or, a queue object can have a
list of users authorized to place entries in the queue. NDS provides several
standard lists for specific objects, such as users and servers. Applications
can also define lists for their own special needs.

Related Topics:

Descriptions Stored in NDS

Types of Information Stored in NDS

Logical Operators for NDS Searches

AND, OR, and NOT are logical operators. These tokens express the logical
relationship among attribute value assertions. You can control precedence
among the logical operators by inserting tokens that act as parentheses. In
the absence of parentheses, the AND operator takes precedence over the OR
operator, and the NOT operator takes precedence over both.

The following table shows the logical operators and the conditions that test
TRUE for each.

Table auto. Logical Operators

Token Value Comment

FTOK_OR 1 TRUE if either subordinate node is
true.

FTOK_AND 2 TRUE only if both subordinate nodes
are true.

FTOK_NOT 3 TRUE if the node is false.

NDS and Bindery Service Group

NDS: Concepts 205

FTOK_LPAREN 4 Left parenthesis.

FTOK_RPAREN 5 Right parenthesis.

Related Topics:

Search Expression Trees

NDS Search Introduction

Lookup in NDS

Lookup is probably the most obvious approach to searching NDS. The user
identifies a particular object and NDS is called on to find it. The object is
identified by its name or by a convenient alias. Along with the name, the
user will usually specify one or more attributes. If the object is found, NDS
can return the current values of the specified attributes. To receive the
information, however, the user must possess sufficient access privileges to
the object. Lookup is supported by the Read and Compare services detailed
in the NDS API.

Related Topics:

Browsing NDS

Retrieval of Information from NDS

Mandatory and Optional Attributes

The attributes assigned to a class can be either mandatory or optional. If an
attribute is mandatory, you must assign a value. An optional attribute does
not require a value, but you are not required to do so unless the attribute is
the only attribute used for naming the object.

A client cannot associate an attribute with an object if the attribute is not
listed among the mandatory or optional attributes of the object's expanded
base class definition. If a client needs to associate an attribute with a
particular object and the attribute is not specified by the object class, then
the client must either add the attribute to the class as an optional attribute or
define a new class that inherits from the original class and includes the
additional attribute.

Suppose you wanted to create a Toaster object in your new Toaster class.
You would have at least two mandatory attributes: CN (Common Name),
inherited from the Device class; and Object Class, inherited from the Device
class, which, in turn inherited from Top. Additionally, you could make use
of any or all of the 22 optional attributes your Toaster class inherited.

Related Topics:

NDS and Bindery Service Group

NDS: Concepts 206

Attribute Type Information

NDS Schema: Guides

Mandatory Partition Attributes

The following table lists attributes that are mandatory for partition objects.

Attribute Comment

Convergence This attribute determines how frequently
the partition attempts to synchronize its
replicas.

Partition Creation Time This attribute is an identifier for the
partition's current set of replicas.

Replica This attribute stores a list of servers that
store replicas of the partition. Each entry
includes the server name, the replica type,
the replica number, and "best guess"
network address for the server.

Related Topics:

Optional Partition Attributes

Partition Information

Multiple Tree Functions

Ideally, NDS would provide us with one globally available information
tree. The tree would be multicorporate and multinational. Once we
established a connection to the global tree, we could access information and
services anywhere in the world, as long as we had the proper access rights.

The current reality, however, is not a single global tree, but a forest of
independent trees. Within many large organizations, a user may be
required to access several trees to accomplish an assigned task. For this
reason, NDS must support access to multiple trees.

The following functions provide NDS support for connecting to multiple
trees.

NWDSAuthenticateConn

NWDSCanDSAuthenticate

NWDSGetDefNameContext

NDS and Bindery Service Group

NDS: Concepts 207

NWDSGetMonitoredConnRef

NWDSOpenMonitoredConn

NWDSScanConnsForTrees

NWDSScanForAvailableTrees

NWDSSetDefNameContext

NWDSReturnBlockOfAvailableTrees

Related Topics:

NDS Search Introduction

NDS Access: Guides

Name Caching

An enhancement was made to the resolve name functionality that is
required for every request of the NDS engine and should deliver substantial
performance gains across WAN links and NetWare Connect.

The NWDSSetContext and NWDSGetContext functions can be called
using DCK_NAME_CACHE_DEPTH to query or set the depth of the name
cache (how many names the cache will remember for the context handle).

If the depth of the name cache is decreased, the current cache will not be
affected. If the depth of the name cache is set to zero, the current cache will
be completely cleared.

An effective way to clear the name cache is to call the NWDSSetContext
(context, DCK_NAME_CACHE_DEPTH, &0) function followed by calling
the NWDSSetContext(context, DCK_NAME_CACHE_DEPTH, &5)
function again.

Currently, the default depth of the name cache is five.

Related Topic:

NDS Context: Guides

Name Expansion

Names sent to NDS must also be distinguished names. What that means is
that any partial names passed in must be translated to DNs. The libraries do
this for you by appending the current context to any name that you pass in.
For example:

NDS and Bindery Service Group

NDS: Concepts 208

 Name passed in: JRoss
 Current Context: HR.ACME
 Resulting Name: JRoss.HR.ACME

So what happens if you pass a name that is already a Distinguished Name?
Like the Default Typing Rule, there are also rules for expanding names.

Name Expansion Rules

A period preceding a name prevents the libraries from appending the
context to the name.

For each trailing period, the libraries remove one component from the
context before appending it to the name.

If you place a period at the beginning of the name passed in, the libraries
treat it like a distinguished name and do not append the context to the end.
Here is an example:

 Name passed in: .Ppearson.Engineering.Pub.ACME
 Current Context: Payroll.HR.Pub.ACME
 Resulting Name: Ppearson.Engineering.Pub.ACME

For each period you place at the end of a name, the libraries remove a
naming component from the context before appending the context to the
name you passed in. For example:

 Name passed in: Ppearson.Enginnering..
 Current Context: Payroll.HR.Pub.ACME
 Resulting Name: Ppearson.Engineering.Pub.ACME

Note that in the two examples the same person is being referenced and both
examples use the same context. Also note that in the first example the name
passed in was 30 characters and the second name pass in was only 22
characters. Both examples resulted in the same name but used different
rules to achieve that name.

Related Topics:

Alias Naming

NDS Context: Guides

Name Functions

The following table shows the NDS functions that are used for performing
operations on NDS names.

Function Purpose

NWDSAbbreviateName Converts a name to its shortest, typeless
form relative to a specified name context

NDS and Bindery Service Group

NDS: Concepts 209

NWDSCanonicalizeNam
e

Converts an abbreviated name to the
canonical form

NWDSRemoveAllTypes Removes all attribute types from a
distinguished name.

Related Topics:

NDS Context

NDS Context: Guides

Name Rules

Objects are identified by their own names and the names of their parent
objects. The name of an object is called its partial name or Relative
Distinguished Name (RDN). For example, a user's partial name might be
the following.

CN=Fred

The full name of an object, which includes the names of its parent objects, is
called the complete name or Distinguished Name (DN). For example, a
user's complete name may be the following.

CN=Fred.OU=Client.OU=Engineering.O=Novell

One or more attributes are specified for each class to be used in naming
objects of that class. These are the only attributes that can serve as part of the
partial name for objects of that class. For example, Organization objects are
named by the O (Organization) attribute. This is the only attribute value that
can appear in the object's partial name. Naming attributes can be
designated as mandatory or optional, but if an optional attribute is the only
one designated in the naming attribute, in effect, it is mandatory.

Naming attributes are listed under the "Named By" headings in the object
class definitions found in NDS Object Class Definitions.

A naming attribute is not necessarily a reflection of the class to which an
object belongs. Many classes, such as Computer, User, and Server, are
named by their CN (Common Name) attribute. In such names, the name
attribute itself gives no indication as to which class the object belongs. (The
value of the name attribute might suggest the nature of the object.) On the
other hand, some naming attributes are closely tied to specific classes. For
example, the C (Country Name) attribute is used to name Country objects.

Related Topics:

Super Class Structure

NDS Names

NDS and Bindery Service Group

NDS: Concepts 210

Structure Rules

Name Server Information

Physically, a name server is a network node that administers zero or more
NDS replicas. NetWare® servers are defined in NDS as NCP Server objects.
A name server is defined as an NCP Server that provides name services for
an NDS tree. All NetWare 4.x servers are also name servers. If an NCP
Server is also a name server, a name server pseudo-object is created on that
server. The pseudo-object is not accessible to clients. It stores the following
system information that support NDS.

Server name

Network addresses

The network address of a name server is loaded by the AUTOEXEC.NCF
when the server comes up. The name server at this address is responsible for
updating this information if it changes addresses.

Related Topics:

Tree Walking

NDS Partition: Guides

Names Stored in NDS

The most significant piece of information associated with an object is its
name. A name is identification for an object within the context of NDS.
Names are intended for humans; that is, they are character strings that
humans can read and remember. The name of an object is a property of the
object.

Names are used as keys to the information stored in NDS. A person using
NDS can supply the name of an object and receive information that
describes the object. Or, a user can supply a description and receive a list of
names of objects that fit that description. By employing natural naming
conventions,NDS makes it easy for people using NDS to obtain less
intuitive kinds of information.

Related Topics:

Addresses Stored in NDS

Types of Information Stored in NDS

NDS Agents

NDS and Bindery Service Group

NDS: Concepts 211

NDS is responsible for managing the information stored in NDS and
coordinating distributed operations with other servers. It manages all NDS
requests, including those to access NDS, manage partitions, manage the
NDS Schema and perform access control, perform authentication, and do
time synchronization between servers.

NDS include synchronization of replicated information and performing
searches of the NDS information upon request.

Related Topics:

NDS Bindery

NDS Server Components

NDS Architecture Introduction

At the workstation, a user application invokes a client agent that formulates
directory requests on the user's behalf. The client agent establishes a session
with a NDS Server to which it submits the requests.

The client agent submits directory requests via the NDS Protocol. NDS
servers also use this protocol when they need to make access requests.
Existing workstations can access the information stored in NDS through
NDS Bindery and require no modifications. The following figure shows the
client/server architecture for NDS.

Figure 15. NDS Client / Server Architecture

NDS and Bindery Service Group

NDS: Concepts 212

The NDS database is called the Directory Information Base. NDS is a
collection of objects with associated attributes. An object in NDS is specified
according to the object's position in the NDS tree, the hierarchical tree of
names in NDS. To inquire about an object, a user must determine the
naming path of the object from the root of the tree to the object's name and
submit the path to an NDS server.

NDS receives and processes the request, and returns the results. NDS is part
of the NetWare® core operating system. The Directory Information Base is
implemented on NetWare 4.x servers using a native NDS record manager.

An NDS server is a NetWare server that provides NDS. All NetWare 4.x
servers provide NDS.

NDS and Bindery Service Group

NDS: Concepts 213

Related Topics:

NDS Workstation Components

NDS Server Components

NDS Architecture: Concepts Guide

NDS Access and the File System

The access controls and restrictions to NDS are similar in concept to those
used for access to the NetWare File System. This presents a potential
confusion on the issues of NDS security versus File System Security.

First of all it is important to note that the security controls for accessing the
file system are part of the file system not part of NDS.

In order to access a specific server's file system you must:

Have NDS privileges to see and locate the server and volume

Establish a licensed connection to the server.

Have file system access privileges

In order to locate the portion of the file system you want to access you must
have the ability to find the Volume object for the volume (for example,
SYS:) that you wish to access. Each volume on all fileservers in the network
will be represented by an object in NDS. If you have NDS privileges to see
and read a particular volume object then you will be able to locate the
server on which that volume resides and attempt to access that volume.
Obtaining approval to access a server based on NDS access privileges is
called authentication.

Having located the server and volume you wish to access you must then
obtain a licensed connection to the server. Each server has a limited number
of licensed connections it can handle. An object obtains one of those
connections by first authenticating itself through NDS then requesting a
connection.

If you have Write or Supervisor privileges on a server object in NDS you
automatically have Supervisor privileges on that server's file system. Other
than that your privileges to the file system of a NetWare server are
according to the trustee assignments found in the given server's file system
security mechanism.

The file system trustee assignments for NetWare 4.x OS are the same as for
previous versions of the OS. These trustee assignments are kept along side
the volume with which they are associated. They are not part of a
distributed database such as the NDS Information Base. There may be
mirroring of this information as provided by the System Fault Tolerant™ (
SFT™) feature of NetWare but this is different and separate from the

NDS and Bindery Service Group

NDS: Concepts 214

concepts and implementation of the distributed database of NDS.

If you have adequate trustee assignments your request to allocate a file
system directory handle will be granted. At that point you will be able to
access everything in that area of the file system according to your effective
(file system) rights.

NDS identifies volumes and the file system stores and enforces its own
access controls.

Related Topics:

NDS Security Function

NDS Security: Concepts Guide

NDS Attribute Functions

You can perform three types of operations on attribute type definitions as
follows:

You can create a new attribute type definition using NWDSDefineAttr.

You can read existing attribute type definitions using
NWDSReadAttrDef.

You can delete attribute type definitions using NWDSRemoveAttrDef.

Related Topics:

NDS Schema Extensions

NDS Class Functions

NDS: Functions

NDS Schema: Guides

NDS Bindery

NDS emulates Bindery by formulating NDS information into a bindery
format that can be used to respond to bindery-style requests. This is
necessary for backward compatibility with applications that perform
bindery functions.

NOTE: Bindery is limited. While it allows backward compatibility,
Bindery cannot express all of the information stored in NDS.

Related Topics:

Directory Information Base

NDS and Bindery Service Group

NDS: Concepts 215

NDS Server Components

NDS Buffer Allocation and Initialization Functions

Function Comment

NWDSAllocBuf Allocates an Buf_T structure and the
requested number of bytes.

NWDSInitBuf Initializes an Buf_T structure for input.

NWDSFreeBuf Destroys an Buf_T structure and frees the
memory allocated to it.

Related Topics:

Preparing NDS Input Buffers

Preparing NDS Output Buffers

NDS Access: Guides

NDS Buffer Management Introduction

Applications access NDS™ services through functions that might require
input and output parameters in a complex variety of data configurations.
For example, some functions require input parameters of multiple objects
with multiple attributes assigned multiple values. Other functions return
parameters that are equally complex.

To accommodate the data requirements of the various functions and to
provide a flexible client interface, most NDS functions pass input and
output parameters through specially defined local buffers. Therefore, an
understanding of buffer management is essential to developing NDS aware
programs.

In general, buffer management involves the following steps:

1. Allocate any input and output buffers required by an operation.

2. Initialize any input buffers.

3. Place any input parameters that define your operation into the input
buffer.

4. Execute the request.

5. After the operation is complete, retrieve any results from the output
buffer.

NDS and Bindery Service Group

NDS: Concepts 216

6. Clean up by deallocating buffers you no longer need.

The following topics provide further detail about NDS buffer management:

Buffer Size in NDS

Initialization Operations for NDS Buffers

DEFAULT_MESSAGE_LEN Constant

Buffer Allocation Types and Related Functions

Related Topics

Preparing NDS Input Buffers

Preparing NDS Output Buffers

NDS Access: Guides

NDS Class Functions

There are essentially five operations you can perform on object class
definitions.

You can create a new class using NWDSDefineClass.

You can modify an existing class using NWDSModifyClassDef.

You can read a class definition with NWDSReadClassDef.

You can delete a class with NWDSRemoveClassDef.

Or you can list all of the containable classes using
NWDSListContainableClasses.

Related Topics:

Attribute Types and Attribute Syntax

NDS Attribute Functions

NDS: Functions

NDS Schema: Guides

NDS Compliance to X.500 Standard

Directory services are information providers. To make the services provided
by the directory useful, applications must have standard ways to access and
interact with them. Toward this end, Xerox* created the X.500 Directory

NDS and Bindery Service Group

NDS: Concepts 217

Services Standards.

X.500 differs from other earlier directory service designs and
implementations in three main ways. First, X.500 specifies a naming and
addressing structure, which functions at a global level; that is, across
multiple organizations. Second, X.500 specifies how directory service
information should be provided not only to applications, but also to users.
And finally, X.500 supports extensive query techniques that go far beyond
standard name-to-address mapping functions.

NDS incorporates and, in its implementation, actually surpasses the X.500
standards. As such, any software designed to interact with an X.500
directory service will interact with NDS. NDS also provides many extra
functions that software users and designers can take advantage of in their
own applications.

Related Topics:

Benefits of NDS

Introduction to NDS Development: Guide

NDS Context

When dealing with NDS, a context is used as a reference point into an NDS
tree. The complete name of the container pointed to is called the name
context, and serves as a default naming path for NDS operations. When a
workstation shell is booted, the name that is used for the context comes from
the client networking configuration files. (On a DOS/Windows machine
this is known as the NET.CFG file).

An object's context can be expressed either as a Distinguished Name (DN)
or as a Relative Distinguished Name (RDN). The DN is similar to a file
name with the full path. The RDN is the distinguished name relative to the
current context. For example: a user JSmith exists in the container
HR.Novell. If you set the current context to HR.Novell, the RDN is JSmith
and the DN is JSmith.HR.Novell. However, if you set the current context to
Novell, the RDN is JSmith.HR and the DN is still JSmith.HR.Novell. In fact,
the DN is always the same regardless of the current context.

Understanding how DNs and RDNs are used is important, especially if you
are writing an application that is going to "walk the tree." If you save the
RDN and then change the current context, that RDN becomes invalid and
an error is returned. However, if an object with the same CN exists in the
new context, you don't get an error, but you do get the wrong data. For
example, you store the name JSmith and your current context is HR.Novell.
You then change the current context to Security.Novell and there happens to
be a JSmith whose DN is JSmith.Security.Novell. You would get the results
of JSmith.Security.Novell and not JSmith.HR.Novell. No error would be
returned, but you would receive the wrong data.

NDS and Bindery Service Group

NDS: Concepts 218

You might ask, "Why not always use the DN?" If you are dealing with
thousands of users and they are all several layers down in the tree, you are
going to use a lot of memory if you are using the distinguished names. The
bottom line is this: be careful about storing RDNs for later use if you are
going to be changing the current context.

The name context is implemented as a value in the operation's NDS context
variable that is created with NWDSCreateContext. Initially, the value of the
name context is taken from a global name context created as follows:

If the application is running on a workstation, the NET.CFG
configuration file is used to initialize the global name context.

If the application is an NLM™ application, the global name comes from
the server's Bindery context setting that is set with the "set bindery
context = " command. This setting can be entered at the system console,
or it can be placed in the server's STARTUP.NCF file.

When an application creates a NDS context, the name context field takes its
initial value from the global name context. Thereafter, the name context for
the current session can be modified using the NDS functions.

Note that the NDS functions do not modify the NET.CFG or
STARTUP.NCF files.

Any partial names submitted by a client for a particular request can be
expressed relative to the requester's name context. The client agent
examines each name and expands it accordingly. The following example
shows how the name context is typically applied to input name:

If the name context is

OU=Marketing.O=WimpleMakers

and the client submits the partial name

CN=Bob

the client agent appends the name context to the partial name, thus forming
the complete name

CN=Bob.OU=Marketing.O=WimpleMakers

The name context also provides one method for processing typeless names.
The sequence of types in the name context can serve as a default sequence
that the client agent applies to a typeless name. However, the effect of a
name context on input name is controlled by the client through use of
context qualifiers. The qualifiers control both the expansion of partial names
into full name paths and the typing of typeless names.

Related Topics:

Context Key Values

Hierarchical Naming

NDS and Bindery Service Group

NDS: Concepts 219

Typeless Names

NDS Context: Guides

NDS in Security Applications

This module describes how you, as a software developer, can use NDS
security in your applications.

First of all, some of the terminology changes when you go behind the scenes
to the programmer's perspective. Here are some of the most important
changes:

[Object Rights] is called [Entry Rights]

Properties are called Attributes

[All Properties Rights] is called [Attribute Rights]

Most of Security programming is very simple when you know how to read
and write information about objects in the NDS tree. Reading and writing
objects and their information is discussed in detail in other chapters, so we
will focus here on what is specific to security.

Let's look at what a program would do to read the ACLs of a particular
object. Once you become familiar with NDS programming in general as
described in the other chapters, there's not much new to security. The
following program is presented in pseudo-code to simplify our discussion:

NWCallsInit() These first two functions just set up the DLLs
NWInitUnicodeTables() for us to use.

NWDSCreateContext() Get a context allocated for our program to
 communicate with NDS

NWDSAllocBuf() Allocate a buffer for the ACL results to be
 stored in

NWDSAllocBuf() Used to store attribute names in NWDSRead

NWDSRead() infoType=1, allAttrs=FALSE, iterationHandle=-1

NWDSGetAttrCount() How many attributes are in the buffer? Better
 just be one!

NWGetAttrName() We already know the name is ACL, but we need
 the valCount

while (valcount--) Loop through the buffer, and process each ACL
{
 NWDSComputeAttrValSize() How big is our next attribute value?

NDS and Bindery Service Group

NDS: Concepts 220

 NWDSComputeAttrValSize() How big is our next attribute value?

 OurMem=malloc() Allocate memory to store the next value

 NWDSGetAttrVal() Put the attribute value (our ACL) in the
 buffer we just allocated memory for

 /* when we use the NWDSGetAttrVal() we'll be using a structure Object_ACL_T,
 which holds all of the ACL information we need. We can process this
 information to our heart's content, and let our application do whatever
 it needs to */

 free(OurMem) We need to keep memory clean!
}
NWDSFreeBuf() Free each of the buffers we allocated earlier

NWDSFreeContext() Free the context we alloced earlier

NWDSFreeUnicodeTables() Now we've cleaned up all the NDS housecleaning items

You use the standard functions NWDSModifyObject and NWDSRead for
reading and writing ACLs to objects. You will notice from the comments in
this pseudocode that reference is made to an Object_ACL_T structure. This
is the structure that holds the contents of the ACL. The structure type
definition is:

typedef struct
{
 char *protectedAttrName;
 char *subjectName;
 NWDS_PRIVILEGES privileges;
}Object_ACL_T;

Generally, you refer to specific attributes of an object when granting rights.
As discussed earlier from the administrator's perspective on security, you
can use special notations to refer to all object rights or all property rights.
These notations are summarized below.

 When you use [Public] as the subject name, you are, in effect, granting
all users those rights.

When you use [Inheritance Mask] as the subject name, you are setting up
an Inherited Rights Filter.

When you use [Entry Rights] as the attribute name, you are giving the
rights to the object, as in [Object Rights] described earlier.

When you use [Attribute Rights] as the attribute name, you are giving (or
reading) the rights to the entire set of attributes.

When you use [SMS Rights] as the attribute name, you are referring to
the rights to backup the object.

Let's say that user Joe.Sales.MyCompany was given rights to all attributes of

NDS and Bindery Service Group

NDS: Concepts 221

the printer object Printer1.Accounting.MyCompany. The protectedAttrName
would be "[Attribute Rights]", which indicates Joe has rights to all
properties, or attributes. The subjectName would be "Joe.Sales.MyCompany",
to indicate the user that has the rights. And the privileges, which is a 32-bit
value, would have the lower bits set according to the privileges granted to
user Joe.

Related Topics:

Object Management in NDS

NDS Security: Concepts Guide

NDS Input Buffer Functions

Function Comment

NWDSBeginClassItem Begins the insertion of a class definition
into an input buffer.

NWDSPutAttrName Inserts the name of an attribute into an
input buffer.

NWDSPutAttrVal Inserts an attribute value into an input
buffer.

NWDSPutChange Inserts a change record into an input
buffer.

NWDSPutClassItem Inserts a class item into an input buffer.

NWDSPutClassName Inserts the name of an object class into an
input buffer.

NWDSPutSyntaxName Inserts the name of a syntax into an input
buffer.

NWDSPutFilter Inserts a search filter expression tree into
an input buffer.

Related Topics:

NDS Output Buffer Functions

Preparing NDS Input Buffers

NDS Access: Guides

NDS List Functions

Before you can extract information from an object, you must know what
objects are available. That is the purpose of list functions. Essentially, list

NDS and Bindery Service Group

NDS: Concepts 222

functions return a list of objects that meet certain conditions.

NWDSList

Lists the objects that are subordinate to a specified object.

NWDSListByClassAndName

Lists objects of a particular object class and/or object name that are
subordinate to a specified object.

NWDSListContainers

Lists container objects that are subordinate to a specified object.

NWDSExtSyncList

Lists the immediate subordinates of an object placing restrictions on
the names, classes, modification times, and object types of the
subordinates.

Related Topics:

NDS Read Functions

NDS Access: Guides

NDS Introduction

A directory service is a specialized database that contains network
information. The information might be the name of a user, the name of a
printer, or where on the network that printer is located. The information
might even be the phone number of the local pizza delivery. NDS™ is a
database framework ready to contain any data you might want to store.

By storing network information in a single place and making it easy to
access, NDS gives users the ability to get information anytime, anywhere.

Related Topics:

Types of Information Stored in NDS

Introduction to NDS Development: Guide

NDS Names

NDS™ names are made up of a series of components and their respective
types. A typical NDS name would look something like
"CN=JRoss.OU=Engineering.O=ACME". The components of this name
represent objects in the tree and their types represent the naming attribute
of that object. So in this example, "JRoss" is the name of a user object and
CN, which means common name, is the naming attribute for a user object.
The same goes for Engineering---Engineering is the name of an
Organizational Unit and OU is the naming attribute for an Organizational

NDS and Bindery Service Group

NDS: Concepts 223

Organizational Unit and OU is the naming attribute for an Organizational
Unit. Each component in the name is separated by a period.

Related Topics:

Hierarchical Naming

Attribute Type Abbreviations

Default Typing Rule

NDS Context

NDS Context: Guides

NDS Output Buffer Functions

Function Comment

NWDSComputeAttrValSi
ze

Returns the size of the next attribute
value in a result buffer.

NWDSGetAttrCount Returns the number of attributes in a
result buffer.

NWDSGetAttrDef Returns the next attribute definition in a
buffer.

NWDSGetAttrName Returns the next attribute and the
number of associated values in a result
buffer.

NWDSGetAttrVal Returns the next value of an attribute in a
result buffer.

NWDSGetClassDef Returns the next class definition in a
result buffer.

NWDSGetClassDefCount Returns the number of class definitions in
a result buffer.

NWDSGetClassItem Returns the next item of a class item list in
a result buffer.

NWDSGetClassItemCoun
t

Returns the number of items in a class
item list in a result buffer.

NWDSGetObjectCount Returns the number of objects in a result
buffer.

NWDSGetObjectName Returns the next object name in a result
buffer.

NWDSGetPartitionInfo Returns the next partition information
structure in a result buffer.

NWDSGetServerName Returns the name of the server and the
number of partition names in a result

NDS and Bindery Service Group

NDS: Concepts 224

buffer.

NWDSGetSyntaxCount Returns the number of syntax definitions
in a result buffer.

NWDSGetSyntaxDef Returns the next syntax definition in a
result buffer.

Related Topics:

Controlling Iterations

Preparing NDS Output Buffers

NDS Access: Guides

NDS Read Functions

When we speak of reading NDS objects, we are actually talking about
retrieving the information that is stored mainly as attributes. For example, a
User object could have attributes that include the user's Surname, Email
Address, Title, Telephone Number, or maybe even an Obituary.

NWDSRead

Reads values from one or more attributes of the specified object.

NWDSReadObjectInfo

Reads object information not stored in the attributes of the object.

NWDSExtSyncRead

Reads values from one or more attributes of the specified object
allowing restrictions on modification time.

Related Topics:

Configurable NDS Functions

NDS List Functions

Deleting a User Object: Example

NDS Access: Guides

NDS Schema Components

The NDS Schema consists of three basic components:

Object Classes (Object Classes in NDS)

Attribute Types (Attribute Types and Attribute Syntax)

NDS and Bindery Service Group

NDS: Concepts 225

Attribute Syntaxes (Attribute Types and Attribute Syntax)

The following figure shows how the components are related. Attribute
syntaxes define the standard data types for values stored in NDS. Attribute
types are constructed from the attribute syntaxes to define the categories of
information that can be associated with objects. Object classes are
constructed from the attribute types. Object classes also have structure rules,
the constraints that control the construction and hierarchy of the NDS tree.

Figure 16. Schema Components

NDS and Bindery Service Group

NDS: Concepts 226

The Schema definitions themselves have a relationship with one another
that could be referred to as a structure. This Schema structure is established
through the following relationships:

Objects to other objects

Attributes to objects

Syntaxes to attributes

The Schema structure is established primarily by the super classes in the
object class definitions which are discussed in detail later.

NDS clients should note that each NDS name server stores a copy of the
NDS Schema. Writable copies of the Schema are found only on those servers
storing a replica of the root partition. The client agent automatically targets
one of these servers for Schema modifications.

Changes to the Schema are propagated across NDS according to the
synchronization schedule of each NDS server.

Related Topics:

Object Classes in NDS

NDS Schema: Guides

NDS Schema Extensions

The following list summarizes the operations you can perform on the NDS
Schema:

You can create, read, and delete attribute type definitions.

You can create, read, and delete object class definitions.

You can list containable classes.

You can modify class definitions.

You can read attribute syntax definitions.

You can read attribute syntax IDs.

The only thing you might want to do, but can't, is to create or modify an
attribute syntax. The attribute syntaxes are the most fundamental building
blocks of NDS and cannot be altered.

The following sections of this chapter introduce you to the functions used to
perform the operations in the preceding list.

NOTE: You must have Admin equivalent rights to extend the NDS
schema. And, if you are working on a workstation client, you must
initialize the Unicode tables.

NDS and Bindery Service Group

NDS: Concepts 227

Related Topics:

Distribution of the NDS Schema

Registering Attribute Types and Class Definitions

NDS Attribute Functions

NDS Class Functions

NDS Schema: Guides

NDS Search Introduction

Searching is somewhat more complicated than other NDS operations. This
is because of the many factors affecting a search operation. A search request
must include not only a search criteria, but also the area to be searched and
the amount of information to be returned for each matching object.

The following topics will make NDS searches more understandable:

Buffers Needed for NDS Searches

Expression Filters for NDS Searches

Search Parameters

Search Filters

Relational Operators for NDS Searches

Logical Operators for NDS Searches

Search Expression Trees

Related Topics:

Buffers Needed for NDS Searches

NDS Access: Guides

NDS Security Function

There is only one function specific to security, NWDSGetEffectiveRights.
By making a call to this function, you can determine the effective rights of
one object to access another object or its attributes.

Related Topics:

NDS Security Introduction

NDS and Bindery Service Group

NDS: Concepts 228

NDS Security: Concepts Guide

NDS Security Introduction

NDS Security, which is also called Access Control, is extremely powerful
and flexible. A network administrator can control access from any object in
the NDS tree to any other object in the tree. Any two users---groups,
containers, or any other NDS object---might be able to access the same
network resources in the tree in completely different ways based on their
rights. Or, they might not even be able to "see" the same objects at all.

For the sake of clarity, User objects will be used in the examples throughout
this chapter; however, security applies to almost any NDS object in the same
way it applies to a user. Any NDS object can have the same rights to other
objects as a user. Keep this in mind throughout this security discussion.

You need a good understanding of the following points about NDS
Security:

NDS security is controlled through Access Control Lists (ACLs). The ACL
of an object is an optional attribute of every object. It is assigned to the
Top class, which means it is an inherited property to every class in the
NDS tree, as every object class descends (inherits) from Top. The ACL
has an entry for every other object that has rights to this object. For
example, the ACL of a container object is a list of other objects, such as
users, that have rights to the container, and what rights they have.

ACLs track three pieces of information: the property (what part of this
object does the user have rights to?); the rights (what rights does the user
have?); and the trustee (which user has these rights?). This is a very
effective way to handle security. Any time a user wants to access the
object, NDS checks the object to make sure that the user is listed in the
ACL as a trustee of the object, and to determine what rights that user has.

When NetWare 4.1 sets up the NDS tree and base schema, a user named
"Admin" is created in the Root of the tree. This user has all rights to all
objects in the tree. If NetWare didn't create a user with all rights to all
objects, how could other objects be created, modified, or otherwise
administered? Of course, it is recommended that the first thing a network
administrator does once NetWare is installed is to assign a password to
the Admin user, and create other user objects with enough rights to
administer separate parts of the tree.

 Many of the objects in NDS are created with default ACLs attached to
them. For example, when a printer is created, the creator object has
Supervisor [Entry Rights] and the Supervisor [Object Rights] by default.
These default ACLs are defined in NDS Object Class Definitions.

Related Topics:

Access Control Lists

NDS and Bindery Service Group

NDS: Concepts 229

NDS Security Function

NDS Security: Concepts Guide

NDS Server Components

NDS performs many different functions in order to manage NDS requests.
The following figure shows the different kinds of functions and services
performed.)

Figure 17. NDS Server

Related Topics:

Table of NDS Server Utilities

NDS Agents

NDS Bindery

NDS Architecture: Concepts Guide

NDS and Bindery Service Group

NDS: Concepts 230

NDS Workstation Components

The following figure shows the components of a NetWare 4.x workstation.
Workstation components include workstation applications and various
modules for establishing and maintaining network communication.

Figure 18. NDS Workstation Architecture

The functions are linked in with the applications. They prepare and initiate
requests that need to be sent to a remote server.

The NETX.VLM is Virtual Loadable Module™ (VLM™) software that
handles the NETX shell API calls from applications. The NETX shell calls
are the network functions used in workstations with all versions of NetWare
before NetWare 4.x.

VLM.EXE is the VLM manager that handles the API calls from the
application as well as managing the operation of all VLM applications. The
Redirector is made up of many VLM applications that handle protocol
issues and the interface with the ODI drivers.

Related Topics:

NDS and Bindery Service Group

NDS: Concepts 231

Related Topics:

Workstation Applications for NDS

Application Programming Interfaces for NDS

Shell Components for NDS

NDS Architecture: Concepts Guide

Notes About Adding NDS Objects

The function NWDSAddObject is used to add leaf nodes to an NDS
directory. If those leaf nodes are container class objects, they can
subsequently have objects attached to them. When calling this function, it is
important to know the context of the object, the name you are going to give
it, and have a buffer prepared containing all required data for the object.
The following code segment demonstrates the use of NWDSAddObject:

NWDSCCODE N_API NWDSAddObject(
 NWDSContextHandle context, /* (IN) Indicates the NDS
 context for the request.*/
 pnstr8 *objectName, /* (IN) Points to the name of the
 object to be added.*/
 pnint32 *iterationHandle, /* (IN) */
 nbool8 more, /* (IN) */
 pBuf_T objectInfo); /* (IN) Points to a request buffer
 containing the attributes
 and values for the new
 object. */

The context and objectName parameters are fairly self-explanatory. The
objectInfo parameter points to a buffer, which is set up using
NWDSAllocBuf and NWDSInitBuf.

NWDSAllocBuf is used to allocate an NDS buffer. This buffer can be of
varying sizes, depending on your needs and preferences. However,
Novell® has defined in NWDSDC.H two constants that are typically used
with this function.

4096 DEFAULT_MESSAGE_LEN
64512 MAX_MESSAGE_LEN

NWDSCCODE N_API NWDSAllocBuf(
 size_t size, /* (IN) Indicates the number of bytes to allocate
 to the buffer.*/
 ppBuf_T buf); /* (OUT) Points to an Buf_T containing the
 memory allocated for the buffer.*/

NWDSInitBuf is used to initialize an NDS buffer for an NDS request.
Output buffers do not need to be initialized. For example, if you were
calling NWDSRead and wanted all of the information for a particular

NDS and Bindery Service Group

NDS: Concepts 232

object, you would not need to initialize a buffer. If, however, you wanted to
request only specific information (a specific attribute), you would have to
initialize a request buffer.

The following code segment demonstrates the use of NWDSInitBuf:

NWDSCCODE N_API NWDSInitBuf(
 NWDSContextHandle context, /*(IN) Indicates the NDS context
 for the request.*/
 nuint32 operation, /*(IN) Indicates the NDS operation
 for which the buffer is being
 initialized.*/
 pBuf_T buf); /*(IN) Points to the buffer being
 initialized.*/

When calling NWDSInitBuf, you must specify the context handle and the
buffer, as indicated in the preceding code. You must also specify the
intended use (allocation type) of the buffer in the operation parameter. See
Buffer Allocation Types and Related Functions.

After the buffer has been created, we are ready to add the information to the
buffer to create the new object. This is done by calling the
NWDSPutAttrName and NWDSPutAttrVal functions. When you fill the
buffer, you create a structure that logically looks something like this:
attribute name --- attribute value --- attribute name --- attribute value ---....
Use alternating calls to NWDSPutAttrName and NWDSPutAttrVal. The
following code segment demonstrates how you might use these functions
before adding a new user.

ccode=NWDSPutAttrName(dContext,inBuf,"Object Class");
 /* error checking goes here */
ccode=NWDSPutAttrVal(dContext,inBuf,SYN_DIST_NAME,"User");
 /* error checking goes here */
ccode=NWDSPutAttrName(dContext,inBuf,"Surname");
 /* error checking goes here */
ccode=NWDSPutAttrVal(dContext,inBuf,SYN_CI_STRING,"Smith");
 /* error checking goes here */

NWDSPutAttrName is fairly straightforward and uses the following
syntax:

NWDSCCODE N_API NWDSPutAttrName(
 NWDSContextHandle context, /*(IN) Indicates the NDS context
 for the request.*/
 pBuf_T buf, /*(IN) Points to the request buffer in
 which to store the attribute name.*/
 pnstr8 attrName); /*(IN) Points to the attribute name to
 store in the request buffer.*/

NWDSPutAttrVal is somewhat more complicated and takes the following
form:

NWDSCCODE N_API NWDSPutAttrVal(
 NWDSContextHandle context, /* (IN) Indicates the NDS context

NDS and Bindery Service Group

NDS: Concepts 233

 NWDSContextHandle context, /* (IN) Indicates the NDS context
 for the request.*/
 pBuf_T buf, /* (IN) Points to the request buffer
 being prepared.*/
 nuint32 syntaxID, /* (IN) Indicates the data type of the
 attribute value.*/
 nptr attrVal); /* (IN) Points to the attribute value to
 be stored in the request buffer.*/

SyntaxID contains the data type of the attribute value. This data type is
defined for each attribute in NDS Attribute Type Definitions. For instance,
for the attribute "Object Class" above, we input the value "User" and the
type SYN_DIST_NAME. You might ask, "Where do I find the attributes,
values, and syntax IDs for the object I'm trying to add? Furthermore, how do
I know which attributes I need?" The attribute values and syntax IDs are
found in the NDS Attribute Type Definitions. If you are trying to add a
User, for example, NDS Object Class Definitions defines the object User
(Class).

Notice that all of the mandatory attributes as well as the optional attributes
are specified. Next, for each of the attributes you want to set, go to NDS
Attribute Type Definitions and NDS Attribute Syntax Definitions. "NDS
Attribute Type Definitions" has an entry for each attribute type, for example
the CN (Common Name) attribute.

Notice that the syntax specified for CN is Case Ignore String. NDS Attribute
Syntax Definitions defines the Case Ignore String.

This gives you not only the information for the syntaxID, or
SYN_CI_STRING, but also the form that this attribute takes; in this case, a
character pointer. Some attributes take the form of more complex structures.

Now that you have the buffer set up with the appropriate attributes and
values, you're ready to call NWDSAddObject. At this point, the function is
fairly trivial. Most of the work went into setting up the buffer. As described
at the beginning of this section, NWDSAddObject takes the following form:

NWDSCCODE N_API NWDSAddObject(
 NWDSContextHandle context, /* (IN) Indicates the NDS
 context for the request.*/
 pnstr8 *objectName, /* (IN) Points to the name of the
 object to be added.*/
 pnint32 *iterationHandle, /* (IN) */
 nbool8 more, /* (IN) */
 pBuf_T objectInfo); /* (IN) Points to a request buffer
 containing the attributes
 and values for the new
 object.*/

The only thing that you need to think about at this point is the name to give
to the object.

Related Topics:

NDS and Bindery Service Group

NDS: Concepts 234

Change Types for NWDSPutChange

Adding an NDS Object

Adding an NDS Object: Example

NDS Access: Guides

Object Class Rules

Below is a list of rules that regulate the construction of new object classes.
Clients that need to define new classes should pay close attention to these
rules.

1. Object class definitions cannot be recursive. An object cannot have itself
as a super class.

2. Only classes with complete structure rules can be flagged effective and
used to create objects. That is, the super classes, containment, and
naming attributes must be complete.

3. An effective class can be constructed three ways: a) the class defines its
own structure rules, b) the class inherits structure rules from its super
classes, or c) the class defines part of the structure rules (such as
naming) and inherits the other part of the structure rules (such as
containment) from a super class.

4. For a class that defines its own structure rules, any structure rules that
might be inherited from its super classes are ignored.

5. If structure rules of an effective class are inherited, they must be
nonambiguous (for more information, see "Effective and Noneffective
Classes").

Related Topics:

Structure Rules

NDS Object Class Definitions

NDS Schema: Guides

Object Classes in NDS

The set of rules that controls the creation of a particular object type is called
an object class. Object class components define the types of objects that can
exist in NDS. The following types of information define an object class in
accordance with the Object Class Rules:

Structure Rules

NDS and Bindery Service Group

NDS: Concepts 235

Super Class Structure

Mandatory and Optional Attributes

Related Topics:

Object Class Rules

NDS Object Class Definitions

NDS Schema: Guides

Object Management in NDS

In managing objects it is important to maintain control of changes to the
ACL. ACL values can be used to allow objects to change the ACL itself.
Objects given certain privileges to the ACL can access it and change the
rights within it. The privileges assigned in the ACL can be not only for the
ACL but for the object of the ACL and all other attributes of that object.

In considering how to best manage objects you must therefore be very
careful in giving objects the ability to change the ACL values. The privileges
to be careful in granting are Write, Self, and Supervisor. Supervisor gives all
privileges, Write allows an object to change the ACL values, and Self allows
an object to add and delete itself to the value.

The Self privilege can be granted to ease the burden of managing certain
attributes of objects. Giving objects the ability to add themselves to certain
lists (attributes) of objects eliminates the need for a manager to add and
delete those objects. An example would be a distribution list. Say you made
a multivalued attribute called Party Group and gave [Root] the Self
privilege to that attribute. Objects wishing to join your Party Group could
add themselves to the group. No one could delete others from the group but
could add or delete their own object as desired.You would of course
maintain all privileges to the Party Group attribute yourself so you could
read, add and delete any object at any time.You could in essence choose to
let the individuals manage their membership in the group and/or manage
it yourself.

Related Topics:

NDS Access and the File System

NDS Security: Concepts Guide

Optional Partition Attributes

The following table lists attributes that are optional for partition objects.

NDS and Bindery Service Group

NDS: Concepts 236

Attribute Comment

High Convergence Sync
Interval

This attribute specifies the interval (in
seconds) at which a partition
synchronization will occur if no
intervening events have caused
synchronization and the Convergence
attribute is set to high.

Inherited ACL This attribute stores the summation of
access rights assigned within the
partition's superior partition.

Low Convergence Sync
Interval

This attribute specifies the amount of time
(in seconds) that must pass from the start
of one partition synchronization to the
next if the Convergence attribute is set to
low.

Received Up To This attribute stores a timestamp for the
last time the replica received an update.

Synchronized Up To This attribute is a list of timestamps
indicating the last time all servers holding
a replica of the specified partition were
synchronized.

Related Topics:

Replica Attribute

Mandatory Partition Attributes

Partition Information

Partition Class

A partition's root object stores system information for maintaining the
partition. A partition root object can be of any class. Partition attributes are
assigned to the object along with the regular attributes defined by the
object's base class. Some common classes assigned to the root object include
Locality, Organization, and Organizational Unit.

The Partition object class has no containment classes defined, nor does it
have any naming attributes. Top is its only super class. The Partition class
does have mandatory and optional attributes. Some of this attribute
information is specific to the local replica and some is data shared by all the
partition's replicas.

Related Topics:

Mandatory Partition Attributes

Partition Information

NDS and Bindery Service Group

NDS: Concepts 237

Partition Functions

These functions operate on partitions.

Function Comment

NWDSAddPartition Creates the root object of a new partition.

NWDSJoinPartitions Joins a subordinate partition to its parent
partition.

NWDSListPartitions Lists the immediate subordinates of an
object.

NWDSRemovePartition Deletes an existing partition by deleting
its master replica.

NWDSSplitPartition Divides a partition into two partitions at a
specified object.

Related Topics:

Replicas

Partitions

NDS Partition: Guides

NWDSListPartitionsExtInfo

Partition Information

Information regarding the new partition is associated with the partition's
root object. This information is replicated among all the partition's replicas.
The partition information includes the following:

Partition Class

Replica Attribute

Convergence Attribute

All Up To Attribute

Superior Reference

Related Topics:

Partitions

NDS and Bindery Service Group

NDS: Concepts 238

NWDSListPartitionsExtInfo

Partition Management Introduction

NDS is built on a distributed database. The database, also called the
Directory Information Base (DIB), can be divided into multiple partitions
and stored in separate locations. Each partition forms a major subtree and is
a logical subset of the NDS database. Taken together, the partitions form a
hierarchical tree that leads back to the root partition. Where the boundaries
of two partitions meet, the one closer to the root is superior, the one farther
from the root is subordinate. The tree of partitions is transparent to users.

A copy of a partition is called a replica. The replicas of a partition may be
distributed to a number of servers.

Another section of NDS is the Schema. It is stored on every name server.

Cooperation among servers, the Requester, and NWNET library allows
directory partitions to function as a single resource. NDS Partition Services
let you add and delete entire partitions or individual copies (or replicas) of a
partition. You can also manage the configuration of partitions by joining
partitions or splitting them.

Related Topics:

Partitions

NDS Partition: Guides

Partition Replication

Partitions can be copied among multiple servers to provide fault tolerance
for the NDS database. Each instance of a partition is called a replica. The
initial partition replica is called the master replica. A partition can have only
one master replica. Additional replicas are either secondary or read-only
replicas. There is no restriction on the number of these replicas. Nor are
there restrictions regarding which partitions may reside together on a
server.

You must use the master replica to create and delete subordinate partitions.
You can use the master or secondary replicas to create, modify, and delete
NDS information. A read-only replica can be used only to read information
from the partition.

Each replica stores the name of the replica's server, the replica type (master,
secondary, or read-only), and the best known network address for the
server. A replica also stores a list of replica pointers that identifies all the
replicas in the partition. The replica relies on the list of replica pointers to
spread updates throughout the partition.

NDS and Bindery Service Group

NDS: Concepts 239

Related Topics:

Replica Synchronization

NDS Partition: Guides

Partition Synchronization

A partition synchronization process runs periodically on each name server
and is responsible for several maintenance operations, including the
synchronization of the replicas stored on that server with their counterparts
on other servers.

Partition synchronization operations include:

Accepting updates from other replica synchronization processes and
applying them to the relevant local replicas.

Maintaining consistency of the NDS tree by performing periodic checks
on the links in the tree.

Maintaining the validity of external references found on the local server.

Summarizing access control information for each local partition.

The consistency or convergence of the NDS replicas is directly related to the
frequency with which the partition synchronization processes operate.
Administrators can control the frequency of the partition synchronization to
some extent according to the needs of their system by adjusting the
SyncInterval.

Related Topics:

Replication Functions

NDS Partition: Guides

Partitions

Each partition forms a major subtree of NDS. Taken together, the partitions
form a hierarchical tree of partitions that leads back to a root partition
containing the root of NDS. Where the boundaries of two partitions meet,
the one closer to the root is considered superior, and the one farther from
the root is considered subordinate. (See the following figure.)

Figure 19. Hierarchical Partitions

NDS and Bindery Service Group

NDS: Concepts 240

It is very important for purposes of discussion to note the difference
between NDS root and a partition root. NDS root is the topmost object of the
entire NDS tree. It is an object named [Root].

NDS and Bindery Service Group

NDS: Concepts 241

Within each partition is a hierarchy of directory objects. Both the hierarchy
of partitions and the hierarchy of objects within each partition can have as
many layers as is desirable. It should be noted that the tree of partitions is
transparent to the typical NDS user. Such a user sees only a global tree of
NDS objects.

An NCP™ Server that is part of an NDS tree (having been installed into an
NDS tree with the 4.x installation utility) is an NDS server. Multiple
partitions can be stored at the same NDS server. (It is not a requirement that
a server hold a replica.) There are no restrictions placed on the partitions
that can be stored together at the same NDS server. For example, none of
the partitions need be contiguous to each other.

Related Topics:

Subordinate Partitions

NDS Partition: Guides

Password Changing in NDS

A special exchange is required in order for a client agent to change an
object's password. The generation and encryption of the private key occurs
at the workstation, but the encrypted key is stored with NDS. It is not stored
at the user's workstation. Changing a password involves the client agent
replacing the current encryption of the private key. The new private key
encryption is generated with the new password.

The exchange begins with the user supplying the old and new passwords to
the client agent. The client agent then asks NDS for the server's public key,
and it is returned to the client agent. The agent then asks for the user's
private key. The private key is returned from NDS with an accompanying
nonce.

The client agent then encrypts the private key with the new password. The
nonce, the old and new passwords, and the new private key encryption the
nonce (the old password, and the new password) are placed into a message
buffer that is encrypted using the servers public key. That way this
combined data can be safely transmitted to the NDS Server and decrypted
by the server using the server's matching private key.

When the client agent sends the request to change the password, the server
is able to decrypt the message containing the nonce, the old and new
passwords, and the user's newly encrypted private key. This is sufficient
verification that the transaction is valid, so the server completes the
password change and sends a confirmation of the password change back to
the client agent. The following figure shows the steps required to change the
password.

Figure 20. Change Password Summary

NDS and Bindery Service Group

NDS: Concepts 242

NDS and Bindery Service Group

NDS: Concepts 243

Related Topics:

Multiple Tree Functions

Authentication

Progress Reports

During the tree-walking process, when a server receives a request and
discovers information about how to get closer to the desired partition and
server, this information is sent back to the server that sent the request. This is
called a referral.

The referral gives the requesting server a new list of name servers to try if
the name server cannot satisfy a request.

A referal contains the following fields:

Server List

This field is a list of name servers. The servers initially set this field
based on currently connected servers and SAP.

Class Definition Cache

This cache holds the expanded class definition of each NDS class.

Related Topics:

Distribution of Access Control Information

NDS Partition: Guides

Public and Private Key Pairs

Each object in NDS has its own private/public key pair that is generated at
the time the object is created. If conditions warrant it, a key pair can be
changed. Setting or changing the public/private key pair for an object
requires a special exchange between the client agent and Authentication.
The exchange assumes that the client desiring to make the change has
already authenticated itself to NDS. The client desiring to make the key pair
change must have sufficient access privileges sufficient to change the values
of the target object's Private Key and Public Key attributes.

The exchange begins once the user gives the name and password of the
object that will receive the new key pair. The object's Tag Data Store (TDS)
information is obtained. The TDS consists of a certificate, credential, and
signature. The certificate consists of the name of the user object, the user's
public key and other information. The credential and signature have been
discussed previously.

The client agent checks to see whether the object is currently connected and

NDS and Bindery Service Group

NDS: Concepts 244

authenticated with the server performing the key pair update. If it is not,
then an authentication is established. Next, the server's public key and a
nonce are obtained. The servers public key is used later to encrypt the key
pair update request buffer prior to requesting that the pair be set.

The client agent then generates a new key pair with the intent of submitting
it as the key pair for the target object. The new private key (of the new key
pair) is encrypted with the target object's user password, and is included in
the request data used to create a proof. The data for the proof includes the
nonce, the object's ID, the password, the new encrypted private key, and the
new public key. The server public key obtained earlier is used to encrypt
this proof. The final step is to submit the request to set the new key pair for
the target object. The following figure shows the steps required to set the
object's key pair.

Figure 21. Set Key Pair Summary

Related Topics:

NDS and Bindery Service Group

NDS: Concepts 245

Password Changing in NDS

Authentication

Read Requests

Three read function parameters (infoType, allAttrs, and attrNames) work
together to determine what attribute information is requested.

You can specify the type of information you want returned by setting
infoType to:

DS_ATTRIBUTE_NAMES

NDS returns only the names of the attributes.

DS_ATTRIBUTE_VALUES

NDS returns the names and values of the attributes.

DS_EFFECTIVE_PRIVILEGES

NDS returns the names and the effective privileges to the attributes.
The privileges returned are those of Self (the logged-in user).

If the allAttrs parameter is TRUE, NDS returns information for all attributes
of the object and attrNames is ignored. Therefore, attrNames should be set the
NULL. If allAttrs is FALSE, NDS returns the attributes named in the input
buffer, which is pointed to by attrNames.

If allAttrs is FALSE and attrNames is NULL, no attribute information is
returned. However, you can use the return value of NWDSRead to
determine whether the object exists or access to the object is allowed.

Related Topics:

Notes About Adding NDS Objects

Reading Attributes of NDS Objects

NDS Access: Guides

Reading NDS Attribute Type Definitions

For each attribute type definition, the name of the attribute appears in large
type at the first of the attribute listing followed by a brief description of the
attribute's purpose. Valid abbreviations for the attribute appear in
parentheses next to the attribute name. Additionally, you will find the
following information:

Syntax

The name of the syntax for this attribute type. See NDS Attribute

NDS and Bindery Service Group

NDS: Concepts 246

Syntax Definitions for the syntax specification.

Constraints

Any restrictions affecting the attribute value. The constraints, which
are defined in NWDSDEFS.H, are as follows:

DS_HIDDEN_ATTR---The user cannot see or modify the attribute. A
name server has created the attribute and the server maintains it.

DS_NONREMOVABLE_ATTR---The attribute cannot be removed
from the object class definition.

NOTE: All Base Schema Attribute Type Definitions have the
nonremovable constraint.

DS_PUBLIC_READ---This constraint indicates that anyone can read
the attribute. No read privileges need to be assigned. Inheritance
masks cannot be used to prevent an object from reading attributes
with this constraint.

DS_READ_ONLY_ATTR---The user cannot modify the attribute. A
name server has created the attribute and maintains it.

DS_SERVER_READ---With this constraint on an attribute, special
allowance is given to server class objects. Server class objects can read
the attribute even though the privilege to read has not been inherited
or explicitly granted. Inheritance masks cannot be used to restrict
servers from reading attributes with this constraint.

DS_SF_PER_REPLICA---The information in this attribute is not
synchronized on other replicas.

DS_SINGLE_VALUED_ATTR---The attribute has a single value only.

DS_SIZED_ATTR---The attribute has an upper and lower bound. This
can be the length for strings or the value for integers.

DS_STRING_ATTR---These attributes are of string type. Attributes of
this type can be used as naming attributes.

DS_SYNC_IMMEDIATE---When modifications are made to an
attribute with this constraint, other replicas containing the object are
synchronized immediately rather than at the next synchronization
interval.

DS_WRITE_MANAGED---You must have managed rights on the
object that contains this attribute before you can change the attribute's
value.

Used In

The object class definitions which require or allow an attribute of this
type when creating that class of object.

Remarks

NDS and Bindery Service Group

NDS: Concepts 247

These remarks may include further restrictions, how to use the
attribute, references to related documents, etc.

Attributes are assigned to objects according to the object's class
definition. For more information about the specific attributes an object
class uses, see NDS Object Class Definitions.

Related Topics:

NDS Schema Extensions

NDS Attribute Type Definitions

Reading Class Definitions

For each object class definition, the name of the class appears in large type at
the first of the listing, followed by a brief description of how the class is
used. The description also specifies whether the class is effective or
noneffective.

Each object class has the following information defined:

Super Classes

Objects of the class inherit information types and attributes from
classes listed here. All object classes must have one or more super
classes, except Top, which is a super class to all classes. The super
classes are listed in a hierarchal manner, with the super class at the
bottom of the list being the class that the current class inherits from
(the immediate super class).

Containment

Objects of the class may only be created as subordinates in the NDS
tree to objects of the classes listed here. An object of the class may not
be subordinate to any object of a class that is not listed here.

Named By

The partial name or Relative Distinguished Name (RDN) of objects of
the class consists of at least one of the attributes listed here. These
attributes can be either mandatory or optional attributes, but at least
one must be given a value when creating an object of the class. If the
only Named By attribute is optional, it is in effect mandatory.

Attributes listed in this section will also be listed in the "Mandatory
Attributes" and "Optional Attributes" sections. For example, a User
object is named by Common Name, which is a mandatory attribute.

Mandatory and Optional Attributes.

All attributes are either mandatory or optional. If an attribute is
mandatory, a value must be assigned to that attribute. If an attribute is
optional, an assigned value is not required unless it is the only Named
By attribute.

NDS and Bindery Service Group

NDS: Concepts 248

The Containment classes and Named By attributes of a class comprise
a set of structure rules that define an object's relation to other objects in
NDS. An object's RDN is determined by its Named By attributes; its
distinguished name is determined by the objects it is subordinate to
which must be of a class found in the Containment classes. Therefore,
structure rules effectively control the formation of the distinguished
names.

For example, if a User object has the common name

CN=Lisa

and her object is located in a container name

OU=Marketing.O=Wimple Makers.C=US

then the distinguished name for Lisa would be

CN=Lisa.OU=Marketing.O=Wimple Makers.C=US

Default ACL Template

Every expanded class definition has an ACL attribute (inherited from
Top). This attribute holds information about which trustees have
access to the object itself (entry rights) and which trustees have access
to the attributes for the object. This information is stored in sets of
information containing the trustee name, privileges, and the affected
attribute (entry, all attributes, or a specific attribute). For example, the
default template for AFP Server is that the creator of an object has
supervisor privileges on [Entry Rights].

Some object classes have a default set of values for their ACL. Objects
also inherit default ACL values from their super classes. Therefore,
every object class inherits a default ACL template from Top. When an
object is created, its ACL contains the values that are in the default
ACL template for that object. There are two cases where the ACL
values are different:

Your code overrides the default values.

The creator of the object has effective rights comparable to those in
the default template. In this case, the rights are not granted
explicitly.

Related Topics:

NDS Schema Extensions

Creating a Class Definition: Example

Reading a Class Definition: Example

NDS Object Class Definitions

NDS and Bindery Service Group

NDS: Concepts 249

Reading Syntax Definitions

For each syntax specification, the name of the syntax appears in large type at
the first of the listing and is followed by a brief description of how the
syntax is used.

Each syntax defines the following information:

Syntax ID

A 32-bit integer used as an identifier in Application Programming
Interface (API) functions that transfer attribute values in and out of
NCP™ message buffers. The syntax IDs are defined in NWDSDEFS.H.

API Data Structure

A C structure supported by the NDS™ API.

Matching Rules

The rules for matching two values that comply with the syntax.

Used In

 A list of attribute type definitions that use the syntax.

Remarks

Additional information that may include information concerning
comparisons, explanations of structure members, syntax examples,
and so on.

To determine which syntax is used for a particular attribute type, refer to the
attribute's Syntax specification in the NDS Attribute Type Definitions.

Related Topics:

NDS Schema Extensions

NDS Attribute Syntax Definitions

Registering Attribute Types and Class Definitions

When you define new attribute types or new object class definitions, you
must register them with Developer Support to ensure uniqueness. To clear
new types and definitions, call Developer Support at 1-800-REDWORD
(1-800-733-9673). The international number is 801-429-5588.
Correspondence can be sent by FAX to 801-429-2990.

Related Topics:

NDS Schema Extensions

NDS Attribute Type Definitions

NDS Schema: Guides

NDS and Bindery Service Group

NDS: Concepts 250

Relational Operators for NDS Searches

A relational operator asserts something about an attribute (for example, the
attribute is present or its value is greater than 100). The truth of a relational
operator is evaluated with the matching rules associated with the attribute's
syntax. The following table shows the relational operators and the
conditions that test TRUE for each.

Table auto. Relational Operators

Token Value Comment

FTOK_EQ 7 TRUE only if the attribute's value is
equal to the asserted value.

FTOK_GE 8 TRUE only if the attribute's value is
greater than or equal to the asserted
value.

FTOK_LE 9 TRUE only if the relative ordering
places the asserted value before any
of the attribute's values.

FTOK_APPROX 10 TRUE only if the value of the
attribute matches the asserted value.
If approximate match isn't
supported, this operator matches for
equality.

FTOK_PRESENT 15 TRUE only if the named attribute is
present in the entry.

FTOK_RDN 16 TRUE only if the object's Relative
Distinguished Name matches the
asserted value.

FTOK_BASECLS 17 TRUE only if the object belongs to the
asserted base class.

FTOK_MODTIME 18 TRUE only if the modification
timestamp is greater than or equal to
the asserted value.

FTOK_VALTIME 19 TRUE only if the creation timestamp
is greater than or equal to the
asserted value.

You can use wildcards to create relational assertions for string values. The
wildcard character is the asterisk (*). Use the backslash escape character to
escape the asterisk (*) or to escape the back slash itself (\\).

Related Topics:

Logical Operators for NDS Searches

NDS and Bindery Service Group

NDS: Concepts 251

NDS Search Introduction

Replica Attribute

This attribute contains a set of replica pointers to other replicas of the
partition. Each entry contains the following:

Server Name---This field is the distinguished name of the server holding the
replica.

Replica Type---This field indicates whether the replica is master, secondary,
or read-only.

Replica Number---This field is a unique number that identifies the server
that holds a replica of this partition. This number is assigned by the server
that stores the master replica.

Net Address---This field contains the last known network address of a
server that holds a replica of this partition. This value is a hint and is not
guaranteed, in that the address may have been changed but not yet
synchronized.

Related Topics:

Convergence Attribute

Partition Information

Replica Information

The partition root object on each name server also stores information for
itself that is kept locally. This information is not replicated. Replica
information includes the following:

Replica State

Replica Type

Time Stamp

Related Topics:

Replicas

NDS Partition: Guides

Replica State

NDS and Bindery Service Group

NDS: Concepts 252

The Replica State attribute indicates the current status of the replica. The
attribute can receive the following values:

0 Replica is on

1 Replica is new

2 Replica is dying

3 Partition is dying

5 Replica is dead

A replica may not be on because it is currently being installed or removed.

Related Topics:

Replica Type

Replica Information

Replica Synchronization

A vital part of NDS is the updating or synchronization of the NDS
partitions. Replica synchronization refers to the process of copying data
among the replicas of a partition. A partition is synchronized if all of its
replicas contain the same information. If one replica has a more current
version of a piece of data than the other replicas, it propagates this data to
the other replicas. Since updates to the replicas can occur at different times
and places, at any given moment a partition is synchronized only up to a
certain time. The act of performing synchronization of the replicas of a
partition is called the convergence of the replicas. The time between
scheduled synchronization is called the synchronization interval.

NDS is a loosely synchronized database. It does not guarantee that a
particular piece of information on a particular replica has the most current
value. If a client agent were to request the same information from two
replicas, there is a chance that the results may differ. This happens when an
update is made in one replica and the client agent reads form another
replica before the update is synchronized.

Loose synchronization allows NDS to reduce the overhead required to
maintain a partition. NDS is designed to support frequent reads and
infrequent writes. In light of this, clients are discouraged from storing values
in NDS that change frequently.

All replicas belonging to a given partition set must be synchronized to
include all updates generated to writable copies of the partition set (master
and secondaries). This task is the responsibility of the Partition
Synchronization process.

NDS and Bindery Service Group

NDS: Concepts 253

When a name server receives an update, it schedules the Partition
Synchronization process to begin in 10 seconds. If the synchronization fails,
then the Partition Synchronization process reschedules the event.

The Partition Synchronization processes each of the replicas of the partition
one-by-one. After the processing for a replica has been completed, or if it
fails, the Partition Synchronization process tries to process the next replica
in the replica list until attempts to update all replicas have been made. It is
frequently possible that the Partition Synchronization process may not be
able to update all the replicas in one attempt. If the server holding a replica
is currently unavailable, an attempt to update this replica fails. The Partition
Synchronization process, however, proceeds with attempts to update other
replicas in the replica list. The replicas that are not updated in this Partition
Synchronization process are attempted again.

When the Partition Synchronization process wakes up, it builds a list of
replicas for the partition it is attempting to synchronize. The Partition
Synchronization process then sends a StartUpdateReplica message to the
server holding the replica that needs to be synchronized.

The receiving server responds with a vector of time stamps that indicate
how current the replica is in relation to this partition. The Partition
Synchronization process compares the local ReceivedUpTo attribute with
the time stamp vector received. If the local ReceivedUpTo is more current
than the received time stamp vector, the Partition Synchronization process
sends the relevant changes to the receiver. The changes are sent in an
UpdateReplica message.

After all the updates have been sent, the Partition Synchronization process
sends an EndUpdateReplica message to the receiver indicating that all the
changes have been sent. If no changes need to be sent (which would be the
case if the receiver is as current or more current than the local partition), the
Partition Synchronization process sends an EndUpdateReplica indicating
that no changes need to be sent. If the receiver fails to apply the changes, the
synchronization is aborted for this replica. The Partition Synchronization
process attempts to synchronize this replica at the next scheduled
synchronization.

Once the processing of this replica has been completed, or it has failed, the
Partition Synchronization process begins processing the next replica in the
replica list. This procedure is repeated until all the replicas of the partition
have been processed.

Related Topics:

Replication Functions

NDS Partition: Guides

Replica Type

The Replica Type attribute indicates the type of replica according to the

NDS and Bindery Service Group

NDS: Concepts 254

The Replica Type attribute indicates the type of replica according to the
following values:

0 Master

1 Secondary

2 Read-only

The replica type determines the client operations that can be performed on
the replica.

Related Topics:

Partition Replication

Replica Information

Replicas

A copy of a partition is called a replica. Multiple replicas of a partition may
exist, but only one replica of a partition may exist per server. The initial
replica of a partition is called the master replica.

There can be only one master replica of a partition. Additional replicas are
either secondary or read-only replicas; there are no restrictions on the
number of these replicas.

Both master and secondary replicas can be used to create, modify, and
delete objects; however, only the master replica can be used to create and
delete subordinate partitions. (The master replica is also required for the
move functions and for all partition functions.) A read-only replica can be
used only to read the information in the partition; it cannot be used to write
to the partition.

The following figure shows three partitions (A, B, and C) replicated across
three name servers (NS1, NS2, and NS3). NS1 stores the master replicas of
partitions A and B and a read-only replica of partition C. NS2 stores the
master replica of partition C and secondary replicas of A and B. NS3 stores
secondary replicas of A and C. Given this arrangement, a request to add an
object to partition A could be sent to any of the servers. A similar request for
partition B could only be handled by NS1 or NS2, and NS2 or NS3 could
handle such a request for partition C.

Figure 22. Replication of Partitions

NDS and Bindery Service Group

NDS: Concepts 255

(The DS functions take care of sending the request to the appropriate
replica. Your application does not need to worry about this.)

To create a new partition subordinate to Partition A or B the request must be
directed to NS1. To create a new partition subordinate to Partition C the

NDS and Bindery Service Group

NDS: Concepts 256

request must be directed to NS2.

Related Topics:

Replica Information

NDS Partition: Guides

Replication Functions

These functions operate on replicas of a partition.

Function Comment

NWDSAddReplica Adds a replica of an existing partition to a
server.

NWDSChangeReplicaTy
pe

Changes the replica type of a given
replica on a given server.

NWDSRemoveReplica Deletes a replica from the replica set of a
partition.

NWDSSyncReplicaToSer
ver

Requests a replica to initiate
synchronization with a specified server.

Related Topics:

Name Server Information

Replicas

NDS Partition: Guides

Restrictions on New Classes

A class's containment classes and naming attributes make up the class's
structure rules. Structure rules determine how the class behaves in the NDS
hierarchical tree. NDS places the following restrictions on how structure
rules are implemented for a new class.

1. An object can't have itself as a super class.

2. If a class's structure rules are incomplete, the class is non-effective (can't
be used to create objects).

3. There are three ways for a class to acquire structure rules:

Define them itself.

Inherit them from a super class.

NDS and Bindery Service Group

NDS: Concepts 257

Define one component (naming or containment) and inherit the
other.

4. If a class defines its own structure rules, any inherited structure rules
don't apply.

5. If an effective class inherits its structure rules, the structure rules must
be non-ambiguous. That is, the class can't inherit rules that are
contradictory or otherwise incompatible with it.

Related Topics:

NDS Class Functions

NDS Schema: Guides

Retrieval of Information from NDS

The details for accessing NDS are implemented at the application level.
NDS provides a complete set of functions to support the development of
directory applications. However, NDS anticipates that users will take
several approaches to obtain information from NDS. These approaches
include look up, browsing, and yellow-paging.

Related Topics:

Lookup in NDS

Browsing NDS

Searching NDS

Introduction to NDS Development: Guide

Rights to an NDS Object

When dealing with security, it is important to remember that there are two
distinct parts of every object: the object itself, and its properties. The syntax
used to denote rights to an object is [Object Rights]. The rights a user (or any
other object) might have to another object include Browse, Create, Delete,
Rename, and Supervisor. Let's take a look at these rights in a little more
detail.

Browse

This right lets the user "see" an object. If you were getting a list of all
objects that were available, and you didn't have Browse rights to a
particular object, say a Container, that container wouldn't show up in
your list. Your user object wouldn't even know the object exists.

NDS and Bindery Service Group

NDS: Concepts 258

Create

Create rights allow the user to create subordinate objects to this object,
when possible. For example, if the user has Create rights to a
container, the user can add other objects inside of the container.

Delete

Delete rights allow the user to delete the object. A user cannot delete
an object if that user doesn't have right to all of the properties of the
object. In other words, you must have Write rights to all of the
properties of an object and Delete object rights in order to actually
delete an object.

Rename

You must have Rename rights in order to rename an object.

Supervisor

 If a user has Supervisor rights to an object, it is the same as having all
of the other rights (Browse, Create, Delete, and Rename) in the [Object
Rights] for that object.

Related Topics:

Access Privileges

Rights to the Properties of an NDS Object

NDS Security: Concepts Guide

Rights to the Properties of an NDS Object

Now that we have determined the rights available for gaining access to an
object, how do we actually getting the data associated with that object? This
is where property rights come in.

A user (remember this could be any object) can be given rights to access
specific pieces of data about an object, or rights to access all information of
that object. For example, if a user needs to be able to see the names,
addresses, and phone numbers of other users, we want to make sure the
user has rights to each of those properties of the other users. We might
decide to give the user rights to all of the attributes (properties) of an object,
or to only those attributes the user needs to access. The syntax used to
denote rights to all properties of an object is [All Property Rights]. If rights
are given to a specific property, the syntax used is merely the name of that
property. Whether we are talking about [All Property Rights] or rights to
specific properties, the rights available are the same.

 Descriptions of each of the property rights of an object follows:

Compare

Compare rights gives our user the ability to test the value of an object,
but not read the value. In other words, the user cannot say, "What is

NDS and Bindery Service Group

NDS: Concepts 259

your password?" but can ask, "Is this password correct?"

Read

This right gives the user the ability to see the values of the properties
that are not hidden properties. By having Read rights, the user
automatically gets Compare rights, as implicit (implied) rights.

Add or Delete Self

With this right, the user can add its own object as the value of the
property. For example, if the user has Add or Delete Self rights to the
Member property of an object, such as a container, the user can add
itself as a member of that group.

Write

Write rights give the user the ability to add, delete, and modify the
value of a property, as long as that property is not a Read Only
property. Having Write rights implies Add or Delete Self rights.

Supervisor

If the user has Supervisor rights to a property, it is the same as having
all of the above property rights to that object.

To review, an object can have the following rights to access other objects:
Browse, Create, Delete, Rename, and Supervisor. And an object can have
the following rights to the properties of other objects: Compare, Read, Add
or Delete Self, and Supervisor. This list of rights is very comprehensive and
efficient, which "covers all the bases" in administering NDS security.

Related Topics:

Giving Rights in NDS

Rights to an NDS Object

NDS Security: Concepts Guide

Schema Changes for NetWare 4.01

With the NetWare 4.01 version of the NetWare OS, the NDS™ Base Schema
received minor changes. The differences between the NetWare 4.0 Base
Schema and the NetWare 4.01 Base Schema are listed in this section.

NDS Object Class Definitions

The changes to the individual object class definitions are shown in the
following table.

Table AUTO. Changes to Individual Class Definitions

Object
Class

Change

NDS and Bindery Service Group

NDS: Concepts 260

Partition Added Partition Control as a optional attribute.

Top Added Revision as an optional attribute.

Because of inheritance, the changes listed in the previous table flow to other
classes. These changes, which show up in the expanded class definitions,
are listed in the following table.

Table AUTO. Changes to Expanded Class Definitions

Object
Class

Change

All Classes Added Revision as an optional attribute as a result of
inheritance from Top.

Attribute Definitions

The changes made to the attribute definitions are shown in the following
table.

Table AUTO. Changes to Attribute Definitions

Attribute Change

Group
Membership

Added the DS_WRITE_MANAGED constraint.

Higher
Privileges

Added the DS_WRITE_MANAGED constraint.

Partition
Control

Created as a new attribute definition.

Passwords
Used

Removed the DS_SINGLE_VALUED_ATTR
constraint.

Revision Created as a new attribute definition.

Security
Equals

Added the DS_WRITE_MANAGED constraint.

Synchronized
Up To

Added the DS_SF_PER_REPLICA constraint.

Syntax Definitions

The changes made to the syntaxes for the NetWare 4.01 Base Schema are
shown in the following table.

Table AUTO. Changes to Syntax Definitions

Syntax Change

Counter Added its use by Revision

NDS and Bindery Service Group

NDS: Concepts 261

Typed
Name

Added its use by Partition Control

Related Topics:

Schema Changes for NetWare 4.1

NDS Schema: Guides

Schema Changes for NetWare 4.1

The NDS Base Schema for the NetWare 4.1™ OS has received a number of
extensions to the Base Schema of the 4.01 OS. These changes are listed in
this section.

The following object-class definitions have been added to the 4.1 Base
Schema:

Table AUTO. New NDS Object Class Definitions

Object Class Change

External Entity New class definition

List New class definition

Message Routing
Group

New class definition

Messaging Server New class definition

The following changes have been made to the existing individual
object-class definitions for the 4.1 Base Schema:

Table AUTO. Changes to Individual Class Definitions

Object Class Change

Group Added EMail Address, Login Script, Mailbox ID,
Mailbox Location, Profile, and Profile Membership
as optional attributes.

NCP Server Added DS Revision and Messaging Server as
optional attributes.

Organization Added Mailbox ID and Mailbox Location as
optional attributes.

Organizational
Person

Added Mailbox ID and Mailbox Location as
optional attributes.

Organizational
Role

Added Mailbox ID and Mailbox Location as
optional attributes.

NDS and Bindery Service Group

NDS: Concepts 262

Organizational
Unit

Added Mailbox ID and Mailbox Location as
optional attributes.

Partition Added Replica Up To as an optional attribute.

Person Added Generational Qualifier and Initials as
optional attributes.

Profile Added Full Name as an optional attribute.

Server Added Security Equals and Security Flags as
optional attributes.

Top Added Authority Revocation, CA Private Key, CA
Public Key, Certificate Revocation, Certificate
Validity Interval, Cross Certificate Pair, Equivalent
To Me, and Last Referenced Time as optional
attributes.

User Added Profile Membership and Security Flags as
optional attributes.

Because of inheritance, the above changes to individual class definitions
flow to some of the other classes. The following table shows how the
changes listed above affect the expanded class definitions of other classes.
(This listing shows only the effects through inheritance.)

Table AUTO. Changes to Expanded Class Definitions

Object Class Change

All Classes Inherit Authority Revocation, CA Private Key,
Certificate Revocation, Certificate Validity Interval,
Cross Certificate Pair, Equivalent To Me, and Last
Referenced Time as optional attributes from Top

AFP Server Inherits Security Equals and Security Flags as
optional attributes from Server.

NCP Server Inherits Security Equals and Security Flags as
optional attributes from Server.

Print Server Inherits Security Equals and Security Flags as
optional attributes from Server.

The following attributes have been added to the 4.1 Base Schema

Table AUTO. New Attributes

Attribute Used In

Certificate Validity
Interval

Top

DS Revision NCP Server

NDS and Bindery Service Group

NDS: Concepts 263

Equivalent To Me Top

External Name External Entity

External Synchronizer None

Generational Qualifier Person

Given Name Person

Initials Person

Last Referenced Time Top

Mailbox ID Group, List, Organization, Organizational
Person, Organizational Role, and
Organizational Unit

Mailbox Location Group, List, Organization, Organizational
Person, Organizational Role, and
Organizational Unit

Message Routing
Group

Messaging Server

Messaging Database
Location

Messaging Server

Messaging Server NCP Server

Messaging Server
Type

Messaging Server

Postmaster Messaging Server

Profile Membership Group and User

Replica Up To Partition

Security Flags Server and User

Supported Gateway Messaging Server

The following changes have been made to the attributes for the 4.1 Base
Schema.

Table AUTO. Changes to Attributes

Attribute Change

Account Balance Added DS_SYNC_IMMEDIATE constraint.

ACL Added DS_SYNC_IMMEDIATE constraint.

Aliased Object Name Added DS_SYNC_IMMEDIATE constraint.

Allow Unlimited
Credit

Added DS_SYNC_IMMEDIATE constraint.

Authority Revocation Added use by Top.

Added DS_SYNC_IMMEDIATE constraint.

C Added DS_SYNC_IMMEDIATE constraint.

CA Private Key Added use by Top.

NDS and Bindery Service Group

NDS: Concepts 264

CA Private Key Added use by Top.

CA Public Key Added use by Top.

Cartridge Added DS_SYNC_IMMEDIATE constraint.

Certificate Revocation Added use by Top.

Added DS_SYNC_IMMEDIATE constraint.

CN Added use by External Entity and List.

Added DS_SYNC_IMMEDIATE constraint.

Convergence Added DS_SYNC_IMMEDIATE constraint.

Cross Certificate Pair Added use by Top.

Added DS_SYNC_IMMEDIATE constraint.

Default Queue Added DS_SYNC_IMMEDIATE constraint.

Description Added use by External Entity and List.

Added DS_SYNC_IMMEDIATE constraint.

Detect Intruder Added DS_SYNC_IMMEDIATE constraint.

Device Added DS_SYNC_IMMEDIATE constraint.

EMail Address Added use by External Entity, Group, and
List.

Added DS_PUBLIC_READ constraint.

Added DS_SYNC_IMMEDIATE constraint.

Fascimile Telephone
Number

Added use by External Entity.

Added DS_SYNC_IMMEDIATE constraint.

Full Name Added use by Profile.

Added DS_SYNC_IMMEDIATE constraint.

GID Added DS_SYNC_IMMEDIATE constraint.

Group Membership Added use by External Entity.

High Convergence
Sync Interval

Added DS_SYNC_IMMEDIATE constraint.

Home Directory Added DS_SYNC_IMMEDIATE constraint.

Host Device Added DS_SYNC_IMMEDIATE constraint.

Host Resource Name Added DS_SYNC_IMMEDIATE constraint.

Host Server Added DS_SYNC_IMMEDIATE constraint.

Inherited ACL Added DS_SYNC_IMMEDIATE constraint.

Intruder Attempt
Reset Interval

Added DS_SYNC_IMMEDIATE constraint.

Intruder Lockout
Reset Interval

Added DS_SYNC_IMMEDIATE constraint.

L Added use by External Entity and List.

Added DS_SYNC_IMMEDIATE constraint.

Language Added DS_SYNC_IMMEDIATE constraint.

Locked by Intruder Added DS_SYNC_IMMEDIATE constraint.

NDS and Bindery Service Group

NDS: Concepts 265

Lockout After
Detection

Added DS_SYNC_IMMEDIATE constraint.

Login Allowed Time
Map

Added DS_SYNC_IMMEDIATE constraint.

Login Disabled Added DS_SYNC_IMMEDIATE constraint.

Login Expiration Time Added DS_SYNC_IMMEDIATE constraint.

Login Grace Limit Added DS_SYNC_IMMEDIATE constraint.

Login Grace
Remaining

Added DS_SYNC_IMMEDIATE constraint.

Login Intruder
Address

Added DS_SYNC_IMMEDIATE constraint.

Login Intruder
Attempts

Added DS_SYNC_IMMEDIATE constraint.

Login Intruder Limit Added DS_SYNC_IMMEDIATE constraint.

Login Intruder Reset
Time

Added DS_SYNC_IMMEDIATE constraint.

Login Maximum
Simultaneous

Added DS_SYNC_IMMEDIATE constraint.

Login Script Added use by Group.

Added DS_SYNC_IMMEDIATE constraint.

Low Convergence
Reset Time

Added DS_SYNC_IMMEDIATE constraint.

Low Convergence
Sync Interval

Added DS_SYNC_IMMEDIATE constraint.

Member Added use by List.

Added DS_SYNC_IMMEDIATE constraint.

Memory Added DS_SYNC_IMMEDIATE constraint.

Message Server Added DS_SYNC_IMMEDIATE constraint.

Minimum Account
Balance

Added DS_SYNC_IMMEDIATE constraint.

Network Address Added DS_SYNC_IMMEDIATE constraint.

Network Address
Restriction

Added DS_SYNC_IMMEDIATE constraint.

NNS Domain Added DS_SYNC_IMMEDIATE constraint.

Notify Added DS_SYNC_IMMEDIATE constraint.

O Added use by List.

Added DS_SYNC_IMMEDIATE constraint.

Obituary Added DS_SYNC_IMMEDIATE constraint.

Object Class Added DS_SYNC_IMMEDIATE constraint.

Operator Added DS_SYNC_IMMEDIATE constraint.

NDS and Bindery Service Group

NDS: Concepts 266

OU Added use by External Entity and List.

Added DS_SYNC_IMMEDIATE constraint.

Owner Added use by List.

Added DS_SYNC_IMMEDIATE constraint.

Page Description
Language

Added DS_SYNC_IMMEDIATE constraint.

Partition Control Added DS_SYNC_IMMEDIATE constraint.

Partition Creation
Time

Added DS_SYNC_IMMEDIATE constraint.

Password Allow
Change

Added DS_SYNC_IMMEDIATE constraint.

Password Expiration
Interval

Added DS_SYNC_IMMEDIATE constraint.

Password Expiration
Time

Added DS_SYNC_IMMEDIATE constraint.

Password Minimum
Length

Added DS_SYNC_IMMEDIATE constraint.

Password Required Added DS_SYNC_IMMEDIATE constraint.

Password Unique
Required

Added DS_SYNC_IMMEDIATE constraint.

Passwords Used Added DS_SYNC_IMMEDIATE constraint.

Path Removed DS_SINGLE_VALUED_ATTR
constraint.

Added DS_SYNC_IMMEDIATE constraint.

Physical Delivery
Office Name

Added use by External Entity.

Added DS_SYNC_IMMEDIATE constraint.

Postal Address Added use by External Entity.

Added DS_SYNC_IMMEDIATE constraint.

Postal Code Added use by External Entity.

Added DS_SYNC_IMMEDIATE constraint.

Postal Office Box Added use by External Entity.

Added DS_SYNC_IMMEDIATE constraint.

Print Job
Configuration

Added DS_SYNC_IMMEDIATE constraint.

Print Server Added DS_SYNC_IMMEDIATE constraint.

Printer Added DS_SYNC_IMMEDIATE constraint.

Printer Configuration Added DS_SYNC_IMMEDIATE constraint.

Printer Control Added DS_SYNC_IMMEDIATE constraint.

Profile Added DS_SYNC_IMMEDIATE constraint.

Queue Added DS_SYNC_IMMEDIATE constraint.

Queue Directory Added DS_SYNC_IMMEDIATE constraint.

NDS and Bindery Service Group

NDS: Concepts 267

Received Up To Added DS_SYNC_IMMEDIATE constraint.

Replica Added DS_SYNC_IMMEDIATE constraint.

Resource Added DS_SYNC_IMMEDIATE constraint.

Revision Added DS_SYNC_IMMEDIATE constraint.

Role Occupant Added DS_SYNC_IMMEDIATE constraint.

S Added use by External Entity.

Added DS_SYNC_IMMEDIATE constraint.

SA Added use by External Entity.

Added DS_SYNC_IMMEDIATE constraint.

SAP Name Added DS_SYNC_IMMEDIATE constraint.

Security Equals Added use by Server.

See Also Added use by External Entity and Group.

Added DS_SYNC_IMMEDIATE constraint.

Serial Number Added DS_SYNC_IMMEDIATE constraint.

Server Added DS_SYNC_IMMEDIATE constraint.

Server Holds Added DS_SYNC_IMMEDIATE constraint.

Status Added DS_PUBLIC_READ constraint.

Added DS_SYNC_IMMEDIATE constraint.

Supported
Connections

Added DS_SYNC_IMMEDIATE constraint.

Supported Services Added use by Messaging Server.

Added DS_SYNC_IMMEDIATE constraint.

Supported Typefaces Added DS_SYNC_IMMEDIATE constraint.

Surname Added DS_PUBLIC_READ constraint.

Added DS_SINGLE_VALUED_ATTR
constraint.

Added DS_SYNC_IMMEDIATE constraint.

Telephone Number Added DS_SYNC_IMMEDIATE constraint.

Title Added use by External Entity.

Added DS_SYNC_IMMEDIATE constraint.

Type Creator Map Added DS_SYNC_IMMEDIATE constraint.

UID Added DS_SYNC_IMMEDIATE constraint.

User Added DS_SYNC_IMMEDIATE constraint.

Version Added DS_PUBLIC_READ constraint.

Added DS_SYNC_IMMEDIATE constraint.

Volume Added DS_SYNC_IMMEDIATE constraint.

The following changes have been made to the syntax definitions for the 4.1
Base Schema:

NDS and Bindery Service Group

NDS: Concepts 268

Table AUTO. Changes to Syntax

Syntax Change

Case Ignore
String

Added use by Generational Qualifier, Given
Name, Initials, Mailbox ID, Messaging Server
Type, and Supported Gateway.

Distinguished
Name

Added use by Equivalent To Me, Mailbox
Location, Message Routing Group, Messaging
Server, Postmaster, and Profile Membership.

Integer Added use by DS Revision and Security Flags.

Interval Added use by Certificate Validity Interval.

Octet String Added use by External Name, External
Synchronizer, and Replica Up To.

Path Added use by Messaging Database Location.

Timestamp Added use by Last Referenced Time.

Related Topics:

Schema Changes for NetWare 4.01

NDS Schema: Guides

Search Expression Trees

The nodes in a search filter combine to form an expression tree. To build the
tree, add each node by calling NWDSAddFilterToken.

A node requires a token, a value, and a syntax. The token identifies either a
relational operator, a logical operator, a left or right parenthesis, an attribute
name (FTOK_ANAME) or an attribute value (FTOK_AVAL), or the last
node of the expression (FTOK_END).

The value applies only to attribute names and attribute values. The syntax
applies only to an attribute values. If the token is an operator or parenthesis,
you pass a null for the value and syntax. If the token is an attribute name,
you pass a null for the syntax. You must add an ending token (FTOK_END)
to mark the end of an expression.

As an example, suppose you want to search for all User objects whose
surname begins with "Sm." If you were expressing this criteria as a string, it
would look like this:

Object Class=User AND Surname=Sm*

To create the expression tree, think of each token as corresponding to a node
in the tree. The sequence for adding the tokens is the same as if you were

NDS and Bindery Service Group

NDS: Concepts 269

processing the string from left to right. You add one token each for Object
Class, = ,User, AND, Surname, = , and Sm*.

Related Topics:

Expression Filters for NDS Searches

NDS Search Introduction

Search Filters

You search for information in NDS by building a search filter and putting
the filter into the input buffer. Search filters are used only in searching. The
search filter describes the set of conditions that satisfy the search. To allocate
a search filter, call the NWDSAllocFilter function which allocates space for
the filter. Call the NWDSAddFilterToken function to add search criteria to
the allocated filter.

The finished search filter must be placed into an input buffer by calling the
NWDSPutFilter function which normally frees the space that has been
allocated to the filter. If the NWDSPutFilter function is not called or does
not succeed, you should free the filter yourself by calling the
NWDSFreeFilter function.

A search filter is made up of filter nodes. Each node in the tree is either a
filter token or a null value. A token can be any of the following:

Attribute name

Attribute value

Relational operator

Logical operator

A token can also parenthesize groups of tokens.

When you allocate a search filter by calling the NWDSAllocFilter function,
you receive a filter cursor. NWFILTER_CURSOR contains the filter cursor
data. The cursor is used as input to other functions that operate on search
filters.

Related Topics:

Relational Operators for NDS Searches

NDS Search Introduction

Search Parameters

The NWDSSearch function searches for NDS information and requires an

NDS and Bindery Service Group

NDS: Concepts 270

input buffer to hold the search criteria. If you want to specify the attributes
to be returned, you must prepare a second input buffer.

If you set the searchAliases parameter to TRUE, the operation will
dereference any aliases encountered. (The DCV_DEREF_ALIASES flag in
the directory context must also be TRUE.)

Related Topics:

Search Filters

Searching NDS

NDS Search Introduction

Searching NDS

Searching is one of the more powerful searching tools provided by NDS.
This allows the user to search for specific categories of information. The user
specifies the criteria for the category, and NDS returns information about
objects that satisfy that criteria. The user also specifies the scope of the
search and the type of information to be returned. For example, a user could
specify a search for the names of all the PostScript* printers in the
Advertising Department. Searching is supported by the Search service
detailed in the NDS API.

Use the backslash escape character to when searching for names containing
either the asterisk (*) or the backslash itself (\\).

Related Topics:

Security of Information in NDS

Retrieval of Information from NDS

Security of Information in NDS

As an information service, NDS has an obvious requirement to maintain a
secure environment. The problems with NDS security are twofold, defined
respectively as authentication and access control. The two security
problems are related in that effective access control depends on successful
authentication. Both services can be applied to network situations outside
the operation of NDS.

Related Topics:

Security through NDS Authentication

Security through Access Control

Introduction to NDS Development: Guide

NDS and Bindery Service Group

NDS: Concepts 271

Security through Access Control

NDS Authentication Service is able to confirm a user's identity and
vouchsafe that identity to other services. One such other service is provided
by NDS itself. NDS controls access to NDS information, according to
pre-established limits. The access limitations include whether a user can
create, read, or modify a piece of information.

The following figure shows the relationship between authentication and
access control. In this figure, authentication is a service provided by NDS,
and access control could be provided by any service.

Figure 23. NDS Security Model

The access control in the figure might be to control access to NDS
information. Access control might also be to control access to a NetWare file
system or to a printer or any other medium that demands access control.
Different services provide different access controls. Once you have been
authenticated, you then have access to the service that controls your access
to the medium.

A user that has not been authenticated might nevertheless have some access
to the network. For example, such a user might be able to receive
unauthenticated services or carry on peer-to-peer dialogues. NDS confers
public status on unauthenticated users. The amount of information such
users can receive from NDS is determined by directory administrators.

NDS and Bindery Service Group

NDS: Concepts 272

A user might want to open a NetWare file system file. Access to that file is
controlled by NetWare File System Services, not NDS. To gain access to a
file on a server, the user must be authenticated to the server and must
obtain a connection from the server's available connections. Even then, the
file system access mechanism on the server can restrict the authenticated
user from accessing the desired file.

Related Topics:

Administration of Information in NDS

Security of Information in NDS

Security through NDS Authentication

Authentication is concerned with the identities of objects. When a user
establishes a session with NDS, all subsequent interactions between NDS
and the user are predicated on the user's identity. NDS needs to know with
some certainty that the user is authentic and is not being impersonated.
Since there is no inherent method for recognizing an object across the
network, NDS uses an authentication process that allows the object to
validate its identity.

Authentication Services use public/private key cryptography to issue
authentication materials to network clients. A client uses these materials to
create an authentication mechanism for signing messages. The message
signature allows a recipient of a message to verify the message's origin.

In establishing an initial connection to a server, a client is first required to
procure authentication materials from the portion of NDS called
Authentication Services. Once these materials are obtained, a signature is
generated and used to sign a proof. The NDS checks the signature of the
proof to validate it. If the proof is valid, the connection is established. The
same authentication materials can be used to authenticate connections to
multiple servers.

At the client workstation, authentication is performed by the NDS functions.
Initially, a user must produce a password to unwrap the authentication
materials which are used to create the signature and proofs. Subsequently,
authentication can occur in the background using the same authentication
materials. It is important to note that authentications that follow initial
authentication occur transparently to the network user.

Related Topics:

Security through Access Control

Security of Information in NDS

Shell Components for NDS

NDS and Bindery Service Group

NDS: Concepts 273

Full compatibility with all versions of NetWare applications requires use of
new workstation software. Since the VLM manager now handles the
network requests, a new way to handle the NETX shell function calls must
be used. The NETX.VLM is the VLM that provides for handling of all the
old shell functions.

A NetWare 4.x workstation consists of a number of VLM applications that
each serve a function and purpose. Certain VLMs are required in order to
provide the basic network interface capabilities. Aside from the required
VLM applications, you can further enable your workstation by loading
other VLMs that are meant to provide specific capabilities. The DOS
Requester VLM controls the flow of requests to the network as requested by
the application. A NetWare 4.x workstation can function without
NETX.VLM, but without it any application that makes a shell call does not
work.

Related Topics:

NDS Server Components

NDS Workstation Components

Splitting and Joining Partitions

NDS allows a partition to be split at a designated object. Subsequent
relocation of the replicas can be done through other NDS management
functions.

NDS allows a subordinate and its superior partition to be merged into one,
at a specified object.

Related Topics:

Partition Synchronization

NDS Partition: Guides

Structure of Output Buffers

Output buffers receive a sequence of Object_Info_T structures containing
information about objects subordinate to the specified object. The
Object_Info_T structure is defined with the following fields:

typedef struct
{
 nuint32 objectFlags; // Defines constraints
 nuint32 subordinateCount; // Number of subordinates
 time_t modificationTime; // Time last modified
 char baseClass[MAX_SCHEMA_NAME_BYTES + 2]; // Name of Base class

NDS and Bindery Service Group

NDS: Concepts 274

} Object_Info_T;

Related Topics:

NDS Buffer Allocation and Initialization Functions

Preparing NDS Output Buffers

NDS Access: Guides

Structure Rules

The Structure Rules define the relationships between objects in NDS. These
relationships are defined by two properties: Containment Classes and Name
Rules. Containment classes determine where the object may appear in the
NDS tree relative to other classes of objects. Name rules---sometimes called
named by attributes---determine how the object is named.

Related Topics:

Super Class Structure

Contained By Classes

NDS Schema: Guides

Subordinate Partitions

When proceeding down the NDS tree, partitions are located by subordinate
references. A subordinate reference is in the form of an object in the
superior partition that refers to the subordinate partition. The subordinate
reference object has a Replica attribute that lists the name servers where
replicas of the subordinate are stored. It also contains information about the
type of replicas there are, how many there are, and what the inherited
access privileges for the partition are.

Figure 24. Subordinate References

NDS and Bindery Service Group

NDS: Concepts 275

Related Topics:

Partition Information

NDS Partition: Guides

Super Class Structure

Super classes provide structure for the Schema itself, not the NDS tree. The
association of one object class to another is established through super class
designations.

NDS and Bindery Service Group

NDS: Concepts 276

The complete definition of each object class is derived from the components
of the object class plus the components of all classes found in its super class
lineage. The only class that has no super class is Top, which is the super
class of all other classes. An object class inherits the characteristics of its
super classes.

Each new object class must have a Super Classes list. The super classes
denote the Schema inheritance rules. To derive the complete set of rules for
a given object class, you must look at that class' super classes. An object class
inherits all the features of its super classes. Hierarchies of classes develop
through class inheritance in this manner. The classes at the top of a
hierarchy provide general characteristics, while those at the bottom become
more and more specialized. The complete set of rules for an object class is
called the expanded class definition.

At the top of the hierarchy for every class is the Top class. Top has no super
classes. Top is used to specify information that pertains to all classes. For
example, Top specifies an Object Class attribute and an Access Control
attribute.

The class from which an object is created is called the object's base class.
The information associated with an object includes the base class and the
sum of the information specified by all its super classes. For purposes of
searching NDS, an object is considered a member of all of its super classes.
For example, the base class for User is Organizational Person. User also
inherits information from the Person and Top classes. (See NDS Object Class
Definitions.)

You should note that the hierarchy of object classes is distinct from the
hierarchy of object names in the NDS tree. Although the Schema is stored
with the rest of NDS, Schema data is logically separated from NDS and
must be accessed through a different functions. Also, the Schema's class
hierarchy does not form a simple tree graph, since a class can be derived
from two or more classes that are superior to it. Using more than one class as
a super class is called multiple inheritance.

Related Topics:

Inheritance

Class Inheritance Rules

Effective and Noneffective Classes

NDS Schema: Guides

Table of NDS Server Utilities

The utilities listed in the following table run at the server.

NDS and Bindery Service Group

NDS: Concepts 277

Table auto. Server Utilities

Utility Function

Install Install operations create the initial NDS directory
structure and the network's initial NDS server.

Repair Repair operations assess the integrity of data in NDS
and perform database surgery when necessary.

Related Topics:

NDS Agents

NDS Server Components

Types of Information Stored in NDS

The services provided by NDS are information services. Users (humans and
computer programs) use NDS to obtain information. The information stored
in NDS can be read as well as modified by users who have been granted the
applicable access rights.

The information stored in NDS is a collection of objects with associated
attributes (also called properties) which can have values assigned them.
The following figure shows an object called Computer with some associated
properties (such as Operator, Status, etc.). The values of the properties are
not shown in the figure, but an example of a value for Owner might be
"Fred" which would be the name of another object in NDS.

Figure 25. An Object as a Set of Attributes

NDS and Bindery Service Group

NDS: Concepts 278

The objects in NDS and their names correspond to things that humans relate
to when dealing with computers, networks and information. Objects such as
countries, organizations, people, computers, and so on are types of objects
you might find in NDS. Specific objects might be US, Novell, Fred, FS1,
PrintServer, etc. The objects are intended to fit into a human being's
conception of things, not necessarily a computer's.

Informally, much of the property information found in NDS falls into one of
four categories: Names, Addresses, Memberships, and Descriptions.
Although these categories are not formally denoted in NDS, they are
helpful in understanding typical kinds of information that users and
developers can find in NDS.

Related Topics:

Names Stored in NDS

Addresses Stored in NDS

Lists Stored in NDS

NDS and Bindery Service Group

NDS: Concepts 279

Descriptions Stored in NDS

Introduction to NDS Development: Guide

Tree Walking

When a client agent submits a request to NDS, the request is not always
received by a name server that is qualified to fulfill the request. The name
server receiving the request is faced with the problem of finding a name
server that can fulfill the request. Several name servers may need to be
contacted before a qualified server is located.

To find the information, a name server initiates a search until a replica is
found that contains the desired information. This process is called tree
walking.

All NDS requests can be broken down to one or more names identifying
objects for which information is needed. In pursuing each name component
in a request, the name server searches for a partition that contains some part
of the name path associated with the request. Once a partition is found, the
search moves from that partition to the partition that actually contains the
item. Until a relevant partition is found, however, the search proceeds
toward the NDS directory [root], since any request can be pursued
successfully by beginning at the [root].

The tree walking process relies on subordinate references to connect the
tree. If a name server can find no other information, it can at least provide a
name server that has a partition with information about objects that are
closer to the [root] than itself.

The subordinate reference is an entry in a superior partition that points to a
subordinate partition. There is a subordinate reference for each partition
that is subordinate to a given partition. When walking the tree, a name
server is given the name of an object. From there, the name server decides
which server to attempt to access next in order to locate the object.

The following figure 17 shows an example NDS tree. This is the total tree
structure and shows no partition designations and does not give any
indication as to which servers the partitions and/or replicas are stored on.

Figure 26. Sample Tree Structure

NDS and Bindery Service Group

NDS: Concepts 280

For this tree it was decided to make three partitions. WimpleMakers,
Kalamazoo, and Tucumcari were the objects selected as the partition roots,
and NS1, NS2, and NS3, respectively, were chosen to store the partitions.

Suppose a client (user U2) has a connection with the name server NS2 and
makes a request to update the Marketing object. It specifies the name
Marketing.Tucumcari.Wimplemakers in the request. NS2 has no
information about Tucumcari or Marketing so it must begin a tree walking
process. NS2 passes the request up the tree to NS1, because it knows it is

NDS and Bindery Service Group

NDS: Concepts 281

closer to the [root] because of its superior reference. This short walk up the
tree is the only upward walk that must occur for this particular request. (See
the following figure.)

Figure 27. A Walk Up the Tree

This begins the walk down the tree toward the desired object. NS3 then
completes the tree walk when it successfully identifies Marketing as part of
its partition. In this arrangement, each of these partitions is a master
partition and can be written to, so NS3 is able to fulfill any request allowed
by the NDS security ACLs.

If other servers were added to this tree, they could be designated as replica
holders of any one or all of the partitions. If more replicas existed, server
NS1 would have to determine which server to send the request to. Perhaps
two or more servers have replicas of the Tucumcari partition.

Related Topics:

Progress Reports

NDS and Bindery Service Group

NDS: Concepts 282

NDS Partition: Guides

Trustees

The administrator can create ACL values to assign rights or privileges to an
object or attributes. These are known as trustee assignments. NDS uses these
trustee assignments in conjunction with the Inheritance ACLs and
Inheritance Masks to compute the effective rights a given subject has on a
given object.

The trustee assignments are created as values of the multivalued ACL
attribute attached to an NDS object. Trustee assignments are optional.

Trustee assignments made to objects flow down the NDS tree. For example
if object "X" is given rights to a container object "A" that contains object "B"
then "X" gets the same rights on object "B" that it has on object "A". Object "B"
could have an inheritance mask to filter some privileges. If so "X" will have
only the rights to access "B" that pass through the filter.

Trustee assignments made for attributes do not flow down the tree unless
the assignment is for "all attributes". Assignments made to specifically
designated individual attributes do not apply to subordinate objects or
attributes of those subordinate objects.

Related Topics:

Equivalence in NDS

Access Control Lists

NDS Security: Concepts Guide

Typeless Names

Typeless Names are Context Names that lack the descriptors (O, OU, CN, etc).
Context names are set to typeless with DCV_TYPELESS_NAMES (see
Context Flags).

Setting the typeless context flag to ON allows your application to display
nice looking names without types instead of the confusing look of names
with types. However, if you set the context flags so that the libraries return
typeless names, you can run into some problems with fully distinguished
names.

The NDS libraries can add types to any components of a name that are
passed into the API without a type. We learn from the Default Typing Rule
that the most significant component (right-most) is an Organization (O).
This can cause problems if a name like "JRoss.Engineering.US" is passed
where US is a Country not an Organization. The libraries translate this
name to "CN=JRoss.OU=Engineering.O=US", which is wrong. The call fails

NDS and Bindery Service Group

NDS: Concepts 283

with a 0xFDA7 ERR_NO_SUCH_ENTRY.

However, if the context is set to "Engineering.US" and you pass in the
partial name "JRoss", the call does not fail. The only time the libraries have
problems with types is when they are passed fully Distinguished Names
with no types. The only way the libraries can resolve the name is to use the
Default Typing Rules.

To summarize, there are three areas where working with typeless names
can cause problems. Here is a list of all three. Note how similar these look to
the Default Typing Rule.

If you are working with leaf objects that don't use the attribute CN as the
naming attribute.

If you are working with containers that don't use the naming attribute
OU.

If your root object does not use the naming attribute O.

Related Topics:

Canonicalized Names

Attribute Type Abbreviations

NDS Context: Guides

Workstation Applications for NDS

The following table shows the major NDS operations that require
application utility programs at the workstation. Each item represents classes
of operations, and is not necessarily performed by a specific application or
utility program.

Table auto. NDS Operation Types

Utility Function

NDS Access Access operations provide the principal NDS
interface for users and administrators. Access
operations create, retrieve, and maintain NDS
objects and set access rights. These operations
also allow users to search the NDS
"yellow-page" style.

Partition
Management

Partition management operations include
adding and removing partitions of NDS. They
also include creating and removing partition
replicas and initiating synchronization
processes.

Schema Schema management operations allow

NDS and Bindery Service Group

NDS: Concepts 284

Management administrators to extend the class and attribute
definitions that define the information stored in
NDS. New classes and attributes can be added
to the base schema. In addition, optional
attributes can be added to existing classes in the
base schema. However, the class definitions
included in the base schema (as shipped) cannot
be deleted.

Backup Backup operations maintain backup copies of
NDS information base so that this information
can be restored in the event of system failure.

Login Login operations obtain the client's private key
and use it to create the client signature and enter
authenticated dialogues.

Logout Logout operations remove the client's
authentication data from the workstation and
terminate the client's service connections.

Related Topics:

Application Programming Interfaces for NDS

NDS Workstation Components

NDS and Bindery Service Group

NDS: Concepts 285

NDS: Functions

NDS and Bindery Service Group

NDS: Functions 286

NWDSAbbreviateName

Converts a NDS name (including the naming attributes) to its shortest form
relative to a specified name context

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsname.h>
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSAbbreviateName (
 NWDSContextHandle context,
 pnstr8 inName,
 pnstr8 abbreviatedName);

Pascal Syntax

#include <nwdsname.inc>

Function NWDSAbbreviateName
 (context : NWDSContextHandle;
 inName : pnstr8;
 abbreviatedName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

inName

(IN) Points to the object name to be abbreviated.

abbreviatedName

(OUT) Points to the abbreviated form of the name.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 287

Remarks

The caller must allocate space for the abbreviated name. The size of the
allocated memory is ((MAX_RDN_CHARS)+1)*sizeof(character size),
where character size is 1 for single-byte characters, and 2 for double-byte
characters (Unicode is double byte). One character is used for NULL
termination.

If the context flag associated with DCV_TYPELESS_NAMES is set on, the
types are removed where possible. For example, the name

CN=Elmer Fudd.OU=Looney Tunes.O=Acme (context OU=Looney Tunes.O=Acme)

converts to

Elmer Fudd.

If the context flag associated with DCV_TYPELESS_NAMES is set off, the
name converts to

CN=Elmer Fudd.

NCP Calls

None

See Also

NWDSCanonicalizeName

NDS and Bindery Service Group

NDS: Functions 288

NWDSAbortPartitionOperation

Aborts a partition operation in progress

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1, 4.11

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdspart.h>

NWDSCCODE N_API NWDSAbortPartitionOperation (
 NWDSContextHandle context,
 pnstr8 partitionRoot);

Pascal Syntax

#include <nwdspart.inc>

Function NWDSAbortPartitionOperation
 (context : NWDSContextHandle;
 partitionRoot : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

partitionRoot

(IN) Points to the root object name for the partition.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NDS and Bindery Service Group

NDS: Functions 289

Two examples of partition operations are operations splitting a partition
and joining a partition.

If possible, NWDSAbortPartitionOperation returns the partition to its
state prior to the partition operation. If the partition operation cannot be
aborted, NWDSAbortPartitionOperation returns
ERR_CANNOT_ABORT.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSJoinPartitions, NWDSSplitPartition

NDS and Bindery Service Group

NDS: Functions 290

NWDSAddFilterToken

Adds a node to the search filter expression tree

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsfilt.h>

NWDSCCODE N_API NWDSAddFilterToken (
 pFilter_Cursor_T cur,
 nuint16 tok,
 nptr val,
 nuint32 syntax);

Pascal Syntax

#include <nwdsfilt.inc>

Function NWDSAddFilterToken
 (cur : pFilter_Cursor_T;
 tok : nuint16;
 val : nptr;
 syntax : nuint32
) : NWDSCCODE;

Parameters

cur

(IN) Points to a Filter_Cursor_T, which defines the current insertion
point in the filter expression tree.

tok

(IN) Specifies the token to be added to the filter expression tree.

val

(IN) Points to either the attribute name or the attribute value,
according to the token being added.

syntax

(IN) Specifies the attribute syntax associated with the val parameter.

Return Values

NDS and Bindery Service Group

NDS: Functions 291

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

Each node contains a token and a syntax with an associated value. The
token is identified by tok with the following values:

FTOK_END 0
FTOK_OR 1
FTOK_AND 2
FTOK_NOT 3
FTOK_LPAREN 4
FTOK_RPAREN 5
FTOK_AVAL 6
FTOK_EQ 7
FTOK_GE 8
FTOK_LE 9
FTOK_APPROX 10
FTOK_ANAME 14
FTOK_PRESENT 15
FTOK_RDN 16
FTOK_BASECLS 17
FTOK_MODTIME 18
FTOK_VALTIME 19

The relationship between the tok, val, and syntax parameters is as follows:

If the tok parameter is FTOK_ANAME (meaning attribute name), the
val parameter must point to a copy of the attribute name, and the
syntax parameter must be set to the appropriate attribute syntax ID.

If the tok parameter is FTOK_AVAL (meaning attribute value), the val
parameter must point to a copy of the attribute value, and the syntax
parameter must be set to the appropriate attribute syntax ID.

If the tok parameter is neither FTOK_ANAME or FTOK_AVAL, the val
and syntax parameters are ignored and can be set to NULL.

The val parameter must point to a dynamically allocated memory buffer
that can be freed by calling either the NWDSPutFilter or
NWDSAddFilterToken function.

The NWDSPutFilter function frees up the memory associated with the
expression tree. However, if NWDSAddFilterToken returns an error
while you are creating an expression tree, you should not call the
NWDSPutFilter function, but call the NWDSFreeFilter function to free
up the memory associated with the expression tree.

NDS and Bindery Service Group

NDS: Functions 292

The expect field of the cur parameter contains a bit-map representation of
the valid token at the current position in the tree. The tok parameter must
correspond to one of these tokens. If NWDSAddFilterToken returns
SUCCESSFUL, the expect field is updated according to the next position
in the tree (the insertion point of the next token).

Parsing of the token expression list is performed by
NWDSAddFilterToken.

For information about how to conduct a search and for more details
about NDS searches, see Searching NDS and NDS Search Introduction.

NCP Calls

None

See Also

NWDSAllocFilter, NWDSDelFilterToken, NWDSFreeFilter,
NWDSPutFilter

NDS and Bindery Service Group

NDS: Functions 293

NWDSAddObject

Adds an object to the NDS tree

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSAddObject (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnint32 iterationHandle,
 nbool8 more,
 pBuf_T objectInfo);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSAddObject
 (context : NWDSContextHandle;
 objectName : pnstr8;
 iterationHandle : pnint32;
 more : nbool8;
 objectInfo : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object to be added.

iterationHandle

(IN) Points to the iteration number (-1 initially).

more

(IN) Specifies whether additional information will be returned:

0 No more information

NDS and Bindery Service Group

NDS: Functions 294

0 No more information

nonzero More information will be returned

objectInfo

(IN) Points to a request buffer containing the attribute values for the
new object.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

For NWDSAddObject to succeed, the new object's immediate superior
must already exist.

objectName identifies the name of the object to be added. For example,

CN=Elmer Fudd.OU=Looney Tunes.O=Acme.C=US.

The object can be an alias entry.

NOTE: If the iterationHandle parameter is set to 0 initially,
NWDSAddObject will ignore the value and process the request as if -1
was passed.

If the more parameter is set to nonzero, NWDSAddObject will perform
the necessary steps to iteratively call itself.

In order to iteratively call NWDSAddObject, the DS.NLM file must
support the iteration feature or ERR_BUFFER_FULL will be returned.

NDS and Bindery Service Group

NDS: Functions 295

All of an object's mandatory attributes must be supplied for
NWDSAddObject to succeed. For example, Object Class is a mandatory
attribute for any object that is added. This is the base class of the object.

While NDS ensures that new objects conform to the NDS Schema, if an
alias is being created for an existing object, no check is made to ensure the
alias's Aliased Object Name attribute points to a valid object. This check
occurs on the server when the aliased object name is translated to a local
ID.

NWDSAddObject never dereferences aliases. The setting of the context
flag associated with DCV_DEREF_ALIASES in the context field
associated with DCK_FLAGS is ignored.

For more information, see Adding an NDS Object.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSListContainableClasses, NWDSModifyObject,
NWDSRemoveObject

NDS and Bindery Service Group

NDS: Functions 296

NWDSAddPartition (obsolete 9/97)

Creates the root object of a new NDS partition but is now obsolete. Call
NWDSAddReplica and NWDSSplitPartition instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdspart.h>

NWDSCCODE N_API NWDSAddPartition (
 NWDSContextHandle context,
 pnstr8 server,
 pnstr8 partitionRoot,
 pnint32 iterationHandle,
 nbool8 more,
 pBuf_T objectInfo);

Pascal Syntax

Function NWDSAddPartition
 (context : NWDSContextHandle;
 server : pnstr8;
 partitionRoot : pnstr8;
 iterationHandle : pnint32;
 more : nbool8;
 objectInfo : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

server

(IN) Points to the name of the server where the partition is to be added.

partitionRoot

(IN) Points to the name of the root object of the new partition. (New
object being created.)

iterationHandle

NDS and Bindery Service Group

NDS: Functions 297

(IN/OUT) Is reserved; pass in 0.

more

(IN) Is reserved; pass in NULL.

objectInfo

(IN) Points to the attributes that define the root object of the new
partition.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The initial partition replica will always be of type RT_MASTER, which is
enumerated in NWDSDEFS.H.

The server parameter identifies the server where the master replica of the
new partition is to be stored.

The objectInfo parameter points to the Buf_T structure containing attribute
information, which, together with information from the partition root
name, constitutes the object to be created. For more information, see
Adding a Partition.

The type of attribute information needed to create the partition object is
listed in NDS Object Class Definitions. The user can add any attributes to
the partition object that are not read only. Values for other partition
attributes are assigned automatically.

NDS and Bindery Service Group

NDS: Functions 298

Aliases are never dereferenced by NWDSAddReplica. The setting of the
NDS context flag associated with DCV_DEREF_ALIASES is not relevant
and is ignored.

You cannot call NWDSAddObject to create a partition; you must call
either NWDSAddPartition (obsolete 9/97) or NWDSSplitPartition to do
so.

Additional replicas of a partition can be added to the system by calling
NWDSAddReplica.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSAddReplica, NWDSJoinPartitions, NWDSListPartitions,
NWDSRemovePartition, NWDSSplitPartition

NDS and Bindery Service Group

NDS: Functions 299

NWDSAddReplica

Adds a replica of an existing NDS partition to a server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdspart.h>

NWDSCCODE N_API NWDSAddReplica (
 NWDSContextHandle context,
 pnstr8 server,
 pnstr8 partitionRoot;
 nuint32 replicaType);

Pascal Syntax

#include <nwdspart.inc>

Function NWDSAddReplica
 (context : NWDSContextHandle;
 server : pnstr8;
 partitionRoot : pnstr8;
 replicaType : nuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

server

(IN) Points to the name of the server where the replica is to be stored.

partitionRoot

(IN) Points to the name of the root object of the NDS partition to be
replicated.

replicaType

(IN) Specifies the type of the new replica (secondary or read-only).

NDS and Bindery Service Group

NDS: Functions 300

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The partition must be created beforehand by calling NWDSAddReplica
or NWDSSplitPartition.

replicaType determines the type of replica to be created:

1 RT_SECOND
ARY

Secondary

2 RT_READON
LY

Read-only

NOTE: You cannot create a master replica type (RT_MASTER) with
NWDSAddReplica.

Aliases are never dereferenced by NWDSAddReplica. The setting of the
NDS context flag associated with DCV_DEREF_ALIASES is not relevant
and is ignored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

NDS and Bindery Service Group

NDS: Functions 301

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSAddReplica, NWDSChangeReplicaType,
NWDSRemoveReplica, NWDSSplitPartition

NDS and Bindery Service Group

NDS: Functions 302

NWDSAddSecurityEquiv

Adds to the specified object's security equivalence

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE NWDSAddSecurityEquiv (
 NWDSContextHandle context,
 pnstr8 *equalFrom,
 pnstr8 *equalTo);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSAddSecurityEquiv
 (context : NWDSContextHandle;
 equalFrom : pnstr8;
 equalTo : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

equalFrom

(IN) Points to the name of the object that will receive security
equivalence.

equalTo

(IN) Points to the name to be added to the Security Equivalence
attribute of the object specified by equalFrom.

Return Values

0x0000 SUCCESSFUL

NDS and Bindery Service Group

NDS: Functions 303

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

If NWDSAddSecurityEquiv is successful, it will place the name of the
object specified by equalTo into the Security Equals attribute of the object
specified by the equalFrom parameter. (Security Equals is a multivalued
attribute.)

If the object specified by the equalFrom parameter does not contain
sufficient rights to add the security equivalence to its list,
NWDSAddSecurityEquiv will return ERR_NO_ACCESS.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSRemSecurityEquiv

NDS and Bindery Service Group

NDS: Functions 304

NWDSAllocBuf

Allocates a Buf_T for use as a request or result buffer parameter to a NDS
function

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSAllocBuf (
 size _t size,
 ppBuf_T buf);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSAllocBuf
 (size : size_t;
 buf : ppBuf_T
) : NWDSCCODE;

Parameters

size

(IN) Specifies the number of bytes to allocate to the buffer.

buf

(OUT) Points to Buf_T containing the memory allocated for the buffer.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The following two message sizes are defined in NWDSDC.H:

NDS and Bindery Service Group

NDS: Functions 305

4096 DEFAULT_MESSAGE_LEN

64512 MAX_MESSAGE_LEN

The total bytes allocated for the buffer is size+sizeof(Buf_T).

For most operations, the size of DEFAULT_MESSAGE_LEN can be used.
It is up to the developer to determine by experimentation if another size
optimizes an application's performance.

When determining a buffer size, keep in mind the effects of buffer size. A
smaller buffer means multiple iterations of an operation might need to be
performed to retrieve all of the operation's results. On the other hand,
using a large buffer might allow the operation to be completed in one
step, but cause a significant delay for the user.

If NWDSAllocBuf is successful, buf is set to point to the allocated buffer.

NCP Calls

None

See Also

NWDSFreeBuf, NWDSInitBuf

NDS and Bindery Service Group

NDS: Functions 306

NWDSAllocFilter

Allocates a filter expression tree and initializes a cursor to the current
insertion point

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsfilt.h>

NWDSCCODE N_API NWDSAllocFilter (
 ppFilter_Cursor_T cur);

Pascal Syntax

#include <nwdsfilt.inc>

Function NWDSAllocFilter
 (cur : ppFilter_Cursor_T
) : NWDSCCODE;

Parameters

cur

(IN/OUT) Points to the current filter-cursor position in the allocated
filter.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NCP Calls

None

See Also

NWDSAddFilterToken

NDS and Bindery Service Group

NDS: Functions 307

NWDSPutFilter

NDS and Bindery Service Group

NDS: Functions 308

NWDSAuditGetObjectID

Returns a connection handle and an object ID for the object name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsaud.h>

NWDSCCODE N_API NWDSAuditGetObjectID (
 NWDSContextHandle context,
 pnstr8 objectName,
 NWCONN_HANDLE N_FAR *conn,
 pnuint32 objectID);

Pascal Syntax

#include <nwdsaud.inc>

Function NWDSAuditGetObjectID
 (context : NWDSContextHandle;
 objectName : pnstr8;
 Var conn : NWCONN_HANDLE;
 objectID : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the directory context for the request.

objectName

(IN) Points to the name of the object to get the ID for.

conn

(OUT) Points to the connection handle where the object resides.

objectID

(OUT) Points to the NDS object ID.

Return Values

NDS and Bindery Service Group

NDS: Functions 309

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The returned connection handle is the NetWare server where the object is
stored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSAddObject, NWDSResolveName

NDS and Bindery Service Group

NDS: Functions 310

NWDSAuthenticate

Establishes an authenticated connection to a secured NetWare® server
using the unauthenticated connection and local data cached by calling
NWDSLogin

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsasa.h>

NWDSCCODE N_API NWDSAuthenticate (
 NWCONN_HANDLE conn,
 nflag32 optionsFlag,
 pNWDS_Session_Key_T sessionKey);

Pascal Syntax

#include <nwdsasa.inc>

Function NWDSAuthenticate
 (conn : NWCONN_HANDLE;
 optionsFlag : nflag32;
 sessionKey : pNWDS_Session_Key_T
) : NWDSCCODE;

Parameters

conn

(IN) Specifies the client's initial unauthenticated connection handle.

optionsFlag

(IN) Reserved; pass in a zero (0).

sessionKey

(IN) Reserved; pass in NULL.

Return Values

0x0000 SUCCESSFUL

NDS and Bindery Service Group

NDS: Functions 311

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSAuthenticate first checks to see if the specified connection is
authenticated. If the connection is authenticated, NWDSAuthenticate
will return SUCCESFUL and end the call.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSAuthenticateConn, NWDSLogin

NDS and Bindery Service Group

NDS: Functions 312

NWDSAuthenticateConn

Establishes an authenticated connection to a secured NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsasa.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSAuthenticateConn (
 NWDSContextHandle context,
 NWCONN_HANDLE connHandle);

Pascal Syntax

#include <nwdsasa.inc>

Function NWDSAuthenticateConn
 (context : NWDSContextHandle;
 connHandle : NWCONN_HANDLE
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

connHandle

(IN) Points to the connection handle to authenticate.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSAuthenticateConn establishes an authenticated connection to a
secured NetWare server using the unauthenticated connection and the

NDS and Bindery Service Group

NDS: Functions 313

secured NetWare server using the unauthenticated connection and the
identity, established by calling NWDSLogin, of the object derived from
the context handle.

The context handle is used to indicate which tree (and hence which
identity) to use in authenticating the connection handle. If the underlying
requester does not support multiple tree authentications, the tree value of
the context handle is ignored.

NWDSAuthenticateConn first checks to see if the specified connection is
authenticated. If the connection is authenticated,
NWDSAuthenticateConn will return SUCCESFUL and end the call.

NCP Calls

0x2222 104 2 Send NDS Fragmented Request/Reply

See Also

NWDSOpenConnToNDSServer, NWDSOpenMonitoredConn,
NWCCOpenConnByName

NDS and Bindery Service Group

NDS: Functions 314

NWDSBackupObject

Backs up the attribute names and values for an object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE NWDSBackupObject (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnint32 iterationHandle,
 pBuf_T objectInfo);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSBackupObject
 (context : NWDSContextHandle;
 objectName : pnstr8;
 iterationHandle : pnint32;
 objectInfo : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object for which information is to be
returned.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent
iterations of NWDSBackupObject.

objectInfo

(OUT) Points to the requested attribute names and values.

NDS and Bindery Service Group

NDS: Functions 315

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSBackupObject is used to back up the attributes and attribute
values for one object at a time. To back up NDS, call the
NWDSBackupObject function for each object.

iterationHandle is used to control retrieval of results that are larger than
the result buffer supplied by objectInfo.

Before the initial call to NWDSBackupObject, set the contents of the
iteration handle pointed to by iterationHandle to
NO_MORE_ITERATIONS.

When NWDSBackupObject returns from its initial call, if the result
buffer holds the complete results, the location pointed to by
iterationHandle is set to NO_MORE_ITERATIONS on return. If the
iteration handle is not set to NO_MORE_ITERATIONS, use the iteration
handle for subsequent calls to NWDSBackupObject to obtain further
portions of the results. When the results are completely retrieved, the
contents of the iteration handle will be set to NO_MORE_ITERATIONS.

CAUTION: The information returned in objectInfo must be stored
so it can be passed to NWDSRestoreObject in the expected manner.
NWDSRestoreObject expects an nuint32 array pointer and an nuint8
pointer specifying the length of the information to be restored.

Each time NWDSBackupObject is called, save the number of bytes

NDS and Bindery Service Group

NDS: Functions 316

returned by objectInfo->curLen starting from the address pointed to by
objectInfo->data. objectInfo must be worked with directly; there are no NDS
functions that will retrieve this information.

It is the developer's responsibility to decide how to store the information
so it can be restored when calling NWDSRestoreObject.

The results of NWDSBackupObject are not ordered. Attribute
information might not be stored in the result buffer in alphabetical order.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSRestoreObject

NDS and Bindery Service Group

NDS: Functions 317

NWDSBeginClassItem

Begins a class item definition (which is a part of an object class definition) in
a request buffer to be used by a NDS Schema function

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSBeginClassItem (
 NWDSContextHandle context,
 pBuf_T buf);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSBeginClassItem
 (context : NWDSContextHandle;
 buf : pBuf_T
) : NWDSCCODE

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the request buffer being prepared.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

buf points to a Buf_T, which is allocated by NWDSAllocBuf and

NDS and Bindery Service Group

NDS: Functions 318

initialized by NWDSInitBuf for the DSV_DEFINE_CLASS operation.

NWDSBeginClassItem is used in conjunction with
NWDSPutClassName and NWDSPutAttrName to prepare a request
buffer for NWDSDefineClass to use in creating a new object-class
definition. This request buffer must contain a sequence of five sets of class
definition item lists. The lists must occur in the following order:

1. Super Class Names

2. Containment Class Names

3. Naming Attribute Names

4. Mandatory Attribute Names

5. Optional Attribute Names

If a particular definition item list is empty, NWDSBeginClassItem must
still be called for that list. For example, if the class definition has no
mandatory attributes, you must call NWDSBeginClassItem to move to
the Mandatory Attribute Names list and then immediately call
NWDSBeginClassItem again to move to the Optional Attribute Names
list.

The complete steps for creating a new object class definition are found in
the reference for NWDSDefineClass.

NCP Calls

None

See Also

NWDSPutClassName, NWDSPutClassItem

NDS and Bindery Service Group

NDS: Functions 319

NWDSCanDSAuthenticate

Determines if NDS credentials exist for the specified tree name

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsconn.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSCanDSAuthenticate (
 NWDSContextHandle context);

Pascal Syntax

#include <nwdsconn.inc>

Function NWDSCanDSAuthenticate
 (context : NWDSContextHandle
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

Return Values

These are common return values; see Return Values for more
information.

0 No credentials found

1 Credentials exist

Remarks

NWDSCanDSAuthenticate is similar to NWIsDSAuthenticated, but is
enabled for multiple tree environments. NWDSCanDSAuthenticate
indicates if NDS credentials exist for the tree name described in the
context. If credentials exist for the tree, authentication can be performed
to servers within the tree.

NDS and Bindery Service Group

NDS: Functions 320

NCP Calls

None

See Also

NWDSAuthenticateConn, NWIsDSAuthenticated

NDS and Bindery Service Group

NDS: Functions 321

NWDSCanonicalizeName

Converts an abbreviated name to the canonical form

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsname.h>

NWDSCCODE N_API NWDSCanonicalizeName (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnstr8 canonName);

Pascal Syntax

#include <nwdsname.inc>

Function NWDSCanonicalizeName
 (context : NWDSContextHandle;
 objectName : pnstr8;
 canonName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the object name to be expressed in canonical form.

canonName

(OUT) Points to the canonical form of the name.

Return Values

0x0000 SUCCESSFUL

 negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 322

Remarks

The canonical form of a name includes the full path of the name (a
complete name) with the naming attribute type specification for each
naming component. Standard naming attribute type abbreviations are
used where available. In addition, multiple white spaces are removed
from the name.

For example, if the input is

CN=Elmer Fudd

and the name context is

OU=Looney Toons.O=Acme

the canonicalized name is

CN=Elmer Fudd.OU=Looney Toons.O=Acme

The canonicalized name will always contain types, regardless of the
setting of the context flag associated with DCV_TYPELESS_NAMES.

objectName supplies the abbreviated form of a NDS name. The name can
be typed or typeless. It can also be truncated. It is assumed that a
truncated name is relative to the naming path supplied by the specified
context.

canonName receives the canonical form of the name. The caller must
allocate space for the canonicalized name. The size of the allocated
memory is ((MAX_DN_CHARS)+1)*sizeof(character size) where
character size is 1 for single-byte characters, and 2 for double-byte
characters (Unicode is double byte). One character is used for NULL
termination.

NCP Calls

None

See Also

NWDSAbbreviateName

NDS and Bindery Service Group

NDS: Functions 323

NWDSChangeObjectPassword

Changes the authentication password for an NDS object once a
public/private key pair has been assigned

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsasa.h>

NWDSCCODE N_API NWDSChangeObjectPassword (
 NWDSContextHandle context,
 nflag32 optionsFlag,
 pnstr8 objectName,
 pnstr8 oldPassword,
 pnstr8 newPassword);

Pascal Syntax

#include <nwdsasa.inc>

Function NWDSChangeObjectPassword
 (context : NWDSContextHandle;
 optionsFlag : nflag32;
 objectName : pnstr8;
 oldPassword : pnstr8;
 newPassword : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

optionsFlag

(IN) Reserved; pass in zero.

objectName

(IN) Points to the object name whose password is to be changed.

oldPassword

(IN) Points to the object's current password.

NDS and Bindery Service Group

NDS: Functions 324

newPassword

(IN) Points to the object's new password.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

For NWDSChangeObjectPassword to succeed, oldPassword must be
correct. If no value is currently assigned to the password, oldPassword
should point to a zero-length string.

If no new password value is desired, newPassword should point to a
zero-length string.

A password can be any length and all characters are significant.
Uppercase and lowercase characters are distinct.

If an application has a local copy of any password value, the value
should be erased as soon as possible to prevent compromising the
security of the password.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSGenerateObjectKeyPair

NDS and Bindery Service Group

NDS: Functions 325

NWDSChangeReplicaType

Changes the replica type of a given replica on a given server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdspart.h>

NWDSCCODE N_API NWDSChangeReplicaType (
 NWDSContextHandle context,
 pnstr8 replicaName,
 pnstr8 server,
 nuint32 newReplicaType);

Pascal Syntax

#include <nwdspart.inc>

Function NWDSChangeReplicaType
 (context : NWDSContextHandle;
 replicaName : pnstr8;
 server : pnstr8;
 newReplicaType : nuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

replicaName

(IN) Points to the root object name of the NDS partition whose replica
type will be changed.

server

(IN) Points to the name of the server on which the replica resides.

replicaType

(IN) Specifies the replica type the given replica is to be changed to.

NDS and Bindery Service Group

NDS: Functions 326

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

replicaType can be one of the following types enumerated in
NWDSDEFS.H:

0 RT_MASTER Master replica

1 RT_SECOND
ARY

Secondary replica

2 RT_READON
LY

Read-only replica

A change in type from read-only to secondary or secondary to read-only
affects only the given replica. A change to RT_MASTER results in the
current master being changed to a secondary replica.

The replica type of the master may not be changed directly by calling
NWDSChangeReplicaType. The replica type of the master replica can
only change as a side effect of NWDSChangeReplicaType changing
another replica's type to RT_MASTER.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

NDS and Bindery Service Group

NDS: Functions 327

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSSplitPartition, NWDSJoinPartitions, NWDSAddReplica,
NWDSRemoveReplica

NDS and Bindery Service Group

NDS: Functions 328

NWDSCIStringsMatch

Tests two case ignore strings (defined by CI_String_T) to determine if the
two strings are equivalent

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsname.h>

NWDSCCODE N_API NWDSCIStringsMatch (
 NWDSContextHandle context,
 pnstr8 string1,
 pnstr8 string2,
 pnint matches;)

Pascal Syntax

#include <nwdsname.inc>

Function NWDSCIStringsMatch
 (context : NWDSContextHandle;
 string1 : pnstr8;
 string2 : pnstr8;
 matches : pnint
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context to be used. It is created by calling
NWDSCreateContextHandle.

string1

(IN) Points to the first string to compare.

string2

(IN) Points to the second string to compare.

matches

(OUT) Points to a boolean indicating whether the strings match: 0 =
Don't match; 1 = Match.

Return Values

NDS and Bindery Service Group

NDS: Functions 329

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

0xFE0
D

UNI_NO_DEAFAULT

0xFE0
F

UNI_HANDLE_MISMATCH

0xFE1
0

UNI_HANDLE_BAD

0xFED
1

ERR_BAD_CONTEXT

0xFED
3

ERR_NOT_ENOUGH_MEMORY

Remarks

Case Ignore String is a syntax used by some of the attributes (such as CN,
Description, NDS, Services flags, and Title) for NDS objects.

Depending on the context, NWDSCIStringsMatch compares two
Unicode strings in the local or Unicode code page. This function ignores
leading and trailing white space, which is either " " (space, 0x0020) or "_"
(underscore, 0x005F). Also, it matches any consecutive internal white
space, regardless of quantities. For example, if the string has a single
internal white space character and another has five,
NWDSCIStringsMatch matches the strings. Finally,
NWDSCIStringsMatch ignores case in comparisons.

NWDSCIStringsMatch is a local function.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 330

NWDSCloseIteration

Frees memory associated with an iteration handle in the event the client
chooses to discontinue iterative calls to the server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsmisc.h>
#include <nwdsdefs.h>

NWDSCCODE N_API NWDSCloseIteration (
 NWDSContextHandle context,
 int32 iterationHandle,
 uint32 operation);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWDSCloseIteration
 (context : NWDSContextHandle;
 iterationHandle : nint32;
 operation : nuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

iterationHandle

(IN) Specifies the iteration handle previously received from the server.

operation

(IN) Specifies the NDS operation associated with iterationHandle.

Return Values

These are common return values; see Return Values for more
information.

NDS and Bindery Service Group

NDS: Functions 331

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSCloseIteration is called to discontinue an iterative operation, such
as Read, List, and Search, before the operation is complete. In the event
the client chooses to discontinue the iterative exchange with the server,
NWDSCloseIteration frees memory on both the client and the server and
states information associated with the handle.

Functions such as NWDSList, NWDSRead, and NWDSSearch free the
memory and state information associated with an operation when they
return with iterationHandle set to NO_MORE_ITERATIONS.
NWDSCloseIteration is called to stop the operation before these
functions set iterationHandle to NO_MORE_ITERATIONS.

operation tags follow:

3 DSV_READ NWDSExtSyncRead

NWDSListAttrsEffectiveRights

NWDSRead

NWDSReadReferences

4 DSV_COMPARE NWDSCompare

6 DSV_SEARCH NWDSExtSyncList

NWDSExtSyncSearch

NWDSListByClassAndName

NWDSListContainers

NWDSPutFilter

NWDSSearch

7 DSV_ADD_ENTRY NWDSAddObject

NDS and Bindery Service Group

NDS: Functions 332

9 DSV_MODIFY_ENTRY NWDSModifyObject

1
2

DSV_READ_ATTR_DEF NWDSReadAttrDef

1
4

DSV_DEFINE_CLASS NWDSDefineClass

1
5

DSV_READ_CLASS_DEF NWDSReadClassDef

1
6

DSV_MODIFY_CLASS_DEF NWDSModifyClassDef

1
8

DSV_LIST_CONTAINABLE_C
LASSES

NWDSListContainableClasses

2
2

DSV_LIST_PARTITIONS NWDSListPartitions

4
5

DSV_BACKUP_ENTRY NWDSBackupObject

4
6

DSV_RESTORE_ENTRY NWDSRestoreObject

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSRead, NWDSList, NWDSSearch, NWDSListAttrsEffectiveRights
, NWDSBackupObject, NWDSRestoreObject, NWDSListPartitions,
NWDSListContainableClasses, NWDSReadAttrDef,
NWDSReadClassDef

NDS and Bindery Service Group

NDS: Functions 333

NWDSCompare

Compares an object's attribute value with a specified value

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSCompare (
 NWDSContextHandle context,
 pnstr8 objectName,
 pBuf_T buf,
 pnbool8 matched);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSCompare
 (context : NWDSContextHandle;
 objectName : pnstr8;
 buf : pBuf_T;
 matched : pnbool8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object whose attribute is being
compared.

buf

(IN) Points to a request buffer containing the attribute name and value
to be compared with the object's attribute value.

matched

(OUT) Points to a boolean value indicating the result of the
comparison.

NDS and Bindery Service Group

NDS: Functions 334

Return Values

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The comparison is in the form of "attribute name=attribute value." For
example, the attribute name "Description" and the value "PostScript"
might be used to determine if a particular printer's page description
language is PostScript.

matched receives a Boolean indicating the result of the comparison. The
result is TRUE if the comparison was successful, otherwise the result is
FALSE.

For more information, see Comparing Attribute Values.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSRead

NDS and Bindery Service Group

NDS: Functions 335

NWDSComputeAttrValSize

Computes, in conjunction with NWDSGetAttrVal, the size of the attribute
value at the current position in the result buffer

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSComputeAttrValSize (
 NWDSContextHandle context,
 pBuf_T buf,
 nuint32 syntaxID,
 pnuint32 attrValSize);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSComputeAttrValSize
 (context : NWDSContextHandle;
 buf : pBuf_T;
 syntaxID : nuint32;
 attrValSize : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to a result buffer positioned at an attribute value.

syntaxID

(IN) Specifies the numeric ID of the attribute value.

attrValSize

(OUT) Points to the size (in bytes) required to retrieve the attribute.

Return Values

NDS and Bindery Service Group

NDS: Functions 336

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

Since Buf_T buffers are opaque to client applications, a client cannot view
a result buffer directly to see the size of the values returned in the buffer.
Call NWDSComputeAttrValSize to find the size and syntax of the
current attribute value in the buffer and then dynamically allocate
memory of that size to hold the current attribute's value. Then retrieve
the value by calling NWDSGetAttrVal.

Call NWDSComputeAttrValSize once for each attribute value you
retrieve from the result buffer.

syntaxID identifies the syntax data type the attribute information is stored
in. The data structures associated with the syntaxes are listed in NDS
Attribute Syntax Definitions. The enumerated types for syntaxes (such as
SYN_DIST_NAME) are located in NWDSDEFS.H.

attrValSize points to the size of the attribute value in bytes. This size can
be used as input to a memory allocation request. The size is large enough
to contain the attribute value along with any structure returned by
NWDSGetAttrVal.

NCP Calls

None

See Also

NWDSGetAttrVal

NDS and Bindery Service Group

NDS: Functions 337

NWDSCreateContext (obsolete 03/97)

Creates a NDS context for NDS client operations and initializes it to the
default configuration but is now obsolete. Call NWDSCreateContextHandle
instead.

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdc.h>

NWDSContextHandle N_API NWDSCreateContext (
 void);

Pascal Syntax

#include <nwdsdc.inc>

Function NWDSCreateContext
 : NWDSContextHandle;

Return Values

These are common return values; see Return Values for more
information.

0x0000 or
higher

A handle to a newly-created context

0xFEB8 ERR_CONTEXT_CREATION

Remarks

The maximum number of contexts that an application can create depends
upon the application's platform. The maximum number of contexts is 16
for DOS, Windows95 and Windows NT; the limit is 48 for Windows and
OS/2. The maximum contexts for NLM applications is limited only by
the available memory on the server.

If successful, NWDSCreateContext (obsolete 03/97) returns a handle for
the newly-created context. The range of values for this handle is from 0 to
the platfom's limit, minus one. For example, the range for DOS is 0 to 7.

NDS and Bindery Service Group

NDS: Functions 338

NOTE: NWDSCreateContext (obsolete 03/97) can fail for the
following reasons: (1) insufficient memory to create the context, (2)
maximum number of contexts exhausted (such as 8 for DOS), and (3)
Unicode tables were not initialized (see NWInitUnicodeTables).

The following list shows the default values set when a NDS context is
created:

The flags in the context variable associated with DCK_FLAGS are set
as follows:

 The flag associated with DCV_ASYNC_MODE is set off. (It is reserved.)
 The flag associates with DCV_CANONICALIZE_NAME is set on.
 The flag associated with DCV_DEREF_ALIASES is set on.
 The flag associated with DCV_TYPELESS_NAMES is set off.
 The flag associated with DCV_XLATE_STRINGS is set on.
 The flag associated with DCV_DEREF_BASE_CLASS is set off.
 The flag associated with DCV_DISALLOW_REFERRALS is set off.

The context variable associated with DCK_CONFIDENCE is set to
DCV_LOW_CONF.

The context variable associated with DCK_NAME_CONTEXT is set to
the current global name context which is obtained from NET.CFG for
workstations, and from the Bindery emulation context setting for NLM
applications. (Changing the setting of the name context does not
change the value in the NET.CFG file for workstations or the value of
the Bindery emulation context on servers.)

The context variable associated with DCK_TRANSPORT_TYPE is set
to NT_IPX. For now this field is reserved.

The context variable associated with DCK_REFERRAL_SCOPE is set
to DCV_ANY_SCOPE.

The context variable associated with DCK_LAST_CONNECTION is
initially cleared. It is then set to the connection handle of the last server
to which the library sent a request.

The context variable associated with DCK_TREE_NAME is set to the
name of the tree in the current context.

The structure of the NDS context is not available for the developer to
manipulate directly. Instead, NDS context variables are modified by
calling NWDSSetContext. The current values of NDS context variables
are retrieved by calling NWDSGetContext.

NCP Calls

None

See Also

NDS and Bindery Service Group

NDS: Functions 339

NWDSCreateContextHandle, NWDSDuplicateContext,
NWDSFreeContext, NWDSGetContext, NWDSSetContext

NDS and Bindery Service Group

NDS: Functions 340

NWDSCreateContextHandle

Allocates memory for a new context structure and initializes it with default
values

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsdc.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSCreateContextHandle (
 NWDSContextHandle N_FAR *newHandle);

Pascal Syntax

#include <nwdsdc.inc>

Function NWDSCreateContextHandle
 (Var newHandle : NWDSContextHandle
) : NWDSCCODE;

Parameters

newHandle

(OUT) Points to the newly created context handle.

Return Values

0x0000 SUCCESSFUL

nonzero
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSCreateContextHandle allocates storage for a new context
structure, initializes the structure with default values, and returns a
handle to reference the context structure.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 341

See Also

NWDSDuplicateContextHandle, NWDSFreeContext

NDS and Bindery Service Group

NDS: Functions 342

NWDSDefineAttr

Adds a new attribute definition to the NDS Schema

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdssch.h>

NWDSCCODE N_API NWDSDefineAttr (
 NWDSContextHandle context,
 pnstr8 attrName,
 pAttr_Info_T attrDef);

Pascal Syntax

#include <nwdssch.inc>

Function NWDSDefineAttr
 (context : NWDSContextHandle;
 attrName : pnstr8;
 attrDef : pAttr_Info_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

attrName

(IN) Points to the name for the new attribute.

attrDef

(IN) Points to the remaining information for the new attribute
definition.

Return Values

These are common return values; see Return Values for more
information.

NDS and Bindery Service Group

NDS: Functions 343

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The name of the new attribute must be unique within the NDS Schema
attribute definitions. The names of the attributes for the Base Schema are
listed in NDS Attribute Type Definitions. New attributes added by other
applications must be read from the Schema on a server by calling
NWDSReadAttrDef.

New Attribute names should be cleared through Developer Support to
guarantee uniqueness.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSDefineClass

NDS and Bindery Service Group

NDS: Functions 344

NWDSDefineClass

Adds a new object class definition to the NDS Schema

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdssch.h>

NWDSCCODE N_API NWDSDefineClass (
 NWDSContextHandle context,
 pnstr8 className,
 pClass_Info_T classInfo,
 pBuf_T classItems);

Pascal Syntax

#include <nwdssch.inc>

Function NWDSDefineClass
 (context : NWDSContextHandle;
 className : pnstr8;
 classInfo : pClass_Info_T;
 classItems : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

className

(IN) Points to the name of the new object class.

classInfo

(IN) Points to the class flags and ASN.1 ID for the new class.

classItems

(IN) Points to the remaining class definition.

Return Values

NDS and Bindery Service Group

NDS: Functions 345

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The name of the new object class must be unique within the NDS Schema
class definitions. The names of the classes for the Base Schema are listed
in NDS Object Class Definitions. New object classes added by other
applications must be read from the Schema on a server by calling
NWDSReadClassDef.

New object-class names should be cleared through Developer Support to
guarantee uniqueness.

classItems points to a request buffer containing additional information
that defines the object. This buffer contains a sequence of five lists
containing either class names or attribute names. The lists must occur in
the following order.

1. Super Class Names

2. Containment Class Names

3. Naming Attribute Names

4. Mandatory Attribute Names

5. Optional Attribute Names

NCP Calls

0x2222 23 17 Get File Server Information

NDS and Bindery Service Group

NDS: Functions 346

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSDefineAttr, NWDSModifyClassDef

NDS and Bindery Service Group

NDS: Functions 347

NWDSDelFilterToken

Deletes the most recently added token from a filter expression tree

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsfilt.h>

NWDSCCODE N_API NWDSDelFilterToken (
 pFilter_Cursor_T cur,
 void (N_FAR N_CDECL *freeVal)(nuint32 syntax, nptr val);

Pascal Syntax

#include <nwdsfilt.inc>

Function NWDSDelFilterToken
 (cur : pFilter_Cursor_T;
 freeVal : FreeValProc
) : NWDSCCODE;

Parameters

cur

(IN) Points to the current insertion point in the filter expression tree.

freeVal

(IN) Points to the function to be used to free attribute values.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

freeVal is a pointer to a function freeing the attribute values. The function
is passed the syntax ID and the address of the area to free. freeVal may be

NDS and Bindery Service Group

NDS: Functions 348

NULL, in which case no attribute values are freed.

If NWDSDelFilterToken is successful, cur is updated to reflect the
current position in the expression tree (the insertion point of the next
token).

Syntax IDs (such as SYN_BOOLEAN) are enumerated in NWDSDEFS.H.

NCP Calls

None

See Also

NWDSAddFilterToken, NWDSAllocFilter, NWDSFreeFilter,
NWDSPutFilter

NDS and Bindery Service Group

NDS: Functions 349

NWDSDuplicateContext

Creates an NDS context and initializes it to the same settings as an existing
NDS Context

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdc.h>

NWDSContextHandle N_API NWDSDuplicateContext (
 NWDSContextHandle oldContext);

Pascal Syntax

#include <nwdsdc.inc>

Function NWDSDuplicateContext
 (oldContext : NWDSContextHandle
) : NWDSContextHandle;

Parameters

oldContext

(IN) Specifies the NDS context to duplicate.

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

0xFEB
8

ERR_CONTEXT_CREATION

Remarks

If successful, NWDSDuplicateContext returns a value identifying the
created NDS context. The newly created context will have a copy of the

NDS and Bindery Service Group

NDS: Functions 350

contents of the NDS context specified by oldContext. If oldContext does not
reference a valid NDS context, the new context will be initialized with
default values as in NWDSCreateContextHandle.

The advantage in calling NWDSDuplicateContext is that it copies the
context settings of the existing context. If you are using context settings
that are not the default, NWDSDuplicateContext lets you avoid making
some additional calls to modify the default context settings.

NCP Calls

None

See Also

NWDSCreateContextHandle, NWDSFreeContext, NWDSSetContext,
NWDSGetContext

NDS and Bindery Service Group

NDS: Functions 351

NWDSDuplicateContextHandle

Allocates memory for a new context structure and initializes it with values
copied from the source context structure

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsdc.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSDuplicateContextHandle (
 NWDSContextHandle srcContextHandle,
 NWDSContextHandle N_FAR *destContextHandle);

Pascal Syntax

#include <nwdsdc.inc>

Function NWDSDuplicateContextHandle
 (Var destContextHandle : NWDSContextHandle;
 srcContextHandle : NWDSContextHandle
) : NWDSCCODE;

Parameters

srcContextHandle

(IN) Specifies the context handle referencing the structure to be
duplicated.

destContextHandle

(OUT) Points to the newly created context handle.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

nonzero
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NDS and Bindery Service Group

NDS: Functions 352

NWDSDuplicateContextHandle allocates storage for a new context
structure and copies the values of the source context structure referenced
by srcContextHandle to the newly allocated context structure. If the
srcContextHandle is invalid, allocation of a new context structure is still
attempted. In this case, the default values of
NWDSCreateContextHandle will be used to initialize the new context
structure.

NWDSDuplicateContextHandle differs from NWDSDuplicateContext
in that the return code may now specify codes indicative of the reason for
the failure.

NCP Calls

None

See Also

NWDSCreateContextHandle, NWDSDuplicateContext

NDS and Bindery Service Group

NDS: Functions 353

NWDSExtSyncList

Lists the immediate subordinates for an NDS objects and places restrictions
on the subordinates names, classes, modification times, and object types

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1, 4.11

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSExtSyncList (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnstr8 className,
 pnstr8 subordinateName,
 pnint32 iterationHandle,
 pTimeStamp_T timeStamp,
 nbool onlyContainers,
 pBuf_T subordinates);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSExtSyncList
 (context : NWDSContextHandle;
 objectName : pnstr8;
 className : pnstr8;
 subordinateName : pnstr8;
 iterationHandle : pnint32;
 timeStamp : pTimeStamp_T;
 onlyContainers : nbool;
 subordinates : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object whose immediate subordinate

NDS and Bindery Service Group

NDS: Functions 354

objects are to be listed.

className

(IN) Points to a class name to be used as a filter (can contain
wildcards).

subordinateName

(IN) Points to an object name to be used as a filter (can contain
wildcards).

iterationHandle

(IN/OUT) Points to information needed to resume subsequent
iterations of NWDSExtSyncList. This should be set to
NO_MORE_ITERATIONS initially.

timeStamp

(IN) Points to an object-modification time to be used as a filter (can be
NULL).

onlyContainers

(IN) Specifies whether the results should include only container
objects: TRUE=only container objects; FALSE=other objects.

subordinates

(OUT) Points to a Buf_T containing a list of subordinate objects
matching the filters.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The name specified by className's filter is the name of an object class,
such as User, Computer, or Server. It can be a specific name or a string
containing wildcards. A wildcard can be a zero-length string, or a string
containing asterisks (*):

"" or "*" specifies all class names.

"U*" specifies all class names beginning with "U".

The value given for subordinateName's filter can be one of the following:

The left-most name of an object, such as Adam or Graphics Printer.

A string with asterisks (*), such as A* or Gr*.

A zero length string (""), which means any name is valid.

NDS and Bindery Service Group

NDS: Functions 355

The following examples show how to use wildcards for untyped names:

c* Any object whose left-most name begins with a "c" character.

M*y Any object beginning with "M" and ending with"y" such as Mary.

If the wildcard name specified for subordinateName includes a type, such
as "CN," the name must include the equals (=) sign. The following
examples show how to use wildcards for typed names:

cn=* Any object whose left-most name is a common name.

cn=c* Any object whose left-most name is a common name and begin with
"c."

o*=* Any object whose left-most name is of an attribute type beginning
with an "o," such as O or OU.

o*=c* Any object whose left-most name is of an attribute type beginning
with an "o," and whose name begins with "c."

timeStamp's filter restricts the result to objects having modification times
greater than or equal to the time specified in timeStamp.

When filling out TimeStamp_T, set eventID to zero, replicaNum to zero,
and wholeSeconds to the appropriate value.

iterationHandle controls retrieval of search results larger than the result
buffer pointed to by subordinates.

Before the initial call to NWDSExtSyncList, set the contents of the
iteration handle pointed to by iterationHandle to
NO_MORE_ITERATIONS.

If, when NWDSExtSyncList returns from its initial call, the result buffer
holds the complete results, the location pointed to by iterationHandle is
NO_MORE_ITERATIONS. If the iteration handle is not
NO_MORE_ITERATIONS, use the iteration handle for subsequent calls
to NWDSExtSyncList to obtain further portions of the results. When the
results are completely retrieved, the contents of the iteration handle will
be NO_MORE_ITERATIONS.

To end the List operation before the complete results have been retrieved,
call NWDSCloseIteration with a value of DSV_SEARCH to free memory
and states associated with the List operation.

onlyContainers specifies whether the results should be restricted to include
information for container objects only. If onlyContainers is FALSE (0), the
result contains information for objects of all object types. If any other
value is given, only information for container objects is returned.

Allocate the result buffer pointed to by subordinates by calling
NWDSAllocBuf. The result buffer does not need to be initialized because
it is a result buffer.

The contents of the result buffer pointed to by subordinates is overwritten
with each subsequent call to NWDSExtSyncList. Remove the contents
from the result buffer before each subsequent call to NWDSExtSyncList.

NDS and Bindery Service Group

NDS: Functions 356

The results of NWDSExtSyncList are not ordered and might not be in
alphabetical order.

For more information, see Retrieving Results from NDS Output Buffers.

NOTE: On large networks, iterative processes, like NWDSExtSyncList
, might take a lot of time to complete. For example, listing all of the User
objects on a corporate network might be too time consuming. These
processes can be interrupted or aborted using NWDSCloseIteration.

Developers should use NWDSCloseIteration to allow users of their
applications to abort an iterative process that is taking too long to
complete.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSCloseIteration, NWDSList, NWDSListByClassAndName,
NWDSListContainers

NDS and Bindery Service Group

NDS: Functions 357

NWDSExtSyncRead

Reads values from one or more of an NDS object's attributes allowing for
restrictions on the attributes modification time

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1, 4.11

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSExtSyncRead (
 NWDSContextHandle context,
 pnstr8 objectName,
 nuint32 infoType,
 nbool8 allAttrs,
 pBuf_T attrNames,
 pnint32 iterationHandle,
 pTimeStamp_T timeStamp,
 pBuf_T objectInfo);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSExtSyncRead
 (context : NWDSContextHandle;
 objectName : pnstr8;
 infoType : nuint32;
 allAttrs : nbool8;
 attrNames : pBuf_T;
 iterationHandle : pnint32;
 timeStamp : pTimeStamp_T;
 objectInfo : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object whose attributes are to be read.

NDS and Bindery Service Group

NDS: Functions 358

infoType

(IN) Specifies the type of information desired.

allAttrs

(IN) Specifies the scope of the request.

attrNames

(IN) Points to a request buffer containing the attribute names for
which information is to be returned.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent
iterations of NWDSExtSyncRead. This should be set initially to
NO_MORE_ITERATIONS.

timeStamp

(IN) Points to an object-modification time to be used as a filter.

objectInfo

(OUT) Points to a result buffer that receives the attribute names or
names and values.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The name specified by objectName is relative to the current name context
in the NDS context specified by context.

infoType, allAttrs, attrNames, and timeStamp indicate what attribute
information is requested.

infoType specifies whether both attribute names and attribute values are
requested:

 0 DS_ATTRIBUTE_NAME defines attribute names only.

 1 DS_ATTRIBUTE_VALUES defines both attribute names and attribute
values.

If allAttrs is TRUE, information about all attributes associated with the
object is requested and attrNames is ignored (in which case, assign a
NULL pointer to attrNames). If allAttrs is FALSE, only the attributes
specified by the result buffer pointed to by attrNames are requested.

NDS and Bindery Service Group

NDS: Functions 359

If allAttrs is FALSE and attrNames is NULL, no attribute information is
returned. infoType is not meaningful. In this case, the return value of
NWDSExtSyncRead can determine whether the specified object exists
(verifying the objects distinguished name), or whether access to the object
is allowed.

The request buffer pointed to by attrNames explicitly specifies the
attributes whose information is to be returned. For more information, see
Reading Attributes of NDS Objects.

The timestamp pointed to by timeStamp is used to exclude attributes that
have not been modified since a certain time. The timestamp filter limits
the attribute list to be those attributes having modification times greater
than or equal to the specified time.

When filling out TimeStamp_T, set eventID to zero, replicaNum to zero,
and wholeSeconds to the appropriate value.

On return, the result buffer pointed to by objectInfo contains the requested
information. This result buffer is allocated by calling NWDSAllocBuf. It
is not initialized since it is a result buffer.

This result buffer either contains a list of attribute names or a sequence of
attribute-name and attribute-value sets. The type of information returned
depends on infoType. For more information, see Retrieving Results from
NDS Output Buffers.

If allAttrs is set to DS_ATTRIBUTE_VALUES, specifying the Read
operation should return both attribute names and values, you cannot
remove only names from the result buffer. You must remove the
information in the correct order of attribute name first, then all of the
values associated with the attribute. Then you remove the next attribute
name and its values. Otherwise, NWDSGetAttrName will return
erroneous information.

iterationHandle controls retrieval of search results larger than the result
buffer pointed to by objectInfo.

Before the initial call to NWDSExtSyncRead, set the contents of the
iteration handle pointed to by iterationHandle to
NO_MORE_ITERATIONS.

If, when NWDSExtSyncRead returns from its initial call, the result buffer
holds the complete results, the location pointed to by iterationHandle is set
to NO_MORE_ITERATIONS. If the iteration handle is not set to
NO_MORE_ITERATIONS, use the iteration handle for subsequent calls
to NWDSExtSyncRead to obtain further portions of the results. When the
results are completely retrieved, the contents of the iteration handle will
be set to NO_MORE_ITERATIONS.

To end the Read operation before the complete results have been
retrieved, call NWDSCloseIteration with a value of DSV_READ to free
memory and states associated with the Read operation.

NDS and Bindery Service Group

NDS: Functions 360

The level of granularity for partial results is an individual value of an
attribute. If an attribute is multivalued and its values are split across two
or more NWDSExtSyncRead results, the attribute name is repeated in
each result.

The results of NWDSExtSyncRead are not ordered and might not be in
alphabetical order.

NWDSExtSyncRead can be useful for detecting changes in an object's
attributes. However, NWDSExtSyncRead does not return information
about attributes that have been deleted or for which your attribute
privileges have changed.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSRead, NWDSReadObjectInfo

NDS and Bindery Service Group

NDS: Functions 361

NWDSExtSyncSearch

Searches a region of the NDS for objects satisfying a set of specified
requirements, including modification time

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1, 4.11

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSExtSyncSearch (
 NWDSContextHandle context,
 pnstr8 baseObjectName,
 nint scope,
 nbool8 searchAliases,
 pBuf_T filter
 pTimeStamp_T timeStamp,
 nuint32 infoType,
 nbool8 allAttrs,
 pBuf_T attrNames,
 pnint32 iterationHandle,
 nint32 countObjectsToSearch,
 pnint32 countObjectsSearched,
 pBuf_T objectInfo);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSExtSyncSearch
 (context : NWDSContextHandle;
 baseObjectName : pnstr8;
 scope : nint;
 searchAliases : nbool8;
 filter : pBuf_T;
 timeStamp : pTimeStamp_T;
 infoType : nuint32;
 allAttrs : nbool8;
 attrNames : pBuf_T;
 iterationHandle : pnint32;
 countObjectsToSearch : nint32;
 countObjectsSearched : pnint32;

NDS and Bindery Service Group

NDS: Functions 362

 objectInfo : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

baseObjectName

(IN) Points to the name of a subtree root to be searched.

scope

(IN) Specifies the depth of the search.

searchAliases

(IN) Specifies whether to dereference aliases in the search subtree.

filter

(IN) Points to a Buf_T containing a search filter. This parameter must
be specified (cannot be NULL).

timeStamp

(IN) Points to an object-modification time to further restrict the filter
provided by filter. This parameter must be specified (cannot be NULL).

infoType

(IN) Specifies the type of information to be returned.

allAttrs

(IN) Specifies the scope of the request: TRUE=information concerning
all attributes is requested; FALSE=only attributes named in attrNames
is requested.

attrNames

(IN) Points to a Buf_T containing the attribute names for which
information is to be returned.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent
iterations of NWDSExtSyncSearch. This should be set to
NO_MORE_ITERATIONS initially.

countObjectsToSearch

(IN) Specifies the number of objects for the server to search before the
server returns to the client.

countObjectsSearched

(OUT) Points to the number of objects searched by the server.

objectInfo

(OUT) Points to a Buf_T containing the names of the objects along with
any requested attribute values satisfying the search.

NDS and Bindery Service Group

NDS: Functions 363

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSExtSyncSearch succeeds if the base object specified by
baseObjectName is located, regardless of whether there are any
subordinates to return.

baseObjectName identifies the object (or possibly the root) from which the
search is relative. If the string is a zero-length string (""), the current name
context specified in context is selected as the base object.

Aliases are dereferenced while locating the base object unless the context
flag associated with DCV_DEREF_ALIASES is not set.

Aliases among the subordinates of the base object are dereferenced
during the search unless searchAliases is FALSE. If searchAliases is TRUE,
the search continues in the subtree of the aliases object.

scope takes one of three possible values:

0 DS_SEARCH_ENTRY indicates the search applies only to the base object.

1 DS_SEARCH_SUBORDINATES indicates the search applies only to the
immediate subordinates of the base object.

2 DS_SEARCH_SUBTREE indicates the search applies to the base object
and all its subordinates.

filter eliminates objects not of interest to the application. Information is
returned only on objects that satisfy the filter. This filter is created by
calling NWDSAllocFilter, NWDSAddFilterToken, and NWDSPutFilter.

When filling out TimeStamp_T, set eventID to zero, replicaNum to zero,
and wholeSeconds to the appropriate value.

infoType, allAttrs, and attrNames indicate what attribute information is
requested.

If allAttrs is TRUE, information about all attributes associated with the
object is requested and attrNames is ignored (in which case, attrNames can
be NULL). If allAttrs is FALSE, only the attributes specified by attrNames
are requested.

If allAttrs is FALSE and attrNames is NULL, no attribute information is
returned. infoType is not meaningful. In this case, the return value of
NWDSExtSyncSearch simply determines whether the object specified by
baseObjectName exists, or whether access to the object is allowed.

NDS and Bindery Service Group

NDS: Functions 364

The request buffer pointed to by attrNames is used to explicitly specify
the names of the attributes whose information is to be returned. For more
information, see Preparing NDS Output Buffers.

On return, the buffer pointed to by objectInfo contains the information for
objects matching the search criteria, along with the requested attribute
information. For more information, see Retrieving Results from NDS
Output Buffers.

You must retrieve all information from the buffer even if you do not plan
to use it.

iterationHandle controls retrieval of search results larger than the result
buffer pointed to by objectInfo.

Before the initial call to NWDSExtSyncSearch, set the contents of the
iteration handle pointed to by iterationHandle to
NO_MORE_ITERATIONS.

If, when NWDSExtSyncSearch returns from its initial call, the result
buffer holds the complete results, the location pointed to by
iterationHandle is set to NO_MORE_ITERATIONS. If the iteration handle
is not set to NO_MORE_ITERATIONS, use the iteration handle for
subsequent calls to NWDSExtSyncSearch to obtain further portions of
the results. When the results are completely retrieved, the contents of the
iteration handle will be set to NO_MORE_ITERATIONS.

To end the Search operation before the complete results have been
retrieved, call NWDSCloseIteration with a value of DSV_SEARCH to
free memory and states associated with the Search operation.

The level of granularity for partial results is an individual attribute value.
If the attribute is multivalued and its values are split across two or more
calls to NWDSExtSyncSearch, the current object name, object info, and
attribute name repeated the subsequent result buffer.

NOTE: Currently, because of aliasing, searching a subtree can result 1)
in duplicate entries or 2) in an infinite loop.

NWDSExtSyncSearch can be useful for detecting changes in objects
matching a search direction. However, NWDSExtSyncSearch does not
return information about objects that have been deleted or for which
your privileges have changed.

NOTE: On large networks, iterative processes, like
NWDSExtSyncSearch, might take a lot of time to complete. For
example, listing all of the User objects on a corporate network might be
too time consuming. These processes can be interrupted or aborted
using NWDSCloseIteration.

Developers should use NWDSCloseIteration to allow users of their
applications to abort an iterative process that is taking too long to
complete.

NDS and Bindery Service Group

NDS: Functions 365

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSAddFilterToken, NWDSAllocFilter, NWDSCloseIteration,
NWDSFreeFilter, NWDSPutFilter, NWDSSearch

NDS and Bindery Service Group

NDS: Functions 366

NWDSFreeBuf

Frees a buffer allocated by the NWDSAllocBuf function

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSFreeBuf (
 pBuf_T buf);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSFreeBuf
 (buf : pBuf_T
) : NWDSCCODE;

Parameters

buf

(IN) Points to the buffer to be freed.

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

0xFEB
5

ERR_NULL_POINTER

Remarks

All buffers allocated by calling NWDSAllocBuf should be freed once
they are no longer needed by the client. Doing so frees up memory for the
client.

NDS and Bindery Service Group

NDS: Functions 367

If the buf parameter is passed NULL, NWDSFreeBuf will return
ERR_NULL_POINTER.

NCP Calls

None

See Also

NWDSAllocBuf, NWDSInitBuf

NDS and Bindery Service Group

NDS: Functions 368

NWDSFreeContext

Frees a previously allocated NDS context

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdc.h>

NWDSCCODE N_API NWDSFreeContext (
 NWDSContextHandle context);

Pascal Syntax

#include <nwdsdc.inc>

Function NWDSFreeContext
 (context : NWDSContextHandle
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context to be freed.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

All NDS contexts created by NWDSCreateContextHandle or
NWDSDuplicateContext should be freed when the client is no longer
using them. Doing so frees memory for the client.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 369

See Also

NWDSCreateContextHandle, NWDSGetContext, NWDSSetContext

NDS and Bindery Service Group

NDS: Functions 370

NWDSFreeFilter

Frees the area allocated to a search filter expression tree

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsfilt.h>

void N_API NWDSFreeFilter (
 pFilter_Cursor_T cur,
 void (N_FAR N_CDECL *freeVal)(nuint32 syntax, nptr val);

Pascal Syntax

#include <nwdsfilt.inc>

Function NWDSFreeFilter
 (cur : pFilter_Cursor_T;
 freeVal : FreeValProc
);

Parameters

cur

(IN) Points to the filter to be freed allocated from NWDSAllocFilter.

freeVal

(IN) Specifies the function to be used to free nodes in the filter
expression tree; can be NULL.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

Normally, the expression tree is freed by NWDSPutFilter when the tree

NDS and Bindery Service Group

NDS: Functions 371

is stored in the request buffer. If the tree is not used, it should be freed by
calling NWDSFreeFilter.

The function specified by freeVal must accept two parameters.

Do not call NWDSFreeFilter after calling NWDSPutFilter, even if
NWDSPutFilter returns an error.

NCP Calls

None

See Also

NWDSAddFilterToken, NWDSAllocFilter, NWDSDelFilterToken,
NWDSPutFilter

NDS and Bindery Service Group

NDS: Functions 372

NWDSGenerateObjectKeyPair

Creates or changes a public/private key pair for a specified object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsasa.h>

NWDSCCODE N_API NWDSGenerateObjectKeyPair (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnstr8 objectPassword,
 nflag32 optionsFlag);

Pascal Syntax

#include <nwdsasa.inc>

Function NWDSGenerateObjectKeyPair
 (contextHandle : NWDSContextHandle;
 objectName : pnstr8;
 objectPassword : pnstr8;
 optionsFlag : nflag32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object to update.

objectPassword

(IN) Points to the object password in ASCII text format.

optionsFlag

(IN) Is reserved (pass in zero).

Return Values

NDS and Bindery Service Group

NDS: Functions 373

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

If no password is desired, objectPassword should point to a zero-length
string ("").

If an application has a local copy of any password value, the value
should be erased as soon as possible to prevent compromising the
security of the password.

An object must have rights to modify an objects attributes before the
NWDSGenerateObjectKeyPair function will succeed.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSChangeObjectPassword

NDS and Bindery Service Group

NDS: Functions 374

NWDSGetAttrCount

Returns the number of attributes whose information is stored in a result
buffer

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetAttrCount (
 NWDSContextHandle context,
 pBuf_T buf,
 pnuint32 attrCount);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetAttrCount
 (context : NWDSContextHandle;
 buf : pBuf_T;
 attrCount : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to Buf_T.

attrCount

(OUT) Points to the number of attributes in the result buffer.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 375

Remarks

NWDSGetAttrCount should be the first "Get" operation performed
following a Read operation (such as NWDSRead, NWDSReadAttrDef,
or NWDSSearch).

After the attribute count has been determined, the attribute names can be
retrieved from the buffer by calling NWDSGetAttrName or
NWDSGetAttrDef. Attribute values are retrieved using a combination of
calls to NWDSComputeAttrValSize and NWDSGetAttrVal.

buf points to a Buf_T filled in by a previous call to a NDS function, such as
NWDSRead.

NCP Calls

None

See Also

NWDSGetAttrDef, NWDSGetAttrName, NWDSRead,
NWDSReadAttrDef

NDS and Bindery Service Group

NDS: Functions 376

NWDSGetAttrDef

Returns the next NDS Schema attribute definition from a result buffer

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetAttrDef (
 NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 attrName,
 pAttr_Info_T attrInfo);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetAttrDef
 (context : NWDSContextHandle;
 buf : pBuf_T;
 attrName : pnstr8;
 attrInfo : pAttr_Info_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer being read.

attrName

(OUT) Points to the name of the attribute definition at the current
position in the result buffer.

attrInfo

(OUT) Points to additional information about the attribute definition.

Return Values

NDS and Bindery Service Group

NDS: Functions 377

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSGetAttrDef is used to retrieve attribute information from a result
buffer filled in by NWDSReadAttrDef. For more information, see
Retrieving Results from NDS Output Buffers.

You must allocate space for the attribute name pointed to by attrName.
The size of the allocated memory is
((MAX_SCHEMA_NAME_CHARS)+1)*sizeof(character size) where
character size is for single-byte characters, and 2 for double-byte
characters (Unicode is double-byte). One character is used for NULL
termination.

If NWDSReadAttrDef is called with infoType set to
DS_ATTR_DEF_NAMES (instead of DS_ATTR_DEFS), its output buffer
will contain only names of the attributes. In this case, NWDSGetAttrDef
ignores attrInfo, so attrInfo can be NULL.

You must allocate memory (sizeof(Attr_Info_T)) to receive the additional
attribute-definition information.

NCP Calls

None

See Also

NWDSGetAttrCount, NWDSReadAttrDef

NDS and Bindery Service Group

NDS: Functions 378

NWDSGetAttrName

Retrieves the name of the attribute whose information is stored at the
current position in a result buffer

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetAttrName (
 NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 attrName,
 pnuint32 attrValCount,
 pnuint32 syntaxID);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetAttrName
 (context : NWDSContextHandle;
 buf : pBuf_T;
 attrName : pnstr8;
 attrValCount : pnuint32;
 syntaxID : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer being read.

attrName

(OUT) Points to the attribute name whose information is stored at the
current position in the result buffer.

attrValCount

(OUT) Points to the number of attribute values following the attribute
name in the result buffer. (Multivalued attributes can have more than

NDS and Bindery Service Group

NDS: Functions 379

one value.)

syntaxID

(OUT) Points to the syntax ID identifying the syntax type of the
attribute returned in attrName.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSGetAttrName is used to retrieve attribute information from a
result buffer filled in by NWDSRead, NWDSSearch, or NWDSList.

You must allocate space for the attribute name. The size of the allocated
memory is ((MAX_SCHEMA_NAME_CHARS)+1)*sizeof(character size)
where character size is 1 for single-byte characters, and 2 for double-byte
characters (Unicode is double-byte). One character is used for NULL
termination.

The location pointed to by attrValCount is set to specify the number of
attribute values associated with the current attribute in the result buffer.
If no values are associated with the current attribute, the number will be
zero. If the current attribute is a single-valued attribute, the number will
be one. If the current attribute is a multi-valued attribute, the number can
be zero or more.

The location pointed to by syntaxID receives a value identifying the
syntax type of the attribute returned in attrName. This ID is passed as a
parameter to subsequent calls to NWDSComputeAttrValSize and
NWDSGetAttrVal. The syntax types (such as SYN_CI_STRING) are
enumerated in NWDSDEFS.H.

If the function filling in the result buffer was called specifying that the
results contain only names, NWDSGetAttrName will not place a value
into the locations pointed to by attrValCount and syntaxID. In this case,
attrValCount and syntaxID can be NULL.

For more information, see Reading Attributes of NDS Objects.

NCP Calls

None

See Also

NDS and Bindery Service Group

NDS: Functions 380

NWDSGetAttrCount, NWDSRead, NWDSSearch, NWDSReadAttrDef

NDS and Bindery Service Group

NDS: Functions 381

NWDSGetAttrVal

Returns the next attribute value in a result buffer

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetAttrVal
 (NWDSContextHandle context,
 pBuf_T buf,
 nuint32 syntaxID,
 nptr attrVal);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetAttrVal
 (context : NWDSContextHandle;
 buf : pBuf_T;
 syntaxID : nuint32;
 attrVal : nptr
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer being read.

syntaxID

(IN) Specifies the syntax of the attribute value.

attrVal

(OUT) Points to the attribute value at the current buffer position.

Return Values

NDS and Bindery Service Group

NDS: Functions 382

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSGetAttrVal is used to retrieve attribute values from a result
buffer filled in by functions such as NWDSList, NWDSRead, or
NWDSSearch.

syntaxID is returned by a previous call to NWDSGetAttrName. syntaxID
indicates to NWDSGetAttrVal how to translate the attribute value into a
data structure. The structure of the data returned in attrVal depends on
the value of syntaxID.

The syntax types (such as SYN_CI_STRING) are enumerated in
NWDSDEFS.H. Attribute syntaxes and their corresponding data
structures are listed in NDS Attribute Syntax Definitions.

If attrVal equals NULL, the value is skipped; this is useful for simply
counting attribute values.

You must allocate memory for the attribute value and set attrVal to point
to that memory. The memory must be a contiguous block of memory
whose size is determined by calling NWDSComputeAttrValSize.

The memory pointed to by attrVal should be dynamically allocated
memory since the size of the memory needed to store the attribute values
can be different even when the values are associated with the same
attribute.

See Reading Attributes of NDS Objects for the steps to remove attribute
values from a result buffer.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 383

NWDSGetBinderyContext

Returns the setting of the Bindery context set on the server identified by
conn

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsmisc.h>

NWDSCCODE N_API NWDSGetBinderyContext (
 NWDSContextHandle context,
 NWCONN_HANDLE conn,
 pnstr8 BinderyEmulationContext);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWDSGetBinderyContext
 (context : NWDSContextHandle;
 conn : NWCONN_HANDLE;
 BinderyEmulationContext : pnuint8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

conn

(IN) Specifies the NetWare server connection handle.

binderyEmulationContext

(OUT) Points to a Bindery context string.

Return Values

These are common return values; see Return Values for more
information.

NDS and Bindery Service Group

NDS: Functions 384

0x0000 SUCCESSFUL

0x89FE BAD_PACKET

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

conn is the connection handle to the server in which you are interested.

binderyEmulationContext must have sufficient space allocated to receive
the value.

Bindery connections to NetWare 4.x servers are communicating with the
server in Bindery mode. The Bindery context specifies a location in NDS
where a Bindery connection is allowed to see objects in NDS. A Bindery
connection can see objects only at the level of the tree defined by the
server's Bindery context.

Bindery context is set on NetWare 4.x servers by using the SET
BINDERY CONTEXT command at the server console.

NCP Calls

0x2222 104 04 Return Bindery Context

See Also

NWDSAuditGetObjectID

NDS and Bindery Service Group

NDS: Functions 385

NWDSGetClassDef

Retrieves an object-class definition from a result buffer

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetClassDef (
 NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 className,
 pClass_Info_T classInfo);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetClassDef
 (context : NWDSContextHandle;
 buf : pBuf_T;
 className : pnstr8;
 classInfo : pClass_Info_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer being read.

className

(OUT) Points to the name of the object-class definition at the current
position in the buffer.

classInfo

(OUT) Points to the initial portion of the object-class definition.

Return Values

NDS and Bindery Service Group

NDS: Functions 386

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSGetClassDef is used to retrieve class definitions from a result
buffer filled in by NWDSReadClassDef.

className points to the name of the current class in the buffer. You must
allocate space for the class name. The size of the allocated memory is
((MAX_SCHEMA_NAME_CHARS)+1)*sizeof(characters size) where
character size is 1 for single-byte characters, and 2 for double-byte
characters (Unicode is double-byte). One character is used for NULL
termination.

If NWDSReadClassDef is called with infoType set to
DS_CLASS_DEF_NAMES, classInfo of NWDSGetClassDef is ignored
and can be NULL.

The complete steps for retrieving class information from a result buffer
are listed in the reference for NWDSReadClassDef.

NCP Calls

None

See Also

NWDSGetClassDefCount, NWDSGetClassItem,
NWDSGetClassItemCount, NWDSReadClassDef

NDS and Bindery Service Group

NDS: Functions 387

NWDSGetClassDefCount

Returns the number of object-class definitions stored in a result buffer

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetClassDefCount (
 NWDSContextHandle context,
 pBuf_T buf,
 pnuint32 classDefCount);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetClassDefCount
 (context : NWDSContextHandle;
 buf : pBuf_T;
 classDefCount : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer being read.

classDefCount

(OUT) Points to the number of object-class definitions stored in the
buffer.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 388

Remarks

NWDSGetClassDefCount is used to determine the number of
object-class definitions stored in a result buffer filled by
NWDSReadClassDef.

NWDSGetClassDefCount must be the first function called when
reading a result buffer containing a group of object-class definitions.

The complete steps for retrieving class information from a result buffer
are listed in the reference for NWDSReadClassDef.

NCP Calls

None

See Also

NWDSGetClassDef

NDS and Bindery Service Group

NDS: Functions 389

NWDSGetClassItem

Returns the name of the next object class item stored in a result buffer

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetClassItem (
 (NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 itemName);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetClassItem
 (context : NWDSContextHandle;
 buf : pBuf_T;
 itemName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer being read.

itemName

(OUT) Points to the name of the item (attribute or class) at the current
position in the result buffer.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 390

Remarks

buf points to a Buf_T filled in by NWDSReadClassDef.

itemName points to the name of either an attribute or a class. The item is a
member of one of the five class-definition-item lists:

1. Super Class Names

2. Containment Class Names

3. Naming Attribute Names

4. Mandatory Attribute Names

5. Optional Attribute Names

The user must allocate space for the class item name pointed to by
itemName. The size of the allocated memory is
((MAX_SCHEMA_NAME_CHARS)+1)*sizeof(character size) where
character size is 1 for single-byte characters, and 2 for double-byte
characters (Unicode is double-byte). One character is used for NULL
termination.

Before retrieving the class items from a class-definition-item list,
determine the number of items in the list by calling
NWDSGetClassItemCount. Then retrieve the items associated with the
list by repeatedly calling NWDSGetClassItem once for each item in the
list. Then determine the number of items in the next list by calling
NWDSGetClassItemCount, and retrieve the values for the list by calling
NWDSGetClassItem, and so on until you have retrieved all of the
information from all of the lists.

NOTE: You must retrieve the information from the
class-definition-item lists in the order shown above.

For the complete steps for reading class-definition information, see
Reading a Class Definition.

NCP Calls

None

See Also

NWDSGetClassDef, NWDSGetClassItemCount,
NWDSListContainableClasses, NWDSReadClassDef

NDS and Bindery Service Group

NDS: Functions 391

NWDSGetClassItemCount

Returns the number of object class definition items associated with a result
buffer's current object class definition list in a result buffer

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetClassItemCount (
 NWDSContextHandle context,
 pBuf_T buf,
 pnuint32 itemCount);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetClassItemCount
 (context : NWDSContextHandle;
 buf : pBuf_T;
 itemCount : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer being read.

itemCount

(OUT) Points to the number of object-class definition items associated
with the result buffer's current class-definition-item list.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 392

Remarks

buf points to Buf_T filled in by NWDSReadClassDef.

itemCount points to the number of object-class-definition items that are
associated with the current class-definition-item list. There are five
class-definition item lists; these lists are stored in the buffer in the
following order:

1. Super Class Names

2. Containment Class Names

3. Naming Attribute Names

4. Mandatory Attribute Names

5. Optional Attribute Names

The first two lists contain the names of classes. The remaining lists
contain the names of attributes.

Before retrieving class items from a class-definition-item list, determine
the number of items in the list by calling NWDSGetClassItemCount.
Retrieve the items associated with the list by calling NWDSGetClassItem
once for each item in the list. Then determine the number of items in the
next list by calling NWDSGetClassItemCount, and retrieve the values
for the list by calling NWDSGetClassItem, until you have retrieved all of
the information from all lists.

For the complete steps for reading object-class-definition information, see
Reading a Class Definition.

NCP Calls

None

See Also

NWDSGetClassDef, NWDSGetClassItem,
NWDSListContainableClasses, NWDSReadClassDef

NDS and Bindery Service Group

NDS: Functions 393

NWDSGetConnectionInfo (obsolete 6/96)

Returns connection information relating to the new data included in the
connection table but is now obsolete. Call NWCCGetConnInfo instead.

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdstype.h>
#include <nwndscon.h>

NWCCODE N_API NWDSGetConnectionInfo
 (NWCONN_HANDLE conn,
 nuint8 N_FAR * connStatus,
 nuint8 N_FAR * connType,
 nuint8 N_FAR * serverFlags,
 nuint8 N_FAR * serverName,
 nuint8 N_FAR * transType,
 nuint32 N_FAR * transLen,
 nuint8 N_FAR * transBuf,
 nuint16 N_FAR * distance,
 nuint16 N_FAR * maxPacketSize);

Pascal Syntax

Function NWDSGetConnectionInfo
 (conn : NWCONN_HANDLE;
 connStatus : pnuint8;
 connType : pnuint8;
 serverFlags : pnuint8;
 serverName : pnuint8;
 transType : pnuint8;
 transLen : pnuint32;
 transBuf : pnuint8;
 distance : pnuint16;
 maxPacketSize : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare® server connection handle.

connStatus

NDS and Bindery Service Group

NDS: Functions 394

(OUT) Points to the lower byte of connectionFlags in the connection
table.

connType

(OUT) Points to NDSType in the connection table.

serverFlags

(OUT) Points to serverFlags in the connection table. It is used to find
SFT III™ and Packet Burst™ status for the connection.

serverName

(OUT) Points to the ASCII name of the server associated with the
connection.

transType

(OUT) Points to the transport protocol for the connection (IPX*
protocol).

transLen

(OUT) Points to the transport buffer length (IPX = 12).

transBuf

(OUT) Points to the transport dependent address information (12 bytes
for IPX).

distance

(OUT) Points to the distance to the server in time relative to other
connections.

maxPacketSize

(OUT) Points to the number of bytes this connection can send or
receive in one packet.

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

0x880
1

INVALID_CONNECTION

0x883
6

INVALID_PARAMETER

Remarks

NWDSGetConnectionInfo (obsolete 6/96) handles NULL parameters;
therefore, not all parameters need be declared and allocated.

NDS and Bindery Service Group

NDS: Functions 395

To call NWDSGetConnectionInfo (obsolete 6/96) in DOS or in
Windows, VLMs must be running. NETX does not support
NWDSGetConnectionInfo (6/96) and will return an error if VLMs are
not running.

connType returns the following values:

0x01 NDS Connection
0x02 Connection to NetWare server is licensed
0x04 NDS Authenticate.

serverFlags' bit definitions follow:

0x01 Packet Burst Available
0x10 SFT III Changing Servers
0x20 Packet Burst Session Reset
0x40 Need Max IO
0x80 SFT III Server Has Change.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 396

NWDSGetConnectionSlot (obsolete 6/96)

Opens a connection given the specified type but is now obsolete. Call
NWCCOpenConnByAddr followed by a call to NWCCLicenseConn
instead.

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdstype.h>
#include <nwndscon.h>

NWCCODE N_API NWDSGetConnectionSlot
 (nuint8 connType,
 nuint8 transType,
 nuint32 transLen,
 nuint8 N_FAR * transBuf,
 NWCONN_HANDLE N_FAR * conn);

Pascal Syntax

Function NWDSGetConnectionSlot
 (connType : nuint8;
 transType : nuint8;
 transLen : nuint32;
 transBuf : pnuint8;
 Var conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

connType

(IN) Specifies either a hard or soft allocation.

transType

(IN) Specifies the transport protocol for this connection; for example,
IPX=1.

transLen

(IN) Specifies the length of the transport buffer; for example, IPX=12.

transBuf

(IN) Points to the transport dependent address information (12 bytes
for IPX).

NDS and Bindery Service Group

NDS: Functions 397

conn

(OUT) Points to the connection handle of the requested connection.

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

0x005
F

Error Interrupt (Workstation Error)

0x800
1

Lan Err Out Of Resource (LSL™ Error)

0x880
1

INVALID_CONNECTION

0x883
F

CONNECTION_TABLE_FULL

0x884
1

BAD_TRAN_TYPE

0x89F
F

NO_RESPONSE_FROM_SERVER

0x900
2

Ipx No Route (IPX Error)

Remarks

To call NWDSGetConnectionSlot (obsolete 6/96) in DOS or in
Windows, VLMs must be running. NETX does not support
NWDSGetConnectionSlot (obsolete 6/96) and will return an error if
VLMs are not running.

NWDSGetConnectionSlot (obsolete 6/96) will return a licensed
connection to the NetWare server if the connection is authenticated. Call
NWDSUnlockConnection to unlicense the connection or place it on the
Least Recently Used (LRU) list to be cached.

connType increments the global use count and increments the task use
count for the given connection. If the task goes away without freeing the
connection slot, the global use count is decremented by the number in the
task use count. This causes the connection to return to the state it was in
before the process started.

connType can have the following values.

SYSTEM_LOCK hard allocation

NDS and Bindery Service Group

NDS: Functions 398

TASK_LOCK soft allocation
TASK_DISCONNECT no resource allocatio.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 399

NWDSGetContext

Returns the value of an NDS context variable

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdc.h>

NWDSCCODE N_API NWDSGetContext (
 NWDSContextHandle context,
 nint key,
 nptr value);

Pascal Syntax

#include <nwdsdc.inc>

Function NWDSGetContext
 (context : NWDSContextHandle;
 key : nint;
 value : nptr
) : NWDSCCODE;

Parameters

context

(IN) Specifies the directory context to be queried.

key

(IN) Specifies the context variable to be retrieved.

value

(OUT) Points to the value of the context variable.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 400

Remarks

Applications do not have direct access to the NDS context variables. To
determine the settings of the context variables, applications must call
NWDSGetContext using a context key to identify for which variable
information should be retrieved. See DSI Flags.

To call NWDSGetContext for multiple NDS identities, set the key
parameter to DCK_TREE_NAME.

The NWDSGetContext function can be called using
DCK_NAME_CACHE_DEPTH to query or set the depth of the name
cache (how many names the cache will remember for the context handle).
See Name Caching.

The context parameter usually defaults to the preferred tree name. Under
NLM, the context parameter defaults to the local server tree name.

The context key is identified by the key parameter. The following keys are
defined in NWDSDC.H:

1 DCK_FLAGS nuint3
2

Bit definitions

2 DCK_CONFIDENCE nuint3
2

Definitions: 0 DCV_LOW_CONF
1 DCV_MED_CONF 2
DCV_HIGH_CONF

3 DCK_NAME_CONTE
XT

Character string array

4 DCK_TRANSPORT_T
YPE

nuint3
2[2]

Not currently in use

5 DCK_REFERRAL_SC
OPE

nuint3
2

Definitions: 0
DCV_ANY_SCOPE 1
DCV_COUNTRY_SCOPE 2
DCV_ORGANIZATION_SCOPE
3 DCV_LOCAL_SCOPE

8 DCK_LAST_CONNEC
TION

Returns NWCONN_HANDLE

1
1

DCK_TREE_NAME Character string array of at most
NW_MAX_TREE_NAME_LEN
(includes NULL) ASCII or
UNICODE characters

The value parameter should point to a variable of a type appropriate to
receive the specified variable.

The flags associated with DCK_FLAGS are defined as follows:

NDS and Bindery Service Group

NDS: Functions 401

0x001
L

$000000
01

DCV_DEREF_ALIASES

0x002
L

$000000
02

DCV_XLATE_STRINGS

0x004
L

$000000
04

DCV_TYPELESS_NAMES

0x008
L

$000000
08

DCV_ASYNC_MODE

0x010
L

$000000
10

DCV_CANONICALIZE_NAMES

0x040
L

$000000
40

DCV_DEREF_BASE_CLASS

0x080
L

$000000
80

DCV_DISALLOW_REFERRALS

DCV_DEREF_ALIASES, DCV_XLATE_STRINGS,
DCV_CANONICALIZE_NAMES, DCV_ANY_SCOPE, and
DCV_LOW_CONF are set by default.

If the key parameter is DCK_CONFIDENCE, the value pointed to by the
value parameter can be one of the following:

0 DCV_LOW_CONF
1 DCV_MED_CONF
2 DCV_HIGH_CONF

If the key parameter is DCK_NAME_CONTEXT, the value parameter
points to a buffer containing the name context. You must allocate space
for this buffer. The size of the memory needed to store the name context
is ((MAX_DN_CHARS)+1*sizeof(character size) where character size is 1
for single-byte characters, and 2 for double-byte characters (Unicode is
double-byte). One character is used for NULL termination.

If key is DCK_REFERRAL_SCOPE, value can be one of the following:

0 DCV_ANY_SCOPE
1 DCV_COUNTRY_SCOPE
2 DCV_ORGANIZATION_SCOPE
3 DCV_LOCAL_SCOPE

NDS context variables can be changed by calling NWDSSetContext.

NCP Calls

None

See Also

NDS and Bindery Service Group

NDS: Functions 402

NWDSCreateContextHandle, NWDSSetContext

NDS and Bindery Service Group

NDS: Functions 403

NWDSGetCountByClassAndName

Counts the immediate subordinates of an NDS object, restricting the count to
be of objects of a specified object class and/or with a specific name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSGetCountByClassAndName (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnstr8 className,
 pnstr8 subordinateName,
 pnuint32 count);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSGetCountByClassAndName
 (context : NWDSContextHandle;
 objectName : pnstr8;
 className : pnstr8;
 subordinateName : pnstr8;
 count : pnint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the object name whose subordinates are to be counted.

className

(IN) Points to the class name to be used as a filter when determining
which objects should be counted.

subordinateName

NDS and Bindery Service Group

NDS: Functions 404

(IN) Points to a name to be used as a filter when determining which
objects should be counted.

count

(OUT) Points to the count of subordinate objects matching the filters.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSGetCountByClassAndName is similar to
NWDSListByClassAndName except no information, other than a count
of objects, is returned by NWDSGetCountByClassAndName.

The location of the subordinate object(s) in the NDS tree is immediately
subordinate to the object specified by objectName. It is not relative to the
current name context in the NDS context specified by context.

The relationship between className and subordinateName is an "AND"
relationship.

When className and subordinateName are provided, a count of immediate
subordinate objects restricted by both filters is returned.

When className is NULL and subordinateName is NULL, the count of all
immediate subordinates is returned.

When className is provided and subordinateName is NULL, the count of
immediate subordinates restricted only by className's filter is returned.

NDS and Bindery Service Group

NDS: Functions 405

When subordinateName is provided and className is NULL, the count of
immediate subordinates restricted only by subordinateName is returned.

The following examples show how to use wildcards for untyped names:

c* Any object whose left-most name begins with a "c" character.

M*y Any object beginning with "M" and ending with"y" such as Mary.

If the wildcard name specified for subordinateName includes a type, such
as "CN," the name must include the equals (=) sign. The following
examples show how to use wildcards for typed names:

cn=* Any object whose left-most name is a common name.

cn=c* Any object whose left-most name is a common name and begin with
"c."

o*=* Any object whose naming attribute is of a type beginning with an
"o," such as O or OU.

o*=c* Any object whose left-most name is of a type beginning with an "o,"
and whose name begins with "c."

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSListByClassAndName

NDS and Bindery Service Group

NDS: Functions 406

NWDSGetDefNameContext

Retrieves the default name context for a specified tree

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsconn.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSGetDefNameContext (
 NWDSContextHandle context,
 nuint nameContextLen
 pnstr8 nameContext);

Pascal Syntax

#include <nwdsconn.inc>

Function NWDSGetDefNameContext
 (context : NWDSContextHandle;
 nameContextLen : nuint;
 nameContext : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

nameContextLen

(IN) Specifies the length (in bytes) of the nameContext buffer.

nameContext

(OUT) Points to the buffer in which to place the default name context
value.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 407

Remarks

This function gets the default name context for the tree specified in the
context (or if the tree name isn't set, the preferred tree name). This call
differs from NWGetDefaultNameContext in that this call has an added
parameter, context, and operates on a per tree basis. Also, this function
call can return the name context in Unicode while
NWGetDefaultNameContext could only return the data in local code
page format.

The default name context for the preferred tree can be set by the
DEFAULT NAME CONTEXT configuration parameter, or by calling
either NWSetDefaultNameContext or NWDSSetDefNameContext. The
default name context for another tree (different from the preferred tree)
can be set by calling NWDSSetDefNameContext.

The default name context can be from 0 to 257 bytes long for local code
page strings (including the NULL), or 0 to 514 bytes long for Unicode
strings (including the 2 bytes for NULL). If the nameContext buffer is too
small to contain the value, an error is returned and no data is copied.

If the treename is not set in the context, the preferred tree will be used.
For requesters that do not support multiple trees, if the treename is
specified (not -NULL string) and if the treename is different than the
preferred tree, an error will be returned.

NCP Calls

None

See Also

NWGetDefaultNameContext, NWSetDefaultNameContext,
NWDSSetDefNameContext

NDS and Bindery Service Group

NDS: Functions 408

NWDSGetDSIInfo

Returns DSI object information not stored in the attributes of an object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

N_GLOBAL_LIBRARY (NWDSCCODE) NWDSGetDSIInfo (
 NWDSContextHandle context,
 nptr buf,
 nuint32 bufLen,
 nuint32 infoFlag,
 nptr data);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetDSIInfo (
 context : NWDSContextHandle;
 buf : nptr;
 bufLen : nuint32;
 infoFlag : nuint32;
 data : nptr
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the buffer returned from previously calling the
NWDSRead, NWDSReadObjectDSIInfo, NWDSList and/or
NWDSSearch functions.

bufLen

Specifies the length of the buf parameter.

infoFlag

NDS and Bindery Service Group

NDS: Functions 409

Specifies the data element to be extracted from the buffer pointed to in
the buf parameter.

data

Points to a buffer to receive the data element value.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The NWDSReadObjectDSIInfo function will return data regarding an
NDS object. NWDSGetDSIInfo will extract the individual data elements
from the reply buffer. The returned "data" is formatted according to the
data type of the element referred to by the DSI Flags.

Object information can be useful to applications browsing the NDS tree.

NCP Calls

None

See Also

NWDSGetObjectNameAndInfo, NWDSReadObjectDSIInfo

NDS and Bindery Service Group

NDS: Functions 410

NWDSGetDSVerInfo

Returns NDS version information

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsmisc.h>

NWDSCCODE N_API NWDSGetDSVerInfo (
 NWCONN_HANDLE conn,
 pnuint32 dsVersion,
 pnuint32 rootMostEntryDepth,
 pnstr8 sapName,
 pnuint32 flags,
 punicode treeName);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWDSGetDSVerInfo
 (conn : NWCONN_HANDLE;
 Var dsVersion : nuint32;
 Var rootMostEntryDepth : nuint32;
 sapName : pnstr8;
 Var flags : nuint32;
 treeName : punicode
) : NWDSCCODE;

Parameters

conn

(IN) Specifies the connection handle to an NDS server.

dsVersion

(OUT) Specifies the DS.NLM build version.

rootMostEntryDepth

(OUT) Specifies the number of levels to the root-most object.

sapName

(OUT) Points to the tree name where the server is contained. The value
is in the SAP form (ASCII characters set restricted by SAP).

flags

(OUT) Points to the DS.NLM flags.

NDS and Bindery Service Group

NDS: Functions 411

(OUT) Points to the DS.NLM flags.

treeName

(OUT) Points to the "enabled" tree name (in the Unicode character set).

Return Values

0x0000 SUCCESSFUL

nonzero
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSGetDSVerInfo returns version information regarding the
DS.NLM running on a specific server. Each return value is optional (that
is, passing a NULL as the pointer disables the return of the information).

NCP Calls

None

See Also

NWDSGetNDSStatistics, NWGetNWNetVersion

NDS and Bindery Service Group

NDS: Functions 412

NWDSGetEffectiveRights

Returns a summary of a subject's rights with respect to operations on a
specified object or an attribute of an object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsacl.h>

NWDSCCODE N_API NWDSGetEffectiveRights (
 NWDSContextHandle context,
 pnstr8 subjectName,
 pnstr8 objectName,
 pnstr8 attrName,
 pnuint32 privileges);

Pascal Syntax

#include <nwdsacl.inc>

Function NWDSGetEffectiveRights
 (context : NWDSContextHandle;
 subjectName : pnstr8;
 objectName : pnstr8;
 attrName : pnstr8;
 privileges : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

subjectName

(IN) Points to the name of the object to which the privileges are
assigned.

objectName

(IN) Points to the name of the object to which access may be granted.

attrName

NDS and Bindery Service Group

NDS: Functions 413

(IN) Points to the name of the attribute to which access may be
granted.

privileges

(OUT) Points to the privileges assigned to subjectName.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

nonzero
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

If the return value is ERROR_NO_SUCH_ENTRY, no privilege set exists
for the specified subject/object pair, and the subject has no rights with
respect to the object. It can also indicate the object does not exist.

If the object exists but the subject does not exist,
NWDSGetEffectiveRights returns a value of SUCCESSFUL and
privileges is set to NULL.

Access to information about objects stored in NDS is granted through
access control lists (ACLs). The ACL is an attribute defined by the NDS
Schema and regulates access to its associated object or attribute. The ACL
can be read or modified by calling NWDSRead and
NWDSModifyObject. Likewise, other access operations can be applied
to the ACL.

The ACL grants access privileges to a specified object, called the subject,
regarding the object the ACL protects. Optionally, privileges may be
granted with respect to a specified attribute of the protected object.

NDS and Bindery Service Group

NDS: Functions 414

A subject can inherit access to an object through various security
equivalences. NWDSGetEffectiveRights provides a summary of all
cases where a particular subject may receive access to a particular object.
(The value for individual ACLs can be read or modified using the
standard Access Services.)

The subject can be the name of the objects in NDS, or it can be one of the
following "special" subjects:

Special Subjects

 [Creator]
 [Public]
 [Root]
 [Self]

The [Inheritance Mask] special subject cannot be used.
NWDSGetEffectiveRights will return -601, ERR_NO_SUCH_ENTRY,
when trying to get the inheritance mask for a container or user.

attrName specifies an attribute of the object for which the effective rights
of the subject are requested. The attribute can also be one of the following
"special" attribute names:

Special Attribute Names

 All Attributes Rights
 Entry Rights
 SMS Rights

The privileges parameter returns the effective privilege set for
subject/object or subject/attribute pair.

All Attributes Rights:

0x001
L

$000000
01

DS_ATTR_COMPARE

0x002
L

$000000
02

DS_ATTR_READ

0x004
L

$000000
04

DS_ATTR_WRITE

0x008
L

$000000
08

DS_ATTR_SELF

0x010
L

$000000
10

DS_ATTR_SUPERVISOR

Entry Rights:

0x001
L

$000000
01

DS_ENTRY_BROWSE

NDS and Bindery Service Group

NDS: Functions 415

0x002
L

$000000
02

DS_ENTRY_ADD

0x004
L

$000000
04

DS_ENTRY_DELETE

0x008
L

$000000
08

DS_ENTRY_RENAME

0x010
L

$000000
10

DS_ENTRY_SUPERVISOR

SMS Rights

0x001
L

$000000
01

DS_SMS_SCAN

0x002
L

$000000
02

DS_SMS_BACKUP

0x004
L

$000000
04

DS_SMS_RESTORE

0x008
L

$000000
08

DS_SMS_RENAME

0x010
L

$000000
10

DS_SMS_DELETE

0x020
L

$000000
20

DS_SMS_ADMIN

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

NDS and Bindery Service Group

NDS: Functions 416

NWDSGetMonitoredConnection (obsolete 6/96)

Returns the connection handle of a monitored NDS connection but is now
obsolete. Call NWDSOpenMonitoredConn instead.

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdstype.h>
#include <nwndscon.h>

NWCCODE N_API NWDSGetMonitoredConnection
 (NWCONN_HANDLE N_FAR * conn);

Pascal Syntax

Function NWDSGetMonitoredConnection
 (Var conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(OUT) Points to the connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

0x880
1

INVALID_CONNECTION

0x886
F

OBJECT_NOT_FOUND

Remarks

NDS and Bindery Service Group

NDS: Functions 417

A monitored connection is set only if NWDSLogin has been called.

NWDSLogin creates a set of attributes in NDS of a NetWare server. The
connection to the NetWare server must be maintained for the duration of
the login session; otherwise, the attributes will be deleted when the
connection is destroyed. NWDSGetMonitoredConnection (obsolete
6/96) is the place holder for the connection to the NetWare server having
these attributes.

When NWDSLogout is called, the connection handle is set to zero (0).

A monitored connection does not exist if conn is zero (0).

NWDSGetMonitoredConnection (obsolete 6/96) does not guarantee a
licensed connection to the NetWare server.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 418

NWDSGetMonitoredConnRef

Retrieves a monitored connection reference

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsconn.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSGetMonitoredConnRef (
 NWDSContextHandle context,
 pnuint32 connRef);

Pascal Syntax

#include <nwdsconn.inc>

Function NWDSGetMonitoredConnRef
 (context : NWDSContextHandle;
 Var connRef : nuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

connRef

(OUT) Points to the connection reference.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

A monitored connection reference is set only if NWDSLogin has been
called. For multiple tree support, the tree name specified in the context
handle is used to specify which monitored connection reference to
retrieve.

NDS and Bindery Service Group

NDS: Functions 419

If the treename is not set in the context, the preferred tree will be used.
For requesters that do not support multiple trees, if the treename is
specified (not -NULL string) and if the treename is different than the
preferred tree, an error will be returned.

To make use of the connection reference, a connection handle must be
opened using the connection reference.

NCP Calls

None

See Also

NWDSOpenMonitoredConn, NWCCOpenConnByRef

NDS and Bindery Service Group

NDS: Functions 420

NWDSGetNDSStatistics

Retrieves the NDS statistics

NetWare Server: 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsmisc.h>

NWDSCCODE N_API NWDSGetNDSStatistics (
 NWDSContextHandle context,
 NWCONN_HANDLE connHandle,
 nuint statsInfoLen,
 pNDSStatsInfo_T statsInfo);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWDSGetNDSStatistics
 (context : NWDSContextHandle;
 serverName : pnstr8;
 statsInfoLen : nuint;
 Var statsInfo : NDSStatsInfo_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

serverName

(IN) Specifies the server to send the request to.

statsInfoLen

(OUT) Receives the length (in bytes) of the statsInfo structure.

statsInfo

(OUT) Points to a structure that contains statistical information for
NDS relative to the local server described by serverName.

Return Values

0x0000 SUCCESSFUL

NDS and Bindery Service Group

NDS: Functions 421

nonzero
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSGetNDSStatistics retrieves all of the statistics that can be reported
by NDS.

NCP Calls

None

See Also

NWDSResetNDSStatistics,

NDS and Bindery Service Group

NDS: Functions 422

NWDSGetObjectCount

Returns the number of objects whose information is stored in a result buffer

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetObjectCount (
 NWDSContextHandle context,
 pBuf_T buf,
 pnuint32 objectCount);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetObjectCount
 (context : NWDSContextHandle;
 buf : pBuf_T;
 objectCount : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer being read.

objectCount

(OUT) Points to the number of objects whose information is stored in
the result buffer.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 423

Remarks

NWDSGetObjectCount must be the first function used to read a result
buffer containing information about objects, such as result buffers filled
in by NWDSList, NWDSRead, and NWDSSearch.

The full steps for retrieving object information from a result buffer are
listed in the references for NWDSList, NWDSRead, and NWDSSearch.

NCP Calls

None

See Also

NWDSGetAttrName, NWDSGetAttrVal, NWDSGetObjectName,
NWDSList, NWDSSearch

NDS and Bindery Service Group

NDS: Functions 424

NWDSGetObjectHostServerAddress

Returns the addresses of the server where an object is located

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsmisc.h>

NWDSCCODE N_API NWDSGetObjectHostServerAddress (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnstr8 serverName,
 pBuf_T netAddresses);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWDSGetObjectHostServerAddress
 (context : NWDSContextHandle;
 objectName : pnstr8;
 serverName : pnstr8;
 netAddresses : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of an NDS object.

serverName

(OUT) Points to the name of the server where an object is located.

netAddresses

(OUT) Points to a buffer containing the network addresses of the
associated server.

NDS and Bindery Service Group

NDS: Functions 425

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSGetObjectHostServerAddress works only for objects having
"Host Server" as an attribute (like Volume). Servers can have more than
one address, such as an IPX and an IP address. netAddresses receives
these addresses.

For more information, see Finding the Host Server of an Object.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSComputeAttrValSize, NWDSGetAttrCount, NWDSGetAttrVal

NDS and Bindery Service Group

NDS: Functions 426

NWDSGetObjectName

Returns the name and information about the next object whose information
is stored in a result buffer

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetObjectName (
 NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 objectName,
 pnuint32 attrCount,
 pObject_Info_T objectInfo);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetObjectName
 (context : NWDSContextHandle;
 buf : pBuf_T;
 objectName : pnstr8;
 attrCount : pnuint32;
 objectInfo : pObject_Info_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer being read.

objectName

(OUT) Points to the name of the object whose information is at the
current position in the buffer.

attrCount

(OUT) Points to the number of attributes following the object name.

objectInfo

NDS and Bindery Service Group

NDS: Functions 427

(OUT) Points to additional information about the object (size of
Object_Info_T).

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSGetObjectName should be called once for each object in the
buffer. The count of objects whose information is stored in the buffer is
determined by calling NWDSGetObjectCount.

NOTE: You must retrieve all of the information about the current
object before calling NWDSGetObjectName for the next object.

buf points to a Buf_T filled in by NWDSList, NWDSRead, or
NWDSSearch.

objectName points to the name of the current object in the buffer. The
object's name is abbreviated if the context flag associated with
DCV_CANONICALIZE_NAMES is set. Types are removed from the
name if the flag associated with DCV_TYPELESS_NAMES is set.

You must allocate space for the object's name. The size of the allocated
memory is ((MAX_DN_CHARS)+1)*sizeof(character size) where
character size is 1 for single-byte characters, and 2 for double-byte
characters (Unicode is double-byte). One character is used for NULL
termination.

attrCount points to the number of attributes that follow the object name.
The attribute count is always zero for a buffer returned by NWDSList
since NWDSList only returns the names of objects. The attribute count
will be zero or greater for a buffer returned by NWDSSearch.

objectInfo points to additional information about the object. You must
allocate memory to retrieve this information (sizeof(Object_Info_T)).

The complete steps for removing information from a result buffer are
shown in the reference listing for NWDSList, NWDSRead, and
NWDSSearch.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 428

See Also

NWDSGetAttrName, NWDSGetAttrVal, NWDSGetObjectCount,
NWDSList, NWDSSearch

NDS and Bindery Service Group

NDS: Functions 429

NWDSGetObjectNameAndInfo

Returns the name and information about the next object whose information
is stored in a result buffer

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

N_GLOBAL_LIBRARY (NWDSSCODE) NWDSGetObjectNameAndInfo (
 NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 objectName,
 pnuint32 attrCount,
 ppnstr8 objectInfo);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetObjectNameAndInfo (
 context : NWDSContextHandle;
 buf : pBuf_T;
 objectName : pnstr8;
 attrCount : pnuint32;
 objectInfo : ppnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer of a previous operation.

objectName

(OUT) Points to the name of the object whose information is at the
current position in the buffer.

attrCount

(OUT) Points to the number of attributes following the object name.

objectInfo

NDS and Bindery Service Group

NDS: Functions 430

(OUT) Points to additional information about the object.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSGetObjectNameAndInfo should be called once for each object in
the buffer. The count of objects whose information is stored in the buffer
is determined by calling the NWDSGetObjectCount function.

NOTE: You must retrieve all of the information about the current
object before calling NWDSGetObjectNameAndInfo for the next
object.

See DSI Flags.

The buf parameter points to a Buf_T filled in by the NWDSList,
NWDSRead, NWDSReadObjectDSIInfo, or NWDSSearch functions.

The object name in the objectName parameter is abbreviated if the context
flag associated with DCV_CANONICALIZE_NAMES is set. Types are
removed from the name if the flag associated with
DCV_TYPELESS_NAMES is set.

You must allocate space for the object name. The size of the allocated
memory is ((MAX_DN_CHARS)+1)*sizeof(character size) where
character size is 1 for single-byte characters, and 2 for double-byte
characters (Unicode is double-byte). One character is used for NULL
termination.

The attribute count in the attrCount parameter is always zero for a buffer
returned by the NWDSList function since the NWDSList function only
returns object information and not attribute information. The attribute
count will be zero or greater for a buffer returned by the NWDSSearch or
NWDSRead functions.

You must allocate memory to retrieve the information in the objectInfo
parameter.

The complete steps for removing information from a result buffer are
shown in the reference listing for the NWDSList, NWDSRead, and
NWDSSearch functions.

NCP Calls

NDS and Bindery Service Group

NDS: Functions 431

None

See Also

NWDSGetAttrName, NWDSGetAttrVal, NWDSGetDSIInfo,
NWDSGetObjectCount, NWDSReadObjectDSIInfo, NWDSList,
NWDSRead, NWDSSearch

NDS and Bindery Service Group

NDS: Functions 432

NWDSGetPartitionExtInfo

Retrieves replica information from a result buffer filled by
NWDSListPartitions

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSGetPartitionExtInfo (
 NWDSContextHandle context,
 pnstr8 infoPtr,
 pnstr8 limit,
 nflag32 infoFlag,
 pnuint32 length,
 nptr data);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetPartitionExtInfo (
 context : NWDSContextHandle;
 infoPtr : pnstr8;
 limit : pnstr8;
 infoFlag : nflag32;
 length : pnuint32;
 data : nptr
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

infoPtr

(IN) Points to the information returned from calling the
NWDSListPartitions function.

limit

(IN) Points to the end of the buffer pointed to by the infoPtr parameter
and used for overflow checking.

infoFlag

NDS and Bindery Service Group

NDS: Functions 433

(IN) Specifies the data element to retrieve from the the buffer pointed
to by the infoPtr parameter.

length

(IN) Points to the size of the returned information.

data

(IN) Points to the returned information.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

Call NWDSGetPartitionExtInfo repeatedly to access all additional
information requested in the DSP Flags passed into the infoFlag
parameter.

For the complete steps for retrieving partition information see the
NWDSListPartitions function.

NCP Calls

None

See Also

NWDSGetPartitionExtInfoPtr, NWDSGetServerName,
NWDSListPartitions, NWDSListPartitionsExtInfo

NDS and Bindery Service Group

NDS: Functions 434

NWDSGetPartitionExtInfoPtr

Retrieves a pointer to the replica information from a result buffer filled by
NWDSListPartitions

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSGetPartitionExtInfoPtr (
 NWDSContextHandle context,
 pBuf_T buf,
 ppnstr8 infoPtr,
 ppnstr8 infoPtrEnd);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetPartitionExtInfoPtr (
 context : NWDSContextHandle;
 buf : pBuf_T;
 infoPtr : ppnstr8;
 infoPtrEnd : ppnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer received from calling the
NWDSListPartitions function.

infoPtr

(OUT) Points to the returned information.

infoPtrEnd

(OUT) Points end of the returned information.

Return Values

NDS and Bindery Service Group

NDS: Functions 435

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

See DSP Flags.

For the complete steps for retrieving partition information, see the
NWDSListPartitions function.

NCP Calls

None

See Also

NWDSGetPartitionExtInfo, NWDSGetServerName,
NWDSListPartitions, NWDSListPartitionsExtInfo

NDS and Bindery Service Group

NDS: Functions 436

NWDSGetPartitionInfo

Retrieves replica information from a result buffer filled by
NWDSListPartitions

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetPartitionInfo (
 NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 partitionName,
 pnuint32 replicaType);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetPartitionInfo
 (context : NWDSContextHandle;
 buf : pBuf_T;
 partitionName : pnstr8;
 replicaType : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer to be read.

partitionName

(OUT) Points to the name of the root object of a partition.

replicaType

(OUT) Points to the replica type.

Return Values

NDS and Bindery Service Group

NDS: Functions 437

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

buf points to a Buf_T filled by NWDSListPartitions.

partitionName points to a memory location containing the distinguished
name of a partition for which replica information has been found. You
must allocate space for the partition name. The size of the allocated
memory is ((MAX_DN_CHARS)+1)*sizeof(character size) where
character size is 1 for single-byte characters, and 2 for double-byte
characters (Unicode is double-byte). One character is used for NULL
termination.

replicatype points to NWREPLICA_TYPE containing information about
the type of replica the partition is. The replica types are enumerated in
NWDSDEFS.H as follows:

RT_MASTER Master Replica

RT_SECONDARY Secondary Replica

RT_READ_ONLY Read-only Replica

RT_SUBREF Partition with only a root object

For the complete steps for retrieving partition information see
NWDSListPartitions.

NCP Calls

None

See Also

NWDSGetServerName, NWDSListPartitions

NDS and Bindery Service Group

NDS: Functions 438

NWDSGetPartitionRoot

Returns the partition root name of the given object

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSGetPartitionRoot (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnstr8 partitionRoot);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSGetPartitionRoot
 (context : NWDSContextHandle;
 objectName : pnstr8;
 partitionRoot : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the object's name.

partitionRoot

(OUT) Points to the partition root name. You must allocate memory for
partitionRoot; either MAX_DN_BYTES or MAX_DN_CHARS.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

NDS and Bindery Service Group

NDS: Functions 439

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

If the object is itself a partition root, partitionRoot is the same as the object
name.

The caller must allocate space for partitionRoot. The size of the memory
allocated is ((MAX_DN_CHARS)+1)*sizeof(character size), where
character size is 1 for single-byte characters and 2 for double-byte
characters (Unicode is double byte). One character is used for NULL
termination.

NDS and Bindery Service Group

NDS: Functions 440

NWDSGetServerAddresses

Returns the network addresses of the server associated with a connection
handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSGetServerAddresses (
 NWDSContextHandle context,
 NWCONN_HANDLE conn,
 pnuint32 countNetAddress,
 pBuf_T netAddresses);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSGetServerAddresses
 (context : NWDSContextHandle;
 conn : NWCONN_HANDLE;
 countNetAddress : pnuint32;
 netAddresses : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS Access context for the request.

conn

(IN) Specifies the connection handle for the target server.

countNetAddress

(OUT) Points to the number of network addresses contained in
netAddresses.

netAddresses

(OUT) Points to a buffer containing the network address associated
with the server.

NDS and Bindery Service Group

NDS: Functions 441

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
values

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

Servers can have more than one address, such as an IPX and an IP
address. netAddresses receives these addresses.

For more information, see Retrieving Addresses of a Connected Server.

NCP Calls

0x2222 104 02 Send NDS Fragmented Request/Reply

53 Get Server Address

See Also

NWDSComputeAttrValSize, NWDSGetAttrCount, NWDSGetAttrVal

NDS and Bindery Service Group

NDS: Functions 442

NWDSGetServerDN

Returns the server's distinguished name in NDS

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSGetServerDN (
 NWDSContextHandle context,
 NWCONN_HANDLE conn,
 pnstr8 serverDN);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSGetServerDN
 (context : NWDSContextHandle;
 conn : NWCONN_HANDLE;
 serverDN : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

conn

(IN) Specifies the connection to the server to be queried.

serverDN

(OUT) Points to the distinguished name of the server.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 443

value -699).

Remarks

conn is the connection handle to the server.

The caller must allocate space to hold the distinguished name of the
server and set serverDN to point to it. The size of the allocated memory is
(MAX_DN_CHARS+1)*sizeof(character size) where character size is 1 for
single-byte characters and 2 for double-byte characters (Unicode is
double byte). One character is used for NULL termination.

Whether the server name is returned as a complete name or a partial
name depends upon the setting of the context flag associated with
DCV_CANONICALIZE_NAMES.

NWDSGetServerDN does not work on a local server with a connection 0.
Call AttachToFileServer then GetCurrentConnection and pass the
returned value to NWDSGetServerDN to return the server's DN. If
connection 0 is used, a -333 error is returned.

NCP Calls

0x2222 104 02 Send NDS Fragmented Request/Reply

53 Get Server Address

NDS and Bindery Service Group

NDS: Functions 444

NWDSGetServerName

Returns the name of the current server, as well as the number of partitions
on the server, from a result buffer

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetServerName (
 NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 serverName,
 pnuint32 partitionCount);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetServerName
 (context : NWDSContextHandle;
 buf : pBuf_T;
 serverName : pnstr8;
 partitionCount : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer being read.

serverName

(OUT) Points to the server name.

partitionCount

(OUT) Points to the number of partition names in the result buffer.

Return Values

NDS and Bindery Service Group

NDS: Functions 445

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSGetServerName should be called first to read from a result buffer
returned by NWDSListPartitions.

buf points to a Buf_T filled by NWDSListPartitions.

serverName points to a memory location containing the distinguished
name of the server for which replica information has been found. You
must allocate space for the server name. The size of the allocated memory
is ((MAX_DN_CHARS)+1*)sizeof(character size) where character size is
1 for single-byte characters, and 2 for double-byte characters (Unicode is
double-byte). One character is used for NULL termination.

For the complete steps for retrieving partition information see
NWDSListPartitions.

NCP Calls

None

See Also

NWDSGetPartitionInfo, NWDSListPartitions

NDS and Bindery Service Group

NDS: Functions 446

NWDSGetSyntaxCount

Returns the number of NDS syntaxes whose information is stored in a result
buffer filled by NWDSReadSyntaxes

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetSyntaxCount (
 NWDSContextHandle context,
 pBuf_T buf,
 pnuint32 syntaxCount);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetSyntaxCount
 (context : NWDSContextHandle;
 buf : pBuf_T;
 syntaxCount : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the buffer being read.

syntaxCount

(OUT) Points to the number of syntaxes stored in the buffer.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 447

Remarks

Before reading the syntax information from a result buffer filled by
NWDSReadSyntaxes, you must first call NWDSGetSyntaxCount to
determine the number of syntaxes whose information is stored in the
buffer.

When NWDSGetSyntaxCount returns, the location pointed to by
syntaxCount specifies the number of syntaxes whose information is stored
in the buffer. To remove the syntax information from the result buffer,
call NWDSGetSyntaxDef once for each syntax whose information is
stored in the buffer.

The complete steps for retrieving information about the syntaxes in the
NDS Schema are listed in the reference for NWDSReadSyntaxes.

NCP Calls

None

See Also

NWDSGetSyntaxDef, NWDSReadSyntaxes

NDS and Bindery Service Group

NDS: Functions 448

NWDSGetSyntaxDef

Retrieves the next NDS-syntax definition from a result buffer filled by
NWDSReadSyntaxes

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSGetSyntaxDef (
 NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 syntaxName,
 pSyntax_Info_T syntaxDef);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSGetSyntaxDef
 (context : NWDSContextHandle;
 buf : pBuf_T;
 syntaxName : pnstr8;
 syntaxDef : pSyntax_Info_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the result buffer being read.

syntaxName

(OUT) Points to the name of the syntax whose definition is stored at
the current position in the result buffer.

syntaxDef

(OUT) Points to the syntax definition.

Return Values

NDS and Bindery Service Group

NDS: Functions 449

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

Before the initial call to NWDSGetSyntaxDef, call
NWDSGetSyntaxCount to determine the number of syntaxes whose
information is stored in the result buffer. Then call NWDSGetSyntaxDef
once for each syntax whose information is stored in the result buffer.

buf points to a result buffer containing information about syntaxes. This
result buffer is allocated by NWDSAllocBuf and filled by
NWDSReadSyntaxes.

syntaxName points to the name of the attribute whose definition is in the
result buffer. The user must allocate memory to store the name. The size
of the allocated memory is
((MAX_SCHEMA_NAMES_CHARS)+1)*sizeof(character size), where
character size is 1 for single-byte characters, and 2 for double-byte
characters (Unicode is double-byte). One character is used for NULL
termination.

syntaxDef points to the remainder of the syntax definition. If
NWDSReadSyntaxes was called with a request for syntax names only
(DS_SYNTAX_NAMES), syntaxDef is ignored by NWDSGetSyntaxDef
and can be NULL.

The user must allocate memory, sizeof(Syntax_Info_T), to receive the
syntax definition.

The complete steps for retrieving information about the syntaxes in the
NDS Schema are listed in the reference for NWDSReadSyntaxes.

NCP Calls

None

See Also

NWDSGetSyntaxCount, NWDSReadSyntaxes

NDS and Bindery Service Group

NDS: Functions 450

NWDSGetSyntaxID

Returns the syntax ID of a given attribute

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsmisc.h>

NWDSCCODE N_API NWDSGetSyntaxID (
 NWDSContextHandle context,
 pnstr8 attrName,
 pnuint32 syntaxID);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWDSGetSyntaxID
 (context : NWDSContextHandle;
 attrName : pnstr8;
 syntaxID : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

attrName

(IN) Points to the attribute name whose syntax ID you want to
determine.

syntaxID

(OUT) Points to the syntax ID of the attribute.

Return Values

0x0000 SUCCESSFUL

negative Negative values indicate errors. See NDS Values (-001 to

NDS and Bindery Service Group

NDS: Functions 451

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

Syntax IDs are enumerated in nwdsdefs.h. A description of syntax
definitions can be found in NDS Attribute Syntax Definitions.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

NDS and Bindery Service Group

NDS: Functions 452

NWDSInitBuf

Initializes a buffer for use as a request buffer for an NDS function

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSInitBuf (
 NWDSContextHandle context,
 nuint32 operation,
 pBuf_T buf);

Pascal Syntax

#include <nwdsbuft.h>

Function NWDSInitBuf
 (context : NWDSContextHandle;
 operation : nuint32;
 buf : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

operation

(IN) Specifies the NDS operation for which the buffer is being
initialized.

buf

(IN) Points to the buffer being initialized.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 453

Remarks

Only request buffers need to be initialized. Result buffers do not require
initialization.

First allocate the request buffer by calling NWDSAllocBuf. Then call
NWDSInitBuf to initialize the buffer for a particular type of operation.

operation indicates the operation for which the buffer will be used:

Name Related Function(s)

3 DSV_READ NWDSExtSyncRead

NWDSListAttrsEffectiveRights

NWDSRead

NWDSReadReferences

4 DSV_COMPARE NWDSCompare

6 DSV_SEARCH NWDSExtSyncList

NWDSExtSyncSearch

NWDSListByClassAndName

NWDSListContainers

NWDSPutFilter

NWDSSearch

7 DSV_ADD_ENTRY NWDSAddObject

9 DSV_MODIFY_ENTRY NWDSModifyObject

1
2

DSV_READ_ATTR_DEF NWDSReadAttrDef

1
4

DSV_DEFINE_CLASS NWDSDefineClass

1
5

DSV_READ_CLASS_DEF NWDSReadClassDef

1
6

DSV_MODIFY_CLASS_DEF NWDSModifyClassDef

1
8

DSV_LIST_CONTAINABLE_C
LASSES

NWDSListContainableClasses

4
0

DSV_READ_SYNTAXES NWDSGetSyntaxDef,
NWDSPutSyntaxName, and
NWDSReadSyntaxes

buf is updated to reflect the selected operation.

NCP Calls

NDS and Bindery Service Group

NDS: Functions 454

None

See Also

NWDSAllocBuf, NWDSFreeBuf

NDS and Bindery Service Group

NDS: Functions 455

NWDSInspectEntry

Inspects an object for correctness

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSInspectEntry (
 NWDSContextHandle context,
 pnstr8 serverName,
 pnstr8 objectName,
 pBuf_T errBuffer);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSInspectEntry
 (context : NWDSContextHandle;
 serverName : pnstr8;
 objectName : pnstr8;
 errBuffer : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

serverName

(IN) Points to the server name to which to connect.

objectName

(IN) Points to the object name to be inspected.

errBuffer

(OUT) Points to the Buf_T structure which is a result buffer containing
the requested information.

NDS and Bindery Service Group

NDS: Functions 456

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSInspectEntry is a diagnostic function allowing you to inspect an
object in the replica(s) on a specific server to see if the object needs to be
repaired.

If no partition exists on the server specified by serverName or the object
does not exist in the partition(s) on the specified server,
NWDSInspectEntry returns ERR_NO_SUCH_ENTRY.

Contents of the Output Buffer

After successful completion of this function call, the output buffer
contains the following data:

Return
Code

nui
nt

Success

Entry Size nui
nt

Total number of bytes occupied by the entry's base
record and its attribute values

Error
Count

nui
nt

Number of errors found in the entry record on that
server

Error
Reports

nui
nt

List of error codes indicating errors in the entry
record

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

NDS and Bindery Service Group

NDS: Functions 457

NWDSJoinPartitions

Joins a subordinate partition to its parent partition

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdspart.h>

NWDSCCODE N_API NWDSJoinPartitions (
 NWDSContextHandle context,
 pnstr8 subordinatePartition,
 nflag32 flags);

Pascal Syntax

#include <nwdspart.inc>

Function NWDSJoinPartitions
 (context : NWDSContextHandle;
 subordinatePartition : pnstr8;
 flags : nflag32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

subordinatePartition

(IN) Points to the name of the subordinate partition to be joined.

flags

Reserved; pass in NULL.

Return Values

These are common return values; see Return Values for more
information.

NDS and Bindery Service Group

NDS: Functions 458

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

For partitions to be joined, a single replica (Master) of both the parent and
subordinate partitions must exist. In addition, the master replicas must
exist on the same server.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSAddReplica, NWDSChangeReplicaType, NWDSSplitPartition

NDS and Bindery Service Group

NDS: Functions 459

NWDSList

Lists the immediate subordinates of an object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSList (
 NWDSContextHandle context,
 pnstr8 object,
 pnint32 iterationHandle,
 pBuf_T subordinates);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSList
 (context : NWDSContextHandle;
 objectName : pnstr8;
 iterationHandle : pnint32;
 subordinates : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

object

(IN) Points to the name of the object whose immediate subordinates
are to be listed.

iterationHandle

 (IN/OUT) Points to information needed to resume subsequent
iterations of NWDSList.

subordinates

(OUT) Points to a result buffer containing an Object_Info_T structure
for each subordinate.

NDS and Bindery Service Group

NDS: Functions 460

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSList succeeds if the object specified by object is found in NDS,
regardless of whether there is any subordinate information to return.

See DSI Flags.

If the name pointed to by the object parameter involves one or more
aliases, the aliases are dereferenced unless prohibited by the context flag
associated with DCV_DEREF_ALIAS.

The results buffer pointed to by subordinates receives a sequence of
Object_Info_T structures containing information about objects
subordinate to the specified object.

iterationHandle controls the retrieval of list results larger than the result
buffer pointed to by subordinates.

Before the initial call to NWDSList, set the contents of the iteration
handle pointed to by iterationHandle to NO_MORE_ITERATIONS.

When NWDSList returns from its initial call, if the result buffer holds the
complete results, the location pointed to by iterationHandle is set to
NO_MORE_ITERATIONS. If the iteration handle is not set to
NO_MORE_ITERATIONS, use the iteration handle for subsequent calls
to NWDSList to obtain further portions of the results. When the results

NDS and Bindery Service Group

NDS: Functions 461

are completely retrieved, the contents of the iteration handle will be set to
NO_MORE_ITERATIONS.

To end the List operation before the complete results have been retrieved,
call NWDSCloseIteration with a value of DSV_LIST to free memory and
states associated with the List operation.

For more information, see Listing Objects in an NDS Container.

NOTE: On large networks, iterative processes, like NWDSList, might
take a lot of time to complete. For example, listing all of the User objects
on a corporate network might be too time consuming. These processes
can be interrupted or aborted using NWDSCloseIteration.

Developers should use NWDSCloseIteration to allow users of their
applications to abort an iterative process that is taking too long to
complete.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSCloseIteration, NWDSSearch

NDS and Bindery Service Group

NDS: Functions 462

NWDSListAttrsEffectiveRights

Returns an object's effective privileges on another object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsacl.h>

NWDSCCODE N_API NWDSListAttrsEffectiveRights (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnstr8 subjectName,
 nbool8 allAttrs,
 pBuf_T attrNames,
 pnint32 iterationHandle,
 pBuf_T privilegeInfo);

Pascal Syntax

#include <nwdsacl.inc>

Function NWDSListAttrsEffectiveRights
 (context : NWDSContextHandle;
 objectName : pnstr8;
 subjectName : pnstr8;
 allAttrs : nbool8;
 attrNames : pBuf_T;
 iterationHandle : pnint32;
 privilegeInfo : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the NDS object whose access rights are to be
checked.

subjectName

NDS and Bindery Service Group

NDS: Functions 463

(IN) Points to the name of the NDS object to which the privileges are
assigned.

allAttrs

(IN) Specifies whether all attributes should be returned.

attrNames

(IN) Points to a request buffer containing the names of the attribute
definitions for which information is to be returned.

iterationHandle

 (IN/OUT) Points to the information needed to resume subsequent
iterations of NWDSListAttrsEffectiveRights.

privilegeInfo

(OUT) Points to a result buffer receiving the requested attribute names
and privileges.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

subjectName is the name of a directory object. If subjectName is NULL, the
name of the currently logged-in object is used.

allAttrs and attrNames indicate which attributes you are requesting
privileged information about. If allAttrs is TRUE, privileged information
about all optional and mandatory attributes defined for the base class of
the object are returned. NULL can also be passed for attrNames when

NDS and Bindery Service Group

NDS: Functions 464

allAttrs is TRUE. If allAttrs is FALSE, privileged information is returned
only about the attributes named in the buffer pointed to by attrNames.

attrNames points to a request buffer explicitly specifying the names of the
attributes for which information is to be returned.

iterationHandle controls retrieval of list results larger than the result buffer
pointed to by attrNames.

Before the initial call to NWDSListAttrsEffectiveRights, set the contents
of the iteration handle pointed to by iterationHandle to
NO_MORE_ITERATIONS.

If the result buffer holds the complete results when
NWDSListAttrsEffectiveRights returns from its initial call, the location
pointed to by iterationHandle is set to NO_MORE_ITERATIONS. If the
iteration handle is not set to NO_MORE_ITERATIONS, use the iteration
handle for subsequent calls to NWDSListAttrsEffectiveRights to obtain
further portions of the results. When the results are completely retrieved,
the contents of the iteration handle will be set to
NO_MORE_ITERATIONS.

For more information, see Determining the Effective Rights of an Object.

NOTE: On large networks, iterative processes, like
NWDSListAttrsEffectiveRights, might take a lot of time to complete.
For example, listing all of the User objects on a corporate network might
be too time consuming. These processes can be interrupted or aborted
using NWDSCloseIteration.

Developers should use NWDSCloseIteration to allow users of their
applications to abort an iterative process that is taking too long to
complete.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSCloseIteration, NWDSAllocBuf, NWDSGetAttrVal,
NWDSInitBuf

NDS and Bindery Service Group

NDS: Functions 465

NWDSListByClassAndName

Lists the immediate subordinates for an NDS object and restricts the list to
subordinate objects matching a specified object class and/or name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSListByClassAndName (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnstr8 className,
 pnstr8 subordinateName,
 pnint32 iterationHandle,
 pBuf_T subordinates;)

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSListByClassAndName
 (context : NWDSContextHandle;
 objectName : pnstr8;
 className : pnstr8;
 subordinateName : pnstr8;
 iterationHandle : pnint32;
 subordinates : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object whose subordinates are to be
listed.

className

(IN) Points to a class name to be used as a filter. This can be NULL.

NDS and Bindery Service Group

NDS: Functions 466

subordinateName

(IN) Points to an object name to be used as a filter. This can be NULL.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent
iterations of NWDSListByClassAndName (set to
NO_MORE_ITERATIONS initially).

subordinates

(OUT) Points to a result buffer containing a list of subordinate objects
matching the search criteria.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

0xFE0D UNI_NO_DEFAULT

0xFE0F UNI_HANDLE_MISMATCH

0xFEB5 ERR_NULL_POINTER

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSListByClassAndName controls the list output with filters on the
class and/or name.

If the context flag associated with DCV_TYPELESS_NAMES is set, the
returned list of object names in the buffer will be typeless. If the flag is
off, the returned list will contain typed names.

The name given for className's filter is the name of an object class, such

NDS and Bindery Service Group

NDS: Functions 467

as User, Computer, or Server.

The value given for subordinateName's filter can be one of the following:

The left-most name of an object, such as Adam or Graphics Printer.

A string with asterisks (*), such as A* or Gr*.

NULL, which means any name is valid.

The location of the subordinate object(s) in the NDS tree is immediately
subordinate to the object specified by objectName. It is not relative to the
current name context in NDS specified by context.

The relationship between className and subordinateName is an "AND"
relationship.

When className and subordinateName are provided, a list of immediate
subordinate objects restricted by both filters is returned.

When className is NULL and subordinateName is NULL, a list of all
immediate subordinates is returned.

When className is provided and subordinateName is NULL, a list of
immediate subordinates restricted only by className's filter is returned.

When className is NULL and subordinateName is provided, a list of
immediate subordinates restricted only by subordinateName's filter is
returned.

The following examples show how to use wildcards for untyped names:

c* Any object whose left-most name begins with a "c" character.

M*y Any object beginning with "M" and ending with"y" such as Mary.

If the wildcard name specified for subordinateName includes a type, such
as "CN," the name must include the equals (=) sign. The following
examples show how to use wildcards for typed names:

cn=* Any object whose left-most name is a common name.

cn=c* Any object whose left-most name is a common name and begin with
"c."

o*=* Any object whose left-most name has a naming attribute beginning
with an "o," such as O or OU.

o*=c* Any object whose left-most name has a naming attribute beginning
with an "o," and whose name begins with "c."

iterationHandle controls retrieval of search results larger than the result
buffer pointed to by subordinates.

Before the initial call to NWDSListByClassAndName, set the contents of
the iteration handle pointed to by iterationHandle to
NO_MORE_ITERATIONS.

If the result buffer holds the complete results when
NWDSListByClassAndName returns from its initial call, the location

NDS and Bindery Service Group

NDS: Functions 468

pointed to by iterationHandle is set to NO_MORE_ITERATIONS. If the
iterationHandle is not set to NO_MORE_ITERATIONS, use the iteration
handle for subsequent calls to NWDSListByClassAndName to obtain
further portions of the results. When the results are completely retrieved,
the contents of the iteration handle will be set to
NO_MORE_ITERATIONS.

To end the List operation before the complete results have been retrieved,
call NWDSListByClassAndName with a value of DSV_SEARCH to free
memory and states associated with the List operation.

Allocate the result buffer pointed to by subordinates, by calling
NWDSAllocBuf. This result buffer does not need to be initialized
because it is a result buffer. For more information, see Retrieving Results
from NDS Output Buffers.

NOTE: On large networks, iterative processes, like
NWDSListByClassAndName, might take a lot of time to complete. For
example, listing all of the User objects on a corporate network might be
too time consuming. These processes can be interrupted or aborted
using NWDSCloseIteration.

Developers should use NWDSCloseIteration to allow users of their
applications to abort an iterative process that is taking too long to
complete.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSCloseIteration, NWDSList

NDS and Bindery Service Group

NDS: Functions 469

NWDSListContainableClasses

Returns the names of the object classes that can be contained by
(subordinate to) the specified object in the NDS tree

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdssch.h>

NWDSCCODE N_API NWDSListContainableClasses (
 NWDSContextHandle context,
 pnstr8 parentObject,
 pnint32 iterationHandle,
 pBuf_T containableClasses);

Pascal Syntax

#include <nwdssch.inc>

Function NWDSListContainableClasses
 (context : NWDSContextHandle;
 parentObject : pnstr8;
 iterationHandle : pnint32;
 containableClasses : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

parentObject

(IN) Points to the name of the parent object for which containable
classes are to be listed.

iterationHandle

 (IN/OUT) Points to the information needed to resume subsequent
iterations of NWDSListContainableClasses.

containableClasses

(OUT) Points to a buffer containing the names of object classes

NDS and Bindery Service Group

NDS: Functions 470

contained by the specified parent object.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSListContainableClasses can be used to build a list of object
classes that can be used to create objects subordinate to the parent object
specified by parentObject.

parentObject points to the name of an NDS object for which containable
object-classes are to be listed. If this parent object is not a valid container
object, an error is returned.

iterationHandle controls retrieval of results larger than the buffer pointed
to by containableClasses.

Before the initial call to NWDSListContainableClasses, set the contents
of the iteration handle pointed to by iterationHandle to
NO_MORE_ITERATIONS.

When NWDSListContainableClasses returns from its initial call, if the
result buffer holds the complete results, the location pointed to by
iterationHandle is set to NO_MORE_ITERATIONS. If iterationHandle is not
set to NO_MORE_ITERATIONS, use the iteration handle for subsequent
class to NWDSListContainableClasses to obtain further portions of the
results. When the results are completely retrieved, the contents of the
iteration handle will be set to NO_MORE_ITERATIONS.

NDS and Bindery Service Group

NDS: Functions 471

For more information, see Listing Containable Classes.

NOTE: To end the List operation before all of the results have been
retrieved, call NWDSCloseIteration with a value of
DSV_LIST_CONTAINABLE_CLASSES to free memory and states
associated with NWDSListContainableClasses.

The level of granularity for partial results (those split across multiple
iterations) is an individual class name.

containableClasses points to a result buffer that receives the list of names of
object classes that can be used to create objects contained by the specified
parent object. The result buffer contains the names of only the object
classes marked as effective in the NDS Schema (those from which objects
can be created). Alias is always included in the list.

NOTE: On large networks, iterative processes, like
NWDSListContainableClasses, might take a lot of time to complete.
For example, listing all of the User objects on a corporate network might
be too time consuming. These processes can be interrupted or aborted
using NWDSCloseIteration.

Developers should use NWDSCloseIteration to allow users of their
applications to abort an iterative process that is taking too long to
complete.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSCloseIteration, NWDSAddObject

NDS and Bindery Service Group

NDS: Functions 472

NWDSListContainers

Lists container objects subordinate to a specific NDS object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSListContainers (
 NWDSContextHandle context,
 pnstr8 object,
 pnint32 iterationHandle,
 pBuf_T subordinates);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSListContainers
 (context : NWDSContextHandle;
 objectName : pnstr8;
 iterationHandle : pnint32;
 subordinates : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

object

(IN) Points to the name of the object whose subordinate container
objects are to be listed.

iterationHandle

(IN/OUT) Points to information needed to resume subsequent
iterations of NWDSListContainers. This should be initially set to
NO_MORE_ITERATIONS.

subordinates

(OUT) Points to a result buffer containing a list of subordinate

NDS and Bindery Service Group

NDS: Functions 473

container objects.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

0xFE01 ERR_BAD_CONTEXT

0xFE0D UNI_NO_DEFAULT

0xFE0F UNI_HANDLE_MISMATCH

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The name specified by objectName is relative to the current name context
in context. It can be typed or untyped.

iterationHandle controls retrieval of search results larger than the result
buffer pointed to by subordinates.

Before the initial call to NWDSListContainers, set the contents of the
iteration handle pointed to by iterationHandle to
NO_MORE_ITERATIONS.

If the result buffer holds the complete results when
NWDSListContainers returns from its initial call, the location pointed to
by iterationHandle is set to NO_MORE_ITERATIONS. If iterationHandle is
not set to NO_MORE_ITERATIONS, use the iteration handle for
subsequent calls to NWDSListContainers to obtain further portions of
the results. When the results are completely retrieved, the contents of
iterationHandle will be set to NO_MORE_ITERATIONS.

To end the List operation before the complete results have been retrieved,

NDS and Bindery Service Group

NDS: Functions 474

call NWDSCloseIteration with a value of DSV_SEARCH to free memory
and states associated with the List operation.

The contents of the result buffer pointed to by subordinates are
overwritten with each subsequent call to NWDSListContainers. Remove
the contents from the result buffer before each subsequent call to
NWDSListContainers.

Allocate the result buffer pointed to by subordinates, by calling
NWDSAllocBuf. This result buffer does not need to be initialized
because it is a result buffer. For more information, see Retrieving Results
from NDS Output Buffers.

NOTE: On large networks, iterative processes, like
NWDSListContainers, might take a lot of time to complete. For
example, listing all of the User objects on a corporate network might be
too time consuming. These processes can be interrupted or aborted
using NWDSCloseIteration.

Developers should use NWDSCloseIteration to allow users of their
applications to abort an iterative process that is taking too long to
complete.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSCloseIteration, NWDSList

NDS and Bindery Service Group

NDS: Functions 475

NWDSListPartitions

Returns information about the replicas of partitions stored on the specified
server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdspart.h>

NWDSCCODE N_API NWDSListPartitions (
 NWDSContextHandle context,
 pnint32 iterationHandle,
 pnstr8 server,
 pBuf_T partitions);

Pascal Syntax

#include <nwdspart.inc>

Function NWDSListPartitions (
 context : NWDSContextHandle;
 iterationHandle : pnint32;
 server : pnstr8;
 partitions : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

iterationHandle

 (IN/OUT) Points to information needed to resume subsequent
iterations of the operation.

server

(IN) Points to the server name whose list of partitions is requested.

partitions

(OUT) Points to a result buffer that receives the name and replica type
for each partition stored on the specified server.

NDS and Bindery Service Group

NDS: Functions 476

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

For more information, see Retrieving Partition Information from a Server.

NOTE: Iterative processes, like NWDSListPartitionsExtInfo, can be
interrupted or aborted by calling the NWDSCloseIteration function.

Developers should call the NWDSCloseIteration function to allow
users of their applications to abort an iterative process that is taking too
long to complete.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSCloseIteration, NWDSGetServerName, NWDSGetPartitionInfo

NDS and Bindery Service Group

NDS: Functions 477

NWDSListPartitionsExtInfo

Returns information about the replicas of partitions stored on the specified
server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdspart.h>

N_GLOBAL_LIBRARY (NWDSCCODE) NWDSListPartitionsExtInfo (
 NWDSContextHandle context,
 pnint32 iterationHandle,
 pnstr8 server,
 nflag32 DSPFlags,
 pBuf_T partitions);

Pascal Syntax

#include <nwdspart.inc>

Function NWDSListPartitionsExtInfo
 (context : NWDSContextHandle;
 iterationHandle : pnint32;
 server : pnstr8;
 DSPFlags : nflag32
 partitions : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

iterationHandle

 (IN/OUT) Points to information needed to resume subsequent
iterations of the operation.

server

(IN) Points to the server name whose list of partitions is requested.

DSPFlags

NDS and Bindery Service Group

NDS: Functions 478

(IN) Points to the DSP flags.

partitions

(OUT) Points to a result buffer that receives the name and replica type
for each partition stored on the specified server.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

For more information, see Retrieving Partition Information from a Server
and DSP Flags.

NOTE: Iterative processes, like NWDSListPartitionsExtInfo, can be
interrupted or aborted by calling the NWDSCloseIteration function.

Developers should call the NWDSCloseIteration function to allow users
of their applications to abort an iterative process that is taking too long to
complete.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

NDS and Bindery Service Group

NDS: Functions 479

See Also

NWDSCloseIteration, NWDSGetPartitionExtInfo,
NWDSGetPartitionExtInfoPtr, NWDSGetServerName,
NWDSListPartitions

NDS and Bindery Service Group

NDS: Functions 480

NWDSLockConnection (obsolete 6/96)

Removes the connection from the Least Recently Used (LRU) list and
licenses the connection if it is authenticated but is now obsolete. Call
NWCCLicenseConn instead.

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
see also
#include <nwndscon.h>

NWCCODE N_API NWDSLockConnection
 (NWCONN_HANDLE conn);

Pascal Syntax

Function NWDSLockConnection
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

 conn

(IN) Specifies the connection handle to lock.

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

Remarks

NWDSLockConnection (obsolete 6/96) is not supported on some
requesters. However, there will still be control over the connection slot as
long as the connection handle is not closed.

NWDSLockConnection (obsolete 6/96) can be called several times

NDS and Bindery Service Group

NDS: Functions 481

without changing the state of the connection even if the connection is
already licensed.

If the connection is autheticated to a 4.0 NetWare server and is not
licensed, the connection will be licensed.

If NWDSUnlockConnection is called and another task does not have any
resouces on this connection, the connection will be unlicensed on the
NetWare server.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 482

NWDSLogin

Performs all authentication operations needed to establish a client's
connection to the network and to the network's authentication service

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsasa.h>

NWDSCCODE N_API NWDSLogin (
 NWDSContextHandle context,
 nflag32 optionsFlag,
 pnstr8 objectName,
 pnstr8 password,
 nuint32 validityPeriod);

Pascal Syntax

#include <nwdsasa.inc>

Function NWDSLogin
 (context : NWDSContextHandle;
 optionsFlag : nflag32;
 objectName : pnstr8;
 password : pnstr8;
 validityPeriod : nuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

optionsFlag

Reserved; pass in zero.

objectName

(IN) Points to the name of the object logging into the network.

password

(IN) Points to the client's password.

validityPeriod

Reserved for future use to indicate, in seconds, the period during

NDS and Bindery Service Group

NDS: Functions 483

Reserved for future use to indicate, in seconds, the period during
which authentication will be valid with other servers. Pass in zero (0).

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSLogin caches authentication information locally to be used by
other functions and in background authentication to additional services.

password points to the client's current password in clear text. If there is no
password for the client, it's value should point to a zero-length string ("").

validityPeriod specifies the time interval during which the client's
authentication information remains valid. If the value is 0, the
authentication service supplies a default value. Also, if this value exceeds
the default value supplied by the authentication service, the default
value is applied.

The validation period begins by calling NWDSLogin. The minimum
recommended period is 60 seconds. Shorter times may cause the
authenticator to expire before it can be used. If the authenticator expires
before the client logs out, the log out process is NOT completed.

If an application has a local copy of any password value, the value
should be erased as soon as possible to prevent compromising the
security of the password.

Until an authenticated connection is established, the client can access
only NDS information classified as public.

NCP Calls

None

See Also

NWDSAuthenticate, NWDSLogout

NDS and Bindery Service Group

NDS: Functions 484

NWDSLogout

Terminates a client's connection to the network and invalidates any
information cached locally by NWDSLogin

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsasa.h>

NWDSCCODE N_API NWDSLogout (
 NWDSContextHandle context);

Pascal Syntax

#include <nwdsasa.inc>

Function NWDSLogout
 (context : NWDSContextHandle
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

After calling NWDSLogout, new connections cannot be established by
calling NWDSAuthenticate. NWDSLogout leaves intact all server
attachments and other session connections, authenticated or

NDS and Bindery Service Group

NDS: Functions 485

unauthenticated.

NWDSLogout invalidates the cached authenticator even if the function
results in an error.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSAuthenticate, NWDSLogin

NDS and Bindery Service Group

NDS: Functions 486

NWDSMapIDToName

Returns the directory name for an object denoted by a connection handle
and an object ID

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSMapIDToName (
 NWDSContextHandle context,
 NWCONN_HANDLE conn,
 nuint32 objectID,
 pnstr8 object);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSMapIDToName
 (context : NWDSContextHandle;
 conn : NWCONN_HANDLE;
 objectID : nuint32;
 objectName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

conn

(IN) Specifies the connection handle for the target server.

objectID

(IN) Specifies the object ID.

object

(OUT) Points to the object's distinguished name.

NDS and Bindery Service Group

NDS: Functions 487

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

conn contains a server connection handle. This identifies the server from
which the object ID was obtained.

objectID contains the object ID returned by the specified server.

object receives the name of the NDS object corresponding to the given
object ID. The caller must allocate memory to hold the object's name. The
size of the memory allocated is (MAX_DN_CHARS+1)*sizeof(character
size), where character size is 1 for single-byte characters and 2 for
double-byte characters (Unicode is double byte). One character is used
for NULL termination.

Since object IDs are unique only in relation to a particular server, the use
of object IDs is restricted to the server from which they originate. An
object ID returned by one server is meaningless to another server.
Furthermore, a returned object ID may be valid only for a short period of
time.

For these reasons, applications should not store object IDs locally. Rather,
they should store the full name of an NDS object. (If an application needs
a short-hand representation of an object, it should manage its own local
name-to-ID mapping.)

NCP Calls

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSMapNameToID

NDS and Bindery Service Group

NDS: Functions 488

NWDSMapNameToID

Returns the object ID for an NDS object on a specified server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSMapNameToID (
 NWDSContextHandle context,
 NWCONN_HANDLE conn,
 pnstr8 object,
 pnuint32 objectID);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSMapNameToID
 (context : NWDSContextHandle;
 conn : NWCONN_HANDLE;
 objectName : pnstr8;
 objectID : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

conn

(IN) Specifies the connection handle for target server.

object

(IN) Points to the NDS object name.

objectID

(OUT) Points to the object ID for the specified object.

Return Values

NDS and Bindery Service Group

NDS: Functions 489

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The returned ID can be used as input to older routines which require an
objectID (for example, NWAddTrustee).

Since object IDs are unique only in relation to a particular server, the use
of object IDs is restricted to the server from which they originate. An
object ID returned by one server is meaningless to another server.
Furthermore, a returned object ID may be valid only for a short period of
time.

For these reasons, applications should not store object IDs locally. Rather,
they should store the full name of an NDS object. (If an application needs
a short-hand representation of an object, it should manage its own local
name-to-ID mapping.)

conn contains a server connection handle. It identifies the server from
which the object ID is to be obtained.

object points to the name of the NDS object for which the ID is to be
returned.

It is not necessary for the object to be defined in a partition replica stored
on the target server. If the object is not stored on the server, the server
generates a temporary reference to the object and returns the ID for
reference to the client.

objectID points to the object ID of the specified name on the server
identified by conn.

NCP Calls

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSMapIDToName

NDS and Bindery Service Group

NDS: Functions 490

NWDSModifyClassDef

Modifies an existing object-class definition

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdssch.h>

NWDSCCODE N_API NWDSModifyClassDef (
 NWDSContextHandle context,
 pnstr8 className,
 pBuf_T optionalAttrs);

Pascal Syntax

#include <nwdssch.inc>

Function NWDSModifyClassDef
 (context : NWDSContextHandle;
 className : pnstr8;
 optionalAttrs : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

className

(IN) Points to the object class name whose definition is to be modified.

optionalAttrs

(IN) Points to a request buffer containing the names of attributes to be
added to the object-class definition's Optional Attribute Names list.

Return Values

These are common return values; see Return Values for more
information.

NDS and Bindery Service Group

NDS: Functions 491

0x0000 SUCCESSFUL

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The only modifications clients can make to existing object-class
definitions is the addition of optional attributes. No other characteristic of
the object-class definition can be changed.

className identifies the object class to which optional attributes will be
added.

optionalAttrs points to a request buffer containing a list of attribute names
to be added to the Optional Attribute Names list of the object-class'
definition.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSDefineClass

NDS and Bindery Service Group

NDS: Functions 492

NWDSModifyDN

Changes the distinguished name of an object or its alias in the NDS tree

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSModifyDN (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnstr8 newDN,
 nbool8 deleteOldRDN);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSModifyDN
 (context : NWDSContextHandle;
 objectName : pnstr8;
 newDN : pnstr8;
 deleteOldRDN : nbool8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the object's old name.

newDN

(IN) Points to the object's new name.

deleteOldRDN

(IN) Specifies whether to discard the old DN. If FALSE, the old DN is
retained as an additional attribute value.

NDS and Bindery Service Group

NDS: Functions 493

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The DN is the name of the object relative to its superior in the NDS tree.
The object being modified must be a leaf object, but it may be either an
object or its alias.

objectName points to the object whose DN is to be modified. Aliases in the
name will not be dereferenced.

newDN specifies the new DN of the object. It is a string identifying the
name's attribute type and the attribute value in the form:

attribute type = attribute value

For example:

"CN = Mary"

If an attribute value in the new DN does not already exist in the object, it
is added. If it cannot be added, an error is returned.

If deleteOldDN is TRUE, all attribute values in the old DN that are not in
the new DN are deleted. If FALSE, old values remain in the object (but
not as a part of the DN). The flag must be TRUE where a single-value
attribute in the DN has its value changed by NWDSModifyDN.

If NWDSModifyDN removes the last attribute value of an attribute
while identifying a new attribute for the DN, the old attribute is deleted.

NDS and Bindery Service Group

NDS: Functions 494

Aliases are never dereferenced by NWDSModifyDN. The context flag
associated with DCV_DEREF_ALIASES is not relevant to
NWDSModifyDN and is ignored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSModifyObject, NWDSSetContext, NWDSGetContext

NDS and Bindery Service Group

NDS: Functions 495

NWDSModifyObject

Modifies an object or its alias

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSModifyObject (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnint32 iterationHandle,
 nbool8 more,
 pBuf_T changes);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSModifyObject
 (context : NWDSContextHandle;
 objectName : pnstr8;
 iterationHandle : pnint32;
 more : nbool8;
 changes : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the object name to be modified.

iterationHandle

(IN) Points to the iteration number (-1 initially).

more

(IN) Specifies whether additional information will be returned:

0 No more information

NDS and Bindery Service Group

NDS: Functions 496

0 No more information

nonzero More information will be returned

changes

(IN) Points to the set of changes to be applied to the object.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSModifyObject cannot modify an object's RDN. It can perform
only the following:

Add a new attribute

Remove an attribute

Add values to an attribute

Remove values from an attribute

Replace the values of an attribute

objectName identifies the object to be modified. The object can be an alias.
Any aliases in the name are not dereferenced.

The changes parameter defines a sequence of modifications, which are
applied in the order specified. The buffer is allocated by calling
NWDSAllocBuf and initialized for DSV_MODIFY_ENTRY by calling
NWDSInitBuf. The specified changes are inserted into the buffer by

NDS and Bindery Service Group

NDS: Functions 497

calling NWDSPutChange and NWDSPutAttrVal.

NOTE: If the iterationHandle parameter is set to 0 initially,
NWDSModifyObject will ignore the value and process the request as if
-1 was passed.

If the more parameter is set to nonzero, NWDSModifyObject will
perform the necessary steps to iteratively call itself.

In order to iteratively call NWDSModifyObject, the DS.NLM file must
support the iteration feature or ERR_BUFFER_FULL will be returned.

If any of the individual modifications fail, an error is generated and the
object is left in the state it was prior to the operation. Furthermore, the
end result of the sequence of modifications may not violate the NDS
schema. (However, it is possible, and sometimes necessary, for the
individual object modification changes to appear to do so.) If an attempt
is made to modify the object class attribute, an error is returned.

Change records are inserted into the buffer by calling NWDSPutChange.
Each type of change modification is explained below:

0 #
0
0

DS_ADD_ATTRIBUTE: New attribute to be added to the object
(attempting to add an already-existing attribute results in an
error)

1 #
0
1

DS_REMOVE_ATTRIBUTE: Attribute to be removed from the
object (attempting to remove a non-existing attribute results in
an error and not allowed if the attribute is present in the RDN)

2 #
0
2

DS_ADD_VALUE: Values to be added to an attribute
(attempting to add an already-existing value or add a value to
a nonexistent attribute results in an error)

3 #
0
3

DS_REMOVE_VALUE: Values to be removed from an
attribute (attempting to delete nonexistent values results in an
error and not allowed if any of the values is present in the
RDN)

Values may be replaced by a combination of Remove Values and Add
Values operations in a single call to NWDSModifyObject. Aliases are
never dereferenced by NWDSModifyObject. The setting of the context
flag associated with DCV_DEREF_ALIASES is not relevant to
NWDSModifyObject and is ignored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

NDS and Bindery Service Group

NDS: Functions 498

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSModifyDN, NWDSRemoveObject, NWDSModifyRDN

NDS and Bindery Service Group

NDS: Functions 499

NWDSModifyRDN

Changes the least significant name of an NDS object or its alias in the NDS
tree

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSModifyRDN (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnstr8 newDN,
 nbool8 deleteOldRDN);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSModifyRDN
 (context : NWDSContextHandle;
 objectName : pnstr8;
 newDN : pnstr8;
 deleteOldRDN : nbool8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the object's current name.

newDN

(IN) Points to the object's new name.

deleteOldRDN

(IN) Specifies whether to discard the old RDN. If FALSE, the old RDN
is retained as an additional attribute value.

NDS and Bindery Service Group

NDS: Functions 500

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSModifyRDN does not move an object to a new location in the
NDS tree.

NWDSModifyRDN only changes the least significant (left-most) name in
a leaf object's distinguished name. It does not change an object's more
significant names, since changing those names changes the location of the
object in the NDS tree. For example, if the object's name is

CN=Hector.OU=Graphics.O=WimpleMakers

you can change the common name "CN=Hector" to "CN=Duke" since it is
a leaf object. However, you cannot change the "OU=Graphics" to
"OU=Marketing" since that would change the location of the object
(Hector) within the NDS tree. (To move an object call
NWDSMoveObject.)

You cannot change the name of an object that is not a leaf node. For
example, in the above case you cannot change the name of

OU=Graphics.O=WimpleMakers

to

OU=Presentation Graphics.O=WimpleMakers

because Graphics is not a leaf node; it contains the subordinate object

NDS and Bindery Service Group

NDS: Functions 501

because Graphics is not a leaf node; it contains the subordinate object
named Hector.

objectName identifies the object whose name is to be modified. Aliases in
the name are not dereferenced.

newDN specifies the new name of the object. If an attribute value in the
new DN does not already exist in the object, it is added. If it cannot be
added, an error is returned.

If deleteOldRDN is TRUE, all attribute values in the old DN that are not in
the new DN are deleted. If FALSE, old values remain in the object (but
not as a part of the DN). deleteOldRDN must be TRUE where a
single-value attribute in the DN has its value changed by
NWDSModifyRDN.

If NWDSModifyRDN removes the last attribute value of an attribute
while identifying a new attribute for the DN, the old attribute is deleted.

Aliases are never dereferenced by NWDSModifyRDN. The context flag
associated with DCV_DEREF_ALIASES is not relevant to
NWDSModifyRDN and is ignored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSModifyDN, NWDSModifyObject, NWDSGetContext,
NWDSSetContext

NDS and Bindery Service Group

NDS: Functions 502

NWDSMoveObject

Moves an NDS object from one container to another and/or renames the
object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSMoveObject (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnstr8 destParentDN,
 pnstr8 destRDN);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSMoveObject
 (context : NWDSContextHandle;
 objectName : pnstr8;
 destParentDN : pnstr8;
 destRDN : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object to be moved.

destParentDN

(IN) Points to the name of the object's new parent.

destRDN

(IN) Points to the object's new RDN.

NDS and Bindery Service Group

NDS: Functions 503

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSMoveObject can move an object only if it is a leaf object (meaning
it does not have any subordinate objects associated with it). However, it
may be either an object or its alias.

The new RDN (such as "Hector") may be the same as the original object's
RDN or it may be different.

If you are going to rename the object but not move it, you should call
NWDSModifyRDN instead of NWDSMoveObject.

objectName identifies the object whose DN is to be modified. Aliases in the
name will not be dereferenced. Aliases are never dereferenced by
NWDSMoveObject. The setting of the context flag associated with
DCV_DEREF_ALIASES is not relevant to NWDSMoveObject and is
ignored.

destParentDN identifies the name of the parent object the moved object is
to be directly subordinate to. The parent object must already exist in the
NDS tree.

destRDN specifies the new RDN of the object being moved.

If Hector is represented in the NDS tree as

CN=Hector.OU=Graphics.O=WimpleMakers

and you want to move Hector to Marketing, for objectName pass in

NDS and Bindery Service Group

NDS: Functions 504

and you want to move Hector to Marketing, for objectName pass in

CN=Hector.OU=Graphics.O=WimpleMakers

for destParentDN pass in

OU=Marketing.O=WimpleMakers

and for destRDN pass in

CN=Hector

On successful completion, Hector is moved to the new location in the
NDS tree, and his complete NDS name becomes

CN=Hector.OU=Marketing.O=WimpleMakers

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSModifyDN, NWDSSetContext, NWDSGetContext

NDS and Bindery Service Group

NDS: Functions 505

NWDSOpenConnToNDSServer

Locates a connection to a specific server

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsconn.h>

NWDSCCODE N_API NWDSOpenConnToNDSServer (
 NWDSContextHandle context,
 pnstr8 serverName,
 pNWCONN_HANDLE connHandle);

Pascal Syntax

#include <nwdsconn.inc>

Function NWDSOpenConnToNDSServer
 (context : NWDSContextHandle;
 serverName : pnstr8;
 Var connHandle : NWCONN_HANDLE
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

serverName

(IN) Points to the server to receive the request.

connHandle

(OUT) Points to the connection handle.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NDS and Bindery Service Group

NDS: Functions 506

NWDSOpenConnToNDSServer allows you to locate a connection to a
specific server that is specified by an NDS style name. The serverName is
resolved using NDS and a connection is established, or, if the workstation
already has a connection, the connection handle is returned.

NCP Calls

None

See Also

NWDSAuthenticateConn, NWDSOpenMonitoredConn

NDS and Bindery Service Group

NDS: Functions 507

NWDSOpenMonitoredConn

Opens a connection handle to a monitored connection

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsconn.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSOpenMonitoredConn (
 NWDSContextHandle context,
 pNWCONN_HANDLE connHandle);

Pascal Syntax

#include <nwdsconn.inc>

Function NWDSOpenMonitoredConn
 (context : NWDSContextHandle;
 Var connHandle : NWCONN_HANDLE
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

connHandle

(OUT) Points to the connection handle.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

A monitored connection is set only if NWDSLogin has been called. For
multiple tree support, the tree name specified in the context handle is
used to specify which monitored connection to retrieve. The user is
responsible for closing the connection handle.

NDS and Bindery Service Group

NDS: Functions 508

If the treename is not set in the context, the preferred tree will be used.
For requesters that do not support multiple trees, if the treename is
specified (not -NULL string) and if the treename is different than the
preferred tree, an error will be returned.

NCP Calls

None

See Also

NWDSGetMonitoredConnRef, NWDSOpenConnToNDSServer

NDS and Bindery Service Group

NDS: Functions 509

NWDSOpenStream

Begins access to an attribute of type SYN_STREAM

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSOpenStream (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnstr8 attrName,
 nflag32 flags,
 NWFILE_HANDLE N_FAR fileHandle);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSOpenStream
 (context : NWDSContextHandle;
 objectName : pnstr8;
 attrName : pnstr8;
 flags : nflag32;
 Var fileHandle : NWFILE_HANDLE
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object having the attribute that is to be
opened.

attrName

(IN) Points to the attribute name whose value is being read.

flags

(IN) Specifies the mode in which the stream is to be opened:

NDS and Bindery Service Group

NDS: Functions 510

0x00000001L DS_READ_STREAM

0x00000002L DS_WRITE_STREAM

fileHandle

(OUT) Points to the file handle appropriate for the platform from
which the API is being called.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

Before using a SYN_STREAM attribute for the first time, initialize the
attribute with a NULL value. This can be done by calling
NWDSPutAttrVal. If the attribute is not initialized, NWDSOpenStream
will return ERR_NO_SUCH_VALUE.

All attributes whose syntax is SYN_STREAM must be accessed by first
calling NWDSOpenStream to retrieve a file handle to be used for
accessing the attribute's value. The returned handle is a file handle that is
appropriate for the platform on which the application is running. This
file handle can be used to access the attribute value through the
platform's standard file I/O functions.

Close the file handle by calling the platform's file close function.

You must use the file I/O functions that are appropriate for the platform
on which the application is running. For DOS, call read, write, close, and
seek. For Windows, call _lread, _lwrite, _lclose, and _llseek.

NDS and Bindery Service Group

NDS: Functions 511

Attribute values that are of syntax SYN_STREAM are not accessed by
NWDSGetAttrVal. When reading the attributes of an object that has a
stream attribute (such as Login Script), NWDSGetAttrVal returns a
zero-length octet string for the value of the stream attribute.

NOTE: For NLM applications, if the handle returned by
NWDSOpenStream is to be used by fdopen, NWDSOpenStream must
be called with O_TEXT ORed in with the other values in flags.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

NDS and Bindery Service Group

NDS: Functions 512

NWDSPartitionReceiveAllUpdates

Changes the state of the partition so all servers holding a partition replica
will send entire partition information to the original partition

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.01, 4.02, 4.1, 4.11

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdspart.h>

NWDSCCODE N_API NWDSPartitionReceiveAllUpdates (
 NWDSContextHandle context,
 pnstr8 partitionRoot,
 pnstr8 serverName);

Pascal Syntax

#include <nwdspart.inc>

Function NWDSPartitionReceiveAllUpdates
 (context : NWDSContextHandle;
 partitionRoot : pnstr8;
 serverName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

partitionRoot

(IN) Points to the name root object name for the partition.

serverName

(IN) Points to the server name where the partition is located.

Return Values

0x0000 SUCCESSFUL

negative Negative values indicate errors. See NDS Values (-001 to

NDS and Bindery Service Group

NDS: Functions 513

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSPartitionReceiveAllUpdates changes the state of the specified
partition to that of a new partition. This results in all servers holding a
replica of this partition sending their entire partition information, not just
changes, to the partition on the target server.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSPartitionSendAllUpdates

NDS and Bindery Service Group

NDS: Functions 514

NWDSPartitionSendAllUpdates

Tells the specified partition to send full updates to any server holding a
replica of the partition

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.01, 4.02, 4.1, 4.11

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdspart.h>

NWDSCCODE N_API NWDSPartitionSendAllUpdates (
 NWDSContextHandle context,
 pnstr8 partitionRoot,
 pnstr8 serverName);

Pascal Syntax

#include <nwdspart.inc>

Function NWDSPartitionSendAllUpdates
 (context : NWDSContextHandle;
 partitionRoot : pnstr8;
 serverName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

partitionRoot

(IN) Points to the name root object name for the partition.

serverName

(IN) Points to the server name where the partition is located.

Return Values

0x0000 SUCCESSFUL

negative Negative values indicate errors. See NDS Values (-001 to

NDS and Bindery Service Group

NDS: Functions 515

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSPartitionReceiveAllUpdates

NDS and Bindery Service Group

NDS: Functions 516

NWDSPutAttrName

Stores an attribute name in a request buffer to be used by a NDS function

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSPutAttrName (
 NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 attrName);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSPutAttrName
 (context : NWDSContextHandle;
 buf : pBuf_T;
 attrName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the request buffer in which to store the attribute name.

attrName

(IN) Points to the attribute name to store in the request buffer.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 517

Remarks

The maximum size of the attribute name is
(MAX_DN_CHARS)+1)*sizeof(character size) where character size is 1
for single-byte characters, and 2 for double-byte characters (Unicode is
double-byte). One character is used for NULL termination.

NCP Calls

None

See Also

NWDSAddObject, NWDSAddReplica, NWDSCompare,
NWDSPutAttrVal, NWDSRead, NWDSReadAttrDef, NWDSSearch,
NWDSSplitPartition

NDS and Bindery Service Group

NDS: Functions 518

NWDSPutAttrNameAndVal

Stores an attribute name and value in a request buffer to be used by a NDS
function

Local Servers: nonblocking

Remote Servers: nonblocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSPutAttrNameAndVal (
 NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 attrName,
 nuint32 syntaxID,
 nptr attrVal);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSPutAttrNameAndVal (
 context : NWDSContextHandle;
 buf : pBuf_T;
 attrName : pnstr8;
 syntaxID : nuint32;
 attrVal : nptr
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the request buffer in which to store the attribute name.

attrName

(IN) Points to the attribute name to store in the request buffer.

syntaxID

(IN) Specifies the data type of the attribute value.

NDS and Bindery Service Group

NDS: Functions 519

attrVal

(IN) Points to the attribute value to be stored in the request buffer.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSPutAttrNameAndVal combines the functionality of
NWDSPutAttrName and NWDSPutAttrVal and adds error checking so
the buffer is always valid.

NWDSPutAttrNameAndVal checks the return values of
NWDSPutAttrName and NWDSPutAttrVal. If either function fails
because the buffer was too small, NWDSPutAttrNameAndVal will not
modify the buffer. Call NWDSAddObject or NWDSModifyObject to
modify the NDS object.

The maximum size of the attribute name is
(MAX_DN_CHARS)+1)*sizeof(character size) where character size is 1
for single-byte characters, and 2 for double-byte characters (Unicode is
double-byte). One character is used for NULL termination.

buf points to a Buf_T, which is allocated by NWDSAllocBuf and
initialized by NWDSInitBuf.

syntaxID tells NWDSPutAttrNameAndVal what method to use for
converting the attribute value to a machine-transparent form when
storing the value in the buffer. Syntax IDs (such as SYN_PATH) are
enumerated in NWDSDEFS.H. Syntaxes are described in NDS Attribute
Syntax Definitions.

attrVal points to the attribute value to be stored in the request buffer. The
type of data pointed to by attrVal depends on the indicated attribute
syntax. See NDS Attribute Syntax Definitions to determine the data type
associated with an attribute.

NCP Calls

None

See Also

NWDSAddObject, NWDSAddReplica, NWDSCompare,

NDS and Bindery Service Group

NDS: Functions 520

NWDSModifyObject, NWDSPutAttrName, NWDSPutAttrVal,
NWDSRead, NWDSReadAttrDef, NWDSSearch, NWDSSplitPartition

NDS and Bindery Service Group

NDS: Functions 521

NWDSPutAttrVal

Stores an attribute value in a request buffer to be used by a NDS function

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSPutAttrVal (
 NWDSContextHandle context,
 pBuf_T buf,
 nuint32 syntaxID,
 nptr attrVal);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSPutAttrVal
 (context : NWDSContextHandle;
 buf : pBuf_T;
 syntaxID : nuint32;
 attrVal : nptr
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the request buffer being prepared.

syntaxID

(IN) Specifies the data type of the attribute value.

attrVal

(IN) Points to the attribute value to be stored in the request buffer.

Return Values

NDS and Bindery Service Group

NDS: Functions 522

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

buf points to a Buf_T, which is allocated by NWDSAllocBuf and
initialized by NWDSInitBuf.

The name of the attribute to which the value belongs is specified
previously by calling either NWDSPutChange or NWDSPutAttrName
(depending on the nature of the operation).

syntaxID tells NWDSPutAttrVal what method to use for converting the
attribute value to a machine-transparent form when storing the value in
the buffer. Syntax IDs (such as SYN_PATH) are enumerated in
NWDSDEFS.H. Syntaxes are described in NDS Attribute Syntax
Definitions.

attrVal points to the attribute value to be stored in the request buffer. The
type of data pointed to by attrVal depends on the indicated attribute
syntax. See NDS Attribute Syntax Definitions to determine the data type
associated with an attribute.

NCP Calls

None

See Also

NWDSAddObject, NWDSAddReplica, NWDSCompare,
NWDSModifyObject, NWDSPutAttrName, NWDSPutChange,
NWDSSplitPartition

NDS and Bindery Service Group

NDS: Functions 523

NWDSPutChange

Stores a change record in a request buffer to be used by
NWDSModifyObject

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSPutChange (
 NWDSContextHandle context,
 pBuf_T buf,
 nuint32 changeType,
 pnstr8 attrName);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSPutChange
 (context : NWDSContextHandle;
 buf : pBuf_T;
 changeType : nuint32;
 attrName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the request buffer where the request will be stored.

changeType

(IN) Specifies the modification type to be performed.

attrName

(IN) Points to the attribute name to be changed.

Return Values

NDS and Bindery Service Group

NDS: Functions 524

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

A change record includes the name of the attribute and the type of
change to be performed.

changeType indicates the type of modification to be performed on an
object. The following types of changes are supported:

0 #0
0

DS_ADD_ATTRIBUTE: New attribute to be added to the
object (attempting to add an already-existing attribute results
in an error)

1 #0
1

DS_REMOVE_ATTRIBUTE: Attribute to be removed from the
object (attempting to remove a nonexisting attribute results in
an error and removing an attribute is not allowed if the
attribute is present in the RDN)

2 #0
2

DS_ADD_VALUE: Values to be added to an attribute
(attempting to add an already-existing value or to add a value
to a nonexistent attribute results in an error)

3 #0
3

DS_REMOVE_VALUE: Values to be removed from an
attribute (an error results if values not in the attribute and
removing values is not allowed if any of the values are present
in the RDN)

4 #0
4

DS_ADDITIONAL_VALUE: Add an additional value to a
multivalued attribute

5 #0
5

DS_OVERWRITE_VALUE: Modify an attribute value without
needing to remove the old value first and then add the new
value

6 #0
6

DS_CLEAR_ATTRIBUTE: Delete an attribute without
checking to see if the attribute exists

7 #0
7

DS_CLEAR_VALUE: Clear an attribute value without
checking to see if the value exists

If an attempt is made to modify the Object Class attribute, an error is
returned.

A value can be modified by placing a combination of
DS_REMOVE_VALUE and DS_ADD_VALUE change records in the
same request buffer. This allows the operations to be completed with a
single call to NWDSModifyObject.

NDS and Bindery Service Group

NDS: Functions 525

NCP Calls

None

See Also

NWDSPutAttrVal, NWDSModifyObject

NDS and Bindery Service Group

NDS: Functions 526

NWDSPutChangeAndVal

Stores a change record and attribute value in a request buffer to be used by
NWDSModifyObject

Local Servers: nonblocking

Remote Servers: nonblocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSPutChangeAndVal (
 NWDSContextHandle context,
 pBuf_T buf,
 nuint32 changeType,
 pnstr8 attrName,
 nuint32 syntaxID,
 nptr attrVal);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSPutChangeAndVal (
 context : NWDSContextHandle;
 buf : pBuf_T;
 changeType : nuint32;
 attrName : pnstr8;
 syntaxID : nuint32;
 attrVal : nptr
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the request buffer where the request will be stored.

changeType

(IN) Specifies the modification type to be performed.

NDS and Bindery Service Group

NDS: Functions 527

attrName

(IN) Points to the attribute name to be changed.

syntaxID

(IN) Specifies the data type of the attribute value.

attrVal

(IN) Points to the attribute value to be stored in the request buffer.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSPutChangeAndVal combines the functionality of
NWDSPutChange and NWDSPutAttrVal and adds error checking so the
buffer is always valid.

NWDSPutChangeAndVal checks the return values of
NWDSPutChange and NWDSPutAttrVal. If either function fails because
the buffer was too small, NWDSPutChangeAndVal will not modify the
buffer. Call NWDSModifyObject to modify the NDS object.

A change record includes the name of the attribute and the type of
change to be performed.

changeType indicates the type of modification to be performed on an
object. The following types of changes are supported:

0 #0
0

DS_ADD_ATTRIBUTE: New attribute to be added to the
object (attempting to add an already-existing attribute results
in an error)

1 #0
1

DS_REMOVE_ATTRIBUTE: Attribute to be removed from the
object (attempting to remove a nonexisting attribute results in
an error and removing an attribute is not allowed if the
attribute is present in the RDN)

2 #0
2

DS_ADD_VALUE: Values to be added to an attribute
(attempting to add an already-existing value or to add a value
to a nonexistent attribute results in an error)

3 #0
3

DS_REMOVE_VALUE: Values to be removed from an
attribute (an error results if values not in the attribute and
removing values is not allowed if any of the values are present
in the RDN)

NDS and Bindery Service Group

NDS: Functions 528

4 #0
4

DS_ADDITIONAL_VALUE: Add an additional value to a
multivalued attribute

5 #0
5

DS_OVERWRITE_VALUE: Modify an attribute value without
needing to remove the old value first and then add the new
value

6 #0
6

DS_CLEAR_ATTRIBUTE: Delete an attribute without
checking to see if the attribute exists

7 #0
7

DS_CLEAR_VALUE: Clear an attribute value without
checking to see if the value exists

If an attempt is made to modify the Object Class attribute, an error is
returned.

A value can be modified by placing a combination of
DS_REMOVE_VALUE and DS_ADD_VALUE change records in the
same request buffer. This allows the operations to be completed with a
single call to NWDSModifyObject.

buf points to a Buf_T, which is allocated by NWDSAllocBuf and
initialized by NWDSInitBuf.

syntaxID tells NWDSPutAttrVal what method to use for converting the
attribute value to a machine-transparent form when storing the value in
the buffer. Syntax IDs (such as SYN_PATH) are enumerated in
NWDSDEFS.H. Syntaxes are described in NDS Attribute Syntax
Definitions.

attrVal points to the attribute value to be stored in the request buffer. The
type of data pointed to by attrVal depends on the indicated attribute
syntax. See NDS Attribute Syntax Definitions to determine the data type
associated with an attribute.

NCP Calls

None

See Also

NWDSPutAttrVal, NWDSPutChange, NWDSModifyObject

NDS and Bindery Service Group

NDS: Functions 529

NWDSPutClassItem

Stores a class name or attribute name in a request buffer to be used by a
NDS Schema function

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSPutClassItem (
 NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 itemName);

Pascal Syntax

#include <nwdsbuft.inc>

Function NWDSPutClassItem
 (context : NWDSContextHandle;
 buf : pBuf_T;
 itemName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the request buffer where the item will be stored.

itemName

(IN) Points to the class name or attribute name to be stored in the
request buffer.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 530

Remarks

Class items are added to one of five class-definition item lists. The first
two lists contain the names of classes; the remaining lists contain the
names of attributes.

These class-definition item lists must be stored in the request buffer in the
following order:

1. Super Class Names

2. Containment Class Names

3. Naming Attribute Names

4. Mandatory Attribute Names

5. Optional Attribute Names

NWDSPutClassItem is used in conjunction with NWDSBeginClassItem
to add items into the list. NWDSBeginClassItem is called to move to the
next class-definition item list.

The first time NWDSBeginClassItem is called, items added with
NWDSPutClassItem will be placed in the Super Class Names list.

The second time NWDSBeginClassItem is called, items added with
NWDSPutClassItem will be placed in the Containment Class Names list.

Items are added to the other lists with subsequent calls to
NWDSBeginClassItem and NWDSPutClassItem.

NWDSPutClassItem adds one item each time it is called. To store
multiple items in a list, call NWDSPutClassItem for each item.

See Creating a Class Definition for the complete steps to fill out a buffer
to be used for defining a new class.

NCP Calls

None

See Also

NWDSReadClassDef, NWDSPutClassName, NWDSPutSyntaxName

NDS and Bindery Service Group

NDS: Functions 531

NWDSPutClassName

Stores a class name in a request buffer to be used by a NDS function

NetWare Server: 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSPutClassName (
 NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 itemName);

Parameters

context

(IN) Indicates the NDS context for the request.

buf

(IN) Points to the request buffer being prepared.

itemName

(IN) Points to the class name to be stored in the request buffer.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSPutClassName is a macro that calls NWDSPutClassItem. The
NWDSPutClassName function makes source code more descriptive by
having the function name identify what type of class item is being stored
in the request buffer.

Class items are added to one of five class-definition item lists. These
class-definition item lists are stored in the buffer in the following order:

NDS and Bindery Service Group

NDS: Functions 532

1. Super Class Names

2. Containment Class Names

3. Naming Attribute Names

4. Mandatory Attribute Names

5. Optional Attribute Names

The first two lists contain object class names; the remaining lists contain
attribute names. NWDSPutClassName is used to place class names into
the Super Class Names and the Containment Class Names lists.
NWDSPutClassItem is used for the other lists.

NCP Calls

None

See Also

NWDSReadClassDef, NWDSPutClassItem

NDS and Bindery Service Group

NDS: Functions 533

NWDSPutFilter

Prepares a search filter expression tree in a request buffer so it can be used
in a call to NWDSSearch

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsfilt.h>

NWDSCCODE N_API NWDSPutFilter (
 NWDSContextHandle context,
 pBuf_T buf,
 pFilter_Cursor_T cur,
 void (N_FAR N_CDECL *freeVal)(nuint32 syntax, nptr val);

Pascal Syntax

#include <nwdsfilt.inc>

Function NWDSPutFilter
 (context : NWDSContextHandle;
 buf : pBuf_T;
 cur : pFilter_Cursor_T;
 freeVal : FreeValProc
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the request buffer being prepared.

cur

(IN) Points to a cursor to the filter expression tree being stored in the
buffer.

freeVal

(IN) Points to the function used to free the attribute values.

Return Values

NDS and Bindery Service Group

NDS: Functions 534

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

buf points to a Buf_T, which is allocated by NWDSAllocBuf and
initialized for a DSV_SEARCH operation by NWDSInitBuf.

NWDSPutFilter frees the area allocated to the expression tree, including
the area referenced by cur. If the application needs to retain the
expression tree, the application should save the tree in some form before
calling NWDSPutFilter.

NOTE: NWDSPutFilter always frees the memory allocated to the
expression tree, even if NWDSPutFilter returns an error. Do not call
NWDSFreeFilter to free the filter if NWDSPutFilter returns an error.
Doing so will corrupt memory since the filter will already have been
freed.

freeVal points to a function freeing the attribute values. The function is
passed the syntax attribute ID and the address of the area to free. freeVal
can be NULL, in which case no attribute values are freed.

NCP Calls

None

See Also

NWDSAddFilterToken, NWDSAllocFilter, NWDSDelFilterToken,
NWDSFreeFilter

NDS and Bindery Service Group

NDS: Functions 535

NWDSPutSyntaxName

Stores a syntax name in a request buffer to be used by a NDS function

NetWare Server: 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsbuft.h>

NWDSCCODE N_API NWDSPutSyntaxName (
 NWDSContextHandle context,
 pBuf_T buf,
 pnstr8 syntaxName);

Parameters

context

(IN) Specifies the NDS context for the request.

buf

(IN) Points to the request buffer being prepared.

syntaxName

(IN) Points to the syntax name to be stored in the request buffer.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSPutSyntaxName is a macro which calls NWDSPutClassItem.

buf points to Buf_T, which is allocated by NWDSAllocBuf and initialized
by NWDSInitBuf.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 536

None

See Also

NWDSReadClassDef, NWDSPutClassItem

NDS and Bindery Service Group

NDS: Functions 537

NWDSRead

Reads values from one or more of the specified object's attributes

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSRead (
 NWDSContextHandle context,
 pnstr8 object,
 nuint32 infoType,
 nbool8 allAttrs,
 pBuf_T attrNames,
 pnint32 iterationHandle,
 pBuf_T objectInfo);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSRead
 (context : NWDSContextHandle;
 objectName : pnstr8;
 infoType : nuint32;
 allAttrs : nbool8;
 attrNames : pBuf_T;
 iterationHandle : pnint32;
 objectInfo : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

object

(IN) Points to the name of the object whose information is to be read.

infoType

(IN) Specifies the type of information desired:

NDS and Bindery Service Group

NDS: Functions 538

0 #0
0

DS_ATTRIBUTE_NAMES

1 #0
1

DS_ATTRIBUTE_VALUES

2 #0
2

DS_EFFECTIVE_PRIVILEGES

allAttrs

(IN) Specifies the scope of the request:

TRUE Information concerning all attributes is requested

FALSE Information concerning only attributes named in the
attrNames parameter is requested

attrNames

(IN) Points to a buffer containing the names of the object's attributes
for which information is to be returned.

iterationHandle

 (IN/OUT) Points to information needed to resume subsequent
iterations of NWDSRead.

objectInfo

(OUT) Points to a buffer receiving the requested attribute names
and/or values.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

infoType, allAttrs, and attrNames indicate what attribute information is
requested.

If allAttrs is TRUE, information about all attributes associated with the
object is requested and attrNames is ignored (in which case, pass in a
NULL for attrNames). If allAttrs is FALSE, only the attributes specified by
the request buffer pointed to by attrNames are requested.

If allAttrs is FALSE and attrNames is NULL, no attribute information is
returned; and infoType is not meaningful. In this case, the return value of
NWDSRead can determine whether the specified object exists (verifying

NDS and Bindery Service Group

NDS: Functions 539

the object's distinguished name), or whether access to the object is
allowed.

The request buffer pointed to by attrNames explicitly specifies the
attribute to be returned. If allAttrs is TRUE, attrNames can be NULL (as
mentioned above).

The result buffer pointed to by objectInfo received the requested
information. This result buffer either contains a list of attribute names or a
sequence of attribute-name and attribute-value sets. The type of
information returned depends on infoType (as mentioned above).

iterationHandle controls retrieval of list results larger than the result buffer
pointed to by attrNames.

Before the initial call to NWDSListAttrsEffectiveRights, set the contents
of the iteration handle pointed to by iterationHandle to
NO_MORE_ITERATIONS.

If the result buffer holds the complete results when NWDSRead returns
from its initial call, the location pointed to by iterationHandle is set to
NO_MORE_ITERATIONS. If the iteration handle is not set to
NO_MORE_ITERATIONS, use the iteration handle for subsequent calls
to NWDSRead to obtain further portions of the results. When the results
are completely retrieved, the contents of the iteration handle will be set to
NO_MORE_ITERATIONS.

NOTE: On large networks, iterative processes, like NWDSRead, might
take a lot of time to complete. For example, listing all of the User objects
on a corporate network might be too time consuming. These processes
can be interrupted or aborted using NWDSCloseIteration.

Developers should use NWDSCloseIteration to allow users of their
applications to abort an iterative process that is taking too long to
complete.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSCloseIteration, NWDSReadObjectInfo

NDS and Bindery Service Group

NDS: Functions 540

NWDSReadAttrDef

Retrieves information about NDS Schema attribute definitions

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdssch.h>

NWDSCCODE N_API NWDSReadAttrDef (
 NWDSContextHandle context,
 nuint32 infoType,
 nbool8 allAttrs,
 pBuf_T attrNames,
 pnint32 iterationHandle,
 pBuf_T attrDefs);

Pascal Syntax

#include <nwdssch.inc>

Function NWDSReadAttrDef
 (context : NWDSContextHandle;
 infoType : nuint32;
 allAttrs : nbool8;
 attrNames : pBuf_T;
 iterationHandle : pnint32;
 attrDefs : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

infoType

(IN) Specifies the information type desired (names only, or names and
definitions).

allAttrs

(IN) Specifies whether information for all attributes or for selected
attributes should be returned.

NDS and Bindery Service Group

NDS: Functions 541

attrNames

(IN) Points to a request buffer containing the attribute names whose
definitions are to be returned.

iterationHandle

 (IN/OUT) Points to information needed to resume subsequent
iterations of NWDSReadAttrDef.

attrDefs

(OUT) Points to a result buffer that receives the requested attribute
names and/or definitions.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

infoType, allAttrs, and attrNames indicate what NDS Schema attribute
information is requested.

infoType specifies whether both attribute names and attribute definitions
will be retrieved, or only attribute names. The types of choices are the
following:

0 DS_ATTR_DEF_NAMES (attribute names only)

1 DS_ATTR_DEFS (attribute names and definitions)

If allAttrs is TRUE, information about all attributes in the NDS Schema is
requested. In this case, attrNames is ignored and can be set to NULL. If

NDS and Bindery Service Group

NDS: Functions 542

allAttrs is FALSE, attrNames must point to a request buffer containing the
attribute names whose information is to be retrieved.

attrNames points to a request buffer containing the attribute names whose
information is to be returned.

iterationHandle controls retrieval of results that are larger than the result
buffer pointed to by attrDefs.

Before the initial call to NWDSReadAttrDef, set the contents of the
iteration handle pointed to by iterationHandle to
NO_MORE_ITERATIONS.

If, when NWDSReadAttrDef returns from its initial call and the result
buffer holds the complete results, the location pointed to by
iterationHandle is set to NO_MORE_ITERATIONS. If the iteration handle
is not set to NO_MORE_ITERATIONS, use the iteration handle for
subsequent calls to NWDSReadAttrDef in order to obtain further
portions of the results. When the results are completely retrieved, the
contents of the iteration handle will be set to NO_MORE_ITERATIONS.

NOTE: To end the Read operation before the complete results have
been retrieved, call NWDSCloseIteration with a value of
DSV_READ_ATTR_DEF to free memory and states associated with
NWDSReadAttrDef.

The level of granularity for partial results is an individual attribute
definition.

attrDefs points to a request buffer containing the requested attribute
information. This buffer either contains a list of attribute names, or a
sequence of attribute names and definitions depending upon the value of
infoType mentioned above.

Retrieve information about selected attribute definitions using the
following steps:

1. Allocate a request buffer by calling NWDSAllocBuf. (If you want
information about all attributes, you do not need a request buffer and
can skip steps 1 through 3.

2. Initialize the request buffer for a DSV_READ_ATTR_DEF operation by
calling NWDSInitBuf.

3. For each attribute whose information you want to retrieve, store the
attribute's name in the request buffer by calling NWDSPutAttrName.

4. Allocate a result buffer by calling NWDSAllocBuf. (This buffer does not
need to be initialized since it is a result buffer.)

5. Set the contents of the iteration handle to NO_MORE_ITERATIONS.

6. Call NWDSGetAttrDef with infoType set to DS_ATTR_DEF_NAMES to
retrieve names only, or with DS_ATRR_DEFS to retrieve names and

NDS and Bindery Service Group

NDS: Functions 543

attribute definitions. Set allAttrs to FALSE if you are using a request
buffer, or to TRUE if you are not using a request buffer.

7. Determine the number of attributes whose information is in the result
buffer by calling NWDSGetAttrCount.

8. For each attribute in the buffer, remove the attribute information by
calling NWDSGetAttrDef.

9. If the iteration handle is not set to NO_MORE_ITERATIONS, loop to
step 6 to retrieve additional attribute information. Otherwise, go to step
10.

10. Free the request buffer by calling NWDSFreeBuf.

11. Free the result buffer by calling NWDSFreeBuf.

See NWDSGetAttrDef to see the type of information returned in the
buffer.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSReadClassDef

NDS and Bindery Service Group

NDS: Functions 544

NWDSReadClassDef

Retrieves information about NDS Schema object class definitions

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdssch.h>

NWDSCCODE N_API NWDSReadClassDef (
 NWDSContextHandle context,
 nuint32 infoType,
 nbool8 allClasses,
 pBuf_T classNames,
 pnint32 iterationHandle,
 pBuf_T classDefs);

Pascal Syntax

#include <nwdssch.inc>

Function NWDSReadClassDef
 (context : NWDSContextHandle;
 infoType : nuint32;
 allClasses : nbool8;
 classNames : pBuf_T;
 iterationHandle : pnint32;
 classDefs : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

infoType

(IN) Specifies the information type desired (names only, or names and
definitions).

allClasses

(IN) Specifies whether information for every object class should be
returned.

NDS and Bindery Service Group

NDS: Functions 545

classNames

(IN) Points to a request buffer containing the names of the object
classes whose information is to be returned.

iterationHandle

 (IN/OUT) Points to information needed to resume subsequent
iterations of NWDSReadClassDef.

classDefs

(OUT) Points to a result buffer containing the requested object-class
names and/or definitions.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

infoType, allClasses, and classNames indicate the type of object-class
information requested.

infoType specifies whether both class name and class definitions are
requested. It also specifies whether to return information about class
definitions or expanded class-definitions. The valid values for infoType
are as follows:

0 DS_CLASS_DEF_NAMES returns class names only.

1 DS_CLASS_DEFS returns both class names and definitions.

2 DS_EXPANDED_CLASS_DEFS returns expanded class definitions.

3 DS_INFO_CLASS_DEFS returns class definitions only.

NDS and Bindery Service Group

NDS: Functions 546

If allClasses is TRUE, information about all classes in the NDS schema is
requested and classNames is ignored and can be set to NULL. If allClasses
is FALSE, only the class definitions specified in the request buffer
pointed to by classNames are requested.

classNames is a request buffer specifying the names of the object-classes
whose information you want to return. This can be set to NULL, as
mentioned in the previous paragraph.

iterationHandle controls retrieval of results larger than the result buffer
pointed to by classDefs.

Before the initial call to NWDSReadClassDef, set the contents of the
iteration handle pointed to by iterationHandle to
NO_MORE_ITERATIONS.

When NWDSReadClassDef returns from its initial call, if the result
buffer holds the complete results, the location pointed by iterationHandle
is set to NO_MORE_ITERATIONS. If the iteration handle is not set to
NO_MORE_ITERATIONS, use the iteration handle for subsequent calls
to NWDSReadClassDef to obtain further portions of the results. When
the results are completely retrieved, the contents of the iteration handle
will be set to NO_MORE_ITERATIONS.

NOTE: To end the Read operation before the complete results have
been retrieved, call NWDSCloseIteration with a value of
DSV_READ_CLASS_DEFS to free memory and states associated with
NWDSReadClassDef.

NOTE: The level of granularity for partial results is an individual class
definition. If the buffer is not large enough to hold an entire class
definition, ERR_INSUFFICIENT_BUFFER will be returned.

classDefs points to a result buffer containing the requested information.
This buffer contains either a list of class names, or a sequence of class
names and definitions, or a sequence of class definitions. The type of
information returned depends on infoType.

Take the following steps to retrieve information about object-class
definitions in the NDS Schema

1. Allocate a request buffer by calling NWDSAllocBuf. (If you are
retrieving information about all class definitions, you do not need a
request buffer and can skip steps 1 through 3.)

2. Initialize the request buffer for a DSV_READ_CLASS_DEF operation
by calling NWDSInitBuf.

3. For each object class you want to receive information about, store the
object-class name in the request buffer by calling NWDSPutClassName
.

4. Allocate a result buffer by calling NWDSAllocBuf. (It does not need to

NDS and Bindery Service Group

NDS: Functions 547

be initialized since it is a result buffer.)

5. Set the contents of the iteration handle to NO_MORE_ITERATIONS.

6. Retrieve the object-class information by calling NWDSReadClassDef.

7. Determine the number of object classes whose information is in the
result buffer by calling NWDSGetClassDefCount.

8. If you have chosen object names and definitions, retrieve each
object-class definition from the buffer by using the steps in the list
following this list.

9. If the iteration handle is not set to NO_MORE_ITERATIONS, loop to
step 6 to retrieve more information about object classes. Otherwise, go to
step 10.

10. Free the request buffer by calling NWDSFreeBuf.

11. Free the result buffer by calling NWDSFreeBuf.

For each object-class definition in the buffer, take the following steps to
remove the information:

1. Read the name (and other information) of the current object class whose
definition is in the buffer by calling NWDSGetClassDef. (If you called
NWDSReadClassDef with infoType being DS_INFO_CLASS_DEFS,
skip the rest of the following steps and call NWDSGetClassItem.
NWDSGetClassDef contains an extra parameter that is not used if the
infoType parameter is set to DS_INFO_CLASS_DEFS.)

2. Move to the result buffer's Super Class Names list and determine the
number of super-class names in the list by calling
NWDSGetClassItemCount. (Moving to the list and determining the
number of class names is accomplished with one call to
NWDSGetClassItemCount.

3. For each super-class name in the Super Class Names list, retrieve the
super-class name by calling NWDSGetClassItem.

4. Move to the result buffer's Containment Class Names list and
determine the number of containment-class names in the list by calling
NWDSGetClassItemCount.

5. For each containment class name in the Containment Class Names list,
retrieve the containment-class name by calling NWDSGetClassItem.

6. Move to the result buffer's Naming Attribute Names list and determine
the number of naming-attribute names in the list by calling
NWDSGetClassItemCount.

7. For each naming-attribute name in the Naming Attribute Names list,
retrieve the naming-attribute name by calling NWDSGetClassItem.

NDS and Bindery Service Group

NDS: Functions 548

8. Move to the result buffer's Mandatory Attribute Names list and
determine the number of mandatory-attribute names in the list by
calling NWDSGetClassItemCount.

9. For each mandatory-attribute name in the Mandatory Attribute Names
list, retrieve the naming attribute name by calling NWDSGetClassItem.

10. Move to the result buffer's Optional Attribute Names list and
determine the number of optional-attribute names in the list by calling
NWDSGetClassItemCount.

11. For each optional-attribute name in the Optional Attribute Names list,
retrieve the optional-attribute name by calling NWDSGetClassItem.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSReadAttrDef

NDS and Bindery Service Group

NDS: Functions 549

NWDSReadObjectDSIInfo

Returns DSI object information not stored in the attributes of an object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSReadObjectDSIInfo (
 NWDSContextHandle context,
 pnstr8 object,
 nuint32 infoLength,
 nptr objectInfo);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSReadObjectDSIInfo (
 context : NWDSContextHandle;
 object1 : pnstr8;
 infoLength : nuint32;
 objectInfo : nptr
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

object

(IN) Points to the name of the object for which information is to be
returned.

infoLength

(IN) Specifies the size of the objectInfo buffer.

objectInfo

(OUT) Points to the non-attribute information about the object.

NDS and Bindery Service Group

NDS: Functions 550

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

Object information can be useful to applications browsing the NDS tree.

If aliases are to be dereferenced (the context flag associated with
DCV_DEREF_ALIASES is set) and object passes an alias name for the
object, the name pointed to by infoLength is the dereferenced name of the
object.

The caller must allocate sufficient memory to contain the data elements
specified by the DSI Flags.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSGetDSIInfo, NWDSGetObjectNameAndInfo, NWDSRead,
NWDSReadObjectInfo

NDS and Bindery Service Group

NDS: Functions 551

NWDSReadObjectInfo

Returns object information not stored in the object's attributes

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSReadObjectInfo (
 NWDSContextHandle context,
 pnstr8 object,
 pnstr8 distinguishedName,
 pObject_Info_T objectInfo);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSReadObjectInfo
 (context : NWDSContextHandle;
 objectName : pnstr8;
 distinguishedName : pnstr8;
 objectInfo : pObject_Info_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

object

(IN) Points to the name of the object for which information is to be
returned.

distinguishedName

(OUT) Points to the object name.

objectInfo

(OUT) Points to the non-attribute information about the object.

NDS and Bindery Service Group

NDS: Functions 552

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

Object information can be useful to applications browsing the NDS tree.

See DSI Flags.

If aliases are to be dereferenced (the context flag associated with
DSV_DEREF_ALIASES is set) and object passes an alias name for the
object, the name pointed to by distinguishedName is the dereferenced
name of the object.

The caller must allocate memory to hold the distinguished name of the
object. The size of the memory is (MAX_DN_CHARS+1)*sizeof(character
size), where character size is 1 for single-byte characters, and 2 for
double-byte characters (Unicode is double byte). One character is used
for NULL termination.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSRead

NDS and Bindery Service Group

NDS: Functions 553

NWDSReadReferences

Searches all of the replicas on a particular server and returns any objects that
contain attributes that reference the specified object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSReadReferences (
 NWDSContextHandle context,
 pnstr8 serverName,
 pnstr8 objectName,
 nuint32 infoType,
 nbool8 allAttrs,
 pBuf_T attrNames,
 uint32 timeFilter,
 pnint32 iterationHandle,
 pBuf_T objectInfo);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSReadReferences
 (context : NWDSContextHandle;
 serverName : pnstr8;
 objectName : pnstr8;
 infoType : nuint32;
 allAttrs : nbool8;
 attrNames : pBuf_T;
 timeFilter : nuint32;
 iterationHandle : pnint32;
 objectInfo : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

NDS and Bindery Service Group

NDS: Functions 554

serverName

(IN) Points to the server name to read from.

objectName

(IN) Points to the object name whose information is to be read.

infoType

(IN) Specifies the type of information to be returned.

allAttrs

(IN) Specifies the scope of the request.

attrNames

(IN) Points to a request buffer containing the names of attributes
whose information is to be returned. This can be NULL.

timeFilter

(IN) Specifies the attribute modification time to be used as a filter. This
parameter must be specified and cannot be NULL.

iterationHandle

(IN/OUT) Points to information necessary to resume subsequent calls
to NWDSReadReferences. This should be initially set to
NO_MORE_ITERATIONS.

objectInfo

(OUT) Points to a result buffer containing the requested attribute
names or attribute names and values. This parameter can be NULL.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0xFE0D UNI_NO_OFFSET_DEFAULT

0xFE0F UNI_HANDLE_MISMATCH

0xFE10 UNI_HANDLE_BAD

0xFEB5 ERR_NULL_POINTER

0xFEBB ERR_INVALID_ATTR_SYNTAX

0xFEBD ERR_BUFFER_ZERO_LENGTH

0xFEBE ERR_INVALID_HANDLE

0xFEBF ERR_UNABLE_TO_MATCH

0xFED1 ERR_BAD_CONTEXT

0xFED3 ERR_NOT_ENOUGH_MEMORY

negative Negative values indicate errors. See NDS Values (-001 to

NDS and Bindery Service Group

NDS: Functions 555

value -699).

Remarks

infoType, allAttrs, and attrNames indicate what attribute information is
requested.

infoType specifies whether both attribute names and values are requested:

 0 DS_ATTRIBUTE_NAME defines attribute names only

 1 DS_ATTRIBUTE_VALUES defines both attribute names and values

If allAttrs is TRUE, information about all attributes associated with the
object is requested and attrNames is ignored (in which case, assign a
NULL pointer to attrNames). If allAttrs is FALSE, only the attributes
specified by the request buffer pointed to by attrNames are requested.

If allAttrs is FALSE and attrNames is NULL, no attribute information is
returned. infoType is not meaningful. In this case, the return value of
NWDSReadReferences can determine whether the specified object exists
(verifying the objects distinguished name), or whether access to the object
is allowed.

The request buffer pointed to by attrNames explicitly specifies the
attributes to be returned. For more information, see Preparing NDS
Output Buffers.

This result buffer either contains a list of attribute names or a sequence of
attribute name and value sets. The type of information returned depends
on infoType. For more information, see Retrieving Results from NDS
Output Buffers.

iterationHandle controls retrieval of search results larger than the result
buffer pointed to by objectInfo.

Before the initial call to NWDSReadReferences, set the contents of the
iteration handle pointed to by iterationHandle to
NO_MORE_ITERATIONS.

When NWDSReadReferences returns from its initial call, if the result
buffer holds the complete results, the location pointed to by
iterationHandle is set to NO_MORE_ITERATIONS. If the iteration handle
is not set to NO_MORE_ITERATIONS, use the iteration handle for
subsequent calls to NWDSReadReferences to obtain further portions of
the results. When the results are completely retrieved, iterationHandle will
be set to NO_MORE_ITERATIONS.

To end the Read operation before the complete results have been
retrieved, call NWDSCloseIteration with a value of
DSV_READ_REFERENCES to free memory and states associated with
the Read operation.

The level of granularity for partial results is an individual value of an

NDS and Bindery Service Group

NDS: Functions 556

The level of granularity for partial results is an individual value of an
attribute. If an attribute is multivalued and its values are split across two
or more NWDSReadReferences results, the attribute name is repeated in
each result.

The results of NWDSReadReferences are not ordered and might not be
returned in alphabetical order.

If allAttrs is set to DS_ATTRIBUTE_VALUES, specifying the Read
operation should return both attribute names and values, you cannot
remove only the names from the result buffer. You must remove the
information in the correct order of the attribute name first, then all of the
values associated with the attribute. Then remove the next attribute name
and its values. Otherwise, NWDSGetAttrName will return erroneous
information.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSReadObjectInfo

NDS and Bindery Service Group

NDS: Functions 557

NWDSReadSyntaxDef

Returns the syntax definition for a given NDS syntax identifier

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsmisc.h>

NWDSCCODE N_API NWDSReadSyntaxDef (
 NWDSContextHandle context,
 nuint32 syntaxID,
 pSyntax_Info_T syntaxDef);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWDSReadSyntaxDef
 (context : NWDSContextHandle;
 syntaxID : nuint32;
 syntaxDef : pSyntax_Info_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

syntaxID

(IN) Specifies the syntax identifier whose definition is to be returned.

syntaxDef

(OUT) Points to a Syntax_Info_T structure, which receives the syntax
definition.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 558

Remarks

syntaxID is an identifier (not a string) of a syntax. These identifiers (such
as SYN_TEL_NUMBER) are enumerated in NWDSDEFS.H.

This is a local function. Syntaxes are well known.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 559

NWDSReadSyntaxes

Enumerates syntax definitions or retrieves specific NDS Schema syntax
definitions

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsmisc.h>

NWDSCCODE N_API NWDSReadSyntaxes (
 NWDSContextHandle context,
 nuint32 infoType,
 nbool8 allSyntaxes,
 pBuf_T syntaxNames,
 pnint32 iterationHandle,
 pBuf_T syntaxDefs);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWDSReadSyntaxes
 (context : NWDSContextHandle;
 infoType : nuint32;
 allSyntaxes : nbool8;
 syntaxNames : pBuf_T;
 iterationHandle : pnint32;
 syntaxDefs : pBuf_T
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

infoType

(IN) Specifies the type of information desired (names only, or names
and syntax definitions).

allSyntaxes

(IN) Specifies the scope of the request (all or selected syntaxes).

syntaxNames

NDS and Bindery Service Group

NDS: Functions 560

(IN) Points to a request buffer containing the names of the syntaxes for
which information is to be returned.

iterationHandle

 (IN/OUT) Points to information needed to resume subsequent
iterations of NWDSReadSyntaxes.

syntaxDefs

(OUT) Points to a result buffer containing the requested syntax names
and/or definitions.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

infoType, allSyntaxes, and syntaxNames indicate what syntax information is
requested.

infoType specifies whether both syntax names and syntax values are
requested. The valid values for infoType are as follows:

0 DS_SYNTAX_NAMES returns syntax names only

1 DS_SYNTAX_DEFS returns syntax names and values

If allSyntaxes is TRUE, information about all syntaxes associated with the
object is requested and syntaxNames is ignored). If allSyntaxes is FALSE,
only the syntaxes specified by syntaxNames are requested.

If allSyntaxes is FALSE and syntaxNames is NULL, no syntax information
is returned. infoType is not meaningful.

syntaxNames is a request buffer containing the names of the specific
syntaxes whose information is to be returned. It is used to explicitly
specify the syntaxes to be returned.

iterationHandle controls the retrieval of results that are larger than the
result buffer pointed to by syntaxDefs.

Before the initial call to NWDSReadSyntaxes, set the contents of the
iteration handle pointed to by iterationHandle to
NO_MORE_ITERATIONS.

When NWDSReadSyntaxes returns from its initial call, if the result
buffer holds the complete results, the location pointed to by
iterationHandle is set to NO_MORE_ITERATIONS. If the iteration handle
is not set to NO_MORE_ITERATIONS, use the iteration handle for

NDS and Bindery Service Group

NDS: Functions 561

subsequent calls to NWDSReadSyntaxes to obtain further portions of the
results. When the results are completely retrieved, the contents of the
iteration handle will be set to NO_MORE_ITERATIONS.

NOTE: To end the Read operation before the complete results have
been retrieved, call NWDSCloseIteration with a value of
DSV_READ_SYNTAXES to free memory and states associated with
NWDSReadSyntaxes.

The level of granularity for partial results is an individual syntax value of
a value set. If a value set is split across two or more NWDSReadSyntaxes
results, the syntax name of the current value set is repeated in each result.

syntaxDefs points to a result buffer receiving the requested information.
This buffer contains either a list of syntax names or a sequence of syntax
name and value sets, depending upon the value of infoType.

Read results from the buffer by calling NWDSGetSyntaxCount and
NWDSGetSyntaxDef.

The results of NWDSReadSyntaxes are not ordered, meaning the
syntaxes might not be stored in the result buffer in alphabetical order.

For more information, see Retrieving Syntax Names and Definitions.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 562

NWDSReloadDS

Requests a replica to synchronize with a specific server

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsmisc.h>

NWDSCCODE N_API NWDSReloadDS (
 NWDSContextHandle context,
 pnstr8 serverName);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWDSReloadDS
 (context : NWDSContextHandle;
 serverName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

serverName

(IN) Specifies the server to send the request to.

Return Values

0x0000 SUCCESSFUL

nonzero
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSReloadDS requests the server to reload the DS.NLM.

NCP Calls

NDS and Bindery Service Group

NDS: Functions 563

None

NDS and Bindery Service Group

NDS: Functions 564

NWDSRemoveAllTypes

Removes all attribute types from a distinguished name

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsname.h>

NWDSCCODE N_API NWDSRemoveAllTypes (
 NWDSContextHandle context,
 pnstr8 name,
 pnstr8 typelessName);

Pascal Syntax

#include <nwdsname.inc>

Function NWDSRemoveAllTypes
 (context : NWDSContextHandle;
 name : pnstr8;
 typelessName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

name

(IN) Points to the object name.

typelessName

(OUT) Points to the object name with the attribute types removed.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 565

Remarks

NWDSRemoveAllTypes takes the typed name

CN=Bob.OU=Marketing.O=WimpleMakers

and returns the untyped name

Bob.Marketing.WimpleMakers

Removal of types is not done relative to the current name context.
Therefore, it is not guaranteed that NWDSCanonicalizeName can
restore the correct types.

The caller must allocate the memory pointed to by typelessName. The size
of the memory is (MAX_DN_CHARS+1)*sizeof(character size), where
character size is 1 for single-byte characters, and 2 for double-byte
characters (Unicode is double byte). One character is used for NULL
termination.

If the name is already untyped, the same untyped name will be returned.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 566

NWDSRemoveAttrDef

Deletes an attribute definition from the NDS Schema

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdssch.h>

NWDSCCODE N_API NWDSRemoveAttrDef (
 NWDSContextHandle context,
 pnstr8 attrName);

Pascal Syntax

#include <nwdssch.inc>

Function NWDSRemoveAttrDef
 (context : NWDSContextHandle;
 attrName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

attrName

(IN) Points to the name of the attribute definition to be removed.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

NDS and Bindery Service Group

NDS: Functions 567

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

An attribute definition can be deleted only if it is not in use in any object
class definition, and only if the attribute definition is not flagged as used
by the name server.

attrName identifies the attribute definition to be deleted from the Schema.

NOTE: Clients cannot subtract from the standard set of attribute
definitions defined by the NDS Base Schema (these attributes are
flagged nonremovable). Clients can, however, add and remove
non-standard definitions (if not in use).

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSRemoveClassDef

NDS and Bindery Service Group

NDS: Functions 568

NWDSRemoveClassDef

Deletes a class definition from the NDS Schema

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdssch.h>

NWDSCCODE N_API NWDSRemoveClassDef (
 NWDSContextHandle context,
 pnstr8 className);

Pascal Syntax

#include <nwdssch.inc>

Function NWDSRemoveClassDef
 (context : NWDSContextHandle;
 className : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

className

(IN) Points to the class name to be removed.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NDS and Bindery Service Group

NDS: Functions 569

Calling NWDSRemoveClassDef is not allowed if the class is referenced
by any other class, or if objects of this class exist in NDS.

className identifies the class whose definition is to be removed.

NOTE: Clients cannot subtract from the standard set of class
definitions defined by the NDS Base Schema (these are flagged
nonremovable). Clients can, however, add and remove non-standard
definitions (if not in use).

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSRemoveAttrDef

NDS and Bindery Service Group

NDS: Functions 570

NWDSRemoveObject

Removes a leaf object (either an object or an alias) from the NDS tree

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSRemoveObject (
 NWDSContextHandle context,
 pnstr8 object);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSRemoveObject
 (context : NWDSContextHandle;
 objectName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

object

(IN) Points to the name of the object to be removed.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

NDS and Bindery Service Group

NDS: Functions 571

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

Aliases are never dereferenced by NWDSRemoveObject. The setting of
the context flag associated with DCV_DEREF_ALIASES is not relevant
and is ignored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

NDS and Bindery Service Group

NDS: Functions 572

NWDSRemovePartition

Removes an existing partition from NDS by deleting its master replica

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdspart.h>

NWDSCCODE N_API NWDSRemovePartition (
 NWDSContextHandle context,
 pnstr8 partitionRoot);

Pascal Syntax

#include <nwdspart.inc>

Function NWDSRemovePartition
 (context : NWDSContextHandle;
 partitionRoot : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

partitionRoot

(IN) Points to the name of the root object of the partition to be
removed.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

NDS and Bindery Service Group

NDS: Functions 573

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The partition must be completely empty (except for the root object) or the
deletion will fail. In addition, no other replicas can exist.

Remove other replicas of the partition beforehand by calling
NWDSRemoveReplica.

partitionRoot points to the name of the root object in the partition. Since
NWDSRemovePartition must be performed on the partition's master
replica, it is assumed the operation will be performed on the server
storing this replica.

Aliases are never dereferenced by NWDSRemovePartition. The setting
of the NDS context flag associated with DCV_DEREF_ALIASES is not
relevant and is ignored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSRemoveReplica

NDS and Bindery Service Group

NDS: Functions 574

NWDSRemoveReplica

Removes a replica from the replica set of an NDS partition

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdspart.h>

NWDSCCODE N_API NWDSRemoveReplica (
 NWDSContextHandle context,
 pnstr8 server,
 pnstr8 partitionRoot);

Pascal Syntax

#include <nwdspart.inc>

Function NWDSRemoveReplica
 (context : NWDSContextHandle;
 server : pnstr8;
 partitionRoot : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

server

(IN) Points to the server name where the replica is stored.

partitionRoot

(IN) Points to the name of the root object of the NDS partition whose
replica is being deleted.

Return Values

These are common return values; see Return Values for more
information.

NDS and Bindery Service Group

NDS: Functions 575

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FF Failure not related to NDS

0x89FE BAD_PACKET

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSRemoveReplica removes any replica except the master replica of
a partition.

Remove the master replica by calling NWDSRemovePartition after all
other replicas have been removed by calling NWDSRemoveReplica.

Aliases are never dereferenced by NWDSRemoveReplica. The setting of
the NDS Context flag associated with DCV_DEREF_ALIASES is not
relevant and is ignored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSRemovePartition

NDS and Bindery Service Group

NDS: Functions 576

NWDSRemSecurityEquiv

Removes a security equivalence from the specified object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE NWDSRemSecurityEquiv (
 NWDSContextHandle context,
 pnstr8 *equalFrom,
 pnstr8 *equalTo);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSRemSecurityEquiv
 (context : NWDSContextHandle;
 equalFrom : pnstr8;
 equalTo : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

equalFrom

(IN) Points to the name of the object whose Security Equivalence
attribute is to be modified.

equalTo

(IN) Points to the object name to be removed from the Security
Equivalence attribute of the object specified by equalFrom.

Return Values

0x0000 SUCCESSFUL

NDS and Bindery Service Group

NDS: Functions 577

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

If NWDSRemSecurityEquiv is successful, it will remove the name of the
object specified by equalTo from the Security Equals attribute of the object
specified by equalFrom. (Security Equals is a multivalued attribute.)

If the object specified by equalFrom does not contain sufficient rights to
remove the security equivalence to its list, NWDSAddSecurityEquiv will
return ERR_NO_ACCESS.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSAddSecurityEquiv

NDS and Bindery Service Group

NDS: Functions 578

NWDSRepairTimeStamps

Sets the time stamps for all of a partition's objects and object attributes to the
current time on the NetWare server where the master replica is located

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsmisc.h>

NWDSCCODE N_API NWDSRepairTimeStamps (
 NWDSContextHandle context,
 pnstr8 partitionRoot);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWDSRepairTimeStamps
 (context : NWDSContextHandle;
 partitionRoot : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

partitionRoot

(IN) Points to the name of the partition's root object.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

NDS and Bindery Service Group

NDS: Functions 579

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSRepairTimeStamps sets the time stamps on all of the objects and
their attributes, even if valid time stamps exist. It will replace information
such as the creation dates of the attributes.

After NWDSRepairTimeStamps is called, the NDS will synchronize all
replicas to match the information in the master replica.

CAUTION: Because of the wide scope of changes made by
NWDSRepairTimeStamps, it should be used only to recover from a
catastrophic failure.

One concern with using NWDSRepairTimeStamps is that it can result
in the loss of information. For example, any changes that have been
made on replicas other than the master replica will be lost if they
have not been synchronized with the master replica before
NWDSRepairTimeStamps is called.

Another concern is with applications that use NDS Event
Notification Services. After NWDSRepairTimeStamps is called, NDS
will produce event notifications for every object and attribute on the
master replica. It will also provide the same notification each time
one of the other replicas is synchronized with the master replica.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

NDS and Bindery Service Group

NDS: Functions 580

NWDSReplaceAttrNameAbbrev

Replaces the abbreviated attribute name with its unabbreviated name

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsmisc.h>

NWDSCCODE N_API NWDSReplaceAttrNameAbbrev (
 NWDSContextHandle context,
 pnstr8 inStr,
 pnstr8 outStr);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWDSReplaceAttrNameAbbrev
 (context : NWDSContextHandle;
 inStr : pnstr8;
 outStr : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context of the request.

inStr

(IN) Points to attrName.

outStr

(OUT) Points to the long form of the attribute name.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 581

Remarks

NWDSReadClassDef returns the abbreviated form of some of the
common naming attributes (CN, C, O, OU, L, S, and SA). The long form
of these attributes (Common Name, Country Name, Organization Name,
Organizational Unit Name, and so on) is returned from
NWDSReplaceAttrNameAbbrev and pointed to by outStr.

The user must allocate space for the long form of the attribute name. The
size of the allocated memory is

((MAX_SCHEMA_NAME_CHARS)+1)*sizeof(character size)

where character size is 1 for single-byte characters, and 2 for double-byte
characters (Unicode is double-byte). One character is used for NULL
termination.

If the name pointed to by inStr is not an abbreviated name, the contents
of inStr will be copied to outStr.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 582

NWDSResetNDSStatistics

Retrieves the NDS statistics

NetWare Server: 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsmisc.h>

NWDSCCODE N_API NWDSResetNDSStatistics (
 NWDSContextHandle context,
 NWCONN_HANDLE connHandle);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWDSResetNDSStatistics
 (context : NWDSContextHandle;
 serverName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

serverName

(IN) Specifies the server to send the request to.

Return Values

0x0000 SUCCESSFUL

nonzero
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSResetNDSStatistics clears the statistics (resets the counters) that
can be reported by NWDSGetNDSStatistics.

NDS and Bindery Service Group

NDS: Functions 583

NCP Calls

None

See Also

NWDSGetNDSStatistics

NDS and Bindery Service Group

NDS: Functions 584

NWDSResolveName

Returns a connection handle and an object ID for the object name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsname.h>

NWDSCCODE N_API NWDSResolveName (
 NWDSContextHandle context,
 pnstr8 objectName,
 NWCONN_HANDLE N_FAR *conn,
 pnuint32 objectID);

Pascal Syntax

#include <nwdsname.inc>

Function NWDSResolveName
 (context : NWDSContextHandle;
 objectName : pnstr8;
 Var conn : NWCONN_HANDLE;
 objectID : pnuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the name of the object to get the ID for.

conn

(OUT) Points to the connection handle where the object resides.

objectID

(OUT) Points to the NDS object ID.

NDS and Bindery Service Group

NDS: Functions 585

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The returned connection handle is the NetWare server where the object is
stored.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSAddObject, NWDSAuditGetObjectID

NDS and Bindery Service Group

NDS: Functions 586

NWDSRestoreObject

Restores an object's attribute names and values that were retrieved by
calling NWDSBackupObject

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSRestoreObject (
 NWDSContextHandle context,
 pnstr8 objectName,
 pnint32 iterationHandle,
 nbool8 more,
 nuint32 size,
 pnuint8 objectInfo);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSRestoreObject
 (context : NWDSContextHandle;
 objectName : pnstr8;
 iterationHandle : pnint32;
 more : nbool8;
 size : nuint32;
 objectInfo : pnuint8
) : NWDSCCODE;

Parameters

 context

(IN) Specifies the NDS context for the request.

objectName

(IN) Points to the object name for which information is to be returned.

more

(IN) Specifies a partial message.

NDS and Bindery Service Group

NDS: Functions 587

size

(IN) Specifies the length of the information to be restored.

objectInfo

(IN) Points to the starting location of the information to be restored.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSRestoreObject is used to restore the attributes and attribute
values for one object at a time. To restore the entire directory,
NWDSRestoreObject must be called for each object that is to be restored.

iterationHandle and more are used to control the restoring of an object's
information which cannot be restored with one call to
NWDSRestoreObject. If more information will be coming after the
current call, more should be set to TRUE. Otherwise, it should be set to
FALSE. In the initial call to NWDSRestoreObject, iterationHandle should
point to NWDS_ITERATION which has been set to
NO_MORE_ITERATIONS.

After calling NWDSRestoreObject for the last time, and setting more to
FALSE, the value pointed to by iterationHandle will be set to
NO_MORE_ITERATIONS on return.

size specifies the length of the information pointed to by objectInfo. This is
the information saved after calling NWDSBackupObject.

NDS and Bindery Service Group

NDS: Functions 588

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSBackupObject

NDS and Bindery Service Group

NDS: Functions 589

NWDSReturnBlockOfAvailableTrees

Scans the bindery of the specified connection and returns matching tree
objects

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsconn.h>

N_EXTERN_LIBRARY (NWDSCCODE)NWDSReturnBlockOfAvailableTrees (
 NWDSContextHandle context,
 NWCONN_HANDLE connHandle,
 pnstr scanFilter,
 pnstr lastBlocksString,
 pnstr endBoundString,
 nuint32 maxTreeNames,
 ppnstr arrayOfNames,
 pnuint32 numberOfTrees,
 pnuint32 totalUniqueTrees);

Pascal Syntax

#include <nwdsconn.inc>

Function NWDSReturnBlockOfAvailableTrees
 (context : NWDSContextHandle;
 connHandle : NWCONN_HANDLE;
 scanFilter : pnstr;
 lastBlocksString : pnstr;
 endBoundString : pnstr;
 maxTreeNames : nuint32;
 Var arrayOfNames : pnstr;
 Var numberOfTrees : nuint32;
 Var totalUniqueTrees : nuint32
) : NWDSCCODE;

Parameters

 context

(IN) Specifies the NDS context for the request.

 connHandle

NDS and Bindery Service Group

NDS: Functions 590

(IN) Specifies the connection handle to be used in scanning for NDS
trees.

scanFilter

(IN) Points to an ASCII string that defines the scan filter (can contain
wildcards).

lastBlocksString

(IN) Points to the last tree name that was returned during a previous
scan (used to continue scanning for more names with the same scan
filter or pass NULL).

endBoundString

(IN) Points to a string (used in conjunction with the scanFilter
parameter) that sets up a range of tree names to scan (can contain
wildcards).

maxTreeNames

(IN) Maximum number of tree names to return (size of the
arrayOfNames buffer).

arrayOfNames

(OUT) Points to the first element of an output buffer that will be used
to return the tree names.

numberOfTrees

(OUT) Actual number of tree names that were returned.

totalUniqueTrees

(OUT) The total number of tree names found that match the scan
criteria. This number might be greater than numberOfTrees.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

NO_SUCH_OBJECT

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

Setting Up the Scan

To set up a scan, place a filter string in scanFilter. The filter string can
contain a wildcard, such as "nov*". The results of this scan would include
all tree names that begin with "nov".

NDS and Bindery Service Group

NDS: Functions 591

all tree names that begin with "nov".

If you want to set an end boundary for the scan, place a second filter
string in endBoundString. For example, if scanFilter contains "a*" and
scanFilter contains "ac*", the scan results would include all tree names that
begin with "a" that are less than the ordinal value of "ad'.

Initializing the Output Buffer

The caller is responsible for setting up and initializing an output buffer
before calling this function. The caller must supply the array of pointers
as well as supplying strings of NW_MAX_TREE_NAME_LEN for each
element in the array. The following example demonstrates initializing the
buffer.

main()
{
 ppnstr8 names;
 int i;
 int blockOfTreesCount = 25;

 names = malloc(sizeof(pnstr8) * blockOfTreesCount);

 for (i=0; i<25; i++)
 {
 names[i] = malloc(NW_MAX_TREE_NAME_LEN);
 }

 NWDSReturnBlockOfAvailableTrees(,,,,,,names,,);
}

The caller could set maxTreeNames equal to 0 and call
NWDSReturnBlockOfAvailableTrees. The value returned in
totalUniqueTrees could then be used to determine how much memory to
allocate for arrayOfNames.

NOTE: NW_MAX_TREE_NAME_LEN contains the maximum length
of non-unicode names, and NW_MAX_TREE_NAME_BYTES contains
the maximum length of unicode names.

Continuing a Scan

If the value returned in totalUniqueTrees is greater than the value
returned in numberOfTrees, there are more tree names that meet the scan
filter criteria than were returned in arrayOfNames. If this is the case, the
caller could make a subsequent call to
NWDSReturnBlockOfAvailableTrees and begin the scan where the
previous call left off.

To set up a subsequent call, keep the values of scanFilter and
endBoundString the same as before, and place the name that was returned
in the last element of arrayOfNames into lastBlocksString.

NCP Calls

NDS and Bindery Service Group

NDS: Functions 592

NCP Calls

0x2222 23 55 Get Server Sources Information

See Also

NWDSScanConnsForTrees, NWDSScanForAvailableTrees

NDS and Bindery Service Group

NDS: Functions 593

NWDSScanConnsForTrees

Scans existing connections for tree names

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsconn.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSScanConnsForTrees (
 NWDSContextHandle context,
 nuint numOfPtrs,
 pnuint numOfTrees,
 pnstr8 treeBufPtrs);

Pascal Syntax

#include <nwdsconn.inc>

Function NWDSScanConnsForTrees
 (context : NWDSContextHandle;
 numOfPtrs : nuint;
 Var numOfTrees : nuint;
 Var treeBufPtrs : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

numOfPtrs

(IN) Specifies the number of pointers available in treeBufPtrs.

numOfTrees

(OUT) Points to the number of tree names that can be returned by
NWDSScanConnsForTrees.

treeBufPtrs

(OUT) Points to an array of pointers that will receive the tree names.

Return Values

0x0000 SUCCESSFUL

NDS and Bindery Service Group

NDS: Functions 594

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSScanConnsForTrees scans existing connections and returns a list
of tree names associated with those connections. The list does not include
duplicates and is sorted by the defined collation table.

The numOfPtrs parameter indicates the maximum number of strings that
may be assigned by NWDSScanConnsForTrees. The numOfTrees
parameter specifies the number of strings assigned to treeBufPtrs. In the
event that numOfTrees exceeds numOfPtrs, numOfPtrs strings will be
assigned and numOfTrees will be returned.

The maximum tree name length is specified by
NW_MAX_TREE_NAME_LEN, which is a constant defined to be 33
bytes in length. Unicode defines NW_MAX_TREE_NAME_BYTES to be
66 bytes in length.

The tree names returned imply authentication since a connection isn't
designated as Bindery or NDS until authentication.

The context parameter is used to determine the character type for the tree
name (that is, local code page or Unicode).

NOTE: When NWDSScanConnsForTrees is called on a workstation
running the new Client32, which currently runs on MS Windows95, it
does not actually scan connections. This call utilizes Client32's ability to
scan for identities.

NCP Calls

None

See Also

NWDSScanForAvailableTrees, NWDSReturnBlockOfAvailableTrees

NDS and Bindery Service Group

NDS: Functions 595

NWDSScanForAvailableTrees

Scans a connection for tree objects

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsconn.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSScanForAvailableTrees (
 NWDSContextHandle context,
 NWCONN_HANDLE connHandle,
 pnstr scanFilter,
 pnint32 scanIndex,
 pnstr treeName);

Pascal Syntax

#include <nwdsconn.inc>

Function NWDSScanForAvailableTrees
 (context : NWDSContextHandle;
 connHandle : NWCONN_HANDLE;
 scanFilter : pnstr;
 Var scanIndex : nint32;
 treeName : pnstr
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

connHandle

(IN) Specifies the connection handle to be used in scanning for NDS
trees.

scanFilter

(IN) Points to an ASCII string that allows wildcards to be specified in
the scan.

scanIndex

(IN/OUT) Points to the index to be used on the next iteration of the
scan.

NDS and Bindery Service Group

NDS: Functions 596

treeName

(OUT) Points to the name of the tree found in the scan operation.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSScanForAvailableTrees uses the connection specified in
connHandle to scan for NDS tree objects (object type 0x7802) using the
server bindery (the dynamic bindery is used for NetWare 4 server).

The scanFilter value allows wildcard matching to be specified for the scan
operation. The scanIndex value should be initially set to -1 and must not
be altered by the user after the first call.

Unlike other NDS functions, there is no need to call
NWDSCloseIteration to discontinue calling
NWDSScanForAvailableTrees once the search is begun.

The context parameter is used to determine the character type for the tree
name (that is, local code page or Unicode).

NCP Calls

0x2222 23 55 Scan Bindery Object

See Also

NWDSScanConnsForTrees, NWDSReturnBlockOfAvailableTrees

NDS and Bindery Service Group

NDS: Functions 597

NWDSSearch

Searches a region of NDS for objects satisfying a specified set of
requirements

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSSearch (
 NWDSContextHandle context,
 pnstr8 baseObjectName,
 nint scope,
 nbool8 searchAliases,
 pBuf_T filter,
 nuint32 infoType,
 nbool8 allAttrs,
 pBuf_T attrNames,
 pnint32 iterationHandle,
 nint32 countObjectsToSearch,
 pnint32 countObjectsSearched,
 pBuf_T objectInfo);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSSearch
 (context : NWDSContextHandle;
 baseObjectName : pnstr8;
 scope : nint;
 searchAliases : nbool8;
 filter : pBuf_T;
 infoType : nuint32;
 allAttrs : nbool8;
 attrNames : pBuf_T;
 iterationHandle : pnint32;
 countObjectsToSearch : nint32;
 countObjectsSearched : pnint32;
 objectInfo : pBuf_T
) : NWDSCCODE;

NDS and Bindery Service Group

NDS: Functions 598

Parameters

context

(IN) Specifies the NDS context for the request.

baseObjectName

(IN) Points to the name of a subtree root to be searched.

scope

(IN) Specifies the depth of the search.

searchAliases

(IN) Specifies whether to dereference aliases in the search subtree:

TRUE Aliases will be dereferenced

FALSE Aliases will not be dereferenced

filter

(IN) Points to a search filter constructed by calling the
NWDSAddFilterToken function.

infoType

(IN) Specifies the type of information to be returned:

TRUE Specifies attribute names and values

FALSE Specifies attribute names only

allAttrs

(IN) Specifies the scope of the request:

TRUE Return information concerning all attributes

FALSE Return information for only the attributes named in the
attrNames parameter

attrNames

(IN) Points to the names of the attributes for which information is to be
returned.

iterationHandle

 (IN/OUT) Points to information needed to resume subsequent
iterations of NWDSSearch.

countObjectsToSearch

(IN) Is reserved.

countObjectsSearched

(OUT) Points to the number of objects searched by the server.

objectInfo

(OUT) Points to an output buffer containing the names of the objects
along with any requested attribute values satisfying the search.

Return Values

NDS and Bindery Service Group

NDS: Functions 599

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSSearch succeeds if the base object is located, regardless of whether
there are any subordinates to the base object.

If a replica-specific error is returned, NWDSSearch will try an alternate
replica for the partition.

The baseObjectName parameter identifies the object (or possibly the root)
to which the search is relative. If the string is empty, the current context is
selected as the base object.

The scope parameter can have the following values:

0 DS_SEARCH_ENTRY Search applies only to the base object.

1 DS_SEARCH_SUBORDINATES Search only applies to the immediate
subordinates of the base object.

2 DS_SEARCH_SUBTREE Search applies to the base object and all of its
subordinates.

Aliases are dereferenced while locating the base object unless the context
flag associated with DCV_DEREF_ALIASES is not set. Aliases among the
subordinates of the base object are dereferenced during the search unless
the searchAliases parameter is FALSE. If the searchAliases parameter is
TRUE, the search continues in the subtree of the aliased object.

The filter parameter eliminates objects not of interest to the application.
Information is returned only on objects that satisfy the filter.

The infoType, allAttrs, and attrNames parameters indicate what attribute
information is requested.

If the allAttrs parameter is TRUE, information about all attributes
associated with the object is requested and the attrNames parameter is
ignored (in which case, the attrNames parameter can be NULL). If the
allAttrs parameter is FALSE, only the attributes specified by the
attrNames parameter are requested.

If the allAttrs parameter is FALSE and the attrNames parameter is NULL,
no attribute information is returned and the infoType parameter is not
meaningful. In this case, the value returned by NWDSSearch determines
whether the specified object exists, or whether access to the object is
allowed.

The iterationHandle parameter controls the retrieval results that are larger

NDS and Bindery Service Group

NDS: Functions 600

than the result buffer pointed to by the objectInfo parameter.

Before calling NWDSSearch initially, set the contents of the iteration
handle pointed to by the iterationHandle parameter to
NO_MORE_ITERATIONS.

If the result buffer holds the complete results when NWDSSearch returns
from its initial call, the location pointed to by the iterationHandle
parameter is set to NO_MORE_ITERATIONS. If the iteration handle is
not set to NO_MORE_ITERATIONS, use the iteration handle for
subsequent calls to NWDSSearch to obtain further portions of the results.
When the results are completely retrieved, the contents of the iteration
handle will be set to NO_MORE_ITERATIONS.

To end the Search operation before the complete results have been
retrieved, call NWDSCloseIteration with a value of
DSV_SEARCH_FILTER to free memory and states associated with the
Search operation.

The level of granularity for partial results is an individual attribute value.
If the attribute is a multivalued attribute and its values are split across
two or more calls to NWDSSearch, the current object name, object info,
and attribute name is repeated in each subsequent result buffer.

For information about how to conduct a search and for more details
about NDS searches, see Searching NDS and NDS Search Introduction.

NOTE: Currently, because of aliasing, searching a subtree can result
(1) in duplicate entries or (2) in an infinite loop.

NOTE: On large networks, iterative processes, like NWDSSearch,
might take a lot of time to complete. For example, listing all of the User
objects on a corporate network might be too time consuming. These
processes can be interrupted or aborted by calling the
NWDSCloseIteration function.

Developers should call the NWDSCloseIteration function to allow
users of their applications to abort an iterative process that is taking too
long to complete.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSCloseIteration, NWDSAddFilterToken, NWDSAllocFilter,
NWDSDelFilterToken, NWDSFreeFilter, NWDSPutFilter

NDS and Bindery Service Group

NDS: Functions 601

NWDSSetContext

Sets the value of an NDS context variable

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdc.h>

NWDSCCODE N_API NWDSSetContext (
 NWDSContextHandle context,
 nint key,
 nptr value);

Pascal Syntax

#include <nwdsdc.inc>

Function NWDSSetContext
 (context : NWDSContextHandle;
 key : nint;
 value : nptr
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

key

(IN) Specifies the context variable to set.

value

(IN) Points to the value for context.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

NDS and Bindery Service Group

NDS: Functions 602

Remarks

Applications do not have direct access to the NDS context variables. To
change the settings of the context variables, applications must call
NWDSSetContext, using a key to identify for which context variable to
set information. See DSI Flags.

The NWDSSetContext function can be called using
DCK_NAME_CACHE_DEPTH to query or set the depth of the name
cache (how many names the cache will remember for the context handle).
See Name Caching.

The context parameter usually defaults to the preferred tree name. Under
NLM, the context parameter defaults to the local server tree name.

The key is identified by the key parameter. The following keys are
defined in NWDSDC.H:

1 DCK_FLAGS nuint3
2

Bit definitions

2 DCK_CONFIDENCE nuint3
2

Definitions: 0 DCV_LOW_CONF
1 DCV_MED_CONF 2
DCV_HIGH_CONF

3 DCK_NAME_CONTE
XT

Character string array

4 DCK_TRANSPORT_T
YPE

nuint3
2[2]

Not currently in use

5 DCK_REFERRAL_SC
OPE

nuint3
2

Definitions: 0
DCV_ANY_SCOPE 1
DCV_COUNTRY_SCOPE 2
DCV_ORGANIZATION_SCOPE
3 DCV_LOCAL_SCOPE

8 DCK_LAST_CONNEC
TION

Returns NWCONN_HANDLE

1
1

DCK_TREE_NAME Character string array of at most
NW_MAX_TREE_NAME_LEN
(includes NULL) ASCII or
UNICODE characters

To call NWDSSetContext for multiple NDS identities, set the key
parameter to DCK_TREE_NAME.

The value parameter should point to a variable of a type matching the
type of the specified variable.

The flags associated with the DCK_FLAGS key are defined as follows:

NDS and Bindery Service Group

NDS: Functions 603

0x001
L

$000000
01

DCV_DEREF_ALIASES

0x002
L

$000000
02

DCV_XLATE_STRINGS

0x004
L

$000000
04

DCV_TYPELESS_NAMES

0x008
L

$000000
08

DCV_ASYNC_MODE

0x010
L

$000000
10

DCV_CANONICALIZE_NAMES

0x040
L

$000000
40

DCV_DEREF_BASE_CLASS

0x080
L

$000000
80

DCV_DISALLOW_REFERRALS

NOTE: Before setting the context flags, first read in the current settings
of the flags by calling NWDSGetContext. Then use bitwise operations
to change the flag(s) you want to change while leaving the settings of
the other flags unchanged. Then call NWDSSetContext to set the
context flags to the desired settings.

If the key parameter is DCK_CONFIDENCE, the value pointed to by the
value parameter can be one of the following:

0 DCV_LOW_CONF
1 DCV_MED_CONF
2 DCV_HIGH_CONF

If the key parameter is DCK_NAME_CONTEXT, the value parameter
points to a buffer containing the name context. The maximum size of the
buffer is ((MAX_DN_CHARS)+1)*sizeof(character size) where character
size is 1 for single-byte characters, and 2 for double-byte characters
(Unicode is double-byte). One character is used for NULL termination.

If the key parameter is DCK_REFERRAL_SCOPE, the value parameter can
be one of the following:

0 DCV_ANY_SCOPE
1 DCV_COUNTRY_SCOPE
2 DCV_ORGANIZATION_SCOPE
3 DCV_LOCAL_SCOPE

Values stored in a directory context can be read by calling
NWDSGetContext.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 604

See Also

NWDSCreateContextHandle, NWDSFreeContext, NWDSGetContext

NDS and Bindery Service Group

NDS: Functions 605

NWDSSetDefNameContext

Sets the default name context for a specified tree

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsconn.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWDSSetDefNameContext (
 NWDSContextHandle context,
 nuint nameContextLen
 pnstr8 nameContext);

Pascal Syntax

#include <nwdsconn.inc>

Function NWDSSetDefNameContext
 (context : NWDSContextHandle;
 nameContextLen : nuint;
 nameContext : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

nameContextLen

(IN) Specifies the length (in bytes) of the nameContext buffer.

nameContext

(IN) Points to the name context value to set as default.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NDS and Bindery Service Group

NDS: Functions 606

NWDSSetDefNameContext sets the default name context for the tree
specified in the context (or if the tree name isn't set, the preferred tree
name).

NWDSSetDefNameContext differs from NWSetDefaultNameContext
in that NWDSSetDefNameContext has an added parameter, context,
and operates on a per tree basis. Also, NWDSSetDefNameContext can
return the name context in Unicode while NWSetDefaultNameContext
could only return the data in local code page format.

The default name context for the preferred tree can be set by the
DEFAULT NAME CONTEXT configuration parameter, or by calling
either NWDSSetDefNameContext or NWSetDefaultNameContext. The
default name context for another tree (different from the preferred tree)
can be set by calling NWDSSetDefNameContext.

The default name context can be from 0 to 257 bytes long for local code
page strings (including the NULL), or 0 to 514 bytes long for Unicode
strings (including the 2 bytes for NULL). If the nameContext buffer is too
large, an error is returned and no data is copied.

If the underlying requester does not support multiple NDS trees, the
default name context for the default tree will be returned (that is, the tree
name specified in the context will be ignored).

NCP Calls

None

See Also

NWGetDefaultNameContext, NWDSGetDefNameContext,
NWSetDefaultNameContext

NDS and Bindery Service Group

NDS: Functions 607

NWDSSetMonitoredConnection

Tracks the connection

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
see also
#include <nwdstype.h>
#include <nwndscon.h>

NWCCODE N_API NWDSSetMonitoredConnection
 (NWCONN_HANDLE conn);

Pascal Syntax

Function NWDSSetMonitoredConnection
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the connection handle of the desired connection.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

negative
value

UNSUCCESSFUL

Remarks

When a user logs into the directory for directory service calls, several
attributes are created and maintained on the NetWare server where the
user's object resides. If the connection is removed, these attributes are
destroyed. To prevent these attributes from being destroyed, call
NWDSSetMonitoredConnection to track the connection. If the

NDS and Bindery Service Group

NDS: Functions 608

connection is destroyed, several NDS functions such as NWDSWhoAmI
do not return valid information.

To call NWDSSetMonitoredConnection in DOS or Windows 3.1, VLMs
must be running. NETX does not support
NWDSSetMonitoredConnection and returns an error if VLMs are not
running.

NCP Calls

None

See Also

NWDSOpenMonitoredConn

NDS and Bindery Service Group

NDS: Functions 609

NWDSSplitPartition

Divides a partition into two partitions at a specified object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdspart.h>

NWDSCCODE N_API NWDSSplitPartition (
 NWDSContextHandle context,
 pnstr8 subordinatePartition,
 nflag32 flags);

Pascal Syntax

#include <nwdspart.inc>

Function NWDSSplitPartition
 (context : NWDSContextHandle;
 subordinatePartition : pnstr8;
 flags : nflag32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

subordinatePartition

(IN) Points to the name of the object that will be the root of the
subordinate partition to be split.

flags

(IN) Reserved; pass in 0.

Return Values

These are common return values; see Return Values for more
information.

NDS and Bindery Service Group

NDS: Functions 610

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89E2 TOO_FEW_FRAGMENTS

0x89E3 TOO_MANY_FRAGMENTS

0x89E4 PROTOCOL_VIOLATION

0x89E5 SIZE_LIMIT_EXCEEDED

0x89FD UNKNOWN_REQUEST

0x89FD INVALID_PACKET_LENGTH

0x89FE BAD_PACKET

0x89FF Failure not related to NDS

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

To split a partition, there must be a single replica (Master) of the partition
to be split.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSAddReplica, NWDSJoinPartitions, NWDSSplitPartition

NDS and Bindery Service Group

NDS: Functions 611

NWDSSyncPartition

Signals the skulker to schedule an update of a specified partition a specified
number of seconds into the future

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdspart.h>

NWDSCCODE N_API NWDSSyncPartition (
 NWDSContextHandle context,
 pnstr8 server,
 pnstr8 partition,
 nuint32 seconds);

Pascal Syntax

#include <nwdspart.inc>

Function NWDSSyncPartition
 (context : NWDSContextHandle;
 server : pnstr8;
 partition : pnstr8;
 seconds : nuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

server

(IN) Points to the server name where the partition resides.

partition

(IN) Points to the name of the partition to update.

seconds

(IN) Specifies the number of seconds to wait until the partition is
updated.

NDS and Bindery Service Group

NDS: Functions 612

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

The partition must reside on the specified server.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSSyncReplicaToServer, NWDSSyncSchema

NDS and Bindery Service Group

NDS: Functions 613

NWDSSyncReplicaToServer

Requests a replica to synchronize with a specific server

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsmisc.h>

NWDSCCODE N_API NWDSSyncReplicaToServer (
 NWDSContextHandle context,
 NWCONN_HANDLE connHandle,
 pnstr8 partitionRootName,
 pnstr8 destServerName,
 nuint32 actionFlags,
 nuint32 delaySeconds);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWDSSyncReplicaToServer
 (context : NWDSContextHandle;
 connHandle : NWCONN_HANDLE;
 partitionRootName : pnstr8;
 destServerName : pnstr8;
 actionFlags : nuint32;
 delaySeconds : nuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

serverName

(IN) Specifies the server that contains the replica being synchronized.

partitionRootName

(IN) Specifies the name of the partition whose replica is being
synchronized.

destServerName

(IN) Specifies the server to which the replica should synchronize to.

actionFlags

(IN) Specifies the synchronization action to be taken.

NDS and Bindery Service Group

NDS: Functions 614

(IN) Specifies the synchronization action to be taken.

delaySeconds

(IN) Specifies the number of seconds to delay before beginning the
synchronization.

Return Values

0x0000 SUCCESSFUL

nonzero
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSSyncReplicaToServer requests that a replica initiate
synchronization with the destination server identified by destServerName.
The actionFlags parameter has the following definition:

SF_DO_IMMEDIATE

Perform the action immediately.

SF_TRANSITION

If the replica is in one of the states "New", "Dying", or "Transition On",
the request is ignored and SUCCESS is returned.

NWDSSyncReplicaToServer has the side effect of blocking until the
synchronization process has completed. The return code indicates the
status of the replica by returning SUCCESS or a negative error code,
which indicates a problem with synchronization of this replica.

NCP Calls

None

See Also

NWDSSyncPartition

NDS and Bindery Service Group

NDS: Functions 615

NWDSSyncSchema

Signals the skulker to schedule an update of the schema a specified number
of seconds in the future

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdssch.h>

NWDSCCODE N_API NWDSSyncSchema (
 NWDSContextHandle context,
 pnstr8 server,
 nuint32 seconds);

Pascal Syntax

#include <nwdssch.inc>

Function NWDSSyncSchema
 (context : NWDSContextHandle;
 server : pnstr8;
 seconds : nuint32
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

server

(IN) Points to the server name to signal.

seconds

(IN) Specifies the number of seconds to wait until the update is
scheduled.

Return Values

0x0000 SUCCESSFUL

NDS and Bindery Service Group

NDS: Functions 616

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWDSSyncSchema wakes up the sleeping synchronization process and
alerts it to begin synchronization at the time specified.

NCP Calls

0x2222 39 0 Synchronize Schema

See Also

NWDSSyncPartition

NDS and Bindery Service Group

NDS: Functions 617

NWDSUnlockConnection

Enables the connection to be placed on the LRU list and unlicenses the
connection if no other resources are allocated

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
see also
#include <nwndscon.h>

NWCCODE N_API NWDSUnlockConnection
 (NWCONN_HANDLE conn);

Pascal Syntax

Function NWDSUnlockConnection
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the connection handle for the connection to unlock.

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

Remarks

If there are no other tasks having resouces on the connection, and the
connection is licensed, the connection will be unlicensed on the NetWare
server.

The connection is licensed by calling NWCCLicenseConn. For the
connection to be licensed, it has to be authenticated.

NDS and Bindery Service Group

NDS: Functions 618

NCP Calls

None

See Also

NWCCGetConnInfo, NWCCLicenseConn, NWDSAuthenticate

NDS and Bindery Service Group

NDS: Functions 619

NWDSVerifyObjectPassword

Verifies the password of an object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsasa.h>

NWDSCCODE N_API NWDSVerifyObjectPassword (
 NWDSContextHandle contextHandle,
 nflag32 optionsFlag,
 pnstr8 objectName,
 pnstr8 password);

Pascal Syntax

#include <nwdsasa.inc>

Function NWDSVerifyObjectPassword
 (context : NWDSContextHandle;
 optionsFlag : nflag32;
 objectName : pnstr8;
 password : pnstr8
) : NWDSCCODE;

Parameters

contextHandle

(IN) Specifies the handle to the name context structure.

optionsFlag

(IN) Reserved; pass in zero.

objectName

(IN) Points to the object name (under the context) of the object to
verify.

password

(IN) Points to the clear-text password for the object.

NDS and Bindery Service Group

NDS: Functions 620

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

To call NWDSVerifyObjectPassword successfully, the current password
of the object must be known. If no such password exists, password should
point to a zero-length string. All strings used by
NWDSVerifyObjectPassword are NULL-terminated. password can be
any length and all characters are significant. Upper- and lowercase letters
are distinct.

The password does not appear on the wire in
NWDSVerifyObjectPassword. It is used to decrypt the private key
attribute of the object. password is overwritten by
NWDSVerifyObjectPassword to prevent compromising it locally. If an
application has copied the password, it should destroy (overwrite) any
copies as soon as possible.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWDSGenerateObjectKeyPair, NWDSLogin,
NWDSChangeObjectPassword

NDS and Bindery Service Group

NDS: Functions 621

NWDSWhoAmI

Returns the distinguished name of the object currently logged in to NDS

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsdsa.h>

NWDSCCODE N_API NWDSWhoAmI (
 NWDSContextHandle context,
 pnstr8 objectName);

Pascal Syntax

#include <nwdsdsa.inc>

Function NWDSWhoAmI
 (context : NWDSContextHandle;
 objectName : pnstr8
) : NWDSCCODE;

Parameters

context

(IN) Specifies the NDS context for the request.

objectName

(OUT) Points to the distinguished name of the object logged in to NDS.

Return Values

0x0000 SUCCESSFUL

negative
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

If the object is not currently logged in, NWDSWhoAmI returns an error.

NDS and Bindery Service Group

NDS: Functions 622

Whether the name returned in objectName as a full name or a partial name
depends upon the setting of the context flag associated with
DCV_CANONICALIZE_NAMES. If the
DCV_CANONICALIZE_NAMES flag is set to ON, NWDSWhoAmI
returns a partial name. If the DCV_CANONICALIZE_NAMES flag is set
to OFF, NWDSWhoAmI returns a full name.

If the context flag associated with DCV_TYPELESS_NAMES is set to ON,
the name returned by NWDSWhoAmI will be untyped, otherwise it will
be typed.

The caller must allocate memory to hold the distinguished name. The size
of memory allocated is (MAX_DN_CHARS+1)*sizeof(character size),
where character size is 1 for single-byte characters and 2 for double-byte
characters (Unicode is double byte). One character is used for NULL
termination.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 623

NWGetDefaultNameContext

Allows the user to get the default name context

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h
see also
#include <nwndscon.h>

NWCCODE N_API NWGetDefaultNameContext (
 nuint16 bufferSize,
 nuint8 N_FAR *context);

Pascal Syntax

Function NWGetDefaultNameContext
 (bufferSize : nuint16;
 context : pnuint8
) : NWCCODE;

Parameters

bufferSize

(IN) Specifies the maximum size of buffer.

context

(OUT) Points to a buffer retrieving the 256-byte default name context.
A NULL-terminated string containing the name context is returned.

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

0x883
3

INVALID_BUFFER_LENGTH

Remarks

NDS and Bindery Service Group

NDS: Functions 624

The name may have been set originally in NET.CFG, or it could be set by
calling NWSetDefaultNameContext. If the name context is empty, a
NULL string is returned.

To call NWGetDefaultNameContext in DOS or Windows, VLMs must
be running. NETX does not support NWGetDefaultNameContext and
will return an error if VLMs are not running.

NCP Calls

None

See Also

NWSetDefaultNameContext

NDS and Bindery Service Group

NDS: Functions 625

NWGetFileServerUTCTime

Returns the Coordinated Universal Time (UTC) setting of a server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
or
#include <nwdsmisc.h>

nint N_API NWGetFileServerUTCTime (
 NWCONN_HANDLE conn,
 pnuint32 time);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWGetFileServerUTCTime
 (conn : NWCONN_HANDLE;
 time : pnuint32
) : nint;

Parameters

conn

(IN) Specifies the connection handle to the server whose time needs to
be retrieved.

time

(OUT) Points to the time setting (in UTC time) of the server.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0xFD6D ERR_TIME_NOT_SYNCHRONIZED

Negative Negative values indicate errors. See NDS Values (-001 to

NDS and Bindery Service Group

NDS: Functions 626

value -699).

Remarks

NWGetFileServerUTCTime will determine the time setting on remote
and local servers. (The time function only returns the time setting for
local servers.)

The time placed in the location pointed to by the time parameter
represents the time in seconds since January 1, 1970 (Coordinated
Universal Time).

NCP Calls

0x2222 114 1 Get UTC Time

NDS and Bindery Service Group

NDS: Functions 627

NWGetNextConnectionID (obsolete 6/96)

but is now obsolete. Call NWCCScanConnRefs instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
see also
#include <nwndscon.h>

NWCCODE N_API NWGetNextConnectionID
 (NWCONN_HANDLE N_FAR * conn);

Pascal Syntax

Function NWGetNextConnectionID
 (Var conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Points to a connection handle of the server specified by server
name.

Return Values

0x000
0

SUCCESSFUL

0x880
1

No More Connections

0x880
1

INVALID_CONNECTION

Remarks

On the first call, pass zero (0) in for conn. On subsequent calls pass in the
last conn.

NDS and Bindery Service Group

NDS: Functions 628

To call NWGetNextConnectionID (obsolete 6/96) in DOS or Windows,
VLMs must be running. NETX does not support
NWGetNextConnectionID (obsolete 6/96) and will return an error if
VLMs are not running.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

See Also

NWCCScanConnRefs, NWCCOpenConnByRef, NWCCGetConnInfo

NDS and Bindery Service Group

NDS: Functions 629

NWGetNumConnections

Returns the number of connections that can be supported by VLM

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
see also
#include <nwdstype.h>
#include <nwndscon.h>

NWCCODE N_API NWGetNumConnections (
 nuint16 N_FAR *numConnections);

Pascal Syntax

Function NWGetNumConnections
 (numConnections : pnuint16
) : NWCCODE;

Parameters

numConnections

(OUT) Points to the number of connections supported.

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

0x880
0

VLM_ERROR

Remarks

The number of connections can be configured in the net.cfg file.

To call NWGetNumConnections in DOS or in Windows, VLMs must be
running. NETX does not support NWGetNumConnections and will

NDS and Bindery Service Group

NDS: Functions 630

return an error if VLMs are not running.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 631

NWGetNWNetVersion

Returns the NWNet library version number

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsmisc.h>

N_EXTERN_LIBRARY(void) NWGetNWNetVersion (
 nuint8 N_FAR *majorVersion,
 nuint8 N_FAR *minorVersion,
 nuint8 N_FAR *revisionLevel,
 nuint8 N_FAR *betaReleaseLevel);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWGetNWNetVersion
 (majorVersion : pnuint8;
 minorVersion : pnuint8;
 revisionLevel : pnuint8;
 betaReleaseLevel : pnuint8
);

Parameters

majorVersion

(OUT) Points to the major version number.

minorVersion

(OUT) Points to the minor version number.

revisionLevel

(OUT) Points to the revision level number.

betaReleaseLevel

(OUT) Points to the beta release level number.

NCP Calls

None

See Also

NDS and Bindery Service Group

NDS: Functions 632

NWDSGetDSVerInfo

NDS and Bindery Service Group

NDS: Functions 633

NWGetPreferredConnName

Gets the name of the preferred connection

NetWare Server: N/A

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
see also
#include <nwndscon.h>

NWCCODE N_API NWGetPreferredConnName (
 nuint8 N_FAR *preferredName,
 nuint8 N_FAR *preferredType);

Pascal Syntax

Function NWGetPreferredConnName
 (preferredName : pnuint8;
 preferredType : pnuint8
) : NWCCODE;

Parameters

preferredName

(OUT) Points to the buffer where the preferred name is stored.

preferredType

(OUT) Points to the preferred name type set
[NWNDS_CONNECTION = 1 (Preferred Tree Name) or 0 (Preferred
Server)].

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

Remarks

NDS and Bindery Service Group

NDS: Functions 634

NWGetPreferredConnName will only work if VLMs are loaded; it will
not work with NETX.

If both preferredType names are set by API calls or NET.CFG, the order is
determined at VLM load time.

Defaults are Preferred Tree Name, then Preferred Server.

If a Preferred Tree Name is not specified, the Preferred Server will be
returned and preferredType will be zero (Preferred Server). However, if a
Preferred Tree Name is specified in NET.CFG, or if
NWSetPreferredDSTree is called, preferredName will be the Preferred
Tree Name and the server type will be set to NWNDS_CONNECTION =
1 (Preferred Tree Name). If BIND.VLM is loaded before NDS.VLM, the
opposite is true.

NCP Calls

None

See Also

NWSetPreferredDSTree, NWGetPreferredDSServer (obsolete 6/96)

NDS and Bindery Service Group

NDS: Functions 635

NWGetPreferredDSServer (obsolete 6/96)

but is now obsolete. Call NWGetPreferredConnName followed by calling
NWCCOpenConnByName instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet>
see also
#include <nwdstype.h>
#include <nwndscon.h>

NWCCODE N_API NWGetPreferredDSServer
 (NWCONN_HANDLE N_FAR * conn);

Pascal Syntax

Function NWGetPreferredDSServer
 (Var conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(OUT) Points to the NDS connection handle.

Return Values

0x000
0

SUCCESSFUL

0x880
1

INVALID_CONNECTION

0x885
5

PREFERRED_NOT_FOUND

0x885
9

NO_PREFERRED_SPECIFIED

Remarks

NDS and Bindery Service Group

NDS: Functions 636

Remarks

NWGetPreferredDSServer (obsolete 6/96) returns a connection only if a
preferred tree has been set in either NET.CFG or by calling
NWSetPreferredDSTree. If a preferred tree is not set, 0x8859 is returned.

In OS/2, NWGetPreferredDSServer (obsolete 6/96) returns a server
connection ID in the tree of the specified preferred tree, but not
specifically the preferred server.

In DOS or Windows, NWGetPreferredDSServer (obsolete 6/96) returns
the first NDS connection ID in the connection table, if there is one;
otherwise it attaches to a server in the specified tree.

To call NWGetPreferredDSServer (obsolete 6/96) in DOS or in
Windows, VLMs must be running. NETX does not support
NWGetPreferredDSServer (obsolete 6/96) and will return an error if
VLMs are not running.

NOTE: NWGetPreferredDSServer (obsolete 6/96) returns the
preferred server's connection handle, which is the case for new
requesters like Windows NT and Windows95. Some older requesters
like DOS and Windows (VLM requesters) contained a bug, which
returned the first connection in the connection table instead.
Developers accustomed to the operation of this call using a VLM
requester will find that the newer requesters will not return what they
have come to expect.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

See Also

NWCCLicenseConn, NWCCOpenConnByAddr,
NWSetPreferredDSTree

NDS and Bindery Service Group

NDS: Functions 637

NWIsDSAuthenticated

Returns whether NDS has credentials for a background authentication in
the current NDS tree

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
see also
#include <nwndscon.h>

NWCCODE N_API NWIsDSAuthenticated (
 void);

Pascal Syntax

Function NWIsDSAuthenticated (
 Par1 : nptr
) : NWCCODE;

Return Values

These are common return values; see Return Values for more
information.

0x000
1

Authenticated through NDS

0x000
0

Not authenticated through NDS

Remarks

To call NWIsDSAuthenticated in DOS or in Windows, VLMs must be
running. NETX does not support NWIsDSAuthenticated and will return
an error if VLMs are not running.

NCP Calls

None

See Also

NDS and Bindery Service Group

NDS: Functions 638

NWCCGetConnInfo, NWCCScanConnRefs

NDS and Bindery Service Group

NDS: Functions 639

NWIsDSServer

Checks presence or absence of NDS on the server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
see also
#include <nwdsmisc.h>

NWDSCCODE NWFAR NWPASCAL NWIsDSServer (
 NWCONN_HANDLE conn,
 pnstr8 treeName);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWIsDSServer
 (conn : NWCONN_HANDLE;
 treeName : pnstr8
) : NWDSCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

treeName

(OUT) Points to the tree name returned if NDS.

Return Values

These are common return values; see Return Values for more
information.

0x000
1

NDS NCP is hooked and NDS is running

0x000
0

Not NDS

NDS and Bindery Service Group

NDS: Functions 640

NCP Calls

0x2222 104 01 Ping for NDS NCP

NDS and Bindery Service Group

NDS: Functions 641

NWNetInit

Does the initial setup that is necessary before calling any other NDS
functions

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsmisc.h>

NWDSCCODE N_API NWNetInit (
 nptr in,
 nptr out);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWNetInit
 (in : nptr;
 out : nptr
) : NWDSCCODE;

Parameters

in

(IN) Points to the input parameter value.

out

(OUT) Points to the output parameter value.

Return Values

0x0000 SUCCESSFUL

nonzero
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWNetInit initializes the NDS library. Both of the parameters, in and out,
should be NULL when NWNetInit is called.

NDS and Bindery Service Group

NDS: Functions 642

NCP Calls

None

See Also

NWNetTerm

NDS and Bindery Service Group

NDS: Functions 643

NWNetTerm

Shuts down and cleans up after NDS

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwdsmisc.h>

N_EXTERN_LIBRARY (NWDSCCODE) NWNetTerm (
 nptr reserved);

Pascal Syntax

#include <nwdsmisc.inc>

Function NWNetTerm (
 reserved : nptr
) : NWDSCCODE;

Return Values

0x0000 SUCCESSFUL

nonzero
value

Negative values indicate errors. See NDS Values (-001 to
-699).

Remarks

NWNetTerm terminates the NDS library.

Under VLM, NWNetTerm has no effect and other NDS functions may be
called after calling NWNetTerm.

Under NLM, OS/2, Windows, Windows95, and Windows NT,
NWNetTerm should be called last as it will shut down and clean up after
NDS.

If, after calling NWNetTerm, you wish to call other NDS functions, call
NWNetInit before calling any other NDS functions.

NCP Calls

None

NDS and Bindery Service Group

NDS: Functions 644

See Also

NWNetInit

NDS and Bindery Service Group

NDS: Functions 645

NWSetDefaultNameContext

Sets the default name context

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
see also
#include <nwndscon.h>

NWCCODE N_API NWSetDefaultNameContext (
 nuint16 contextLength,
 nuint8 N_FAR *context);

Pascal Syntax

Function NWSetDefaultNameContext
 (contextLength : nuint16;
 context : pnuint8
) : NWCCODE;

Parameters

contextLength

(IN) Specifies the length of the context.

context

(IN) Points to the buffer containing the 256-byte default name context.

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

0x883
3

INVALID_BUFFER_LENGTH

Remarks

NDS and Bindery Service Group

NDS: Functions 646

The default name context may have been originally set in NET.CFG. If
the name is longer than 256 bytes, it will be truncated.

To call NWSetDefaultNameContext in DOS or in Windows, VLMs must
be running. NETX does not support NWSetDefaultNameContext and
will return an error if VLMs are not running.

NCP Calls

None

See Also

NWGetDefaultNameContext

NDS and Bindery Service Group

NDS: Functions 647

NWSetPreferredDSTree

Sets the preferred NDS Server tree name in the requester's tables

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NDS

Syntax

#include <nwnet.h>
see also
#include <nwdstype.h>
#include <nwndscon.h>

NWCCODE N_API NWSetPreferredDSTree (
 nuint16 length,
 pnuint8 tree);

Pascal Syntax

Function NWSetPreferredDSTree
 (length : nuint16;
 treeName : pnuint8
) : NWCCODE;

Parameters

length

(IN) Specifies the length of the tree name.

tree

(IN) Points to the NDS server tree name.

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

0x883
6

INVALID_PARAMETER

Remarks

NDS and Bindery Service Group

NDS: Functions 648

NWSetPreferredDSTree sets a tree name for future NDS functions. The
tree name may also be set in NET.CFG. The maximum name length is 32
characters. If the server name is too long, INVALID_PARAMETER is
returned.

NWGetPreferredDSServer creates the connection attachment to the
server specified in NWSetPreferredDSTree.

To call NWSetPreferredDSTree in DOS or in Windows, VLMs must be
running. NETX does not support NWSetPreferredDSTree and will
return an error if VLMs are not running.

NCP Calls

None

See Also

NWGetPreferredDSServer (obsolete 6/96)

NDS and Bindery Service Group

NDS: Functions 649

NDS: Structures

NDS and Bindery Service Group

NDS: Structures 650

Asn1ID_T

Holds the ASN1 ID of an object

Service: NDS

Defined In: nwdsbuft.h

Structure

typedef struct
{
 nuint32 length;
 nuint8 data[MAX_ASN1_NAME];
} Asn1ID_T;

Pascal Structure

Defined in nwdsbuft.inc

pAsn1ID_T = ^Asn1ID_T;
 Asn1ID_T = Record
 length : nuint32;
 data : Array[0..MAX_ASN1_NAME-1] Of nuint8
 End;

Fields

length

data

NDS and Bindery Service Group

NDS: Structures 651

Attr_Info_T

Contains information used to define attribute types

Service: NDS

Defined In: nwdsbuft.h

Structure

typedef struct
{
 nuint32 attrFlags;
 nuint32 attrSyntaxID;
 nuint32 attrLower;
 nuint32 attrUpper;
 Asn1ID_T asn1ID;
} Attr_Info_T;

Pascal Structure

Defined in nwdsbuft.inc

pAttr_Info_T = ^Attr_Info_T;
 Attr_Info_T = Record
 attrFlags : nuint32;
 attrSyntaxID : nuint32;
 attrLower : nuint32;
 attrUpper : nuint32;
 asn1ID : Asn1ID_T
 End;

Fields

attrFlags

Indicates the constraints assigned to the attribute:

0x
01

$00
01

DS_SINGLE_VALUED_ATTR

0x
02

$00
02

DS_SIZED_ATTR

0x
04

$00
04

DS_NONREMOVABLE_ATTR

0x
08

$00
08

DS_READ_ONLY_ATTR

0x
10

$00
10

DS_HIDDEN_ATTR

NDS and Bindery Service Group

NDS: Structures 652

0x
20

$00
20

DS_STRING_ATTR

0x
40

$00
40

DS_SYNC_IMMEDIATE

attrSyntaxID

Indicates the syntax ID of the attribute type.

attrLower

Indicates the lower limit of the attribute.

attrUpper

Indicates the upper limit of the attribute.

asn1ID

Indicates the object identifier allocated according to the rules specified
in the ASN.1 standard; if no object identifier has been registered for
the class, a zero-length octet string is specified.

NDS and Bindery Service Group

NDS: Structures 653

Back_Link_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 nuint32 remoteID;
 pnstr8 objectName;
} Back_Link_T;

Pascal Structure

Defined in nwdsattr.inc

 pBack_Link_T = ^Back_Link_T;
 Back_Link_T = Record
 remoteID : nuint32;
 objectName : pnstr8
 End;

Fields

remoteID

objectName

NDS and Bindery Service Group

NDS: Structures 654

Bit_String_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 nuint32 numOfBits;
 nptr data;
} Bit_String_T;

Defined In

Defined in nwdsattr.inc

pBit_String_T = ^Bit_String_T;
 Bit_String_T = Record
 numOfBits : nuint32;
 data : pnuint8
 End;

Fields

numOfBits

data

NDS and Bindery Service Group

NDS: Structures 655

Buf_T

Initializes and handles input and output buffers

Service: NDS

Defined In: nwdsbuft.h

Structure

typedef struct
{
 nuint32 operation;
 nuint32 flags;
 nuint32 maxLen;
 nuint32 curLen;
 pnuint8 lastCount;
 pnuint8 curPos;
 pnuint8 data;
} Buf_T;

Pascal Structure

Defined in nwdsbuft.inc

pBuf_T = ^Buf_T;
ppBuf_T = ^pBuf_T;
 Buf_T = Record
 operation : nuint32;
 flags : nuint32;
 maxLen : nuint32;
 curLen : nuint32;
 lastCount : pnuint8;
 curPos : pnuint8;
 data : pnuint8
 End;

Fields

operation

Indicates the verb of the function operating on the buffer; set by
NWDSInitBuf. The operation determines the type of data in the
buffer.

flags

Indicates the set of bit flags. Only the first bit is defined. If it is set, the
buffer contains input data. If this bit is clear, the buffer contains
results:

0x0001 ($00000001) INPUT_BUFFER

NDS and Bindery Service Group

NDS: Structures 656

maxLen

Indicates the amount of memory allocated when NWDSAllocBuf is
called. This is the maximum length of data the buffer can contain. This
member is set to 0 when the buffer is allocated.

curLen

Indicates the length of the current buffer; manipulated internally by
get and put routines only. This member is set to 0 when the buffer is
allocated or initialized. For an output buffer, this member is the total
bytes of data received by the client.

lastCount

Indicates the number of items in the data currently stored in the
buffer; manipulated internally for iterative operations on the buffer.

curPos

Specifies the offset in the data area where the next operation should
occur. This member is set to the start of the buffer to which the data
field points when the buffer is allocated or initialized, or when a result
is returned. The "put" and "get" functions update the member. It is
manipulated internally.

data

Points to the actual data stored in the buffer.

NDS and Bindery Service Group

NDS: Structures 657

CI_List_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 struct_ci_list N_FAR * next;
 pnstr8 s;
} CI_List_T;

Pascal Structure

Defined in nwdsattr.inc

pCI_List_T = ^CI_List_T;
 CI_List_T = Record
 next : pCI_List_T;
 s : pnstr8
 End;

Fields

next

Points to the next node containing a case-ignore string.

s

Indicates a case-ignore string for this node.

NDS and Bindery Service Group

NDS: Structures 658

Class_Info_T

Contains information used to maintain the schema

Service: NDS

Defined In: nwdsbuft.h

Structure

typedef struct
{
 nuint32 classFlags;
 Asn1ID_T asn1ID;
} Class_Info_T;

Pascal Structure

Defined in nwdsbuft.inc

pClass_Info_T = ^Class_Info_T;
 Class_Info_T = Record
 classFlags : nuint32;
 asn1ID : Asn1ID_T
 End;

Fields

classFlags

0x
01

$0
1

DS_CONTAINER_CLASS

0x
02

$0
2

DS_EFFECTIVE_CLASS

0x
04

$0
4

DS_NONREMOVABLE_CLASS

0x
08

$0
8

DS_AMBIGUOUS_NAMING

0x
10

$1
0

DS_AMBIGUOUS_CONTAINMENT

asn1ID

NDS and Bindery Service Group

NDS: Structures 659

EMail_Address_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 nuint32 type;
 nptr address;
} EMail_Address_T;

Pascal Structure

Defined in nwdsattr.inc

 pEMail_Address_T = ^EMail_Address_T;
 EMail_Address_T = Record
 mailType : nuint32;
 address : pnstr8
 End;

Fields

type

address

NDS and Bindery Service Group

NDS: Structures 660

EMAIL_ADDRESS_TYPE

Service: NDS

Defined In: nwdsdefs.h

Structure

typedef enum
{
 SMF70 = 1,
 SMF71
} EMAIL_ADDRESS_TYPE

Fields

NDS and Bindery Service Group

NDS: Structures 661

Fax_Number_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 pnstr8 telephoneNumber;
 Bit_String_T parameters;
} Fax_Number_T;

Pascal Structure

Defined in nwdsattr.inc

pFax_Number_T = ^Fax_Number_T;
 Fax_Number_T = Record
 telephoneNumber : pnstr8;
 parameters : Bit_String_T
 End;

Fields

telephoneNumber

Points to the next node containing a case-ignore string.

parameters

Indicates a case-ignore string for this node.

NDS and Bindery Service Group

NDS: Structures 662

Filter_Cursor_T

Builds an expression tree to search for objects in NDS

Service: NDS

Defined In: nwdsfilt.h

Structure

typedef struct
{
 pFilter_Node_T fn;
 nuint16 level;
 nuint32 expect;
} Filter_Cursor_T;

Defined In

Defined in nwdsfilt.inc

pFilter_Cursor_T = ^Filter_Cursor_T;
ppFilter_Cursor_T = ^pFilter_Cursor_T;
 Filter_Cursor_T = Record
 fn : pFilter_Node_T;
 level : nuint16;
 expect : nuint32
 End;

Fields

fn

Indicates the address of the current node structure in the expression
tree.

level

Indicates the number of nodes superior to the current node plus 1.

expect

Indicates which tokens are legitimate values for the current node with
a bit-map.

NDS and Bindery Service Group

NDS: Structures 663

Filter_Node_T

Builds an expression tree to search for objects in NDS

Service: NDS

Defined In: nwdsfilt.h

Structure

typedef struct
{
 struct_filter_node N_FAR * parent;
 struct_filter_node N_FAR * left;
 struct_filter_node N_FAR * right;
 nptr value;
 nuint32 syntax;
 nuint16 token;
} Filter_Node_T;

Pascal Structure

Defined in nwdsfilt.inc

pFilter_Node_T = ^Filter_Node_T;
 Filter_Node_T = Record
 parent : pFilter_Node_T;
 left : pFilter_Node_T;
 right : pFilter_Node_T;
 value : nptr;
 syntax : nuint32;
 token : nuint16
 End;

Fields

parent

Indicates the address of the parent node. Refers to nodes in relation to
the currently selected node.

left

Indicates the address of the left subordinate. Refers to nodes in
relation to the currently selected node.

right

Indicates the address of the right subordinate. Refers to nodes in
relation to the currently selected node.

value

Indicates the address of an attribute name of attribute value, if token is
a value or a name.

NDS and Bindery Service Group

NDS: Structures 664

a value or a name.

syntax

Indicates the syntax associated with the value of token.

token

Indicates the type of node. If token specifies neither an attribute name
(14) nor an attribute value (6), value and syntax members are ignored:

0 FTOK_END
1 FTOK_OR
2 FTOK_AND
3 FTOK_NOT
4 FTOK_LPAREN
5 FTOK_RPAREN
6 FTOK_AVAL
7 FTOK_EQ
8 FTOK_GE
9 FTOK_L
10 FTOK_APPROX
14 FTOK_ANAME
15 FTOK_PRESENT
16 FTOK_RDN
17 FTOK_BASECLS

NDS and Bindery Service Group

NDS: Structures 665

Hold_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 pnstr8 objectName;
 nuint32 amount;
} Hold_T;

Pascal Structure

Defined in nwdsattr.inc

pHold_T = ^Hold_T;
 Hold_T = Record
 objectName : pnstr8;
 amount : nuint32
 End;

Fields

objectName

amount

NDS and Bindery Service Group

NDS: Structures 666

NAME_SPACE_TYPE

Service: NDS

Defined In: nwdsdefs.h

Structure

typedef enum
{
 DS_DOS,
 DS_MACINTOSH,
 DS_UNIX,
 DS_FTAM,
 DS_OS2
} NAME_SPACE_TYPE;

Pascal Structure

Defined in nwdsdefs.inc

 NAME_SPACE_TYPE = (
 DS_DOS, DS_MACINTOSH, DS_UNIX, DS_FTAM, DS_OS2
);

Fields

NDS and Bindery Service Group

NDS: Structures 667

NDSStatsInfo_T

Contains statistical information for NDS relative to an NDS server

Service: NDS

Defined In: nwdsmisc.h

Structure

typedef struct
{
 nuint32 statsVersion;
 nuint32 noSuchEntry;
 nuint32 localEntry;
 nuint32 typeReferral;
 nuint32 aliasReferral;
 nuint32 resetTime;
 nuint32 transportReferral;
 nuint32 upReferral;
 nuint32 downReferral;
 nuint32 requestCount;
 nuint32 requestDataSize;
 nuint32 replyDataSize;
} NDSStatsInfo_T, N_FAR *pNDSStatsInfo_T;

Pascal Structure

Defined in nwdsmisc.inc

 NDSStatsInfo_T = Record
 statsVersion : nuint32;
 noSuchEntry : nuint32;
 localEntry : nuint32;
 typeReferral : nuint32;
 aliasReferral : nuint32;
 requestCount : nuint32;
 requestDataSize : nuint32;
 replyDataSize : nuint32;
 resetTime : nuint32;
 transportReferral : nuint32;
 upReferral : nuint32;
 downReferral : nuint32
 End;

Fields

statsVersion

Indicates the supported members of the statistics structure as it is
expanded.

NDS and Bindery Service Group

NDS: Structures 668

noSuchEntry

Indicates the number of times name ressolution resulted in not
locating the entry local to this server.

localEntry

Indicates the number of times name resolution resulted in finding the
entry local to this server.

typeReferral

Indicates the number of times name resolution found a local entry, but
another replica type was requested.

aliasReferral

Indicates the number of times name resolution responded with an
alias referral.

resetTime

Records the last time NDS statistics were reset. The value consists of a
whole number of seconds since 12:00 midnight, January 1, 1970, UTC.

transportReferral

Indicates the number of times name resolution located a local entry,
but the referral specified does not have an acceptable transport type.

upReferral

Indicates the number of times name resolution was not walking the
tree for the caller, and the referral went "up" the tree.

downReferral

Indicates the number of times name resolution was not walking the
tree for the caller, and the referral went "down" the tree.

requestCount

Indicates the number of NDS requests received from a remote client
(including the NDS client agent used for skulking, etc.).

requestDataSize

Records the sum of request buffer sizes. This number is likely to wrap
(overflow back to a lower number) over time.

replayDataSize

Records the sum of reply buffer sizes. This number is likely to wrap
(overflow back to a lower number) over time.sport type.

NDS and Bindery Service Group

NDS: Structures 669

Net_Address_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 nuint32 addressType;
 nuint32 addressLength;
 nptr address;
} Net_Address_T;

Defined In

Defined in nwdsattr.inc

pNet_Address_T = ^Net_Address_T;
 Net_Address_T = Record
 addressType : nuint32;
 addressLength : nuint32;
 address : pnuint8
 End;

Fields

addressType

Indicates the type of communications protocol used, such as IPX or
AppleTalk.

addressLength

Indicates the address length expressed in bytes.

address

Indicates the hexadecimal address. address is stored as a binary string;
each 4-bit nibble must be converted to hexadecimal before it can be
displayed as a hexadecimal address.

NDS and Bindery Service Group

NDS: Structures 670

NET_ADDRESS_TYPE

Service: NDS

Defined In: nwdsdefs.h

Structure

typedef enum
{
 NT_IPX,
 NT_IP,
 NT_SDLC,
 NT_TOKENRING_ETHERNET,
 NT_OSI,
 NT_APPLETALK,
 NT_COUNT
} NET_ADDRESS_TYPE;

Pascal Structure

Defined in nwdsdefs.inc

 NET_ADDRESS_TYPE = (
 NT_IPX, NT_IP, NT_SDLC, NT_TOKENRING_ETHERNET, NT_OSI, NT_APPLETALK,
 NT_COUNT
);

Fields

NDS and Bindery Service Group

NDS: Structures 671

NWDS_TimeStamp_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 nuint32 wholeSeconds;
 nuint16 replicaNum;
 nuint16 eventID;
} NWDS_TimeStamp_T;

Pascal Structure

Defined in nwdsattr.inc

pNWDS_TimeStamp_T = ^NWDS_TimeStamp_T;
 NWDS_TimeStamp_T = Record
 wholeSeconds : nuint32;
 eventID : nuint32
 End;

Fields

wholeSeconds

Indicates the value of the time stamp in whole seconds. Zero equals
12:00 a.m. (midnight), January 1, 1970 GMT.

wholeSeconds

eventID

Indicates the order events occur within the whole second interval by
an integer value.

NDS and Bindery Service Group

NDS: Structures 672

Object_ACL_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 pnstr8 protectedAttrName;
 pnstr8 subjectName;
 nuint32 privileges;
} Object_ACL_T;

Pascal Structure

Defined in nwdsattr.inc

pObject_ACL_T = ^Object_ACL_T;
 Object_ACL_T = Record
 protectedAttrName : pnstr8;
 subjectName : pnstr8;
 privileges : nuint32
 End;

Fields

protectedAttrName

Indicates the name of the specific attribute to be protected; otherwise,
should be null to protect the entire object:

"[All Attributes Rights]" DS_ALL_ATTRS_NAME
"[SMS Rights]" DS_SMS_RIGHTS_NAME
"[Entry Rights]" DS_ENTRY_RIGHTS_NAME

subjectName

Indicates the name of the object receiving the rights to the protected
object:

"[Root]" DS_ROOT_NAME
"[Public]" DS_PUBLIC_NAME
"[Inheritance Mask]" DS_MASK_NAME
"[Creator]" DS_CREATOR_NAME
"[Self]" DS_SELF_NAME

DS_CREATOR_NAME and DS_SELF_NAME can be used only with
NWDSAddObject.

privileges

NDS and Bindery Service Group

NDS: Structures 673

Indicates a bit mask identifying specific rights.

NDS and Bindery Service Group

NDS: Structures 674

Object_Info_T

Handles information used to maintain objects

Service: NDS

Defined In: nwdsbuft.h

Structure

typedef struct
{
 nuint32 objectFlags;
 nuint32 subordinateCount;
 time_t modificationTime;
 char baseClass[MAX_SCHEMA_NAME_BYTES+2];
} Object_Info_T;

Pascal Structure

Defined in nwdsbuft.inc

Object_Info_T = Record
 objectFlags : nuint32;
 subordinateCount : nuint32;
 modificationTime : time_t;
 baseClass : Array [0..MAX_SCHEMA_NAME_BYTES+1] Of char;
End;

Fields

objectFlags

Indicates the object flags.

subordinateCount

Indicates the number of objects subordinates to the object.

modificationTime

Indicates the time when the object was last modified.

baseClass

Indicates the class used to create the object.

Remarks

The objectFlags field can have the following values:

0x000
1

$0001 DS_ALIAS_ENTRY

NDS and Bindery Service Group

NDS: Structures 675

0x000
2

$0002 DS_PARTITION_ROOT

0x000
4

$0004 DS_CONTAINER_ENTRY

0x000
8

$0008 DS_CONTAINER_ALIAS

0x001
0

$0010 DS_MATCHES_LIST_FILTER

0x002
0

$0020 DS_REFERENCE_ENTRY

0x004
0

$0040 DS_40X_REFERENCE_ENTRY

0x008
0

$0080 DS_BACKLINKED

0x010
0

$0100 DS_NEW_ENTRY

NDS and Bindery Service Group

NDS: Structures 676

Octet_String_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 nuint32 length;
 nptr data;
} Octet_String_T;

Pascal Structure

Defined in nwdsattr.inc

pOctet_String_T = ^Octet_String_T;
 Octet_String_T = Record
 length : nuint32;
 data : pnuint8
 End;

Fields

length

data

NDS and Bindery Service Group

NDS: Structures 677

Path_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 nuint32 nameSpaceType;
 pnstr8 volumeName;
 pnstr8 path;
} Path_T;

Pascal Structure

Defined in nwdsattr.inc

pPath_T = ^Path_T;
 Path_T = Record
 nameSpaceType : nuint32;
 volumeName : pnstr8;
 path : pnstr8
 End;

Fields

nameSpaceType

volumeName

path

NDS and Bindery Service Group

NDS: Structures 678

Replica_Pointer_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 pnstr8 serverName;
 nint32 replicaType;
 nint32 replicaNumber;
 nuint32 count;
 Net_Address_T replicaAddressHint[1];
} Replica_Pointer_T;

Pascal Structure

Defined in nwdsattr.inc

pReplica_Pointer_T = ^Replica_Pointer_T;
 Replica_Pointer_T = Record
 serverName : pnstr8;
 replicaType : nint32;
 replicaNumber : nint32;
 count : nuint32;
 replicaAddressHint : Array[0..0] Of Net_Address_T
 End;

Fields

serverName

Indicates the complete name of the NetWare server storing the replica.

replicaType

Indicates the capabilities of this copy of the partition (Master,
Secondary, Read-Only).

replicaNumber

Indicates the number of the replica.

count

Indicates the number of existing replicas.

replicaAddressHint

Indicates the node at which the NetWare Server probably exists.

NDS and Bindery Service Group

NDS: Structures 679

REPLICA_TYPE

Identifies the values for replica types

Service: NDS

Defined In: nwdsdefs.h

Structure

typedef enum
{
 RT_MASTER,
 RT_SECONDARY,
 RT_READONLY,
 RT_SUBREF,
 RT_COUNT
} REPLICA_TYPE;

Pascal Structure

Defined in nwdsdefs.inc

 REPLICA_TYPE = (
 RT_MASTER, RT_SECONDARY, RT_READONLY, RT_SUBREF, RT_COUNT
);

Fields

NDS and Bindery Service Group

NDS: Structures 680

SYNTAX

Service: NDS

Defined In: nwdsdefs.h

Structure

typedef enum
{
 SYN_UNKNOWN, /* 0 */
 SYN_DIST_NAME, /* 1 */
 SYN_CE_STRING, /* 2 */
 SYN_CI_STRING, /* 3 */
 SYN_PR_STRING, /* 4 */
 SYN_NU_STRING, /* 5 */
 SYN_CI_LIST, /* 6 */
 SYN_BOOLEAN, /* 7 */
 SYN_INTEGER, /* 8 */
 SYN_OCTET_STRING, /* 9 */
 SYN_TEL_NUMBER, /* 10 */
 SYN_FAX_NUMBER, /* 11 */
 SYN_NET_ADDRESS, /* 12 */
 SYN_OCTET_LIST, /* 13 */
 SYN_EMAIL_ADDRESS, /* 14 */
 SYN_PATH, /* 15 */
 SYN_REPLICA_POINTER, /* 16 */
 SYN_OBJECT_ACL, /* 17 */
 SYN_PO_ADDRESS, /* 18 */
 SYN_TIMESTAMP, /* 19 */
 SYN_CLASS_NAME, /* 20 */
 SYN_STREAM, /* 21 */
 SYN_COUNTER, /* 22 */
 SYN_BACK_LINK, /* 23 */
 SYN_TIME, /* 24 */
 SYN_TYPED_NAME, /* 25 */
 SYN_HOLD, /* 26 */
 SYN_INTERVAL, /* 27 */
 SYNTAX_COUNT /* 28 */
} SYNTAX;

Pascal Structure

Defined in nwdsdefs.inc

 SYNTAX = (
 SYN_UNKNOWN, (* 0 *)
 SYN_DIST_NAME, (* 1 *)
 SYN_CE_STRING, (* 2 *)
 SYN_CI_STRING, (* 3 *)

NDS and Bindery Service Group

NDS: Structures 681

 SYN_PR_STRING, (* 4 *)
 SYN_NU_STRING, (* 5 *)
 SYN_CI_LIST, (* 6 *)
 SYN_BOOLEAN, (* 7 *)
 SYN_INTEGER, (* 8 *)
 SYN_OCTET_STRING, (* 9 *)
 SYN_TEL_NUMBER, (* 10 *)
 SYN_FAX_NUMBER, (* 11 *)
 SYN_NET_ADDRESS, (* 12 *)
 SYN_OCTET_LIST, (* 13 *)
 SYN_EMAIL_ADDRESS, (* 14 *)
 SYN_PATH, (* 15 *)
 SYN_REPLICA_POINTER, (* 16 *)
 SYN_OBJECT_ACL, (* 17 *)
 SYN_PO_ADDRESS, (* 18 *)
 SYN_TIMESTAMP, (* 19 *)
 SYN_CLASS_NAME, (* 20 *)
 SYN_STREAM, (* 21 *)
 SYN_COUNTER, (* 22 *)
 SYN_BACK_LINK, (* 23 *)
 SYN_TIME, (* 24 *)
 SYN_TYPED_NAME, (* 25 *)
 SYN_HOLD, (* 26 *)
 SYN_INTERVAL, (* 27 *)
 SYNTAX_COUNT (* 28 *)
);

Fields

NDS and Bindery Service Group

NDS: Structures 682

Syntax_Info_T

Contains syntax information

Service: NDS

Defined In: nwdsbuft.h

Structure

typedef struct
{
 nuint32 ID;
 nstr8 defStr[MAX_SCHEMA_NAME_BYTES + 2];
 nflag16 flags;
} Syntax_Info_T;

Pascal Structure

Defined in nwdsbuft.inc

pSyntax_Info_T = ^Syntax_Info_T;
 Syntax_Info_T = Record
 ID : nuint32;
 defStr : Array[0..MAX_SCHEMA_NAME_BYTES+2] Of char;
 flags : nflag16
 End;

Fields

ID

Indicates the byte representation of the syntax name.

defStr

Indicates the byte representation of the syntax name.

flags

Indicates the matching rules for the syntax such as equality, greater
than, less than, etc.

NDS and Bindery Service Group

NDS: Structures 683

TimeStamp_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 nuint32 wholeSeconds;
 nuint16 replicaNum;
 nuint16 eventID;
} TimeStamp_T;

Pascal Structure

Defined in nwdsattr.inc

pTimeStamp_T = ^TimeStamp_T;
 TimeStamp_T = Record
 wholeSeconds : nuint32;
 replicaNum : nuint16;
 eventID : nuint16
 End;

Fields

wholeSeconds

Indicates the whole number of seconds, where zero equals 12:00,
midnight, January 1, 1970, UTC.

replicaNum

Indicates the number of the replica on which the event occurred.

eventID

Indicates an integer further ordering events occurring within the same
whole-second interval.

Remarks

Two time stamps values are compared by using wholeSeconds first and
eventID second. If wholeSeconds are unequal, the order is determined by
wholeSeconds alone. If wholeSeconds are equal and eventID are unequal, the
order is determined by eventID. If wholeSeconds and eventID are both
equal, the time stamps are equal.

When filling out TimeStamp_T, set eventID to zero, replicaNum to zero,
and wholeSeconds to the appropriate value.

NDS and Bindery Service Group

NDS: Structures 684

Typed_Name_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 pnstr8 objectName;
 nuint32 level;
 nuint32 interval;
} Typed_Name_T;

Pascal Structure

Defined in nwdsattr.inc

pTyped_Name_T = ^Typed_Name_T;
 Typed_Name_T = Record
 objectName : pnstr8;
 level : nuint32;
 interval : nuint32
 End;

Fields

objectName

level

Indicates the priority of the attribute. This is a relative value assigned
by the user.

interval

Indicates the frequency of reference. This is a relative value assigned
by the user.

NDS and Bindery Service Group

NDS: Structures 685

Unknown_Attr_T

Service: NDS

Defined In: nwdsattr.h

Structure

typedef struct
{
 pnstr8 attrName;
 nuint32 syntaxID;
 nuint32 valueLen;
 nptr value;
} Unknown_Attr_T;

Pascal Structure

Defined in nwdsattr.inc

pUnknown_Attr_T = ^Unknown_Attr_T;
 Unknown_Attr_T = Record
 attrName : pnstr8;
 syntaxID : nuint32;
 valueLen : nuint32;
 value : nptr
 End;

Fields

attrName

syntaxID

valueLen

value

NDS and Bindery Service Group

NDS: Structures 686

NDS Schema

NDS and Bindery Service Group

 687

NDS Object Class Definitions

NDS and Bindery Service Group

NDS Object Class Definitions 688

AFP Server

Identifies objects that are classified to provide AFP services.

NetWare Versions: 4.x

Type: Effective

Super Classes

*Top

Server (Class)

Containment

*Organization

*Organizational Unit

Named By

*CN (Common Name)

Mandatory Attributes

*CN (Common Name)

*Object Class

Optional Attributes

*Account Balance

*ACL

*Allow Unlimited Credit

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

*Description

*Equivalent To Me (4.1)

*Full Name

*Host Device

*L (Locality)

*Last Referenced Time (4.1)

*Minimum Account Balance

NDS and Bindery Service Group

NDS Object Class Definitions 689

*Network Address

*O (Organization)

*Obituary

*OU (Organizational Unit)

*Private Key

*Public Key

*Reference

*Resource (Attribute)

*Revision (4.01)

*Security Equals (4.1)

*Security Flags (4.1)

*See Also

Serial Number

*Status

Supported Connections

*User (Attribute)

*Version

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

*[Public] Read Network Address

*[Self] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

NDS and Bindery Service Group

NDS Object Class Definitions 690

Alias

Defines alias objects. The class of the aliased object determines how the alias
is named and where it may be contained.

NetWare Versions: 4.x

Type: Effective

Super Classes

Top

Containment

(special)

Named By

(special)

Mandatory Attributes

Aliased Object Name

*Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

*Equivalent To Me (4.1)

*Last Referenced Time (4.1)

*Obituary

*Reference

*Revision (4.01)

Default ACL Template

Object Name Default Rights Affected Attributes

NDS and Bindery Service Group

NDS Object Class Definitions 691

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

An alias is a name containing at least one RDN that is an alias entry.
Aliases permit Directory entries to have multiple immediate superiors
and consequently provide a basis for alternative names.

Just as the distinguished name of an object expresses the object's
relationship to some hierarchy of objects, an alias typically expresses an
alternative relationship to a different hierarchy of objects.

An object in the Directory tree may have zero or more aliases. It follows
that several alias entries may point to the same object entry. Only object
entries can have aliases. Aliases of aliases are not permitted.

An object entry does not have to be a leaf entry to have an alias. Alias
entries, however, cannot have subordinates and are always leaf entries.

The Directory uses the Aliased Object Name attribute in an alias entry to
identify and to find the corresponding object entry.

The object class Alias does not specify naming attributes for alias entries,
nor does the class define where in the Directory tree alias entries may be
contained. The Directory enforces the naming and containment rules
mandated by the base class of the object to which the alias points.

NDS and Bindery Service Group

NDS Object Class Definitions 692

Bindery Object

Used to represent an object that has been created by the Bindery Emulator
to emulate a Bindery object.

NetWare Versions: 4.x

Type: Effective

Super Classes

Top

Containment

Organization

Organizational Unit

Named By

Bindery Type

CN (Common Name)

Mandatory Attributes

Bindery Object Restriction

Bindery Type

CN (Common Name)

*Object Class

Optional Attributes

(Special)

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

*Equivalent To Me (4.1)

*Last Referenced Time (4.1)

*Obituary

*Reference

*Revision (4.01)

NDS and Bindery Service Group

NDS Object Class Definitions 693

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

NDS and Bindery Service Group

NDS Object Class Definitions 694

Bindery Queue

Represents an object that has been created by the Bindery Emulator to
emulate a user-defined queue object.

NetWare Versions: 4.x

Type: Effective

Super Classes

*Top

*Resource (Class)

Queue (Class)

Containment

*Organization

*Organizational Unit

Named By

Bindery Type

CN (Common Name)

Mandatory Object Class

Bindery Type

CN (Common Name)

*Object Class

*Queue Directory

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

*Description

*Device (Attribute)

*Equivalent To Me (4.1)

*Host Resource Name

NDS and Bindery Service Group

NDS Object Class Definitions 695

*Host Server

*L (Locality)

*Last Referenced Time (4.1)

*Network Address

*O (Organization)

*Obituary

*Operator

*OU (Organizational Unit)

*Reference

*Revision (4.01)

*See Also

*Server (Attribute)

*User (Attribute)

*Volume (Attribute)

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

*[Root] Read All attributes

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

The Host Server attribute identifies the NCP server that provides the
queue management service (QMS) for this queue.

The Queue Directory names the subdirectory where this queue's files are
stored.

The Operator, Server and User attributes are used by the QMS as access
control lists.

The Operator attribute identifies users or groups that have operator
privileges. The Server attribute identifies print servers allowed to service
this queue.

The User attribute contains a list of objects that are authorized to use this
queue. The server that controls the queue must determine if the user list
is maintained by an administrator or if the list is automatically generated
by the server. If the user list is used by the server as an access control list,
the administrator will usually maintain the list. If the user list is purely
informational, reflecting access control information stored elsewhere, the
server usually maintains the list.

NDS and Bindery Service Group

NDS Object Class Definitions 696

The See Also might be used to list related queues. For example, two
queues, "Fast" and "Slow," might provide the same set of services, except
that "Fast" runs at a higher priority. These two queues might reference
each other in their respective See Also attributes.

The Host Resource Name attribute is used when the host's local
identification for a resource differs from the global resource
identification. For example, a server might recognize "SYS:" as the local
name for a volume with the Directory name

"Project X.Engineering.Acme.US"

The L, O, and OU attributes are useful when a resource is used by
multiple localities, organizations, or organizational units. If these
attributes contain appropriate values, a search can be initiated for
resources associated with a particular locality or organization.

The Network Address attribute (inherited from Resource) acts as a cache for
the server's network address. The user can contact the server without
having to dereference the Host Server attribute.

NDS and Bindery Service Group

NDS Object Class Definitions 697

Computer

Represents both computers that host NetWare® servers and computers used
as client workstations.

NetWare Versions: 4.x

Type: Effective

Super Classes

*Top

Device (Class)

Containment

*Organization

*Organizational Unit

Named By

*CN (Common Name)

Mandatory Attributes

*CN (Common Name)

*Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

*Description

*Equivalent To Me (4.1)

*L (Locality)

*Last Referenced Time (4.1)

*Network Address

*O (Organization)

*Obituary

Operator

NDS and Bindery Service Group

NDS Object Class Definitions 698

*OU (Organizational Unit)

*Owner

*Reference

*Revision (4.01)

*See Also

*Serial Number

Server (Attribute)

Status

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

The Operator attribute is used to list individuals or groups that are
responsible for day-to-day maintenance of the computer. This may differ
from the value of Owner, which can indicate more of an administrative
responsibility with respect to the computer.

The Server attribute provides a list of servers that are hosted on this
computer.

The See Also attribute might be used, in this instance, to identify other
related computers assigned to a network.

The L attribute can be used to identify the physical location of a device.
For example, if the device were a printer, the locality might be "Building
D, Section 24, by Ed Bender's desk."

The O and OU might already be present in the device's distinguished
name. They are repeated here to aid searching when an organization
spans multiple subtrees in the Directory tree. However, these attributes
are not added automatically by the Directory even though they may be
present in the device's distinguished name. Additional values for the
organization or organizational unit may be useful when a device is
"co-owned" by multiple organizations.

NDS and Bindery Service Group

NDS Object Class Definitions 699

Country

Defines country entries in the Directory tree. Countries usually appear as
immediate subordinates of the root.

NetWare Versions: 4.x

Type: Effective

Super Classes

Top

Containment

Top

Named By

C (Country)

Mandatory Attributes

C (Country)

*Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

Description

*Equivalent To Me (4.1)

*Last Referenced Time (4.1)

*Obituary

*Reference

*Revision (4.01)

Default ACL Template

Object Name Default Rights Affected Attributes

NDS and Bindery Service Group

NDS Object Class Definitions 700

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

The Description attribute might contain the full name of the country, since
the C attribute is restricted to the two letter code defined by ISO 3166.

NDS and Bindery Service Group

NDS Object Class Definitions 701

Device (Class)

Represents physical units that can communicate (such as a modem, printer,
and so on). At least one of the L, Serial Number, or Owner attrubutes should
be included with the object entry. The choice depends on the type of device.

NetWare Versions: 4.x

Type: Noneffective

Super Classes

Top

Containment

Organization

Organizational Unit

Named By

CN (Common Name)

Mandatory Attributes

CN (Common Name)

*Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

Description

*Equivalent To Me (4.1)

L (Locality)

*Last Referenced Time (4.1)

Network Address

O (Organization)

*Obituary

OU (Organizational Unit)

Owner

NDS and Bindery Service Group

NDS Object Class Definitions 702

Owner

*Reference

*Revision (4.01)

See Also

Serial Number

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

The L attribute can be used to identify the physical location of a device.
For example, if the device were a printer, the locality might be "Building
D, Section 24, by Ed Bender's desk."

The O and OU may already be present in the device's distinguished
name. They are repeated here to aid searching when an organization
spans multiple subtrees in the Directory tree. However, these attributes
are not added automatically by the Directory even though they may be
present in the device's distinguished name. Additional values for the
organization or organizational unit may be useful when a device is
"co-owned" by multiple organizations.

NDS and Bindery Service Group

NDS Object Class Definitions 703

Directory Map

Represents the physical name of a file system directory path.

NetWare Versions: 4.x

Type: Effective

Super Classes

*Top

Resource (Class)

Containment

*Organization

*Organizational Unit

Named By

*CN (Common Name)

Mandatory Attributes

*CN (Common Name)

Host Server

*Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

*Description

*Equivalent To Me (4.1)

*Host Resource Name

*L (Locality)

*Last Referenced Time (4.1)

*O (Organization)

*Obituary

*OU (Organizational Unit)

NDS and Bindery Service Group

NDS Object Class Definitions 704

Path (Attribute)

*Reference

*Revision (4.01)

*See Also

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

The Host Server attribute identifies the server that owns and services the
resource. Requests to manipulate a particular resource must usually be
directed to the host server.

The Host Resource Name attribute is used when the host's local
identification for a resource differs from the global resource
identification. For example, a server might recognize SYS: as the local
name for a volume with the Directory name

"Project X.Engineering.Acme.US"

The L, O, and OU attributes are useful when a resource is used by
multiple localities, organizations, or organizational units. If these
attributes contain appropriate values, a search can be initiated for
resources associated with a particular locality or organization.

NDS and Bindery Service Group

NDS Object Class Definitions 705

External Entity

Represents a non-native NDS object.

NetWare Versions: 4.1

Type: Effective

Super Classes

Top

Containment

Organization

Organizational Unit

Named By

CN (Common Name)

OU (Organizational Unit)

Mandatory Attributes

CN (Common Name)

*Object Class

OptionalAttributes

*ACL

*Authority Revocation

*Back Link (Attribute)

*Bindery Property

*CA Private Key

*CA Public Key

*Certificate Revocation

*Certificate Validity Interval

*Cross Certificate Pair

Description

EMail Address (Attribute)

*Equivalent To Me (4.1)

External Name

Facsimile Telephone Number (Attribute)

L (Locality)

*Last Referenced Time (4.1)

*Obituary

OU (Organizational Unit)

NDS and Bindery Service Group

NDS Object Class Definitions 706

Physical Delivery Office Name

Postal Address (Attribute)

Postal Code

Postal Office Box

*Reference

*Revision (4.01)

S (State or Province)

SA (Street Address)

See Also

Title

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

[Public] Read External Name

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

This object can be used by services that need to store information about
entities outside of the Directory. For example, a messaging service that
can send messages to E-mail users outside of the Directory needs to store
address information about those E-mail users.

A messaging service can use External Entitiy objects to store information
about E-mail users who exist on other systems. It can then objects' names
in distribution lists that are L ist objects.

NDS and Bindery Service Group

NDS Object Class Definitions 707

Group

Defines values representing an unordered set of names. The names
themselves can represent individual objects or other groups of names.

NetWare Versions: 4.x

Type: Effective

Super Classes

Top

Containment

Organization

Organizational Unit

Named By

CN (Common Name)

Mandatory Attributes

CN (Common Name)

Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

Description

*Equivalent To Me (4.1)

Full Name

GID (Group ID)

L (Locality)

*Last Referenced Time (4.1)

Login Script (4.1)

Mailbox ID (4.1)

Mailbox Location (4.1)

NDS and Bindery Service Group

NDS Object Class Definitions 708

Member

O (Organization)

*Obituary

OU (Organizational Unit)

Owner

Profile (Attribute) (4.1)

Profile Membership (4.1)

*Reference

*Revision (4.01)

See Also

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

The membership of a group is static; that is, it is explicitly modified by
administrative action, rather than dynamically determined each time the
group is referred to. The membership of a group can be reduced to a set
of individual object's names by replacing each group with its
membership. This process can be carried out recursively until all
constituent group names have been eliminated, and only the names of
individual objects remain.

In general, Directory Service operations do not perform recursive
membership expansion. However, access control resolution effectively
expands one level of groups listed in an Access Control List (ACL). Thus,
if A is a member of group B, which is in turn listed in an ACL, A gains
the access granted to group B. However, if A is a member of group B,
which is a member of group C, and C is listed in an access control list, A
does not gain the access granted to group C.

Other applications are free to perform recursive group expansion, if they
so choose.

L, O, and OU might already be present in the group's distinguished name.
They are repeated here to aid searching when an organization spans
multiple subtrees in the Directory tree. Additional values for the locality,
organization or organizational unit may be useful when a group contains
members from multiple organizations, organizational units, or localities.

The Owner attribute could be used to contain the name of the group
leader or group moderator. This value might not be the same as the set of

NDS and Bindery Service Group

NDS Object Class Definitions 709

individuals authorized to modify the group object.

The See Also attribute might be used to list related groups. For example,
the groups "Project A Programmers", "Project A Writers", and "Project A
Testers" might mention one another in their See Also attributes.

NDS and Bindery Service Group

NDS Object Class Definitions 710

List

Represents an unordered set of names.

NetWare Versions: 4.1

Type: Effective

Super Classes

Top

Containment

Organization

Organizational Unit

Named By

CN (Common Name)

Mandatory Attributes

CN (Common Name)

Object Class

OptionalAttributes

*ACL

*Authority Revocation

*Back Link (Attribute)

*Bindery Property

*CA Private Key

*CA Public Key

*Certificate Revocation

*Certificate Validity Interval

*Cross Certificate Pair

Description

EMail Address (Attribute)

*Equivalent To Me

Full Name

L (Locality)

*Last Referenced Time

Mailbox ID

Mailbox Location

Member

O (Organization)

NDS and Bindery Service Group

NDS Object Class Definitions 711

*Obituary

OU (Organizational Unit)

Owner

*Reference

*Revision

See Also

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

[Root] Read Member

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

Member contains the names of the objects that are members of the list. The
members can be individual objects (including Group objects) or the
names of other List objects.

Unlike Group membership, List membership does not imply security
equivalence.

NDS and Bindery Service Group

NDS Object Class Definitions 712

Locality

Defines geographic locations in the Directory tree.

NetWare Versions: 4.x

Type: Effective

Super Classes

Top

Containment

Country

Locality

Organization

Organizational Unit

Named By

L (Locality)

S (State or Province)

Mandatory Attributes

*Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

Description

*Equivalent To Me (4.1)

L (Locality)

*Last Referenced Time (4.1)

*Obituary

*Reference

*Revision (4.01)

S (State or Province)

NDS and Bindery Service Group

NDS Object Class Definitions 713

SA (Street Address)

See Also

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

At least one of the attributes L and S must be present since these are
included in the naming rules. It is recommended that only an object
contained by a country usea state or a province name as a naming
attribute.

NDS and Bindery Service Group

NDS Object Class Definitions 714

Message Routing Group (Class)

Represents a group (or cluster) of messaging servers that have direct
connectivity for transferring messages between any two of them.

NetWare Versions: 4.1

Type: Effective

Super Classes

*Top

Group

Containment

*Organization

*Organizational Unit

Named By

*CN (Common Name)

Mandatory Attributes

*CN (Common Name)

*Object Class

OptionalAttributes

*ACL

*Authority Revocation

*Back Link (Attribute)

*Bindery Property

*CA Private Key

*CA Public Key

*Certificate Revocation

*Certificate Validity Interval

*Cross Certificate Pair

*Description

*EMail Address (Attribute)

*Equivalent To Me

*Full Name

*GID (Group ID)

*L (Locality)

*Last Referenced Time

*Login Script

NDS and Bindery Service Group

NDS Object Class Definitions 715

*Mailbox ID

*Mailbox Location

*Member

*O (Organization)

*Obituary

*OU (Organizational Unit)

*Owner

*Profile (Attribute)

*Profile Membership

*Reference

*Revision

*See Also

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

[Self] Read All Attributes

[Self] Browse [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

Member (inherited from Group) is used to list the messaging servers that
belong to the Message Routing Group.

Owner (inherited from Group) is used to contain the name of the
postmaster general of the messaging server's message routing group. The
owner has the authority to add a messaging server's name to, or remove a
messaging server's name from the Member list.

NDS and Bindery Service Group

NDS Object Class Definitions 716

Messaging Server (Class)

Represents messaging servers (such as NetWare MHS™ servers).

NetWare Versions: 4.1

Type: Effective

Super Classes

*Top

Server (Class)

Containment

*Organization

*Organizational Unit

Named By

*CN (Common Name)

Mandatory Attributes

*CN (Common Name)

*Object Class

OptionalAttributes

*Account Balance

*ACL

*Allow Unlimited Credit

*Authority Revocation

*Back Link (Attribute)

*Bindery Property

*CA Private Key

*CA Public Key

*Certificate Revocation

*Certificate Validity Interval

*Cross Certificate Pair

*Description

*Equivalent To Me

*Full Name

*Host Device

*L (Locality)

*Last Referenced Time

Message Routing Group (Attribute)

NDS and Bindery Service Group

NDS Object Class Definitions 717

Messaging Database Location

Messaging Server Type

*Minimum Account Balance

*Network Address

*O (Organization)

*Obituary

*OU (Organizational Unit)

Postmaster

*Private Key

*Public Key

*Reference

*Resource (Attribute)

*Revision

*Security Equals

*Security Flags

*See Also

*Status

Supported Services

*User (Attribute)

*Version

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

A MHS messaging server picks up messages which are either submitted
by messaging applications (for example, E-mail) or transferred from
another messaging server, and delivers them to the recipients. For
recipients whose mailboxes are local on the messaging server, the
messages are delivered to their mailboxes. Otherwise, the messaging
server transfers the messages to another messaging server for eventual
delivery to the recipient's mailbox.

A MHS messaging server runs as MHS.NLM on a NetWare server. There
is no limit to the number of mailboxes it serves, except that mailboxes
take up disk space.

A MHS messaging server is represented by a NDS leaf object whose
object class is Messaging Server.

Host Device (inherited from Server) identifies the NCP Server on which
the Messaging Server's software runs.

Message Routing Group names the Message Routing Groups to which the
Messaging Server is attached.

Messaging Database Location names the volume and path (such as
SYS:MHS) on which the message directory resides. MHS messaging
servers use a file system subtree to (1) receive messages from

NDS and Bindery Service Group

NDS Object Class Definitions 718

servers use a file system subtree to (1) receive messages from
applications, other messaging servers and gateways, (2) store messages
while they are being routed, (3) store internal control files, and (4) to
extract files.

Messaging Server Type identifies the type of the Messaging Server object
(for example, MHS, GMHS, X400).

Postmaster specifies one or more users who have the privileges to manage
the messaging server, such as privileges to remove a mailbox.
Postmasters also receive messages about special events in the messaging
server, such as messages being unprocessable.

Supported Services indicates the messaging capabilities of the server.

User (inherited from Server) contains a list users whose mailboxes are
serviced by the messaging server. Any effective object that has the
Mailbox ID and Mailbox Location attributes is a valid value for this list.

Adding an object to the User list has the same effect as assigning values to
the object's Mailbox Location and Mailbox ID attributes. An administrator
can give an object a mailbox by either means.

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

[Public] Read Messaging Database
Location

[Public] Read Messaging Server Type

*[Public] Read Network Address

[Self] Read All Attributes

[Self] Browse [Entry Rights]

*[Self] Supervisor [Entry Rights]

*[Self] Read/Write Status

NDS and Bindery Service Group

NDS Object Class Definitions 719

NCP Server

Represents servers that provide NCP transport and session services.

NetWare Versions: 4.x

Type: Effective

Super Classes

*Top

Server (Class)

Containment

*Organization

*Organizational Unit

Named By

*CN (Common Name)

Mandatory Attributes

*CN (Common Name)

*Object Class

Optional Attributes

*Account Balance

*ACL

*Allow Unlimited Credit

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

*Description

DS Revision (4.1)

*Equivalent To Me (4.1)

*Full Name

*Host Device

*L (Locality)

*Last Referenced Time (4.1)

NDS and Bindery Service Group

NDS Object Class Definitions 720

Messaging Server (Attribute) (4.1)

*Minimum Account Balance

*Network Address

*O (Organization)

*Obituary

Operator

*OU (Organizational Unit)

*Private Key

*Public Key

*Reference

*Resource (Attribute)

*Revision (4.01)

*Security Equals (4.1)

*Security Flags (4.1)

*See Also

*Status

Supported Services

*User (Attribute)

*Version

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

[Public] Read Messaging Server

*[Public] Read Network Address

*[Self] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

Note that the individual services on an NCP server do not need distinct
Directory names, since they can all share a common NCP session.
However, individual resources on a server may require distinct Directory
entries. For example, if a server supports file services and queue
management services, that server will have only one object in the
Directory for the server itself. Other Directory entries would denote the
individual queues and file volumes.

The Supported Services attribute is used to list NCP based services or
features available at this network address. It should not be used to list
other services residing on the same host.

NDS and Bindery Service Group

NDS Object Class Definitions 721

The Operator attribute is used by the NCP server as an ACL. If an object is
listed in this attribute, that object is allowed to perform remote-console
operations.

NCP Server is intended to represent both Bindery based and NDS based
NCP servers. The Version attribute (inherited from Server) should
distinguish one type of server from the other

The Private Key and Public Key attributes are present if the server is a client
of the Directory'sAuthentication Services. The Resource attribute contains
a list of resources managed by this service.

The User attribute contains a list of objects that are authorized to use this
server. The server must determine if the user list is to be maintained by
an administrator, or if the list is automatically generated by the server. If
the user list is used by the server as an ACL, the administrator usually
maintains the list. If the user list is purely informational, reflecting access
control information stored elsewhere, the server usually maintains the
list.

NDS and Bindery Service Group

NDS Object Class Definitions 722

Organization

Defines organization objects in the Directory tree.

NetWare Versions: 4.x

Type: Effective

Super Classes

Top

Containment

Country

Locality

Top

Named By

O (Organization)

Mandatory Attributes

O (Organization)

*Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

Description

Detect Intruder

EMail Address (Attribute)

*Equivalent To Me (4.1)

Facsimile Telephone Number (Attribute)

Intruder Attempt Reset Interval

Intruder Lockout Reset Interval

L (Locality)

*Last Referenced Time (4.1)

NDS and Bindery Service Group

NDS Object Class Definitions 723

Lockout After Detection

Login Intruder Limit

Login Script

Mailbox ID (4.1)

Mailbox Location (4.1)

NNS Domain

*Obituary

Physical Delivery Office Name

Postal Address (Attribute)

Postal Code

Postal Office Box

Print Job Configuration

Printer Control

*Reference

*Revision (4.01)

S (State or Province)

SA (Street Address)

See Also

Telephone Number (Attribute)

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

An organization located directly under the root denotes an international
organization. For international organizations, the values of the O attribute
must all be distinct.

NDS and Bindery Service Group

NDS Object Class Definitions 724

Organizational Person

Defines objects representing people employed by, or in some other
important way associated with an organization.

NetWare Versions: 4.x

Type: Noneffective

Super Classes

*Top

Person

Containment

Organization

Organizational Unit

Named By

CN (Common Name)

OU (Organizational Unit)

Mandatory Attributes

*CN (Common Name)

*Object Class

*Surname

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

*Description

EMail Address (Attribute)

*Equivalent To Me (4.1)

Facsimile Telephone Number (Attribute)

*Full Name

*Generational Qualifier (4.1)

NDS and Bindery Service Group

NDS Object Class Definitions 725

*Given Name (4.1)

*Initials (4.1)

L (Locality)

*Last Referenced Time (4.1)

Mailbox ID (4.1)

Mailbox Location (4.1)

*Obituary

OU (Organizational Unit)

Physical Delivery Office Name

Postal Address (Attribute)

Postal Code

Postal Office Box

*Reference

*Revision (4.01)

S (State or Province)

SA (Street Address)

*See Also

*Telephone Number (Attribute)

Title

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

The X.500 standard defines two subclasses of person: Organizational
Person and Residential Person. The schema defined by this document
does not include Residential Person, but the division of Person from
Organizational Person has been maintained for future compatibility with
X.500.

NDS and Bindery Service Group

NDS Object Class Definitions 726

Organizational Role

Defines a position or role within an organization.

NetWare Versions: 4.x

Type: Effective

Super Classes

Top

Containment

Organization

Organizational Unit

Named By

CN (Common Name)

Mandatory Attributes

CN (Common Name)

*Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

Description

EMail Address (Attribute)

*Equivalent To Me (4.1)

Facsimile Telephone Number (Attribute)

L (Locality)

*Last Referenced Time (4.1)

Mailbox ID (4.1)

Mailbox Location (4.1)

*Obituary

OU (Organizational Unit)

NDS and Bindery Service Group

NDS Object Class Definitions 727

Physical Delivery Office Name

Postal Address (Attribute)

Postal Code

Postal Office Box

*Reference

*Revision (4.01)

Role Occupant

S (State or Province)

SA (Street Address)

See Also

Telephone Number (Attribute)

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

Normally, an organizational role is thought to be performed by a
particular organizational person. Over its lifetime, however, an
organizational role may be filled by a succession of different
organizational people. In general, an organizational role may be filled by
a person or a nonhuman entity.

NDS and Bindery Service Group

NDS Object Class Definitions 728

Organizational Unit

Defines objects representing subdivisions of organizations.

NetWare Versions: 4.x

Type: Effective

Super Classes

Top

Containment

Locality

Organization

Organizational Unit

Named By

OU (Organizational Unit)

Mandatory Attributes

*Object Class

OU (Organizational Unit)

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

Description

Detect Intruder

EMail Address (Attribute)

*Equivalent To Me (4.1)

Facsimile Telephone Number (Attribute)

Intruder Attempt Reset Interval

Intruder Lockout Reset Interval

L (Locality)

*Last Referenced Time (4.1)

NDS and Bindery Service Group

NDS Object Class Definitions 729

Lockout After Detection

Login Intruder Limit

Login Script

Mailbox ID (4.1)

Mailbox Location (4.1)

NNS Domain

*Obituary

Physical Delivery Office Name

Postal Address (Attribute)

Postal Code

Postal Office Box

Print Job Configuration

Printer Control

*Reference

*Revision (4.01)

S (State or Province)

SA (Street Address)

See Also

Telephone Number (Attribute)

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

[Self] Read Print Job Configuration

[Self] Read Login Script

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

NDS and Bindery Service Group

NDS Object Class Definitions 730

Partition

Encapsulates the information required to maintain the synchronization and
connectivity of the Directory's distributed operation.

NetWare Versions: 4.x

Type: Noneffective

Super Classes

Top

Containment

(none)

Named By

(none)

Mandatory Attributes

*Object Class

Optional Attributes

*ACL

Authority Revocation

*Back Link (Attribute)

*Bindery Property

CA Private Key

CA Public Key

Certificate Revocation

Convergence

Cross Certificate Pair

*Equivalent To Me (4.1)

High Convergence Sync Interval

Inherited ACL

*Last Referenced Time (4.1)

Low Convergence Reset Time

Low Convergence Sync Interval

*Obituary

Partition Control (4.01)

Partition Creation Time

Received Up To

*Reference

NDS and Bindery Service Group

NDS Object Class Definitions 731

Replica

Replica Up To (4.1)

*Revision (4.01)

Synchronized Up To

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

The name server automatically adds this class (and its required
attributes) to the root object of a partition. (This class is added in addition
to the base class of the object, but does not change that base class.) Most
of the partition attributes are operational in nature, so the name server
can supply initial values for these attributes automatically.

NDS and Bindery Service Group

NDS Object Class Definitions 732

Person

Represents the common elements of organizational and residential persons.

NetWare Versions: 4.x

Type: Noneffective

Super Classes

Top

Containment

(none)

Named By

(none)

Mandatory Attributes

CN (Common Name)

*Object Class

Surname

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

Description

*Equivalent To Me (4.1)

Full Name

Generational Qualifier (4.1)

Given Name (4.1)

Initials (4.1)

*Last Referenced Time (4.1)

*Obituary

*Reference

*Revision (4.01)

NDS and Bindery Service Group

NDS Object Class Definitions 733

See Also

Telephone Number (Attribute)

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

The X.500 standard defines two subclasses of person: Organizational
Person and Residential Person. The schema defined by this document
does not include Residential Person, but the division of Person from
Organizational Person has been maintained for future compatibility with
X.500.

NDS and Bindery Service Group

NDS Object Class Definitions 734

Print Server (Class)

Represents NetWare print servers.

NetWare Versions: 4.x

Type: Effective

Super Classes

*Top

Server (Class)

Containment

*Organization

*Organizational Unit

Named By

*CN (Common Name)

Mandatory Attributes

*CN (Common Name)

*Object Class

Optional Attributes

*Account Balance

*ACL

*Allow Unlimited Credit

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

*Description

*Equivalent To Me (4.1)

*Full Name

*Host Device

*L (Locality)

*Last Referenced Time (4.1)

*Minimum Account Balance

NDS and Bindery Service Group

NDS Object Class Definitions 735

*Network Address

*O (Organization)

*Obituary

Operator

*OU (Organizational Unit)

Printer (Attribute)

*Private Key

*Public Key

*Reference

*Resource (Attribute)

*Revision (4.01)

SAP Name

*Security Equals (4.1)

*Security Flags (4.1)

*See Also

*Status

*User (Attribute)

*Version

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

*[Public] Read Network Address

[Root] Read All Attribute Rights

*[Self] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

Print Server differs from the NCP Server class in that print servers use the
SPX protocol for communications rather than NCP.

The Print Server class is used for both Bindery based and NDS based
print servers. Bindery based print servers do have the Public Key or
Private Key attributes. The Version attribute (inherited from Server)
indicates whether the server is Bindery based or NDS based.

The Operator and User attributes are used by the print server as access
control lists. (The User attribute is inherited from Server.) The Operator
attribute identifies those individuals who are authorized to act as print
server operators. The User attribute identifies individuals authorized to
use the print server.

NDS and Bindery Service Group

NDS Object Class Definitions 736

The Queue attribute lists the queues that are serviced by this print server.

The Host Device attribute identifies the device that hosts the server. This is
usually a computer, but might be some other device. For example, a
printer could host a built-in print server.

The Private Key and Public Key attributes are present if the server is a client
of the Directory's Authentication Services. The Resource attribute contains
a list of resources managed by this service.

The User attribute contains a list of objects that are authorized to use this
server. The server must determine if the user list is to be maintained by
an administrator, or if the list is automatically generated by the server. If
the user list is used by the server as an access control list, the
administrator will usually maintain the list. If the user list is purely
informational, reflecting access control information stored elsewhere, the
server usually maintains the list.

NDS and Bindery Service Group

NDS Object Class Definitions 737

Printer (Class)

Represents printers in the Directory tree. A printer object points to the
queues to which it is attached.

NetWare Versions: 4.x

Type: Effective

Super Classes

*Top

Device (Class)

Containment

*Organization

*Organizational Unit

Named By

*CN (Common Name)

Mandatory Attributes

*CN (Common Name)

*Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

Cartridge

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

Default Queue

*Description

*Equivalent To Me (4.1)

Host Device

*L (Locality)

*Last Referenced Time (4.1)

Memory

NDS and Bindery Service Group

NDS Object Class Definitions 738

Network Address

Network Address Restriction

Notify

*O (Organization)

*Obituary

Operator

*OU (Organizational Unit)

*Owner

Page Description Language

Print Server (Attribute)

Printer Configuration

Queue (Attribute)

*Reference

*Revision (4.01)

*See Also

*Serial Number

Status

Supported Typefaces

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

The Host Device attribute is used in this class to denote the computer (or
other device) to which the printer is attached.

The Host Server attribute identifies the print servers that manage this
device.

The Supported Typefaces and Page Description Language attributes are
included to aid a search for printers with a particular set of capabilities.
The contents of these attributes are statically maintained by an
administrator, rather than being dynamically updated from printer
feedback.

The Queue attribute identifies the associated queues through which this
printer may be accessed.

The L attribute can be used to identify the physical location of a device.
For example, if the device were a printer, the locality might be "Building

NDS and Bindery Service Group

NDS Object Class Definitions 739

D, Section 24, by Ed Bender's desk."

The organization name and organizational unit name may already be
present in the device's distinguished name. They are repeated here to aid
searching when an organization spans multiple subtrees in the Directory
tree. However, these attributes are not added automatically by the
Directory even though they may be present in the device's distinguished
name. Additional values for the organization name or organizational
unit name may be useful when a device is "co-owned" by multiple
organizations.

NDS and Bindery Service Group

NDS Object Class Definitions 740

Profile (Class)

Specifies a shared login configuration.

NetWare Versions: 4.x

Type: Effective

Super Classes

Top

Containment

Organization

Organizational Unit

Named By

CN (Common Name)

Mandatory Attributes

CN (Common Name)

Login Script

*Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

Description

*Equivalent To Me (4.1)

Full Name (4.1)

L (Locality)

*Last Referenced Time (4.1)

O (Organization)

*Obituary

OU (Organizational Unit)

*Reference

NDS and Bindery Service Group

NDS Object Class Definitions 741

*Revision (4.01)

See Also

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

A profile has an associated login script that contains the bulk of the
configuration information.

NDS and Bindery Service Group

NDS Object Class Definitions 742

Queue (Class)

Represents batch processing queues available in the NetWare NCP
environment.

NetWare Versions: 4.x

Type: Effective

Super Classes

*Top

Resource (Class)

Containment

*Organization

*Organizational Unit

Named By

*CN (Common Name)

Mandatory Attributes

*CN (Common Name)

*Object Class

Queue Directory

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

*Description

Device (Attribute)

*Equivalent To Me (4.1)

*Host Resource Name

Host Server

*L (Locality)

*Last Referenced Time (4.1)

NDS and Bindery Service Group

NDS Object Class Definitions 743

Network Address

*O (Organization)

*Obituary

Operator

*OU (Organizational Unit)

*Reference

*Revision (4.01)

*See Also

Server (Attribute)

User (Attribute)

Volume (Attribute)

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

[Root] Read All attributes

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

The Host Server attribute identifies the server that owns and services the
resource. Requests to manipulate a particular resource must usually be
directed to the host server.

The Host Resource Name attribute is used when the host's local
identification for a resource differs from the global resource
identification. For example, a server might recognize SYS: as the local
name for a volume with the Directory name

"Project X.Engineering.Acme.US"

The L, O, and OUattributes are useful when a resource is used by multiple
localities, organizations, or organizational units. If these attributes
contain appropriate values, a search can be initiated for resources
associated with a particular locality or organization.

The Network Address attribute acts as a cache for the server's network
address. The user can contact the server without having to dereference
the Host Server attribute.

The User attribute contains a list of objects that are authorized to use this
resource. The server that controls the resource must determine if the user
list is maintained by an administrator or if the list is automatically
generated by the server. If the user list is used by the server as an access

NDS and Bindery Service Group

NDS Object Class Definitions 744

control list, the administrator will usually maintain the list. If the user list
is purely informational, reflecting access control information stored
elsewhere, the server usually maintains the list.

NDS and Bindery Service Group

NDS Object Class Definitions 745

Resource (Class)

Identifies logical resources available on the network.

NetWare Versions: 4.x

Type: Noneffective

Super Classes

Top

Containment

Organization

Organizational Unit

Named By

CN (Common Name)

Mandatory Attributes

CN (Common Name)

*Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

Description

*Equivalent To Me (4.1)

Host Resource Name

L (Locality)

*Last Referenced Time (4.1)

O (Organization)

*Obituary

OU (Organizational Unit)

*Reference

*Revision (4.01)

NDS and Bindery Service Group

NDS Object Class Definitions 746

See Also

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

The Resource class differs from the Device class in that a device is a
physical unit, and a resource is some nonphysical, logical unit. Examples
of resources are queues, profiles, and file system volumes.

The Host Resource Name attribute is used when the host's local
identification for a resource differs from the global resource
identification. For example, a server might recognize SYS: as the local
name for a volume with the Directory name

"Project X.Engineering.Acme.US"

The L, O, and OU attributes are useful when a resource is used by
multiple localities, organizations, or organizational units. If these
attributes contain appropriate values, a search can be initiated for
resources associated with a particular locality or organization.

NDS and Bindery Service Group

NDS Object Class Definitions 747

Server (Class)

Identifies entities that manage one or more resources and provide access to
those resources through a communications protocol.

NetWare Versions: 4.x

Type: Noneffective

Super Classes

Top

Containment

Organization

Organizational Unit

Named By

CN (Common Name)

Mandatory Attributes

CN (Common Name)

*Object Class

Optional Attributes

Account Balance

*ACL

Allow Unlimited Credit

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

Description

*Equivalent To Me (4.1)

Full Name

Host Device

L (Locality)

*Last Referenced Time (4.1)

Minimum Account Balance

NDS and Bindery Service Group

NDS Object Class Definitions 748

Network Address

O (Organization)

*Obituary

OU (Organizational Unit)

Private Key

Public Key

*Reference

Resource (Attribute)

*Revision (4.01)

Security Equals (4.1)

Security Flags (4.1)

See Also

Status

User (Attribute)

Version

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

[Public] Read Network Address

[Self] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

The Host Device attribute identifies the device that hosts the server. This is
usually a computer, but might be some other device. For example, a
printer could host a built-in print server.

The Private Key and Public Key attributes are present if the server is a client
of the Directory's Authentication Services. The Resource attribute contains
a list of resources managed by this service.

The User attribute contains a list of objects that are authorized to use this
server. The server must determine if the user list is to be maintained by
an administrator, or if the list is automatically generated by the server. If
the user list is used by the server as an access control list, the
administrator will usually maintain the list. If the user list is purely
informational, reflecting access control information stored elsewhere, the
server usually maintains the list.

NDS and Bindery Service Group

NDS Object Class Definitions 749

Top

All classes are a subclass of Top. This class mandates that all objects contain
an Object Class attribute. Although Top is an effective class, it is a special
case in that no objects can be constructed from this class by the user.

NetWare Versions: 4.x

Type: Effective

Super Classes

(none)

Containment

(none)

Named By

(none)

Mandatory Attributes

Object Class

Optional Attributes

ACL

Authority Revocation (4.1)

Back Link (Attribute)

Bindery Property

CA Private Key (4.1)

CA Public Key (4.1)

Certificate Revocation (4.1)

Certificate Validity Interval (4.1)

Cross Certificate Pair (4.1)

Equivalent To Me (4.1)

Last Referenced Time (4.1)

Obituary

Reference

Revision (4.01)

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

NDS and Bindery Service Group

NDS Object Class Definitions 750

*[Creator] Supervisor [Entry Rights]

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

NDS and Bindery Service Group

NDS Object Class Definitions 751

Unknown (Class)

Represents any object created by the server to restore an object whose base
class is no longer defined by the Schema.

NetWare Versions: 4.x

Type: Effective

Super Classes

Top

Containment

(none)

Named By

(none)

Mandatory Attributes

Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

*Equivalent To Me (4.1)

*Last Referenced Time (4.1)

*Obituary

*Reference

*Revision (4.01)

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

NDS and Bindery Service Group

NDS Object Class Definitions 752

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

NDS and Bindery Service Group

NDS Object Class Definitions 753

User (Class)

Represents users of network services.

NetWare Versions: 4.x

Type: Effective

Super Classes

*Top

*Person

Organizational Person

Containment

*Organization

*Organizational Unit

Named By

*CN (Common Name)

*OU (Organizational Unit)

Mandatory Attributes

*CN (Common Name)

*Object Class

*Surname

Optional Attributes

Account Balance

*ACL

Allow Unlimited Credit

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

*Description

*EMail Address (Attribute)

*Equivalent To Me (4.1)

*Facsimile Telephone Number (Attribute)

NDS and Bindery Service Group

NDS Object Class Definitions 754

Full Name

*Generational Qualifier (4.1)

*Given Name (4.1)

Group Membership

Higher Privileges

Home Directory

*L (Locality)

Language

Last Login Time

*Last Referenced Time (4.1)

Locked By Intruder

Login Allowed Time Map

Login Disabled

Login Expiration Time

Login Grace Limit

Login Grace Remaining

Login Intruder Address

Login Intruder Attempts

Login Intruder Reset Time

Login Maximum Simultaneous

Login Script

Login Time

*Mailbox ID (4.1)

*Mailbox Location (4.1)

Message Server

Minimum Account Balance

Network Address

Network Address Restriction

*Obituary

*OU (Organizational Unit)

Password Allow Change

Password Expiration Interval

Password Expiration Time

Password Minimum Length

Password Required

Password Unique Required

Passwords Used

*Physical Delivery Office Name

*Postal Address (Attribute)

*Postal Code

*Postal Office Box

Print Job Configuration

Printer Control

Private Key

Profile (Attribute)

NDS and Bindery Service Group

NDS Object Class Definitions 755

Profile Membership (4.1)

Public Key

*Reference

*Revision (4.01)

*S (State or Province)

*SA (Street Address)

Security Equals

*See Also

Server Holds

*Telephone Number (Attribute)

*Title

UID (User ID)

Default ACL Template

Object Name Default Rights Affected Attributes

*[Creator] Supervisor [Entry Rights]

[Public] Read Message Server

[Root] Browse [Entry Rights]

[Root] Read Group Membership

[Root] Read Network Address

[Self] Read All attributes

[Self] Read/Write Login Script

[Self] Read/Write Print Job Configuration

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

Note that User includes both clients and service providers. In this context,
Private Key stores the object's private key encrypted by the object's
password.

The X.500 standard defines two subclasses of person: Organizational
Person and Residential Person. The schema defined by this document
does not include Residential Person, but the division of Person from
Organizational Person has been maintained for future compatibility with
X.500.

NDS and Bindery Service Group

NDS Object Class Definitions 756

Volume (Class)

Represents NetWare file system volumes.

NetWare Versions: 4.x

Type: Effective

Super Classes

*Top

Resource (Class)

Containment

*Organization

*Organizational Unit

Named By

*CN (Common Name)

Mandatory Attributes

*CN (Common Name)

Host Server

*Object Class

Optional Attributes

*ACL

*Authority Revocation (4.1)

*Back Link (Attribute)

*Bindery Property

*CA Private Key (4.1)

*CA Public Key (4.1)

*Certificate Revocation (4.1)

*Certificate Validity Interval (4.1)

*Cross Certificate Pair (4.1)

*Description

*Equivalent To Me (4.1)

*Host Resource Name

*L (Locality)

*Last Referenced Time (4.1)

*O (Organization)

*Obituary

*OU (Organizational Unit)

NDS and Bindery Service Group

NDS Object Class Definitions 757

*Reference

*Revision (4.01)

*See Also

Status

Default ACL Template

Object
Name

Default
Rights

Affected Attributes

*[Creator] Supervisor [Entry Rights]

[Root] Read Host Resource Name

[Root] Read Host Server

Remarks

For help in understanding the class definition template, see Reading
Class Definitions.

When present, the Host Resource Name attribute (inherited from Resource)
is used to contain the local volume name that corresponds to the volume
name on the server. If the attribute is not present, the local volume name
"SYS:" can be assumed.

This subclass exists primarily to allow Volume objects to be distinguished
from other types of Resource objects.

The Host Server attribute identifies the server that owns and services the
resource. Requests to manipulate a particular resource must usually be
directed to the host server.

The Host Resource Name attribute is used when the host's local
identification for a resource differs from the global resource
identification. For example, a file server might recognize SYS: as the local
name for a volume with the Directory name

"Project X.Engineering.Acme.US"

The L, O, and OU attributes are useful when a resource is used by
multiple localities, organizations, or organizational units. If these
attributes contain appropriate values, a search can be initiated for
resources associated with a particular locality or organization.

NDS and Bindery Service Group

NDS Object Class Definitions 758

Graphical View of NDS Object Class
Definitions

For more information see Graphical View Explanation.

NDS and Bindery Service Group

Graphical View of NDS Object Class Definitions 759

NDS and Bindery Service Group

Graphical View of NDS Object Class Definitions 760

NDS and Bindery Service Group

Graphical View of NDS Object Class Definitions 761

NDS and Bindery Service Group

Graphical View of NDS Object Class Definitions 762

NDS and Bindery Service Group

Graphical View of NDS Object Class Definitions 763

NDS and Bindery Service Group

Graphical View of NDS Object Class Definitions 764

NDS and Bindery Service Group

Graphical View of NDS Object Class Definitions 765

NDS and Bindery Service Group

Graphical View of NDS Object Class Definitions 766

Related Topics:

NDS Object Class Definitions

NDS and Bindery Service Group

Graphical View of NDS Object Class Definitions 767

NDS Attribute Type Definitions

NDS and Bindery Service Group

NDS Attribute Type Definitions 768

Account Balance

Specifies the amount of credit (or money) the user has to spend on the
purchase of network services. If the user's account balance drops below a
specified minimum balance, services are refused to the user.

NetWare Versions: 4.x

Syntax

Counter

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Server (Class)

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 769

ACL

Contains access control information for the object and its attributes.

NetWare Versions: 4.x

Syntax

Object ACL

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 770

Aliased Object Name

The Aliased Object Name attribute is assigned to alias objects in the Directory.
The aliased object is the object to which the alias points.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Alias

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 771

Allow Unlimited Credit

Allows the user to access and use all network services he or she has rights
to, without maintaining a minimum account balance.

NetWare Versions: 4.x

Syntax

Boolean

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Server (Class)

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 772

Authority Revocation

A time-stamped list of revoked public keys of all Certification Authorities
known and certified by the Certification Authority.

NetWare Versions: 4.x

Syntax

Octet String

Constraints

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Partition

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 773

Back Link (Attribute)

Attached to any object for which an external reference is required by a
remote server.

NetWare Versions: 4.x

Syntax

Back Link (Syntax)

Constraints

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SERVER_READ

Used In

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This attribute contains the set of servers that store an external reference to
an associated object. The attribute is used to notify such servers of
changes in the status of the object.

NDS and Bindery Service Group

NDS Attribute Type Definitions 774

Bindery Object Restriction

A single-valued integer attribute used by Bindery objects. It consists of an
error code that indicates the reason the Bindery object cannot be represented
as a Directory object.

NetWare Versions: 4.x

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SINGLE_VALUED_ATTR

Used In

Bindery Object

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 775

Bindery Property

Emulates bindery properties that cannot be represented with other attribute
types.

NetWare Versions: 4.x

Syntax

Octet String

Constraints

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

Used In

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

In the bindery, properties of any name and data structure could be
attached to objects. This is not the case with the Directory. Bindery
Property attributes are used to hold the information stored in bindery
properties through the bindery API and the Bindery Services.

NDS and Bindery Service Group

NDS Attribute Type Definitions 776

Bindery Type

Associates a bindery object type with an object of class Bindery Object.

NetWare Versions: 4.x

Syntax

Numeric String

Constraints

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SINGLE_VALUED_ATTR

DS_STRING_ATTR

Used In

Bindery Object

Bindery Queue

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 777

C (Country)

Specifies a country.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (2, 2)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Country

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

When used as a component of a Directory name, a country name
identifies the country in which the named object is physically located or
with which it is associated in some other important way. An attribute
value for country name is a string chosen from ISO 3166.

NDS and Bindery Service Group

NDS Attribute Type Definitions 778

CA Private Key

(Certification Authority Private Key) Contains the certification authority
private key.

NetWare Versions: 4.x

Syntax

Octet String

Constraints

DS_HIDDEN_ATTR

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE

Used In

Partition

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

Your applications cannot access this attribute since it is a hidden
attribute.

This attribute is used to sign public keys which are produced for objects.
The attribute contains the private key encrypted with the certification
authority's password.

NDS and Bindery Service Group

NDS Attribute Type Definitions 779

CA Public Key

(Certification Authority Public Key) Contains the certification authority
public key.

NetWare Versions: 4.x

Syntax

Octet String

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ

DS_READ_ONLY_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE

Used In

Partition

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This attribute is used to verify public keys that are produced for objects
subordinate to the certification authority. The attribute contains the
public key along with the certification information.

NDS and Bindery Service Group

NDS Attribute Type Definitions 780

Cartridge

Contains a list of font cartridges present on the printer.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Printer (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 781

Certificate Revocation

A time-stamped list of all public keys revoked by the Certification
Authority.

NetWare Versions: 4.x

Syntax

Octet String

Constraints

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Partition

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 782

Certificate Validity Interval

Specifies the amount of time that a certificate is valid.

NetWare Versions: 4.1

Syntax

Interval

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (60..-1)

DS_SYNC_IMMEDIATE (4.1)

Used In

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

The length of time is specified when the certificate is made.

NDS and Bindery Service Group

NDS Attribute Type Definitions 783

CN (Common Name)

Specifies an identifier of an object. A common name is not a complete
Directory name; it is a name by which an object is commonly known in a
particular context, such as within an organization.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1..64)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Bindery Object

Bindery Queue

Device (Class)

External Entity

Group

List

Organizational Person

Organizational Role

Person

Profile (Class)

Resource (Class)

Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This attribute is a string chosen by the person or organization it describes.
For devices and application entities, the string is chosen by the
organization responsible for the object. A common name is not
necessarily definitive and may admit ambiguity within its limited scope.

Common names conform to the naming conventions of the country or
culture with which they are associated. For example, a typical common
name for a person in an English-speaking country may comprise a
personal title (Mr., Ms., Dr., Professor, Sir, Lord, and so on), a first name,

NDS and Bindery Service Group

NDS Attribute Type Definitions 784

middle names, a last name, a generational qualifier (Jr., Sr., and so on)
and decorations and awards. Examples of common names include:

CN=Mr Robin Lachlan Mcleod BSc(Hons) CEng MIEE
CN=Divisional Coordination Committee
CN=High Speed Modem

Variant names are associated with a named object as separate and
alternative attribute values. Common variant names should be made
available (for example, the use of a middle name as a preferred first name
or the use of "Bill" in place of "William").

NDS and Bindery Service Group

NDS Attribute Type Definitions 785

Convergence

Indicates how persistent a partition should be in attempting to keep its
replicas up to date.

NetWare Versions: 4.x

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (0,1)

DS_SYNC_IMMEDIATE (4.1)

Used In

Partition

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

The possible values of this attribute and their meanings are:

0 Lo
w

Do not propagate updates as they come in. Rather,
wait for a periodic synchronization to update any
replicas. Synchronizations may be done at a low
frequency to save resources. Partitions with low
convergence and pending updates should be
synchronized at least once every 24 hours. See the
Low Convergence Sync Interval and Low
Convergence Reset Time attributes for details on
setting the convergence cycle.

1 Hi
gh

Make one attempt to propagate an update to all
replicas when it comes in. If this fails, schedule a
synchronization for the next interval time.

High is the default for this attribute.

NDS and Bindery Service Group

NDS Attribute Type Definitions 786

Cross Certificate Pair

A pair of public keys that allow public key verification to circumvent the
normal certification hierarchy. This provides a shorter certification path.

NetWare Versions: 4.x

Syntax

Octet String

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Partition

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 787

Default Queue

Specifies a queue where jobs submitted to the specified printer go unless a
different queue is specified.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SERVER_READ

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Printer (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 788

Description

Specifies text that describes the associated object.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1..1024)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Country

Device (Class)

External Entity

Group

List

Locality

Organization

Organizational Role

Organizational Unit

Person

Profile (Class)

Resource (Class)

Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

An attribute value for the Description attribute is a string. For example,
the object "Standards Interest" might have the associated description
"distribution list for exchange of information about intracompany
standards development".

NDS and Bindery Service Group

NDS Attribute Type Definitions 789

Detect Intruder

Indicates a desire to identify suspicious login attempts.

NetWare Versions: 4.x

Syntax

Boolean

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Organization

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 790

Device (Attribute)

A list of all printers that service the specified queue.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Queue (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 791

DS Revision

Contains the internal revision number of the NDS™ agent that is running on
a NetWare® server.

NetWare Versions: 4.1

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE

Used In

NCP Server

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 792

EMail Address (Attribute)

Contains the EMail address of the user. The name must conform to the
established conventions for e-mail names.

NetWare Versions: 4.x

Syntax

EMail Address (Syntax)

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ (4.1)

DS_SYNC_IMMEDIATE (4.1)

Used In

External Entity

Group

Organization

Organizational Person

Organizational Role

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

A user can have only one E-mail address. The E-mail address for a MHS
user is stored in the Mailbox Location and Mailbox ID attributes. The
E-mail address for a non-MHS user is stored in the EMail Address
attribute.

EMail Address is used to specify a user's mailbox that resides in a
non-MHS E-mail system. For example, an NDS user can chose to have his
or her E-mail delivered to a UNIX machine which supports the SMTP
messaging protocol. This user's SMTP address in the UNIX machine is
placed in the EMail Address attribute. (In this case, the user's Mailbox
Location and Mailbox ID attributes are not used.)

EMail Address can also specify a user's E-mail alias as known in a foreign
messaging system. A non-MHS messaging system can use the alias to
send mail to a MHS user. For example, a MHS user (whose mailbox is in
a MHS messaging server) can have an X400 alias so that X400 users can
use this alias to send mail to the MHS user.

NDS and Bindery Service Group

NDS Attribute Type Definitions 793

A user can have more than one E-mail alias, one for each non-MHS
system.

The EMail Address attribute information is stored in an
EMail_Address_T structure. The convention for storing non-MHS
E-mail addresses and aliases in the structure is as follows:

If the type field of the EMail_Address_T structure is set to zero, the data
structure contains an E-mail address, in the form of
non-MHS_Email_Protocol:non-MHS_Email_Address. Where
non_MHS_Email_Protocol is a 1-8 character string, and
non-MHS_Email_Address is a string for the actual address value.

Example: SMTP:JohnD@Novell.Com

If the type field of the EMail_Address_T structure is set to one, the data
structure contains an E-mail alias, in the form of
non-MHS_Email_Protocol:non-MHS_Email_Alias. Where
non_MHS_Email_Protocol is a 1-8 character string, and
non-MHS_Email_Address is a string for the actual alias value.

Example: SMTP:JohnD@Novell.Com

NDS and Bindery Service Group

NDS Attribute Type Definitions 794

External Name

Specifies the name of the external entity in the form used by that service.

NetWare Versions: 4.1

Syntax

Octet String

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE

Used In

External Entity

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

The External Name attribute is used to hold names that will not be
interpreted by the Directory. These names should not be translated.

MHS uses External Name to include users from not-NDS directories, in
order to provide an integrated address book for sending mail.

NDS and Bindery Service Group

NDS Attribute Type Definitions 795

Equivalent To Me

Specifies a list of objects that are security equivalent to the object containing
the attribute.

NetWare Versions: : 4.1

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SERVER_READ

DS_SYNC_IMMEDIATE

Used In

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 796

External Synchronizer

Reserved for future use.

NetWare Versions: 4.1

Syntax

Octet String

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE

Used In

(none)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 797

Facsimile Telephone Number (Attribute)

Specifies the telephone number and, optionally, the parameters for a
facsimile terminal associated with an object.

NetWare Versions: 4.x

Syntax

Facsimile Telephone Number (Syntax)

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

External Entity

Organization

Organizational Person

Organizational Role

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

An attribute value for the facsimile telephone number is a string that
complies with the internationally agreed format for showing
international telephone numbers, E.123, (for example "+81 3 347 7418")
and an optional bit string (formatted according to Recommendation
T.30).

NDS and Bindery Service Group

NDS Attribute Type Definitions 798

Full Name

Specifies the full name of an object.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (0..127)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Group

List

Person

Profile (Class)

Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 799

Generational Qualifier

Specifies the generation of an object.

NetWare Versions: 4.1

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (1..8)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE

Used In

Person

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

Junior, Jr., Senior, Sr., and II are examples of generational qualifiers.

NDS and Bindery Service Group

NDS Attribute Type Definitions 800

GID (Group ID)

Specifies a unique group ID for use by UNIX® clients.

NetWare Versions: 4.x

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Group

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 801

Given Name

Specifies the given name of an object.

NetWare Versions: 4.1

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ (4.1)

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (1..32)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE

Used In

Person

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

In the American culture, Given Name is the first name of a person. It does
not include the family name.

NDS and Bindery Service Group

NDS Attribute Type Definitions 802

Group Membership

Contains a list of the groups to which the object belongs.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE

DS_WRITE_MANAGED

Used In

External Entity

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 803

High Convergence Sync Interval

Contains the interval at which a partition synchronization will occur if no
events have caused synchronization to occur.

NetWare Versions: 4.x

Syntax

Interval

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Partition

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

When high convergence is in effect, synchronization of partition
information is event-driven. When a partition's information is changed,
an immediate synchronization with other replicas is initiated. If no
update activity occurs within the high convergence synchronization
interval, synchronization will be initiated. The default for this interval is
60 minutes.

NDS and Bindery Service Group

NDS Attribute Type Definitions 804

Higher Privileges

Specifies an alternative set of security access privileges.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SERVER_READ

DS_SYNC_IMMEDIATE

DS_WRITE_MANAGED

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This attribute is not currently implemented. Its purpose is to allow a
person to activate a certain set of privileges, then deactivate them when
desired. This avoids the need to log in as supervisor to perform certain
functions. You can activate the higher privileges, perform the desired
function, and then deactivate the privileges.

NDS and Bindery Service Group

NDS Attribute Type Definitions 805

Home Directory

Contains the initial value for a client's current working directory.

NetWare Versions: 4.x

Syntax

Path (Syntax)

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (1..255)

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

The Home Directory attribute is intended for use primarily by UNIX
clients. DOS and OS/2* clients use login scripts to provide their initial
configuration information, and MAC clients have other means for storing
configuration information. UNIX clients maintain their configuration
information in the client's home directory. The Home Directory attribute
should contain a legal name in the UNIX name space of the Host Server
defined for the client.

NDS and Bindery Service Group

NDS Attribute Type Definitions 806

Host Device

Contains the distinguished name of the device with which the object is
associated.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Printer (Class)

Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 807

Host Resource Name

Contains the name by which the resource is known on the local host.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Resource (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This attribute is used when a resource is locally known by a different
name on the host server. For example, a volume's global name might be:

'Tools.Development.Acme.US'

That volume's local name on the server might be SYS:.

NDS and Bindery Service Group

NDS Attribute Type Definitions 808

Host Server

Identifies the server with which an object is associated.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Directory Map

Queue (Class)

Volume (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 809

Inherited ACL

Contains a summary of access control information inherited from a superior
partition.

NetWare Versions: 4.x

Syntax

Object ACL

Constraints

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Partition

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

The information in this attribute is used to optimize effective rights
calculations within a partition. The attribute lists all access control
information inherited from objects superior to the partition object.

NDS and Bindery Service Group

NDS Attribute Type Definitions 810

Initials

Specifies the initials of an object.

NetWare Versions: 4.1

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (1..8)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE

Used In

Person

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

For example, the initials for John Steven Doe are JSD.

NDS and Bindery Service Group

NDS Attribute Type Definitions 811

Intruder Attempt Reset Interval

Designates the time frame in which to monitor consecutive failed login
attempts.

NetWare Versions: 4.x

Syntax

Interval

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Organization

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

If the number of consecutive failed attempts to log in exceeds the Login
Intruder Limit, the user is locked from attempting further logins. The
Intruder Attempt Reset Interval is the amount of time in which those
consecutive login attempts must fall. For example, assume the interval is
30 minutes and the limit is 3 login attempts. If a user attempted to log in
every 20 minutes, the user would never be locked out. If the user
attempted to log in every minute, a lock would be implemented after the
third attempt.

NDS and Bindery Service Group

NDS Attribute Type Definitions 812

Intruder Lockout Reset Interval

Identifies the amount of time a user remains locked out once a lock has been
applied.

NetWare Versions: 4.x

Syntax

Interval

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Organization

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 813

L (Locality)

Specifies a physical or geographical location.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1..128)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Device (Class)

External Entity

Group

List

Locality

Organization

Organizational Person

Organizational Role

Organizational Unit

Profile (Class)

Resource (Class)

Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

When used as a component of a Directory name, a locality name
identifies a geographical area or locality in which the named object is
physically located or with which it is associated in some other important
way. An attribute value for L is a string, (for example, L = Edinburgh).

NDS and Bindery Service Group

NDS Attribute Type Definitions 814

Language

Contains an ordered list of languages.

NetWare Versions: 4.x

Syntax

Case Ignore List

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This attribute is intended for use by applications to determine the
language display desired by the object.

NDS and Bindery Service Group

NDS Attribute Type Definitions 815

Last Login Time

Contains the login time of the session previous to the current session.

NetWare Versions: 4.x

Syntax

Time

Constraints

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SINGLE_VALUED_ATTR

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 816

Last Referenced Time

Specifies the last time the object was referenced.

NetWare Versions: 4.1

Syntax

Timestamp

Constraints

DS_NONREMOVABLE_ATTR

DS_SF_PER_REPLICA

DS_SINGLE_VALUED_ATTR

Used In

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 817

Locked By Intruder

Specifies that an object has been disabled due to intruder detection.

NetWare Versions: 4.x

Syntax

Boolean

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

In the case of a User object, if TRUE this attribute indicates the user
cannot log in to the network because too many sequential attempts to log
in have been denied. This usually happens when a person does not know
the correct password and tries to guess it too many times.

NDS and Bindery Service Group

NDS Attribute Type Definitions 818

Lockout After Detection

Indicates that users should be kept from attempting to log in once they are
identified as an intruder.

NetWare Versions: 4.x

Syntax

Boolean

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Organization

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

Monitoring attempts of users to log in may occur without actually
enforcing any restrictions on logging in. This attribute may be used to
indicate that users should be locked out once the limits of tolerance have
been exceeded. Those tolerable limits are designated using other attribute
values.

NDS and Bindery Service Group

NDS Attribute Type Definitions 819

Login Allowed Time Map

Specifies the allowed login time periods for an account for each day of the
week to a precision of one-half hour.

NetWare Versions: 4.x

Syntax

Octet String

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (42, 42)

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 820

Login Disabled

Informs the user that the account has been disabled. This can be because of
Supervisor disabling, intruder detection, no more grace logins, and so on.

NetWare Versions: 4.x

Syntax

Boolean

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 821

Login Expiration Time

Specifies a date and time after which a client cannot log in and authenticate
as an object.

NetWare Versions: 4.x

Syntax

Time

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 822

Login Grace Limit

Specifies the total number of times an old password can be used (after the
old password has expired) to access the account.

NetWare Versions: 4.x

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 823

Login Grace Remaining

Specifies how many grace logins are left before the account is locked.

NetWare Versions: 4.x

Syntax

Counter

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 824

Login Intruder Address

Specifies the address of the node that caused the intruder detection lockout.

NetWare Versions: 4.x

Syntax

Net Address

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 825

Login Intruder Attempts

Specifies the number of failed login attempts.

NetWare Versions: 4.x

Syntax

Counter

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 826

Login Intruder Limit

Specifies the number of failed login attempts allowed before an account is
locked due to intruder detection.

NetWare Versions: 4.x

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Organization

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 827

Login Intruder Reset Time

Specifies the next time that the intruder attempts variable will be reset.

NetWare Versions: 4.x

Syntax

Time

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 828

Login Maximum Simultaneous

Specifies the number of simultaneous login sessions authenticated for the
object.

NetWare Versions: 4.x

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 829

Login Script

Contains the Login Script.

NetWare Versions: 4.x

Syntax

Stream

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Organization

Organizational Unit

Profile (Class)

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

The Login Script attribute replaces the system login script. When a user
logs in, the LOGIN program searches one level above (to either the
Organization or Organizational Unit) and runs its script (if any), then
runs the user's login script.

NDS and Bindery Service Group

NDS Attribute Type Definitions 830

Login Time

Specifies the login time of the current session.

NetWare Versions: 4.x

Syntax

Time

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 831

Low Convergence Reset Time

Specifies the time at which to start the low convergence synchronization
cycle.

NetWare Versions: 4.x

Syntax

Time

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Partition

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This reset time is implemented only if low convergence has been
specified in the Convergence attribute of the partition. The time stored in
this attribute is the time of day at which a synchronization occurs and the
interval counter is reset (or initialized). The next synchronization will
occur after the low synchronization interval has lapsed.

NDS and Bindery Service Group

NDS Attribute Type Definitions 832

Low Convergence Sync Interval

Specifies the amount of time (in seconds) that must pass from the start of
one partition synchronization to the next.

NetWare Versions: 4.x

Syntax

Interval

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Partition

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This synchronization interval is only implemented if low convergence
has been set (in the Convergence attribute).

NDS and Bindery Service Group

NDS Attribute Type Definitions 833

Mailbox ID

Contains a unique ID associated with the object's mailbox and messaging
server.

NetWare Versions: 4.1

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (1..8)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE

Used In

Group

List

Organization

Organizational Person

Organizational Role

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 834

Mailbox Location

Contains the name of the Messaging Server that services the object's
mailbox.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE

Used In

Group

Organization

Organizational Person

Organizational Role

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 835

Member

Lists objects associated with a group or list.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Group

List

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 836

Memory

Specifies the amount of printer memory (in kilobytes).

NetWare Versions: 4.x

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Printer (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 837

Message Routing Group (Attribute)

Specifies the name of the Message Routing Groups to which a messaging
server can belong.

NetWare Versions: 4.1

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE

Used In

Messaging Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 838

Message Server

Specifies the name of a server object that stores and forwards
broadcast-type messages.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 839

Messaging Database Location

Contains the location of the messaging file-directory structure.

NetWare Versions: 4.1

Syntax

Path (Syntax)

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE

Used In

Messaging Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

An example for a messaging directory is "\mhs".

MHS messaging servers use a file-system subtree to (1) receive messages
from applications, other messaging servers and gateways, (2) store
messages while they are being routed, (3) store internal control files, and
(4) to extract files.

NDS and Bindery Service Group

NDS Attribute Type Definitions 840

Messaging Server (Attribute)

Identifies a Messaging Server that is running on the NCP Server.

NetWare Versions: 4.1

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE

Used In

NCP Server

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 841

Messaging Server Type

Identifies the type of a Messaging Server.

NetWare Versions: 4.1

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (1..32)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE

Used In

Messaging Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

Examples of messaging server types are MHS, GMHS, and X400.

NDS and Bindery Service Group

NDS Attribute Type Definitions 842

Minimum Account Balance

Specifies the minimum amount of credit (or money) a user must have in his
or her account to access specified services.

NetWare Versions: 4.x

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Server (Class) (4.1)

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 843

Network Address

Contains one or more network addresses of the associated object.

NetWare Versions: 4.x

Syntax

Net Address

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Device (Class)

Queue (Class)

Server (Class)

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This attribute is an octet string and an integer that denotes the type of the
underlying transport. The attribute can recur.

NDS and Bindery Service Group

NDS Attribute Type Definitions 844

Network Address Restriction

Restricts objects to specific network or node addresses.

NetWare Versions: 4.x

Syntax

Net Address

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Printer (Class)

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 845

NNS Domain

Specifies the name of the NNS Domain that has been upgraded into the
container.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1.128)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Organization

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 846

Notify

Specifies a list of objects that are to be notified of a specified event.

NetWare Versions: 4.x

Syntax

Typed Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Printer (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 847

O (Organization)

Specifies an organization.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1..64)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Device (Class)

Group

List

Organization

Profile (Class)

Resource (Class)

Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

When used as a component of a Directory name, an organization name
identifies an organization with which the named object is affiliated. An
attribute value for O is a string chosen by the organization (for example,
O=Scottish Telecommunications plc). Any variant's name should be
associated with the named organization as separate and alternative
attribute values.

NDS and Bindery Service Group

NDS Attribute Type Definitions 848

Obituary

Used to avoid name collisions during certain operations.

NetWare Versions: 4.x

Syntax

Octet String

Constraints

DS_HIDDEN_ATTR

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

Your applications cannot access this attribute since it is a hidden
attribute.

This attribute is used internally by NDS. Certain circumstances can
require a unique identification other than the object name in order to
resolve certain functions. When an object is renamed, for example, an
obituary time stamp is recorded. Updates to the object might have
occurred elsewhere but have not yet been synchronized on the partition
where the rename occurred. When the skulking reaches the partition
with the renamed object, it is not be able to find the renamed object by
name. The update eventually takes place through use of the time stamp
as identification in the obituary attribute.

NDS and Bindery Service Group

NDS Attribute Type Definitions 849

Object Class

Contains an unordered list of object classes. These classes are the fully
expanded set of super classes for the object to which this attribute is
assigned.

NetWare Versions: 4.x

Syntax

Class Name

Constraints

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

When an object is created, a single initial value for object class must be
specified. When the server creates the object, it expands the value set of
the object class attribute to include all of the super classes of the initially
specified class.

NDS and Bindery Service Group

NDS Attribute Type Definitions 850

Operator

Specifies an object with operator privileges.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SERVER_READ

DS_SYNC_IMMEDIATE (4.1)

Used In

Computer

NCP Server

Print Server (Class)

Printer (Class)

Queue (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 851

OU (Organizational Unit)

Specifies an organizational unit.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1..64)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Device (Class)

External Entity (4.1)

Group

List

Organizational Person

Organizational Role

Organizational Unit

Profile (Class)

Resource (Class)

Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

When used as a component of a Directory name, an organizational unit
name identifies a unit of an organization with which the named object is
affiliated. The unit is understood to be part of an organization designated
by an O attribute assigned to the same object. It follows that if an OU
attribute is used in a Directory name, it must be associated with an O
attribute.

An attribute value for O is a string chosen by the organization to which
the unit belongs. An example of an organizational unit name is:

OU=Technology Division

If "TD" is a common abbreviation for Technology Division, it must be

NDS and Bindery Service Group

NDS Attribute Type Definitions 852

assigned as a separate, alternative attribute value (OU = TD).

NDS and Bindery Service Group

NDS Attribute Type Definitions 853

Owner

Specifies the name of an object that has some responsibility for the
associated object.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Device (Class)

Group

List

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

An attribute value for this attribute is a distinguished name (which could
represent a group), and can recur.

NDS and Bindery Service Group

NDS Attribute Type Definitions 854

Page Description Language

Identifies the page description languages (PDLs) supported by a printer.
Multiple PDLs should be represented as multiple values.

NetWare Versions: 4.x

Syntax

Printable String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1..64)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Printer (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

An example of an attribute value for this attribute is:

Page Description Language=PostScript

NDS and Bindery Service Group

NDS Attribute Type Definitions 855

Partition Control

Contains the states of split and join operations

NetWare Versions: 4.x

Syntax

Typed Name

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ

DS_READ_ONLY_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Partition

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 856

Partition Creation Time

Identifies the particular incarnation of the list of replicas of a partition.

NetWare Versions: 4.x

Syntax

Timestamp

Constraints

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Partition

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

Partition Creation Times are defined by explicit management
intervention to recover from hard failures of replicas that prevent
synchronizations from completing.

NDS and Bindery Service Group

NDS Attribute Type Definitions 857

Password Allow Change

Determines whether the person logged in under an account can change the
password for that account.

NetWare Versions: 4.x

Syntax

Boolean

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 858

Password Expiration Interval

Specifies the time interval after which passwords expire.

NetWare Versions: 4.x

Syntax

Interval

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

Password Expiration Interval uses a syntax definition (SYN_INTERVAL)
that is a 32 bit integer. The time is stored in seconds. NWADMIN divides
the value by 86400 (seconds per day) and displays it in days.

NDS and Bindery Service Group

NDS Attribute Type Definitions 859

Password Expiration Time

Specifies the next time that a password will expire.

NetWare Versions: 4.x

Syntax

Time

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 860

Password Minimum Length

Establishes the minimum length for an object's clear-text password.

NetWare Versions: 4.x

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 861

Password Required

Establishes that a password is required for the object to log in.

NetWare Versions: 4.x

Syntax

Boolean

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 862

Password Unique Required

Establishes that when an object's password is changed, it must be unique
(different) from those in the Passwords Used attribute.

NetWare Versions: 4.x

Syntax

Boolean

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 863

Passwords Used

Specifies old (previously used) passwords.

NetWare Versions: 4.x

Syntax

Octet String

Constraints

DS_HIDDEN_ATTR

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

Your applications cannot access this attribute since it is a hidden
attribute.

NDS and Bindery Service Group

NDS Attribute Type Definitions 864

Path (Attribute)

Specifies the physical location of a file system directory.

NetWare Versions: 4.x

Syntax

Path (Syntax)

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

Used In

Directory Map

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 865

Physical Delivery Office Name

Specifies the name of the city, village, and so on, where a physical delivery
office is situated.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1..128)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

External Entity

Organization

Organizational Person

Organizational Role

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 866

Postal Address (Attribute)

Specifies the address information required for the physical delivery of
postal messages to a named object.

NetWare Versions: 4.x

Syntax

Postal Address (Syntax)

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

External Entity

Organization

Organizational Person

Organizational Role

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

A value for this attribute is typically composed of selected attributes from
the MHS Unformatted Postal O/R Address version 1 according to
Recommendation F.401. The address is limited to 6 lines of 30 characters
each, including a Postal Country Name.

Normally the information contained in such an address could include an
addressee's name, street address, city, state or province, postal code and
possibly a Post Office Box number depending on the specific
requirements of the named object.

NetWare administrative utilities will link the postal address value to the
following attributes: Physical Delivery Office Name, Postal Code, Postal Office
Box, and Street Address.

The postal address uses the following as default values:

Line 1: The object's RDN

Line 2: Street Address or Post Office Box Number

Line 3: (no default value)

NDS and Bindery Service Group

NDS Attribute Type Definitions 867

Line 4: Physical Delivery Office Name, State or Province Name

Line 5: Postal Code

Line 6: Country Name (from the object's DN)

The second line of the postal address will default to the post office box, if
present, or otherwise to the street address. The third line of the postal
address should be presented in the utility as the second line of both the
post office box and street address. Each line of the postal address is
limited to 30 characters in length. Attribute values are truncated to 30
characters when used in the postal address. Developers are encouraged
to follow these guidelines.

NDS and Bindery Service Group

NDS Attribute Type Definitions 868

Postal Code

Specifies the postal code of the named object. If this attribute value is
present, it is part of the object's postal address.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (0..40)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

External Entity

Organization

Organizational Person

Organizational Role

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 869

Postal Office Box

Specifies the post office box at which the object receives physical postal
delivery.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (0..40)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

External Entity (4.1)

Organization

Organizational Person

Organizational Role

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 870

Postmaster

Specifies one or more users who have the privileges to manage a messaging
server, such as privileges to remove a mailbox.

NetWare Versions: 4.1

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE

Used In

Messaging Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

Postmasters also receive messages about special events in the messaging
server, such as messages being unprocessable.

NDS and Bindery Service Group

NDS Attribute Type Definitions 871

Print Job Configuration

Contains information on the specified print job configuration.

NetWare Versions: 4.x

Syntax

Stream

Constraints

DS_NONREMOVABLE_ATTR

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Organization

Organizational Unit

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 872

Print Server (Attribute)

Designates an object as the host server for a specific printer.

NetWare Versions: 4.x

Syntax

Typed Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Printer (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 873

Printer (Attribute)

Contains a list of object names of printers that are serviced by the print
server.

NetWare Versions: 4.x

Syntax

Typed Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Print Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 874

Printer Configuration

Contains information on the specified printer configuration.

NetWare Versions: 4.x

Syntax

Octet String

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Printer (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 875

Printer Control

The NDS™ counterpart of the DOS printer definition file NET$PRN.DAT.

NetWare Versions: 4.x

Syntax

Stream

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Organization

Organizational Unit

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 876

Private Key

Contains an RSA private key.

NetWare Versions: 4.x

Syntax

Octet String

Constraints

DS_HIDDEN_ATTR

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE

Used In

Server (Class)

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

Your applications cannot access this attribute since it is a hidden
attribute.

This attribute is used to produce signed authentication information that
can be used to verify the identity of an object.

The Private Key attribute contains an RSA private key encrypted with the
password of the object.

NDS and Bindery Service Group

NDS Attribute Type Definitions 877

Profile (Attribute)

Identifies the login profile to be used if the user doesn't specify one at login
time.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Group (4.1)

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 878

Profile Membership

Contains a list of profiles that the object can use.

NetWare Versions: 4.1

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE

DS_WRITE_MANAGED

Used In

Group

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This attribute allows objects to have multiple profiles. This is useful for
NNS users who are brought into the Directory, since NNS allows users to
have multiple domains.

NDS and Bindery Service Group

NDS Attribute Type Definitions 879

Public Key

Contains a certified RSA public key.

NetWare Versions: 4.x

Syntax

Octet String

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ

DS_READ_ONLY_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE

Used In

Server (Class)

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This attribute is used to verify authentication information produced with
the corresponding private key.

The attribute contains the public key, along with information that
certifies the integrity of the public/private key pair. Certification
information is necessary to prevent legitimate key pairs from being
replaced by illicit key pairs.

NDS and Bindery Service Group

NDS Attribute Type Definitions 880

Queue (Attribute)

Contains the distinguished name of the queue with which the object is
associated.

NetWare Versions: 4.x

Syntax

Typed Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Printer (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 881

Queue Directory

Contains the name of the subdirectory where the queue's files are stored.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SERVER_READ

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (1..255)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Queue (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

The subdirectory name should include the local volume designation
along with the subdirectory name. The subdirectory name should be a
valid DOS name.

NDS and Bindery Service Group

NDS Attribute Type Definitions 882

Received Up To

Specifies the last time the replica has received any updates.

NetWare Versions: 4.x

Syntax

Timestamp

Constraints

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Partition

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 883

Reference

Contains a list of objects you are referenced by.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_HIDDEN_ATTR

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SF_PER_REPLICA

Used In

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

Your applications cannot access to this attribute since it is a hidden
attribute.

This attribute is kept only on the replica in which it originated. It is not
skulked or updated to other replicas. It is used to make it easier to find
the objects that have a reference to a certain object. If objects A, B, C, and
D all have privileges granted to object X (through use of the ACL
attribute), the Reference attribute of object X will contain the object names
of A, B, C, and D.

This attribute is also used to list bindery object relations in Bindery
Services.

NDS and Bindery Service Group

NDS Attribute Type Definitions 884

Replica

Identifies the name servers that store replicas of a partition.

NetWare Versions: 4.x

Syntax

Replica Pointer

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ

DS_READ_ONLY_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Partition

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This attribute identifies a set of name servers that store replicas of the
partition. This attribute is multivalued. It is present and nonNULL in
every partition entry and may not be directly modified. The set is
updated as a side-effect of the operations that create, destroy, or change
the replication of a partition.

NDS and Bindery Service Group

NDS Attribute Type Definitions 885

Replica Up To

Contains a timestamp of what changes the object has sent out to other
replicas.

NetWare Versions: : 4.1

Syntax

Octet String

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ

DS_READ_ONLY_ATTR

DS_SYNC_IMMEDIATE

Used In

Partition

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 886

Resource (Attribute)

Contains a list of resources associated with the object.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This attribute lists resources that are managed by the server.

NDS and Bindery Service Group

NDS Attribute Type Definitions 887

Revision

Specifies the revision of the object.

NetWare Versions: 4.x

Syntax

Counter

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ

DS_READ_ONLY_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Top

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 888

Role Occupant

Specifies the name of an object that fulfills an organizational role.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Organizational Role

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 889

S (State or Province)

Specifies a state or province.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1..128)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

External Entity

Locality

Organization

Organizational Person

Organizational Role

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

When used as a component of a Directory name, a state or province name
identifies a geographical subdivision in which the named object, is
physically located, or with which it is associated in some other important
way.

NDS and Bindery Service Group

NDS Attribute Type Definitions 890

SA (Street Address)

Specifies a site for local distribution and physical delivery in the form of a
postal address (that is, the street name, place, avenue, and house number).

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1..128)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

External Entity

Locality

Organization

Organizational Person

Organizational Role

Organizational Unit

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

When used as a component of a Directory name, a street address
identifies the address at which the named object is located or with which
it is associated in some other important way. The attribute value for street
address is a string (for example, "Amulfstrae 60").

NDS and Bindery Service Group

NDS Attribute Type Definitions 891

SAP Name

Contains the name used by a print server when advertising itself using the
NetWare Service Advertising Protocol (SAP).

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (1..47)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Print Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 892

Security Equals

Specifies group membership and security equivalences.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SERVER_READ

DS_SYNC_IMMEDIATE

DS_WRITE_MANAGED

Used In

Server (Class)

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 893

Security Flags

Specifies whether the object is using NCP signing.

NetWare Versions: 4.1

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE

Used In

Server (Class)

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 894

See Also

Specifies the names of Directory objects that may reflect other aspects of the
same real world object.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Device (Class)

External Entity

Group

List

Locality

Organization

Organizational Role

Organizational Unit

Person

Profile (Class)

Resource (Class)

Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 895

Serial Number

Specifies an identifier that is the serial number of a device.

NetWare Versions: 4.x

Syntax

Printable String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1..64)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

AFP Server

Device (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 896

Server (Attribute)

Specifies a list of servers.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SERVER_READ

DS_SYNC_IMMEDIATE (4.1)

Used In

Computer

Queue (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 897

Server Holds

Contains the number of accounting charges pending while a server
performs a chargeable action.

NetWare Versions: 4.x

Syntax

Hold

Constraints

DS_NONREMOVABLE_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

The Server Holds attribute is used when NetWare Accounting is active.
Each time a server is about to perform an action that will be charged
against a user's account the server makes sure the account has a sufficient
balance. The server places the correct number of charges on hold while it
performs the function, then deducts those charges from the account
balance. While the charges are being held, this attribute value contains
user identification and the number of charges that are on hold.

NDS and Bindery Service Group

NDS Attribute Type Definitions 898

Status

Specifies the operational state of the specified object.

NetWare Versions: 4.x

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Computer

Printer (Class)

Server (Class)

Volume (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 899

Supported Connections

Identifies the number of concurrent connections a server allows.

NetWare Versions: 4.x

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

AFP Server

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 900

Supported Gateway

Contains a list of messaging gateways.

NetWare Versions: 4.1

Syntax

Case Ignore String

Constraints

DS_NONREMOVEABLE_ATTR

DS_SIZED_ATTR (1..4096)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Messaging Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

Supported gateways provide messaging connectivity between the MHS
messaging system and external messaging systems.

The gateway names consist of two sub-attributes: gateway name and
gateway protocol type. The Supported Gateway names have the
convention of eight or fewer characters followed by "/" followed by
another eight or fewer characters.

This attribute is used to support existing third-party gateway products.

NDS and Bindery Service Group

NDS Attribute Type Definitions 901

Supported Services

Contains a list of services supported by the associated object.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1..64)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Messaging Server (Class)

NCP Server

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 902

Supported Typefaces

Identifies the typefaces supported by a printer. Multiple typefaces should be
represented as multiple values.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1..64)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Printer (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

An example of a value for this attribute is:

Supported Typefaces=computer modern, American modern, CM, AM

NDS and Bindery Service Group

NDS Attribute Type Definitions 903

Surname

Specifies the denotative construct an individual inherits from a parent (or
assumes by marriage) and by which the individual is commonly known.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ

DS_SINGLE_VALUED_ATTR (4.1)

DS_SIZED_ATTR (1..64)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Person

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

An attribute value for this attribute is a string (for example, "Smith").

NDS and Bindery Service Group

NDS Attribute Type Definitions 904

Synchronized Up To

A list of time stamps that indicate the last time all servers holding a copy of
the specified replica were synchronized.

NetWare Versions: 4.x

Syntax

Timestamp

Constraints

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SF_PER_REPLICA

Used In

Partition

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 905

Telephone Number (Attribute)

Specifies a telephone number associated with an object.

NetWare Versions: 4.x

Syntax

Telephone Number (Syntax)

Constraints

DS_NONREMOVABLE_ATTR

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Organization

Organizational Role

Organizational Unit

Person

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

An attribute value for this attribute is a string that complies with the
internationally agreed format for showing international telephone
numbers, Recommendation E.123, (for example, "+ 44 582 10101").

NDS and Bindery Service Group

NDS Attribute Type Definitions 906

Title

Specifies the designated position or function of an object within an
organization.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_SIZED_ATTR (1..64)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

External Entity

Organizational Person

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

An attribute value for this attribute is a string. For example:

"Manager, Distributed Applications."

NDS and Bindery Service Group

NDS Attribute Type Definitions 907

UID (User ID)

Specifies a unique user ID for use by UNIX clients.

NetWare Versions: 4.x

Syntax

Integer

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

User (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 908

Unknown (Attribute)

Contains an attribute value for an attribute that is no longer defined by the
Schema.

NetWare Versions: 4.x

Syntax

Unknown (Syntax)

Constraints

DS_NONREMOVABLE_ATTR

Used In

(Special)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This attribute is provided for use by the server in restoring objects. If an
attribute definition has been deleted and an object that is being restored
has a value of the deleted attribute type, the now undefined attribute will
be restored as Unknown.

NDS and Bindery Service Group

NDS Attribute Type Definitions 909

Unknown Base Class

Stores the class an object was before it was changed to an unknown class.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_READ_ONLY_ATTR

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (1..32)

DS_STRING_ATTR

Used In

(none)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 910

User (Attribute)

Contains a list of users associated with the object.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SERVER_READ

DS_SYNC_IMMEDIATE (4.1)

Used In

Queue (Class)

Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

This attribute contains a list specifying which users are authorized to use
the device, resource, or server.

NDS and Bindery Service Group

NDS Attribute Type Definitions 911

Version

A string that describes the version identifier of the software associated with
the object.

NetWare Versions: 4.x

Syntax

Case Ignore String

Constraints

DS_NONREMOVABLE_ATTR

DS_PUBLIC_READ

DS_SINGLE_VALUED_ATTR

DS_SIZED_ATTR (1..64)

DS_STRING_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Server (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 912

Volume (Attribute)

Contains the distinguished name of a volume on which a queue is located.

NetWare Versions: 4.x

Syntax

Distinguished Name

Constraints

DS_NONREMOVABLE_ATTR

DS_SINGLE_VALUED_ATTR

DS_SYNC_IMMEDIATE (4.1)

Used In

Queue (Class)

Remarks

For help in understanding the attribute definition template, see Reading
NDS Attribute Type Definitions.

NDS and Bindery Service Group

NDS Attribute Type Definitions 913

NDS Attribute Syntax Definitions

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 914

Back Link (Syntax)

Used for the Back Link attribute, which the Directory uses for its internal
management

Syntax ID

#define SYN_BACK_LINK 23

API Data Structure

typedef struct
{
 NWOBJ_ID remoteID;
 pnchar objectName;
} Back_Link_T;

Matching Rules

Equality

Used In

Back Link (Attribute)

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 915

Boolean

Used for attributes whose values represent true (1) or false (0)

Syntax ID

#define SYN_BOOLEAN 7

API Data Structure

typedef nuint8 Boolean_T;

Matching Rules

Equality

Used In

Allow Unlimited Credit

Detect Intruder

Locked By Intruder

Lockout After Detection

Login Disabled

Password Allow Change

Password Required

Password Unique Required

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

Two boolean attributes match for equality if they are both TRUE or both
FALSE.

Any attribute defined using this syntax is single-valued.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 916

Case Exact String

Used in attributes whose values are strings for which the case (upper or
lower) is significant when performing comparisons

Syntax ID

#define SYN_CE_STRING 2

API Data Structure

typedef pnchar CE_String_T;

Matching Rules

Equality

Substrings

Used In

None

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

Two case exact strings match for equality when they are of same length
and their corresponding characters are identical. For example, "Dundee"
and "DUNDEE" do not match.

In comparing case exact strings, the following spaces are not significant:

Leading spaces (precede the first printing character)

Trailing spaces (follow the last printing character)

Multiple consecutive internal spaces (equivalent to a single space
character)

Attributes conforming to this syntax are matched in a manner omitting
those spaces that are not significant (as defined above). There is no
guarantee that insignificant spaces will be preserved by the Directory.
A name server is free to omit insignificant spaces when storing an
attribute value.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 917

Case Ignore List

Used for attributes whose values are ordered sequences of strings for which
the case (upper or lower) is not significant when performing comparisons

Syntax ID

#define SYN_CI_LIST 6

API Data Structure

typedef struct _ci_list
{
 struct _ci_list *next;
 pnchar s;
} CI_List_T;

Matching Rules

Equality

Used In

Language

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

Two case ignore lists match for equality if and only if the number of
strings in each is the same, and all corresponding strings match. For two
corresponding strings in the list to match they must be the same length
and their corresponding characters must be identical (according to the
rules for case ignore strings).

When comparing the strings in case ignore lists, the following spaces are
regarded as not significant:

Leading spaces (precede the first printing character)

Trailing spaces (follow the last printing character)

Multiple consecutive internal spaces (equivalent to a single space
character).

Attributes conforming to this syntax are matched in a manner omitting
those spaces that are not significant (as defined above). There is no
guarantee that insignificant spaces will be preserved by the Directory.
A name server is free to omit insignificant spaces when storing an

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 918

A name server is free to omit insignificant spaces when storing an
attribute value.

The NWDSGetAttrVal function places successive CI_LIST elements in
consecutive memory locations. The value parameter of the
NWDSGetAttrVal function should point to enough memory to
contain both the NULL-terminated strings along with a CI_LIST
structure per list element. (The required length of value can be
determined by calling the NWDSComputeValueSize function.)

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 919

Case Ignore String

Used in attributes whose values are strings for which the case (upper or
lower) is not significant when performing comparison

Syntax ID

#define SYN_CI_STRING 3

API Data Structure

typedef pnchar CI_String_T;

Matching Rules

Equality

Substrings

Used In

C (Country)

Cartridge

CN (Common Name)

Description

Full Name

Generational Qualifier

Given Name

Host Resource Name

Initials

L (Locality)

Mailbox ID

Messaging Server Type

NNS Domain

O (Organization)

OU (Organizational Unit)

Physical Delivery Office Name

Postal Code

Postal Office Box

Queue Directory

S (State or Province)

SA (Street Address)

SAP Name

Supported Gateway

Supported Services

Supported Typefaces

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 920

Surname

Title

Unknown Base Class

Version

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

Two case ignore strings match for equality when they are of the same
length and their corresponding characters are identical in all respects
except that of case. For example, as case ignore strings, "Dundee" and
"DUNDEE" would be equal.

When comparing case ignore strings, the following spaces are not
significant:

Leading spaces (precede the first printing character)

Trailing spaces (follow the last printing character)

Multiple consecutive internal spaces (equivalent to a single space
character)

Attributes conforming to this syntax are matched in a manner omitting
those spaces that are not significant (as defined above). There is no
guarantee that insignificant spaces will be preserved by the Directory.
A name server is free to omit insignificant spaces when storing an
attribute value.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 921

Class Name

Used for attributes whose values represent object class names

Syntax ID

#define SYN_CLASS_NAME 20

API Data Structure

typedef pnchar Class_Name_T

Matching Rules

Equality

Used In

Object Class

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

The matching rule for values of Class Name are the same as those for
Case Ignore String.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 922

Counter

Used for attributes whose values are signed integers

Syntax ID

#define SYN_COUNTER 22

API Data Structure

typedef nuint32 Counter_T;

Matching Rules

Equality

Ordering

Used In

Account Balance

Login Grace Remaining

Login Intruder Attempts

Revision

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

Any attribute defined using this syntax is single-valued. This syntax
differs from Integer in that any value added to an attribute of this syntax
is added to the total, and any value deleted is subtracted from the total.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 923

Distinguished Name

Used for attributes whose values are the names of objects in the Directory
tree

Syntax ID

#define SYN_DIST_NAME 1

API Data Structure

typedef pnchar DN_T;

Matching Rules

Equality

Used In

Aliased Object Name

Default Queue

Device (Attribute)

Equivalent To Me

Group Membership

Higher Privileges

Host Device

Host Server

Mailbox Location

Member

Message Routing Group (Attribute)

Message Server

Messaging Server (Attribute)

Operator

Owner

Postmaster

Profile (Attribute)

Profile Membership

Reference

Resource (Attribute)

Role Occupant

Security Equals

See Also

Server (Attribute)

User (Attribute)

Volume (Attribute)

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 924

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 925

EMail Address (Syntax)

Used for attributes whose values represent Email addresses

Syntax ID

#define SYN_EMAIL_ADDRESS 14

API Data Structure

typedef struct
{
 NWEMAIL_TYPE type;
 pnchar address;
} EMail_Address_T;

Matching Rules

Equality

Used In

EMail Address (Attribute)

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 926

Facsimile Telephone Number (Syntax)

Specifies a string that complies with the internationally agreed format for
showing international telephone numbers, E.123, and an optional bit string
formatted according to Recommendation T.30

Syntax ID

#define SYN_FAX_NUMBER 11

API Data Structure

typedef struct
{
 pnchar telephoneNumber;
 Bit_String_T parameters;
} Fax_Number_T;

Matching Rules

Equality

Used In

Facsimile Telephone Number (Attribute)

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

Facsimile Telephone Number values are matched based on the telephone
number field. The rules for matching fax telephone numbers are identical
to those for the Case Exact syntax except that all space and hyphen (-)
characters are skipped during the comparison.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 927

Hold

Used for attributes whose values represent an object name/level pair

Syntax ID

#define SYN_HOLD 26

API Data Structure

typedef struct
{
 pnchar objectName;
 NWHOLD_AMOUNT amount;
} Hold_T;

Matching Rules

Equality

Used In

Server Holds

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 928

Integer

Used for attributes whose values are signed integers

Syntax ID

#define SYN_INTEGER 8

API Data Structure

typedef nint32 Integer_T;

Matching Rules

Equality

Ordering

Used In

Bindery Object Restriction

Convergence

DS Revision

GID (Group ID)

Login Grace Limit

Login Intruder Limit

Login Maximum Simultaneous

Memory

Minimum Account Balance

Password Minimum Length

Security Flags

Status

Supported Connections

UID (User ID)

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

The attributes for two integers match for equality if they are the same.
The ordering rules for integers apply.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 929

Interval

Used for attributes whose values represent intervals of time in seconds

Syntax ID

#define SYN_INTERVAL 27

API Data Structure

typedef nint32 Integer_T;

Matching Rules

Equality

Ordering

Used In

Certificate Validity Interval

High Convergence Sync Interval

Intruder Attempt Reset Interval

Intruder Lockout Reset Interval

Low Convergence Sync Interval

Password Expiration Interval

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 930

Net Address

Used for network addresses in the NetWare environment. The address type
indicates the type of communications protocol used (IPX™, AppleTalk*, etc.)

Syntax ID

#define SYN_NET_ADDRESS 12

API Data Structure

typedef struct
{
 NWNET_ADDR_TYPE addressType;
 NWNET_ADDR_LEN addressLength;
 NWNET_ADDR *address;
} Net_Address_T;

Matching Rules

Equality

Used In

Login Intruder Address

Network Address

Network Address Restriction

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

For two values of Net Address to match, the type, length, and value of
the address must match. The address length is the number of bytes. The
address itself is stored as a binary string. This string is the literal value of
the address. To display it as a hexadecimal value, you must convert each
4-bit nibble to the correct character (0,1,2,3,...F).

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 931

Numeric String

Used for attributes whose values are numeric strings as defined in CCITT
X.208

Syntax ID

#define SYN_NU_STRING 5

API Data Structure

typedef pnchar NU_String_T;

Matching Rules

Equality

Substrings

Used In

Bindery Type

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

For two numeric strings to match for equality, the strings must be the
same length and their corresponding characters must be identical. The
following characters are in the numeric string character set:

0..9 digits

Space character

When comparing numeric strings, the following spaces are not
significant:

Leading spaces (precede the first printing character)

Trailing spaces (follow the last printing character)

Multiple consecutive internal spaces (equivalent to a single space
character)

Attributes conforming to this syntax are matched in a manner omitting
those spaces that are not significant (as defined above). Also, there is
no guarantee that insignificant spaces will be preserved by the
Directory. A name server is free to omit insignificant spaces when
storing an attribute value.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 932

Object ACL

Used for attributes whose values represent ACL entries

Syntax ID

#define SYN_OBJECT_ACL 17

API Data Structure

typedef struct
{
 pnchar protectedAttrName;
 pnchar subjectName;
 NWDS_PRIVILEGES privileges;
} Object_ACL_T;

Matching Rules

Approximate Matching

Equality

Used In

ACL

Inherited ACL

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

An Object ACL value can protect either an object or an attribute. The
protected object is always the one that contains the ACL attribute. If an
ACL entry is to apply to the object as a whole, the protected attribute
name should be left empty (NULL). If a specific attribute is to be
protected, it should be named in the ACL entry.

An ACL value can be matched against either a subject or a privilege set,
or both. If the subject name is not to be considered in the comparison, it
should be specified as NULL. If the privilege set is not to be considered in
the comparison, an approximate match with a privilege set value of zero
should be specified.

The Object ACL syntax supports both matching for equality and
approximate matching. The difference between matching for equality
and approximate matching concerns the privileges field of the
comparison value. When matching for equality, the privilege set must
match exactly for the comparison to succeed. When approximate

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 933

matching has been selected, any bits in the privilege field in the filter that
are set must also be set in the target. Any other bits in the target are
ignored.

Values with the same protectedAttrName and subjectName fields are
considered to be duplicate, and so are not permitted.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 934

Octet List

Used to describe an ordered sequence of octet strings

Syntax ID

#define SYN_OCTET_LIST 13

API Data Structure

typedef struct _OCTET_LIST
{
 struct _Octet_List *next;
 NWLEN length;
 pnuint8 data;
} Octet_List_T;

Matching Rules

Approximate Equals

Equality

Used In

None

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

A presented octet list matches a stored list if the presented list is a subset
of the stored list. Octet strings are so designated because they are not
interpreted by the Directory. They are simply a series of bits with no
Unicode* implications. The length is the number of bits divided by 8. Thus
each octet represents eight bits of data. The number of data bits will
always be evenly divisible by 8.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 935

Octet String

Used for attributes whose values are byte strings uninterpreted by the
Directory.

Syntax ID

#define SYN_OCTET_STRING 9

API Data Structure

typedef struct
{
 NWLEN length;
 pnuint8 data;
} Octet_String_T;

Matching Rules

Equality

Ordering

Used In

Authority Revocation

Bindery Property

CA Private Key

CA Public Key

Certificate Revocation

Cross Certificate Pair

External Name

External Synchronizer

Login Allowed Time Map

Obituary

Passwords Used

Printer Configuration

Private Key

Public Key

Replica Up To

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

For two octet strings to match, they must be the same length and the

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 936

corresponding bit sequence (octets) must be identical. When comparing
two strings, the first pair of octets that do not match are used to
determine the order of the strings. These are not Unicode strings.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 937

Path (Syntax)

The Path syntax is used for attributes that represent a file system path

Syntax ID

#define SYN_PATH 15

API Data Structure

typedef struct
{
 NWNAME_SPACE_TYPE nameSpaceType;
 pnchar volumeName;
 pnchar path;
} Path_T;

Matching Rules

Equality

Used In

Home Directory

Messaging Database Location

Path (Attribute)

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

The string represented by the path field is compared for equality using
the same rules that Case Exact String uses.

The volumeName field must refer to a volume object that already exists in
the Directory.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 938

Postal Address (Syntax)

Used for attributes whose values are postal addresses

Syntax ID

#define SYN_PO_ADDRESS 18

API Data Structure

typedef pnchar Postal_Address_T[6];

Matching Rules

Equality

Used In

Postal Address (Attribute)

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

An attribute value for Postal Address will be typically composed of
selected attributes from the MHS Unformatted Postal O/R Address
version 1 according to Recommendation F.401. The value is limited to 6
lines of 30 characters each, including a Postal Country Name. Normally
the information contained in such an address could include a name,
street address, city, state or province, postal code and possibly a postal
office box number depending on the specific requirements of the named
object.

The matching rules for values of this type are the same as those for Case
Ignore List.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 939

Printable String

Used in attributes whose values are printable strings as defined in CCITT
X.208. The case (upper or lower) is significant when comparing printable
strings

Syntax ID

#define SYN_PR_STRING 4

API Data Structure

typedef pnchar PR_String_T;

Matching Rules

Equality

Substrings

Used In

Page Description Language

Serial Number

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

The following characters are in the printable string character set:

A..
Z

upper case alphabetic characters

a..z lower case alphabetic characters

0..9 digits

space character

' apostrophe

(left parenthesis

) right parenthesis

+ plus sign

, comma

- hyphen

. full stop (period)

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 940

/ solidus (slash)

: colon

= equal sign

? question mark

Two printable strings match for equality when they are the same length
and their corresponding characters are identical. For example, as
printable strings, "Dundee" and "DUNDEE" do not match.

When comparing printable strings, the following spaces are not
significant:

Leading spaces (precede the first printing character)

Trailing spaces (follow the last printing character)

Multiple consecutive internal spaces (equivalent to a single space
character)

Attributes conforming to this syntax are matched in a manner omitting
those spaces that are not significant (as defined above). There is no
guarantee that insignificant spaces will be preserved by the Directory.
A name server is free to omit insignificant spaces when storing an
attribute value.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 941

Replica Pointer

Used for attributes whose values represent partition replicas

Syntax ID

#define SYN_REPLICA_POINTER 16

API Data Structure

typedef struct
{
 pnchar serverName;
 NWREPLICA_TYPE replicaType;
 NWREPLICA_NUM replicaNumber;
 NWCOUNT count;
 Net_Address_T replicaAddressHint[?];
} Replica_Pointer_T;

Matching Rules

Equality

Used In

Replica

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

Each value of this syntax is composed of five parts:

The complete name of the name server that stores the replica

A value describing the capabilities of this copy of the partition: master,
secondary, read-only

A number representing the replica

A value indicating the number of replicas that exist

A network address giving a hint for a node at which the name server
probably resides.

The matching rules for values of Replica Pointer are based on the
replica server name field only, and are the same as those for
Distinguished Name.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 942

The length of the replicaAddressHint structure is variable and can be
calculated by multiplying the count field by the length of the
Net_Address_T structure (that is, count multiplied by 9).

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 943

Stream

Used for login scripts and other stream attributes

Syntax ID

#define SYN_STREAM 21

API Data Structure

typedef struct
{
 NWLEN length;(always 0)
 pnuint8 data;
} Stream_T;

Matching Rules

None

Used In

Login Script

Print Job Configuration

Printer Control

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

Any attribute defined with this syntax is single-valued. When returned
from read or search, it returns an empty octet string. When added, the
value is ignored. The value of any attribute of this syntax must be read or
written by calling the NWDSOpenStream function, followed by calling
standard file Read/Write functions.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 944

Telephone Number (Syntax)

Used for attributes whose values are telephone numbers

Syntax ID

#define SYN_TEL_NUMBER 10

API Data Structure

typedef pnchar TN_String_T;

Matching Rules

Equality

Substrings

Used In

Telephone Number (Attribute)

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

The length of telephone number strings must be between 1 and 32. The
rules for matching telephone numbers are identical to those for the Case
Exact attribute syntax except that all space and hyphen (-) characters are
skipped during the comparison.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 945

Time

Used for attributes whose values represent time

Syntax ID

#define SYN_TIME 24

API Data Structure

typedef nint32 Integer_T;

Matching Rules

Equality

Ordering

Used In

Last Login Time

Login Expiration Time

Login Intruder Reset Time

Login Time

Low Convergence Reset Time

Password Expiration Time

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

A Time value consists of a whole number of seconds, where zero equals
12:00 midnight, January 1, 1970, UTC.

Two Time values are compared by comparing the Integer_T values.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 946

Timestamp

Used for attributes whose values mark the time when a particular event
occurred or will occur

Syntax ID

#define SYN_TIMESTAMP 19

API Data Structure

typedef struct
{
 NWSECONDS wholeSeconds;
 NWDS_EVENT eventID;
} NWDS_TimeStamp_T;

Matching Rules

Equality

Ordering

Used In

Replica Up To

Partition Creation Time

Received Up To

Synchronized Up To

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

A Timestamp value consists of a whole number of seconds, where zero
equals 12:00 midnight, January 1, 1970, UTC. The event ID is an integer
which further orders events occurring within the same whole-second
interval.

Two Time values are compaired by comparing the whole second fields
and then the event ID fields. If the whole seconds fields are unequal,
order is determined by that field alone. If the whole seconds fields are
equal and the event ID fields are unequal, order is determined by the
event ID fields. If both fields are equal, the time stamps are equal.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 947

Typed Name

Used for attributes whose values represent a level and an interval
associated with an object

Syntax ID

#define SYN_TYPED_NAME 25

API Data Structure

typedef struct
{
 pnchar objectName;
 NWDS_TYPE_LEVEL level;
 NWDS_INTERVAL interval;
} Typed_Name_T;

Matching Rules

Equality

Used In

Notify

Partition Control

Print Server (Attribute)

Printer (Attribute)

Queue (Attribute)

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

The level of the attribute indicates the priority. The interval indicates the
frequency of reference.

The values are user-assigned and relative. To be effective they must be
implemented by the user. The user can use them to implement iterative
intervals or to enforce priorities.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 948

Unknown (Syntax)

Used for attributes whose attribute definition was deleted from the schema

Syntax ID

#define SYN_UNKNOWN 0

API Data Structure

typedef struct
{
 pnchar attrName;
 NWSYNTAX_ID syntaxID;
 NWLEN valueLen;
 void *value;
} Unknown_Attr_T;

Matching Rules

None

Used In

Unknown (Attribute)

Remarks

For help in understanding the syntax definition template, see Reading
Syntax Definitions.

NDS and Bindery Service Group

NDS Attribute Syntax Definitions 949

