
Management
Service Group

Management Service Group

 1

Management Overview

Accounting: Guides

Application Launcher: Guides

Auditing: Guides

NDS Event: Guides

Novell Licensing: Guides

NWSNMP: Guides

Queue Management: Guides

Server Environment: Guides

Server Management: Guides

Snap-in: Guides

TTS: Guides

Management Service Group

 2

Accounting

Management Service Group

 3

Accounting: Guides

Accounting: Concept Guide

Accounting is a bindery-based service that consists of the functions required
for administering and recording accounting events.

Introduction to Accounting

Elements of Accounting

Servers of Accounting

Balances of Accounting

Events of Accounting

Holds of Accounting

Events of Accounting

Events of Accounting

Charge Records

Note Records

Event Comments of Accounting

Connect Time Comment

Disk Storage Comment

Login Comment

Logout Comment

Account Locked Comment

Server Time Modified Comment

Event Comments of Accounting Format File

String Formatting Records

Standard Format Control Strings

NetWare Server Charges

Management Service Group

Accounting: Guides 4

Chargeable Services

Disk Storage Charges

Reading the net$acct.dat and net$rec.dat Files Example

Accounting: Functions

Accounting: Structures

Parent Topic:

Management Overview

Management Service Group

Accounting: Guides 5

Accounting: Examples

Reading the net$acct.dat and net$rec.dat Files
Example

The example code below allows you to read the net$acct.dat and net$rec.dat
files.

Using net$acct.dat and net$rec.dat

#include <stdio.h>;
#include <conio.h>
#include <io.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <nwmisc.h>
#include <ntypes.h>

/* Structure of a Charge Record in Net$Acct.Dat */

typedef struct
{
 nuint16 length;
 nuint32 serverID;
 nuint8 timeStamp[6];
 nuint8 recordType;
 nuint8 completionCode;
 nuint16 serviceType;
 nuint32 clientID;
 nuint32 amount;
 nuint16 commentType;
 char *comment;
} ChargeRecord;

/* Structure of a Note Record in Net$Acct.Dat */
typedef struct
{
 nuint16 length;
 nuint32 serverID;
 nuint8 timeStamp[6];
 nuint8 recordType;
 nuint8 reserved;
 nuint16 serviceType;
 nuint32 clientID;

Management Service Group

Accounting: Examples 6

 nuint16 commentType;
 pnstr *comment;
} NoteRecord;

/* Structure of a Format Record in Net$Rec.Dat */
typedef struct
{
 nuint16 length;
 nuint16 commentType;
 nuint8 fieldCount;
 nuint8 firstDataType[];
} FormatRecord;

/* Structure of a Charge Comment in Net$Acct.Dat */
/* Connect Time Charge, Disk Space Charge */
typedef struct
{
 nuint32 unit1;
 nuint32 unit2;
 nuint16 bytesRead[3]; /* only used in Connect Time Charge Comment*/
 nuint16 bytesWritten[3];/* only used in Connect Time Charge Comment*/
} ChargeComment;

/* Structure of a Node Comment in Net$Acct.Dat */
/* Login, Logout, Account locked notes */
typedef struct
{
 nuint32 net;
 nuint32 nodeHi;
 nuint16 nodeLo;
} NodeComment;

/* Prototype for the function that reads Net$Rec.Dat and returns */
/* the format string */
nuint GetFormatString
(
 pnstr formatString,
 pnuint8 fieldCount,
 pnstr dataType,
 nuint16 commentType
);

/* Prototype for the function that prints a Connect Time */
/* charge record to screen */
int PrintConnectTimeRecord
(
 pnstr format,
 ChargeComment *record,
 double bytesRead,
 double bytesWritten

Management Service Group

Accounting: Examples 7

);

/* Prototype for the function that prints a charge record to screen */
int PrintChargeRecord
(
 pnstr format,
 ChargeRecord *record
);

/* Prototype for the function that prints a note record to screen */
int PrintNoteRecord
(
 pnstr format,
 NoteRecord *note
);

/* !!!!!! Function main !!!!!! */

void main (void)
{
 int ccode; /* Variable to receive return codes */
 FILE *acct; /* Pointer to the stream associated with Net$Acct.Dat*/
 nstr buffer[255]; /* Buffer to read the record from Net$Acct.Dat into */

 ChargeRecord *charge;
 ChargeComment *chargeUnit;
 NoteRecord *note;
 NodeComment *node;
 nuint8 fieldCount;
 nstr dataType[15];
 nstr format[255];

 clrscr();

 printf("Novell sample program to print records from the Net$Acct.Dat
 file\n\n");

 /* Open the stream for Net$Acct.Dat */
 if (access("NET$ACCT.DAT", 04))
 acct = fopen("NET$ACCT.DAT", "rb");/* File is in default directory */
 else
 acct = fopen("SYS:PUBLIC\NET$ACCT.DAT", "rb");
 /* File is not in default dir. */
 if (NULL == acct)
 {
 printf("\tUnable to open Net$Acct.Dat\n");
 printf("\tExiting program\n\n");
 exit(1);

Management Service Group

Accounting: Examples 8

 }

 /* Overlay the accounting structures on top of buffer */
 charge = (ChargeRecord *)buffer;
 chargeUnit = (ChargeComment *)&charge->comment;

 note = (NoteRecord *) buffer;
 node = (NodeComment *)¬e->comment;

 do
 {

 /* Let's read the length of the next record from Net$Acct.Dat */
 ccode = read(fileno(acct), &charge->length, 2);
 charge->length = NWWordSwap(charge->length);
 printf("Net$Acct.Dat Record length = %d \n", charge->length);

 /* Verify read was successful and length is smaller than buffer size */
 if (2 == ccode && 253 > charge->length)
 {
 /* Let's read the remainder of the record from Net$Acct.Dat */
 ccode = read(fileno(acct), &charge->serverID,

 /* Verify read was successful */
 if (charge->length == ccode)
 {
 switch (charge->recordType)
 {
 case 1 : /* Charge Record */
 printf("serverID = %ld\n"
 "recordType = %d\ncompletionCode = %d\n"
 "serviceType = %d\nclientID = %ld\n"
 "amount = %ld\ncommentType = %d\n",
 NWLongSwap(charge->serverID),
 charge->recordType,
 charge->completionCode,
 NWWordSwap(charge->serviceType),
 NWLongSwap(charge->clientID),
 NWLongSwap(charge->amount),
 NWWordSwap(charge->commentType));

 printf("Year: %d\nMonth: %d\nDay: %d\n"
 "Hour: %d\nMinute: %d\nSecond: %d\n",
 (int) charge->timeStamp[0],
 (int) charge->timeStamp[1],
 (int) charge->timeStamp[2],
 (int) charge->timeStamp[3],
 (int) charge->timeStamp[4],
 (int) charge->timeStamp[5]);

 /* Read the format string from Net$Rec.Dat */
 ccode = GetFormatString(format,

Management Service Group

Accounting: Examples 9

 &fieldCount,
 &dataType[0],
 NWWordSwap(charge->
 commentType));

 /* Verify GetFormatString was successful */
 if (0 == ccode)
 {
 /* Verify the comment is a Novell charge */
 /* comment */
 if (1 == NWWordSwap(charge->
 commentType)||
 2 == NWWordSwap(charge->
 commentType))
 {
 /* Swap the byte order to Intel format */
 chargeUnit->unit1==NWLongSwap
 (charUnit->unit1);
 chargeUnit->unit2 = NWLongSwap
 (chargeUnit->unit2);
 }

 /* Verify the comment is a Connection Time Comment */
 if (1 == NWWordSwap(charge->commentType))
 {
 double bytesRead;
 double bytesWritten;

 bytesRead =
 (NWWordSwap(chargeUnit->bytesRead[0]) * 0xFF00L) +
 (NWWordSwap(chargeUnit->bytesRead[1]) * 0x00FFL) +
 (NWWordSwap(chargeUnit->bytesRead[2]));
 bytesWritten =
 (NWWordSwap(chargeUnit->bytesWritten[0]) * 0xFF00L) +
 (NWWordSwap(chargeUnit->bytesWritten[1]) * 0x

 PrintConnectTimeRecord(format,
 chargeUnit, bytesRead, bytesWritten);
 }
 else
 {
 PrintChargeRecord(format, charge);
 }

 printf("\n\n");
 }
 else
 printf("An error occured in
 GetFormatString\n");
 break;

 case 2 : /* Note Record */

Management Service Group

Accounting: Examples 10

 note = (NoteRecord *)buffer;
 printf("serverID = %ld\nrecordType = %d\n"
 "serviceType = %d\nclientID = %ld\n"
 "commentType = %d\n",
 NWLongSwap(note->serverID),
 note->recordType,
 NWWordSwap(note->serviceType),
 NWLongSwap(note->clientID),
 NWWordSwap(note->commentType));

 printf("Year: %d\nMonth: %d\nDay: %d\n"
 "Hour: %d\nMinute: %d\nSecond: %d\n",
 (int) note->timeStamp[0],
 (int) note->timeStamp[1],
 (int) note->timeStamp[2],
 (int) note->timeStamp[3],
 (int) note->timeStamp[4],
 (int) note->timeStamp[5]);

 /* Read the format string from Net$Rec.Dat */
 ccode = GetFormatString(format,
 &fieldCount,
 &dataType[0],
 NWWordSwap(note->
 commentType));

 /* Verify GetFormatString was successful */
 if (0 == ccode)
 {
 /* Verify the comment is a Novell node */
 /* event comment */
 if (3 == NWWordSwap(note->commentType) ||
 4 == NWWordSwap(note->commentType) ||
 5 == NWWordSwap(note->commentType))
 {
 /* Swap the byte order to Intel format */
 node->net = NWLongSwap(node->net);
 node->nodeHi = NWLongSwap(node->nodeHi);
 node->nodeLo = NWWordSwap(node->nodeLo);
 }

 PrintNoteRecord(format, note);
 printf("\n\n");
 }
 else
 printf("An error occured in GetFormatString\n");

 break;
 }
 }
 }

Management Service Group

Accounting: Examples 11

 /* Wait for a key press */
 printf("Press ESC to exit. Press SPACEBAR to continue...\n\n");
 if (getch() == 27) /* ESC */
 break;
 if (kbhit()) /* Just flush the second value in an extended key */
 getch();

 } while (!eof(fileno(acct)));

 /* Close our file */
 fclose(acct);
}

/* Function that reads Net$Rec.Dat and returns the format string */
nuint GetFormatString
(
 pnstr formatString,
 pnuint8 fieldCount,
 pnstr dataType,
 nuint16 commentType
)
{
 nuint i;
 nuint returnValue; /* Variable to hold the value to return */
 nint ccode; /* Variable to receive return codes */
 FILE *rec; /* Pointer to the stream associated with Net$Rec.Dat */
 nstr buffer[255]; /* Buffer to read the record from Net$Rec.Dat into */
 nint formatStringLength;
 /* Variable to hold the length of the format string */

 FormatRecord *format;

 /* Initialize returnValue */
 returnValue = -1; /* Failure */

 /* Open the stream for Net$Rec.Dat */
 if (access("NET$ACCT.DAT", 04))
 rec = fopen("NET$REC.DAT", "rb"); /* File is in default directory */
 else
 rec = fopen("SYS:PUBLIC\NET$REC.DAT", "rb"); /* Not in default dir. */

 if (NULL == rec)
 {
 printf("\tUnable to open Net$Rec.Dat\n");
 return returnValue;
 }

Management Service Group

Accounting: Examples 12

 /* Overlay the format record structure on top of buffer */
 format = (FormatRecord *)buffer;

 do
 {
 /* Let's read the length of the next record from Net$Rec.Dat */
 ccode = read(fileno(rec), &format->length, 2);
 format->length = NWWordSwap(format->length);
 printf("Net$Rec.Dat Record length = %d \n", format->length);

 /* Verify read was successful and that length is smaller */
 /* than buffer sizen */
 if (2 == ccode && 253 > format->length)
 {
 /* Read the rest of the record from Net$Rec.Dat */
 ccode = read(fileno(rec), &format->commentType,
 format->length);

 /* Verify read was successful */
 if (format->length != ccode)
 break;

 /* Check for a match on commentType */
 if (NWWordSwap(format->commentType) == commentType)
 {
 /* Set the value to return in fieldCount */
 *fieldCount = format->fieldCount;

 /* Fill the dataType array */
 for (i = 0; i < *fieldCount; i++)
 dataType[i] = format->firstDataType[i];

 /* The format string is a length preceeded string */
 /* Get the length of the string */
 formatStringLength = format->firstDataType[*fieldCount];

 /* Fill the formatString */
 strcpy(formatString,
 (nstr *)&format->firstDataType[*fieldCount + 1]);

 /* Terminate the formatString */
 formatString[formatStringLength] = 0;

 /* Return Success */
 returnValue = 0; /* Success */
 break;
 }
 }
 } while (!eof(fileno(rec)));

 /* Close our file */
 fclose(rec);

Management Service Group

Accounting: Examples 13

 return returnValue;
}

/* Function that prints a note record to screen */
int PrintNoteRecord
(
 pnstr format,
 NoteRecord *note
)
{
 int count;
 va_list argList;

 va_start(argList, note->comment - 1);
 count = vprintf(format, argList);
 va_end(argList);

 return count;
}

/* Function that prints a Connect Time Charge record to screen */
int PrintConnectTimeRecord
(
 pnstr format,
 ChargeComment *comment,
 double bytesRead,
 double bytesWritten
)
{
 return(printf(format, comment->unit1, comment->unit2,
 bytesRead, bytesWritten));
}

/* Function that prints a charge record to screen */
int PrintChargeRecord
(
 pnstr format,
 ChargeRecord *record
)
{
 int count;
 va_list argList;

 va_start(argList, record->comment - 1);
 count = vprintf(format, argList);
 va_end(argList);

Management Service Group

Accounting: Examples 14

 return count;
}

Parent Topic:

NetWare Server Charges

Management Service Group

Accounting: Examples 15

Accounting: Concepts

Account Locked Comment

An account locked comment records the network node on which a user’s
account has been locked because of too many failed login attempts. The
following table shows the format of an account locked comment.

Offset Field Type Order

 0 Net nuint32 high-low

 4 Node
(hi)

nuint32 high-low

 8 Node
(lo)

nuint16 high-low

Balances of Accounting

When accounting is enabled on a NetWare® server, users are given a global
account balance. Expenditures for all accounting-enabled services are
charged against this value. The account balance is stored in the user’s
ACCOUNT_BALANCE property. The following table shows fields within
this property.

Table auto. The ACCOUNT_BALANCE Property

Offset Field Type Order

0 balance nint32 high-low

4 credit limit nint32 high-low

8 reserved nuint8[120]

The balance field contains a signed long integer indicating the current
balance.

The credit limit field contains a signed long integer indicating the lowest
permissible balance. Requests are denied for services causing the value in
balance to fall below the value in credit limit. credit limit can be positive
(maintaining a minimum balance) or negative (permitting the balance to fall

Management Service Group

Accounting: Concepts 16

below 0).

Charge Record Auditing

A charge record is created each time a charge is placed against a user
balance. The following table shows the format of a charge record:

Table auto. Charge Record Format

Off
set

Field Type Order

0 length nuint16 high-low

2 server ID nuint32 high-low

6 time stamp nuint8[
6]

12 record type nuint8[
1]

13 completion
code

nuint8

14 service type nuint16 high-low

16 client ID nuint32 high-low

20 amount nuint32 high-low

24 comment
type

nuint16 high-low

26 comment variabl
e

You can identify the record type by checking the record type field. Identify
the record type as follows:

charge record: Record type = 1

note record: Record type = 2

The length field contains the total length of the remaining fields in the record
(that is, record length minus 2 bytes).

The time stamp field contains the date and time the charge was submitted.
The format is year (year=current year minus 1900), month, day, hour,
minute, second, where each is a byte-sized integer.

The server ID and service type fields identify the object submitting the charge
and the type of service. The server ID is a bindery object ID. The service type
is the bindery object type of the server. You must provide your service type
when you submit the charge. The amount is the amount being charged to
the user.

Management Service Group

Accounting: Concepts 17

The client ID field identifies the user being charged for the service. Although
this value identifies the user by bindery object ID, you need to know only
the name of the user to submit the charge request. For more information
about comment type and the format of the comment field, see Event
Comments of Accounting.

The amount field is a long unsigned integer indicating the amount of the
charge.

The comment and comment type fields supply information specific to the
service. Novell defines standard comment types and formats for recording
this information. The length of the comment field can be determined by the
type of the comment. The completion code field is set to 0 if the request is
successful.

Chargeable Services

Services are charged for every half hour from the time the user logs in until
the user logs out. If during this period the user account balance is found to
have fallen below the credit limit, the user is given a five minute and a one
minute warning, and is then disconnected. Chargeable services include
connection time, number of requests, number of blocks read, and number of
blocks written. The rates for these services are stored in the following
properties:

CONNECT_TIME

REQUESTS_MADE

BLOCKS_READ

BLOCKS_WRITTEN

Although there is a separate property for each service, the properties share
the same format.

The following table shows the format of service rate properties:

Table auto. Format for Service Rate Properties

Off
set

Field Type Order

 0 time of
next
charge

nuint
32

high-low

 4 current
charge rate
multiplier

nuint
16

high-low

 6 current nuint high-low

Management Service Group

Accounting: Concepts 18

 6 current
charge rate
divisor

nuint
16

high-low

 8 days
charge
occurs
mask

nuint
8

 9 time
charge
occurs

nuint
8

 10 charge rate
multiplier

nuint
16

high-low

 12 charge rate
divisor

nuint
16

high-low

NOTE: Service rate properties can store up to 20 charge rates. Each
charge rate includes the following four fields (6 bytes):

days charge occurs mask

time charge occurs

charge rate multiplier

charge rate divisor

The first charge rate begins at offset 8, the second charge rate begins at
offset 14 and the third charge rate begins at offset 20. The following
table shows the information for the second and third charge rates, if
used. Charge rates 4 through 20 would follow this pattern if used.

Table auto. Second and Third charge rates, if used

Off
set

Field Type Order

 14 days
charge
occurs
mask

nuint
8

 15 time
charge
occurs

nuint
8

 16 charge
rate
multiplier

nuint
16

high-low

 18 charge
rate
divisor

nuint
16

high-low

 20 days
charge

nuint
8

Management Service Group

Accounting: Concepts 19

occurs
mask

 21 time
charge
occurs

nuint
8

 22 charge
rate
multiplier

nuint
16

high-low

 24 charge
rate
divisor

nuint
16

high-low

The first three fields in the service rate property maintain the current charge
rate. The time of next charge field contains the time when the current charge
is replaced with a different rate. The current charge rate multiplier and
current charge rate divisor are used to compute the charges in the following
manner:

1. The unit of service (total connect time, number of requests performed,
number of blocks read, number of blocks written) is multiplied by the
current charge rate multiplier.

2. The product from Step 1 is divided by the current charge rate divisor,
and the result is deducted from the user’s account balance.

Each group of four fields after the first three fields contain a charge rate. The
days charge occurs mask and time charge occurs together indicate when the
charge should take effect. The days charge occurs mask indicates the day of
the week (bit 0=Sunday,..., bit 6=Saturday) and time charge occurs indicates
the time of day on the half hour (0=12am,...,47=11:30pm).

Each rate has its own charge rate multiplier and divisor. The server moves
these values into current charge rate multiplier and current charge rate
divisor when the charge rate becomes effective.

Connect Time Comment

A connect time comment records NetWare® server usage. It includes the
number of minutes the workstation was connected to the server, the number
of packets sent to the server, and the number of bytes written and read. The
following table shows the format of a connect time comment.

Table auto. Connect Time Comment Format

Off
set

Field Type Order

0 connect time nuint
32

high-low

Management Service Group

Accounting: Concepts 20

4 request count nuint
32

high-low

8 bytes read (hi) nuint
16

high-low

10 bytes read
(middle)

nuint
16

high-low

12 bytes read (lo) nuint
16

high-low

14 bytes written (hi) nuint
16

high-low

16 bytes written
(middle)

nuint
16

high-low

18 bytes written (lo) nuint
16

high-low

Parent Topic:

Event Comments of Accounting

Disk Storage Charges

Disk storage charges are levied every half hour. The disk storage charge
rates are stored in the DISK_STORAGE property attached to the NetWare®
server. The format for this property varies slightly from the service
properties due to the static nature of storage. Charges are computed for all
users during the same period (independent of user login sessions). The
following table shows this format:

Table auto. The DISK_STORAGE Property

Off
set

Field Type Order

 0 time of next
charge

nuint
32

high-low

 4 current
charge rate
multiplier

nuint
16

high-low

 6 current
charge rate
divisor

nuint
16

high-low

 8 days
charge
occurs
mask

nuint
8

Management Service Group

Accounting: Concepts 21

 9 time charge
occurs

nuint
8

 10 charge rate
multiplier

nuint
16

high-low

 12 charge rate
divisor

nuint
16

high-low

Like service rate properties, the disk storage property can store up to 20
charge rates. The first charge rate begins at offset 8 and includes 4 fields (6
bytes). The purpose of each field is exactly the same as for a service rate
property (See Chargeable Services). The current rate for disk storage is
computed in the following manner for each user:

1. The current disk storage is calculated in 4K blocks.

2. The total blocks occupied by a user are multiplied by the number of half
hours since the last disk storage charge was made.

3. The total half-hour blocks are multiplied by the current charge rate
multiplier.

4. The product from Step 3 is divided by the current charge rate divisor,
and the result is deducted from the user’s account balance.

The time of next charge and time of previous charge are used to calculate
when the next charge rate takes effect.

Disk Storage Comment

A disk storage comment records the number of blocks owned by the user
and the amount of time the blocks have been in the user’s possession. The
time is expressed in half hour increments. The following table shows the
format of a disk storage comment:

Table auto. Disk Storage Comment Format

Off
set

Field Type

0 number of blocks
owned

nuint32

4 number of half
hours

nuint32

Elements of Accounting

Management Service Group

Accounting: Concepts 22

The following elements comprise NetWare® accounting:

Servers of Accounting

Balances of Accounting

Events of Accounting

Holds of Accounting

The accounting system defines a special bindery property to manage each
element.

Event Comments of Accounting

A comment is a field in a charge or note record that stores information
specific to the service submitting the charge or note. For example, if you are
charging for disk storage, use a disk storage comment. There are six
predefined comment types. If one of these doesn’t serve your purpose,
contact Novell’s Developer Relations (see the preface for phone numbers) to
request a unique comment type. Standard comment types and their values
include the following:

1 = Connect time charge

2 = Disk storage charge

3 = Log in note

4 = Log out note

5 = Account locked note

6 = Server time modified note

Comments are embedded in charge or note records and supplement the
standard information that appears there. For example, a client ID of the
record identifies the user associated with the comment.

Related Topics:

Connect Time Comment

Disk Storage Charges

Login Comment

Logout Comment

Account Locked Comment

Server Time Modified Comment

Connect Time Comment

Management Service Group

Accounting: Concepts 23

Event Comments of Accounting Format File

A comment format file, net$rec.dat, found in the sys:system directory,
serves as a companion to the audit file. This file is for information and
ease-of-use only and cannot be written to. (Do not delete this file, NetWare®
does not recreate it as it does the net$acct.dat file.) The file allows you to
display information from the comment field in a charge or note record. For
example, a disk storage comment indicates the number of disk blocks
owned by a user over a period of half hours. If the user owns 25 blocks for
10 half hours, the comment field stores only the numeric values 25 and 10. A
record in the net$rec.dat file stores a standard format control string for
displaying this data. In this example, the format string is

"%lu disk blocks stored for %lu half-hours."

This string is intended to fit conveniently into a printf-style statement, as in
the following code:

#include<nwmisc.h>
nuint32 blocks, time;

printf("%lu disk blocks stored for %lu half-hours.", NWLongSwap(blocks)

In your code, the format control string would not appear as a literal value
but as a pointer to the area into which you copy the formatting string from
the comment formatting file. Since values in the comment are stored in
high-low order, they are swapped in the example above.

Events of Accounting

Accounting includes a rudimentary auditing service that allows you to
record accounting events as they occur. (Accounting audits are separate
from the full-scale services provided by Auditing.) When auditing is
enabled on a server an accounting audit file, net$acct.dat, is created and put
in the file server’s sys:system directory. net$acct.dat stores the auditing
record. Standard file I/O functions can manipulate this file, which has
normal file attributes. The NetWare® PAUDIT utility reads the information
from this file to the standard output.

The accounting audit file contains records of two types: charge records and
note records. A charge record is added to the file when a user’s account
balance is charged for services. Note records are added at the discretion of
the services using accounting. A note is purely informational and has no
effect on any account balances.

The net$acct.dat file grows in size as accounting events occur. This file
should be monitored regularly and archived and deleted when it gets too
big. Once the net$acct.dat file has been archived and deleted, NetWare will
automatically recreate it the next time the user logs in.

Management Service Group

Accounting: Concepts 24

Holds of Accounting

Account holds on user balances reserve funds for services the server
supplies. Holds allow verification that current funds can cover particular
requests. Account holds are not required, but your application should at
least check balance in the ACCOUNT_BALANCE property to verify funding
for the specific request.

Holds are recorded in the user property, ACCOUNT_HOLDS. This
property is present only if there is a hold on the account. The following table
shows the format of the ACCOUNT_HOLDS property.

Table auto. The ACCOUNT_HOLDS Property

Offset Field Type Order

0 object ID nint32 high-low

4 amount nuint32 high-low

Each hold consists of an object ID and an amount field. The object ID field is
the ID of the object placing the hold. The amount field is the amount of the
hold. Each of the two parameters uses 4 bytes. The maximum size of the
property is 128 bytes; therefore, ACCOUNT_HOLDS can have no more
than 16 holds placed on the account at once. If the object ID is 0, the amount
field is not meaningful. HOLDS_STATUS and HOLDS_INFO are defined to
handle this data.

Introduction to Accounting

Accounting is a bindery-based service that must be enabled on a server
running NetWare® 2.1 and above before the services can be used.
Accounting contains functions required for administering and recording
accounting events. Call Accounting functions, for example, in time sharing
situations and for tracking print server and database usage, connection
time, and disk storage.

Developers can also take advantage of accounting to charge for services and
to audit events. Because Accounting relies heavily on the bindery, a
familiarity with bindery operations is necessary before reading about
Accounting.

Login Comment

A login comment records the network node of a workstation that the user

Management Service Group

Accounting: Concepts 25

logged in from. The NetWare® server uses this comment as an auditing
note and not as a charge. The following table shows the format of a login
comment:

Off
set

Field Type Order

0 Net nuint
32

high-low

4 Node
(hi)

nuint
32

high-low

8 Node
(lo)

nuint
16

high-low

Logout Comment

A logout comment records the network node of a workstation the user has
logged out from. The NetWare® server uses this comment as an auditing
note and not as a charge. The following table shows the format of a logout
comment:

Off
set

Field Type Order

0 Net nuint
32

high-low

4 Node
(hi)

nuint
32

high-low

8 Node
(lo)

nuint
16

high-low

NetWare Server Charges

NetWare® servers use the accounting system to charge for services and disk
storage. The supervisor determines the charge rates, typically by using the
SYSCON utility (NetWare 3.x) or NETADMIN and NWADMIN utilities
(NetWare 4.x). Rates are stored as bindery properties attached to the server
object. NetWare servers handle disk storage accounting somewhat
differently from other services, so service and storage are considered
separately in this section.

Management Service Group

Accounting: Concepts 26

Note Record Auditing

The note record shares many of the same fields found in the change record.
The main difference between them is that the note record does not include a
charge amount. Notes are used to record events for the system
administrator, such as the time a user logged in to the server. The following
table shows the format of a note record:

Table auto. Note Record Format

Off
set

Field Type Order

0 length nuint1
6

high-low

2 server ID nuint3
2

high-low

6 time
stamp

nuint8
[6]

12 record
type

nuint8
[1]

13 reserved nuint8

14 service
type

nuint1
6

high-low

16 client ID nuint3
2

high-low

20 comment
type

nuint1
6

high-low

22 comment variab
le

Server Time Modified Comment

A server time modified comment records a modification in the system time
of the NetWare server. The comment contains the time value before the
change was made. The following table shows the format of a server time
modified comment:

Table auto. Server Time Modified Comment Format

Off
set

Field Type

 0 year since
1900

nuint8

Management Service Group

Accounting: Concepts 27

 1 month nuint8

 2 day nuint8

 3 hour nuint8

 4 minute nuint8

 5 second nuint8

Servers of Accounting

Any object permitted to charge for services through the accounting service
qualifies as an accounting server. A server receives accounting status by
recording its bindery object ID in the ACCOUNT_SERVERS property of the
NetWare server. Your application needs supervisor equivalence to add itself
to this property. (For more information about adding an application to the
ACCOUNTING_SERVERS property, see NWAddObjectToSet.)

Standard Format Control Strings

The following is a list of the format control strings for standard Novell
comment types:

Connect Time Format:

"Connected %lu minutes: %lu requests; %04x%04x%04xh
bytes read; %04x%04x%04xh bytes written"

Disk Storage Format:

"%lu disk blocks stored for %lu half-hours."

Login Format:

"Login from address %lx:%lx%x."

Logout Format:

"Logout from address %lx:%lx%x."

Account Locked Format:

"Account intruder lockout caused by address:
%lx:%lx%x."

Server Time Modified Format:

"System time changed to 19%02d-%02d-%02d%d:%02:%02d."

Management Service Group

Accounting: Concepts 28

String Formatting Records

The following table shows the format of a record in the net$rec.dat file.:

Table auto. String Formatting Record

Off
set

Field Type Order

0 length nuint16 high-low

2 comment
type

nuint16 high-low

4 field count nuint8[1]

5 data type nuint8[field
count]

? buffer variable

Use the “comment type” field to associate a formatting record in this file
with a comment in the audit file. For example, the formatting record for disk
storage comments would have a value of 2 in comment type.

length is the total length of the remaining fields in the record (i.e., record
length - 2 bytes).

data type identifies the data types found sequentially in the associated
comment. The following values are defined:

1 = nuint8

2 = nuint16

3 = nuint32

4 = TEXT

Text data is a length-preceded string of printable characters.

The number of data types is stored in the field count field.

Below are two examples of how the buffer field is formatted. The first table is
for a Connect Time Charge with a Field Count of four. The second table is
for a Disk Storage Charge with a Field Count of two.

Table auto. Connect Time Charge

Off
set

Field Val
ue

Type

0 data type 1 3 nuint8

1 data type 2 3 nuint8

2 data type 3 5 nuint8

Management Service Group

Accounting: Concepts 29

3 data type 4 5 nuint8

4 data value
1

nuint32

8 data value
2

nuint32

12 data value
3

nfloat48

18 data value
4

nfloat48

24 length of
string

81 nuint8

25 printable
string

ASCII

Table auto. Disk Storage Charge

Off
set

Field Val
ue

Type

data type 1 3 nuint8

1 data type 2 3 nuint8

2 data value
1

nuint32

6 data value
2

nuint32

10 length of
string

55 nuint8

11 printable
string

ASCII

Management Service Group

Accounting: Concepts 30

Accounting: Functions

Management Service Group

Accounting: Functions 31

NWGetAccountStatus

Returns the account status of a NetWare® server Bindery or Directory
Services object including its balance, credit limit, and holds

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: Accounting

Syntax

#include <nwacct.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetAccountStatus (
 NWCONN_HANDLE conn,
 nuint16 objType,
 pnstr8 objName,
 pnint32 balance,
 pnint32 limit,
 HOLDS_STATUS N_FAR *holds);

Pascal Syntax

#include <nwacct.inc>

Function NWGetAccountStatus
 (conn : NWCONN_HANDLE;
 objType : nuint16;
 objName : pnstr8;
 balance : pnint32;
 limit : pnint32;
 Var holds : HOLDS_STATUS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objType

(IN) Specifies the type of the object for which the status is desired.

objName

(IN) Points to a string containing the name of the object for which the
accounting status is desired. (48 characters maximum or will be

Management Service Group

Accounting: Functions 32

truncated.)

balance

(OUT) Points to the amount of value units available to the object to
buy services on the network (optional, pass in NULL).

limit

(OUT) Points to the lowest level the object’s account balance can reach
before the object can no longer buy services on the network (optional,
pass in NULL).

holds

(OUT) Points to HOLDS_STATUS containing a list of objects placing a
hold on the object’s account (optional, pass in NULL).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89C0 NO_ACCOUNTING_PRIVILEGES

0x89C1 LOGIN_DENIED_NO_ACCOUNT_BALANCE

0x89C4 ACCOUNTING_DISABLED

0x89E8 NOT_ITEM_PROPERTY

0x89EA NO_SUCH_MEMBER

0x89EB NOT_GROUP_PROPERTY

0x89EC NO_SUCH_SEGMENT

0x89EF INVALID_NAME

0x89F0 WILD_CARD_NOT_ALLOWED

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE

Remarks

NWGetAccountStatus queries a NetWare server’s Bindery or Directory
bindery context for the current account status of a specified object by
passing the object name and type. NWGetAccountStatus returns the
object’s balance, limit and holds.

Management Service Group

Accounting: Functions 33

balance contains the object’s account balance, usually in some established
monetary unit such as cents.

holds lists servers calling NWSubmitAccountHold against the object and
the amount reserved by each value-added server. holds also lists the object
ID number of a value-added server calling NWSubmitAccountHold
against the object. Up to 16 servers can place holds on the account at one
time. Multiple holds from the same server are combined. Each server
hold is made up of two fields: (1) the object ID of the server placing the
hold, and (2) the amount of the server’s hold.

The ACCOUNT_SERVERS property on the file server must contain the
object ID of the requesting server. Otherwise, NWSubmitAccountHold
will return NO_ACCOUNTING_PRIVILEGES. The user must have an
ACCOUNT_BALANCE property on the NetWare server or
NWSubmitAccountHold will return
LOGIN_DENIED_NO_ACCOUNT_BALANCE.

NCP Calls

0x2222 23 150 Get Current Account Status

See Also

NWQueryAccountingInstalled, NWSubmitAccountCharge,
NWSubmitAccountHold, NWSubmitAccountNote

Management Service Group

Accounting: Functions 34

NWQueryAccountingInstalled

Determines whether accounting is installed and/or enabled on a NetWare
server

Local Servers: blocking

Remote Servers: blocking

NetWAre Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Accounting

Syntax

#include <nwacct.h>
or
#include <nwcalls.h>

NWCCODE N_API NWQueryAccountingInstalled (
 NWCONN_HANDLE conn,
 pnuint8 installed);

Pascal Syntax

#include <nwacct.inc>

Function NWQueryAccountingInstalled
 (conn : NWCONN_HANDLE;
 installed : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

installed

(OUT) Points to the installed value. It returns 1 if accounting is
installed on the NetWare server; otherwise, installed returns 0.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Management Service Group

Accounting: Functions 35

0x8811 INVALID_SHELL_CAL

0x8836 INVALID_PARAMETER

Remarks

Under NETX, if an invalid connection handle is passed to conn,
NWQueryAccountingInstalled will return 0x0000. NETX will pick a
default connection handle if the connection handle cannot be resolved.

When accounting is enabled, the NetWare server object has the property
ACCOUNT_SERVERS.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 23 60 Scan Property

0x2222 104 1 Ping for NDS NCP

Management Service Group

Accounting: Functions 36

NWSubmitAccountCharge

Charges an amount against an object’s balance and either relinquishes a
hold or reduces the hold by the charge amount

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Accounting

Syntax

#include <nwacct.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSubmitAccountCharge (
 NWCONN_HANDLE conn,
 nuint16 objType,
 pnstr8 objName,
 nuint16 serviceType,
 nint32 chargeAmt,
 nint32 holdCancelAmt,
 nuint16 noteType,
 pnstr8 note);

Pascal Syntax

#include <nwacct.inc>

Function NWSubmitAccountCharge
 (conn : NWCONN_HANDLE;
 objType : nuint16;
 objName : pnstr8;
 serviceType : nuint16;
 chargeAmt : nint32;
 holdCancelAmt : nint32;
 noteType : nuint16;
 note : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objType

(IN) Specifies the type of the object to be charged.

Management Service Group

Accounting: Functions 37

objName

(IN) Points to a string containing the name of the object whose account
is to be charged (48 character maximum or will be truncated).

serviceType

(IN) Specifies the type of service for which the charge is being made.

chargeAmt

(IN) Specifies the amount to be charged to the object account balance.

holdCancelAmt

(IN) Specifies the amount the hold will be reduced (set to zero if there
are no holds).

noteType

(IN) Specifies the note type to be written to the audit report.

note

(IN) Points to a note associated with the charge and stored as an audit
record (255 character maximum or will be truncated).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8901 ERR_INSUFFICIENT_SPACE

0x8988 INVALID_FILE_HANDLE

0x8994 NO_WRITE_PRIVILEGES_OR_READONLY

0x8996 SERVER_OUT_OF_MEMORY

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89C0 NO_ACCOUNTING_PRIVILEGES

0x89C1 LOGIN_DENIED_NO_ACCOUNT_BALANCE

0x89C2 LOGIN_DENIED_NO_CREDIT

0x89C4 ACCOUNTING_DISABLED

0x89E8 WRITE_PROPERTY_TO_GROUP

0x89EA NO_SUCH_MEMBER

0x89EB NOT_GROUP_PROPERTY

0x89EC NO_SUCH_SEGMENT

0x89EF INVALID_NAME

0x89F0 WILD_CARD_NOT_ALLOWED

Management Service Group

Accounting: Functions 38

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE

Remarks

NWSubmitAccountCharge can write a note about the transaction in an
audit record (optional). The charge and hold amounts do not have to be
the same.

objType and objName must uniquely specify the object and cannot contain
wildcard characters.

serviceType usually contains the object type of the charging account
server. The common server object types are listed below:

Object Type High-Low Format

Job Server OT_JOB_SERVER 0x0500
Print Server OT_PRINT_SERVER 0x0700
Archive Server OT_ARCHIVE_SRVER 0x0900

noteType contains the number of the note type. Note types are
administered by Novell®, Inc. and are listed below:

Note Description Type

1 Connect time charge
2 Disk storage charge
3 Log in note
4 Log out note
5 Account locked note
6 Server time modified note

Developers should contact Novell for unique note types. Note types
greater than 8000H are reserved.

NOTE: note is the entry the value-added server makes in
SYS:SYSTEM\NET$ACCT.DAT.

NCP Calls

0x2222 23 151 Submit Account Charge

See Also

NWSubmitAccountHold, NWSubmitAccountNote

Management Service Group

Accounting: Functions 39

NWSubmitAccountHold

Reserves a specified amount of an object’s account balance before the object
receives and is charged for a service on the network

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Accounting

Syntax

#include <nwacct.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSubmitAccountHold (
 NWCONN_HANDLE conn,
 nuint16 objType,
 pnstr8 objName,
 nint32 holdAmt);

Pascal Syntax

#include <nwacct.inc>

Function NWSubmitAccountHold
 (conn : NWCONN_HANDLE;
 objType : nuint16;
 objName : pnstr8;
 holdAmt : nint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objType

(IN) Specifies the type of the object for which the hold is desired.

objName

(IN) Points to the name of the object for which the hold is desired (48
character maximum).

holdAmt

 (IN) Specifies the amount to be held against the object’s account
balance.

Management Service Group

Accounting: Functions 40

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8901 ERR_INSUFFICIENT_SPACE

0x8988 INVALID_FILE_HANDLE

0x8994 NO_WRITE_PRIVILEGES_OR_READONLY

0x8996 SERVER_OUT_OF_MEMORY

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89C0 NO_ACCOUNTING_PRIVILEGES

0x89C1 LOGIN_DENIED_NO_ACCOUNT_BALANCE

0x89C2 LOGIN_DENIED_NO_CREDIT

0x89C3 ERR_TOO_MANY_HOLDS

0x89C4 ACCOUNTING_DISABLED

0x89E8 WRITE_PROPERTY_TO_GROUP

0x89EA NO_SUCH_MEMBER

0x89EB NOT_GROUP_PROPERTY

0x89EC NO_SUCH_SEGMENT

0x89EF INVALID_NAME

0x89F0 WILD_CARD_NOT_ALLOWED

0x89FC NO_SUCH_OBJECT

0x89FE BINDERY_LOCKED

0x89FF HARDWARE_FAILURE

Remarks

NWSubmitAccountHold reserves a specified amount of an object’s
account balance that object receives and is charged for services on the
network.

objType and objName must uniquely identify the object and cannot contain
wildcard characters.

holdAmt gets the amount the server expects to charge for the service it is
about to provide to the object.

NOTE: No more than 16 servers can reserve amounts of an object’s

Management Service Group

Accounting: Functions 41

NOTE: No more than 16 servers can reserve amounts of an object’s
account balance at one time. Multiple holds from the same server are
combined.

NCP Calls

0x2222 23 152 Submit Account Hold

See Also

NWQueryAccountingInstalled, NWGetAccountStatus,
NWSubmitAccountCharge, NWSubmitAccountNote

Management Service Group

Accounting: Functions 42

NWSubmitAccountNote

Adds a note about an accounting transaction to an audit record

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Accounting

Syntax

#include <nwacct.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSubmitAccountNote (
 NWCONN_HANDLE conn,
 nuint16 objType,
 pnstr8 objName,
 nuint16 serviceType,
 nuint16 noteType,
 pnstr8 note);

Pascal Syntax

#include <nwacct.inc>

Function NWSubmitAccountNote
 (conn : NWCONN_HANDLE;
 objType : nuint16;
 objName : pnstr8;
 serviceType : nuint16;
 noteType : nuint16;
 note : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objType

(IN) Specifies the type of the object for which the note is being
submitted.

objName

(IN) Points to the name of the object to receive the note (48 character
maximum or will be truncated).

Management Service Group

Accounting: Functions 43

serviceType

(IN) Specifies the object type of the charging account server.

noteType

(IN) Specifies the note type (255 character maximum or will be
truncated).

note

(IN) Points to a note to be added to an audit record.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8901 ERR_INSUFFICIENT_SPACE

0x8996 SERVER_OUT_OF_MEMORY

0x89C0 NO_ACCOUNTING_PRIVILEGES

0x89C1 LOGIN_DENIED_NO_ACCOUNT_BALANCE

0x89C4 ACCOUNTING_DISABLED

0x89E8 WRITE_PROPERTY_TO_GROUP

0x89EA NO_SUCH_MEMBER

0x89EB NOT_GROUP_PROPERTY

0x89EC NO_SUCH_SEGMENT

0x89EF INVALID_NAME

0x89F0 WILD_CARD_NOT_ALLOWED

0x89FC NO_SUCH_OBJECT

0x89FF HARDWARE_FAILURE

Remarks

objType and objName must uniquely identify the object and cannot contain
wildcard characters.

serviceType usually contains the object type of the charging account
server. The common server object types are listed below:

Object Type High-Low Format

Job Server OT_JOB_SERVER 0x0500
Print Server OT_PRINT_SERVER 0x0700

Management Service Group

Accounting: Functions 44

Archive Server OT_ARCHIVE_SRVER 0x0900

noteType contains the number of the note type. Note types are
administered by Novell and are listed below:

Note Description Type
1 Connect time charge
2 Disk storage charge
3 Log in note
4 Log out note
5 Account locked note
6 Server time modified note

Developers should contact Novell for unique note types. Note types
greater than 8000H are reserved.

NOTE: note contains the entry the server adds to the audit record. The
audit record is contained in SYS:SYSTEM\NET$ACCT.DAT.

NCP Calls

0x2222 23 153 Submit Account Note

See Also

NWSubmitAccountCharge, NWSubmitAccountHold

Management Service Group

Accounting: Functions 45

Accounting: Structures

Management Service Group

Accounting: Structures 46

HOLDS_INFO

Defines information for an object that places a hold on an account

Service: Accounting

Defined In: nwacct.h

Structure

typedef struct
{
 nuint32 objectID;
 nint32 amount;
} HOLDS_INFO;

Pascal Structure

Defined in nwacct.inc

 HOLDS_INFO = Record
 objectID : nuint32;
 amount : nint32
 End;

Fields

objectID

Indicates the object ID of the server placing the hold. Multiple holds
from the same server are combined.

amount

Indicates the amount of the associated objectID’s hold.

Management Service Group

Accounting: Structures 47

HOLDS_STATUS

Stores a list of holds placed on an account

Service: Accounting

Defined In: nwacct.h

Structure

typedef struct
{
 nuint16 holdsCount;
 HOLDS_INFO holds[16];
} HOLDS_STATUS;

Pascal Structure

 HOLDS_STATUS = Record
 holdsCount : nuint16;
 holds : Array[0..15] Of HOLDS_INFO
 End;

Defined In

nwacct.inc

Fields

holdsCount

Indicates the number of NW_HOLDS in holds array.

holds

Indicates a list of servers calling NWSubmitAccountHold against an
object and the amount reserved by each value-added server.

Management Service Group

Accounting: Structures 48

Application Launcher

Management Service Group

 49

Application Launcher: Guides

Application Launcher: General Guide

Tasks

Using the Application Launcher

Using the Application Launcher Example

Concepts

Application Launcher Introduction

Related Topics:

Application Launcher: Tasks

Application Launcher: Examples

Application Launcher: Concepts

Application Launcher: Functions

Application Launcher: Structures

Parent Topic:

Management Overview

Management Service Group

Application Launcher: Guides 50

Application Launcher: Tasks

Using the Application Launcher

To enable users to launch a Directory Services application do the following:

1. Call NWAPPGetFolders to retrieve a list of all the application objects
available to the user through Directory Services.

2. For each application displayed in the list call
NWAPPGetObjectAttributes and NWAPPFreeGetObjectAttributes.

This retrieves the icon and a description of each application for display
on the screen.

3. Call NWAPPFreeGetFolders to clean up the memory allocated by
NWAPPGetFolders.

4. Start a timer that calls NWAPPMonitorApplications (about once a
second) to check if any launched applications have terminated.

The resources for a closed application will automatically be cleaned up.

5. When a user launches an application, call NWAPPLaunchApplication
.

All necessary resources for the application will be allocated (drive
mappings and port captures for example).

Parent Topic:

Application Launcher: General Guide

Related Topics:

Using the Application Launcher Example

Management Service Group

Application Launcher: Tasks 51

Application Launcher: Examples

Using the Application Launcher Example

The following example gets the list of applications for the current user and
displays them on the screen.

void NWAPPExample()
{
 APP_DIRECTORY_OBJECT *c1;
 APP_CONTEXT_HANDLE context;
 char tStr[255];

 printf("Starting...\n\n");

 /* Allocate a context handle. */
 context = NWAPPAllocContextHandle();

 /* Check if this tree has any application objects. */
 if (NWAPPIsSchemaModified(context) == FALSE) {
 printf("Schema is not modified!\n");
 return;
 }

 /* Show all of the desktop groups for this user. */
 printf("-----------------\n");
 printf("Desktop Groups...\n");
 printf("-----------------\n");
 APP_DESKTOP_FOLDER *f2, *c2;
 f2 = NWAPPGetFolders(context, APP_DESKTOP, 5, NULL);
 c2 = f2;
 while (c2 != NULL) {
 printf("Full object name: %s\n", c2->name);
 NWAPPStripFullObjectName(context, c2->name, tStr);
 printf("Stripped object name: %s\n", c2->name);
 c1 = c2->head;
 while (c1 != NULL) {
 printf("\t%s (%s)\n", c1->name, c1->fullName);
 c1 = c1->next;
 }
 c2 = c2->next;
 }
 printf("\n\n");

 // Launch the first application in the list.

Management Service Group

Application Launcher: Examples 52

 nint16 rslt;
 nint16 launchError;
 char launchErrStr[255];
 nint16 id;
 if (f2 != NULL) {
 rslt = NWAPPLaunchApplicationId(context,f2->head->fullName,&id,
 &launchError,launchErrStr);
 if (rslt != APP_SUCCESS) {
 printf("\n\n");
 printf("ERROR: NWAPPLaunchApplication failed - 0x%04X\n", rslt);
 printf(" launchError = 0x%04X\n", launchErrStr);
 printf(" launchErrStr = %s\n", launchErrStr);
 }
 }

 /* NWAPPMonitorApplicationId should be called here until the */
 /* program hasbeen terminated. */

 /* Free up the memory allocated by NWAPPGetFolders. */
 NWAPPFreeGetFolders(f2);

 /* Cleanup. */
 NWAPPFreeContextHandle(context);
}

Parent Topic:

Using the Application Launcher

Management Service Group

Application Launcher: Examples 53

Application Launcher: Concepts

Application Launcher Introduction

NetWare® Application Launcher enables you to integrate Novell®
Directory Services™ Application Objects into your application. The
Application Launcher also simplifies the retrieval of object attributes for any
Directory Services object.

Parent Topic:

Application Launcher: General Guide

Management Service Group

Application Launcher: Concepts 54

Application Launcher: Functions

Management Service Group

Application Launcher: Functions 55

NWAPPAllocContextHandle

Creates a context handle

Platform: Windows* 3.1, Windows*95

Service: Application Launcher

Syntax

#include <nwapp.h>

APP_CONTEXT_HANDLE N_API N_EXPORT NWAPPAllocContextHandle (
 void);

Return Values

If successful, NWAPPAllocContextHandle returns a context handle.
Otherwise, it returns APP_ERROR.

Remarks

NWAPPAllocContextHandle creates a context and returns a context
handle. You must free the handle by calling NWAPPFreeContextHandle
.

See Also

NWAPPFreeContextHandle

Management Service Group

Application Launcher: Functions 56

NWAPPCreateAppObject

Creates an application object in the Directory tree and sets various attributes
and values for the new application object

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

nuint16 N_API N_EXPORT NWAPPCreateAppObject (
 APP_CONTEXT_HANDLE context,
 pnstr8 containerName,
 APP_APPLICATION_OBJECT *appData);

Parameters

context

(IN) Specifies the context where the application object will be created.

containerName

(IN) Specifies the DS name of the container in which to place the
application object. For example: ".ou=Accounting.o=novell"

appData

(IN) Points to APP_APPLICATION_OBJECT defining the various
attributes and values for the new application object as well as the
object name.

Return Values

These are common return values; see Return Values for more
information.

APP_SUCCESS

E_INVALID_CONTAINE
R

Container name does not exist relative to
the context

E_FILE_NOT_EXE path in appData does not specify an
executable

E_BAD_PATH path in appData does not exist

E_OBJECT_ALREADY_E
XISTS

An object of the same name as name in
appData already exists

E_INVALID_DS_OBJECT One or more of the DS objects passed into
the contacts or associations list is not valid

Management Service Group

Application Launcher: Functions 57

or does not exist

APP_ERROR Object could not be created

Management Service Group

Application Launcher: Functions 58

NWAPPCreateFullObjectName

Creates a fully typed NDS object name

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

pnstr8 N_API N_EXPORT NWAPPCreateFullObjectName (
 APP_CONTEXT_HANDLE context,
 pnstr8 name,
 pnstr8 fullName);

Parameters

context

(IN) Specifies the valid context of the object. NULL is not accepted.

name

(IN) Points to the object name to type.

fullName

(OUT) Points to the typed name of the object. You must allocate
enough memory for the name.

Return Values

If successful, NWAPPCreateFullObjectName returns a pointer to the full
name of the object.

Remarks

NWAPPCreateFullObjectName expands an object name to its fully
typed name. For example, DJanis becomes CN=DJanis.O=Novell.

Management Service Group

Application Launcher: Functions 59

NWAPPFreeContextHandle

Frees a context handle allocated by NWAPPAllocContextHandle

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

void N_API N_EXPORT NWAPPFreeContextHandle (
 APP_CONTEXT_HANDLE context);

Parameters

context

(IN) Specifies the context handle returned by
NWAPPAllocContextHandle when the context was created.

Return Values

None

See Also

NWAPPAllocContextHandle

Management Service Group

Application Launcher: Functions 60

NWAPPFreeGetFolders

Frees the memory allocated by NWAPPGetFolders

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

APP_DESKTOP_FOLDER NWAPPFreeGetFolders (
 APP_DESKTOP_FOLDER *head);

Parameters

head

(IN) Points to the first node in a list of folders returned by
NWAPPGetFolders.

Return Values

None

See Also

NWAPPGetFolders

Management Service Group

Application Launcher: Functions 61

NWAPPFreeGetObjectAttributes

Frees the memory allocated by NWAPPGetObjectAttributes

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

void N_API N_EXPORT NWAPPFreeGetObjectAttributes (
 APP_OBJECT_ATTRIBUTE *head);

Parameters

head

(IN) Points to the first node in the attribute list returned by
NWAPPGetObjectAttributes.

Return Values

None

See Also

NWAPPGetObjectAttributes

Management Service Group

Application Launcher: Functions 62

NWAPPGetFolders

Creates a linked list of all the folders for the current user, and the objects
that reside in them

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

APP_DESKTOP_FOLDER* N_API N_EXPORT NWAPPGetFolders (
 APP_CONTEXT_HANDLE dContext,
 nint16 folderType,
 nint16 numContainers,
 pnstr8 userName);

Parameters

dContext

(IN) Specifies the valid directory context to scan for objects.

folderType

(IN) Specifies the type of list to return: APP_AUTO_START or
APP_DESKTOP.

numContainers

(IN) Specifies the number of containers to include in the search. -1
specifies to start searching the Directory tree from the userName
parameter to the top for folders.

userName

(IN) Points to the user for which to return a list. NULL specifies to
return a list for the current user; otherwise, NWAPPGetFolders will
return a list for the user name passed in. userName must be relative to
dContext.

Return Values

If successful, NWAPPGetFolders returns a pointer to the first node in the
list of auto start folders. Otherwise, it returns NULL.

Remarks

NWAPPGetFolders returns a list of APP_DESKTOP_FOLDER objects.
Each of these desktop folders has a linked list of
APP_DIRECTORY_OBJECT nodes.

Management Service Group

Application Launcher: Functions 63

To get the actual attribute values for a given node, call
NWAPPGetObjectAttributes using the fullName field of
APP_DIRECTORY_OBJECT.

See Also

NWAPPFreeGetFolders

Management Service Group

Application Launcher: Functions 64

NWAPPGetIconFromFile

Reads an icon resource file and creates an icon based on the information

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

HICON N_API N_EXPORT NWAPPGetIconFromFile (
 HINSTANCE hInst,
 pnstr8 szFileName);

Parameters

hInst

(IN) Specifies the handle to the instance of the application.

szFileName

(IN) Specifies the icon resource file.

Return Values

A handle to an icon. The handle will be NULL if an icon cannot be
created for any reason.

Remarks

Only the first icon in a given file is read. To modify
NWAPPGetIconFromFile to read in all the icons in the .ICO file, you
must read in the entire icon resource directory, and find the bits to each
icon.

Management Service Group

Application Launcher: Functions 65

NWAPPGetIconFromHandle

Reads an icon from a binary file

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

HICON NWAPPGetIconFromHandle (
 HINSTANCE hInst,
 NWFILE_HANDLE fileHandle);

Parameters

hInst

(IN) Specifies a handle to a module or application instance.

fileHandle

(IN) Specifies the handle of the binary file to read.

Return Values

If successful, NWAPPGetIconFromHandle returns a handle to an icon.
Otherwise it returns NULL.

Remarks

Only the first icon in the given file is read. To modify
NWAPPGetIconFromHandle to read in all the icons in a .ICO file, you
must read in the entire icon resource directory and identify the bits to
each icon.

See Also

NWAPPReadIcon

Management Service Group

Application Launcher: Functions 66

NWAPPGetObjectAttributes

Returns a list of attribute names and types for the specified object

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

APP_OBJECT_ATTRIBUTE* N_API N_EXPORT NWAPPGetObjectAttributes (
 APP_CONTEXT_HANDLE dContext,
 pnstr8 dsName,
 pnstr8 *attrList,
 nint16 attrNum);

Parameters

dContext

(IN) Specifies the NDS context of the object. This must be a valid
context.

dsName

(IN) Points to the typed name of the object.

attrList

(IN) Points to an array of pointers to strings that indicate which
attributes to return. Set this to NULL to get all attributes (set attrNum to
zero).

attrNum

(IN) Specifies the number of pointers in the attrList array. Set to 0 to
return all attributes.

Return Values

If successful, NWAPPGetObjectAttributes returns a pointer to the first
node in a list of APP_OBJECT_ATTRIBUTE structures. Otherwise, it
returns NULL.

Remarks

NWAPPGetObjectAttributes returns a list of
APP_OBJECT_ATTRIBUTE structures containing a list of
APP_ATTRIBUTE_VALUE structures.

dsName is relative to dContext.

Management Service Group

Application Launcher: Functions 67

Call NWAPPFreeGetObjectAttributes to free the memory allocated by
NWAPPGetObjectAttributes.

See Also

NWAPPFreeGetObjectAttributes

Management Service Group

Application Launcher: Functions 68

NWAPPIconToBitmap

Takes an HICON and returns a HBITMAP

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

HBITMAP N_API N_EXPORT NWAPPIconToBitmap (
 HICON hIcon);

Parameters

hIcon

(IN) Specifies a handle to an icon.

Return Values

A handle to a bitmap.

Management Service Group

Application Launcher: Functions 69

NWAPPIsSchemaModified

Checks the Directory schema to see if it has been modified for application
objects

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

BOOL N_API N_EXPORT NWAPPIsSchemaModified (
 APP_CONTEXT_HANDLE dContext);

Parameters

dContext

(IN) Specifies the context for the tree you want to check.

Return Values

These are common return values; see Return Values for more
information.

TRUE The schema has application objects defined.

FALSE The schema does not have application objects defined.

Remarks

If the current tree (relative to dContext) has the correct schema,
NWAPPIsSchemaModified will return TRUE. Otherwise, FALSE is
returned.

Management Service Group

Application Launcher: Functions 70

NWAPPLaunchApplication

Performs all of the necessary actions to launch the specified application

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

nint16 N_API N_EXPORT NWAPPLaunchApplication (
 APP_CONTEXT_HANDLE dContext;
 pnstr8 dsObject;
 nint16 *errorRslt;
 pnstr8 errorStr);

Parameters

dContext

(IN) Specifies the NDS context of the object. This must be a valid
context.

dsObject

(IN) Specifies the full Directory Service name of the application to be
launched.

errorRslt

(OUT) Returns the NetWare error if a problem occurred.

errorStr

(OUT) Points to a string indicating the error if an error was returned.
You must allocate memory for this string (maximum length is 255
characters).

Return Values

These are common return values; see Return Values for more
information.

APP_SUCCESS Application was launched successfully.

APP_ERROR Application could not be launched.
Problem is unknown.

E_GETTING_ATTRS Could not retrieve the object attributes.

E_INVALID_DRIVE_PA
TH

The path to the executable was invalid.

E_INVALID_QUEUE_PA The path to the queue was invalid.

Management Service Group

Application Launcher: Functions 71

E_INVALID_QUEUE_PA
TH

The path to the queue was invalid.

E_AUTH_FAILED Authentication failed.

E_INVALID_MAP_DRIV
E

Mapping the drive failed.

E_CAPTURE_PORT The capture failed. The syntax for the
capture may be incorrect.

E_CAPTURE_FLAG The call to set the capture flags failed.

E_CAPTURE_SETTINGS The capture failed.

E_SCRIPT_FAILED The pre or post launch script failed to
execute.

E_EXEC_FAILED The application could not be launched.

Remarks

NWAPPLaunchApplication performs all maintenance necessary to start
an application including mapping drives, capturing printers, pre- and
post-setup or cleanup.

Call NWAPPMonitorApplications to track and clean up resources.

When APP_SUCCESS is not returned, errorStr and errorRslt are set to the
following values:

Return Code errorRslt Value errorStr Value

E_GETTING_ATTRS Undefined Directory Services object
name

E_INVALID_DRIVE_
PATH

NetWare Return
Code

Executable file path

E_INVALID_QUEUE_
PATH

NetWare Return
Code

Resource for the capture

E_AUTH_FAILED NetWare Return
Code

Name of the server

E_INVALID_MAP_D
RIVE

NetWare Return
Code

Resource for the mapping

E_CAPTURE_PORT NetWare Return
Code

Capture command

E_CAPTURE_FLAG NetWare Return
Code

Capture command

E_CAPTURE_SETTIN
GS

NetWare Return
Code

Capture command

E_SCRIPT_FAILED NetWare Return
Code

Relative path after the
root

Management Service Group

Application Launcher: Functions 72

E_EXEC_FAILED Undefined Executable file path

Management Service Group

Application Launcher: Functions 73

NWAPPLaunchApplicationId

Performs all of the necessary actions to launch an application and returns a
unique ID for the specified application

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

nint16 N_API N_EXPORT NWAPPLaunchApplicationId (
 APP_CONTEXT_HANDLE dContext;
 pnstr8 dsObject;
 nint16 *uniqueId;
 nint16 *errorRslt;
 pnstr8 errorStr);

Parameters

dContext

(IN) Specifies the NDS context of the object. This must be a valid
context.

dsObject

(IN) Specifies the full Directory Service name of the application to be
launched.

uniqueId

(OUT) Returns a unique ID identifying the application that was
launched. This value is used to call NWAPPMonitorApplicationById.

errorRslt

(OUT) Returns the NetWare error if a problem occurred.

errorStr

(OUT) Points to a string indicating the error if an error was returned.
You must allocate memory for this string (maximum length is 255
characters).

Return Values

These are common return values; see Return Values for more
information.

APP_SUCCESS Application was launched successfully.

APP_ERROR Application could not be launched.

Management Service Group

Application Launcher: Functions 74

Problem is unknown.

E_GETTING_ATTRS Could not retrieve the object attributes.

E_INVALID_DRIVE_PA
TH

The path to the executable was invalid.

E_INVALID_QUEUE_PA
TH

The path to the queue was invalid.

E_AUTH_FAILED Authentication failed.

E_INVALID_MAP_DRIV
E

Mapping the drive failed.

E_CAPTURE_PORT The capture failed. The syntax for the
capture may be incorrect.

E_CAPTURE_FLAG The call to set the capture flags failed.

E_CAPTURE_SETTINGS The capture failed.

E_SCRIPT_FAILED The pre or post launch script failed to
execute.

E_EXEC_FAILED The application could not be launched.

Remarks

NWAPPLaunchApplicationId performs all maintenance necessary to
start an application including mapping drives, capturing printers, pre-
and post-setup or cleanup.

Call NWAPPMonitorApplications to track and clean up resources.

If NWAPPLaunchApplicationId fails, uniqueId is undefined.

When APP_SUCCESS is not returned, errorStr and errorRslt are set to the
following values:

Return Code errorRslt Value errorStr Value

E_GETTING_ATTRS Undefined Directory Services object
name

E_INVALID_DRIVE_
PATH

NetWare Return
Code

Executable file path

E_INVALID_QUEUE_
PATH

NetWare Return
Code

Resource for the capture

E_AUTH_FAILED NetWare Return
Code

Name of the server

E_INVALID_MAP_D
RIVE

NetWare Return
Code

Resource for the mapping

E_CAPTURE_PORT NetWare Return
Code

Capture command

Management Service Group

Application Launcher: Functions 75

E_CAPTURE_FLAG NetWare Return
Code

Capture command

E_CAPTURE_SETTIN
GS

NetWare Return
Code

Capture command

E_SCRIPT_FAILED NetWare Return
Code

Relative path after the
root

E_EXEC_FAILED Undefined Executable file path

Management Service Group

Application Launcher: Functions 76

NWAPPMakeBitmap

Creates a bitmap based on the DIB

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

HBITMAP N_API N_EXPORT NWAPPMakeBitmap (
 HANDLE hDIB);

Parameters

hDIB

(IN) Specifies a handle to the bitmap’s DIB information.

Return Values

A handle to a bitmap. NULL is returned if a bitmap cannot be
successfully created.

Management Service Group

Application Launcher: Functions 77

NWAPPMakeCursor

Creates a cursor based on the DIB information returned by ReadCursor

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

HCURSOR NWAPPMakeCursor (
 HINSTANCE ghInst,
 HANDLE hDIB,
 LPPOINT lpptHotSpot);

Parameters

ghInst

(IN) Specifies a handle to a module or application instance.

hDIB

(IN) Specifies a handle to the cursor’s DIB information.

lpptHotSpot

(IN) Points to a point structure indicating the location of the cursor’s
hot spot.

Return Values

If successful, NWAPPMakeCursor returns a handle to a cursor.
Otherwise, it returns NULL.

Remarks

The steps involved in creating a cursor from a DIB are similar to those
involved in creating an icon from a DIB and include:

1. Obtain a pointer to the cursor’s DIB bits.

2. Divide the DIB’d height by 2 to account for the fact that the DIB stores
both the XOR and the AND masks, one after the other.

3. Determine the offset of the XOR bits.

4. Determine the offset of the AND bits.

5. Create a device dependent bitmap with the XOR bits.

6. Obtain the device dependent XOR bitmask and save it in memory. (The

Management Service Group

Application Launcher: Functions 78

AND bitmask is monochrome. Monochrome bits are identical in both
the device dependent bitmaps and device independent bitmaps so there
is no need to convert the AND bitmask.)

7. Flip the monochrome AND bits by scanlines since a DIB is stored
upside down.

8. Use the XIO and AND bits to create a cursor by calling CreateCursor.

See Also

NWAPPMakeIcon

Management Service Group

Application Launcher: Functions 79

NWAPPMakeIcon

Creates an icon based on the DIB information returned by ReadIcon

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

HICON NWAPPMakeIcon (
 HINSTANCE ghInst,
 HANDLE hDIB);

Parameters

ghInst

(IN) Specifies a handle to a module or application instance.

hDIB

(IN) Specifies a handle to the icon’s DIB information.

Return Values

If successful, NWAPPMakeIcon returns a handle to a newly created icon.
Otherwise, it returns NULL.

Remarks

The steps involved in creating an icon from a DIB are similar to the steps
involved in creating a cursor from a DIB and include:

1. Obtain a pointer to the icon’s DIB bits.

2. Divide the DIB’d height by 2 to account for the fact that the DIB stores
both the XOR and the AND masks, one after the other.

3. Determine the offset of the XOR bits.

4. Determine the offset of the AND bits.

5. Create a device dependent bitmap with the XOR bits.

6. Obtain the device dependent XOR bitmask and save it in memory. (The
AND bitmask is monochrome. Monochrome bits are identical in both
the device dependent bitmaps and device independent bitmaps so there
is no need to convert the AND bitmask.)

7. Flip the monochrome AND bits by scanlines since a DIB is stored

Management Service Group

Application Launcher: Functions 80

upside down.

8. Use the XIO and AND bits to create an icon by calling CreateIcon.

See Also

NWAPPMakeCursor

Management Service Group

Application Launcher: Functions 81

NWAPPModifySchema

Modifies the schema for application objects

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

BOOL N_API N_EXPORT NWAPPModifySchema (
 APP_CONTEXT_HANDLE dContext);

Parameters

dContext

(IN) Specifies the context of the directory tree whose schema is to be
modified.

Return Values

TRUE Schema was successfully modified

FALSE Schema could not be modified (it was already modified, the
user does not have enough rights to modify it, or there is a
conflict in classes or attributes)

Remarks

If the schema has already been partially modified,
NWAPPModifySchema attempts to fully modify it.

Management Service Group

Application Launcher: Functions 82

NWAPPMonitorApplicationById

Checks to see if any applications launched by
NWAPPLaunchApplicationId have terminated

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

nint16 N_API N_EXPORT NWAPPMonitorApplicationById (
 nint16 id);

Parameters

id

(IN) Specifies the unique ID of the application returned by calling
NWAPPLaunchApplicationId.

Return Values

These are common return values; see Return Values for more
information.

APP_ALIVE

APP_KILLED

Remarks

NWAPPMonitorApplicationById needs to be called periodically
(preferably every 1-3 seconds).

If applications have terminated, NWAPPMonitorApplicationById
performs appropriate cleanup for the terminated applications’ resources.

Management Service Group

Application Launcher: Functions 83

NWAPPMonitorApplications

Checks to see if the specified application launched by
NWAPPLaunchApplication has terminated

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

void N_API N_EXPORT NWAPPMonitorApplications (
 void);

Return Values

None

Remarks

NWAPPMonitorApplications needs to be called periodically (preferably
every 1-3 seconds).

If applications have terminated, NWAPPMonitorApplications performs
appropriate cleanup for the terminated applications’ resources.

Management Service Group

Application Launcher: Functions 84

NWAPPProcessVariables

Substitutes words between percent signs to either user object attribute
values or environment variables

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

void N_API N_EXPORT NWAPPProcessVariables (
 APP_CONTEXT_HANDLE context,
 pnstr8 str,
 nint16 strSize);

Parameters

context

(IN) Specifies the context you are working in.

str

(IN/OUT) Specifies the string to be modified on input. On output, str
will be modified on output to contain the variable information.

strSize

(IN) Specifies the size, in bytes, of str.

Return Values

None

Remarks

NWAPPProcessVariables will substitute according to the following
examples if username=djanis:

before calling
NWAPPProcessVariables

after calling
NWAPPProcessVariables

“\\server\vol\%username%” “\\server\vol\djanis”

“\\server\vol\%dn%” “\\server\vol\djanis”

“%dn%” becomes “djanis” because the DN of the user object is used.

Management Service Group

Application Launcher: Functions 85

before calling
NWAPPProcessVariables

after calling
NWAPPProcessVariables

“\\server\vol\%.djanis.cpt.npd.n
ovell:email”

“\\server\vol\damon_janis@nov
ell.com”

“novell:email” becomes “damon_janis@novell.com” because it uses the
E-mail attribute of the .djanis.cpt.npd.novell object.

NOTE: If the string between the percent signs cannot be replaced or if
there are no percent signs, str is returned untouched.

Management Service Group

Application Launcher: Functions 86

NWAPPReadIcon

Reads an icon resource file and extracts the DIB information

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

HANDLE NWAPPReadIcon (
 pnstr8 iconData,
 nuint32 cbIconData);

Parameters

iconData

(IN) Points to the icon resource file to read.

cbIconData

(IN) Specifies the number of bytes to which iconData points.

Return Values

If successful, NWAPPReadIcon returns a handle to a DIB. Otherwise, it
returns NULL.

Remarks

Only the first icon in a given file is read. To modify NWAPPReadIcon to
read in all the icons in an .ICO file, you must read in the entire icon
resource directory and identify the bits to each icon.

See Also

NWAPPGetIconFromHandle

Management Service Group

Application Launcher: Functions 87

NWAPPStripFullObjectName

Strips the typed name of an NDS object to the object name

Platform: Windows 3.1, Windows95

Service: Application Launcher

Syntax

#include <nwapp.h>

pnstr8 N_API N_EXPORT NWAPPStripFullObjectName (
 APP_CONTEXT_HANDLE context,
 pnstr8 fullName,
 pnstr8 strippedName);

Parameters

context

(IN) Specifies the context of the object.

fullName

(IN) Points to the typed name of the object.

strippedName

(OUT) Points to the stripped name of the object. You must allocate
memory to contain this name.

Return Values

If successful, NWAPPStripFullObjectName returns a pointer to the
stripped name.

Remarks

NWAPPStripFullObjectName strips the typed name of an object down
to the object name. For example, CN=DJanis.O=Novell becomes
DJanis.

Management Service Group

Application Launcher: Functions 88

Application Launcher: Structures

Management Service Group

Application Launcher: Structures 89

APP_APPLICATION_OBJECT

Defines an application object and values for its attributes

Service: Application Launcher

Defined In: nwapp.h

Structure

typedef struct
{
 nstr8 className[MAX_SCHEMA_NAME_BYTES];
 nstr8 name[MAX_DN_BYTES];
 nstr8 description[MAX_DESCRIPTION_LENGTH];
 nstr8 path[MAX_PATH_LENGTH];
 nstr8 workingDirectory[MAX_PATH_LENGTH];
 nstr8 commandLineParameters[MAX_PARAMETERS_LENGTH];
 nstr8 longDescription[MAX_BLURB_LENGTH];
 uint32 flags;
 nstr8 driveMappings[3][MAX_MISC_LENGTH];
 nint16 driveCount;
 nstr8 printerPorts[3][MAX_MISC_LENGTH];
 nint16 printerCount;
 NWFILE_HANDLE preLaunchScript;
 NWFILE_HANDLE postLaunchScript;
 APP_NAME_LIST *contacts;
 nint16 contactcount;
 APP_NAME_LIST *associations;
 nint16 associationCount;
} APP_APPLICATION_OBJECT;

Fields

className

Specifies the class name. For example:

C_WINDOWS_APPLICATION

C_WIN_APPLICATION

C_WIN_NT_APPLICATION

name

Specifies the object name

description

Specifies the application description. For example, “GroupWise 3.0”.

path

Specifies the path where the executable is located (including the
executable name). For example:

UNC path: \\>server name<\>volume<\>dir path<\>dir

Management Service Group

Application Launcher: Structures 90

path<\grpwise.exe

Drive based: F:\...\grpwise.exe

workingDirectory

Specifies the working directory for the executable---UNC or Drive
based (optional).

commandLineParameters

Specifies the command line parameters to be passed to the executable
(optional).

longDescription

Specifies the long description of the application (optional).

flags

Specifies the flags to set (optional). For example:
APP_FLAG_MINIMIZE | APP_FLAG_NO_CLEANUP. Set to zero for
none.

driveMappings

Specifies the map commands for up to 3 drive mappings (optional).
For example:

driveMappings[0] = “F:=\\server\volume”

driveMappings[1] = “N=\\server\volume”

driveCount

Specifies the number of drives defined by driveMappings. Set to zero
for none.

printerPorts

Specifies the capture commands for up to 3 ports (optional). For
example:

printerPorts[0] = “LPT1:=\\server\queue”

printerPorts[1] = “LPT2:=\\server\queue”

printerCount

Specifies the number of ports defined in printerPorts. Set to zero for
none.

preLaunchScript

Specifies the open file handle to an ASCII text file containing a
pre-launch script. Set to NULL for none.

postLaunchScript

Specifies the open file handle to an ASCII text file containing a
post-launch script. Set to NULL for none.

contacts

Points to an array of contacts (users in the DS tree) that are contacts for
this application.

contactCount

Management Service Group

Application Launcher: Structures 91

Specifies the number of contacts in the array pointed to by contacts. Set
to zero for none.

associations

Points to an array of associations (users, groups, or containers that can
set this application). Set to zero for none.

associationCount

Specifies the number of associations in associations. Set to zero for
none.

Remarks

name cannot contain periods and other string characters disallowed by DS
object names.

preLaunchScript and postLaunchScript should contain an ASCII text file
containing login-script syntax.

NOTE: The NWAPP library will not close the file.

You must allocate and free memory for the array pointed to by contacts.
For example, to add 3 contacts:

APP_APPLICATION_OBJECT *appData;
appData->contactCount = 3;
appData->contacts = (APP_NAME_LIST *)malloc(3 * sizeof(APP_NAME_LIST));
strcpy(appData->contacts[0], ".cn-djanis.ou=cpt.ou=npd.o=novell");
strcpy(appData->contacts[1], ".dn-carlah.ou=cpt.ou=npd.o=novell");
strcpy(appData->contacts[2], ".cn=mgbrooks.ou=cpt.ou=npd.o=novell");
...
free(appData->contacts);

You must allocate and free memory for the array pointed to by
associations. For example, to add 3 associations:

APP_APPLICATION_OBJECT *appData;
appData->associationCount = 3;
appData->associations = (APP_NAME_LIST *)malloc(3 * sizeof(APP_NAME_LIST));
strcpy(appData->associations[0], ".cn=djanis.ou=cpt.ou=npd.o=novell");
strcpy(appData->associations[1], ".ou=cpt.ou=npd.o=novell");
strcpy(appData->associations[2], ".cn=CPT_GROUP.ou=cpt.ou=npd.o=novell");
...
free(appData->associations);

NOTE: The fully qualified DS name needs to be in the contacts and
associations array. The contact list is of type SYN_DIST_NAME
(distinguished name) which requires a real DS object.

Management Service Group

Application Launcher: Structures 92

APP_ATTRIBUTE_VALUE

Defines an attribute value

Service: Application Launcher

Defined In: nwapp.h

Structure

typedef struct AttributeValue
{
 NWSYNTAX_ID syntaxID;
 nptr value;
 uint32 valueSize;
 struct AttributeValue *next;
} APP_ATTRIBUTE_VALUE;

Fields

syntaxID

Specifies the syntax of the attribute.

If the syntaxID is APP_STREAM_ATTRIBUTE, the value points to an
open file handle (HFILE in Windows). This file is closed when the
APP_ATTRIBUTE_VALUE is freed by calling
NWAPPFreeGetObjectAttributes. Use this file handle as you would
any other.

value

Points to the value of the attribute.

valueSize

Specifies the size in bytes of the value.

next

Points to the next attribute value in the list.

Management Service Group

Application Launcher: Structures 93

APP_DESKTOP_FOLDER

Defines a generic desktop group

Service: Application Launcher

Defined In: nwapp.h

Structure

typedef struct DesktopFolder
{
 pnstr8 name;
 APP_DIRECTORY_OBJECT *head;
 struct DesktopFolder *next;
} APP_DESKTOP_FOLDER;

Fields

name

Specifies the name of the desktop group.

head

Points to the list of objects in this folder.

next

Points to the next desktop object in the list.

Management Service Group

Application Launcher: Structures 94

APP_DIRECTORY_OBJECT

Defines an NDS object

Service: Application Launcher

Defined In: nwapp.h

Structure

typedef struct DirectoryObject
{
 uint32 type;
 pnstr8 name;
 pnstr8 fullName;
 struct DirectoryObject *next;
} APP_DIRECTORY_OBJECT;

Fields

type

Specifies the type of application:

2 APP_AUTO_START

4 APP_DESKTOP

name

Specifies the short name of the object (that is, the object name relative
to the current context).

fullName

Specifies the fully-qualified name of the object.

next

Points to the next NDS object in the list.

Management Service Group

Application Launcher: Structures 95

APP_OBJECT_ATTRIBUTE

Defines a generic attribute for an NDS object

Service: Application Launcher

Defined In: nwapp.h

Structure

typedef struct ObjectAttribute
{
 pnstr8 name;
 APP_ATTRIBUTE_VALUE *valueHead;
 struct ObjectAttribute *next;
} APP_OBJECT_ATTRIBUTE;

Fields

name

Specifies the name of the attribute.

valueHead

Points to the first node in the value list, or N_NULL if there are no
values for the attribute.

next

Points to the next attribute in the list.

Management Service Group

Application Launcher: Structures 96

Auditing

Management Service Group

 97

Auditing: Guides

Auditing: General Guide

Auditing Introduction

C2 Auditing Security Requirements

Auditing Volumes and Containers

Auditing Security

Enabling and Disabling Auditing

Audit History Files

The Audit File Configuration Header

Auditing Event Records

Audit Status Information

Auditing Functions

Audit Security Functions

Audit Status Functions

Audit File Functions

Configuration Header Functions

Audit Property Functions

Auditing: Tasks

Auditing: Concepts

Auditing: Examples

Auditing: Functions

Auditing: Structures

Parent Topic:

Management Overview

Management Service Group

Auditing: Guides 98

Auditing: Task Guide

Enabling Auditing for NetWare 4 Versions Prior to 4.11

Disabling Auditing for NetWare 4 Versions Prior to 4.11

Enabling Auditing for NetWare 4.11

Disabling Auditing for NetWare 4.11

Auditing: Tasks

Auditing: Concepts

Auditing: Examples

Auditing: Functions

Auditing: Structures

Parent Topic:

Auditing: General Guide

Auditing: Concept Guide

Auditing Introduction

C2 Auditing Security Requirements

Auditing Volumes and Containers

Auditing Security

Enabling and Disabling Auditing

Auditing Passwords for NetWare 4 Versions Prior to 4.11

AFO Attributes for NetWare 4.11

Audit History Files

Auditing Event Records

Fields of Auditing Event Records

Reading Auditing Event Records

Audit Status Information

Auditing Functions

Audit Security Functions

Management Service Group

Auditing: Guides 99

Audit Status Functions

Audit File Functions

Configuration Header Functions

Audit Property Functions

The Audit File Configuration Header

The Audit File Configuration Header Introduction

The Audit File Configuration Header Example

Auditing Flags

Auditing Flags Example

The Audit File Configuration Header Event Bitmap

Scope of Auditing Events

Auditing File Events (NetWare 4.x)

User Audit Property

File Events for Auditing

Reading a Volume Event Bitmap

Reading a Volume Event Bitmap Example

Event Bits Tables

Accounting Events Table

File Events

Message Events Table

QMS Events Table

Server Events Table

User Events Table

Directory Services Events Table

Additional Directory Services Events for NetWare 4.11 Table

Auditing: Tasks

Auditing: Concepts

Auditing: Examples

Management Service Group

Auditing: Guides 100

Auditing: Functions

Auditing: Structures

Parent Topic:

Auditing: General Guide

The Audit File Configuration Header

This topic discusses the audit file configuration header and how it controls
the auditing on the associated volume or container.

The Audit File Configuration Header Introduction

The Audit File Configuration Header Example

Auditing Flags

Auditing Flags Example

The Audit File Configuration Header Event Bitmap

Scope of Auditing Events

Auditing File Events (NetWare 4.x)

Reading a Volume Event Bitmap

Event Bits Tables

Parent Topic:

Auditing: General Guide

Auditing Event Records

Event records are generated according to the event bitmap in the
configuration header. These records make up the data segment of the audit
file. The configuration header includes an audit record count that records the
current number of event records.

Fields of Auditing Event Records

Reading Auditing Event Records

Parent Topic:

Auditing: General Guide

Auditing File Events (NetWare 4.x)

Management Service Group

Auditing: Guides 101

For NetWare 4 versions prior to 4.11, file events are the only category of
events for which you can target specific files and users. To audit file events
you must configure the files and the user objects in addition to setting the
file event bit in the volume’s event bitmap. To target specific files you must
set each file’s audit attribute. To target specific users you must add an audit
property to each user’s bindery object. Both procedures are explained
below.

User Audit Property

File Events for Auditing

Parent Topic:

The Audit File Configuration Header Event Bitmap

Enabling and Disabling Auditing

Enabling and disabling auditing is different depending on whether you are
using NetWare 4.11 or previous versions of NetWare 4. However, in both
cases, when auditing is enabled an audit file is automatically created. This
file is where the audit data is stored.

Enabling and Disabling Auditing for NetWare 4 Versions Prior to 4.11

Enabling Auditing for NetWare 4 Versions Prior to 4.11

Disabling Auditing for NetWare 4 Versions Prior to 4.11

Auditing Passwords for NetWare 4 Versions Prior to 4.11

Enabling and Disabling Auditing for NetWare 4.11

Enabling Auditing for NetWare 4.11

Disabling Auditing for NetWare 4.11

AFO Attributes for NetWare 4.11

Parent Topic:

Auditing: General Guide

Event Bits Tables

This is a list of tables that define event bits.

Accounting Events Table

Management Service Group

Auditing: Guides 102

File Events

Message Events Table

QMS Events Table

Server Events Table

User Events Table

Directory Services Events Table

Additional Directory Services Events for NetWare 4.11 Table

Parent Topic:

The Audit File Configuration Header Event Bitmap

Reading a Volume Event Bitmap

The volume event bitmap is a bit stream 512 bits long. Special functions are
defined to simplify access to this bitmap:

NWADReadBitMap reads the event bitmap.

NWADWriteBitMap modifies the event bitmap.

Reading a Volume Event Bitmap Example

Parent Topic:

The Audit File Configuration Header Event Bitmap

Management Service Group

Auditing: Guides 103

Auditing: Tasks

Disabling Auditing for NetWare 4 Versions Prior to
4.11

1. Call NWADDisable to disable auditing and close the audit file.

Parent Topic:

Enabling and Disabling Auditing

Related Topics:

Enabling Auditing for NetWare 4 Versions Prior to 4.11

Auditing Passwords for NetWare 4 Versions Prior to 4.11

Disabling Auditing for NetWare 4.11

1. Call NWADClose to free the audit handle allocated by NWADOpen.

Parent Topic:

Enabling and Disabling Auditing

Related Topics:

Enabling Auditing for NetWare 4.11

AFO Attributes for NetWare 4.11

Enabling Auditing for NetWare 4 Versions Prior to
4.11

1. Call NWADLogin to initialize the auditing password.

2. Call NWADEnable to enable auditing on the object.

NOTE: For first time auditing, the login function returns
ERR_AUDITING_NOT_ENABLED. You can then call NWADEnable to
enable auditing. The first-time auditor must have supervisor
equivalence.

Don’t confuse logging in to a volume or container as auditor with

Management Service Group

Auditing: Tasks 104

logging in to a NetWare® server. Audit login is a unique procedure
implemented through a special service request.

If a second-level password is in effect, it must also be initialized. The
auditor password is required even when auditing is disabled. For more
information see Auditing Passwords for NetWare 4 Versions Prior to
4.11.

When you log in to an object, Auditing returns an audit key. The key
permits access to the audit data for the object you have logged in to by
providing access to the password calls. Remember to remove the
password from memory as soon as you receive the audit key. The audit
key is the basis for security throughout an auditing session.

Parent Topic:

Enabling and Disabling Auditing

Related Topics:

Disabling Auditing for NetWare 4 Versions Prior to 4.11

Auditing Passwords for NetWare 4 Versions Prior to 4.11

Enabling Auditing for NetWare 4.11

1. Create a DS Audit File Object (AFO) in the container you want to
audit using either DS calls or the Auditcon utility.

2. Give a user (the auditor) read and write rights to the Audit:Policy and
Audit:Contents attributes of the AFO.

3. Call NWADOpen to allocate an audit handle for use in other
auditing functions.

NOTE: The creator of the AFO is automatically given auditor status.
Remove the creator’s DS rights to the AFO if you do not want the
creator to have auditor access.

Parent Topic:

Enabling and Disabling Auditing

Related Topics:

Disabling Auditing for NetWare 4.11

AFO Attributes for NetWare 4.11

Management Service Group

Auditing: Tasks 105

Auditing: Examples

The Audit File Configuration Header Example

The following code writes some arbitrary values to a container’s
configuration header. Since all data items in the header are affected by the
operation, the header is read first to obtain values for those items that will
not be modified.

Writing to a Container's Configuration Header

/* ***
 *
 * Name : Writing to a container's configuration header
 *
 *
 * Abstract : Writes arbitrary values to a container's configuration header.
 * Since all data items in the header are affected by the
 * operation, the header is first read using
 * NWADReadConfigHeader to obtain values for those items that
 * will not be modified.
 *
 * **/

#ifdef N_PLAT_OS216
#include <os2.h>
#endif

#ifdef N_PLAT_WIN16
#include <windows.h>
#endif

#include <stdio.h>
#include <time.h>
#include <nwaudit.h>
#include <nwdsaud.h>
#include <nwmisc.h>

void main(void)
{
nuint32 auditIDType=1; /* Set to Container for this example */
nuint32 auditID = 0;
pNWADOpenStatus openStatus;
pnptr auditHandle;
NWCONN_HANDLE connHandle;
NWRCODE ccode = 0;

Management Service Group

Auditing: Examples 106

nchar ObjectName[40]; /* ie. .OU=MyDept.O=MyCompany */
NWConfigHeader buffer;
nuint16 bufferSize;

NWDSContextHandle contextHandle;

 buffer.errMsgDelayMinutes=0;
 buffer.auditFileMaxSize=0;
 buffer.auditFileSizeThreshold=0;

/* Assume values have been assigned to the connection handle and context handle. */

 ccode = NWCallsInit(NULL,NULL);

 if (auditIDType==1) /* Type 0 is Volume Auditing, 1 is Container Auditing. */

 {
 ccode = NWDSAuditGetObjectID(contextHandle,

 objectName,

 &connHandle,
 &auditID);
 }

 ccode = NWADOpen(connHandle,
 auditIDType,
 auditID,
 auditHandle,
 openStatus);
 if (ccode)
 {
 printf("\nUse AUDITCON to enable auditing on server");
 /*return(-1); */
 }

 bufferSize = sizeof(NWConfigHeader);
 ccode = NWADReadConfigHeader(connHandle,

 auditIDType,
 auditID,

 &buffer,

 bufferSize);
 buffer.errMsgDelayMinutes+=10;
 buffer.auditFileMaxSize+=50;
 buffer.auditFileSizeThreshold+=60;
 ccode = NWADWriteConfigHeader(connHandle, auditIDType,
 (nuint32)auditID, au

Management Service Group

Auditing: Examples 107

ditHandle,);
 ccode = NWADLogout(connHandle,

 auditIDType,

 auditID,

 auditHandle);
 ccode = NWADClose(auditHandle);
}

Parent Topic:

The Audit File Configuration Header Introduction

Auditing Flags Example

The following code calls NWADGetFlags and uses constants defined in
nwaudit.h to read the auditing flags on a volume.

Reading Auditing Flags on a Volume

/* ***
 *
 * Name : Reading the auditing flags on a volume
 *
 *
 * Abstract : Call NWADGetFlags and use the constants defined in
 * nwaudit.h to read the auditing flags on a volume.
 *
 * Inputs : VOID
 *
 * Notes : This example shows relevant audit APIs only and assumes
 * values have been assigned to connection handle, vol number
 * and audit key variables.
 * **/

#include <stdio.h>
#include <stdlib.h>
#include <nwnet.h>
#include <nwaudit.h>

void main(void)
{
 nuint32 auditIDType;
 NWCONN_HANDLE conn;
 nuint8 flags;
 NWCCODE ccode;
 nuint32 auditID;
 nptr auditHandle;

Management Service Group

Auditing: Examples 108

/* Get the flags for the given volume */
 ccode = NWADGetFlags(conn,

 auditIDType,
 auditID,

 auditHandle,

 &flags);

 if(ccode == 0)
 {
/* Print the audit information */
 printf("\nThe following Auditing Flags are set:\n");
 if(flags + DiscardAuditRcdsOnErrorFlag)
 printf("\n DiscardAuditRcdsOnErrorFlag 0x01 is set.");
 if(flags + ConcurrentVolAuditorAccess)
 printf("\n ConcurrentVolAuditorAccess 0x02 is set.");
 if(flags + DualLevelPasswordsActive)
 printf("\n DualLevelPasswordsActive 0x04 is set.");
 if(flags + BroadcastWarningsToAllUsers)
 printf("\n BroadcastWarningsToAllUsers 0x08 is set.");
 if(flags + LevelTwoPasswordSet)
 printf("\n LevelTwoPasswordSet 0x10 is set.");
 }
}

Parent Topic:

Auditing Flags

Reading a Volume Event Bitmap Example

The following code calls NWADReadBitMap to read the event bitmap.

Reading the Event Bitmap

/* ***
 *
 * Name : Reading the event bitmap
 *
 *
 * Abstract : Call NWADReadBitMap to read the event bitmap
 *
 * Notes : This example shows relevant audit APIs only and assumes
 * values have been assigned to connection handle, vol number
 * and audit key variables.
 * **/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Management Service Group

Auditing: Examples 109

#include <nwnet.h>
#include <nwaudit.h>

void main(void)
{
 NWAuditBitMap buffer;
 NWCONN_HANDLE conn;
 NWCCODE ccode;
 nuint32 auditID;
 nuint16 bufferSize
 int i, j, flag;

/* Assume values have been assigned to the connection handle and audit ID. */

/* Read the event bitmap for the specified volume */

 bufferSize = sizeof(buffer);

 ccode = NWADReadBitMap(conn,

 auditID,
 &buffer,
 bufferSize);
 if (ccode)
 {
 printf("\nNWADReadBitMap returned %x\n", ccode);
 exit;
 }
 printf("\n Bit map: ");
 for(i = 0; i < 10; i++)
 {
 for(j = 0, flag = 1; j < 8; j++)
 {
 printf(" %c",(flag & buffer.bitMap[i]) ? '1' : '0');
 flag = flag << 1;
 /* there are only about 75 bits so break out after about that
 many get printed */
 if(i == 9 && j == 3)
 break;
 }
 if(i == 9) break;
 else
 printf("\n :");
 }
}

Parent Topic:

Reading a Volume Event Bitmap

Management Service Group

Auditing: Examples 110

Auditing: Concepts

Accounting Events Table

The following table lists the bits defined in the accounting events bitmap.

Table auto. Accounting Events

Event Type ID Event ID

A_EVENT_GET_CURRET_ACNT_S
TATS

200

A_EVENT_SUBMIT_ACCOUNT_C
HARGE

201

A_EVENT_SUBMIT_ACCOUNT_H
OLD

202

A_EVENT_SUBMIT_ACCOUNT_N
OTE

203

Parent Topic:

Event Bits Tables

Additional Directory Services Events for NetWare
4.11 Table

ADS_ADD_MEMBER 129 29 unicode ObjectName
LONG MemberID
unicode
PropertyName

ADS_BACKUP_ENTRY 130 30 unicode EntryName

ADS_CHANGE_BIND_OBJ_SE
CURITY

131 31 unicode ObjectName
LONG
NewObjectSecurity

ADS_CHANGE_PROP_SECURI
TY

132 32 unicode
propertyName
LONG
newPropertySecurity

Management Service Group

Auditing: Concepts 111

ADS_CHANGE_TREE_NAME 133 33 unicode
NewTreeName

ADS_CHECK_CONSOLE_OPE
RATOR

134 34 unicode ServerName
LONG
OperatorPrivGranted

ADS_COMPARE_ATTR_VALU
E

135 35 unicode attrName

ADS_CREATE_PROPERTY 136 36 unicode ObjectName
unicode
PropertyName
LONG
PropertySecurity

ADS_CREATE_SUBORDINATE
_REF

137 37 unicode EntryName

ADS_DEFINE_ATTR_DEF 138 38 unicode attrName

ADS_DEFINE_CLASS_DEF 139 39 unicode className

ADS_DELETE_MEMBER 140 40 unicode ObjectName
LONG MemberID
unicode
PropertyName

ADS_DELETE_PROPERTY 141 41 unicode ObjectName
unicode MemberID

ADS_DS_NCP_RELOAD 142 42

ADS_RESET_DS_COUNTERS 143 43 unicode
ClientServerName

ADS_FRAG_REQUEST 144 44

ADS_INSPECT_ENTRY 145 45 unicode EntryName

ADS_LIST_CONTAINABLE_CL
ASSES

146 46 unicode EntryName

ADS_LIST_PARTITIONS 147 47 unicode
PartitionRootName

ADS_LIST_SUBORDINATES 148 48 unicode EntryName

ADS_MERGE_ENTRIES 170 70 unicode winnerEntry
unicode loserEntry

ADS_MERGE_TREE 149 49

ADS_MODIFY_CLASS_DEF 150 50 unicode className

ADS_MOVE_TREE 151 51 unicode EntryName

ADS_OPEN_STREAM 152 52 unicode EntryName
unicode attrName
unicode FileName
LONG desiredRights

ADS_READ 153 53 unicode EntryName

ADS_READ_REFERENCES 154 54 unicode EntryName

Management Service Group

Auditing: Concepts 112

ADS_REMOVE_ATTR_DEF 155 55 unicode attrName

ADS_REMOVE_CLASS_DEF 156 56 unicode className

ADS_REMOVE_ENTRY_DIR 157 57 unicode EntryName

ADS_RESTORE_ENTRY 158 58 unicode EntryName

ADS_START_JOIN 159 59 unicode
ParentRootEntryNam
e unicode
ChildRootEntryNam
e

ADS_START_UPDATE_REPLIC
A

160 60 unicode replicaName

ADS_START_UPDATE_SCHE
MA

161 61 unicode
ClientServerName

ADS_SYNC_PARTITION 162 62 unicode
partitionDistName

ADS_SYNC_SCHEMA 163 63

ADS_UPDATE_REPLICA 164 64 unicode replicaName

ADS_UPDATE_SCHEMA 165 65 unicode
ClientServerName

ADS_VERIFY_PASSWORD 166 66 unicode EntryName

ADS_ABORT_JOIN 167 67

ADS_LAST_PLUS_ONE 168 68

Parent Topic:

Event Bits Tables

AFO Attributes for NetWare 4.11

By creating the AFO using the mandatory DS attributes you give the user
auditor status and access to the audit file. The AFO has two mandatory and
several optional NDS attributes. The mandatory attributes are as follows:

Audit:Contents is where read and write rights are assigned to the auditor.

Audit:Policy is where you define the audited events, audit archiving
options, audit file overflow recovery options, maximum size of the audit
file, whether encryption is used, and the number of old audit files.

The optional attributes are as follows:

Audit:A Encryption Key

Audit:B Encryption Key

Management Service Group

Auditing: Concepts 113

Audit:Current Encryption Key

Audit:Path points to the path to the NDS volume where the audit file
resides.

Audit:Link List points to the container, volume, or one or more
workstations for which the AFO stores audit

Audit Type specifies the type of auditing you are doing:

0 = volume auditing

1 = container auditing

2 = external auditing

Also included are all the standard minimum attributes inherited from
Super Class Top.

Parent Topic:

Enabling and Disabling Auditing

Related Topics:

Enabling Auditing for NetWare 4.11

Disabling Auditing for NetWare 4.11

The Audit File Configuration Header Event Bitmap

The event bitmap in the configuration header is the key to configuring the
audit file. Each bit in the event bitmap represents an event to be audited. In
its initial state, none of the bits in the event bitmap is set. It’s up to the
auditor to access the audit file’s configuration header and set the bits that
correspond to events the auditor wants audited.

The event bitmap for containers is a 32-bit value with 32 corresponding
events. The event bitmap for volumes is 512 bits (64 bytes).

Events that can be audited fall into several categories:

Directory Services Events

Bindery Events

NetWare® Server Events

Queue Management Events

File System Events

User Object Events

You must use container auditing to audit Directory Services events. All

Management Service Group

Auditing: Concepts 114

other events must be audited on a volume basis. For each category there are
many events you can audit. Setting the bit for an event results in an event
record being added to the audit file every time that event occurs.

Parent Topic:

The Audit File Configuration Header

Related Topics:

Scope of Auditing Events

Auditing File Events (NetWare 4.x)

Reading a Volume Event Bitmap

Event Bits Tables

The Audit File Configuration Header Introduction

The audit file configuration header controls the auditing on the associated
volume or container. Although configuration headers differ somewhat
between volumes and containers, both contain the following key fields:

A set of audit flags that indicate the status of auditing for the object.

An event bitmap that determines which events are audited.

A count of the current number of events that have been recorded in the
audit file.

Additional fields contain information about the state of the audit file. The
structure NWConfigHeader contains the volume configuration header data.
The structure NWDSContainerConfigHdr contains the container
configuration header data.

NWADAuditPolicy is where Auditing stores the policy data.

The configuration header for NetWare® 4.11 is twice the size of that for
previous versions of NetWare. This allows for more events to be audited.

Use the following functions to read from or write to the configuration
headers:

NWADReadConfigHeader reads an object header.

NWADWriteConfigHeader modifies an object header.

In the case of volumes, you can also read or write just the event bitmap in
the header. For more information see The Audit File Configuration Header
Event Bitmap.

Read or write operations affect the entire configuration header. When
modifying a header, be sure to assign values to all the header’s data items.

Management Service Group

Auditing: Concepts 115

Parent Topic:

The Audit File Configuration Header

Related Topics:

The Audit File Configuration Header Example

Audit File Functions

These functions open and close the audit file and the history file and read
event records from these files.

Function Header Comment

NWADAppendExternalRec
ords

nwaudit.
h

Adds external audit events
to an event record.

NWADCloseOldFile nwaudit.
h

Closes the audit file that was
opened when auditing was
enabled.

NWADCloseRecordFile nwaudit.
h

Frees recordHandle allocated
by NWADOpenRecordFile.

NWADDeleteFile nwaudit.
h

Deletes the old file on the
specified object.

NWADDeleteOldFile nwaudit.
h

Deletes an old file in the file
list.

NWADGetFileList nwaudit.
h

Returns the file list.

NWADOpenRecordFile nwaudit.
h

Opens the record file and
allocates a recordHandle.

NWADResetFile nwaudit.
h

Closes the object’s current
auditing file and opens a
new one.

NWADReadRecord nwaudit.
h

Reads a specified record.

Parent Topic:

Auditing: General Guide

Audit History Files

The audit file is automatically created when auditing is enabled and is
accessible only to the auditor.

Management Service Group

Auditing: Concepts 116

To close the current audit file and open a new one call NWADResetFile.
The closed file becomes a history file. Up to15 audit history files can be
maintained by Auditing.

Several functions allow you to manipulate the audit files.

NWADDeleteFile deletes an old audit file.

NWADOpenRecordFile opens a record file and allocates a recordHandle.

NWADCloseRecordFile closes the record file and frees the recordHandle
allocated by NWADOpenRecordFile.

NWADReadRecord reads a specified record.

NWADGetFileList returns the list of files.

A parameter in some of these functions allows you to specify which file you
want to use. Set the parameter to -1 to view the current file. To view history
files set the parameter to a number from 0 to 15.

The audit file consists of a configuration header and a data segment. The
configuration header specifies what type of events are to be audited. The
data segment stores event records describing events that have occurred. For
more information see The Audit File Configuration Header.

IMPORTANT: Be sure to close and remove all audit files before
deleting a container on which auditing has been enabled.

Parent Topic:

Auditing: General Guide

Audit Property Functions

These functions add, remove, and check for an object’s audit property. By
adding the property to a user object, you can audit the user’s file operations
individually.

Function Header Comment

NWADChangeObjectPr
operty

nwaudit.
h

Changes the audit property for
a user on the specified object.

NWGetNWADVersion nwaudit.
h

Returns version information
about the NWAD library.

NWADIsObjectAudited nwaudit.
h

Determines whether the
specified object or user is being
audited.

Management Service Group

Auditing: Concepts 117

Parent Topic:

Auditing: General Guide

Audit Security Functions

These functions control auditor access to volumes and containers (objects)
and perform operations on auditor passwords.

Function Header Comment

NWADChangePassword nwaudit.
h

Changes the auditor’s
password for the specified
object.

NWADCheckAccess nwaudit.
h

Determines whether the caller
has level 1 auditor access to the
object.

NWADCheckLevelTwo
Access

nwaudit.
h

Determines whether the caller
has level 2 auditor access to the
object.

NWADInitLevelTwoPas
sword

nwaudit.
h

Initializes an audit key for level
2 access.

NWADLogin nwaudit.
h

Initializes an audit key for level
1 access to the object.

NWADLogout nwaudit.
h

Removes the caller’s auditor
status from an object.

NWADOpen nwaudit.
h

Allocates auditHandle for use in
other Auditing functions.

NWADRestartVolumeA
uditing

nwaudit.
h

Restarts auditing for volumes
only.

NWADSetPassword nwaudit.
h

Sets a password on for
NetWare® 4.11 only.

Parent Topic:

Auditing: General Guide

Audit Status Functions

These functions enable and disable auditing on volumes and containers
(objects) and return audit status information.

Management Service Group

Auditing: Concepts 118

Function Header Comment

NWADDisab
le

nwaudit.
h

Disables auditing on the specified object.

NWADEnabl
e

nwaudit.
h

Enables auditing on the specified object.

NWADGetFl
ags

nwaudit.
h

Returns the auditing flags from the
object’s audit file configuration header.

NWADGetSt
atus

nwaudit.
h

Returns auditing status information for the
specified object.

Parent Topic:

Auditing: General Guide

Audit Status Information

Audit status information indicates whether auditing is enabled on a
specified object. If auditing is enabled, the information also includes
statistics on the object’s audit file. This information is available to any client
that has logged in unless you are using NetWare® 4.11, in which case very
little information is available to any client.

NWADGetStatus returns audit status information for objects.

Audit status information is returned as an NWAuditStatus structure,
indicating the size and version of the audit file.

Parent Topic:

Auditing: General Guide

Auditing Flags

Auditing flags can be read separately from other data in the audit file
configuration header. The flags control several important aspects of the
auditing process and are stored as a set of bit flags in a single-byte value.
There are five flags:

Byte 0 = DiscardAuditRcdsOnErrorFlag

Byte 1 = ConcurrentVolAuditorAccess

Byte 2 = DualLevelPasswordsActive (this byte is ignored with NetWare®
4.11)

Byte 3 = BroadcastWarningsToAllUsers

Byte 4 = LevelTwoPasswordSet (this byte is ignored with NetWare 4.11)

If DiscardAuditRcdsOnErrorFlag is set, the auditing records are

Management Service Group

Auditing: Concepts 119

discarded if an error occurs.

If ConcurrentVolAuditorAccess is set more than one auditor can log into
the object at a time.

If DualLevelPasswordsActive is set, dual level password security is in
effect.

If BroadcastWarningsToAllUsers is set, audit warnings are broadcast to
all users.

If LevelTwoPasswordSet is set, the level 2 password has been assigned a
value. (This last flag is meaningful only if the dual level passwords flag is
set.) Bits 0 through 3 can be set by the auditor.

NWADGetFlags returns the auditing flags for an object.

Parent Topic:

The Audit File Configuration Header

Related Topics:

Auditing Flags Example

Auditing Introduction

NetWare® auditing allows NetWare 4.x servers to generate files that track
and record network events. Audit files assist independent auditors in the
routine auditing of the network environment. An auditor can enable
auditing on a volume or a container, set up an audit for specific events, and
read the record of events that have occurred.

Auditing can also be applied to other activities. For example, an
administrator might set up an audit file as a log for analyzing and
monitoring network usage, or an NLM™ application might use an audit file
to track special events. Auditing provides the interface to the auditing
system, giving your applications secure procedures for setting up audits
and reading the results of auditing sessions.

For a description of structures and other data definitions relating to this, see
Auditing: Structures.

Parent Topic:

Auditing: General Guide

Auditing Passwords for NetWare 4 Versions Prior
to 4.11

Access control to an audit file can be single-tiered or two-tiered. Two-tiered

Management Service Group

Auditing: Concepts 120

security uses two passwords: one for reading audits and one for configuring
audits. As an auditor, you activate two-tiered security for an audited object
by calling NWADInitLevelTwoPassword.

The current level of audit security is indicated by an object’s auditing flags.
For more information, see Auditing Flags. Two functions verify an auditor’s
level 1 and level 2 access:

NWADCheckAccess checks level 1 access.

NWADCheckLevelTwoAccess checks level 2 access.

To change either the level 1 or level 2 password, you must be logged in to
the object as auditor and receive a valid audit key. Call
NWADChangePassword to change the passwords.

Parent Topic:

Enabling and Disabling Auditing

Related Topics:

Enabling Auditing for NetWare 4 Versions Prior to 4.11

Disabling Auditing for NetWare 4 Versions Prior to 4.11

Auditing Security

Audit security is different depending on whether you are using NetWare®
4.11 or previous versions of NetWare 4.x. Previous versions of NetWare 4.x
use passwords to access and configure the audit files. The network admin
enables auditing and assigns an initial password to the auditor. However,
the admin isn’t the security equivalent of the auditor and consequently,
changing the auditor’s password can prevent even the admin from
accessing the audit file.

Access to the audit file with NetWare 4.11 is based on an NDS object, the
Audit File Object (AFO), and an auditor’s read and write rights to the object.
The network admin creates the AFO and assigns rights to the auditor.

Parent Topic:

Auditing: General Guide

Auditing Volumes and Containers

You can set up auditing for either volumes or Directory Services (DS)
container objects. Use volume auditing to audit the following:

Accounting events

Extended Attribute events

Management Service Group

Auditing: Concepts 121

File events

Message events

QMS events

Server events

User events

Container auditing allows you to audit container DS events.

When you enable auditing on a container, you audit all objects directly
subordinate to the container. You can audit as many objects as you choose
by selecting the appropriate containers on which to enable auditing.

When you enable auditing on a volume, you can audit all objects located on
the volume

In this document, when there are no differences whether you are auditing a
volume or a container, the term object is used to refer to either a volume or
container.

Parent Topic:

Auditing: General Guide

C2 Auditing Security Requirements

Security is an important aspect of Auditing due to the sensitive nature of
auditing procedures and records. NetWare® 4.11 auditing is designed to
meet the Class C2 security criteria as specified by the US Department of
Defense (DoD) Trusted Computer System Evaluation Criteria (TCSEC) also
known as the “orange book.”

Parent Topic:

Auditing: General Guide

Configuration Header Functions

These functions read and write the data stored in the audit file
configuration header.

Function Header Comment

NWADReadConfigH
eader

nwaudit.
h

Returns the audit file
configuration header for the
specified object.

NWADWriteConfigH
eader

nwaudit.
h

Saves the configuration header
data to the audit file on the
specified object.

Management Service Group

Auditing: Concepts 122

NWADReadBitMap nwaudit.
h

Returns the event bitmap in the
audit file configuration header for
the specified volume.

NWADWriteBitMap nwaudit.
h

Writes values to the event bitmap
in the audit file configuration
header for the specified volume.

Parent Topic:

Auditing: General Guide

Directory Services Events Table

The following table lists the bits defined in the DS event bitmap.

Table auto. Directory Services Events

Event Type ID Event ID

ADS_ADD_ENTRY 101

ADS_REMOVE_ENTRY 102

ADS_RENAME_OBJECT 103

ADS_MOVE_ENTRY 104

ADS_CHANGE_SECURITY_EQ
UIV

105

ADS_CHG_SECURITY_ALSO_
EQUAL

106

ADS_CHANGE_ACL 107

ADS_CHG_STATION_RESTRI
CTION

108

ADS_LOGIN 109

ADS_LOGOUT 110

ADS_CHANGE_PASSWORD 111

ADS_USER_LOCKED 112

ADS_USER_UNLOCKED 113

ADS_USER_DISABLE 114

ADS_USER_ENABLE 115

ADS_CHANGE_INTRUDER_D
ETECT

116

ADS_ADD_PARTITION 117

ADS_REMOVE_PARTITION 118

ADS_ADD_REPLICA 119

Management Service Group

Auditing: Concepts 123

ADS_REMOVE_REPLICA 120

ADS_SPLIT_PARTITION 121

ADS_JOIN_PARTITION 122

ADS_CHANGE_REPLICA_TYP
E

123

ADS_REPAIR_TIME_STAMPS 124

ADS_MOVE_SUB_TREE 125

ADS_ABORT_PARTITION_OP 126

ADS_SEND_REPLICA_UPDAT
ES

127

ADS_RECEIVE_REPLICA_UPD
ATES

128

Parent Topic:

Event Bits Tables

Fields of Auditing Event Records

Although the information in an event record varies for volumes and
containers, the key fields in both headers are process unique ID and event type
ID. The process unique ID is the bindery object ID identifying the object that
performed the event. The event type ID identifies the type of event audited.

Any event-specific information is appended to the end of the record as an
event field. By checking the event type ID, you can determine how to
interpret the event. For example, if the event type ID is
A_EVENT_BIND_CREATE_PROPERTY is returned, a bindery property
was created, and the event field contains the property name and security
value.

The event records also record the date and time of the event and its success
or failure. Volume events record the connection ID of the station where the
event was performed. Container events record the user ID of the object
performing the event. Container events also record the replica an event was
performed on.

The NWVolAuditRecord structure contains the event record information for
an event on a volume. The Account structure contains the event record
information for an event on a container.

Parent Topic:

Auditing Event Records

Related Topics:

Management Service Group

Auditing: Concepts 124

Reading Auditing Event Records

File Events for Auditing

Once you set the audit attribute for specific files or add the audit property to
specific users, the next step is to set the event bitmap for file operations you
want to audit. Some file events are represented by three different bits in the
event bitmap: a global bit, a union bit, and an intersection bit. (See the File
Events.) Set the one appropriate for the events you are auditing.

Open File audit is an example of the choices presented by the three bits:

The Global Open File bit generates an event record every time a file is
opened (regardless of which file is involved or who opens it).

The Union Open File bit generates an event record whenever an audited
file is opened or an audited user opens a file.

The Intersection Open File bit generates an event record only when an
audited user opens an audited file; other open file operations are ignored.

Parent Topic:

Auditing File Events (NetWare 4.x)

Related Topics:

User Audit Property

File Events

The following table lists the bits defined in the File event bitmap.

Event Type ID Event ID

A_EVENT_CREATE_DIRECTORY 75

A_EVENT_DELETE_DIRECTORY 76

A_EVENT_CLOSE_FILE 10

A_EVENT_CREATE_FILE 12

A_EVENT_DELETE_FILE 14

A_EVENT_OPEN_FILE 27

A_EVENT_PURGE_FILE 214

A_EVENT_READ_FILE 42

A_EVENT_RENAME_MOVE_FILE 44

A_EVENT_SALVAGE_FILE 46

A_EVENT_WRITE_FILE 57

Management Service Group

Auditing: Concepts 125

A_EVENT_WRITE_FILE 57

A_EVENT_MODIFY_ENTRY 25

A_EVENT_SCAN_DELETED 215

A_EVENT_SCAN_VOL_USER_RES
T

238

A_EVENT_SET_COMP_FILE_SIZE 242

Parent Topic:

Event Bits Tables

Message Events Table

The following table lists the bits defined in the message event bitmap.

Table auto. Message Events

Event Type ID Event ID

A_EVENT_BROADCAST_TO_CON
SOLE

207

A_EVENT_DISABLE_BROADCAST
S

204

A_EVENT_ENABLE_BROADCASTS 206

A_EVENT_GET_BROADCAST_MES
SAGE

205

A_EVENT_SEND_BROADCAST_M
ESSAGE

208

Parent Topic:

Event Bits Tables

QMS Events Table

The following table lists the bits defined in the QMS event bitmap.

Table auto. QMS Events

Event Type ID Event ID

A_EVENT_Q_JOB_FROM_LIST 231

A_EVENT_Q_JOB_LIST 230

A_EVENT_Q_JOB_SIZE 229

Management Service Group

Auditing: Concepts 126

A_EVENT_MOVE_Q_JOB 233

A_EVENT_Q_ATTACH_SERVER 28

A_EVENT_Q_CREATE 29

A_EVENT_Q_CREATE_JOB 30

A_EVENT_Q_DESTROY 31

A_EVENT_Q_DETACH_SERVER 32

A_EVENT_Q_EDIT_JOB 33

A_EVENT_Q_JOB_FINISH 34

A_EVENT_Q_JOB_SERVICE 35

A_EVENT_Q_JOB_SERVICE_ABOR
T

36

A_EVENT_Q_SWAP_RIGHTS 41

A_EVENT_Q_REMOVE_JOB 37

A_EVENT_Q_SET_JOB_PRIORITY 38

A_EVENT_Q_SET_STATUS 39

A_EVENT_Q_START_JOB 40

A_EVENT_READ_Q_JOB_ENTRY 232

A_EVENT_MOVE_Q_JOB 233

A_EVENT_READ_Q_STATUS 234

A_EVENT_READ_Q_SERVER_STA
TUS

235

A_EVENT_SET_Q_SERVER_STATU
S

261

Parent Topic:

Event Bits Tables

Reading Auditing Event Records

To begin reading event records, call NWADOpenRecordFile. This function
opens the record file and allocates a recordHandle. You can then read the
event records one at a time by calling NWADReadRecord. Don’t attempt to
read the audit file directly. Since the file is compressed it must be read only
with Auditing.

Resetting the audit file clears current records and stores them in an old audit
file.

Parent Topic:

Management Service Group

Auditing: Concepts 127

Auditing Event Records

Related Topics:

Fields of Auditing Event Records

Scope of Auditing Events

The event bitmap doesn’t single out specific users to be audited unless you
are using NetWare® 4.11 and user restrictions is turned on using the
Auditcon utility.

For previous versions of NetWare 4, once an event is set, every occurrence
of the event is audited regardless of who performs it. For example, if you set
the Delete Bindery Property Event bit, then an event record is generated
every time a user deletes a property from an object. File events are an
exception. You can configure file auditing to target specific files and users.
For more information see Auditing File Events (NetWare 4.x).

If you are interested only in events involving specific items, you can filter
the information you read from the audit file by searching specific fields in
the event records. For example, you could search for all event records in
which a particular user deleted properties from a particular object.

Parent Topic:

The Audit File Configuration Header Event Bitmap

Server Events Table

The following table lists the bits defined in the server event bitmap.

Table auto. Server Events

Event Type ID Event ID

A_EVENT_CHANGE_DATE_TIME 7

A_EVENT_CONVERT_PATH_TO_E
NTRY

259

A_EVENT_DISABLE_LOGIN 243

A_EVENT_DISABLE_ TTS 245

A_EVENT_DOWN_SERVER 18

A_EVENT_ENABLE_LOGIN 244

A_EVENT_ENABLE_TTS 246

A_EVENT_GET_CONN_OPEN_FIL
ES

250

A_EVENT_GET_CONN_SEMS 256

Management Service Group

Auditing: Concepts 128

A_EVENT_GET_CONN_TASKS 249

A_EVENT_GET_CONN_USING_FI
LE

251

A_EVENT_GET_LOG_REC_INFO 255

A_EVENT_GET_LOG_REC_CONN 254

A_EVENT_GET_REMAIN_OBJ_DIS
K_SPC

248

A_EVENT_GET_PHYS_REC_LOCK
S_CONN

252

A_EVENT_GET_PHYS_REC_LOCK
S_FILE

253

A_EVENT_GET_SEM_INFO 257

A_EVENT_GET_DISK_UTILIZATIO
N

240

A_EVENT_MAP_DIR_TO_PATH 258

A_EVENT_VOLUME_DISMOUNT 56

A_EVENT_VOLUME_MOUNT 55

A_EVENT_SEND_CONSOLE_BRO
ADCAST

247

A_EVENT_CONSOLE_COMMAND 262

A_EVENT_DESTROY_SERVICE_CO
NN

260

A_EVENT_VERIFY_SERIAL 239

A_EVENT_VOLUME_DISMOUNT 56

A_EVENT_VOLUME_MOUNT 55

Parent Topic:

Event Bits Tables

User Audit Property

To audit a particular user’s file operations, you must assign an audit
property to the user’s object by calling NWADChangeObjectProperty. The
property doesn’t take a value. If the property is present, the specified user
will be audited. You must specify the volume or container on which the user
is being audited.

Parent Topic:

Auditing File Events (NetWare 4.x)

Related Topics:

Management Service Group

Auditing: Concepts 129

File Events for Auditing

User Events Table

The following table lists the bits defined in the user event bitmap.

Table auto. User Events

Event Type ID Event ID

A_EVENT_DISABLE_ACCOUNT 17

A_EVENT_GRANT_TRUSTEE 19

A_EVENT_LOGIN_USER 21

A_EVENT_LOGOUT_USER 23

A_EVENT_REMOVE_TRUSTEE 43

A_EVENT_USER_SPACE_RESTRIC
TIONS

53

A_EVENT_USER_LOCKED 52

A_EVENT_USER_CHANGE_PASS
WORD

51

A_EVENT_USER_UNLOCKED 54

A_EVENT_RENAME_USER 45

Parent Topic:

Event Bits Tables

Management Service Group

Auditing: Concepts 130

Auditing: Functions

Management Service Group

Auditing: Functions 131

NWADAppendExternalRecords

Adds external audit events to an event record

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.11

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERNAL_LIBRARY NWRCODE NWADAppendExternalRecords (
 NWCONN_HANDLE conn,
 nuint32 auditFileObjectID,
 nuint32 vendorID,
 nuint32 numberRecords,
 pNWAuditRecord recordsPtr);

Pascal Syntax

#include <nwaudit.inc>

Function NWADAppendExternalRecords
 (connectionNumber : NWCONN_HANDLE;
 auditFileObjectID : nuint32;
 vendorID : nuint32;
 numberRecords : nuint32;
 Var recordsPtr : NWAuditRecord
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare® server connection handle.

auditFileObjectID

(IN) Specifies the NetWare version audit object ID.

vendorID

(IN) Specifies the vendor workstation number assigned by Novell.

numberRecords

(IN) Specifies the number of audit event records in the
NWAuditRecord structure.

Management Service Group

Auditing: Functions 132

recordsPtr

(IN) Points to the NWAuditRecord structure containing the records to
be stored.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

NWADAppendExternalRecords will only work with NetWare 4.11. For
a list of event bits, see Event Bits Tables.

NCP Calls

104 52 External Audit Append To File

Management Service Group

Auditing: Functions 133

NWADChangeObjectProperty

Adds or removes the audit property for a user on a specified volume or
container

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADChangeObjectProperty (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle,
 nuint32 objectID,
 nuint8 auditFlag);

Pascal Syntax

#include <nwaudit.inc>

Function NWADChangeObjectProperty
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr;
 objectID : nuint32;
 auditFlag : nuint8
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare® server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

Management Service Group

Auditing: Functions 134

auditID

(IN) Specifies the identification of the object to be audited.

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

objectID

(IN) Specifies the object ID number on which to change the audit
property. If the object to be changed is a volume, objectID specifies the
user ID; it specifies the Directory Services object number if a Directory
Services object is to be changed.

auditFlag

(IN) Specifies whether the object will be audited: 1 = the object will be
audited; 0 = the object will not be audited.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

NWADChangeObjectProperty requires a second-level password when
enabled.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 02 Add User Audit Property

0x2222 88 06 Delete Audit Property

Management Service Group

Auditing: Functions 135

0x2222 104 221 Audit Change Object Audited

See Also

NWADInitLevelTwoPassword, NWADIsObjectAudited, NWADLogin,
NWADOpen, NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 136

NWADChangePassword

Changes the auditor’s password for a specified volume or container

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADChangePassword (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle,
 pnuint8 newPassword,
 nuint8 level);

Pascal Syntax

#include <nwaudit.inc>

Function NWADChangePassword
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr;
 Var newPassword : nuint8;
 level : nuint8
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

Management Service Group

Auditing: Functions 137

(IN) Specifies the identification of the object to be audited.

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

newPassword

(IN) Points to a NULL-terminated character string containing the new
password.

level

(IN) Specifies which password to change; for example, 2 = level two
password.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x89D7 PASSWORD_NOT_UNIQUE

0x89D8 PASSWORD_TOO_SHORT

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

If NWADChangePassword fails, the original password is still valid.

NWADChangePassword is only supported for NetWare 4.1 and above.
To call NWADChangePassword under NetWare 4.11, a password has to
be set and the user who set the password cannot be a password user.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 04 Change Auditor Volume Password

Management Service Group

Auditing: Functions 138

0x2222 88 18 Change Audit Level Two Volume Password

0x2222 88 19 Get Auditing Flags

0x2222 104 203 Directory Services Change Audit Password

0x2222 104 215 Directory Services Change Audit Level Two Password

0x2222 104 216 Get Auditing Flags

See Also

NWADLogin, NWADOpen, NWDSAuditGetObjectID,
NWGetVolumeNumber

Management Service Group

Auditing: Functions 139

NWADCheckAccess

Checks to see if the auditor has auditor access

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADCheckAccess (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID);

Pascal Syntax

#include <nwaudit.inc>

Function NWADCheckAccess
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

Return Values

These are common return values; see Return Values for more

Management Service Group

Auditing: Functions 140

information.

0x0000 SUCCESSFUL

0x0001 No Audit Access

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

If zero (0) is returned, the user has auditor access and is currently logged
in through NWADLogin.

If one (1) is returned, the user does not have auditor access.

In NetWare 4.11, you can only call NWADLogin once, which will set the
auditor access on the file server. If subsequent calls are made, an error
will be returned.

The second level password is only supported under NetWare 4.1.
NetWare 4.11 does not use second level passwords.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 05 Change Auditor Access

0x2222 104 204 Directory Services Check Auditor Access

See Also

NWADCheckLevelTwoAccess, NWADLogin,
NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 141

NWADCheckLevelTwoAccess

Checks to see if the auditor has level two access

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADCheckLevelTwoAccess (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle);

Pascal Syntax

#include <nwaudit.inc>

Function NWADCheckLevelTwoAccess
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

Management Service Group

Auditing: Functions 142

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x0001 No Audit Access

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

NWADCheckLevelTwoAccess requires a level two password to be
initialized.

If zero (0) is returned, the user has level two access.

If one (1) is returned, the user does not have audit level two access.

NWADCheckLevelTwoAccess is only supported on a NetWare 4.1 file
server. NetWare 4.11 does not use second level passwords.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 22 Check Level Two Access

0x2222 104 219 Directory Services Check Audit Level Two Access

See Also

NWADCheckAccess, NWADInitLevelTwoPassword, NWADLogin,
NWADOpen, NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 143

NWADClose

Frees the auditHandle allocated by NWADOpen and NULL the pointer to
the audit handle

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADClose (
 pnptr auditHandle);

Pascal Syntax

#include <nwaudit.inc>

Function NWADClose
 (Var auditHandle : nptr
) : NWRCODE;

Parameters

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Remarks

All auditHandle parameters allocated by NWADOpen must be freed by
calling NWADClose.

See Also

Management Service Group

Auditing: Functions 144

NWADOpen

Management Service Group

Auditing: Functions 145

NWADCloseOldFile

Closes the old auditing file automatically opened by the system when the
volume or container is mounted or auditing is enabled

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADCloseOldFile (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle);

Pascal Syntax

#include <nwaudit.inc>

Function NWADCloseOldFile
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

auditHandle

Management Service Group

Auditing: Functions 146

(IN) Points to the auditHandle allocated by NWADOpen.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

NWADCloseOldFile requires a second-level password when enabled.

The old auditing file is kept open by the operating system. If a file needs
to be copied or deleted, close it by calling NWADCloseOldFile first.

NWADCloseOldFile is only supported on NetWare 4.1.
NWADCloseOldFile cannot be called from NetWare 4.11.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 20 Close Old Audit File

0x2222 104 217 Directory Services Close Old Audit File

See Also

NWADDeleteFile, NWADInitLevelTwoPassword, NWADLogin,
NWADOpen, NWADResetFile, NWDSAuditGetObjectID,
NWGetVolumeNumber

Management Service Group

Auditing: Functions 147

NWADCloseRecordFile

Frees the recordHandle allocated by NWADOpenRecordFile

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADCloseRecordFile (
 pnptr recordHandle);

Pascal Syntax

#include <nwaudit.inc>

Function NWADCloseRecordFile
 (Var recordHandle : nptr
) : NWRCODE;

Parameters

recordHandle

(IN/OUT) Points to the record handle to free.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Remarks

All resources used in the recordHandles allocated by
NWADOpenRecordFile are freed by calling NWADCloseRecordFile.

See Also

NWADOpenRecordFile, NWADReadRecord

Management Service Group

Auditing: Functions 148

NWADDeleteFile

Deletes the old auditing file on the specified volume or container

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADDeleteFile (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle);

Pascal Syntax

#include <nwaudit.inc>

Function NWADDeleteFile
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

Management Service Group

Auditing: Functions 149

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

NWADDeleteFile requires a second level password when enabled.

NWADDeleteFile is only supported on NetWare 4.1. Call
NWADDeleteOldFile for NetWare 4.1 and above for future
compatibility.

NWADDeleteFile cannot be called from NetWare 4.11.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 21 Delete Old Audit File

See Also

NWADCloseOldFile, NWADInitLevelTwoPassword, NWADLogin,
NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 150

NWADDeleteOldFile

Deletes an old file in the file list

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADDeleteOldFile
 (NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle,
 nuint32 fileCode);

Pascal Syntax

#include <nwaudit.inc>

Function NWADDeleteOldFile
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr;
 fileCode : nuint32
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

auditHandle

Management Service Group

Auditing: Functions 151

(IN) Points to the auditHandle allocated by NWADOpen.

fileCode

(IN) Specifies the number of the file on the file list to delete (0-15).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

If you want to delete the current file, call NWADResetFile to move the
current file into the file list. Then call NWADDeleteOldFile to delete that
file.

The file number zero (0) indicates the current history file; file numbers
1-15 indicate old files that can be deleted by calling
NWADDeleteOldFile.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 26 Delete Old Audit File

0x2222 104 225 Delete Old Audit File

See Also

NWADOpen, NWADResetFile, NWDSAuditGetObjectID,
NWGetVolumeNumber

Management Service Group

Auditing: Functions 152

NWADDisable

Disables auditing on a specified volume or container

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADDisable (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle);

Pascal Syntax

#include <nwaudit.inc>

Function NWADDisable
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

Management Service Group

Auditing: Functions 153

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

NWADDisable requires a second level password when enabled.

You will lose audit access on the NetWare server after calling
NWADDisable because auditing is disabled. To do more auditing, you
must log in again by calling NWADLogin.

If a password user disables auditing, that same user cannot enable
auditing again in NetWare 4.11. The only way auditing may be enabled
again is through the authorized auditing Directory Services objects.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 07 Disable Volume Auditing

0x2222 104 206 Directory Services Disable Volume Auditing

See Also

NWADEnable, NWADInitLevelTwoPassword, NWADLogin,
NWADOpen, NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 154

NWADEnable

Enables auditing on the specified Directory Services container or volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADEnable (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle);

Pascal Syntax

#include <nwaudit.inc>

Function NWADEnable
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

Management Service Group

Auditing: Functions 155

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

Remarks

If auditing has never been initialized on the volume, call NWADLogin
first; 0x8997 will be returned. Then, call NWADEnable.

If the user is not SUPERVISOR equivalent, NWADEnable will fail the
first time it is called.

After NWADEnable has been called successfully, the user must log in
again by calling NWADLogin to have access to auditing.

For NetWare 4.11, a different approach must be followed to enable
auditing. You must log into NetWare through Directory Services and
have the necessary rights to create objects and add attributes. You may
then add auditor access by adding the AFO attributes to a user object and
assigning it to a volume or container. This user can then enable auditing
on the volume or container.

A password user on NetWare 4.11 cannot enable auditing.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 104 207 Directory Services Enable Container Volume Auditing

See Also

NWADDisable, NWADInitLevelTwoPassword, NWADLogin,
NWADOpen

Management Service Group

Auditing: Functions 156

NWADOpen, NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 157

NWADGetFileList

Returns the file list

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADGetFileList (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle,
 pNWAuditFileList fileList);

Pascal Syntax

#include <nwaudit.inc>

Function NWADGetFileList
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr;
 fileList : nptr
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

auditHandle

Management Service Group

Auditing: Functions 158

(IN) Points to the auditHandle allocated by NWADOpen.

fileList

(OUT) Points to the structure NWAuditFileList containing the size,
date, and time for the past 16 elements.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

NWADGetFileList returns a list of the dates, times, and sizes of old audit
files. The list contains a total of up to 16 (0-15) files that can be added to
the list by calling NWADResetFile.

If the fileCreateDateTime field of NWAuditFileList is not zero, the fileSize
field is valid.

The file number zero (0) indicates the current history file; file numbers
1-15 indicate old history files. The number of old files to keep is indicated
by bufferSize in NWADReadConfigHeader and
NWADWriteConfigHeader and has a maximum of 15 files.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 23 Return Audit File List

0x2222 104 222 Return Audit File List

Management Service Group

Auditing: Functions 159

See Also

NWADCloseRecordFile, NWADOpen, NWADOpenRecordFile,
NWADReadRecord, NWADResetFile, NWDSAuditGetObjectID,
NWGetVolumeNumber

Management Service Group

Auditing: Functions 160

NWADGetFlags

Returns the auditing flag byte

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADGetFlags (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle,
 pnuint8 flags);

Pascal Syntax

#include <nwaudit.inc>

Function NWADGetFlags
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr;
 Var flags : nuint8
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

auditHandle

Management Service Group

Auditing: Functions 161

(IN) Points to the auditHandle allocated by NWADOpen.

flags

(OUT) Points to a byte where the flags can be returned.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8998 VOLUME_DOES_NOT_EXIST

Remarks

NWADGetFlags returns the auditing flag byte, whose contents follow:

0x01 = DiscardAuditRcdsOnErrorFlag
0x02 = ConcurrentVolAuditorAccess
0x04 = DualLevelPasswordsActive
0x08 = BroadcastWarningsToAllUsers
0x10 = LevelTwoPasswordSet
0x20 = ArchiveAuditFileOnErrorFlag

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 19 Return Audit Flags

0x2222 104 216 Directory Services Return Audit Flags

See Also

NWADLogin, NWADOpen, NWADReadConfigHeader,
NWADWriteConfigHeader, NWDSAuditGetObjectID,
NWGetVolumeNumber

Management Service Group

Auditing: Functions 162

NWADGetStatus

Returns the audit information and status of the specified volume or
container

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADGetStatus (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 pNWAuditStatus auditStatus,
 nuint16 bufferSize);

Pascal Syntax

#include <nwaudit.inc>

Function NWADGetStatus
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 Var auditStatus : NWAuditStatus;
 bufferSize : nuint16
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

Management Service Group

Auditing: Functions 163

auditStatus

(OUT) Points to NWAuditStatus containing fields for the information
to be returned.

bufferSize

(IN) Specifies the size of the memory space.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8998 VOLUME_DOES_NOT_EXIST

0x89F2 Audit Password Enabled

Remarks

The historyRecordCount of the NWAuditStatus structure will remain zero
(0) because the history records are kept inside the audit file.

For NetWare 4.11, if NWADGetStatus returns 0x89F2, the user is not
allowed auditor access. However, the NWAuditStatus structure will still
be filled. You should check the auditingFlags field for a value of one (1)
which indicates passwords are allowed. If the value is one (1),
NWADLogin can then be called with a valid password. Call
NWADCheckAccess to set the audit access bit on the server side.
Subsequent calls will then be enabled for password users on NetWare
4.11.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 01 Return Volume Audit Status

0x2222 104 200 Directory Services Return Volume Audit Status

Management Service Group

Auditing: Functions 164

See Also

NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 165

NWADInitLevelTwoPassword

Enables auditor level two access on a specified volume

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADInitLevelTwoPassword (
 nptr auditHandle,
 pnuint8 password);

Pascal Syntax

#include <nwaudit.inc>

Function NWADInitLevelTwoPassword
 (auditHandle :nptr;
 Var password : nuint8
) : NWRCODE;

Parameters

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

password

(IN) Points to a NULL-terminated character string containing the
password.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8984 Auditing Not Supported

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Management Service Group

Auditing: Functions 166

Remarks

auditHandle is initialized and set up for level two access.

NWADInitLevelTwoPassword does not modify auditing flags and does
not verify the password.

Call NWADInitLevelTwoPassword to set up the Directory Service Level
Two Password also.

NWADCheckLevelTwoAccess can be called to verify if the password is
valid on NetWare 4.1. (NWADCheckLevelTwoAccess is not supported
on NetWare 4.11.)

See Also

NWADLogin, NWADCheckLevelTwoAccess

Management Service Group

Auditing: Functions 167

NWADIsObjectAudited

Checks to see if specified object or user is being audited

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADIsObjectAudited (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nuint32 userObjectID);

Pascal Syntax

#include <nwaudit.inc>

Function NWADIsObjectAudited
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 userObjectID : nuint32
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

userObjectID

(IN) Specifies the object ID to be checked if it is being audited.

Management Service Group

Auditing: Functions 168

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL---User is not being audited.

0x0001 SUCCESSFUL---User is being audited.

Remarks

NWADIsObjectAudited returns 0x0000 if the user is not being audited
and 0x0001 if the user is being audited.

userObjectID must be byte-swapped to the same format in which the
server stores it.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 09 Is User Audited

0x2222 104 220 Is Object Audited

See Also

NWADChangeObjectProperty, NWADLogin,
NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 169

NWADLogin

Enables auditor access on a specified container or volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADLogin (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle,
 pnuint8 password);

Pascal Syntax

#include <nwaudit.inc>

Function NWADLogin
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr;
 Var password : nuint8
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

auditHandle

Management Service Group

Auditing: Functions 170

(IN) Points to the auditHandle allocated by NWADOpen.

password

(IN) Points to the address of a NULL-terminated character string
containing the password.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

Calling NWADLogin is the first step to any auditing function.

auditHandle is initialized and setup for future auditing API calls;
auditHandle must be allocated by the program.

Only a level one password is authenticated with NWADLogin.

If auditing has never been initialized on the Container, call NWADLogin
first; AUDITING_NOT_ENABLED will be returned. Then, call
NWADEnable.

If the user is not SUPERVISOR equivalent, NWADEnable will fail the
first time it is called.

After calling NWADEnable successfully, the user must log in again by
calling NWADLogin to have access to auditing.

Once auditing has been enabled, the user does not have to be
SUPERVISOR equivalent, but must know the auditor password.

NetWare 4.11 does not use a password unless a password has been set by
calling NWADSetPassword. Call NWADGetStatus to determine if a
password has been set.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume

Management Service Group

Auditing: Functions 171

number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 03 Add Auditor Access

0x2222 88 19 Get Auditing Flags

0x2222 104 202 Directory Services Add Auditor Access

0x2222 104 216 Get Auditing Flags

See Also

NWADCheckAccess, NWADEnable, NWADGetStatus,
NWADInitLevelTwoPassword, NWADLogout, NWADOpen,
NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 172

NWADLogout

Removes auditor access from a volume or container while auditHandle resets
to NULL

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADLogout (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle);

Pascal Syntax

#include <nwaudit.inc>

Function NWADLogout
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

auditHandle

Management Service Group

Auditing: Functions 173

(IN) Points to the auditHandle allocated by NWADOpen.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

NWADLogout must be called every time an application logs in as an
auditor.

NWADLogout must be called every time an application logs in as an
auditor on the Directory Services container.

NWADLogout cannot be used on NetWare 4.11 unless a password has
been set by calling NWADSetPassword. Call NWADGetStatus to
determine if a password has been set.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 13 Remove Auditor Access

0x2222 104 211 Directory Services Remove Auditor Access

See Also

NWADCheckAccess, NWADGetStatus, NWADLogin, NWADOpen,
NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 174

NWADOpen

Allocates auditHandle for use in other Auditing functions

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADOpen (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 pnptr auditHandle,
 pNWADOpenStatus openStatus);

Pascal Syntax

#include <nwaudit.inc>

Function NWADOpen
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 Var auditHandle : nptr;
 Var openStatus : NWADOpenStatus
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the auditID parameter.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the volume number for volume auditing or the object ID
of the DS Audit File Object for container auditing.

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

Management Service Group

Auditing: Functions 175

openStatus

(OUT) Points to the NWADOpenStatus structure containing the file
status.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

NWGetVolumeNumber can be called to query the volume number.

NWDSAuditGetObjectID can be called to query the object ID.

See Also

NWADClose, NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 176

NWADOpenRecordFile

Opens the record file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADOpenRecordFile (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle,
 nint16 fileCode,
 pnptr recordHandle);

Pascal Syntax

#include <nwaudit.inc>

Function NWADOpenRecordFile
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr;
 fileCode : nint16;
 Var recordHandle : nptr
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

Management Service Group

Auditing: Functions 177

(IN) Specifies the identification of the object to be audited.

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

fileCode

(IN) Specifies the file number to open. -1 specifies the current file from
which to read records while 0-15 specifies old files from which to read
records.

recordHandle

(OUT) Points to an allocated record handle.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 24 Init Audit File Read

0x2222 104 223 Init Audit File Read

See Also

NWADCloseRecordFile, NWADOpen, NWDSAuditGetObjectID,
NWGetVolumeNumber

Management Service Group

Auditing: Functions 178

NWADReadBitMap

Reads the audit bitmap to see what is being audited

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADReadBitMap (
 NWCONN_HANDLE conn,
 nuint32 volumeID,
 NWAuditBitMap N_FAR *buffer,
 nuint16 bufferSize);

Pascal Syntax

#include <nwaudit.inc>

Function NWADReadBitMap
 (conn : NWCONN_HANDLE;
 volumeID : nuint32;
 Var buffer : NWAuditBitMap;
 bufferSize : nuint16
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volumeID

(IN) Specifies the volume number of the audited volume.

buffer

(OUT) Points to NWAuditBitMap defining what is being audited.

bufferSize

(IN) Specifies the size of NWAuditBitMap expected. The entire bitmap
needs to be received at once.

Management Service Group

Auditing: Functions 179

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

NWAuditMap is a 512-bit stream. If a bit is set to one (1), the
corresponding item found in auditBitMapIDs enumeration is being
audited.

NWAuditBitMap may also be read by calling
NWReadAuditConfigHeader.

When a bit in auditBitMapID is set to one, it generates an event and saves
it in the audit file. The definition of the set bits follow:

Bit Function Description

A_BIT_GOPEN_F
ILE

Global Open Specifies all file opens are
audited

A_BIT_IOPEN_FI
LE

Intersection
Open

Specifies the intersection of
events by a user or a file open is
audited

A_BIT_UOPEN_F
ILE

Union Open Specifies the union of events by a
user and a file open is audited.

auditBitMapID lists the bits defined by the event bitmap in the audit file
configuration header. The first 32 bits are reserved for Directory Services
for container auditing. For a list of event bits, see Event Bits Tables.

NWADReadBitMap is only supported on NetWare 4.1. It is not
supported on NetWare 4.11.

NCP Calls

0x2222 88 10 Read Audit Bit Map

Management Service Group

Auditing: Functions 180

See Also

NWADReadConfigHeader, NWADWriteBitMap, NWADLogin

Management Service Group

Auditing: Functions 181

NWADReadConfigHeader

Returns the configuration header from the auditing file on a specified
volume or container

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADReadConfigHeader (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle,
 nptr buffer,
 nuint16 bufferSize);

Pascal Syntax

#include <nwaudit.inc>

Function NWADReadConfigHeader
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 buffer : nptr;
 bufferSize : nuint16
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

Management Service Group

Auditing: Functions 182

(IN) Specifies the identification of the object to be audited.

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

buffer

(OUT) Points to an array in which data is saved.

bufferSize

(IN) Specifies the size of the configuration header for saving data.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

volumeAuditEventBitMap in NWConfigHeader may also be read by
calling NWReadAuditingBitMap.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

For a list of event bits, see Event Bits Tables.

NCP Calls

0x2222 88 11 Read Audit Config Hdr

0x2222 104 209 Directory Services Read Audit Configuration Header

See Also

Management Service Group

Auditing: Functions 183

NWADLogin, NWADReadBitMap, NWADWriteConfigHeader,
NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 184

NWADReadRecord

Reads a specified record

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADReadRecord (
 nptr recordHandle,
 nuint16 maxSize,
 nint16 direction,
 pnuint8 buffer,
 pnuint16 bufferSize,
 pnuint8 eofFlag,
 pnuint32 offsetPtr);

Pascal Syntax

#include <nwaudit.inc>

Function NWADReadRecord
 (recordHandle : nptr;
 maxSize : nuint16;
 direction : nint16;
 Var buffer : nuint8;
 Var bufferSize : nuint16;
 Var eofFlag : nuint8;
 Var offsetPtr : nuint32
) : NWRCODE;

Parameters

recordHandle

(IN) Specifies the record handle allocated in NWADOpenRecordFile.

maxSize

(IN) Specifies the size of the buffer passed into the call.
NWADReadRecord will write beyond the end of the specified buffer
size. Typically, size is 512 bytes.

Management Service Group

Auditing: Functions 185

direction

(IN) Specifies whether to get the previous or the next record:

-1 = Get previous record

1 = Get next record

buffer

(IN/OUT) Points to a buffer to contain the record.

bufferSize

(OUT) Points to the size of data contained in the buffer.

eofFlag

(OUT) Points to a flag indicating whether the end of the file has been
reached:

1 = End of file

0 = More file to be read

offsetPtr

(IN) Points to a book marker indicating where the previously read
record is located.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

Either an end of file flag or -1 is a valid signal to NWADReadRecord to
stop reading from the specified file.

NCP Calls

0x2222 88 25 Read Auditing File

0x2222 104 224 Read Auditing File

Management Service Group

Auditing: Functions 186

See Also

NWADOpen, NWADOpenRecordFile, NWADCloseRecordFile

Management Service Group

Auditing: Functions 187

NWADResetFile

Resets the audit file on a specified container or volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADResetFile (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle);

Pascal Syntax

#include <nwaudit.inc>

Function NWADResetFile
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

Management Service Group

Auditing: Functions 188

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

The original file is saved to the OLD file and a new audit file is set up to
store audit events.

NWADResetFile requires a level two password when enabled.

The name of the data file is containerID.DAF. When the file is reset, it is
renamed to containID.OAF. These files are hidden, and reside in a hidden
directory called _NetWare on a NetWare server having a writable replica
of the container probably where the object resides.

NWADResetFile is only supported on NetWare 4.1; NetWare 4.11 does
not support NWADResetFile.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 14 Reset Audit File

0x2222 104 212 Directory Services Reset Audit File

See Also

NWADInitLevelTwoPassword, NWADLogin, NWADOpen,
NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 189

NWADRestartVolumeAuditing

Restarts auditing for volumes only

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADRestartVolumeAuditing (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID);

Pascal Syntax

#include <nwaudit.inc>

Function NWADRestartVolumeAuditing
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

Return Values

These are common return values; see Return Values for more

Management Service Group

Auditing: Functions 190

information.

0x0000 SUCCESSFUL

Remarks

NWADRestartVolumeAuditing is for NetWare 4.11 only and is not
supported on NetWare 4.1.

NWADRestartVolumeAuditing should be called when the history file
has reached the size limit or a volume is full. The auditor (not a password
auditor) should access the volume and correct the situation, and then call
NWADRestartVolumeAuditing to restart auditing on the volume. Other
users may then access the volume.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 30 Restart Volume Auditing

See Also

NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 191

NWADSetPassword

Sets a password only on NetWare 4.11

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADSetPassword
 (NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle,
 pnuint8 newPassword);

Pascal Syntax

#include <nwaudit.inc>

Function NWADSetPassword
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr;
 Var newPassword : nuint8
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

auditHandle

Management Service Group

Auditing: Functions 192

(IN) Points to the auditHandle allocated by NWADOpen.

newPassword

(IN) Points to the new password to be set.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x89D7 PASSWORD_NOT_UNIQUE

0x89D8 PASSWORD_TOO_SHORT

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

NWADSetPassword is only supported on the next released version after
NetWare 4.1.

NWADSetPassword allows auditing to be accessed by a password user
who does not have Audit File Object access rights.

Password users have limited access in error conditions and setting up
auditing.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 19 Get Audit Flags

0x2222 88 31 Set Audit Password

0x2222 104 216 Get Audit Flags

0x2222 104 229 Set Audit Password

Management Service Group

Auditing: Functions 193

See Also

NWADChangePassword, NWDSAuditGetObjectID,
NWGetVolumeNumber

Management Service Group

Auditing: Functions 194

NWADWriteBitMap

Writes the audit bitmap definition of what is being audited

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY (NWRCODE) NWADWriteBitMap (
 NWCONN_HANDLE conn,
 nuint32 volumeID,
 nptr auditHandle,
 NWAuditBitMap N_FAR *buffer);

Pascal Syntax

#include <nwaudit.inc>

Function NWADWriteBitMap
 (conn : NWCONN_HANDLE;
 volumeID : nuint32;
 auditHandle : nptr;
 Var buffer : NWAuditBitMap
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volumeID

(IN) Specifies the volume number of the audited volume.

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

buffer

(IN) Points to NWAuditBitMap defining what is being audited.

Return Values

Management Service Group

Auditing: Functions 195

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

NWADWriteBitMap requires a second level password when enabled.

This constant defines the number of bits in the event bitmap for volumes:

NW_AUDIT_NUMBER_EVENT_BITS = 512

The buffer is a 512-bit stream. If a bit is set to one (1), the corresponding
item found in auditBitMapIDs (nwaudit.h) is being audited.For a list of
event bits, see Event Bits Tables.

If auditing is not enabled, NO_DISK_LEFT_FOR_SPOOL_FILE is
returned; if auditing is not supported, NO_CREATE_PRIVILEGES is
returned.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

 0x2222 88 16 Write Auditing Bit Map

See Also

NWADLogin, NWADOpen, NWADWriteConfigHeader,
NWADReadBitMap, NWADReadConfigHeader,
NWADInitLevelTwoPassword

Management Service Group

Auditing: Functions 196

NWADWriteConfigHeader

Saves the configuration header for the auditing file on a specified volume or
container

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY NWRCODE NWADWriteConfigHeader (
 NWCONN_HANDLE conn,
 nuint32 auditIDType,
 nuint32 auditID,
 nptr auditHandle,
 pNWConfigHeader buffer);

Pascal Syntax

#include <nwaudit.inc>

Function NWADWriteConfigHeader
 (conn : NWCONN_HANDLE;
 auditIDType : nuint32;
 auditID : nuint32;
 auditHandle : nptr;
 Var buffer : NWConfigHeader
) : NWRCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

auditIDType

(IN) Specifies the type of the object to be audited.

0 AUDIT_ID_IS_VOLUME indicates volume auditing

1 AUDIT_ID_IS_CONTAINER indicates container auditing

auditID

(IN) Specifies the identification of the object to be audited.

Management Service Group

Auditing: Functions 197

auditHandle

(IN) Points to the auditHandle allocated by NWADOpen.

buffer

(IN) Points to NWConfigHeader containing data.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 Auditing Hardware Error

0x8984 Auditing Not Supported

0x8997 Auditing Not Enabled

0x8998 VOLUME_DOES_NOT_EXIST

0x89DE PASSWORD_HAS_EXPIRED_NO_GRACE

Remarks

NWADWriteConfigHeader requires a second level password when
enabled.

If auditing is not enabled, NO_DISK_LEFT_FOR_SPOOL_FILE is
returned; if auditing is not supported, NO_CREATE_PRIVILEGES is
returned.

If auditIDType is set to AUDIT_ID_IS_VOLUME to indicate volume
auditing, NWGetVolumeNumber can be called to get the volume
number of the audit file object.

If auditIDType is set to AUDIT_ID_IS_CONTAINER to indicate container
auditing, NWDSAuditGetObjectID can be called to get the Directory
Service object ID of the audit file object.

NCP Calls

0x2222 88 17 Write Audit Config Hdr

0x2222 88 19 Get Auditing Flags

0x2222 104 214 Directory Services Write Audit CNT Config Hdr

0x2222 104 216 Get Auditing Flags

See Also

Management Service Group

Auditing: Functions 198

NWADInitLevelTwoPassword, NWADLogin, NWADReadBitMap,
NWADReadConfigHeader, NWADWriteBitMap,
NWDSAuditGetObjectID, NWGetVolumeNumber

Management Service Group

Auditing: Functions 199

NWGetNWADVersion

Returns the version information about the NWAD library

NetWare Server: 4.1 and above

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Auditing

Syntax

#include <nwaudit.h>
or
#include <nwnet.h>

void N_API NWGetNWADVersion (
 pnuint8 majorVersion,
 pnuint8 minorVersion,
 pnuint8 revisionLevel,
 pnuint8 betaReleaseLevel);

Pascal Syntax

#include <nwaudit.inc>

Procedure NWGetNWADVersion
 (Var majorVersion : nuint8;
 Var minorVersion : nuint8;
 Var revisionLevel : nuint8;
 Var betaReleaseLevel : nuint8
);

Parameters

majorVersion

(OUT) Points to the major version of the library. For example, 4 would
be returned for NetWare 4.1.

minorVersion

(OUT) Points to the minor version of the library. For example, .1 would
be returned for NetWare 4.1.

revisionLevel

(OUT) Points to the revision version of the library. For example, c
would be returned for NetWare 3.11c.

betalReleaseLevel

(OUT) Points to the beta release version of the library.

Return Values

Management Service Group

Auditing: Functions 200

None

Management Service Group

Auditing: Functions 201

Auditing: Structures

Management Service Group

Auditing: Structures 202

NWADOpenStatus

Service: Auditing

Defined In: nwaudit.h

Structure

typedef struct
{
 nuint32 auditingStatus;
 nuint32 isTrustedNetWare;
 nuint32 trustedNetWareStatus;
 nuint32 reserved1;
 nuint32 reserved2;
 nuint32 reserved3;
 nuint32 reserved4;
} NWADOpenStatus;

Pascal Structure

Defined in nwaudit.inc

 NWADOpenStatus = Record
 auditingStatus : nuint32;
 isTrustedNetWare : nuint32;
 trustedNetWareStatus : nuint32;
 reserved1 : nuint32;
 reserved2 : nuint32;
 reserved3 : nuint32;
 reserved4 : nuint32
 End;

Fields

auditingStatus

isTrustedNetWare

Specifies if trusted NetWare is running:

0 False

1 True

trustedNetWareStatus

Specifies if a password if needed:

1 Requires user password

reserved1

Reserved by Novell for future use.

Management Service Group

Auditing: Structures 203

reserved2

Reserved by Novell for future use.

reserved3

Reserved by Novell for future use.

reserved4

Reserved by Novell for future use.

Management Service Group

Auditing: Structures 204

NWAuditBitMap

Defines an array of bytes large enough to contain the number of bits in a
configuration header’s event bitmap

Service: Auditing

Defined In: nwaudit.h

Structure

typedef struct
{
 nuint8 bitMap[NW_AUDIT_NUMBER_EVENT_BITS/8];
} NWAuditBitMap;

Pascal Structure

Defined in nwaudit.inc

 NWAuditBitMap = Record
 bitMap : Array[0..NW_AUDIT_NUMBER_EVENT_BITS DIV 8] Of nuint8
 End;

Fields

bitMap

Specifies if the event is audited as defined in the nwadevnt.h file:

0 Event is not audited

1 Event is audited

Management Service Group

Auditing: Structures 205

NWAuditBitMapTNW

Defines an array of bytes large enough to contain the number of bits in a
configuration header’s event bitmap

Service: Auditing

Defined In: nwaudit.h

Structure

typedef struct
{
 nuint8 bitMap[NW_AUDIT_NUMBER_EVENT_BITS_TNW/8];
} NWAuditBitMapTNW;

Pascal Structure

Defined in nwaudit.inc

NWAuditBitMapTNW = Record
 bitMap : Array[0..NW_AUDIT_NUMBER_EVENT_BITS_TNW DIV 8] Of nuint8
 End;

Fields

bitMap

Management Service Group

Auditing: Structures 206

NWAuditFileList

Service: Auditing

Defined In: nwaudit.h

Structure

typedef struct
{
 nuint32 fileCreateDateTime[16];
 nuint32 fileSize[16];
} NWAuditFileList;

Pascal Structure

Defined in nwaudit.inc

 NWAuditFileList = Record
 fileCreateDateTime : nuint32;
 fileSize : nuint32
 End;

Fields

fileCreateDateTime

Specifies the time the file was saved by calling the
NWADResetAuditFile function.

fileSize

Specifies the size of the file.

Management Service Group

Auditing: Structures 207

NWAuditRecord

Service: Auditing

Defined In: nwaudit.h

Structure

typedef struct
{
 nuint32 recordLength;
 pnuint8 record;
} NWAuditRecord;

Pascal Structure

Defined in nwaudit.inc

 NWAuditRecord = Record
 recordLength : nuint32;
 aRecord : pnuint8
 End;

Fields

recordLength

Specifies the size of the data to send.

record

Points to the data to send.

Management Service Group

Auditing: Structures 208

NWAuditStatus

Service: Auditing

Defined In: nwaudit.h

Structure

typedef struct
{
 nuint16 auditingVersionDate;
 nuint16 auditFileVersionDate;
 nuint32 auditingEnabledFlag;
 nuint32 auditFileSize;
 nuint32 modifiedCounter;
 nuint32 auditFileMaxSize;
 nuint32 auditFileSizeThreshold;
 nuint32 auditRecordCount;
 nuint32 auditingFlags;
} NWAuditStatus;

Pascal Structure

Defined in nwaudit.inc

NWAuditStatus = Record
 auditingVersionDate : nuint16;
 auditFileVersionDate : nuint16;
 auditingEnabledFlag : nuint32;
 auditFileSize : nuint32;
 modifiedCounter : nuint32;
 auditFileMaxSize : nuint32;
 auditFileSizeThreshold : nuint32;
 auditRecordCount : nuint32;
 auditingFlags : nuint32
 End;

Fields

auditingVersionDate

Specifies the file server version data of auditing.

auditFileVersionDate

auditingEnabledFlag

Specifies whether auditing is enabled:

0 Disabled

1 Enabled

auditFileSize

Management Service Group

Auditing: Structures 209

auditFileSize

Specifies the size of the current audit file.

modifiedCounter

Specifies the number of times auditing has been modified.

auditFileMaxSize

Specifies the maximum size for the audit file.

auditFileSizeThreshold

Specifies the size of the file when auditing starts to send warning
messages.

auditRecordCount

Specifies the total number of events in the audit file.

auditingFlags

Management Service Group

Auditing: Structures 210

NWConfigHeader

Stores information associated with a volume’s audit file configuration
header

Service: Auditing

Defined In: nwaudit.h

Structure

typedef struct
{
 nuint16 fileVersionDate;
 nuint8 auditFlags;
 nuint8 errMsgDelayMinutes;
 nuint8 reserved1[16];
 nuint32 auditFileMaxSize;
 nuint32 auditFileSizeThreshold;
 nuint32 auditRecordCount;
 nuint32 historyRecordCount;
 nuint8 reserved2[16];
 nuint32 reserved3[3];
 nuint8 auditEventbitMap[NW_AUDIT_NUMBER_EVENT_BITS/8];
 nuint32 auditFileCreationDateTime;
 nuint8 reserved4[8];
 nuint16 auditFlags2;
 nuint16 fileVersionDate2;
 nuint8 fileArchiveDays;
 nuint8 fileArchiveHour;
 nuint8 numOldAuditFilesToKeep;
 nuint8 reserved5;
 nuint32 headerChecksum;
 nuint32 headerModifiedCounter;
 nuint32 reserved6;
 nuint8 newbitMap[64];
 nuint8 reserved7[64];
} NWConfigHeader;

Pascal Structure

Defined in nwaudit.inc

NWConfigHeader = Record
 fileVersionDate : nuint16;
 auditFlags : nuint8;
 errMsgDelayMinutes : nuint8;
 reserved1 : Array[0..15] Of nuint8;
 auditFileMaxSize : nuint32;
 auditFileSizeThreshold : nuint32;
 auditRecordCount : nuint32;

Management Service Group

Auditing: Structures 211

 historyRecordCount : nuint32;
 reserved2 : Array[0..15] Of nuint8;
 reserved3 : Array[0..2] Of nuint32;
 auditEventBitMap : Array[0..NW_AUDIT_NUMBER_EVENT_BITS DIV 8] Of nuint8;
 auditFileCreationDateTime : nuint32;
 reserved4 : Array[0..7] Of nuint8;
 auditFlags2 : nuint16;
 fileVersionDate2 : nuint16;
 fileArchiveDays : nuint8;
 fileArchiveHour : nuint8;
 numOldAuditFilesToKeep : nuint8;
 reserved5 : nuint8;
 headerChecksum : nuint32;
 headerModifiedCounter : nuint32;
 (* Trusted NetWare uses the following two fields *)
 reserved6 : nuint32;
 (*Tusted NetWare uses this bitmap instead of
 volumeAuditEventBitMap above *)
 newBitMap : Array[0..63] Of nuint8;
 reserved7 : Array[0..63] Of nuint8
 End;

Fields

fileVersionDate

Indicates the current version of the audit file.

auditFlags

Indicates the set of bit flags controlling the audit:

errMsgDelayMinutes

Indicates the number of minutes to delay between error messages.

reserved1

Indicates the maximum allowable size of the audit file.

auditFileMaxSize

Indicates the maximum allowable size of the audit file.

auditFileSizeThreshold

Indicates the size at which users are notified that the audit file is
approaching its maximum size.

auditRecordCount

Indicates the number of records in the audit file.

historyRecordCount

Indicates the number of records in the audit history file (found only in
the volume configuration).

reserved2

reserved3

Management Service Group

Auditing: Structures 212

auditEventBitMap

auditFileCreationDateTime

reserved4

auditFlags2

fileVersionDate2

fileArchiveDays

fileArchiveHour

numOldAuditFilesToKeep

reserved5

headerChecksum

headerModifiedCounter

reserved6

newBitMap

Trusted NetWare uses this bitmap instead of auditEventBitMap.

reserved7

Trusted NetWare uses this field.

Management Service Group

Auditing: Structures 213

NWDSContainerConfigHdr

Stores information associated with a container’s audit file configuration
header

Service: Auditing

Defined In: nwaudit.h

Structure

typedef struct
{
 nuint16 fileVersionDate;
 nuint8 auditFlags;
 nuint8 errMsgDelayMinutes;
 nuint32 containerID;
 nuint32 reserved1;
 TIMESTAMP creationTS;
 nuint32 bitMap;
 nuint32 auditFileMaxSize;
 nuint32 auditFileSizeThreshold;
 nuint32 auditRecordCount;
 nuint16 replicaNumber;
 nuint8 enabledFlag;
 nuint8 fileArchiveDays;
 nuint8 fileArchiveHour;
 nuint8 numOldFilesToKeep;
 nuint16 numberReplicaEntries;
 nuint32 auditFileCreationDateTime;
 nuint8 reserved2[8];
 nuint32 partitionID;
 nuint32 headerChecksum;
 nuint32 reserved3[4];
 nuint32 auditDisabledCounter;
 nuint32 auditEnabledCounter;
 nuint8 reserved[32];
 nuint32 hdrModifiedCounter;
 nuint32 fileResetCounter;
 nuint8 newBitMap[64];
 nuint8 reserved7[64];
} NWDSContainerConfigHdr;

Pascal Structure

Defined in nwaudit.inc

 NWDSContainerConfigHdr = Record
 fileVersionDate : nuint16;
 auditFlags : nuint8;
 errMsgDelayMinutes : nuint8;

Management Service Group

Auditing: Structures 214

 containerID : nuint32;
 reserved1 : nuint32;
 creationTS : TIMESTAMP;
 bitMap : nuint32;
 auditFileMaxSize : nuint32;
 auditFileSizeThreshold : nuint32;
 auditRecordCount : nuint32;
 replicaNumber : nuint16;
 enabledFlag : nuint8;
 fileArchiveDays : nuint8;
 fileArchiveHour : nuint8;
 numOldFilesToKeep : nuint8;
 numberReplicaEntries : nuint16;
 auditFileCreationDateTime : nuint32;
 reserved2 : Array[0..7] Of nuint8;
 partitionID : nuint32;
 headerChecksum : nuint32;
 reserved3 : Array[0..3] Of nuint32;
 auditDisabledCounter : nuint32;
 auditEnabledCounter : nuint32;
 reserved4 : Array[0..31] Of nuint8;
 hdrModifiedCounter : nuint32;
 (* Trusted NetWare uses the following two fields *)
 fileResetCounter : nuint32;
 (* Tusted NetWare uses this bitmap *)
 newBitMap : Array[0..63] Of nuint8;
 reserved5 : Array[0..63] Of nuint8
 End;

Fields

fileVersionDate

auditFlags

errMsgDelayMinutes

containerID

reserved1

creationTS

bitMap

enum auditBitMapIDs
{
 ADS_BIT_ADD_ENTRY = 1,
 ADS_BIT_REMOVE_ENTRY = 2,
 ADS_BIT_RENAME_OBJECT = 3,
 ADS_BIT_MOVE_ENTRY = 4,
 ADS_BIT_ADD_SECURITY_EQUIV = 5,
 ADS_BIT_REMOVE_SECURITY_EQUIV = 6,

Management Service Group

Auditing: Structures 215

 ADS_BIT_ADD_ACL = 7,
 ADS_BIT_REMOVE_ACL = 8,
 A_BIT_BIND_CHG_OBJ_SECURITY = 32,
 A_BIT_BIND_CHG_PROP_SECURITY,
 A_BIT_BIND_CREATE_OBJ,
 A_BIT_BIND_CREATE_PROPERTY,
 A_BIT_BIND_DELETE_OBJ,
 A_BIT_BIND_DELETE_PROPERTY,
 A_BIT_CHANGE_DATE_TIME,
 A_BIT_CHANGE_EQUIVALENCE,
 A_BIT_CHANGE_SECURITY_GROUP,
 A_BIT_UCLOSE_FILE,
 A_BIT_CLOSE_BINDERY,
 A_BIT_UCREATE_FILE,
 A_BIT_CREATE_USER,
 A_BIT_UDELETE_FILE,
 A_BIT_DELETE_USER,
 A_BIT_DIR_SPACE_RESTRICTIONS,
 A_BIT_DISABLE_ACCOUNT,
 A_BIT_DOWN_SERVER,
 A_BIT_GRANT_TRUSTEE,
 A_BIT_INTRUDER_LOCKOUT_CHANGE,
 A_BIT_LOGIN_USER,
 A_BIT_LOGIN_USER_FAILURE,
 A_BIT_LOGOUT_USER,
 A_BIT_NET_LOGIN,
 A_BIT_UMODIFY_ENTRY,
 A_BIT_OPEN_BINDERY,
 A_BIT_UOPEN_FILE,
 A_BIT_UREAD_FILE,
 A_BIT_REMOVE_TRUSTEE,
 A_BIT_URENAME_MOVE_FILE,
 A_BIT_RENAME_USER,
 A_BIT_USALVAGE_FILE,
 A_BIT_STATION_RESTRICTIONS,
 A_BIT_CHANGE_PASSWORD,
 A_BIT_TERMINATE_CONNECTION,
 A_BIT_UP_SERVER,
 A_BIT_USER_CHANGE_PASSWORD,
 A_BIT_USER_LOCKED,
 A_BIT_USER_SPACE_RESTRICTIONS,
 A_BIT_USER_UNLOCKED,
 A_BIT_VOLUME_MOUNT,
 A_BIT_VOLUME_DISMOUNT,
 A_BIT_UWRITE_FILE,
 A_BIT_GOPEN_FILE,
 A_BIT_GCLOSE_FILE,
 A_BIT_GCREATE_FILE,
 A_BIT_GDELETE_FILE,
 A_BIT_GREAD_FILE,
 A_BIT_GWRITE_FILE,
 A_BIT_GRENAME_MOVE_FILE,

Management Service Group

Auditing: Structures 216

 A_BIT_GRENAME_MOVE_FILE,
 A_BIT_GMODIFY_ENTRY,
 A_BIT_IOPEN_FILE,
 A_BIT_ICLOSE_FILE,
 A_BIT_ICREATE_FILE,
 A_BIT_IDELETE_FILE,
 A_BIT_IREAD_FILE,
 A_BIT_IWRITE_FILE,
 A_BIT_IRENAME_MOVE_FILE,
 A_BIT_IMODIFY_ENTRY,
 A_BIT_Q_ATTACH_SERVER,
 A_BIT_Q_CREATE,
 A_BIT_Q_CREATE_JOB,
 A_BIT_Q_DESTROY,
 A_BIT_Q_DETACH_SERVER,
 A_BIT_Q_EDIT_JOB,
 A_BIT_Q_JOB_FINISH,
 A_BIT_Q_JOB_SERVICE,
 A_BIT_Q_JOB_SERVICE_ABORT,
 A_BIT_Q_REMOVE_JOB,
 A_BIT_Q_SET_JOB_PRIORITY,
 A_BIT_Q_SET_STATUS,
 A_BIT_Q_START_JOB,
 A_BIT_Q_SWAP_RIGHTS,
 A_BIT_NLM_ADD_RECORD,
 A_BIT_NLM_ADD_ID_RECORD,
 A_BIT_CLOSE_MODIFIED_FILE,
 A_BIT_GCREATE_DIRECTORY,
 A_BIT_ICREATE_DIRECTORY,
 A_BIT_UCREATE_DIRECTORY,
 A_BIT_GDELETE_DIRECTORY,
 A_BIT_IDELETE_DIRECTORY,
 A_BIT_UDELETE_DIRECTORY
};

auditFileMaxSize

auditFileSizeThreshold

auditRecordCount

replicaNumber

enabledFlag

fileArchiveDays

fileArchiveHour

numOldFilesToKeep

numberReplicaEntries

auditFileCreationDateTime

reserved2

Management Service Group

Auditing: Structures 217

partitionID

headerChecksum

reserved3

auditDisabledCounter

auditEnabledCounter

reserved4

hdrModifiedCounter

fileResetCounter

newBitMap

reserved5

Management Service Group

Auditing: Structures 218

TIMESTAMP

Stores a Directory Services time stamp and holds the time stamp for the
container object.

Service: Auditing

Defined In: nwaudit.h

Structure

typedef struct
{
 nuint32 seconds;
 nuint16 replicaNumber;
 nuint16 event;
} TIMESTAMP;

Pascal Structure

Defined in nwaudit.inc

 TIMESTAMP = Record
 seconds : nuint32;
 replicaNumber : nuint16;
 event : nuint16
 End;

Fields

seconds

replicaNumber

event

Management Service Group

Auditing: Structures 219

Client Management

Management Service Group

 220

Client Management: Functions

Management Service Group

Client Management: Functions 221

NWEndOfJob

Causes an end-of-job to be issued by the PC Shell

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: Client Management

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWEndOfJob (
 void);

Pascal Syntax

#include <nwmisc.inc>

Function NWEndOfJob
 : NWCCODE;

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Remarks

An end-of-job is automatically issued by the PC Shell whenever a
program exits unless NWEndOfJob has been disabled by calling the
NWSetEndOfJobStatus function. When an end-of-job occurs, all locked
files and records are cleared and any open files are closed.

NWEndOfJob can be called anytime the program needs the network
environment to return to a beginning-of-program state with no files or
records logged or locked.

NCP Calls

None

Management Service Group

Client Management: Functions 222

See Also

NWSetEndOfJobStatus

Management Service Group

Client Management: Functions 223

NWGetClientType

Determines the type of client running on the local workstation

NetWare Server:

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Client Management

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

nuint16 N_API NWGetClientType (
 void);

Pascal Syntax

#include <nwmisc.inc>

Function NWGetClientType
 : nuint16;

Return Values

These are common return values; see Return Values for more
information.

0x0000 nuint16 with At Least One Bit Flag Set

Remarks

One or more of the following bit flags (defined in nwapidef.h) will be set
when NWGetClientType returns:

1 NW_NETX_SHELL

2 NW_VLM_REQ

3 NW_CLIENT32

4 NW_NT_REQ

5 NW_OS2_REQ

6 NW_NLM_REQ

NWGetClientType assumes a client is loaded. If no clients are loaded,
the results are inconclusive.

Management Service Group

Client Management: Functions 224

NCP Calls

None

Management Service Group

Client Management: Functions 225

NWGetRequesterVersion

Returns the major version, minor version, and revision number of the OS
requester or shell

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: Client Management

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetRequesterVersion (
 pnuint8 majorVer,
 pnuint8 minorVer,
 pnuint8 revision);

Pascal Syntax

#include <nwmisc.inc>

Function NWGetRequesterVersion
 (majorVer : pnuint8;
 minorVer : pnuint8;
 revision : pnuint8
) : NWCCODE;

Parameters

majorVer

(OUT) Points to the major version number of the requester or shell.

minorVer

(OUT) Points to the minor version number of the requester or shell.

revision

(OUT) Points to the revision number of the requester or shell.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Management Service Group

Client Management: Functions 226

Remarks

If VLM.EXE is running, NWGetRequesterVersion returns the version of
VLM.EXE, even if NETX.VLM is running.

NCP Calls

None

Management Service Group

Client Management: Functions 227

NWSetEndOfJobStatus

Allows an application to enable or disable the EOJs sent when
COMMAND.COM executes

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, Windows 3.1

Service: Client Management

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSetEndOfJobStatus (
 nuint8 endOfJobStatus,
 pnuint8 prevStatus);

Pascal Syntax

#include <nwmisc.inc>

Function NWSetEndOfJobStatus
 (endOfJobStatus : nuint8;
 prevStatus : pnuint8
) : NWCCODE;

Parameters

endOfJobStatus

(IN) Specifies the end of job status.

prevStatus

(OUT) Points to the previous end of job status (optional).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Remarks

Management Service Group

Client Management: Functions 228

NWSetEndOfJobStatus is useful if the application invokes a secondary
command processor and does not want to lose its files due to an end of
job. The endOfJobStatus parameter remains set to the current setting until
it is explicitly reset.

The endOfJobStatus parameter should be set to one of the following:

0 To disable end-of-job

1 To enable end-of-job

NCP Calls

None

Management Service Group

Client Management: Functions 229

Data Manipulation

Management Service Group

 230

Data Manipulation: Functions

Management Service Group

Data Manipulation: Functions 231

bsearch

Performs a binary search of a sorted array

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

Platform: NLM

SMP Aware: Yes

Service: Data Manipulation

Syntax

#include <stdlib.h>

void *bsearch (
 const void *key,
 const void *base,
 size_t num,
 size_t width,
 int (*compar) (
 const void *,
 const void *));

Parameters

key

(IN) Points to the string containing the characters to be matched.

base

(IN) Points to the sorted array.

num

(IN) Specifies the number of elements in the array.

width

(IN) Specifies the size (in bytes) of each element in the array.

compar

(IN) Points to the comparison function.

Return Values

Returns a pointer to the matching member of the array, or NULL if a
matching object could not be found.

Remarks

Management Service Group

Data Manipulation: Functions 232

bsearch performs a binary search of a sorted array of elements (pointed
to by the base parameter), for an item that matches the object pointed to by
the key parameter.

The size of each element in the array is the number of bytes specified by
the width parameter.

The comparison function pointed to by the compar parameter is called
with two arguments that point to elements in the array. The comparison
function will return an integer less than, equal to, or greater than zero if
the first argument is less than, equal to, or greater than the second
parameter.

See Also

qsort

Management Service Group

Data Manipulation: Functions 233

IntSwap

Reverses the 2 bytes of a short integer or short unsigned

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 2.x, 3.x, 4.x

Platform: NLM

SMP Aware: Yes

Service: Data Manipulation

Syntax

#include <nwstring.h>

WORD IntSwap (
 WORD unswappedInteger);

Parameters

unswappedInteger

(IN) Specifies an integer for which high and low bytes are reversed.

Return Values

Returns the byte-swapped integer.

Remarks

An application can call IntSwap to reverse the high-low order of an
integer being sent or received. The 80x86 family of processors store
integers in low-high order. Since some of the network functions require
integers to be in high-low order, integers must be converted before they
are sent or received.

See Also

LongSwap

Management Service Group

Data Manipulation: Functions 234

LongSwap

Reverses all 4 bytes of a long integer or long unsigned

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 2.x, 3.x, 4.x

Platform: NLM

SMP Aware: Yes

Service: Data Manipulation

Syntax

#include <nwstring.h>

long LongSwap (
 long unswappedLong);

Parameters

unswappedLong

(IN) Specifies the long integer for which all 4 bytes are to be reversed.

Return Values

Returns the reversed long integer.

Remarks

An application can call LongSwap to reverse the high-low order of a long
integer being sent or received. The 80x86 family of processors store long
integers in low-high order. Since some of the network functions require
long integers to be in high-low order, long integers must be converted
before they are sent or after they are received.

See Also

IntSwap

Management Service Group

Data Manipulation: Functions 235

_lrotl

Rotates a long value to the left by the specified number of bits

Local Servers: nonblocking

Remote Servers: N/A

Platform: NLM

SMP Aware: Yes

Service: Data Manipulation

Syntax

#include <stdlib.h>

unsigned long _lrotl (
 unsigned long value,
 unsigned int shift);

Parameters

value

(IN) Specifies the value to be rotated.

shift

(IN) Specifies the number of bits by which to rotate the value.

Return Values

Returns the rotated value.

Remarks

_lrotl rotates the unsigned long value to the left by the number of bits
specified in the shift parameter.

To rotate an unsigned int value, call the _rotl function.

See Also

_lrotr, _rotl, _rotr

Management Service Group

Data Manipulation: Functions 236

_lrotr

Rotates a long value to the right by the specified number of bits

Local Servers: nonblocking

Remote Servers: N/A

Platform: NLM

SMP Aware: Yes

Service: Data Manipulation

Syntax

#include <stdlib.h>

unsigned long _lrotr (
 unsigned long value,
 unsigned int shift);

Parameters

value

(IN) Specifies the value to be rotated.

shift

(IN) Specifies the number of bits by which to rotate the value.

Return Values

Returns the rotated value.

Remarks

_lrotr rotates an unsigned long value to the right by the number of bits
specified in the shift parameter.

To rotate an unsigned int value, call the _rotr function.

See Also

_lrotl, _rotl, _rotr

Management Service Group

Data Manipulation: Functions 237

NWLongSwap

Reverses the order of the bytes on the input long (nuint32) value

NetWare Server:

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Data Manipulation

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

nuint32 N_API NWLongSwap (
 nuint32 swapLong);

Pascal Syntax

#include <nwmisc.inc>

Function NWLongSwap
 (swapLong : nuint32
) : nuint32;

Parameters

swapLong

(IN) Specifies the long (nuint32) to swap.

Return Values

Returns the swapped long.

Remarks

If the original value was 0x12345678, the return value after calling
NWLongSwap will be 0x78563412.

NCP Calls

None

See Also

NWWordSwap

Management Service Group

Data Manipulation: Functions 238

NWWordSwap

Swaps the high order byte with the low order byte

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Data Manipulation

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

nuint16 N_API NWWordSwap (
 nuint16 swapWord);

Pascal Syntax

#include <nwmisc.inc>

Function NWWordSwap
 (swapWord : nuint16
) : nuint16;

Parameters

swapWord

(IN) Specifies the word (nuint16) to swap.

Return Values

Returns the swapped word.

NCP Calls

None

See Also

NWLongSwap

Management Service Group

Data Manipulation: Functions 239

offsetof

Returns the offset of an element within a structure

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

Platform: NLM

SMP Aware: No

Service: Data Manipulation

Syntax

#include <stddef.h>

size_t offsetof (
 composite,
 name);

Parameters

composite

(IN) Specifies the structure or union for which to return an element
offset.

name

(IN) Specifies the element in the structure for which to return the
offset.

Return Values

Returns the offset of the element specified by the name parameter.

Remarks

offsetof provides a portable method to return the offset of the element
specified by the name parameter within the structure or union specified
by the composite parameter.

offsetof cannot be used to initialize data. It can only be used with
executable statements.

Management Service Group

Data Manipulation: Functions 240

qsort

Sorts an array of elements

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

Platform: NLM

SMP Aware: Yes

Service: Data Manipulation

Syntax

#include <stdlib.h>

void qsort (
 void *base,
 size_t num,
 size_t width,
 int (*compar) (
 const void *,
 const void *));

Parameters

base

(IN) Points to the array to sort.

num

(IN) Specifies the number of elements in the array.

width

(IN) Specifies the size (in bytes) of each element in the array.

compar

(IN) Points to the comparison function.

Return Values

None

Remarks

qsort sorts an array of elements (pointed to by the base parameter) using
Hoare’s Quicksort algorithm.

The size of each element in the array is the number of bytes specified by
the width parameter.

Management Service Group

Data Manipulation: Functions 241

The comparison function pointed to by the compar parameter is called
with two arguments that point to elements in the array. The comparison
function will return an integer less than, equal to, or greater than zero if
the first argument is less than, equal to, or greater than the second
argument.

See Also

bsearch

Management Service Group

Data Manipulation: Functions 242

_rotl

Rotates an integer value to the left by the specified number of bits

Local Servers: nonblocking

Remote Servers: N/A

Platform: NLM

SMP Aware: Yes

Service: Data Manipulation

Syntax

#include <stdlib.h>

unsigned int _rotl (
 unsigned int value,
 unsigned int shift);

Parameters

value

(IN) Specifies the value to rotate.

shift

(IN) Specifies the number of bits by which to rotate the value.

Return Values

Returns the rotated value.

Remarks

_rotl rotates the unsigned int value to the left by the number of bits
specified in the shift parameter.

To rotate an unsigned long value, call the _lrotl function.

See Also

_lrotl, _lrotr, _rotr

Management Service Group

Data Manipulation: Functions 243

_rotr

Rotates an integer value to the right by a specified number of bits

Local Servers: nonblocking

Remote Servers: N/A

Platform: NLM

SMP Aware: Yes

Service: Data Manipulation

Syntax

#include <stdlib.h>

unsigned int _rotr (
 unsigned int value,
 unsigned int shift);

Parameters

value

(IN) Specifies the value to rotate.

shift

(IN) Specifies the number of bits by which to rotate the value.

Return Values

Returns the rotated value.

Remarks

_rotr rotates the unsigned int value to the right by the number of bits
specified in the shift parameter.

To rotate an unsigned long, call the _lrotr function.

See Also

_lrotl, _lrotr, _rotl

Management Service Group

Data Manipulation: Functions 244

NDS Event

Management Service Group

 245

NDS Event: Guides

NDS Event: General Guide

NDS Event Introduction

NDS Event Uses

Monitoring NDS Events

Registering for NDS Events

Priorities of NDS Event Reporting

NDS Event Priorities---EP_INLINE

NDS Event Priorities---EP_JOURNAL

NDS Event Priorities---EP_WORK

NDS Event Types

Example: NDS Event Determination

NDS Event Handling

Unregistering for NDS Events

NDS Event Data Filtering

Filtering NDS Events by Local ID

Example: Using Local IDs to Obtain Telephone Numbers

Processing Data Obtained by Use of Local IDs

Filtering NDS Events by DSTrace Events

Global Network Monitoring

NDS Event Functions

NDS Event Registration Functions

NDS Event Helper Functions

NDS Event: Tasks

NDS Event: Concepts

Management Service Group

NDS Event: Guides 246

NDS Event: Examples

NDS Event: Functions

NDS Event: Structures

Parent Topic:

Management Overview

NDS Event: Task Guide

Monitoring NDS Events

Registering for NDS Events

Unregistering for NDS Events

Processing Data Obtained by Use of Local IDs

NDS Event: Tasks

NDS Event: Concepts

NDS Event: Examples

NDS Event: Functions

NDS Event: Structures

Parent Topic:

NDS Event: General Guide

NDS Event: Concept Guide

NDS Event Introduction

NDS Event Uses

Priorities of NDS Event Reporting

NDS Event Priorities---EP_INLINE

NDS Event Priorities---EP_JOURNAL

NDS Event Priorities---EP_WORK

NDS Event Types

Example: NDS Event Determination

Management Service Group

NDS Event: Guides 247

NDS Event Handling

NDS Event Data Filtering

Filtering NDS Events by Local ID

Example: Using Local IDs to Obtain Telephone Numbers

Filtering NDS Events by DSTrace Events

Global Network Monitoring

NDS Event Functions

NDS Event Registration Functions

NDS Event Helper Functions

NDS Event: Tasks

NDS Event: Concepts

NDS Event: Examples

NDS Event: Functions

NDS Event: Structures

Parent Topic:

NDS Event: General Guide

Management Service Group

NDS Event: Guides 248

NDS Event: Tasks

Monitoring NDS Events

The following list is a high-level view of the steps an NDS event-monitoring
application must take.

1. Register for events. Follow the steps outlined in Registering for NDS
Events

2. Ensure that you application conforms to the following:

1. When the specified event occurs, such as the creation of an object,
the callback is called and given data about the event.

2. The callback determines whether to use the data. If it uses the data,
the callback either immediately processes the data or makes and
stores a local copy of the data. Then the callback returns.

3. If the callback saved data locally so another thread can process it,
that thread runs.

3. Unregister for events as explained in Unregistering for NDS Events.

Parent Topic:

NDS Event: General Guide

Processing Data Obtained by Use of Local IDs

In the example Example: Using Local IDs to Obtain Telephone Numbers,
the NLM application has another thread to process the callback information
in the following manner:

1. Remove the “first in” node from the list.

2. Determine the name of the object whose phone number was changed.

3. Extract the phone number from the event data structure.

4. Use the object name and the phone number to update the phone
number database.

5. Free the memory associated with node data.

6. Process the next node in the list.

Management Service Group

NDS Event: Tasks 249

Parent Topic:

Example: Using Local IDs to Obtain Telephone Numbers

Registering for NDS Events

1. Using the helper functions, determine the IDs of the desired objects,
object classes, or attributes.

2. Call NWDSERegisterForEvent to register a function you want used as
a callback when a specific event occurs. Call
NWDSERegisterForEvent once for each event you want monitored.

Parent Topic:

Monitoring NDS Events

Related Topics:

Unregistering for NDS Events

Unregistering for NDS Events

1. When information about an event is no longer needed, call
NWDSEUnRegisterForEvent to remove its callbacks from the
notification lists.

NOTE: You must call NWDSEUnRegisterForEvent once for each
registered event.

Parent Topic:

Monitoring NDS Events

Related Topics:

Registering for NDS Events

Management Service Group

NDS Event: Tasks 250

NDS Event: Examples

Example: NDS Event Determination

The following example shows how a callback can use the tag as parameter
to determine which NDS event has occurred.

Determining Which NDS Event Has Occurred

int MyEventHandler(uint32 type, unsigned size, const void *data);
{
 switch(type)
 {
 case DSE_CREATE_ENTRY:
 ProcessCreateEntry(size, data);
 break;
 case DSE_DELETE_ENTRY:
 ProcessDeleteEntry(size, data);
 break;
 ...
 }
 return 0;
}

The same function should not be registered for multiple priorities since
none of the callback’s parameters specifies the priority. In addition, time
constraints require different behavior from a function at one priority than
from a function at another. For example, as the following discussion shows,
a function registered for a given DS event at the EP_INLINE priority must
complete more quickly than a function registered for the same event at
EP_JOURNAL and much faster than a function registered for that event at
EP_WORK.

Parent Topic:

NDS Event Types

Example: Using Local IDs to Obtain Telephone
Numbers

Using Local IDs

/* This code would be for a callback registered with the EP_JOURNAL
 or EP_WORK priority */
/* It also assumes that the ID for the Telephone Number attribute

Management Service Group

NDS Event: Examples 251

 has been saved in telephoneNumID. */

int PhoneNumberCallback(uint32 type, unsigned size, const void *data)
{
 const DSEValueInfo *valueInfo;

 valueInfo = data;

 if(valueInfo->attrID==telephoneNumID)
 CopyValueInfoAndSaveOnList(size, valueInfo);
 return 0;
 /* return values are ignored for EP_JOURNAL and EP_WORK */
}

CopyValueInfoAndSaveOnList is a developer supplied function that
would allocate space to store the data, copy the data, and then store the local
copy of the data in a linked list to be processed by another thread.

WARNING: Your callback must not change the data pointed to by
data. This data structure will be passed to the other event handlers,
and changing it could affect the behavior of those event handlers (if
they are registered).

The following observations can be made about the above code.

The attribute ID for telephone was determined outside of the callback
and stored in a global variable. This ID will not change and only needs to
be determined once.

It filters only on the attrID field of the event data.

Rather than modifying the data, the callback makes a local copy of the
data and saves the copy on a list. (Another thread will process the data.)

It returns quickly so the data can be passed to the next event handler, if
there is one. See Processing Data Obtained by Use of Local IDs.

Parent Topic:

Filtering NDS Events by Local ID

Management Service Group

NDS Event: Examples 252

NDS Event: Concepts

Filtering NDS Events by DSTrace Events

NDS Event allows NLM applications to register to the DSTrace events.
These events are the same events used to report the DSTrace information
when the SET DSTRACE=ON command is issued at the server console.

WARNING: Your NLM application should not rely upon the text
strings supplied with the DSTrace event. These strings are for
internal debugging purposes and are not guaranteed to remain the
same in future OS versions.

Parent Topic:

NDS Event Data Filtering

Related Topics:

Filtering NDS Events by Local ID

Filtering NDS Events by Local ID

When examining the data structures passed in as the data parameter of
your callback, you will see that the structures use IDs rather than names.
For example, the DSEValueInfo structure contains the following IDs:

perpetratorID

entryID

attrID

syntaxID

classID

While the object names in the Directory are global, the local IDs for objects
on individual servers are not. Each object on a server is identified by a local
ID that is relevant only on that server. The object’s local ID on another
server is probably not the same.

The use of local IDs is not limited to object names. These IDs are also used to
identify attributes and object classes. (The IDs for syntaxes are defined in
NWDSDEFS.H.)

NDS events are reported by ID to enhance speed. IDs are 32-bit values;
comparing for equality is faster with two IDs than with two strings.

Management Service Group

NDS Event: Concepts 253

In most cases, you can use these IDs as your filter.

For example, if an organization has an external telephone directory that
needs to be kept current, it could create an NLM application that registers
for DSE_ADD_VALUE to determine when any object’s phone number
changes. It would then get the attribute ID by calling
NWDSEGetLocalAttrID and filter on the attrID field.

For an example of filtering NDS events by local ID, see Example: Using
Local IDs to Obtain Telephone Numbers

Parent Topic:

NDS Event Data Filtering

Related Topics:

Filtering NDS Events by DSTrace Events

Global Network Monitoring

NDS Event does not provide a global solution to monitoring NDS events.
Instead, it provides information that is local to each server. If your
application is to provide a global solution it must do the following.

Provide an NDS event handler on each server being monitored.

Provide a method of sorting out duplicate events. For example, if there
are three replicas on three servers, each having an NDS event handler
registered, deleting an object will show up as a separate event on each
server. In this case the global monitor must either reject all events from
two of the servers or deal with receiving multiple copies of the same
event.

In some implementations, it might be advantageous to obtain events from
all servers that hold an instance of a partition. Such an application might be
one that measures replication time in a network.

Parent Topic:

NDS Event: General Guide

NDS Event Data Filtering

When a callback is called, it must determine if the data (pointed to by the
data parameter) contains information the NLM application requires. For
example, if the NLM application is only concerned with changes to
telephone numbers, it would use only data containing Telephone Number
attribute information. Otherwise, the callback would simply return.

Data can be filtered in two ways:

Management Service Group

NDS Event: Concepts 254

By use of local IDs, as described in Filtering NDS Events by Local ID

By use of DSTraceEvents, as described in Filtering NDS Events by
DSTrace Events

Parent Topic:

NDS Event: General Guide

NDS Event Functions

NDS Event provides two types of functions: registration and helper. NDS
Event Registration Functions allow an NLM application to register and
unregister callback functions when a specific event occurs. NDS Event
Helper Functions are for accessing and evaluating the event data.

Parent Topic:

NDS Event: General Guide

NDS Event Handling

The handler parameter of NWDSERegisterForEvent points to a function
called when the event occurs. Separate functions can be registered for each
event or a single function can be registered for multiple events. If a callback
processes multiple events, it can use the type parameter to determine which
event has occurred.

Parent Topic:

NDS Event: General Guide

Related Topics:

Priorities of NDS Event Reporting

NDS Event Types

NDS Event Helper Functions

The functions listed in the following table are helper functions:

Name Description

NWDSEConvertEntryNa
me

Converts object names returned in the
DSEEntryInfo structure to a form that is
consistent with the NWDS functions.

NWDSEGetLocalAttrID Retrieves the local ID of a specified NDS

Management Service Group

NDS Event: Concepts 255

attribute.

NWDSEGetLocalAttrNa
me

Retrieves the name of the NDS attribute
associated with the supplied local ID.

NWDSEGetLocalClassI
D

Retrieves the local ID for the specified
object class.

NWDSEGetLocalClassN
ame

Retrieves the name of the NDS object class
associated with the supplied local ID.

NWDSEGetLocalEntryI
D

Retrieves the local ID for the specified
NDS object.

NWDSEGetLocalEntryN
ame

Retrieves the name of the NDS object that
is associated with the supplied local ID.

Parent Topic:

NDS Event Functions

NDS Event Introduction

Documentation of NDS Event provides the following kinds of information:

An explained listing of some kinds of applications that could be
developed using NDS Event.

An explanation about how an NLM application can register for the NDS
events.

An explanation of how to filter the event information that is reported.

An identification of issues that must be considered when creating a
global monitoring application.

Parent Topic:

NDS Event: General Guide

NDS Event Priorities---EP_INLINE

EP_INLINE provides synchronous pre-event reporting:

The callback can determine whether or not the event is allowable. If the
callback returns a nonzero value, the transaction is aborted, and the
return value of the callback is returned to the client.

The client waits for a response while the callback processes. If the
callback takes too long, the client could time out. Callbacks need to return
as quickly as possible.

Management Service Group

NDS Event: Concepts 256

The callback cannot call any of the NWDS functions because the local
database is locked. In addition, the only function it can use from NDS
Event is NWDSEConvertEntryName.

The callback can sleep (normally only to allocate memory).

This priority faces the most difficult issues when using chained event
handlers. You cannot assume that an NDS event will complete if your
callback returns zero. This is because the next callback in the chain could
abort the transaction. To verify changes occurred, register a callback for
the EP_JOURNAL or EP_WORK priorities.

Parent Topic:

Priorities of NDS Event Reporting

Related Topics:

NDS Event Priorities---EP_JOURNAL

NDS Event Priorities---EP_WORK

NDS Event Priorities---EP_JOURNAL

EP_JOURNAL provides synchronous postevent reporting:

Event information is stores in a journal queue that records the events in
the order they occurred.

A single thread services all of the callbacks for the events, so the
callback’s execution time should be minimized. (The callback can
determine if data should be used, and if it should, can store the data in a
list that another thread processes.)

If multiple callbacks are registered for the same event, the current
callback must be processed before the next callback is called.

The callback can sleep.

The callback can use any of the NWDS and NWDSE functions.

WARNING: While inside this callback, use discretion in calling
NWDS functions that create more NDS events. This is a closed loop
where the growth of the journal queue could be uncontrollable.

Parent Topic:

Priorities of NDS Event Reporting

Related Topics:

NDS Event Priorities---EP_INLINE

NDS Event Priorities---EP_WORK

Management Service Group

NDS Event: Concepts 257

NDS Event Priorities---EP_WORK

EP_WORK provides asynchronous postevent reporting:

The events are reported after they have occurred, but not necessarily in
the order that they occurred. They are reported only after all of the
event’s callbacks registered for the EP_JOURNAL priority have
completed.

Each callback is run on a separate thread. This frees the event handler
from the time constraints of the other two priorities.

The callback can use any of the NWDS and NWDSE functions.

The callback can sleep.

Time is not a critical issue.

Parent Topic:

Priorities of NDS Event Reporting

Related Topics:

NDS Event Priorities---EP_INLINE

NDS Event Priorities---EP_JOURNAL

NDS Event Registration Functions

The functions listed in the following table are registration functions:

Name Description

NWDSERegisterForEven
t

Registers a function to be used as a
callback when a specific NDS event
occurs.

NWDSEUnRegisterForE
vent

Unregisters a callback that has been
registered to be called when a specified
NDS event occurs.

Parent Topic:

NDS Event Functions

NDS Event Types

Management Service Group

NDS Event: Concepts 258

The type parameter of NWDSERegisterForEvent specifies the type of event
with which to associate the callback. These types of events can be specified:

A new entry is created

An existing entry is deleted

An existing entry is renamed

An entry is moved

A value is added to an entry’s attribute

A value is deleted from an entry’s attribute

An attribute is deleted

A stream attribute is closed

An unused external reference is deleted

The bindery context is set on the server

A bindery object is created

A bindery object is deleted

Parent Topic:

NDS Event: General Guide

Related Topics:

Priorities of NDS Event Reporting

NDS Event Handling

NDS Event Uses

NDS Event provides a way to monitor NDS activity on an individual server.
When NDS events occur, a monitoring NLM can view the events and
determine what action, if any, to take. You can create applications that are
notified either during or after the events have occurred.

The following list provides a few of the many uses for this service.

External Synchronization to the Directory---The Directory provides a
global database that can be used to store information about
organizations. External databases can use the Directory as an information
source. In this case, NDS Event notification can be used to help keep the
external database synchronized with the Directory.

Customized NDS Security---NDS Event notification allows a monitoring

Management Service Group

NDS Event: Concepts 259

application to register to be called when specified NDS events occur.
Being registered for such calls allows the callback to determine whether
on not the event is allowable, thus providing you the ability to create
customized NDS Security. For example, you could create an application
that restricts the deletion of certain classes of objects from the Directory.

NDS Performance Analyzer---An application could watch for the
replication of a specific object. The application could then time how long
it takes for that object to appear on other replicas.

Parent Topic:

NDS Event: General Guide

Priorities of NDS Event Reporting

The priority parameter of NWDSERegisterForEvent specifies the registered
priority of a callback. The behavior of a callback must respond partly to its
registered priority, which specifies one of three kinds of reporting:

Synchronous pre-event reporting, discussed in NDS Event
Priorities---EP_INLINE

Synchronous postevent reporting, discussed in NDS Event
Priorities---EP_JOURNAL

Asynchronous postevent reporting, discussed in NDS Event
Priorities---EP_WORK

Parent Topic:

Registering for NDS Events

Management Service Group

NDS Event: Concepts 260

NDS Event: Functions

Management Service Group

NDS Event: Functions 261

NWDSEConvertEntryName

Converts the object names returned in the DSEEntryInfo structure to a form
that is consistent with the functions whose names begin with NWDS

Local Servers: blocking

Remote Servers: N/A

Classification: 4.1*

SMP Aware: No

Service: NDS Event

Syntax

#include <nwdsdsa.h>
#include <nwdsevnt.h>

NWDSCCODE NWDSEConvertEntryName (
 NWDSContextHandle context,
 const unicode *DSEventName,
 char *objectName);

Parameters

context

(IN) Indicates the Directory context for the request.

DSEventName

(IN) Points to the object name to be converted.

objectName

(OUT) Receives the object’s name in a form consistent with the
Directory Services functions.

Return Values

0x0000 SUCCESSFUL

Negative
value

Negative values indicate errors. For error values, see
Return Values.

Remarks

The form of the object names returned in the dn and newDN fields of the
DSEEntryInfo structure is not consistent with the form used by the
Directory Services functions. These names must be converted by
NWDSEConvertEntryName before you use them with Directory

Management Service Group

NDS Event: Functions 262

Services functions.

The format of the name returned in newDN is determined by the settings
in the Novell Directory Services™ (NDS™) context.

The caller must allocate space for the object name to be returned. The size
of the allocated memory is
((MAX_DN_CHARS)+1)*sizeof(character size) where character
size is 1 for single-byte characters, and 2 for double-byte characters (
Unicode* characters are double-byte). One character is used for the
NULL terminator.

Management Service Group

NDS Event: Functions 263

NWDSEGetLocalAttrID

Retrieves the local ID of a specified NDS attribute

Local Servers: blocking

Remote Servers: N/A

Classification: 4.1*

SMP Aware: No

Service: NDS Event

Syntax

#include <nwdsdsa.h>
#include <nwdsevnt.h>

NWDSCCODE NWDSEGetLocalAttrID (
 NWDSContextHandle context,
 const char *name,
 uint32 *id);

Parameters

context

(IN) Indicates the NDS context for the request.

name

(IN) Specifies the name of the NDS attribute whose local ID is to be
returned.

id

(OUT) Receives the local ID for the NDS attribute.

Return Values

0x0000 SUCCESSFUL

Negative
Value

Negative values indicate errors. For error values, see
Return Values.

Remarks

An attribute’s local ID is valid only for the server on which
NWDSEGetLocalAttrID is called. For this reason, this ID is called a
local ID.

The data structures returned for NDS events do not contain attribute

Management Service Group

NDS Event: Functions 264

names. Instead, these structures use local IDs to identify the attribute that
is associated with the event. NWDSEGetLocalAttrID is used to map an
attribute name (such as “User”) and convert it to a local ID that can be
used to compare with the local ID in an event structure.

NOTE: Comparisons of IDs is faster than comparisons of text strings.
Therefore, to avoid unnecessary processing time, your application
should filter on IDs when possible.

See Also

NWDSEGetLocalAttrName

Management Service Group

NDS Event: Functions 265

NWDSEGetLocalAttrName

Retrieves the name of the NDS attribute associated with the supplied local
ID

Local Servers: blocking

Remote Servers: N/A

Classification: 4.1*

SMP Aware: No

Service: NDS Event

Syntax

#include <nwdsdsa.h>
#include <nwdsevnt.h>

NWDSCCODE NWDSEGetLocalAttrName (
 NWDSContextHandle context,
 uint32 attrID,
 char *name);

Parameters

context

(IN) Specifies the NDS context for the request.

attrID

(IN) Specifies the local ID for the schema attribute.

name

(OUT) Receives the name of the attribute associated with the local ID.

Return Values

0x0000 SUCCESSFUL

Negative
Value

Negative values indicate errors. For error values, see
Return Values.

Remarks

The data structures returned for NDS events do not contain attribute
names. Instead, these structures use local IDs to identify the attribute
associated with the event. NWDSEGetLocalAttrName is used to map the
local attribute ID found in the structures, to a text form of the name, such
as “Telephone Number.”

Management Service Group

NDS Event: Functions 266

NOTE: Comparisons of IDs is faster than comparisons of text strings.
Therefore, to avoid unnecessary processing time, your application
should filter on IDs when possible.

The caller must allocate space for the attribute name pointed to by name.
The size of the allocated memory is
((MAX_SCHEMA_NAME_CHARS)+1)*sizeof(character size)
where character size is 1 for single-byte characters, and 2 for double-byte
characters (Unicode is double-byte). One character is used for NULL
termination.

See Also

NWDSEGetLocalAttrID

Management Service Group

NDS Event: Functions 267

NWDSEGetLocalClassID

Retrieves the local ID for the specified object class

Local Servers: blocking

Remote Servers: N/A

Classification: 4.1*

SMP Aware: No

Service: NDS Event

Syntax

#include <nwdsdsa.h>
#include <nwdsevnt.h>

NWDSCCODE NWDSEGetLocalClassID (
 NWDSContextHandle context,
 const char *name,
 uint32 *id);

Parameters

context

(IN) Indicates the NDS context for the request.

name

(IN) Specifies the name of the object class whose local ID is to be
returned.

id

(OUT) Receives the local class ID for the specified object class.

Return Values

0x0000 SUCCESSFUL

Negative
Value

Negative values indicate errors. For error values, see
Return Values.

Remarks

An object class’ local ID is valid only on the server on which
NWDSEGetLocalClassID is called. For this reason, this ID is called a
local ID.

The data structures returned for DS events do not contain object class

Management Service Group

NDS Event: Functions 268

names. Instead, these structures use local IDs to identify the object class
associated with an event. NWDSEGetLocalClassID is used to determine
the local ID for an object class, such as “User”, so the ID can be used for
comparison operations.

NOTE: Comparisons of IDs is faster than comparisons of text strings.
Therefore, to avoid unnecessary processing time, your application
should filter on IDs when possible.

See Also

NWDSEGetLocalClassName

Management Service Group

NDS Event: Functions 269

NWDSEGetLocalClassName

Retrieves the name of the NDS object class associated with the supplied
local ID

Local Servers: blocking

Remote Servers: N/A

Classification: 4.1*

SMP Aware: No

Service: NDS Event

Syntax

#include <nwdsdsa.h>
#include <nwdsevnt.h>

NWDSCCODE NWDSEGetLocalClassName (
 NWDSContextHandle context,
 uint32 classID,
 unicode *name);

Parameters

context

(IN) Indicates the NDS context for the request.

classID

(IN) Gives the local ID for the NDS object class.

name

(OUT) Receives the name of the object class associated with the local
ID.

Return Values

0x0000 SUCCESSFUL

Negative
Value

Negative values indicate errors. For error values, see
Return Values.

Remarks

The data structures returned for NDS events do not contain object class
names. Instead, these structures use local IDs to identify the object class
associated with an event. NWDSEGetLocalClassName is used to
determine the name of the object class (such as “User”) that is associated

Management Service Group

NDS Event: Functions 270

with the object class ID.

NOTE: Comparisons of IDs is faster than comparisons of text strings.
Therefore, to avoid unnecessary processing time, your application
should filter on IDs when possible.

The caller must allocate space for the object-class name that is returned.
The size of the allocated memory is
((MAX_SCHEMA_NAME_CHARS)+1)*sizeof(character size)
where character size is 1 for single-byte characters, and 2 for double-byte
characters (Unicode is double-byte). One character is used for NULL
termination.

See Also

NWDSEGetLocalClassID

Management Service Group

NDS Event: Functions 271

NWDSEGetLocalEntryID

Retrieves the local ID for the specified NDS object

Local Servers: blocking

Remote Servers: N/A

Classification: 4.1*

SMP Aware: No

Service: NDS Event

Syntax

#include <nwdsdsa.h>
#include <nwdsevnt.h>

NWDSCCODE NWDSEGetLocalEntryID (
 NWDSContextHandle context,
 const char *objectName,
 uint32 *id);

Parameters

context

(IN) Indicates the NDS context for the request.

objectName

(IN) Points to the name of the NDS object whose local ID is to be
returned.

id

(OUT) Receives the local ID for the object.

Return Values

0x0000 SUCCESSFUL

Negative
Value

Negative values indicate errors. For error values, see
Return Values.

Remarks

The name specified by objectName is relative to the context specified by
context.

An object’s local ID is valid only for the server on which
NWDSEGetLocalClassID is called. For this reason, this ID is called a

Management Service Group

NDS Event: Functions 272

local ID.

NOTE: Comparisons of IDs is faster than comparisons of text strings.
Therefore, to avoid unnecessary processing time, your application
should filter on IDs when possible.

See Also

NWDSEGetLocalEntryName

Management Service Group

NDS Event: Functions 273

NWDSEGetLocalEntryName

Retrieves the name of the NDS object associated with the supplied local ID

Local Servers: blocking

Remote Servers: N/A

Classification: 4.1*

SMP Aware: No

Service: NDS Event

Syntax

#include <nwdsdsa.h>
#include <nwdsevnt.h>

NWDSCCODE NWDSEGetLocalEntryName (
 NWDSContextHandle context,
 uint32 entryID,
 unicode *objectName);

Parameters

context

(IN) Indicates the NDS context for the request.

entryID

(IN) Gives the local ID for the NDS object.

objectName

(OUT) Receives the name of the NDS object associated with the local
ID specified by entryID.

Return Values

0x0000 SUCCESSFUL

Negative
Value

Negative values indicate errors. For error values, see
Return Values.

Remarks

The form of the name returned by NWDSEGetLocalEntryName is
dependant upon the settings of the flags associated with the NDS context
specified by context.

The caller must allocate memory to receive the object name that is

Management Service Group

NDS Event: Functions 274

returned. The size of the allocated memory is
((MAX_DN_CHARS)+1)*sizeof(character size) where character
size is 1 for single-byte characters, and 2 for double-byte characters
(Unicode is double-byte). One character is used for the NULL terminator.

See Also

NWDSEGetLocalEntryID

Management Service Group

NDS Event: Functions 275

NWDSERegisterForEvent

Registers a function to be used as a callback when a specific NDS event
occurs

Local Servers: blocking

Remote Servers: N/A

Classification: 4.1*

SMP Aware: No

Service: NDS Event

Syntax

#include <nwdsdsa.h>
#include <nwdsevnt.h>

NWDSCCODE NWDSERegisterForEvent (
 int priority,
 uint32 type,
 int (*handler) (
 uint32 type,
 unsigned size,
 const void *data);

Parameters

priority

(IN) Specifies the state the NDS event will be in when it is reported.

type

(IN) Specifies the type of the event for which the callback is being
registered.

handler

(IN) Provides a pointer to a function to be used as a callback when the
event specified by type occurs.

Return Values

0x0000 SUCCESSFUL

Negative
Value

Negative values indicate errors. For error values, see
Return Values.

Remarks

Management Service Group

NDS Event: Functions 276

priority can be one of the following values:

EP_INLIN
E

Synchronous pre-event reporting.

EP_JOURN
AL

Synchronous post-event reporting. Events are reported
after they have occurred, and in the order they occur.

EP_WORK Asynchronous postevent reporting. Events are reported
after they occur, but not necessarily in the order they
occurred.

type can be one of the following values:

Event Event Description

DSE_CREATE_ENTRY 1 Creation of a new NDS object

DSE_DELETE_ENTRY 2 Deletion of an existing NDS object

DSE_RENAME_ENTRY 3 Renaming of an existing NDS
object

DSE_MOVE_SOURCE_ENT
RY

4 This is the second of two events
reported for a move operation.
This event specifies the deletion of
a NDS object from its original
location in the Directory tree. (See
DSE_MOVE_DEST_ENTRY.)

DSE_ADD_VALUE 5 Addition of a value to an object
attribute

DSE_DELETE_VALUE 6 Deletion of a value from an object
attribute

DSE_CLOSE_STREAM 7 Closing of a Stream attribute

DSE_DELETE_ATTRIBUTE 8 Deletion of an attribute. This
generates DSE_DELETE_VALUE
events for values associated with
the attribute. The
DSE_DELETE_VALUE events
occur after the
DSE_DELETE_ATTRIBUTE event.

DSE_SET_BINDERY_CONT
EXT

9 Setting of the bindery context on
the server

DSE_CREATE_BINDERY_O
BJECT

10 Creation of a bindery object

DSE_DELETE_BINDERY_O
BJECT

11 Deletion of a bindery object

DSE_MOVE_DEST_ENTRY 14 This is the first of two events
reported for a move operation.

Management Service Group

NDS Event: Functions 277

This event specifies the placement
of the NDS object into its new
location in the Directory tree. (See
NWDS_MOVE_SOURCE_ENTRY
.) This generates
DSE_ADD_VALUE events for all
of the values associated with the
object.

DSE_DELETE_UNUSED_E
XTREF

15 Deletion of an unused external
reference

DSE_TRACE 16 Occurrence of an NDS Trace event

DSE_REMOTE_SERVER_D
OWN

17

DSE_NCP_RETRY_EXPEN
DED

18

DSE_REMOTE_CONN_CLE
ARED

19

handler is a pointer to a function that is to be called when the specified
NDS event occurs. The function is defined as follows:

type

(IN) Identifies the type of the event that has occurred. (See the type
parameter above.

size

(IN) Specifies the size of the data that is returned for the event.

data

(IN) Points to the location of the data that contains information related
to the event.

Event Event Description

DSE_CREATE_ENTRY 1 DSEEntryInfo

DSE_DELETE_ENTRY 2 DSEEntryInfo

DSE_RENAME_ENTRY 3 DSEEntryInfo

DSE_MOVE_SOURCE_ENT
RY

4 DSEEntryInfo

DSE_ADD_VALUE 5 DSEValueInfo

DSE_DELETE_VALUE 6 DSEValueInfo

DSE_CLOSE_STREAM 7 DSEValueInfo

DSE_DELETE_ATTRIBUTE 8 DSEValueInfo

DSE_SET_BINDERY_CONT
EXT

9 No data is associated with this
event.

Management Service Group

NDS Event: Functions 278

DSE_CREATE_BINDERY_O
BJECT

10 DSEBinderyObjectInfo

DSE_DELETE_BINDERY_O
BJECT

11 DSEBinderyObjectInfo

DSE_MOVE_DEST_ENTRY 14 DSEEntryInfo

DSE_DELETE_UNUSED_E
XTREF

15 DSEEntryInfo

DSE_TRACE 16 DSETraceInfo

DSE_REMOTE_SERVER_D
OWN

17 DSENetAddress

DSE_NCP_RETRY_EXPEN
DED

18 DSENetAddress

DSE_REMOTE_CONN_CLE
ARED

19 DSENetAddress

The data structures in the above table are defined in NWDSEVNT.H.

The value returned by the callback must be 0 for success and any other
value for failure. If the callback returns a nonzero value during a
EP_INLINE priority event, the event will be aborted. The callback's
return values for the EP_JOURNAL and EP_WORK priority events are
ignored.

CAUTION: Your application must not modify the data at the
location pointed to by data. Multiple callbacks can be registered for
each event, and all of the callbacks receive that same data. When a
callback returns, the information pointed to by data is passed into the
next callback, if one is registered. Changing the information pointed
to by data can produce unpredictable behavior in other callbacks. If
you are going to modify the information pointed to by data, make a
local copy of the information.

NOTE: The callbacks are run on threads that do not have CLIB
context. If you are using functions that need CLIB context, you must
establish the context by calling SetThreadGroupID.

See Also

NWDSEUnRegisterForEvent

Management Service Group

NDS Event: Functions 279

NWDSEUnRegisterForEvent

Unregisters a callback that has been registered to be called when a specified
NDS event occurs

Local Servers: blocking

Remote Servers: N/A

Classification: 4.1*

SMP Aware: No

Service: NDS Event

Syntax

#include <nwdsdsa.h>
#include <nwdsevnt.h>

NWDSCCODE NWDSEUnRegisterForEvent (
 int priority,
 uint32 type,
 int (*handler)(
 uint32 type,
 unsigned size,
 const void *data);

Parameters

priority

(IN) Specifies the state for which the NDS event reporting was
registered.

type

(IN) Specifies the type of the event for which the callback was
registered.

handler

(IN) Provides a pointer to the function that was registered to be used
as a callback when the event occurred.

Return Values

0x0000 SUCCESSFUL

Negative
Value

Negative values indicate errors. For error values, see
Return Values.

Remarks

Management Service Group

NDS Event: Functions 280

For more details about the parameters for this function, see
NWDSERegisterForEvent.

See Also

NWDSERegisterForEvent

Management Service Group

NDS Event: Functions 281

NDS Event: Structures

Management Service Group

NDS Event: Structures 282

DSEACL

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 entryID;
 uint32 attrID;
 uint32 privileges;
} DSEACL;

Fields

entryID

Indicates the local ID for the object that received the rights.

attrID

Indicates the ID of the attribute for which the rights apply.

privileges

Indicates the effective privilege set for subject/object or
subject/attribute pair.

Remarks

NOTE: The special attributes, [All Attribute Rights], [Entry Rights],
and [SMS Rights] have local IDs.

Privileges are defined as follows:

All Attribute Rights

C Value Pascal
Value

Value Name

0x00000001
L

$00000001 DS_ATTR_COMPARE

0x00000002
L

$00000002 DS_ATTR_READ

0x00000004
L

$00000004 DS_ATTR_WRITE

0x00000008
L

$00000008 DS_ATTR_SELF

Management Service Group

NDS Event: Structures 283

0x00000010
L

$00000010 DS_ATTR_SUPERVISOR

Entry Rights

C Value Pascal
Value

Value Name

0x00000001
L

$00000001 DS_ENTRY_BROWSE

0x00000002
L

$00000002 DS_ENTRY_ADD

0x00000004
L

$00000004 DS_ENTRY_DELETE

0x00000008
L

$00000008 DS_ENTRY_RENAME

0x00000010
L

$00000010 DS_ENTRY_SUPERVISOR

SMS Rights

0x00000001L DS_SMS_SCAN

0x00000002L DS_SMS_BACKUP

0x00000004L DS_SMS_RESTORE

0x00000008L DS_SMS_RENAME

0x00000010L DS_SMS_DELETE

0x00000020L DS_SMS_ADMIN

Management Service Group

NDS Event: Structures 284

DSEBackLink

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 serverID;
 unit32 remoteID;
} DSEBackLink;

Fields

serverID

Indicates the local ID for the server that knows about the object.

remoteID

Indicates the object’s local ID on the remote server specified by
serverID.

Remarks

The Back Link syntax is used to identify a server that knows about the
object that owns the Back Link information.

Management Service Group

NDS Event: Structures 285

DSEBinderyObjectInfo

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 entryID;
 uint32 parentID;
 uint32 type;
 uint32 emuObjFlags;
 uint32 security;
 char name[48];
} DBEBinderyObjectInfo;

Fields

entryID

Indicates the local ID for the Directory object that is being created to
represent the bindery object.

parentID

Indicates the local ID for the parent of the object specified by entryID.

type

Indicates the bindery object type.

emuObjFlags

Indicates the bindery object flags.

security

Indicates the bindery object security.

name

Indicates the name of the bindery object.

Associated Events

DSE_CREATE_BINDERY_OBJECT

DSE_DELETE_BINDERY_OBJECT

Management Service Group

NDS Event: Structures 286

DSEBitString

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 numberOfBits;
 uint32 numberOfBytes;
 char data;
} DSEBitString;

Fields

numberOfBits

Indicates the number of bits in the bit string.

numberOfBytes

Indicates the number of bytes in the bit string.

data

Indicates the data for the string.

Remarks

Bit strings are padded to 4-byte boundaries.

Management Service Group

NDS Event: Structures 287

DSECIList

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 numberOfStrings;
 uint32 length1;
 unicode string[1];
} DSECIList;

Fields

numberOfStrings

Indicates the number of strings the structure holds.

length1

Indicates the length (in bytes) of the first string.

string

Indicates the location of the first string.

Remarks

The stings in this structure are null terminated, and aligned on 4-byte
boundaries. If necessary, the strings are padded to fit those boundaries.
The value in length does not include the bytes used for padding.

The first uint32 (4 bytes) after the first string contains the length of the
second string. The second string follows the length. Any remaining
strings follow this pattern.

The Unicode* strings are in Intel* format, lo-hi order.

Management Service Group

NDS Event: Structures 288

DSEEmailAddress

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 type;
 uint32 length;
 unicode address[1 /*or more*/];
} DSEEmailAddress;

Fields

type

Indicates the type of the E-mail address.

length

Indicates the length of the first E-mail address.

address

Indicates the location where the first E-mail address begins.

Remarks

type can be either zero or one.

If type is set to zero, the address is an E-mail address, in the form of
non-MHS_Email_Protocol:non-MHS_Email_Address. Where
non_MHS_Email_Protocol is a 1-8 character string, and
non-MHS_Email_Address is a string for the actual address value.

Example: SMTP:JohnD@Novell.Com

If type is set to one, the address is an E-mail alias, in the form of
non-MHS_Email_Protocol:non-MHS_Email_Alias. Where
non_MHS_Email_Protocol is a 1-8 character string, and
non-MHS_Email_Address is a string for the actual alias value.

Example: SMTP:JohnD@Novell.Com

Management Service Group

NDS Event: Structures 289

DSEEntryInfo

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 perpetratorID;
 uint32 verb;
 uint32 entryID;
 uint32 parentID;
 uint32 classID;
 uint32 flags;
 DSETimeStamp creationTime;
 const unicode *dn;
 const unicode *newDN;
 char data[1];
} DSEEntryInfo;

Fields

perpetratorID

Indicates the local ID for the object that requested the action. For
example, Admin.Wimple Makers creating an entry.

verb

Indicates the action that caused the event to occur. These verbs, such as
DSV_MODIFY_ENTRY are defined in NWDSDEFS.H.

entryID

Indicates the local ID for the object that was acted upon.

parentID

Indicates the local ID for the parent of the object that was acted upon.

classID

Indicates the local ID for the object class type (such as “User”) of the
object that was acted upon.

flags

Indicates the flags identifying the object type. For most object types,
flags will be set to zero. For partition roots, external references, and
aliases, flags will have the following values:

0x0001 DSEF_PARTITION_ROOT

0x0002 DSEF_EXTREF

0x0004 DSEF_ALIAS

Management Service Group

NDS Event: Structures 290

creationTime

Indicates the creation time of the object that is associated with entryID
and points to DSETimeStamp.

dn

Indicates the distinguished name of the object that was acted upon.

newDN

Indicates the new distinguished name of the object that was acted
upon. This is valid only if the object’s distinguished name has been
changed.

data

Indicates the location where the data is stored for the dn and the
newDN fields. (Do not access this data directly. Instead access it
through the dn and newDN fields.)

Remarks

The distinguished names pointed to by dn and newDN are not in a form
that is consistent with the names used by the NDS functions. To use these
names, you must convert the names to the proper form by calling
NWDSEConvertEntryName.

Associated Events

DSE_CREATE_ENTRY

DSE_DELETE_ENTRY

DSE_DELETE_UNUSED_EXTREF

DSE_MOVE_DEST_ENTRY

DSE_MOVE_SOURCE_ENTRY

DSE_RENAME_ENTRY

Management Service Group

NDS Event: Structures 291

DSEFaxNumber

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 length;
 unicode telephoneNumber[1 /*or more*/];
 DSEBitString parameters;
} DSEFaxNumber;

Fields

length

Indicates the number of characters used in the phone number.

telephoneNumber

Indicates the telephone number.

parameters

Indicates a bit string containing additional information and points to
DSEBitString.

Management Service Group

NDS Event: Structures 292

DSEHold

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 entryID;
 uint32 amount;
} DSEHold;

Fields

entryID

Indicates the ID of the object that owns the accounting information.

amount

Indicates the number of charges that are on hold.

Remarks

See the Server Holds attribute in the NDS Schema Reference to see how this
information is used.

Management Service Group

NDS Event: Structures 293

DSENetAddress

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 type;
 uint32 length;
 uint8 data[1];
} DSENetAddress;

Fields

type

Indicates the type of the address.

length

Indicates the number of bytes in which the address is stored.

data

Points to the place where the network address is stored.

Remarks

type can have the following values:

NT_IPX

NT_IP

NT_SDLC

NT_TOKENRING_ETHERNET

NT_OSI

NT_APPLETALK

NT_COUNT

The address is stored as a binary string. This string is the literal value of
the address. To display it as a hexadecimal value, you must convert each
4-bit nibble to the correct character (0,1,2,3,...F).

For two net addresses to match, the type, length, and value of the
addresses must match.

Management Service Group

NDS Event: Structures 294

DSEOctetList

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 numOfStrings;
 uint8 string1;
} DSEOctetList;

Fields

numOfStrings

Indicates the number of strings contained in the structure.

string1

Indicates the location of the data for the string(s).

Remarks

The strings are length preceded.

Management Service Group

NDS Event: Structures 295

DSEPath

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 nameSpaceType;
 uint32 volumeEntryID;
 uint32 length;
 uint8 data[1];
} DSEPath;

Fields

nameSpaceType

Indicates the type of the name space.

volumeEntryID

Indicates the local ID for the volume where the path is located.

length

Indicates the length of the path.

data

Indicates the location where the path is stored.

Remarks

The following name-space types have been defined:

DS_DOS

DS_MACINTOSH

DS_UNIX

FTAM

OS/2

Management Service Group

NDS Event: Structures 296

DSEReplicaPointer

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 serverID,
 uint32 type;
 uint32 number;
 uint32 replicaRootID;
 char referral[1];
} DSEReplicaPointer;

Fields

serverID

Indicates the local ID for the name server that holds the replica.

type

Indicates the replica’s type.

number

Indicates the replica number.

replicaRootID

Indicates the remote ID for the object that is the partition root. This is
the rpelica root’s local ID on the remote server.

referral

Indicates an array of network addresses for the server specified in
serverID.

Remarks

These types of partitions are deifned as follows:

RT_MASTER

RT_SECONDARY

RT_READONLY

RT_SUBREF

A server can have more than one address, such as IPX and IP.

Management Service Group

NDS Event: Structures 297

DSETimeStamp

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 seconds;
 uint16 replicaNumber;
 uint16 event;
} DSETimeStamp;

Fields

seconds

Indicates, in seconds, when the event occurred. Zero equals 12:00,
midnight, January 1, 1970, UTC.

replicaNumber

Indicates the number of the replica on which the change or event
occurred.

event

Indicates an integer that further orders events occurring within the
same whole-second interval.

Remarks

Two time stamp values are compared by comparing the seconds fields
first and the event fields second. If the seconds fields are unequal, order is
determined by the seconds field alone. If the seconds fields are equal, and
the eventID fields are unequal, order is determined by the eventID fields.
If the seconds and the event fields are equal, the time stamps are equal.

Management Service Group

NDS Event: Structures 298

DSETraceInfo

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 unsigned long traceVector1;
 unsigned long traceVector2;
 unsigned long dstime;
 unsigned long milliseconds;
 char string[1024];
} DSETraceInfo;

Fields

traceVector1

Indicates a bit flag identifying the type of trace event.

traceVector2

Is reserved.

dstime

Indicates the time when the event occurred. This is specified in whole
seconds, where zero equals 12:00, midnight, January 1, 1970, UTC.

milliseconds

Indicates a further ordering (in milliseconds) of the time specified by
dstime.

string

Indicates a string containing a message about the event.

Remarks

CAUTION: Your application should not depend upon the text
strings in the DSETraceInfo sturcture. NDS™ Trace Information is for
internal development purposes. The text strings returned in string
may change with any version of the OS.

The bits of the traceVector1 field are defined as follows:

Bit Meaning

TV_ON If set, tracing is enabled. This bit will always be set
when trace events are received.

Management Service Group

NDS Event: Structures 299

TV_AUDIT Auditing

TV_INIT Initialization

TV_FRAGGE
R

Fragger

TV_MISC Miscellaneous

TV_RESNAM
E

Resolve name

TV_STREAM
S

Streams

TV_LIMBER Limber

TV_JANITOR Janitor

TV_BACKLIN
K

Backlink

TV_MERGE Merge

TV_SKULKE
R

Skulker

TV_LOCKIN
G

Locking

TV_SAP SAP

TV_SCHEMA Schema

TV_COLL Collisions

TV_INSPECT
OR

Inspector

TV_ERRORS Errors

TV_PART Partition operations

TV_EMU Bindery Emulator

TV_VCLIENT Virtual Client

TV_AUTHEN Authentication

TV_RECMAN Record Manager

TV_TIMEVEC
TOR

Time vectors

TV_REPAIR DS_Repair

TV_DSAgent Low-level DSA tracing

TV_ERRET ERRET and ERRTRACE

TV_SYNC_IN Incoming sync traffic

TV_THREAD
S

DS thread scheduling

TV_MIN Default DSTRACE messages

TV_CHECK_
BIT

All TV_ values must have this bit

Management Service Group

NDS Event: Structures 300

Associated Events

DSE_TRACE

Management Service Group

NDS Event: Structures 301

DSETypedName

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 entryID;
 uint32 level;
 uint32 interval;
} DSETypedName;

Fields

entryID

Indicates the local ID for the object.

level

Indicates the priority.

interval

Indicates the frequency of reference.

Remarks

The meaning of the information for this structure is determined by the
attribute to which the information belongs.

Management Service Group

NDS Event: Structures 302

DSEVALData

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef union
{
 unicode string[1/*or more*/];
 uint32 num;
 uint32 entryID;
 uint32 classID;
 uint8 boolean;
 DSENetAddress netAddress;
 DSEPath path;
 DSEReplicaPointer replica;
 DSEACL acl;
 DSETimeStamp timeStamp;
 DSEBackLink backLink;
 DSETypedName typedName;
 DSEHold hold;
 DSEEmailAddress emailAddress;
 DSEFaxNumber faxNumber;
 DSECIList ciList;
 uint8 octedString[1];
 DSEOctetList octetList;
} DSEValData;

Fields

string

Indicates the following syntaxes:s

Case Exact String

Case Ignore String

Numeric String

Printable String

Telephone Number

num

Indicates the following syntaxes:

Counter

Integer

Interval

Time

entryID

Management Service Group

NDS Event: Structures 303

Indicates the distinguished name.

classID

Indicates the class name.

boolean

Indicates a boolean string value.

netAddress

Points to DSENetAddress.

path

Points to DSEPath.

replica

Points to DSEReplicaPointer.

acl

Points to DSEACL.

timeStamp

Points to DSETimeStamp.

backLink

Points to DSEBackLink.

typedName

Points to DSETypedName

hold

Points to DSEHold.

emailAddress

Points to DSEEmailAddress.

faxNumber

Points to DSEFaxNumber.

ciList

Points to DSECIList.

octetString

Indicates the octet string stream.

octetList

Points to DSEOctetList.

Management Service Group

NDS Event: Structures 304

DSEValueInfo

Service: NDS Event

Defined In: nwdsevnt.h

Structure

typedef struct
{
 uint32 perpetratorID;
 uint32 verb;
 uint32 entryID;
 uint32 attrID;
 uint32 syntaxID;
 uint32 classID;
 DSETimeStamp timeStamp;
 unsigned size;
 char data[1];
} DSEValueInfo;

Fields

perpetratorID

Indicates the local ID for the object that requested the action. (For
example, Admin.Wimple Makers added a phone number.)

verb

Indicates the action that caused the event to occur. These verbs, such as
DSV_MODIFY_ENTRY are defined in NWDSDEFS.H.

entryID

Indicates the local ID for the object that was acted upon.

attrID

Indicates the local ID that identifies the type of Schema attribute that
was changed.

syntaxID

Indicates the syntax that the data is stored by.

classID

Indicates the local ID that identifies the class of the object identified by
entryID.

timeStamp

Indicates the time when the event occurred and points to
DSETimeStamp.

size

Indicates the size (in bytes) of the information stored in the location

Management Service Group

NDS Event: Structures 305

identified by data.

data

Indicates the information that further identifies the changes that were
made.

Remarks

The information stored in the data field of this structure is stored in a
union called DSEValData.

Associated Events

DSE_ADD_VALUE

DSE_CLOSE_STREAM

DSE_DELETE_ATTRIBUTE

DSE_DELETE_VALUE

Management Service Group

NDS Event: Structures 306

Novell Licensing

Management Service Group

 307

Novell Licensing: Guides

Novell Licensing: General Guide

Novell Licensing Introduction

NLS Installation

NLS Distributed Licensing

NetWare Administrator Licensing Snap-in

NLS Status Codes

NLS Constants

NLS Executable Files

License Acquisition Functions

License Unit Functions

License Certificate Functions

License System Availability Functions

License Management Functions

License Unit Availability Functions

License Certificate Management Functions

License Certificate Transaction Information Functions

License Certificate Detail Information Functions

Novell License Certificate Format

Novell Licensing: Tasks

Novell Licensing: Concepts

Novell Licensing: Functions

Parent Topic:

Management Overview

Management Service Group

Novell Licensing: Guides 308

Novell Licensing: Task Guide

NLS Installation

Installing NLS Server Software

Loading NLS

Installing NLS Client Software

How to Install NLS on DOS Clients

How to Install NLS on Windows 3.x Clients

How to Install NLS on Windows 95 Clients

How to Install NLS on Windows NT Clients

How to Install NLS on NLM Clients

Testing Your NLS Installation

Adding a Metering License to the License System

Testing NLS for the DOS Client

Testing NLS for the Windows Client

Testing NLS for the 4.1x NLM Client

Checking the NLS Test Results

Cleaning Up After an NLS Transaction

NetWare Administrator Licensing Snap-in

Using the Licensing Snap-in

Viewing the LSP Configuration

Viewing the LSP Users and Product Information

Viewing Certificate Details

Making Certificate Assignments

Viewing/Changing a Certificate Owner

Viewing Certificate Users

Installing a License Certificate File

Creating Metering Information

Related Topics:

Novell Licensing: Concepts

Management Service Group

Novell Licensing: Guides 309

Novell Licensing: Functions

Parent Topic:

Novell Licensing: General Guide

Novell Licensing: Concept Guide

Novell Licensing Introduction

About NLS

NLS System Components

NLS License Service Provider

NLS License Certificate Request

Client Discovery of LSP

NLS License Certificate Overview

NLS License Certificate Creation and Installation

NLS License Certificate Security

NLS License Certificate NDS Objects

NLS Certificate Assignments

Ownership of License Certificates

NLS System Requirements

NLS Installation

NLS Load Options Overview

-l Load Option: Path/Filename

-s Load Option: Size Limit

SETUPNLS.NLM

Testing Your NLS Installation Overview

NLS Distributed Licensing

LSP Client Requests

LSP Default Location

LSP Activation Password

NLS Codes

Management Service Group

Novell Licensing: Guides 310

NLS Status Codes

NLS Constants

NLS Executable Files

NLS DOS Executable Files

NLS Windows Executable Files

NLS NLM Executable Files

NLS Functions

License Acquisition Functions

License Unit Functions

License Certificate Functions

License System Availability Functions

License Management Functions

License Unit Availability Functions

License Certificate Management Functions

License Certificate Transaction Information Functions

License Certificate Detail Information Functions

Related Topics:

Novell Licensing: Tasks

Novell Licensing: Functions

Parent Topic:

Novell Licensing: General Guide

Installing NLS Server Software Guide

Here are detailed instructions on how to install and load NLS server
software.

Tasks

How to Install NLS on NetWare 4.10 Servers

How to Install NLS on NetWare 4.11 and IntranetWare Servers

How to Install NLS on IntranetWare for Small Business Servers

How to Install NLS on Future Novell Server Releases

Management Service Group

Novell Licensing: Guides 311

Concepts

NLS Load Options Overview

-l Load Option: Path/Filename

-s Load Option: Size Limit

SETUPNLS.NLM

Parent Topic:

NLS Installation

NetWare Administrator Licensing Snap-in

Licensing objects can be managed by a snap-in to NetWare Administrator.
The Licensing Snap-in lets you perform administrative tasks for your
licensing servers.

Using the Licensing Snap-in

Viewing the LSP Configuration

Viewing the LSP Users and Product Information

Viewing Certificate Details

Making Certificate Assignments

Viewing/Changing a Certificate Owner

Viewing Certificate Users

Installing a License Certificate File

Creating Metering Information

Parent Topic:

Novell Licensing: General Guide

Novell Licensing Introduction

This section provides an introduction to Novell Licensing.

About NLS

NLS System Components

NLS License Service Provider

Management Service Group

Novell Licensing: Guides 312

NLS License Certificate Request

Client Discovery of LSP

NLS License Certificate Overview

NLS License Certificate Creation and Installation

NLS License Certificate Security

NLS License Certificate NDS Objects

NLS Certificate Assignments

Ownership of License Certificates

NLS System Requirements

Parent Topic:

Novell Licensing: General Guide

NLS Distributed Licensing

NLS is fully distributed. The distributed License Service Provider (LSP) can
either work as a stand-alone server providing license services or as part of
an enterprise-wide solution in concert with other LSPs. The administrator
does little configuration to implement this distributed scheme, but proper
planning and an understanding of the mechanisms are crucial to successful
deployment.

LSP Client Requests

LSP Default Location

LSP Activation Password

Parent Topic:

Novell Licensing: General Guide

NLS Executable Files

The executable files included with this release of NLS are described below.

NLS DOS Executable Files

NLS Windows Executable Files

NLS NLM Executable Files

Parent Topic:

Management Service Group

Novell Licensing: Guides 313

Novell Licensing: General Guide

NLS Installation

The following sections discuss the installation of NLS server and client
components. Two installation processes are required: one for the license
server and one for the client software. Each installation procedure is
described below.

Installing NLS Server Software

Installing NLS Client Software

Testing Your NLS Installation

Cleaning Up After an NLS Transaction

Parent Topic:

Novell Licensing: General Guide

Testing Your NLS Installation

Here is the information you need to know in order to test your NLS
installation.

NOTE: Before you run any of the test programs, you need to add a
metering license to the license system.

Tasks

Adding a Metering License to the License System

Testing NLS for the DOS Client

Testing NLS for the Windows Client

Testing NLS for the 4.1x NLM Client

Checking the NLS Test Results

Concepts

Testing Your NLS Installation Overview

Parent Topic:

NLS Installation

Novell License Certificate Format Guide

Management Service Group

Novell Licensing: Guides 314

This section provides an introduction to Novell Licensing.

About NLS

Required License Attributes

Object ID Structure

Common Certificate Start

Publisher Name

Product Name

Version

Number of License Units

Secrets

Start Date

Expiration Date

Unique Identifier Field

Default Metered Field

Assignment Required Field

Default Period Update Field

Default Consumption Field

Licensing System-Specific Area

Optional License Attributes

Base License Type Descriptors

Consumptive Descriptor

Shareable Descriptor

Hardware Secured Descriptor

Public/Private Key Authentication Stamp (Digital Signature)

Unit Related Descriptors

Minimum Units to Consume

Maximum Units to Consume

Error Handling Descriptors

Management Service Group

Novell Licensing: Guides 315

Grant on LS_INSUFFICIENT_UNITS

Success on LS_LICENSE_TERMINATED

Grant on LS_LICENSE_UNAVAILABLE

Grant on LS_RESOURCES_UNAVAILABLE

Grant on LS_LICENSE_EXPIRED

Default Descriptor Set

Concurrent Licensing Model

Nodelocked Licensing Model (not currently available)

Personal Use Licensing Model

Site Licensing Model

One-Time Use

License Certificate Authentication and Security

LSAPI Authentication

NLS Specific Authentication

Parent Topic:

Novell Licensing: General Guide

Management Service Group

Novell Licensing: Guides 316

Novell Licensing: Tasks

Adding a Metering License to the License System

Before you run any of the test programs, you need to add a metering license
to the license system. To do this:

1. Run the DOS program ADDPINFO.

2. Respond to the program prompts so that you create a metering license
similar to this one:

Publisher:NetWare LS Test Vendor
Product:NetWare LS Test Product
Version:Version 1.1
Units:2

Parent Topic:

Testing Your NLS Installation

Checking the NLS Test Results

1. Check the results of your test program.

If the LSAPIDEM test program returns a successful status, then the
installation was done properly.

If the hex value C0001003 is returned, the client machine where the test
program is run is not attached to an LSP, or the NLS is not currently
running.

Parent Topic:

Testing Your NLS Installation

Cleaning Up After an NLS Transaction

If you need to delete the transaction log database:

1. Unload the license service from the LSP by running the UNLOAD
NLS and UNLOAD BTRIEVE commands at the server console
prompt. The transaction database files can then be deleted.

Management Service Group

Novell Licensing: Tasks 317

The location and names of these files depend on how the license service
was loaded. The default file location is SYS:\SYSTEM, and the default
file names are NLSTRANS.DB and NLS.IDX.

Parent Topic:

NLS Installation

Creating Metering Information

1. Choose Install License from the Tools menu, then choose Create
metering information.

The "New Metering License" dialog appears.

2. In the Install To Context box, type the name of the user context where
this certificate should be installed.

3. Type the Publisher Name, Product Name, and Version in the
appropriate boxes.

4. Type or select the correct number of license units for the certificate.

5. When you are done, click OK to save your changes.

To see your changes, select Current Context from the View Menu.

Management Service Group

Novell Licensing: Tasks 318

Parent Topic:

NetWare Administrator Licensing Snap-in

Installing a License Certificate File

1. Choose Install License from the Tools menu, then choose Install
license certificate file.

The "New License Certificate" dialog appears.

2. In the Install To Context box, click the Browse button and select a
context where this certificate should be installed.

3. In the File Name box, type the filename of the license certificate.

You can click the Browse button to see file names.

4. In the Activation Password box, type the activation password you are
using for this license certificate, if applicable.

5. Click OK to install the license certificate.

Parent Topic:

Management Service Group

Novell Licensing: Tasks 319

NetWare Administrator Licensing Snap-in

Installing NLS Client Software

The following instructions are for manually setting up clients to access the
Novell Licensing Services. For releases later than NetWare 4.10, clients will
be capable of accessing NLS as a result of the standard server installation
process or after having run the server install option to "Configure Novell
Licensing Services (NLS)." It is assumed that client workstations are already
configured with the NetWare client software. You may copy the NLS client
software to the client machine. However, be advised that this may cause
incompatibilities as NLS software is upgraded on server machines.

How to Install NLS on DOS Clients

How to Install NLS on Windows 3.x Clients

How to Install NLS on Windows 95 Clients

How to Install NLS on Windows NT Clients

How to Install NLS on NLM Clients

Parent Topic:

NLS Installation

How to Install NLS on DOS Clients

A DOS TSR is required in order for DOS applications to access the Novell
Licensing Services. The TSR, NLSLSAPI.EXE, is copied to the SYS:\PUBLIC
directory when NLS is installed with INSTALL.NLM. The TSR passes the
license API parameters from license enabled DOS applications to the LSP
server.

1. Copy NLSLSAPI.EXE to the server's SYS:\PUBLIC directory, if it is
not already there. SYS:\PUBLIC is assumed to be in the client's
search path.

2. Load the NLSLSAPI TSR manually by typing NLSLSAPI at the DOS
command prompt. To load the TSR automatically in the future, place
its command in the AUTOEXEC.BAT file.

Parent Topic:

Installing NLS Client Software

NLS Installation

Management Service Group

Novell Licensing: Tasks 320

How to Install NLS on Windows 3.x Clients

1. Copy LSAPI.DLL, NLSAPI.DLL and NLS.DLL to SYS:\PUBLIC.
SYS:\PUBLIC is assumed to be in the client's search path.

2. NLSAPI.DLL provides NLS management API support to Windows 3.x
clients. NLS.DLL provides LSAPI support to Windows 3.x clients.
LSAPI.DLL provides indirect access to a provider's LSAPI DLL (in the
case of Novell this is NLS.DLL) by first reading this information from
an LSAPI.INI file. If you chose to link your product to LSAPI.DLL
instead of NLS.DLL, the LSAPI.INI file is described in the LSAPI
Specification v.1.1.

Parent Topic:

Installing NLS Client Software

NLS Installation

How to Install NLS on Windows 95 Clients

1. Copy LSAPI32.DLL, NLSAPI32.DLL and NLS32.DLL to
SYS:\PUBLIC\WIN95.

2. NLSAPI32.DLL provides NLS management API support to Windows
95 clients. NLS32.DLL provides LSAPI support to Windows 95
clients. LSAPI32.DLL provides indirect access to a provider's LSAPI
DLL (in the case of Novell this is NLS32.DLL) by first reading this
information from an LSAPI.INI file. If you chose to link your product
to LSAPI32.DLL instead of NLS32.DLL, the LSAPI.INI file is
described in the LSAPI Specification v.1.1.

3. Add a search path for the SYS:\PUBLIC\WIN95 directory.

Parent Topic:

Installing NLS Client Software

NLS Installation

How to Install NLS on Windows NT Clients

1. Copy LSAPI32.DLL, NLSAPI32.DLL and NLS32.DLL to
SYS:\PUBLIC\WIN95.

2. NLSAPI32.DLL provides NLS management API support to Windows
NT clients. NLS32.DLL provides LSAPI support to Windows NT
clients. LSAPI32.DLL provides indirect access to a provider's LSAPI
DLL (in the case of Novell this is NLS32.DLL) by first reading this
information from an LSAPI.INI file. If you chose to link your product

Management Service Group

Novell Licensing: Tasks 321

to LSAPI32.DLL instead of NLS32.DLL, the LSAPI.INI file is
described in the LSAPI Specification v.1.1.

3. Add a search path for the SYS:\PUBLIC\WIN95 directory.

Parent Topic:

Installing NLS Client Software

NLS Installation

How to Install NLS on NLM Clients

1. Copy LSAPI.NLM and NLSAPI.NLM to the server's SYS:\SYSTEM
directory.

2. Type LOAD LSAPI at the server's console command prompt.

LSAPI.NLM passes the common license API parameters to the LSP.

3. Type LOAD NLSAPI at the server's console command prompt.

NLSAPI.NLM passes the license management API parameters to the
LSP.

Parent Topic:

Installing NLS Client Software

NLS Installation

Installing NLS Server Software

The following instructions are for manually setting up servers to access the
Novell Licensing Services.

How to Install NLS on NetWare 4.10 Servers

How to Install NLS on NetWare 4.11 and IntranetWare Servers

How to Install NLS on IntranetWare for Small Business Servers

How to Install NLS on Future Novell Server Releases

Parent Topic:

NLS Installation

How to Install NLS on NetWare 4.10 Servers

Management Service Group

Novell Licensing: Tasks 322

1. Copy NLSLSP.NLM from the installation media to SYS:\SYSTEM on
a server that will provide Licensing Services.

2. Copy SETUPNLS.NLM and SETUPNLS.MSG to the server.

3. Configure NLS by typing LOAD SETUPNLS at the server's console
command prompt.

SETUPNLS prompts you for an admin name and password. The user
you login as must have rights to the root container. SETUPNLS
automatically loads NLSLSP.NLM before unloading itself.

4. For autoloading NLSLSP.NLM in the future, add the command
LOAD NLS to the server's AUTOEXEC.NCF file.

Parent Topic:

Installing NLS Server Software

NLS Installation

How to Install NLS on NetWare 4.11 and
IntranetWare Servers

1. Type LOAD INSTALL at the server's console command prompt.

2. Select Product Options.

3. Select the option to Configure Novell Licensing Service (NLS).

You will need to have access to an image of the product CD ROM.
NLSLSP.NLM is automatically loaded by this install process.

4. For autoloading NLSLSP.NLM in the future, edit the server's
AUTOEXEC.NCF file with a line to load the NLSLSP NLM.

Parent Topic:

Installing NLS Server Software

NLS Installation

How to Install NLS on IntranetWare for Small
Business Servers

For IntranetWare for Small Business, NLSLSP.NLM is automatically
installed and loaded.

Parent Topic:

Management Service Group

Novell Licensing: Tasks 323

Installing NLS Server Software

NLS Installation

How to Install NLS on Future Novell Server
Releases

For future releases of Novell network operating system products,
NLSLSP.NLM is automatically installed and loaded.

Parent Topic:

Installing NLS Server Software

NLS Installation

Loading NLS

1. To see a help screen for the options that NLS can be loaded with, at
the server, run LOAD NLS /?.

2. To set up NLS on this server the first time, run LOAD SETUPNLS
and enter the network administrator name and password or
equivalent user when prompted.

Making Certificate Assignments

1. View the certificate details for the desired license, as explained in
Viewing Certificate Details.

2. Click the Certificate Assignment button at the right of the dialog.

The License Users window displays.

Management Service Group

Novell Licensing: Tasks 324

3. To add new assignments, choose Add, then select one or more objects
from the Select Object dialog.

4. To delete assignments, highlight any existing assignments to be
deleted, then choose Delete.

Parent Topic:

NetWare Administrator Licensing Snap-in

Testing NLS for the 4.1x NLM Client

1. Copy LSAPIDEM.NLM and NLSAPIDM.NLM to a directory on the
server client.

2. Run LOAD LSAPIDEM.

3. Run LOAD NLSAPIDM.

Parent Topic:

Testing Your NLS Installation

Testing NLS for the DOS Client

Management Service Group

Novell Licensing: Tasks 325

1. Copy LSAPIDEM.EXE and NLSAPIDM.EXE to a directory on the
client.

2. Go to the DOS client and map a drive to (or log in to) a server
providing the Licensing service.

3. In the directory where LSAPIDEM.EXE was copied, run LSAPIDEM.

4. In the directory where NLSAPIDM.EXE was copied, run NLSAPIDM.

Parent Topic:

Testing Your NLS Installation

Testing NLS for the Windows Client

1. Copy WLSAPIDM.EXE to a directory on the client.

2. Go to the Windows* client and map a drive to (or log in to) a server
providing the Licensing service.

3. In the directory where WLSAPIDM.EXE was copied, run
WLSAPIDEM.

Parent Topic:

Testing Your NLS Installation

Using the Licensing Snap-in

1. Launch the NetWare® Administrator tool from Windows*.

2. Choose Browse from the Tools menu to display licensing objects.

The example below shows sample licensing data from this screen.

Management Service Group

Novell Licensing: Tasks 326

The icon for an LSP looks like a computer with a license certificate. The
icon for a product container looks like a stack of license certificates. The
icon for a license certificate looks like a single piece of paper.

3. To see objects beneath other objects (such as a license certificate
beneath a product container), double-click on the higher-level object.

4. To perform a basic action, select the desired object and click the right
mouse button to display an action menu (or choose an option from
one of the pull-down menus).

The following basic options are available using the right mouse button:

Details

Rights to Other Objects

Trustees of this Object

Browse

Create

Delete

Parent Topic:

NetWare Administrator Licensing Snap-in

Management Service Group

Novell Licensing: Tasks 327

Viewing Certificate Details

1. Select a license certificate, then click the right mouse button.

2. Choose Details from the action menu.

The "Certificate Details" dialog appears.

The following information displays:

License ID name

Number of available license units

Number of in-use license units

Number of installed license units

Publisher's name

Product name

Version number of product

Activation date (if any)

Expiration date (if any)

Certificate ID

Management Service Group

Novell Licensing: Tasks 328

Whether this certificate is metered by default

Whether an assignment is required

Time interval for updating certificate

Default consumption units (begins at 1)

Parent Topic:

NetWare Administrator Licensing Snap-in

Viewing Certificate Users

1. View the certificate details for the desired license, as explained in
Viewing Certificate Details.

2. Click the Certificate User button at the right of the dialog.

The distinguished names of the users of this license certificate appear in
the box on the screen.

Parent Topic:

NetWare Administrator Licensing Snap-in

Management Service Group

Novell Licensing: Tasks 329

Viewing/Changing a Certificate Owner

1. View the certificate details for the desired license, as explained in
Viewing Certificate Details.

2. Click the Certificate Owner button at the right of the dialog.

The distinguished name of the license ID owner appears.

3. To search for another name to set as the owner, click the Browse
button.

Parent Topic:

NetWare Administrator Licensing Snap-in

Viewing the LSP Configuration

1. Double-click on an LSP icon.

The "LSP Configuration" dialog appears, displaying the LSP name.

Parent Topic:

NetWare Administrator Licensing Snap-in

Management Service Group

Novell Licensing: Tasks 330

Viewing the LSP Users and Product Information

1. Select a product container, then click the right mouse button.

2. Choose Details from the action menu.

The "Product Information" dialog appears.

The following Unit Information also appears:

Number of products available to all assigned users

Number of products available to current user

Number of products currently in use

Number of installed products

3. To view current users of the product, click the Product Users button at
the right of the dialog.

This shows all users who are using license certificates of this type, from
this container and above.

Parent Topic:

NetWare Administrator Licensing Snap-in

Management Service Group

Novell Licensing: Tasks 331

Novell Licensing: Concepts

About NLS

The Novell Licensing Service (NLS) is a distributed, network service that
helps administrators monitor and control the use of licensed applications on
a network. NLS enables a flexible approach to licensing on the NetWare 4.1x
network operating system. NLS is tightly integrated with NDS and
therefore benefits from NDS with fault tolerance, scaleability, and
manageability of license objects

This architecture consists of client components that support different
platforms and a system component called the license service provider (LSP)
that runs on a NetWare 4.1x server. NLS supports DOS, Windows 3.1,
Windows 95, Windows NT and NetWare 4.1x NLM clients. NLS also
provides a NetWare Administrator license management snap-in tool, as
well as libraries that export licensing functionality to developers.

NLS provides a foundation for software vendors to sell their software using
electronic licenses instead of paper ones. Since policy information is
contained in the license, only one executable image is necessary. With a
variety of policy attributes to choose from, flexible license stratifications can
be created for the same executable. This means that a trial copy and a
permanent copy of a software product will use the same shipping
executable but will have different licenses.

NLS activity is stored in transaction databases. Management APIs provide
access to these transaction databases. Therefore application usage on the
network can be monitored.

NLS is based on the industry-standard LSAPI Specification v1.1. If an
application uses these APIs and the license conforms to the specification,
any LSP based on this specification such as NLS could service the
application.

Parent Topic:

Novell Licensing Introduction

License Acquisition Functions

The NLS Client uses the standard License Services Application
Programming Interface (LSAPI v1.1) to obtain and maintain license units
from a particular publisher for a specific product and version. These API

Management Service Group

Novell Licensing: Concepts 332

functions allow the application provider to license applications independent
of an underlying Licensing service.

The License Acquisition functions help you do the following things:

Determine what Licensing services are available.

Request license units for a particular product.

Tell the Licensing service that the previously requested license units are
still in use.

Release license units previously granted by the Licensing service.

Determine how often a license certificate needs to be updated.

Translate an error code to a displayable text string.

Parent Topic:

Novell Licensing: General Guide

Related Topics:

License Unit Functions

License Certificate Functions

License System Availability Functions

License Certificate Detail Information Functions

NLSCertificateTagToMe
ssage

Presents license certificate information to
the user in a more clear and organized
manner.

NLSGetCertificate Retrieves the data that makes up a license
certificate.

Parent Topic:

License Management Functions

Related Topics:

License Unit Availability Functions

License Certificate Management Functions

License Certificate Transaction Information Functions

License Certificate Functions

Management Service Group

Novell Licensing: Concepts 333

LSQuery Gets information about a license certificate.

LSGetMessag
e

Gets a string describing the current error code.

Parent Topic:

License Acquisition Functions

Related Topics:

License Unit Functions

License System Availability Functions

License Certificate Management Functions

NLSInstallCertificate Installs a license certificate into the specified
licensing system.

NLSDeleteCertificate Removes a license certificate record from the
license database.

NLSMoveCertificate Relocates the database record containing the
specified license certificate.

NLSAddProductInfor
mation

Adds non-secure license certificate
information to the licensing system database.

NLSTransferOwnersh
ip

Transfers the ownership of a license
certificate.

NLSAddAssignment Restricts the use of a license certificate based
on assignment type.

NLSRemoveAssignm
ent

Removes an assignment from a license
certificate.

Parent Topic:

License Management Functions

Related Topics:

License Unit Availability Functions

License Certificate Transaction Information Functions

License Certificate Detail Information Functions

Management Service Group

Novell Licensing: Concepts 334

License Certificate Transaction Information
Functions

NLSGetEntry Views all the individual components of a
transaction.

NLSGetTransacti
on

Retrieves a single transaction record.

Parent Topic:

License Management Functions

Related Topics:

License Unit Availability Functions

License Certificate Management Functions

License Certificate Detail Information Functions

License Management Functions

The License Management functions help determine the status of the
Licensing service and assist in configuring and maintaining the Licensing
service. For example, these functions can be used by an administrative tool
or a third-party system to manage software assets. They provide access to
license usage, license restrictions, license installation and information, and
transactional records.

The License Management functions accomplish the following tasks:

Determine how many license certificates and units are installed, how
many are in use, how many are available, and who is using them.

Add or remove license assignments.

Determine or transfer ownership of a license certificate.

Install a license certificate into the system.

Remove, move, or examine installed license certificates.

Access a transaction database to determine history of use or errors.

Parent Topic:

Novell Licensing: General Guide

Related Topics:

Management Service Group

Novell Licensing: Concepts 335

License Unit Availability Functions

License Certificate Management Functions

License Certificate Transaction Information Functions

License Certificate Detail Information Functions

License System Availability Functions

Table auto. License System Availability Function

LSEnumProvi
ders

Returns a unique string containing the name of any
accessible licensing system.

Parent Topic:

License Acquisition Functions

Related Topics:

License Unit Functions

License Certificate Functions

License Unit Availability Functions

NLSInstalled Provides information about license units that are
installed for products in one or more licensing
systems.

NLSAvailabl
e

Provides information about license units available for
products in one or more licensing systems.

NLSInUse Provides information about license units that are in
use for products in one or more licensing systems.

NLSUsers Provides information about who or what is using
licensing units for a product in the specified licensing
systems.

Parent Topic:

License Management Functions

Related Topics:

License Certificate Management Functions

Management Service Group

Novell Licensing: Concepts 336

License Certificate Transaction Information Functions

License Certificate Detail Information Functions

License Unit Functions

LSRequest Requests licensing resources associated with a specific
software product.

LSUpdate Verifies that the current handle is still valid.

LSRelease Releases licensing resources associated with the license.

LSFreeHan
dle

Releases all resources associated with the specified
licensing context.

Parent Topic:

License Acquisition Functions

Related Topics:

License Certificate Functions

License System Availability Functions

LSP Activation Password

An activation password is required when using the LSAPI secrets security
attribute. If the LSAPI secrets attribute is not utilized, a blank password
should be entered at license installation time (using NLSInstallCertificate).

NOTE: The activation password must be entered, exactly as it appears,
using the NetWare® Administrator Licensing Snap-in or your own
license installation process. If you are using the example license
generation utility, the activation password is currently hard-coded as
1234567890123456. If you change the activation password, it should be
exactly 16 characters long to ensure proper entry and security. There are
no other restrictions on the content of this password. It is suggested that
the password value be an MD4 message digest of your publisher name,
a randomly chosen string, and a time stamp value. This provides a
unique activation password of the proper length and format for all your
generated license certificates. Using the same activation password for all
license certificates significantly reduces the security provided by this
attribute, and is not recommended.

Parent Topic:

NLS Distributed Licensing

Management Service Group

Novell Licensing: Concepts 337

LSP Client Requests

The LSP attempts to process a client request by checking the client's current
container first. If the necessary information is not available within the same
NDS container, the LSP searches the next container "up the tree" for the
requested information. ("Up" refers to searching the next higher (closer to
the root) level container within the tree.) This process continues until either
the necessary information is retrieved to complete the client request, or until
the root container has been reached and searched. This search process
allows for the rapid placement of license certificates in Organizations or
Organizational Units. A cross-container search does not occur for license
certificate objects. Therefore, placing a certificate into a container inherently
restricts access to that certificate to users in the given container and any of its
sub-trees.

NOTE: Aliases could be created within different paths in the overall
tree, which represent the same physical instance of a license certificate.
This allows access through multiple paths to the same set of license
certificates, overriding the default cross-container isolation.

Parent Topic:

NLS Distributed Licensing

LSP Default Location

When NLS is set up on a server, the schema is extended and an LSP object is
created in the same container as the NCP object (NetWare® Server) on
which it resides. This is the default location for a given LSP.

Parent Topic:

NLS Distributed Licensing

NLS Certificate Assignments

A license certificate assignment specifies an NDS object which may use the
license units in the certificate. When a certificate is first installed it has no
assignments. A license certificate with no assignments will allow any NDS
object, in the current container or below it, to use license units from the
license certificate. Making an assignment to a certificate limits the NDS
objects which may use the license units. Examples of a DN which may be
assigned to a license certificate include a user object, a group object, or a
container object. Assignment is made by using the NLSAddAssignment
function. Once an assignment is made to a license certificate an NDS
"Security Equal To" is performed on the connection requesting the object.

Management Service Group

Novell Licensing: Concepts 338

Parent Topic:

Novell Licensing Introduction

NLS Constants

LS_NULL Empty string.

LS_ANY Use any valid value for license system, product,
version, and so on.

LS_DEFAULT_UN
ITS

Licensing should determine the appropriate value
for "total units consumed," using its own licensing
policy mechanisms.

LS_INFO_NONE Reserved

LS_INFO_DATA Returns a block of vendor-defined application
data from the license certificate. Allocated space
for such data varies from system to system or
might not be available at all. The first LS_ULONG
in the data buffer indicates the size in bytes of the
data that follows.

LS_INFO_SYSTE
M

Returns the unique ID of Licensing supplying the
current license context. This ID is a
NULL-terminated string equivalent to the value
returned by LSEnumProviders.

LS_MACHINE Restricts based on a machine address. This allows
a license certificate to be assigned to one or more
machines.

LS_UPDATE_PER
IOD

Returns the recommended interval in minutes at
which LSUpdate should be called. This value is
returned as an LS_ULONG in the data buffer. If a
value of 0xFFFFFFFF is returned, no
recommended update period exists for the
associated system.

LS_USER_NAME Restricts based on a user or object name. NDS
containers or group names can be specified. All
elements that exist under a container or group
then have access.

Parent Topic:

Novell Licensing: General Guide

NLS DOS Executable Files

Management Service Group

Novell Licensing: Concepts 339

In combination, the static library LSAPIx.LIB and the TSR NLSLSAPI.EXE
provide license acquisition access to NLS for DOS clients.

LSAPIx.LIB LSAPIx.LIB is statically linked to the DOS application
that requires license resources and enables dynamic
communications with one or more LSAPI-compliant
TSRs. The x represents the model identifier for the
application's memory model.

NLSLSAPI.
EXE

NLSLSAPI.EXE is an LSAPI-compliant TSR for
NetWare® Licensing. The TSR must be loaded before
the DOS client application is executed; otherwise, the
LS_SYSTEM_UNAVAILABLE error is returned for any
LSAPI function.

NLSAPIx.L
IB

These model-specific libraries provide access to the NLS
management functions.

Parent Topic:

NLS Executable Files

NLS License Service Provider

The License Service Provider (LSP) is the main engine for NLS. LSP
functionality is provided by NLSLSP.NLM. An installation of NLS requires
at least one LSP to service clients.

The LSP provides the following service for a client:

1. Access by an application (client) to a license represented in NLS by a
license certificate. This access is for applications that use the license
service to control or monitor usage. The application uses APIs to send
license requests to a license service provider (LSP) which then reads the
NLS license certificate and returns the appropriate behavior for the
application. The License Acquisition Functions and theNovell License
Certificate Format conform to the industry-standard LSAPI
Specification v1.1. The license certificate isintroduced in the NLS
License Certificate Overview.

2. Access to administrative or management functions as described in the
License Certificate Management Functions. Functionality includes the
ability to install, move, and make assignments to grant access to license
certificates as well as to read transaction databases.

LSAPI specification functions are prefixed with LS. Management functions
are prefixed with NLS.

Parent Topic:

Novell Licensing Introduction

Management Service Group

Novell Licensing: Concepts 340

NLS License Certificate Request

NLS uses the following steps to process a license certificate request for
license units:

1. A client-specific component packages the license request and submits it
to the LSP.

2. The LSP examines the license request and determines if a license with
sufficient units is available. It does this by first checking the client NDS
context for license certificates.

3. If the LSP is able to fulfill the license request, it allocates license units for
use by the client.

4. If the LSP cannot fulfill the request, it checks each next-higher context in
NDS to find the necessary license units. This process continues until the
necessary license units are obtained or until the LSP can search no
further.

5. License request activity is recorded in a transaction database for further
analysis using License Management Functions

Parent Topic:

Novell Licensing Introduction

Client Discovery of LSP

An NLS enabled client is any application that requests NLS services. The
NLS requests are made through a local licensing system software
component such as a static library/TSR combination or a set of dynamic
libraries. NLS supports DOS, Windows 3.1, Windows 95, Windows NT, and
Novell 4.1x NLM clients.

The NLS client discovers the license service provider (LSP) by checking the
current connection to see if it is attached to an LSP. If not it checks for an
LSP object in the tree and then attaches to those servers listed in the object.

For the DOS, Windows 3.1, Windows 95, and Windows NT platforms, the
client discovers the license service provider (LSP) by checking the preferred
connection. If the connection is not attached to an LSP server, the client then
checks the rest of the connections in the connection table. If none of the
servers that the client connected to are and LSP, then the NLS client
searches NDS in the current user context for an LSP object. If an LSP object
is found, the client attaches to an LSP server listed in the LSP object. If an
LSP object is not found in the user context, the client checks the next-higher
NDS context for LSP objects. This process continues until an LSP object is

Management Service Group

Novell Licensing: Concepts 341

found or until the LSP can search no further.

For an NLM client the process is basically the same. The difference is that
the connection table is not searched. Only the current connection is checked
to see if it is connected to an LSP server before a search for an LSP object
begins.

Parent Topic:

Novell Licensing Introduction

NLS License Certificate Overview

An NLS license certificate is composed of a series of license attributes.
These license attributes give the developer the flexibility to create a variety
of different behavior policies. License attributes are nested/appended
together in order to form a certificate. In addition to required license
attributes in the common certificate area a Novell License Certificate defines
optional license attributes known as policy descriptors which can be placed
in the license system specific area of the certificate. These policy descriptors
include consumption, security, unit related, and error handling attributes.

Figure 1. NLS License Attributes

Management Service Group

Novell Licensing: Concepts 342

The following example demonstrates the flexibility of execution which can
be obtained when creating a license certificate:

Application X is license enabled using LSAPI specification APIs described
in the License Acquisition Functions. This application is shipped with
different beta licenses for different groups of beta testers. One license
certificate offers 5 units and expires July 1, 1998. The other license certificate
is for use by a preferred set of testers. It is created with the same number of
units and the same expiration date of July 1, 1998, but it establishes an
exception policy that allows an additional 30 days of usage beyond the July
1 expiration. If the second license is used during the exception period, this
usage will be recorded in the transaction database for further analysis.

A license certificate may be installed, moved, or deleted. However, for the
license certificate to remain credible and secure, information contained in
the license certificate cannot be modified.

NLS security mechanisms which are described in License Certificate
Authentication and Security are based on the use of specific license
certificate attributes. Details about the license certificate format are found in
the Novell License Certificate Format.

Parent Topic:

Novell Licensing Introduction

NLS License Certificate Creation and Installation

A license certificate is classified as secure or non-secure. A non-secure
license, also known as a metering license, is used primarily to monitor
application usage. A metering license can be created and installed
programmatically with the NLSAddProductInformation function or by
using the create metering information... pull-down option from the
NetWare Administrator Licensing Snap-in. You will be required to supply
the required license attributes of Publisher Name, Product Name, Version,
and Number of Units.

Secure license certificates are created by using a license generation utility.
Currently, Novell does not support an official license generation utility but
this SDK provides the LICGEN example along with the TMPLTOOL license
generation template which demonstrates how such a utility could be
constructed.

After the license certificate is created it can be installed using the
NLSInstallCertificatefunction or by using the install license certificate file...
pull-down option from the NetWare Administrator Licensing Snap-in.

Parent Topic:

Novell Licensing Introduction

Management Service Group

Novell Licensing: Concepts 343

NLS License Certificate Security

Secure licenses support two levels of security. The first level of security is
defined by the LSAPI v1.1 Specification, Appendix B: Basic Challenge and
described in LSAPI Authentication of that same document. License creation,
installation, and application execution requires four 32 bit secrets (LSAPI
secrets), an activation key, and challenge/response code. The LSAPIDEM
example on the SDK contains this challenge/response code which can be
used in your application. Details of creating an activation key and
encrypting/decrypting secrets can be found in LSAPI Authentication.
When LSAPI Secrets are used, an activation key will be required when
installing the certificate.

The second level of security which is supported by NLS utilizes vendor
defined encryption such as the use of a public/private key pair. Details can
be found in NLS Specific Authentication.

Parent Topic:

Novell Licensing Introduction

NLS License Certificate NDS Objects

In addition to the license certificate itself, two types of objects are stored in
NDS relating to licenses; a license certificate object and a product container
object. The license certificate object contains information about license
certificate required attributes as well as the license certificate owner,
certificate assignments if any, and DNs of any object currently using units of
the license.

The product container object is used to organize multiple license certificates
of the same type under a common object. For example, a user may have
four license certificates for IntranetWare for Small Business. The four license
certificates have the same publisher, product, and version attributes so they
are stored under the same product container. In addition, the product
container object contains runtime summary data.

Parent Topic:

Novell Licensing Introduction

NLS Load Options Overview

The correct useage of the NLS load command line is:

 LOAD NLSLSP [-t] [-l <path/file.] [-s <size>] [/?]

Management Service Group

Novell Licensing: Concepts 344

The options are briefly described below.

Option Description

-l<path/filename> Specify a location/name for the transaction
database.

-s<size in KB> Specify the maximum size of the transaction
database.

-t<+/-> Turns transaction logging on (+) or off (-). The
default is on (+).

/? Help screen listing the usage.

You can not combine options as follows:

LOAD NLSLSP -t

LOAD NLSLSP -t+

LOAD NLSLSP -t-

Parent Topic:

Installing NLS Server Software

Related Topics:

-l Load Option: Path/Filename

-s Load Option: Size Limit

NLS NLM Executable Files

LSAPI.NL
M,
LSAPI.IMP

The LSAPI.NLM shared library NLM provides the
LSAPI v1.1 calls for NetWare® NLM clients. This
module should be loaded before the invocation of the
licensed NLM, either manually or through a module
directive.

The LSAPI.IMP file contains all of the exported function
names in the LSAPI.NLM module.

NLSAPI.N
LM,
NLSAPI.IM
P

The NLSAPI.NLM shared-library NLM provides the
access to the NLS management functions. This module
should be loaded before the invocation of the licensed
NLM, either manually or through a module directive.

The NLSAPI.IMP file contains all of the exported
function names in the NLSAPI.NLM module.

NLSLSP.N
LM

NLSLSP.NLM is the NLS LSP. You can load LSPs on
servers throughout your directory tree.

Management Service Group

Novell Licensing: Concepts 345

LM servers throughout your directory tree.

Parent Topic:

NLS Executable Files

NLS Status Codes

LS_SUCCESS The requested function completed
successfully.

LS_AUTHORIZATION_UNAVA
ILABLE

The license certificate or specified
assignment was not located, or the
required security equivalence to the
owner was not valid.

LS_BAD_ARG One or more parameters are invalid.

LS_BAD_HANDLE The specified handle does not
describe an existing transaction
handle.

LS_BAD_INDEX The specified index does not point to
a valid license certificate. This
usually occurs when the end of the
requested information has been
completely returned.

LS_BUFFER_TOO_SMALL The buffer to receive output was not
large enough to hold the requested
output.

LS_INSUFFICIENT_UNITS Licensing could not find enough
installed license units to satisfy the
request at this time.

LS_LICENSE_EXPIRED Re-verification of the existing units
failed due to an out-of-date license
certificate.

LS_LICENSE_TERMINATED Re-verification of the existing units
failed, so no additional units were
requested. An update was not done
within the specified update period,
and the license units were issued to
another user by NLS before this
update was attempted.

LS_LICENSE_UNAVAILABLE Re-verification of the existing license
units was successful, but there were
not enough available license units to
fulfill the additional request.

LS_RESOURCES_UNAVAILAB Insufficient resources (such as

Management Service Group

Novell Licensing: Concepts 346

LE memory) available for request.

LS_SYSTEM_UNAVAILABLE DOS TSR or Windows* DLL is not
properly configured or available, or
client has no Licensing service to
communicate with.

LS_TEXT_UNAVAILABLE Unknown status code was passed to
this routine for translation.

Parent Topic:

Novell Licensing: General Guide

NLS System Components

As indicated in the following figure, the Novell Licensing Service consists of
client components and server components that reside on NetWare 4.1x
servers.

Figure 2. NLS Client and System Components

Management Service Group

Novell Licensing: Concepts 347

The following components comprise the Novell Licensing Service:

One or more License Service Providers (LSPs).

Transaction databases (not shown above). A separate transaction
database resides on each server running an LSP (NLSLSP.NLM) and
contains application (client) activity.

Platform-specific client components.

Licenses.

Parent Topic:

Novell Licensing Introduction

NLS System Requirements

NLS has been tightly integrated with NDS to take advantage of the latter's
features. Therefore, the NLS server software must be run on a NetWare®
4.1x server. The client platforms supported are MS-DOS 3.3 and above,
Windows* 3.1 and Windows95, and NetWare 4.1.

Client/Server Type Requirements

License Service
Provider

NetWare 4.1x server with 10 MB of memory
(minimum); NDS installed on server. Standard
NLM applications (CLIB, STREAMS, BTRIEVE,
AFTER311, DSAPI) exist on the server. Any
volume with at least one megabyte of disk space
can be used.

DOS Client MS-DOS 3.3 or above; 500 KB memory
(minimum); 250 KB disk space

Windows Client Windows 3.1; 100 KB disk space or Windows95;
100 KB disk space

NLM Client NetWare 4.1x server

Parent Topic:

Novell Licensing Introduction

NLS Windows Executable Files

These files might be necessary to enable license acquisition access to NLS
from Windows* clients.

Management Service Group

Novell Licensing: Concepts 348

from Windows* clients.

LSAPI.LIB,
LSAPI.DLL

LSAPI.LIB and LSAPI.DLL are the generic LSAPI v1.1
client components for accessing any Licensing service
independently. LSAPI.LIB is an import library for the
generic LSAPI.DLL. The LSAPI.DLL reads the required,
local LICENSE.INI file and loads the appropriate client
components. For more information on this process, see
the description of NLS.LIB and NLS.DLL below.

NLS.LIB,
NLS.DLL,
NLS32.DLL

These are the NLS-specific client components that enable
license acquisition access to NLS from Windows clients.

Normally, a Windows application that requires license
resources is compiled with the generic LSAPI.LIB, an
import library. LSAPI.LIB lets Windows application
access any Licensing service via the generic LSAPI.DLL,
which loads NLS.DLL (or NLS32.DLL) after reading the
LICENSE.INI file.

If you are developing a Windows client specifically for
NLS, then a direct link can be developed with NLS.LIB,
the NLS-specific import library. This library
communicates with NLS.DLL directly. An application
developed in this manner does not use LSAPI.LIB,
LSAPI.DLL, or LICENSE.INI and is not licensing
system-independent.

NLSAPI.DL
L,
NLSAPI32.
LIB,
NLSAPI32.
DLL

These are the licensing service management APIs.

Parent Topic:

NLS Executable Files

Ownership of License Certificates

The owner of a license certificate is the NDS object which can manage the
license certificate; license certificate management includes making license
certificate assignments, moving license certificates, and deleting license
certificates.

The license certificate owner can be a specific user, a group, or any other
NDS object. To allow an object to manage a license certificate, simply make
that object security-equivalent to the Distinguished Name (DN) identified
in the Ownership attribute or change the ownership to that DN.

Initially, the Ownership attribute is filled in with the DN of the NDS object

Management Service Group

Novell Licensing: Concepts 349

that installed the license certificate. If necessary, that object can transfer
ownership of the certificate to another object with NLSTransferOwnership.
For example, you can transfer ownership to a group or role object to allow
different approaches to license certificate management.

Parent Topic:

Novell Licensing Introduction

SETUPNLS.NLM

SETUPNLS.NLM is a utility used to configure a server to provide licensing
services. You should only need to run SETUPNLS when setting up a
NetWare 4.10 server to run NLS. For NetWare 4.11 and IntranetWare, the
administrator may use SETUPNLS, but using INSTALL to configure a
server for licensing services will do the same thing and is the preferred
method. If the administrator chooses to use INSTALL, SETUPNLS is
actually spawned by the Configure NetWare Licensing Service option in the
Product Option of the INSTALL NLM. For IntranetWare for Small Business
and for future releases of Novell network operating system products, NLS is
installed and configured automatically during the standard installation
process.

SETUPNLS, whether run by itself or via INSTALL, requires a login by an
administrator who has rights to make changes to the NDS tree. SETUPNLS
extends the NDS schema and creates a License Service Provider (LSP) object
for the server on which it is being run. It also creates a License Servers
group at the organization level in the NDS tree and adds the server to this
group. Finally, SETUPNLS loads NLSLSP.NLM, and then is unloaded.
SETUPNLS does not modify AUTOEXEC.NCF to load NLSLSP.NLM. For
NLS to load automatically each time the server is started, add the line
LOAD NLSLSP to the AUTOEXEC.NCF file in SYS:\SYSTEM. Otherwise,
manually load NLSLSP.NLM.

For additional information about installing and configuring NLS, see NLS
Installation.

Parent Topic:

Installing NLS Server Software

Testing Your NLS Installation Overview

The following test programs come with NLS. They each test whether the
licensing service and the client workstations have been set up correctly:

LSAPI test programs:

LSAPIDEM.EXE (for DOS)

Management Service Group

Novell Licensing: Concepts 350

WLSAPIDM.EXE (for Windows 3.1)

LSAPIDEM.NLM (for 4.1x NLM)

NLSAPI test programs:

NLSAPIDM.EXE (for DOS)

NLSAPIDM.NLM (for 4.1x NLM)

When one of the LSAPI test programs is run, it attempts to show the
available license systems, requests a test license, updates the license
certificate, and releases it.

When one of the NLSAPI test programs is run, it shows the following things:

Number of and details of installed license certificates

License units in use

License units available

Users using license units

Transaction log

Parent Topic:

Testing Your NLS Installation

-l Load Option: Path/Filename

The transaction database holds a record of all modifications done to the
licenses. By default, the path of the transaction database is
SYS:\SYSTEM\NLSTRANS.DB. To specify a different location for the
transaction database, add -l <location/filename> to the command
line. (To use the default location for the transaction database do not use the
-l option.) For, example, to put the transaction database on a volume called
FILES: and in a directory called database, you would type LOAD NLS
-l FILES:\DATABASE\NLSTRANS.DB.

The -l option must have a full volume, directory, filename specification. The
volume and directory must exist, or NLSLSP.NLM is loaded incorrectly.

Parent Topic:

NLS Load Options Overview

-s Load Option: Size Limit

The size option limits the size of the transaction database; this is helpful in

Management Service Group

Novell Licensing: Concepts 351

conserving disk space. When the -s option is used and a change is made to
the transaction database that would put its size over the limit, the oldest
transactions recorded in the database are removed to make room for the
new transactions to be recorded. This way the transaction database always
has the most current information about what has been happening with the
license certificates. For example, to load NLS and set the transaction
database size to about 20 KB, enter this at the console command prompt:

LOAD NLSLSP -s 20

If the license server is ever downed and then brought back up, this option
should not be set to a size smaller than the current transaction database size.
Each transaction is kept as a whole unit, so this can affect the actual size of
the transaction database.

Parent Topic:

NLS Load Options Overview

Novell License Certificate Format

The NLS license certificate format provides a prototype of the common
certificate format. The common certificate format consists of two major
categories of attributes.

The required attributes

The optional attributes

The required attributes make up the common portion of the license
certificate and should adequately describe a licensed application's basic
information.

The optional attributes provide licensing-system specific enhancements to
the common portion of the license certificate. These enhancements are
provided to add flexibility to the attributes supported by the common
portion of the certificate.

The License Certificate Format documentation has these sections:

Required License Attributes

Optional License Attributes

Base License Type Descriptors

Unit Related Descriptors

Error Handling Descriptors

Default Descriptor Set

License Certificate Authentication and Security

Management Service Group

Novell Licensing: Concepts 352

Following a presentation of the structure for each attribute associated with
the NLS license certificate are some examples of common licensing models
and license certificate authentication and security.

Parent Topic:

Novell License Certificate Format

Required License Attributes

Each license certificate is composed of a number of required attributes or
fields. They are:

Object ID Structure

Common Certificate Start

Publisher Name

Product Name

Version

Number of License Units

Secrets

Start Date

Expiration Date

Unique Identifier Field

Default Metered Field

Assignment Required Field

Default Period Update Field

Default Consumption Field

Licensing System-Specific Area

Parent Topic:

Novell License Certificate Format

Object ID Structure

The following syntax indicates the common object ID structure for each
required field in the common license certificate.

Management Service Group

Novell Licensing: Concepts 353

typedef LSLICTAGTTAG { LS_STR nodeID[8]; LS_ULON
 format LS_ULONG milliSecs; // In low-high format } LS_LIC_TAG_T;

Parent Topic:

Novell License Certificate Format

Common Certificate Start

This field is the overall wrapper for the common certificate. It indicates that
every byte contained in this area describes a license certificate.

Format

OID|Length|Lic Certificate

OID

The Object ID is:

{{137, 65, 21, 73}, LS_TCPIP_PROTOCOL, 785521927, 100}

length

An LS_ULONG in low-high format, indicating the number of bytes
contained in the Lic Certificate area. This is the maximum amount of bytes
that should be parsed for common license information.

Lic Certificate

The series of bytes making up the common license certificate.

Parent Topic:

Novell License Certificate Format

Publisher Name

This field is a string that uniquely identifies the publisher (manufacturer) of
the product. This string should be unique in the first 32 characters, but may
be longer. A company name and/or trademark should be used.

Format

OID | length | strlen | string

OID

The Object ID is:

{{137, 65, 21,73}, LS_TCPIP_PROTOCOL, 785521928, 225}

Management Service Group

Novell Licensing: Concepts 354

length

An LS_ULONG in low-high format, indicating the number of bytes
following this parameter for this field.

strlen

The number of bytes contained in the string parameter. This value is an
LS_ULONG in low-high format.

string

A localized (potentially double-byte) null-terminated string indicating the
publisher name for this license certificate.

Parent Topic:

Novell License Certificate Format

Product Name

This field is a string that uniquely identifies the product for the specified
publisher. This string should be unique for this specific publisher in the first
32 characters, but may contain more. The product name should not have
version specific information in it.

Format

OID | length | strlen | string

OID

The Object ID is :

{{137, 65, 21, 73}, LS_TCPIP_PROTOCOL, 785521929, 59}

length

An LS_ULONG in low-high format, indicating the number of bytes that
follow this parameter for this field.

strlen

An LS_ULONG in low-high format, indicating the number of bytes in the
parameter string.

string

A localized (potentially double byte) null terminated string indicating the
product name for this license certificate.

Parent Topic:

Management Service Group

Novell Licensing: Concepts 355

Novell License Certificate Format

Version

This field is a string that uniquely identifies the version of the product for
which this is a license. It must be unique for the specific product in the first
12 characters, but may contain more.

Format

OID | length | strlen | string

OID

The Object ID is:

{{137, 65, 21,73}, LS_TCPIP_PROTOCOL, 785521929, 983}

length

An LS_ULONG in low-high format, indicating the number of bytes that
follow this parameter.

strlen

The number of bytes contained in the parameter string. This number is an
LS_ULONG in low-high format.

string

A localized (potentially double-byte) null-terminated string indicating the
version string for this license certificate.

Parent Topic:

Novell License Certificate Format

Number of License Units

This field specifies the number of license units that are to be installed into
the licensing database. This field is given meaning by the LSRequest call
made by an application. This number is an unsigned 32 bit integer. Any
number of units may be specified up to, but not including 0xFFFFFFFF
(LS_DEFAULT_UNITS).

IMPORTANT: Do not assume that one unit represents one instance
of the application. If the value LS_DEFAULT_UNITS appears in the
number of units field, the licensing system should install the
appropriate number of units for one instance of the application into that
particular licensing database.

Management Service Group

Novell Licensing: Concepts 356

Format

OID | length | numUnits

OID

The Object ID is:

{{137, 65, 21, 73}, LS_TCPIP_PROTOCOL, 785521932, 316}

length

The size of this field. In this case, the value 4 represented in low-high
format.

numUnits

An LS_ULONG in low-high format, indicating the total number of license
units available from this certificate. Note that this value can be up to, but not
including, 0xFFFFFFFF. 0xFFFFFFFF is re-interpreted as a different value by
the licensing system.

Parent Topic:

Novell License Certificate Format

Secrets

This field holds the secrets for this application. The certificate provides space
for four encrypted 32 bit unsigned integers, the minimum amount required
for LSAPI v1.1 compliance. These numbers are somewhat sensitive in
nature, so they need to be incorporated into the authentication information
as well as encrypted. Note that this field, through the security scheme, also
provides for the authentication of the information contained in the license
certificate.

Format

OID | length | secretBuffer

OID

The Object ID is:

{{137, 65, 21, 73}, LS_TCPIP_PROTOCOL, 785521931, 148}

length

An LS_ULONG indicating the length, in bytes, of the remaining parameters
for this field. This value is in low-high format.

secretBuffer

Management Service Group

Novell Licensing: Concepts 357

A buffer that contains the encrypted data representing the secrets and the
license information. See the section about security for details about the
contents of this field.

Parent Topic:

Novell License Certificate Format

Start Date

This field holds the time (in seconds since January 1, 1970) at which the
license is considered to be active and available. Note that a value of zero in
this field indicates that the license has no specific start date and is always
available for request.

Format

OID | length | date

OID

The Object ID is:

{{137, 65, 21, 73}, LS_TCPIP_PROTOCOL, 785521933, 731}

length

An LS_ULONG indicating the length in bytes of the date field. It is currently
fixed at 4 and should be represented in low-high format.

date

An LS_ULONG indicating the seconds since January 1, 1970. This value is
in low-high format.

Parent Topic:

Novell License Certificate Format

Expiration Date

This field holds the time (in seconds since January 1, 1970) after which the
license is considered to have expired and is no longer available for request.
Note that a value of zero in this field indicates that the license has no
specific end date and is always available for request.

Format

OID| length | date

OID

Management Service Group

Novell Licensing: Concepts 358

The Object ID is:

{{137, 65, 21, 73}, LS_TCPIP_PROTOCOL, 785521934, 25}

length

An LS_ULONG indicating the length of the date field. This is fixed at 4 and
should be represented in low-high format.

date

An LS_ULONG indicating the seconds since January 1, 1970. This value is
in low-high format.

Parent Topic:

Novell License Certificate Format

Unique Identifier Field

This field, when used in combination with Publisher Name, Product Name,
and Product Version, uniquely identifies the license. Since all these fields
are utilized, the individual producer of the license may utilize any
numbering scheme for uniquely identifying their licenses. Such options
include serial number of the diskettes, time (down to the millisecond) the
license was created, or license number created at that location. The goal of
this field is to provide a means of manipulating individual license
certificates for any given product installed in the licensing system.

Format

OID | Length | strlen | idBuffer

OID

The Object ID is:

{{137, 65, 21, 73}, LS_TCPIP_PROTOCOL, 785521934, 894}

Length

An LS_ULONG in low-high format, indicating the length of the remaining
parameters for this field.

strlen

The number of bytes contained in the parameter idBuffer. This value is an
LS_ULONG in low-high format.

idBuffer

A buffer that contains a localized null terminated string holding the unique
license identifier.

Management Service Group

Novell Licensing: Concepts 359

Parent Topic:

Novell License Certificate Format

Default Metered Field

This field indicates whether the license provided is considered a default
metering license or not. If the value of this field is true, the licensing system
should install the appropriate form of license for metering an application. If
this flag is FALSE, the licensing system-specific Area describes the
certificate's policy.

Format

OID | Length | Bool

OID

The Object ID is:

{{137, 65, 21, 73}, LS_TCPIP_PROTOCOL, 785521936, 74}

Length

An LS_ULONG in low-high format, indicating the length of the boolean
field. This value is fixed at 4.

Bool

An LS_ULONG in low-high format representing either TRUE (nonzero) or
FALSE (zero).

Parent Topic:

Novell License Certificate Format

Assignment Required Field

This field specifies whether or not an assignment is required to use this
license certificate. If this field is TRUE, then the certificate should not grant
units until an assignment has been made to the certificate. If it is FALSE, the
certificate should be immediately available but may accept assignments.

Format

OID | Length | Bool

OID

The Object ID is:

Management Service Group

Novell Licensing: Concepts 360

{{137, 65, 21, 73}, LS_TCPIP_PROTOCOL, 785521937, 327}

Length

An LS_ULONG in low-high format, indicating the length of the boolean
field. This value is fixed at 4.

Bool

An LS_ULONG in low-high format, representing either TRUE (nonzero) or
FALSE (zero).

Parent Topic:

Novell License Certificate Format

Default Period Update Field

This field indicates the value that should be returned when an application
queries for the default update period using LSQuery. This allows this policy
attribute to change on a license by license basis. This value can be
hard-coded into an application if desired.

Format

OID | Length | Update Period

OID

The Object ID is:

{{137, 65, 21, 73}, LS_TCPIP_PROTOCOL, 785521946, 372}

Length

An LS_ULONG in low-high format, representing the length of the update
period field. This value is fixed at 4.

Update Period

An LS_ULONG in low-high format, indicating the number of minutes
recommended between updates. This value should not be less than 15 as
defined by the LSAPI v1.1 document.

Parent Topic:

Novell License Certificate Format

Default Consumption Field

This field indicates the number of units that should be consumed from this

Management Service Group

Novell Licensing: Concepts 361

certificate upon receiving an LSRequest with LS_DEFAULT_UNITS
specified. This policy attribute can be placed in the license certificate, or it
can be placed into the client code directly.

Format

OID | Length | Units

OID

The Object ID is:

{{137, 65, 21, 73}, LS_TCPIP_PROTOCOL, 785521948, 193}

Length

An LS_ULONG in low-high format, indicating the size of the units field.
This value is fixed at 4.

Units

An LS_ULONG in low-high format, indicating the number of units that
should be consumed from the installed units when receiving a request for
LS_DEFAULT_UNITS.

Parent Topic:

Novell License Certificate Format

Licensing System-Specific Area

This field allows licensing-system specific extensions to be added to a
common license certificate. Each field in this area must follow a specific
format. First, each field is prefixed with an Object ID that is unique to the
licensing system vendor.

Immediately following this tag is the length of the information contained by
this tag. This occupies the first 4 bytes (an LS_ULONG) immediately
following the OID and be in standard network order.

In this way, specific features from multiple licensing systems may be
accomadated in a single license certificate. When a licensing system is
installing a common certificate, it ignores all tags in this area that it does not
understand. It can't reject a certificate based on unrecognized information
contained in this area. Further, no field in this area replaces an existing field
in the common portion of the certificate. These fields enhance the existing
fields and provide additional information.

Format

OID | Length | buffer

OID

Management Service Group

Novell Licensing: Concepts 362

The Object ID is:

{{137, 65, 21, 73}, LS_TCPIP_PROTOCOL, 785521945, 472}

Length

An LS_ULONG in low-high format, indicating the number of bytes
contained in buffer.

buffer

A buffer containing licensing-system specific fields in a system in the
following format

information

The information associated with the above specified Object ID. This
information is licensing-system specific and interpretable only by the
appropriate license service provider.

Parent Topic:

Novell License Certificate Format

Optional License Attributes

NLS-specific attributes provide enhanced functionality over the standard
license certificate information. This enhanced functionality includes a large
variety of policy descriptors. These policy descriptors enable the license to
describe exactly how the application behaves in a variety of situations. Note
that since all policy descriptors have their own tags, new descriptors can
readily be added to a system, requiring only minor modifications to the
license service provider. Also, the license service provider knows to reject
any individual tag that it is not aware of, so backwards compatibility is
guaranteed without the need for explicit versioning.

Descriptors, by their very nature, are optional. If present, they enhance the
functionality of the license certificate. If no descriptors are present, a set of
default descriptors is utilized. This default set is described after the policy
descriptor descriptions. The following is a list of all of the current policy
descriptors and their associated tags and information. Note that all tags
(both common and NLS specific) are defined in "tags.h" provided in this
SDK.

Parent Topic:

Novell License Certificate Format

Base License Type Descriptors

Management Service Group

Novell Licensing: Concepts 363

The following descriptors indicate base license types:

Consumptive Descriptor

Shareable Descriptor

Hardware Secured Descriptor

Public/Private Key Authentication Stamp (Digital Signature)

Parent Topic:

Novell License Certificate Format

Consumptive Descriptor

The presence of this descriptor indicates that when license units are
requested from this certificate, the count of units is decremented, and those
units will not be available again. This descriptor requires no arguments.
Note that both Consumptive and Shareable can't be present at the same
time, or an error occurs.

Format

TagNo | length | bool

TagNo

The value NLS_LIC_CONSUMABLE, in low-high format.

length

The size of the boolean field. Fixed at 4 and in low-high format.

bool

A boolean indicating if this descriptor is active or not. TRUE is any nonzero
value; FALSE is zero.

Parent Topic:

Novell License Certificate Format

Shareable Descriptor

The presence of this descriptor indicates that when license units are
requested from this certificate, the count of available units should be
decremented, and when the units are released, the count should be
incremented by the amount of units released (up to the amount originally
installed).

Management Service Group

Novell Licensing: Concepts 364

Format

TagNo | length | bool

TagNo

The value NLS_LIC_SHAREABLE, in low-high format.

length

The size of the boolean field. Fixed at 4 and in low-high format.

bool

A boolean indicating if this descriptor is active or not. TRUE is any nonzero
value; FALSE is zero.

Parent Topic:

Novell License Certificate Format

Hardware Secured Descriptor

The presence of this descriptor indicates that this license certificate is
secured to a hardware device. When the license is requested, the license
service provider determines if the appropriate hardware key is attached. If
present, the units are potentially granted. If not, an error is returned to the
requesting application.

This descriptor has two parameters. The first parameter is the developer ID
of the hardware device as well as a challenge string to send to the device.
The second parameter is the expected response string to the challenge
query. The exact format of these two strings will be available at a later date.

Format

TagNo | length | qlen | query string | rlen | response string

TagNo

The value NLS_LIC_HW_SECURED, in low-high format.

length

The overall length of the entire field.

qlen

The number of bytes contained in the query string.

query string

The query string to send to the hardware device (exact format TBD).

Management Service Group

Novell Licensing: Concepts 365

rlen

The number of bytes contained in the expected response string.

response string

The expected return from the hardware device.

Parent Topic:

Novell License Certificate Format

Public/Private Key Authentication Stamp (Digital
Signature)

The presence of this descriptor indicates that this license certificate's
information is protected by an authentication stamp.

This authentication stamp consists of a hash of the common license
information plus the license specific information for the NLS licensing
system, encrypted with a private key. The application can check this
authentication by performing the hash itself, then validating the contained
authentication stamp with the matching public key.

Note that this hash only includes the common areas (excluding the secrets)
and the NLS specific information. This is to avoid interference with other
licensing system-specific areas.

Format

TagNo | length | hash len | encrypted hash

TagNo

The value NLS_LIC_PP_SECURED, in low-high format.

length

The number of bytes remaining in this field after this parameter, as an
LS_ULONG in low-high format.

hash len

The number of bytes contained in the encrypted hash field as an
LS_ULONG in low-high format.

encrypted hash

The private key encrypted hash of the information contained in the license
certificate, for the common tags and the NLS-specific tags.

Parent Topic:

Management Service Group

Novell Licensing: Concepts 366

Novell License Certificate Format

Unit Related Descriptors

The following descriptors indicate information about the number of units
relative to a license certificate:

Minimum Units to Consume

Maximum Units to Consume

Parent Topic:

Novell License Certificate Format

Minimum Units to Consume

This descriptor indicates the minimum number of units to consume, no
matter what value is specified by the application. If the value specified by
the application is greater than this value, this descriptor has no effect. It has
one parameter, an LS_ULONG, which indicates the minimum number of
units.

Format

TagNo | Length | numUnits

TagNo

The value NLS_LIC_MIN_UNITS_TO_CONSUME, in low-high format.

Length

The number of bytes contained in the rest of the parameters for this field, as
an LS_ULONG in low-high format.

numUnits

An LS_ULONG in low-high format, indicating the minimum number of
units to consume from this certificate.

Parent Topic:

Novell License Certificate Format

Maximum Units to Consume

This descriptor indicates the maximum number of units to consume, no
matter what value is specified by the application. If the value specified by

Management Service Group

Novell Licensing: Concepts 367

the application is less than this value, this descriptor has no effect. It has one
parameter, an LS_ULONG, which indicates the maximum number of units.

Format

TagNo | Length | numUnits

TagNo

The value NLS_LIC_MAX_UNITS_TO_CONSUME, in low-high format.

Length

An LS_ULONG in low-high format, indicating the number of bytes
remaining in this field after this parameter.

numUnits

An LS_ULONG in low-high format, indicating the maximum number of
units to consume from this license certificate in any one request.

Parent Topic:

Novell License Certificate Format

Error Handling Descriptors

The following descriptors indicate how NLS responds to various errors:

Grant on LS_INSUFFICIENT_UNITS

Success on LS_LICENSE_TERMINATED

Grant on LS_LICENSE_UNAVAILABLE

Grant on LS_RESOURCES_UNAVAILABLE

Grant on LS_LICENSE_EXPIRED

Parent Topic:

Novell License Certificate Format

Grant on LS_INSUFFICIENT_UNITS

If this descriptor is present, when an LSRequest can't find enough installed
units, it should return LS_SUCCESS anyway. All remaining units are
consumed.

This descriptor has one parameter, an LS_ULONG. This parameter
describes the number of additional license units to grant beyond the base

Management Service Group

Novell Licensing: Concepts 368

amount. The licensing system no longer returns LS_SUCCESS if the number
of consumed licenses exceeds the number of installed licenses by the
specified number of units. If the value of the parameter is zero, no limitation
occurs.

Note that the parameter value can represent a percentage factor by the
license creation tool pre-computing the number of licenses the percentage
represents.

Format

TagNo | Length | numUnits

TagNo

The value NLS_ERR_INSUF_UNITS, in low-high format.

Length

An LS_ULONG in low-high format, indicating the number of bytes
remaining in this field after this parameter.

numUnits

The above described parameter as an LS_ULONG in low-high format.

Parent Topic:

Novell License Certificate Format

Success on LS_LICENSE_TERMINATED

This descriptor tells the licensing system to return success on an LSUpdate
even if the license has been reclaimed for some reason.

For example, if an application fails to check back in with the licensing
system, the licensing system may assume that the power has been shut off to
the PC. It reclaims the license units and grants them to someone else. After
this has occurred, suppose the application checks back in. This descriptor
would enable the licensing system to return success.

This descriptor has one parameter, an LS_ULONG. This parameter
describes the number of additional units that may be granted. The licensing
system no longer returns LS_SUCCESS if the number of consumed licenses
exceeds the number of installed licenses by this parameter. If a value of the
parameter is zero, no limitation occurs.

Note that this value can represent a percentage factor by the license creation
tool pre-computing the number of licenses the percentage represents.

Format

TagNo | Length | numUnits

Management Service Group

Novell Licensing: Concepts 369

TagNo

The value NLS_ERR_LIC_TERM, in low-high format.

Length

An LS_ULONG in low-high format, indicating the number of bytes
remaining in this field after this parameter.

numUnits

The above described parameter as an LS_ULONG in low-high format.

Parent Topic:

Novell License Certificate Format

Grant on LS_LICENSE_UNAVAILABLE

If this descriptor is present, the licensing system returns LS_SUCCESS on an
LSRequest or an LSUpdate if either of these calls would have generated the
error code LS_LICENSE_UNAVAILABLE. Any available units are
consumed/utilized.

This descriptor has one parameter, an LS_ULONG. This parameter
describes the maximum number of additional units to grant. The licensing
system no longer returns LS_SUCCESS if the number of consumed licenses
exceeds the number of installed licenses by the specified value. If a value of
the parameter is zero, no limitation occurs.

Note that this value can represet a percentage factor by the license creation
tool pre-computing the number of licenses the percentage represents.

Format

TagNo | Length | numUnits

TagNo

The value NLS_ERR_LIC_UNAVAIL, in low-high format.

Length

An LS_ULONG in low-high format, indicating the number of bytes
remaining in this field after this parameter.

numUnits

The above described parameter as an LS_ULONG in low-high format.

Parent Topic:

Novell License Certificate Format

Management Service Group

Novell Licensing: Concepts 370

Grant on LS_RESOURCES_UNAVAILABLE

If this descriptor is present, the licensing system returns LS_SUCCESS if any
licensing call generates an out of memory/disk/etc. condition.

Note that the system can only detect this error if it occurs on the server. If
the client runs out of memory before the request is sent to the server, the
error is still returned.

This descriptor has one parameter, an LS_ULONG, operating as a boolean
variable. A nonzero value indicates that this descriptor is active, a zero
value indicates that this descriptor is not active (default).

Format

TagNo | Length | Bool

TagNo

The value NLS_ERR_RES_UNAVAIL, in low-high format.

Length

An LS_ULONG in low-high format, indicating the number of bytes
remaining in this field following this parameter.

Bool

An LS_ULONG in low-high format. A nonzero value is TRUE; a zero value
is FALSE.

Parent Topic:

Novell License Certificate Format

Grant on LS_LICENSE_EXPIRED

If this descriptor is present, the licensing system returns LS_SUCCESS if any
applications requesting units encounters an LS_LICENSE_EXPIRED error.
This only occurs when an installed license that would normally cause the
request to be successful has expired.

This descriptor has one parameter, an LS_ULONG. This parameter indicates
the maximum number of days for this grace period. If the value of this
parameter is zero, there is no limit to the grace period.

Note that this value can represent a percentage by pre-computing the
number of days the percentage would represent and placing it in this
parameter.

Management Service Group

Novell Licensing: Concepts 371

Format

TagNo | Length | numDays

TagNo

The value NLS_ERR_LIC_EXPIRED, in low-high format.

Length

An LS_ULONG in low-high format, indicating the number of bytes
remaining in this field after this parameter.

numDays

The above described parameter as an LS_ULONG in low-high format.

Parent Topic:

Novell License Certificate Format

Default Descriptor Set

The only NLS-specific descriptor that is active by default is the Shareable
Descriptor. All other NLS descriptors are considered inactive unless
otherwise present in the license certificate. The following examples show
how to imitate common existing licensing models by combining the
available descriptors.

Concurrent Licensing Model

Nodelocked Licensing Model (not currently available)

Personal Use Licensing Model

Site Licensing Model

One-Time Use

Parent Topic:

Novell License Certificate Format

Concurrent Licensing Model

Required License Descriptors

Default Units Descriptor <parameter value = 1> 1 unit represents one
execution of the application.

Optional License Descriptors

Management Service Group

Novell Licensing: Concepts 372

Any additional descriptors that further define the application's policy. Note:
the Consumptive Descriptor can't be present.

Parent Topic:

Novell License Certificate Format

Nodelocked Licensing Model (not currently
available)

Required License Descriptors

NOTE: The license is located locally on the machine.

Default Metered Descriptor present and/or Shareable Descriptor present
Assignment Required Descriptor <parameter value = 1>

NOTE: A machine's ID needs to be assigned to the license by the
administrator.

Default Units Descriptor <parameter value = 1> 1 unit represents one
execution of the application.

Optional License Descriptors

Any additional descriptors that further define the application's policy. Note:
the Consumptive Descriptor can't be present.

Parent Topic:

Novell License Certificate Format

Personal Use Licensing Model

Required License Descriptors

Default Metered Descriptor present and/or Shareable Descriptor present
Assignment Required Descriptor <parameter value = 1>

The administrator needs to assign a user to the license to activate it.

Default Units Descriptor <parameter value = 1> 1 unit represents one
execution of the application.

Optional License Descriptors

Any additional descriptors that further define the application's policy. Note:
the Consumptive Descriptor can't be present.

Parent Topic:

Management Service Group

Novell Licensing: Concepts 373

Novell License Certificate Format

Site Licensing Model

Required Descriptors

Default Metered Descriptor and/or Shareable Descriptor present
Assignment Required Descriptor <parameter value = 1> An
organization/tree name must be assigned to this license by the
administrator.

Default Units Descriptor <parameter value = 1> 1 unit represents one
execution of the application.

Grant on LS_INSUFFICIENT_UNITS <parameter value = 0> Makes the
required license units fully available.

Grant on LS_LICENSE_TERMINATED <parameter value = 0> Users
should always have access to the required units.

Optional Descriptors

Any additional license descriptors that further define the licensed
application's policy. Note: the Consumptive Descriptor can't be present.

Parent Topic:

Novell License Certificate Format

One-Time Use

Required Descriptors

Consumptive Descriptor present Default Units Descriptor <parameter value
= 1> 1 unit represents one execution of the application.

Optional Descriptors

Any additional license descriptors that further define the licensed
application's policy. Note: the Shareable Descriptor can't be present.

Parent Topic:

Novell License Certificate Format

License Certificate Authentication and Security

There are two levels of authentication/security required for the
implementation of secure license certificates. The first provides a reasonable

Management Service Group

Novell Licensing: Concepts 374

implementation of secure license certificates. The first provides a reasonable
level of security against license tampering via a common, easy to
understand method. The second ensures a high degree of security against
license tampering. This approach is more licensing-system specific.

LSAPI Authentication

NLS Specific Authentication

Parent Topic:

Novell License Certificate Format

LSAPI Authentication

The first level of authentication is contained in the common license
certificate. The LSAPI v1.1 document requires four 32 bit secrets. These
secrets need to be encrypted so they are difficult to decrypt, but decryptable
by any licensing system. Further, the common license certificate needs to be
protected from tampering,

The procedure for creating licenses requires that ISVs generate both a
license certificate and an activation key. The license certificate/activation
key pair provide authentication and encryption by the method in which
they are utilized.

The activation key is created by taking the MD4 hash of a vendor
determined string, the publisher name, and the time at which the license
was created (in seconds). This hash becomes the activation key required by
the license certificate.

Next in the certificate creation process is to encrypt the secrets with an
encryption key. The encryption key is formed from the hash of the license
information (minus the secrets and any licensing-system specific
information) and the hash of the activation key. This hash then becomes the
key to encrypt the secrets. Every time the licensing system needs to access
the secrets, it must redetermine this encryption key.

If any information in the license certificate is changed, the keys can not be
correctly decrypted because license-specific information is part of the
encryption key. This provides security against license tampering. It also
provides security against reading the secrets from the license.

Note that it is not too difficult to determine the secret given a valid
activation key/certificate pair. Since the decryption process must be public,
it is impossible to encrypt, then publicly decrypt these keys in a completely
secure manner.

Creating an Activation Key

The following formula indicates the process described above for creating an
activation key.

Management Service Group

Novell Licensing: Concepts 375

h('vendor determined string' + 'publisher name' + time) ---> activation key

Encrypting/Decrypting Secrets

The following formulas indicate the process described above for encrypting
and decrypting secrets.

h(license information + h(activation key)) ---> encryption key

f(encryption key, secrets) ---> encrypted secret/authentication buffer

NOTE: License information = common license certificate information
only (not including the authentication field).

Parent Topic:

Novell License Certificate Format

NLS Specific Authentication

Because the common license certificate authentication scheme is imperfect,
NLS provides a more secure authentication process. This process makes it
very difficult to forge a certificate.

To ensure this high degree of confidence, public/private key pairs are
utilized for authenticating the information contained in the license
certificate.

In the licensing-system specific information area of the common license
format, an additional tag is provided for NLS authentication information.

A message digest of the license information (minus the NLS authentication
field and any other licensing system-specific information that is not NLS
related) is computed. This message digest is then encrypted with the
product vendor's private key. This result is stored in the Public/Private Key
Authentication Stamp (Digital Signature) descriptor in the licensing
system-specific area of the license.

The application that uses this license can authenticate the validity of the
license certificate by requesting the Public/Private Key Authentication
Stamp (Digital Signature) using the NLSGetCertificate and
NLSCertificateTagToMessage functions and then checking it using the
corresponding public key.

Note that computing the private key from the public key, and therefore
forging a license certificate, is very unlikely if a key size of 1024 bits is used.

Parent Topic:

Novell License Certificate Format

Management Service Group

Novell Licensing: Concepts 376

Novell Licensing: Functions

Management Service Group

Novell Licensing: Functions 377

LSEnumProviders

Returns a unique string containing the name of any accessible licensing
system

NetWare Server: 4.1

Platform: DOS, NLM, Windows* 3.1, Windows*95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE LSEnumProviders (
 LS_ULONG index,
 LS_STR *buffer);

Parameters

index

(IN) Specifies an index for all installed licensing systems (zero for the
first licensing system, 1 for the second, and so on). index should be
incremented by the caller for each successive call to LSEnumProviders
until LS_BAD_INDEX is returned.

buffer

(OUT) Points to the buffer where the unique NULL-terminated string
identifying the licensing system will be placed. This buffer must be at
least 255 bytes.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

LS_BAD_ARG

One or more parameters are invalid.

Remarks

Management Service Group

Novell Licensing: Functions 378

An application can enumerate the installed licensing systems by calling
LSEnumProviders successively. The string returned by
LSEnumProviders is the same as that returned by calling LSQuery with
information set to LS_INFO_SYSTEM.

Management Service Group

Novell Licensing: Functions 379

LSFreeHandle

Releases all resources associated with the specified licensing context

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

void LSFreeHandle (
 LS_HANDLE licenseHandle);

Parameters

licenseHandle

(IN) Specifies a handle, created by LSRequest, identifying a licensing
context.

Return Values

None

Remarks

LSFreeHandle should be called after LSRelease returns or after an error
is returned by LSRequest. LSFreeHandle releases all resources
associated with the specified licensing context, including license units.
Calls to LSGetMessage should be made before the handle is freed.

To successfully release license units, the user associated with the current
connection must be security-equivalent to the original creator of the
license handle (from LSRequest).

Management Service Group

Novell Licensing: Functions 380

LSGetMessage

Gets a string describing the current error code

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE LSGetMessage (
 LS_HANDLE licenseHandle,
 LS_STATUS_CODE value,
 LS_HANDLE *buffer,
 LS_ULONG bufferSize);

Parameters

licenseHandle

(IN) Specifies the handle that identifies the license context. This
argument must be a handle that was created with a successful or
unsuccessful call to LSRequest.

value

(IN) Specifies any status code that can be returned by an LSAPI
function (see NLS Status Codes).

buffer

(OUT) Points to a buffer where the localized error message string is
returned.

bufferSize

(IN) Specifies the maximum size of information that licensing system
returns to buffer.

Return Values

The resulting detailed status of the LSGetMessage function:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Management Service Group

Novell Licensing: Functions 381

Insufficient resources (such as memory) available to complete request.

LS_BAD_ARG

One or more parameters are invalid.

LS_BAD_HANDLE

licenseHandle did not describe a valid license system context.

Remarks

For a given error code, LSGetMessage returns a string describing the
error. The string describes the error and a recommended action to take. If
value is LS_USE_LAST, the last error associated with the supplied
licensing handle is returned; otherwise, the supplied error code is used.

Management Service Group

Novell Licensing: Functions 382

LSQuery

Gets information about a license certificate

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE LSQuery (
 LS_HANDLE licenseHandle,
 LS_ULONG information,
 LS_VOID *infoBuffer,
 LS_ULONG bufferSize,
 LS_ULONG *actualBufferSize);

Parameters

licenseHandle

(IN) Specifies a handle identifying the license context. This must be a
handle created by a successful call to LSRequest.

information

(IN) Identifies the information to be returned:

LS_INFO_NONE Reserved

LS_INFO_SYSTEM Returns the unique ID of the licensing
system supplying the current license
context. This ID is a NULL-terminated string
equivalent to the value returned by
LSEnumProviders.

LS_INFO_DATA Returns the entire license certificate. The first
LS_ULONG in the data buffer indicates the
size in bytes of the data that follows.

LS_UPDATE_PERI
OD

Returns the recommended interval in
minutes at which LSUpdate should be
called. This value is returned as an
LS_ULONG in the data buffer. If a value of
0xFFFFFFFF is returned, no recommended
update period exists for the associated
system.

infoBuffer

(OUT) Points to a buffer where the resulting information is returned.

Management Service Group

Novell Licensing: Functions 383

bufferSize

(IN) Specifies the maximum number of bytes for the licensing system
to return in infoBuffer. This should be large enough to hold the
expected data; otherwise, the status code LS_BUFFER_TOO_SMALL is
returned, and only bufferSize bytes of data are returned.

actualBufferSize

(OUT) Points to the number of bytes of information actually put in
infoBuffer. This value does not include any trailing NULL bytes.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

LS_AUTHORIZATION_UNAVAILABLE

Current user was not security-equivalent to the original creator of the
licensing handle.

LS_BAD_ARG

One or more parameters are invalid.

LS_BAD HANDLE

licenseHandle did not indicate a currently valid licensing handle.

Remarks

LSQuery gets information about license units obtained by calling
LSRequest. For example, an application can determine the license type,
time restrictions, and so on.

Management Service Group

Novell Licensing: Functions 384

LSRelease

Releases licensing resources associated with the license context

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE LSRelease (
 LS_HANDLE licenseHandle,
 LS_ULONG totUnitsConsumed,
 LS_STR *logComment);

Parameters

licenseHandle

(IN) Specifies a handle identifying the license context. licenseHandle
must be a handle received from a successful call to LSRequest.

totUnitsConsumed

(IN) Specifies the total number of units consumed in this license
handle context since LSRequest was initially called. The software
publisher can specify this policy attribute within the application. A
value of LS_DEFAULT_UNITS indicates that the licensing system
should determine the appropriate value using its own licensing policy
mechanisms.

logComment

(IN) Points to an optional string indicating a comment to be associated
with the release and logged by NLS. The comment is logged even if an
error is returned. To avoid logging the comment, specify LS_NULL.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

Management Service Group

Novell Licensing: Functions 385

LS_AUTHORIZATION_UNAVAILABLE

Current user was not security-equivalent to the original creator of the
licensing handle.

LS_BAD_ARG

One or more parameters are invalid.

LS_BAD HANDLE

licenseHandle did not indicate a currently valid licensing handle.

Remarks

LSRelease releases licensing units associated with the license context
identified by licenseHandle. The license handle context is not freed; to free
the handle, call LSFreeHandle.

To successfully release license units, the user associated with the current
connection must be security-equivalent to the original creator of the
license handle (from LSRequest).

Management Service Group

Novell Licensing: Functions 386

LSRequest

Requests licensing resources associated with a specific software product

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE LSRequest (
 LS_STR *licenseSystem,
 LS_STR *publisherName,
 LS_STR *productName,
 LS_STR *version,
 LS_ULONG totUnitsReserved,
 LS_STR logComment,
 LS_CHALLENGE *challenge,
 LS_ULONG *totUnitsGranted,
 LS_HANDLE *licenseHandle);

Parameters

licenseSystem

(IN) Points to a string (from LSEnumProviders) that uniquely
identifies a specific licensing system. LS_ANY indicates a match
against all installed licensing systems.

publisherName

(IN) Points to the name of the publisher (manufacturer) of this
product. This string must not be NULL and must be unique in the first
32 characters. A company name and trademark should be used to
guarantee uniqueness.

productName

(IN) Points to the name of the product requesting license units. This
string must not be NULL and must be unique in the first 32 characters
in the publisherName domain.

version

(IN) Points to the version number of this product. This string must be
unique in the first 12 characters in the productName domain. This string
must not be NULL.

totUnitsReserved

(IN) Specifies the number of units required to run the application. The
software publisher can specify this policy attribute within the
application. LS_DEFAULT_UNITS lets the licensing system determine
the number of units using information provided by the licensing
system or the license certificate. NLS verifies that the requested

Management Service Group

Novell Licensing: Functions 387

number of units exist and can reserve those units, but no units are
actually consumed at this time. The number of units available is
returned in totUnitsGranted.

logComment

(IN) Specifies an optional string indicating a comment to be associated
with the request and logged by NLS. The comment is logged even if an
error is returned. To avoid logging the comment, specify LS_NULL.

challenge

(IN/OUT) On input, points to a challenge structure (LS_NULL if no
challenge mechanism is desired). On output, points to the response to
the challenge.

totUnitsGranted

(OUT) Points to the LS_ULONG where the total number of units
granted is returned.

licenseHandle

(OUT) Points to the LS_HANDLE where a handle to the license context
is returned.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

LS_AUTHORIZATION_UNAVAILABLE

Current user was not security-equivalent to the original creator of the
licensing handle.

LS_BAD_ARG

One or more parameters are invalid.

LS_INSUFFICIENT_UNITS

Licensing system could not find enough installed license units to
satisfy the request at this time.

LS_LICENSE_UNAVAILABLE

Not enough license units are available to fulfill the request, but there
are enough units installed to fulfill the request.

Management Service Group

Novell Licensing: Functions 388

LS_NETWORK_UNAVAILABLE

The network is currently unavailable.

Remarks

If a valid license certificate is found and the challenge mechanism is used,
the challenge response is computed and LS_SUCCESS is returned. At a
minimum, the publisherName, productName, and version strings are used to
identify matching license certificates.

For an LSRequest to be able to access a license certificate, the
distinguished name (DN) associated with the client’s connection must be
security-equivalent to at least one of the assignments listed in the license
certificate. If no assignments are listed, and the policy of the license
certificate allows this, the license certificate can be accessed by anyone.
NLS also determines user and machine information based on the NCP
connection and the associated NDS information, and determines whether
license units can be granted or not based on this information. Only license
units that are accessible to the user are returned by this function.

The application should always call LSFreeHandle to release the memory
associated with the specified handle. If license units are granted, the
application must call LSRelease to release the granted units before
LSFreeHandle is called.

Management Service Group

Novell Licensing: Functions 389

LSUpdate

Verifies that the current handle is still valid

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE LSUpdate (
 LS_HANDLE licenseHandle,
 LS_ULONG totUnitsConsumed,
 LS_ULONG totUnitsReserved,
 LS_STR *logComment,
 LS_CHALLENGE *challenge,
 LS_ULONG *totUnitsGranted);

Parameters

licenseHandle

(IN) Specifies a handle identifying the license context. This argument
must be a handle that was received from a successful call to
LSRequest.

totUnits Consumed

(IN) Specifies the total number of units consumed so far in this handle
context. The software publisher can specify this policy attribute within
the application. LS_DEFAULT_UNITS indicates that the licensing
system should determine the appropriate value, using its own
licensing policy mechanisms. If an error is returned, the units are not
consumed.

totUnitsReserved

(IN) Specifies the number of units to be reserved. If no additional units
are required since the initial call to LSRequest, or since the last call to
LSUpdate, then this parameter should be the current total as returned
in totUnitsGranted from LSRequest. The total units reserved includes
units consumed.

logComment

(IN) Points to an optional string indicating a comment to be associated
with the request and logged by NLS. The comment is logged even if an
error is returned. To avoid logging the comment, specify LS_NULL.

challenge

(IN/OUT) On input, points to a challenge structure (LS_NULL if no
challenge mechanism is desired). On output, points to the response to
the challenge.

Management Service Group

Novell Licensing: Functions 390

totUnitsGranted

(OUT) Points to the total number of units granted since the initial
license request was returned.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

LS_AUTHORIZATION_UNAVAILABLE

Current user was not security-equivalent to the original creator of the
licensing handle.

LS_BAD_ARG

One or more parameters are invalid.

LS_BAD HANDLE

licenseHandle did not indicate a currently valid licensing handle.

LS_INSUFFICIENT_UNITS

Licensing system could not find enough installed license units to
satisfy the request at this time.

LS_LICENSE_UNAVAILABLE

Not enough license units are available to fulfill the request, but there
are enough units installed to fulfill the request.

LS_LICENSE_TERMINATED

Re-verification of the existing units failed, so no additional units were
requested. An update was not done within the specified update
period, and the license units were issued to another user by NLS
before this update was attempted.

LS_LICENSE_EXPIRED

Re-verification of the existing units failed due to an out-of-date license
certificate. Additional units were not requested.

Remarks

The client application periodically issues this call to re-verify that the
current license handle is still valid. LSQuery can be used to determine

Management Service Group

Novell Licensing: Functions 391

the proper update interval for the current licensing context. A guideline
of once an hour might be appropriate, with a minimum interval of 15
minutes. By default, NLS utilizes the minimum time of once every 15
minutes. The software vendor can specify a different interval in the
license certificate itself. Any update period specified in the license
certificate overrides the default update period.

If the number of new units requested is greater than the number
available, then the update request fails with an
LS_INSUFFICIENT_UNITS error. On successful completion, LSUpdate
returns totUnitsGranted to indicate the current running total of units
granted. If totUnitsConsumed exceeds the number of units reserved, then
the LS_INSUFFICIENT_UNITS error is returned, and the remaining
units are consumed. A challenge response is not returned if an error
occurs during the update process.

To successfully update license units, the user associated with the current
connection must be security-equivalent to the original creator of the
license handle (from LSRequest).

Management Service Group

Novell Licensing: Functions 392

NLSAddAssignment

Restricts the use of a license certificate based on assignment type

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSAddAssignment (
 LS_STR *licenseSystem,
 LS_STR *publisher,
 LS_STR *product,
 LS_STR *version,
 LS_LICENSE_ID licenseID,
 LS_ULONG assignmentType,
 LS_VOID *assignmentInfo,
 LS_ULONG *assignmentInfoLen);

Parameters

licenseSystem

(IN) Points to the licensing system on which the specified product
license certificate exists. It must be the specific name of a licensing
system as returned by LSEnumProviders, or LS_ANY.

publisher

(IN) Points to the publisher name of the license certificate to which the
assignment is added (not LS_ANY).

product

(IN) Points to the product name of the license certificate to which the
assignment is added (not LS_ANY).

version

(IN) Points to the version string of the license certificate to which the
assignment is added (not LS_ANY).

licenseID

(IN) Specifies the ID of the license certificate to which assignment is
added.

assignmentType

(IN) Specifies the type of assignment to add in assignmentInfo. Current
valid values and their associated assignmentInfo format are as follows:

LS_USER_NAME restricts based on a user or object name. NDS
containers or group names can be specified. All elements that exist
under a container or group then have access. assignmentInfo should

Management Service Group

Novell Licensing: Functions 393

contain the name to which access is being assigned.

LS_MACHINE restricts based on a machine address. This allows a
license certificate to be assigned to one or more machines.
assignmentInfo should contain the station address of the machine.

assignmentInfo

(IN) Points to the information required for performing the assignment
based on the parameter assignmentType.

assignmentInfoLen

(IN) Points to the length of assignmentInfo, including the NULL
terminator.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

LS_BAD_ARG

One or more parameters are invalid.

LS_AUTHORIZATION_UNAVAILABLE

Either the license certificate specified could not be located, or the
current user was not security-equivalent to the license certificate.

Remarks

NLSAddAssignment restricts the usage of a license certificate based on
assignmentType. This allows license certificates to be reserved for a specific
user, group, or machine. Additional restriction types will become
available as their need is determined.

NLSAddAssignment applies restrictions to a specific license certificate,
so all input must be fully specified. Also, this effect is additive.
Additional calls to NLSAddAssignment cause the new restriction to be
added in an “OR-like” fashion. To change the assignment to a different
user, first remove the old restriction with NLSRemoveAssignment.

To add assignments, the user associated with the current connection must
be security-equivalent to the owner attribute of the license certificate.

Management Service Group

Novell Licensing: Functions 394

NLSAddProductInformation

Adds non-secure license certificate information to the licensing system
database

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSAddProductInformation (
 LS_STR *licenseSystem,
 LS_STR *contextName,
 LS_STR *publisherName,
 LS_STR *productName,
 LS_STR *version,
 LS_ULONG licenseUnits,
 LS_ULONG attributesLength,
 LS_VOID *licenseAttributes);

Parameters

licenseSystem

(IN) Points to the name of the licensing system into which this product
information should be installed. LS_ANY can be specified, indicating
that this information is to be installed into the first licensing system
that supports this procedure.

contextName

(IN) Points to the context where information will be added. LS_ANY
can be specified, indicating that this information will be installed into
the current user’s context on the current connection.

publisherName

(IN) Points to the publisher name of the product being installed
(cannot be NULL or LS_ANY).

productName

(IN) Points to the product name of the product being installed (cannot
be NULL or LS_ANY).

version

(IN) Points to the version of the product being installed (cannot be
NULL or LS_ANY).

licenseUnits

(IN) Specifies the number of license units to install for this product.

attributesLength

Management Service Group

Novell Licensing: Functions 395

(IN) Specifies the length of the optional policy attribute section of this
information to install. This should be set to zero if no attributes are
specified.

licenseAttributes

(IN) Points to a buffer containing the attributes occurring
contiguously. These override the corresponding default attributes in
the licensing system.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

LS_BAD_ARG

One or more parameters are invalid.

Remarks

NLSAddProductInformation allows a software asset management
product (or an administrator) to create non-secure metering information
in the licensing system databases. Specific policy attributes about the
software’s license agreement can be placed into the database along with
the product information. This creates an “internal license” for the
product, with no security information. These licenses might not be usable
by a license-enabled application if the application requires the security
information to execute. The installer of this information becomes the
“owner” of this information.

NLS creates a unique license ID for license certificate information
installed by NLSAddProductInformation.

Management Service Group

Novell Licensing: Functions 396

NLSAvailable

Provides information about license units available for products in one or all
licensing systems

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSAvailable (
 LS_STR *licenseSystem,
 LS_STR *contextName,
 LS_STR *publisher,
 LS_STR *product,
 LS_STR *version,
 LS_ULONG maxStrLen,
 LS_STR *availablePublisher,
 LS_STR *availableProduct,
 LS_STR *availableVersion,
 LS_LICENSE_ID availableLicID,
 LS_ULONG *availableUnits,
 LS_ULONG *index);

Parameters

licenseSystem

(IN) Points to the licensing systems to search for the specified
products. It can either be the specific name of a licensing system, as
returned by LSEnumProviders, or it can be LS_ANY. If LS_ANY is
specified, information is returned from all licensing systems accessible
from this client.

contextName

(IN) Points to the context to search for the specified products. It should
be the distinguished name of the context, or LS_ANY. If LS_ANY is
specified, the current user’s context will be used. Information from the
current context to the root is returned.

publisher

(IN) Points to the publisher name to filter by. Only transactions that
have this publisher name are returned. LS_ANY indicates that any
publisher name can appear in the returned entry.

product

(IN) Points to the product name to filter by. Only transactions that
have this product name are returned. LS_ANY indicates that any
product name can appear in the returned entry.

Management Service Group

Novell Licensing: Functions 397

version

(IN) Points to the version string to filter by. Only transactions that have
this version string are returned. LS_ANY indicates that any version
string can appear in the returned entry.

maxStrLen

(IN) Specifies the maximum length (in bytes) of string output that can
be placed into availablePublisher, availableProduct, and availableVersion. If
any of these output strings is longer than maxStrLen,
LS_BUFFER_TOO_SMALL is returned.

availablePublisher

(OUT) Points to the publisher name for which available units are
returned. The product is completely described by a combination of
availablePublisher, availableProduct, and availableVersion.

availableProduct

(OUT) Points to the product name for which the available units are
returned.

availableVersion

(OUT) Points to the version for which the available units are returned.

availableLicID

(OUT) Returns the unique identifier/serial number of the license
certificate from which the information was obtained, within the
specific publisher, product, and version domain.

availableUnits

(OUT) Points to the number of available license units at the time the
function was called. This does not necessarily indicate the number of
installed instances of a product, because availableUnits might represent
something else based on the application’s licensing policy. Also, this
takes into account the current connection status of the user calling
NLSAvailable. If the certificate is not available, availableUnits is zero.
When used in combination with NLSInUse and NLSInstalled, this
condition can be easily detected.

index

(IN/OUT) Used to iterate through the entire list of
publisher/product/version combinations that are currently available.
index should be initialized to zero on the first call to the function, then
opaquely passed back into the function on successive calls. To retrieve
all information, continue this process until LS_BAD_INDEX is
returned.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

Management Service Group

Novell Licensing: Functions 398

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_BAD_INDEX

 index does not point to a valid license certificate. This usually occurs
when the end of the requested information has been completely
returned.

LS_BAD_ARG

One or more parameters are invalid.

LS_BUFFER_TOO_SMALL

The maxStrLen parameter did not indicate a buffer large enough to
hold one of the requested output parameters.

Remarks

NLSAvailable provides information about the number of license units
available for products in one or all licensing systems, based on the
filtering specified by licenseSystem, publisher, product, and version, on a
certificate-by-certificate basis.

When NLSAvailable is first called, index should be initialized to zero. A
single call to this function returns the availability of units for one
certificate. To get information for other certificates, call NLSAvailable
again with index reset to zero to obtain all the information relating to the
newly specified parameters. When LS_BAD_INDEX is returned by
NLSAvailable, all information relating to the specified filtering
parameters has been returned.

If the license certificate has security restrictions associated with it
(assignments, and so on), the number of units available to a
non-security-equivalent object is always zero.

Management Service Group

Novell Licensing: Functions 399

NLSCertificateTagToMessage

Presents license certificate information to the user in a more clear and
organized manner

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSCertificateTagToMessage (
 LS_VOID *licenseCertificate,
 LS_ULONG licenseCertificateLength,
 LS_ULONG maxStrLen,
 LS_STR *messageString,
 LS_ULONG *tagNumber);

Parameters

licenseCertificate

(IN) Points to a buffer that contains the data describing a valid license
certificate. NLSGetCertificate can be used to retrieve this value.

licenseCertificateLength

(IN) Specifies the overall length of the license certificate (in bytes)
pointed to by licenseCertificate.

maxStringLen

(IN) Specifies the maximum length of the string (in bytes) that can be
placed into messageString on return from this function.

messageString

(OUT) Points to a buffer in which to place the localized message string
on return. On output, it is a text message string describing the tag and
its parameters.

tagNumber

(IN/OUT) Points to a tag number (in the order they appear in the
certificate) for which the translation should be performed. To view all
tags in a license certificate, this value should be initialized to zero on
the first call to this function, and opaquely passed back until
LS_BAD_INDEX is returned.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

Management Service Group

Novell Licensing: Functions 400

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_BAD_INDEX

index does not point to a valid license certificate. This usually occurs
when the end of the requested information has been completely
returned.

LS_BAD_ARG

One or more parameters are invalid.

LS_BUFFER_TOO_SMALL

The maxStrLen parameter did not indicate a buffer large enough to
hold one of the requested output parameters.

Remarks

The LSP performs this translation for the application; the application
does not require any specific knowledge of the fields contained in the
license certificate to perform this task.

Management Service Group

Novell Licensing: Functions 401

NLSDeleteCertificate

Removes a license certificate record from the license database

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSDeleteCertificate (
 LS_STR *licenseSystem,
 LS_STR *publisherName,
 LS_STR *productName,
 LS_STR *version,
 LS_LICENSE_ID licenseID);

Parameters

licenseSystem

(IN) Points to a licensing system that contains the license certificate to
be deleted. Specify a specific licensing system name as received from
LSEnumProviders, or specify LS_ANY to initiate a search for the first
matching certificate.

publisherName

(IN) Points to the publisher name of the license certificate to delete
from the license certificate database (cannot be NULL or LS_ANY).

productName

(IN) Points to the product name of the license certificate to delete from
the license certificate database (cannot be NULL or LS_ANY).

version

(IN) Points to the version of the license certificate to delete from the
license certificate database (cannot be NULL or LS_ANY).

licenseID

(IN) Specifies the unique identifier (serial number) of the license
certificate to delete from the license certificate database.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

Management Service Group

Novell Licensing: Functions 402

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

LS_BAD_ARG

One or more parameters are invalid.

LS_AUTHORIZATION_UNAVAILABLE

Specified license certificate could not be located, or user does not have
privileges to delete this license certificate.

Remarks

NLSDeleteCertificate removes the license certificate record from the
license database where it is installed, or marks it as unusable. This license
certificate is then no longer visible to any other licensing functions.

The user associated with the current connection must be
security-equivalent to the owner attribute of the license certificate.

Management Service Group

Novell Licensing: Functions 403

NLSGetCertificate

Retrieves the data that makes up a license certificate

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSGetCertificate (
 LS_STR *licenseSystem,
 LS_STR *publisherName,
 LS_STR *productName,
 LS_STR *version,
 LS_LICENSE_ID licenseID,
 LS_ULONG maxBufferLen,
 LS_VOID *licenseCertificate,
 LS_ULONG *actualBufferLen);

Parameters

licenseSystem

(IN) Points to the licensing system in which the license certificate to
retrieve is located. Specify a specific licensing system name as received
from LSEnumProviders, or specify LS_ANY to initiate a search for the
first matching certificate.

publisherName

(IN) Points to the publisher name of the license certificate to get
(cannot be NULL or LS_ANY).

productName

(IN) Points to the product name of the license certificate to get (cannot
be NULL or LS_ANY).

version

(IN) Points to the version string of the license certificate to get (cannot
be NULL or LS_ANY).

licenseID

(IN) Specifies the license certificate ID or serial number of the license
certificate to get.

maxBufferLen

(IN) Specifies the maximum amount of data (in bytes) that can be
placed into the buffer pointed to by licenseCertificate.

licenseCertificate

(OUT) Points to a buffer in which the license certificate is to be placed.

Management Service Group

Novell Licensing: Functions 404

This buffer is filled only if the return is LS_SUCCESS.

actualBufferLen

(OUT) Points to the actual number of bytes the license certificate
inhabits in the buffer pointed to by licenseCertificate.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

LS_BAD_ARG

One or more parameters are invalid.

LS_BUFFER_TOO_SMALL

The maxStrLen parameter did not indicate a buffer large enough to
hold one of the requested output parameters.

LS_AUTHORIZATION_UNAVAILABLE

The specified license certificate could not be located, or you do not
have privileges to delete this license certificate.

Remarks

NLSGetCertificate lets an application retrieve the actual data
comprising a license certificate. This data is in the standard license
certificate format. The application needs to parse this data to obtain
information about the license certificate or call
NLSCertificateTagToMessage to translate the information, on a
tag-by-tag basis, to localized message strings for display to the user.

Management Service Group

Novell Licensing: Functions 405

NLSGetEntry

Views all the individual components of a transaction

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSGetEntry (
 LS_HANDLE *transactionHandle,
 LS_TRANS_ENTRY *transactionEntry,
 LS_ULONG *index);

Parameters

transactionHandle

(IN) Points to the handle (returned by NLSGetTransaction) that
points to a set of entries.

transactionEntry

(OUT) Points to an individual entry in the transaction. The entry is a
structure of the following format:

struct LS_TRANS_ENTRY_TAG
{
 LS_STR *actionName;
 LS_ULONG time;
 LS_STATUS_CODE actionResult;
 LS_ULONG numUnits;
 LS_STR *userLoggedMessage;
} LS_TRANS_ENTRY;

IMPORTANT: actionName and userLoggedMessage are allocated
by the NLSAPI library. These values should be freed when the
entry is no longer needed.

index

(IN/OUT) Used to iterate through the entire list of transactions. This
should be initialized to zero on the first call to the function, then
opaquely passed back into the function on successive calls. To retrieve
all information, continue this process until LS_BAD_INDEX is
returned.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message

Management Service Group

Novell Licensing: Functions 406

strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

LS_BAD_HANDLE

Specified handle does not describe an existing transaction handle.

LS_BAD INDEX

There are no more entries after the specified index.

Remarks

NLSGetEntry views all the individual components of a transaction. This
lets you determine how long license units were held, and it provides a
detailed history of any errors that occurred in the process of obtaining
and holding license units. Most transaction entries are generated by
applications calling LSAPI functions; however, system errors and license
certificate installations also generate transactions.

The user associated with the current connection must be
security-equivalent to the creator of the transaction handle.

Management Service Group

Novell Licensing: Functions 407

NLSGetTransaction

Retrieves a single transaction record

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSGetTransaction (
 LS_STR *licenseSystem,
 LS_STR *publisher,
 LS_STR *product,
 LS_STR *version,
 LS_STR *userName
 LS_ULONG maxStrLen,
 LS_HANDLE *transactionHandle,
 LS_STR *transactionPublisher,
 LS_STR *transactionProduct,
 LS_STR *transactionVersion,
 LS_STR *transactionUserName,
 LS_ULONG *index);

Parameters

licenseSystem

(IN) Points to the licensing system to receive transaction entries from.
Specify a specific licensing system name as received from
LSEnumProviders, or specify LS_ANY to initiate a search for the first
matching certificate.

publisher

(IN) Points to the publisher name to filter by. Only transactions that
have this publisher name are returned. LS_ANY indicates that
transactions will not be filtered by publisher.

product

(IN) Points to the product name to filter by. Only transactions that
have this product name are returned. LS_ANY indicates that
transactions will not be filtered by product.

version

(IN) Points to the version string to filter by. Only transactions that have
this version string are returned. LS_ANY indicates that transactions
will not be filtered by version.

userName

(IN) Points to the user/object name to filter by. Only transactions that
have this user/object name are returned. LS_ANY indicates that

Management Service Group

Novell Licensing: Functions 408

transactions will not be filtered by user/object.

maxStrLen

(IN) Specifies the maximum length (in bytes) of string output that can
be placed into transactionPublisher, transactionProduct, and
transactionVersion. If any of these output strings is longer than
maxStrLen, LS_BUFFER_TOO_SMALL is returned.

transactionHandle

(OUT) Points to the handle for the transaction. The individual entries
for the overall transaction can then be obtained by calling
NLSGetEntry with this handle. The handle is only valid when
LS_SUCCESS is returned.

transactionPublisher

(OUT) Points to the name of the publisher for this transaction. This
name applies to all entries in the returned transaction.

transactionProduct

(OUT) Points to the name of the product for this transaction. This
name applies to all entries in the returned transaction.

transactionVersion

(OUT) Points to the version string for this transaction. This version
string applies to all entries in the returned transaction.

transactionUserName

(OUT) Points to the user/object name that was responsible for
initiating this transaction. This name applies to all entries in the
returned transaction.

index

(IN/OUT) Used to iterate through the entire list of transactions. index
should be initialized to zero on the first call to the function, then
opaquely passed back into the function on successive calls. To retrieve
all information, continue this process until LS_BAD_INDEX is
returned.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Management Service Group

Novell Licensing: Functions 409

Insufficient resources (such as memory) available to complete request.

LS_BAD_ARG

One or more parameters are invalid.

LS_BUFFER_TOO_SMALL

The maxStrLen parameter did not indicate a buffer large enough to
hold one of the requested output parameters.

LS_AUTHORIZATION_UNAVAILABLE

Specified license certificate could not be located, or you do not have
privileges to delete this license certificate.

LS_BAD INDEX

There are no more entries after the specified index.

Remarks

NLSGetTransaction retrieves a single transaction record based on the
filtering licenseSystem, publisher, product, version, and userName. This single
transaction describes all of the individual calls a single licensed
application made, including errors generated, from the initial call to
LSRequest through the call to LSFreeHandle. It also includes license
certificate installation and deletion.

The transaction handle is a one-for-one mapping with the license handle.
The individual entries can be accessed with NLSGetEntry.

Management Service Group

Novell Licensing: Functions 410

NLSInstallCertificate

Installs a license certificate into the specified licensing system

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSInstallCertificate (
 LS_STR *licenseSystem,
 LS_STR *contextName,
 LS_ULONG licenseLength,
 LS_VOID *licenseCertificate,
 LS_ULONG passwordLength,
 LS_VOID *activationPassword);

Parameters

licenseSystem

(IN) Points to the licensing system in which to install the license
certificate. This should be either a value retrieved by
LSEnumProviders or LS_ANY. If LS_ANY is specified, the licensing
systems are tried in turn until the license certificate is successfully
installed.

contextName

(IN) Points to the context where the license certificate will be added.
LS_ANY can be specified, indicating that this license certificate will be
installed into the current user’s context on the current connection.

licenseLength

(IN) Specifies the total length of the license certificate to install, in
bytes.

licenseCertificate

(IN) Points to a block of data representing a license certificate in the
standard license certificate format.

passwordLength

(IN) Specifies the length of the activation password for the provided
license certificate.

activationPassword

(IN) Points to the password required for activating the license
certificate information provided in licenseCertificate.

Return Values

Management Service Group

Novell Licensing: Functions 411

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

LS_BAD_ARG

One or more parameters are invalid.

LS_AUTHORIZATION_UNAVAILABLE

Specified license certificate could not be located, or you do not have
privileges to delete this license certificate.

Remarks

NLSInstallCertificate installs a license certificate into the specified
licensing system and into the database specified by contextName. The
license certificate is “activated” with the provided activation password.
This password initializes the authentication information that can be
associated with a license certificate.

The licensing system initially assigns ownership of the license certificate
to the user who invoked this procedure. To change ownership, call
NLSTransferOwnership.

Management Service Group

Novell Licensing: Functions 412

NLSInstalled

Provides information about license units that are installed for products in
one or all licensing systems

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSInstalled (
 LS_STR *licenseSystem,
 LS_STR *contextName,
 LS_STR *publisher,
 LS_STR *product,
 LS_STR *version,
 LS_ULONG maxStrLen,
 LS_STR *installedPublisher,
 LS_STR *installedProduct,
 LS_STR *installedVersion,
 LS_LICENSE_ID installedLicenseID,
 LS_ULONG *numInstalledUnits,
 LS_ULONG *index);

Parameters

licenseSystem

(IN) Points to the licensing systems to search for the specified
products. It can either be the specific name of a licensing system, as
returned by LSEnumProviders, or it can be LS_ANY. If LS_ANY is
specified, information is returned from all licensing systems accessible
from this client.

contextName

(IN) Points to the context to search for the specified products. It should
be the distinguished name of the context, or LS_ANY. If LS_ANY is
specified, the current user’s context will be used. Information from the
current context to the root is returned.

publisher

(IN) Points to the publisher name to filter by. Only transactions that
have this publisher name are returned. LS_ANY indicates that any
publisher name can appear in the returned entry.

product

(IN) Points to the product name to filter by. Only transactions that
have this product name are returned. LS_ANY indicates that any
product name can appear in the returned entry.

Management Service Group

Novell Licensing: Functions 413

version

(IN) Points to the version string to filter by. Only transactions that have
this version string are returned. LS_ANY indicates that any version
string can appear in the returned entry.

maxStrLen

(IN) Specifies the maximum length (in bytes) of string output that can
be placed into availablePublisher, availableProduct, and availableVersion. If
any of these output strings is longer than maxStrLen,
LS_BUFFER_TOO_SMALL is returned.

installedPublisher

(OUT) Points to the name of an installed publisher, based on current
value of index.

installedProduct

(OUT) Points to the name of an installed product, based on current
value of index.

installedVersion

(OUT) Points to the current installed version, based on the current
value of index.

installedLicID

(OUT) Returns the unique identifier/serial number (within specified
publisher, product, version domain) of the license certificate from
which this information was retrieved.

numInstalledUnits

(OUT) Points to the number of available license units at the time the
function was called. This does not necessarily indicate the number of
installed instances of a product, because availableUnits might represent
something else based on the application’s licensing policy. Also, this
takes into account the current connection status of the user calling
NLSAvailable. If the certificate is not available, availableUnits is zero.
When used in combination with NLSInUse and NLSInstalled, this
condition can be easily detected.

index

(IN/OUT) Used to iterate through the entire list of
publisher/product/version combinations that are currently available.
index should be initialized to zero on the first call to the function, then
opaquely passed back into the function on successive calls. To retrieve
all information, continue this process until LS_BAD_INDEX is
returned.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

Management Service Group

Novell Licensing: Functions 414

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_BAD INDEX

Index does not point to a valid license certificate. This usually occurs
when the end of the requested information has been completely
returned.

LS_BAD_ARG

One or more parameters are invalid.

LS_BUFFER_TOO_SMALL

 maxStrLen did not indicate a buffer large enough to hold one of the
requested output parameters.

Remarks

NLSInstalled determines what products are available from a client.
Filtering can be performed to get information for a specific product. If the
filtering is changed, the index parameter should be reset to zero to get all
information relating to the newly specified parameters. When
LS_BAD_INDEX is returned by NLSInstalled, all information relating to
the specified filtering parameters has been returned.

Management Service Group

Novell Licensing: Functions 415

NLSInUse

Provides information about license units that are in use for products in one
or all licensing systems

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSInUse (
 LS_STR *licenseSystem,
 LS_STR *contextName,
 LS_STR *publisher,
 LS_STR *product,
 LS_STR *version,
 LS_ULONG maxStrLen,
 LS_STR *publisherInUse,
 LS_STR *productInUse,
 LS_STR *versionInUse,
 LS_LICENSE_ID licIDInUse,
 LS_ULONG *numUnitsInUse,
 LS_ULONG *index);

Parameters

licenseSystem

(IN) Points to the licensing system to use to search for the specified
products. It can either be the specific name of a licensing system, as
returned by LSEnumProviders, or it can be LS_ANY. If LS_ANY is
specified, information from all installed licensing systems on this client
is returned.

contextName

(IN) Points to the context to search for the specified products. It should
be the distinguished name of the context, or LS_ANY. If LS_ANY is
specified, the current user’s context will be used. Information from the
current context to the root is returned.

publisher

(IN) Points to the publisher name to filter by. Only transactions that
have this publisher name are returned. LS_ANY indicates that any
publisher name can appear in the returned entry.

product

(IN) Points to the product name to filter by. Only transactions that
have this product name are returned. LS_ANY indicates that any
product name can appear in the returned entry.

Management Service Group

Novell Licensing: Functions 416

version

(IN) Points to the version string to filter by. Only transactions that have
this version string are returned. LS_ANY indicates that any version
string can appear in the returned entry.

maxStrLen

(IN) Specifies the maximum length (in bytes) of string output that can
be placed into availablePublisher, availableProduct, and availableVersion. If
any of these output strings is longer than maxStrLen,
LS_BUFFER_TOO_SMALL is returned.

publisherInUse

(OUT) Points to the name of the publisher for which usage
information is being returned. Note that to uniquely identify a
product, the publisherInUse, productInUse, and versionInUse must all be
utilized.

productInUse

(OUT) Points to the name of the product for which usage information
is being returned.

versionInUse

(OUT) Points to the version string for which usage information is being
returned.

licIDInUse

(OUT) Returns the unique identifier/serial number (within the
specified publisher, product, version domain) of the license certificate
from which this information was retrieved.

numUnitsInUse

(OUT) Points to the current number of units that are in use for the
returned publisherInUse, productInUse, and versionInUse. If LS_ANY was
specified for licenseSystem, this number potentially crosses licensing
systems. This value is not necessarily the number of installed instances
of a product, because units might represent something else based on
the application’s licensing policy. Also, this takes into account the
current connection status of the user calling NLSInstalled. If the
certificate is not available, numInstalledUnits is zero. When used in
combination with NLSInUse and NLSAvailable, this condition can be
easily detected.

index

(IN/OUT) Used to iterate through the entire list of
publisher/product/version combinations that are currently available.
index should be initialized to zero on the first call to the function, then
opaquely passed back into the function on successive calls. To retrieve
all information, continue this process until LS_BAD_INDEX is
returned.

Return Values

Management Service Group

Novell Licensing: Functions 417

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_BAD INDEX

Index does not point to a valid license certificate. This usually occurs
when the end of the requested information has been completely
returned.

LS_BAD_ARG

One or more parameters are invalid.

LS_BUFFER_TOO_SMALL

The maxStrLen parameter did not indicate a buffer large enough to
hold one of the requested output parameters.

Remarks

NLSInUse provides information about the number of license units
available for products in one or all licensing systems, based on the
filtering specified by licenseSystem, publisher, product, and version, on a
certificate-by-certificate basis.

When NLSInUse is first called, index should be initialized to zero. A
single call to this function returns the availability of units for one
certificate. To get information for other certificates, call NLSAvailable
again with index reset to zero to obtain all the information relating to the
newly specified parameters. When LS_BAD_INDEX is returned by
NLSAvailable, all information relating to the specified filtering
parameters has been returned.

Management Service Group

Novell Licensing: Functions 418

NLSMoveCertificate

Relocates the database record containing the specified license certificate

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSMoveCertificate (
 LS_STR *licenseSystem,
 LS_STR *publisherName,
 LS_STR *productName,
 LS_STR *version,
 LS_LICENSE_ID licenseID,
 LS_STR *newContextName);

Parameters

licenseSystem

(IN) Points to the licensing system in which the license certificate to
move is located. Specify a specific licensing system name as received
from LSEnumProviders, or specify LS_ANY to initiate a search for the
first matching certificate.

publisher

(IN) Points to the publisher name of the license certificate to move to
another server. This value is required and cannot be LS_ANY.

product

(IN) Points to the product name of the license certificate to move to
another server. This value is required and cannot be LS_ANY.

version

(IN) Points to the version of the license certificate to move to another
server. This value is required and cannot be LS_ANY.

licenseID

(IN) Specifies the unique identifier (serial number) of the license
certificate to move to another server.

newContextName

(IN) Points to the context to which the license certificate will be moved.
LS_ANY can be specified, indicating that this license certificate will be
moved to the current user’s context on the current connection.

Return Values

Management Service Group

Novell Licensing: Functions 419

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

LS_BAD_ARG

One or more parameters are invalid.

LS_AUTHORIZATION_UNAVAILABLE

Specified license certificate could not be located, or you do not have
privileges to delete this license certificate.

Remarks

NLSMoveCertificate relocates the license certificate object to the
specified context name. If this procedure cannot be completed
successfully, the license certificate record remains in the original location.

The user associated with the current connection must be
security-equivalent to the owner attribute of the license certificate and
must have rights to place a license certificate on the new server specified.

Management Service Group

Novell Licensing: Functions 420

NLSRemoveAssignment

Removes an assignment from a license certificate

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSRemoveAssignment (
 LS_STR *licenseSystem,
 LS_STR *publisher,
 LS_STR *product,
 LS_STR *version,
 LS_LICENSE_ID licenseID,
 LS_ULONG assignmentType,
 LS_VOID *assignmentInfo,
 LS_ULONG assignmentInfoLen);

Parameters

licenseSystem

(IN) Points to the licensing systems on which the specified product
license certificate exists. It must be the specific name of a licensing
system as returned by LSEnumProviders.

publisher

(IN) Points to the publisher name of the license certificate from which
the assignment is removed.

product

(IN) Points to the product name of the license certificate from which
the assignment is removed.

version

(IN) Points to the version string of the license certificate from which
the assignment is removed.

licenseID

(IN) Specifies the unique identifier (serial number) of the license
certificate from which the assignment is removed.

assignmentType

(IN) Specifies the type of assignment to remove. The information
placed in assignmentInfo depends on assignmentType.

assignmentInfo

(IN) Points to the exact information for the assignment to remove.

assignmentInfoLen

Management Service Group

Novell Licensing: Functions 421

(IN) Specifies the length of assignmentInfo including the NULL
terminator.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

LS_BAD_ARG

One or more parameters are invalid.

LS_AUTHORIZATION_UNAVAILABLE

Specified license certificate could not be located, or you do not have
privileges to delete this license certificate.

Remarks

NLSRemoveAssignment removes an assignment from a license
certificate that was added with NLSAddAssignment. All information
about the assignment you wish to remove must be specified. This
information can be obtained from the assignment list obtainable by
calling NLSGetLicense. This function removes only one assignment from
the assignment list. To remove all assignments, call this function multiple
times on all the installed assignments.

The user associated with the current connection must be
security-equivalent to the owner attribute of the license certificate.

Management Service Group

Novell Licensing: Functions 422

NLSTransferOwnership

Transfers the ownership of a license certificate

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSTransferOwnership (
 LS_STR *licenseSystem,
 LS_STR *publisher,
 LS_STR *product,
 LS_STR *version,
 LS_LICENSE_ID licenseID,
 LS_STR *newOwner);

Parameters

licenseSystem

(IN) Points to the licensing systems on which the specified product
license certificate exists. It must be the specific name of a licensing
system as returned by LSEnumProviders.

publisher

(IN) Points to the publisher name of the license certificate from which
the assignment is removed.

product

(IN) Points to the product name of the license certificate from which
the assignment is removed.

version

(IN) Points to the version string of the license certificate from which
the assignment is removed.

licenseID

(IN) Specifies the unique identifier (serial number) of the license
certificate from which to transfer ownership.

newOwner

(IN) Points to the DN of the new owner of the license certificate.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

Management Service Group

Novell Licensing: Functions 423

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_RESOURCES_UNAVAILABLE

Insufficient resources (such as memory) available to complete request.

LS_BAD_ARG

One or more parameters are invalid.

LS_AUTHORIZATION_UNAVAILABLE

The specified license certificate could not be located, or you do not
have privileges to delete this license certificate.

Remarks

NLSTransferOwnership transfers the ownership of the license certificate
from its current value to the DN passed in through the newOwner
parameter. Only users with a security equivalency to this new DN are
able to add, modify, or remove assignments and delete the license
certificate.

The user associated with the current connection must be
security-equivalent to the owner attribute of the license certificate.

Management Service Group

Novell Licensing: Functions 424

NLSUsers

Provides information about who or what is using licensing units for a
product, in the specified licensing systems

NetWare Server: 4.1

Platform: DOS, NLM, Windows 3.1, Windows95

Service: Novell Licensing System (NLS)

Syntax

LS_STATUS_CODE NLSUsers (
 LS_STR *licenseSystem,
 LS_STR *contextName,
 LS_STR *publisher,
 LS_STR *product,
 LS_STR *version,
 LS_ULONG maxStrLen,
 LS_STR *publisherInUse,
 LS_STR *productInUse,
 LS_STR *versionInUse,
 LS_LICENSE_ID licIDInUse,
 LS_ULONG *unitsInUse,
 LS_STR *user,
 LS_ULONG *index);

Parameters

licenseSystem

(IN) Points to the licensing systems in which to search for the specified
products. It can either be the specific name of a licensing system, as
returned by LSEnumProviders, or it can be LS_ANY. If LS_ANY is
specified, information from all installed licensing systems on this client
is returned.

contextName

(IN) Points to the context to search for the specified products. It should
be the distinguished name of the context, or LS_ANY. If LS_ANY is
specified, the current user’s context will be used. Information from the
current context to the root is returned.

publisher

(IN) Points to the publisher name to filter by. Only transactions that
have this publisher name are returned. LS_ANY indicates that any
publisher name can appear in the returned entry.

product

(IN) Points to the product name to filter by. Only transactions that
have this product name are returned. LS_ANY indicates that any
product name can appear in the returned entry.

Management Service Group

Novell Licensing: Functions 425

version

(IN) Points to the version string to filter by. Only transactions that have
this version string are returned. LS_ANY indicates that any version
string can appear in the returned entry.

maxStrLen

(IN) Specifies the maximum length (in bytes) of string output that can
be placed into availablePublisher, availableProduct, and availableVersion. If
any of these output strings is longer than maxStrLen,
LS_BUFFER_TOO_SMALL is returned.

publisherInUse

(OUT) Points to the name of the publisher for which usage
information is being returned. Note that to uniquely identify a
product, the publisherInUse, productInUse, and versionInUse must all be
utilized.

productInUse

(OUT) Points to the name of the product for which usage information
is being returned.

versionInUse

(OUT) Points to the version string for which usage information is being
returned.

licIDInUse

(OUT) Returns the unique identifier/serial number (within the
specified publisher, product, version domain) of the license certificate
from which this information was retrieved.

unitsInUse

(OUT) Points to the current number of units that are in use for the
returned publisherInUse, productInUse, and versionInUse. If LS_ANY was
specified for licenseSystem, this number potentially crosses licensing
systems. This value is not necessarily the number of installed instances
of a product, because units might represent something else based on
the application’s licensing policy. Also, this takes into account the
current connection status of the user calling NLSInstalled. If the
certificate is not available, numInstalledUnits is zero. When used in
combination with NLSInUse and NLSAvailable, this condition can be
easily detected.

user

(OUT) Points to the DN of the user who is using license units of the
returned product.

index

(IN/OUT) Used to iterate through the entire list of
publisher/product/version combinations that are currently in use.
index should be initialized to zero on the first call to the function, then
opaquely passed back into the function on successive calls. To retrieve
all information, continue this process until LS_BAD_INDEX is

Management Service Group

Novell Licensing: Functions 426

returned.

Return Values

Returns a detailed error code that can be directly processed by the caller,
or that can be converted by LSGetMessage to one of these message
strings:

LS_SUCCESS

The requested functionality completed successfully.

LS_SYSTEM_UNAVAILABLE

DOS TSR or Windows DLL is not properly configured or available, or
client has no licensing system to communicate with.

LS_BAD INDEX

Index does not point to a valid license certificate. This usually occurs
when the end of the requested information has been completely
returned.

LS_BAD_ARG

One or more parameters are invalid.

LS_BUFFER_TOO_SMALL

The maxStrLen parameter did not indicate a buffer large enough to
hold one of the requested output parameters.

Remarks

NLSUsers provides information about who or what is using licensing
resources for a product and how many license units are being used by
this person/object for one or all licensing systems. The returned
information is based on the filtering specified by licenseSystem, publisher,
product, and version, on a certificate-by-certificate basis.

On the first call to this function, index should be initialized to zero. A
single call to this function returns a single user/object for one product.
Subsequent calls either return another user for the same product or the
next product if there are no more users/objects. To retrieve this
additional information, make another call opaquely passing back index. If
the filtering is changed, the index parameter should be reset to zero to get
all the information relating to the newly specified parameters. When
LS_BAD_INDEX is returned, all information relating to the specified
parameters has been returned.

Management Service Group

Novell Licensing: Functions 427

NWCalls Management

Management Service Group

 428

NWCalls Management: Functions

Management Service Group

NWCalls Management: Functions 429

NWCallsInit

Initializes double-byte tables and low-level interface functions

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: NWCalls Management

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCallsInit (
 nptr in,
 nptr out);

Pascal Syntax

#include <nwmisc.inc>

Function NWCallsInit
 (inPtr : nptr;
 outPtr : nptr
) : NWCCODE;

Parameters

NULL should be passed for both the in and out parameter pointers.

Return Values

These are common return values; see Return Values for more
information.

Swapped
word

SUCCESSFUL

1 Unable to Obtain Double Byte Information

0x88F SHELL_FAILURE/REM_FAILURE

Remarks

NWCallsInit operates without double byte support.

Management Service Group

NWCalls Management: Functions 430

For all client platforms, NWCallsInit initializes the unicode tables to the
native country and code pages defined by the operating system.

For OS/2 and Windows 3.1, NWCallsInit is called by the startup code.
The application should still call NWCallsInit, however, to check if the
initialization succeeded.

For DOS, NWCallsInit must be called before any other NetWare®
Cross-Platform API function.

NCP Calls

None

Management Service Group

NWCalls Management: Functions 431

NWCallsTerm

Terminates the NWCalls library and performs any necessary clean up

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: NWCalls Management

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY (NWCCODE)NWCallsTerm (
 nptr reserved);

Pascal Syntax

#include <nwmisc.inc>

Function NWCallsTerm (
 reserved : nptr
) : NWCCODE;

Parameters

reserved

(IN) Is reserved (pass NULL).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x89FF Failure

NCP Calls

None

Management Service Group

NWCalls Management: Functions 432

NWGetNWCallsVersion

Returns the version number of the NWCalls library running on the calling
entity

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: NWCalls Management

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

void N_API NWGetNWCallsVersion (
 pnuint8 majorVer,
 pnuint8 minorVer,
 pnuint8 revLevel,
 pnuint8 betaLevel);

Pascal Syntax

#include <nwmisc.inc>

Procedure NWGetNWCallsVersion
 (majorVer : pnuint8;
 minorVer : pnuint8;
 revLevel : pnuint8;
 betaLevel : pnuint8
);

Parameters

majorVer

(OUT) Points to the major version number of the requester or shell.

minorVer

(OUT) Points to the minor version number of the requester or shell.

revLevel

(OUT) Points to the revision number of the requester or shell.

betaLevel

(OUT) Points to the beta revision number of the requester or shell.

Return Values

These are common return values; see Return Values for more

Management Service Group

NWCalls Management: Functions 433

information.

0x0000 SUCCESSFUL

NCP Calls

None

Management Service Group

NWCalls Management: Functions 434

NWSNMP

Management Service Group

 435

NWSNMP: Guides

NWSNMP: Task Guide

Registering an Object

Initiating Traps

Compiling and Linking the NLM

Loading NWSNMP

Configuring NWSNMP

Configuring NWSNMP to Provide MIB-II Information

Configuring NWSNMP to Send Traps to Your Application

Examples

SACReadNextAttributes: Example

SACReadSNMPObject: Example

SACSetAttributes mib-2: Example

SACSetAttributes on Table Object: Example

SACTrap: Example

SAIDeregisterMIB: Example

SAIRegisterMIB: Example

NWSNMP: Tasks

NWSNMP: Concepts

NWSNMP: Functions

NWSNMP: Structures

Parent Topic:

NWSNMP: Guides

NWSNMP: Concept Guide

Management Service Group

NWSNMP: Guides 436

Introduction

NWSNMP Introduction

SNMP Basic Concepts

SNMP Introduction

Functional SNMP Components

Where SNMP Components Reside

SNMP Operation

Request/Response Transaction

Trap Transaction

Management Information Bases

The Two Uses of MIBs

The Global Naming Tree and ASN.1 Notation

Three Types of SNMP Objects

Scalar Objects

Table Objects

Group Objects

MIB Module Contents

Value Assignments

Type Assignments and Textual Conventions

Manageable Object Definitions

Trap Definitions

Obtaining MIBs

Instrumentation Agents

Get, GetNext, and Set Functions

Get and GetNext Handling

Set Handling

NWSNMP Concepts

Instrumentation

Management Service Group

NWSNMP: Guides 437

NWSNMP Architecture

Object Registration and Deregistration

Operational Flow of an Instrumented NLM

MIBs

Access Control

Required Software

Obtaining RFCs and MIBs

Instrumenting

Instrumenting Objects

Developing a Module that Exports an SNMP Object

Working with MIBs

Abstract Objects

Hierarchical and Flat Structures

Acquiring a MIB Definition

Compiling a MIB

Providing Instrumentation Functions

Standard Object-Handling Functions

Instrumentation Using Standard Object-Handling Functions

Specific Object-Handling Functions

Instrumentation Using Specific Object-Handling Functions

Instrumentation Structures

Object Information Blocks

Object Control Blocks

Attribute Information Blocks

Attribute Value Blocks

Universal Tasks Handled by NWSNMP

Grouping

Data Conversion

Time Field Conversion

Management Service Group

NWSNMP: Guides 438

OCTET STRING Conversion

Abstract Objects with Exactly One Instance

Attribute Range Checking

Client Interface

NWSNMP Client Interface

Client Interface Return Values

NWSNMP Get Handling

NWSNMP Set Handling

Loading and Configuring

Loading NWSNMP

Community Name Options

TCPIP and NWSNMP Load Information

Functions and Structures

NWSNMP Functions and Structures

Instrumentation Functions

Instrumentation Structures

Client Interface Functions

Trap Interface Functions

Client and Trap Structures

Examples

SACTrap: Example

SACReadNextAttributes: Example

SACReadSNMPObject: Example

SAIRegisterMIB: Example

SAIDeregisterMIB: Example

NWSNMP: Tasks

NWSNMP: Concepts

NWSNMP: Functions

NWSNMP: Structures

Management Service Group

NWSNMP: Guides 439

Parent Topic:

NWSNMP: Guides

NWSNMP Introduction

Simple Network Management Protocol (SNMP) is the protocol that offers
network management services within the Internet protocol suite. SNMP
management functions are actually independent of the Internet protocols,
making it popular for management in many environments. Most leading
network products support SNMP, allowing vendor-independent
management of devices and applications.

The NWSNMP allows NWLoadable Module™ (NLM™) developers to
accelerate development of NLM applications that are manageable by
SNMP. Once you make information about your NLM accessible to
NWSNMP, any SNMP remote client can be used to manage your NLM.
Using the NWSNMP, you can make your NLM applications
SNMP-manageable even if you have minimal knowledge about how SNMP
works.

NWSNMP is an NLM that performs two major functions, as follows:

NWSNMP performs SNMP Get, GetNext, and Set requests on managed
information, at the request of SNMP remote clients.

NWSNMP builds and sends SNMP traps on behalf of requesting entities.

NWSNMP performs operations only at the request of other software
entities, such as remote clients or applications that make data available to it.
It does not actively manage information.

NWSNMP is transport-independent. The current version of NWSNMP can
receive and send SNMP information over the Internetwork Packet Exchange
™(IPX™), IP, and AppleTalk DDP protocols.

SNMP Basic Concepts

NWSNMP Concepts

Required Software

Obtaining RFCs and MIBs

Parent Topic:

NWSNMP: Guides

SNMP Basic Concepts

This chapter outlines the basic concepts and terminology used in Simple

Management Service Group

NWSNMP: Guides 440

Network Management Protocol (SNMP) in general. If you are already
familiar with SNMP basic concepts and terminology, continue on to
NWSNMP Concepts.

SNMP Introduction

Functional SNMP Components

Management Information Bases

Instrumentation Agents

Get, GetNext, and Set Functions

Parent Topic:

NWSNMP Introduction

NWSNMP Concepts

NWSNMP acts as an SNMP for objects that register with it. Once an object
registers with NWSNMP, NWSNMP can respond to Get, GetNext, and Set
requests on behalf of that object.

NWSNMP accesses data in abstract objects, but does not manage it. Your
instrumented NLM™ maintains the data and provides functions by which
NWSNMP accesses the data. NWSNMP receives requests, validates them,
and then calls the functions you provide to actually manage the data. Thus,
NWSNMP acts as a multiplexor and translator rather than as a data
manager.

Instrumentation

NWSNMP Architecture

Object Registration and Deregistration

Operational Flow of an Instrumented NLM

MIBs

Access Control

Parent Topic:

NWSNMP Introduction

Functional SNMP Components

The SNMP model defines the following two components:

Management Service Group

NWSNMP: Guides 441

A network manager, which resides in the remote client

A network manager is an entity that can query the SNMP agents using
SNMP operations. It provides a user interface, often graphical, that
allows users to request data or see alarms resulting from traps. Often, it
also archives data to permit trend analysis.

An SNMP agent, which resides in each manageable network device

An SNMP agent executes requests made by a network manager by
gathering information from the network device in which the SNMP agent
resides, and returning that information to the network manager.

These two components together communicate configuration and
management needs over the network through either an IPX™ or an UDP
protocol. The network manager sends configuration and management
requests to the SNMP agent and the SNMP agent responds to those
requests.

The SNMP agent and the network manager use other SNMP components
that assist in the configuration and management of the network device.

Management Information Bases (MIBs), which reside on the remote
client

A MIB is a text file that contains management and configuration
information for a network device. MIBs provide the network manager
with the information to make a request. MIBs are also used as the
foundation for creating Instrumentation Agents (IAs) that reside on the
network devices.

Instrumentation Agents (IAs), which reside on each manageable
network device

An IA can be an application that contains management and configuration
query information for the network device. An IA provides the SNMP
agent with the information to respond to a network manager’s request.

Where SNMP Components Reside

SNMP Operation

Parent Topic:

SNMP Basic Concepts

SNMP Operation

Network devices are managed through transactions between the network
manager and the SNMP agent. SNMP provides two kinds of management
transactions:

Request/Response transaction, a manager-request to SNMP

Management Service Group

NWSNMP: Guides 442

agent-response

Trap transaction (unsolicited notification), an SNMP agent-to-manager
transaction

The following sections describe these transactions.

Request/Response Transaction

Trap Transaction

Parent Topic:

Functional SNMP Components

Related Topics:

Where SNMP Components Reside

Management Information Bases

A Management Information Base (MIB) is a description of a set of
manageable objects. A manageable network device can implement one or
more MIBs, depending on its function. A MIB is similar to a database
schema in that it describes both the structure and format of a set of data.

When a vendor develops an SNMP network device, the vendor typically
designs a MIB that models the data important to the management of that
type of network device. A vendor-specific type of MIB is termed a
proprietary MIB because it is owned by the vendor. However, most vendors
make their proprietary MIBs publicly available because they want their
network devices to be manageable (see Obtaining MIBs).

This section describes the following information about MIBs:

The Two Uses of MIBs

The Global Naming Tree and ASN.1 Notation

Three Types of SNMP Objects

MIB Module Contents

Obtaining MIBs

Parent Topic:

SNMP Basic Concepts

Three Types of SNMP Objects

There are three types of objects in SNMP operations:

Management Service Group

NWSNMP: Guides 443

Scalar Objects are single instances of manageable objects.

Table Objects contain multiple instances of a grouping of scalar objects.

Group Objects contain a grouping of other objects, including other group
objects, scalar objects, and table objects.

You can manipulate only scalar objects.

Parent Topic:

Management Information Bases

Related Topics:

MIB Module Contents

The Two Uses of MIBs

The Global Naming Tree and ASN.1 Notation

Obtaining MIBs

MIB Module Contents

This section describes the MIB. The textual representation of a MIB is a
named module, written in a subset of the ASN.1 Notation language, which
groups together related definitions. The MIB modules can be stored in an
ASCII text file.

Note the following facts about the contents of a MIB module:

A comment is anything between a double hyphen and the end of the line
or another double hyphen. For example:

-- This is a comment

-- This is a comment -- This is not part of the comment

A name is an arbitrary number (one or more) of letters, digits, and
hyphens. A hyphen cannot be the last character; and a hyphen cannot be
immediately followed by another hyphen.

An object name must start with a lowercase letter.

Type names and module names must start with an uppercase letter.

White space, such as (spaces, tabs, and new lines) are not significant
except that names, keywords, and symbols, such as “::=” must not be
interrupted by white space or comments.

The Sample MIB Module example shows the basic format of a MIB module.

Management Service Group

NWSNMP: Guides 444

Sample MIB Module

RFC1213-MIB DEFINITIONS ::= BEGINIMPORTS mgmt, NetworkAddress, IpAddr
 DefinitionsEND

The following paragraphs explain the MIB module shown above:

RFC 1213-MIB (commonly known as MIB -II) is the name of the MIB
module.

IMPORTS lists a collection of objects, types, and macros that are
referenced in this module but are defined in the module named after the
word FROM.

Definitions contains the actual object definitions (not shown). Four kinds
of definitions can be found:

 Value Assignments

 Type Assignments and Textual Conventions

 Manageable Object Definitions

 Trap Definitions

Parent Topic:

Management Information Bases

Related Topics:

Obtaining MIBs

The Two Uses of MIBs

The Global Naming Tree and ASN.1 Notation

Three Types of SNMP Objects

Get, GetNext, and Set Functions

This section addresses the values the Get, GetNext, and Set requests return
and how the SNMP agent handles the Get, GetNext, and Set requests.

Get and GetNext Handling

Set Handling

Parent Topic:

SNMP Basic Concepts

Instrumenting Objects

Management Service Group

NWSNMP: Guides 445

The NWSNMP includes an instrumentation interface and a MIB compiler
that make the instrumentation of an object simple. You need to provide a
Management Information Base (MIB) that describes the objects you are
going to register with NWSNMP. Using your MIB, the NWSNMP MIB
compiler produces C code that describes the manageable objects defined in
your MIB. The module exporting the objects passes the resulting C
structures to NWSNMP to register the objects. Thus, NWSNMP learns
about the objects from this code.

Because NWSNMP now knows all about the objects, the effort of handling
the object is reduced significantly. However, for this approach to work, you
must use the MIB compiler and the instrumentation interface to provide
NWSNMP with enough information about the objects so that it can make
knowledgeable requests to read and manipulate the various objects in each
MIB. Your code does this by providing a set of object-handling functions
based on type definition functions (see the Specific Object-Handling
Functions: Instrumentation Prototype Definitions table). The NWSNMP
instrumentation interface defines a structure, the Object Control Block, to
hold pointers to these functions.

Although the MIB compiler provides C code that describes your objects, it
does not allocate space for the objects. You must provide structures for the
object data and the code that maintains it. Such a structure allows you to
organize the object data in a manner convenient to your code.

The instrumentation interface of NWSNMP does not handle the following
tasks:

It does not eliminate the problems of values that change at interrupt level
or objects that can only be accessed through blocking operations. In other
words, a single SNMP action cannot be guaranteed to reflect a single
point in time.

It does not handle any network management protocol other than SNMP.

It does not provide an interface for counting or for threshold detection. By
its design, this interface deals at a level above where actual statistics are
kept, as a result NWSNMP does not know where or how the actual
values are maintained.

Consequently, manipulating values and detecting threshold crossing is
left entirely to the instrumented code. This is consistent with the RFC
specifications for SNMP, which provide no general mechanism to
support thresholds.

Developing a Module that Exports an SNMP Object

Working with MIBs

Providing Instrumentation Functions

Registering an Object

Management Service Group

NWSNMP: Guides 446

Compiling and Linking the NLM

Universal Tasks Handled by NWSNMP

Parent Topic:

NWSNMP: Guides

Developing a Module that Exports an SNMP
Object

Developing a module that exports an SNMP scalar, group, or table object
requires the following steps:

1. Acquire and compile a MIB that describes the desired object. See
Working with MIBs.

2. Provide the instrumentation functions required by NWSNMP for the
Get, GetNext, and Set requests. There are two methods for this:
standard object-handling functions and specific object-handling
functions. These methods are compared in Providing Instrumentation
Functions.

3. Write code to register the MIB with NWSNMP. See Registering an
Object.

4. Compile and link the NLM™ file. See Compiling and Linking the NLM.

Parent Topic:

Instrumenting Objects

Working with MIBs

Before you can register an object with NWSNMP, you must provide a MIB
definition of your object. The MIB describes the object in a manner that
NWSNMP understands. Define your MIB by using the SNMP “Concise MIB
Definitions” defined in RFC 1212. Once you have a MIB, use the MIB
compiler to create both .C source and .H header files to include in your
NLM™.

Abstract Objects

Hierarchical and Flat Structures

Acquiring a MIB Definition

Compiling a MIB

Parent Topic:

Management Service Group

NWSNMP: Guides 447

Instrumenting Objects

Providing Instrumentation Functions

Because NWSNMP knows all about your abstract object, the overhead of
processing the object is reduced significantly. The NWSNMP includes two
types of functions:

Standard Object-Handling Functions

Specific Object-Handling Functions

Parent Topic:

Instrumenting Objects

Related Topics:

Instrumentation Structures

Standard Object-Handling Functions

For simple objects that can be set up as one- or two-dimensional tables, the
NWSNMP provides standard object-handling functions. The idea behind
these standard functions is that, in most cases, abstract objects have a simple
organization that can be easily handled by standard support functions.
Therefore, these access methods require a particular organization to the
object data.

With the standard access methods, instead of writing your own access
functions, you authorize the NWSNMP to use standard object-handling
functions provided within NWSNMP code. You also pass a pointer to your
data to NWSNMP when you register your MIB.

NWSNMP provides a library of standard object-handling functions for
handling various standard data organizations. Thus, NWSNMP directly
accesses the information you implement with standard access methods (see
the following figure).

Figure 3. Get with Standard Object-Handling Methods

Management Service Group

NWSNMP: Guides 448

1. An SNMP manager sends a GetRequest Protocol Data Unit (PDU) to the
NWSNMP.

2. NWSNMP parses the request and calls its standard OCBGet function.

3. The OCBGet function uses location information you provide to get the
data from the MIB data you maintain within your code.

4. The OCBGet function returns the information to NWSNMP.

Management Service Group

NWSNMP: Guides 449

5. NWSNMP encodes a GetResponse PDU with the information and
returns it to the SNMP manager that made the request.

Several typical examples of abstract objects can be handled simply and
efficiently. For example, one common organization is a statistics table
occupying an array of unsigned long INTEGERS indexed by attribute
numbers. NWSNMP provides the various handling functions to deal with
these simple organizations of attributes.

If you can organize your data into one of the standard formats, detailed in
Instrumentation Using Standard Object-Handling Functions the job of
instrumenting the object becomes much simpler. Instead of writing specific
functions for Get, GetNext, and Set requests, you need only add a macro call
to define an Object Control Block for each object in the MIB. NWSNMP
provides the necessary functions for the operations.

Instrumentation Using Standard Object-Handling Functions

Parent Topic:

Providing Instrumentation Functions

Specific Object-Handling Functions

If your NLM™ provides specific object-handling functions for an abstract
object instead of using the standard ones, NWSNMP never accesses your
data directly. Although NWSNMP knows the type of data you have placed
in an abstract object and whether the data is writable, NWSNMP does not
know where the data is or how to read it. NWSNMP simply uses the
functions you provide to access your data in response to requests from other
management agents. This means you must provide specific functions
(Instrumentation Code) that NWSNMP calls in response to Get, GetNext,
and Set requests that affect your object. These functions are discussed in
Instrumentation Using Specific Object-Handling Functions.

The following figure shows how NWSNMP handles a Get request against
an instrumented object by calling the function based on OCBGet that is
provided by the instrumented NLM.

Figure 4. Get with Object-specific Instrumentation Functions

Management Service Group

NWSNMP: Guides 450

1. An SNMP manager sends a GetRequest Protocol Data Unit (PDU) to
NWSNMP.

2. NWSNMP parses the request and calls the OCBGet function for your
object.

3. Your application receives the request and does whatever processing is
required to obtain the information.

4. Your application returns the information to NWSNMP.

Management Service Group

NWSNMP: Guides 451

5. NWSNMP encodes a GetResponse PDU with the information and
returns it to the SNMP manager that made the request.

Instrumentation Using Specific Object-Handling Functions

Parent Topic:

Providing Instrumentation Functions

Instrumentation Structures

The instrumentation interface uses the following data structures to describe
each instrumented object:

Object Information Block

A structure, ObjInfo, that describes the object to NWSNMP. The Object
Information Block is generated by the MIB compiler and used
internally by NWSNMP. Do not modify the Object Information Block
once it has been created.

Object Control Block

A structure, ObjControl, that provides pointers to the operations that
can be applied to an abstract object when NWSNMP responds to a
request for a Get, GetNext, or Set request. Your NLM™ must define
the necessary functions (unless you are using the standard
object-handling methods), define the Object Control Block, and place
pointers to the functions in the block. NWSNMP uses the information
from the block to perform operations on your abstract object.

Attribute Information Block

A structure, AttrInfo, that describes the characteristics of a particular
attribute. The Attribute Value Block points to this block to provide the
accesss functions with information about the attribute being accessed.
The information in this block is derived from the compiled MIB. Do
not modify the Attribute Information Block once it has been created.

NOTE: When discussing an Attribute Information Block, an
attribute refers to an object in a table or group.

Attribute Value Block

A structure, AttrValue, that passes information between NWSNMP
and an instrumented NLM during Get, GetNext, and Set requests
about the attribute being accessed.

The following figure shows the relationships among these structures. For
simplicity, it does not show all the fields in the Attribute Information Block
or Attribute Value Block structures.

Figure 5. Instrumentation Structures Figure

Management Service Group

NWSNMP: Guides 452

Object Information Blocks

Management Service Group

NWSNMP: Guides 453

Object Control Blocks

Attribute Information Blocks

Attribute Value Blocks

Parent Topic:

Providing Instrumentation Functions

Related Topics:

Standard Object-Handling Functions

Specific Object-Handling Functions

Universal Tasks Handled by NWSNMP

To minimize the effort on the part of the exporting modules, NWSNMP
takes care of as much of the processing of SNMP requests as possible. It does
this using the information from the MIB, such as the types of the values of
attributes and indexes. Thus, NWSNMP can handle the following types of
tasks:

Grouping

Data Conversion

Time Field Conversion

OCTET STRING Conversion

Abstract Objects with Exactly One Instance

Attribute Range Checking

Parent Topic:

Instrumenting Objects

NWSNMP Client Interface

NWSNMP can be viewed as a general purpose data repository. Such a
repository is an important and useful resource, so NWSNMP provides a
client interface that allows other local processes to access its data store. For
example, agents for other network management protocols can access values
through NWSNMP.

The NWSNMP client interface provides the following functions that allow
any NLM™ file running on the same server to manipulate the NWSNMP
data store:

Management Service Group

NWSNMP: Guides 454

Table . NWSNMP client interface functions

Function Purpose

SACReadAttribute
s

Returns the values of a list of attributes (SNMP
Get), given an abstract object ID and instance
index information.

SACSetAttributes Sets the indicated attributes to particular values
(SNMP Set), given an abstract object ID and
instance index information.

In no case is ownership of memory passed across the interface, so all
pointers can point to temporary strorage that is discarded after the call
returns. The functions and associated structures are described in NWSNMP
Functions and Structures.

The following covers the values these functions return and the basics of how
NWSNMP behaves when handling the Get, GetNext, and Set requests,
whether received as strict SNMP requests or as requests that use the
NWSNMP client interface functions.

Client Interface Return Values

NWSNMP Get Handling

NWSNMP Set Handling

Parent Topic:

NWSNMP: Guides

NWSNMP Functions and Structures

This section describes the functions and structures that make up NWSNMP.

The functions are named beginning with acronyms to indicate their
purpose. The acronyms are as follows:

OCB “Object Control Block” instrumentation.

These functions give the structure for the calls your
NLM™ file must provide for each abstract object.
NWSNMP uses these functions to fulfill management
requests.

SAC “SNMP agent client” instrumentation.

These functions allow you to Get and Set local
management information to which NWSNMP has
access.

SAI “SNMP agent instrumentation”.

Management Service Group

NWSNMP: Guides 455

These functions allow you to register and deregister
management information bases (MIBs).

The following sections list the functions and structures by interface type:

Instrumentation Functions

Instrumentation Structures

Client Interface Functions

Trap Interface Functions

Client and Trap Structures

Parent Topic:

NWSNMP: Guides

Management Service Group

NWSNMP: Guides 456

NWSNMP: Tasks

Compiling and Linking the NLM

1. Once you have developed the instrumentation and registration
functions, compile all modules as you normally do, including the C
module created by the MIB compiler. Remember to include the
header file output from the MIB compiler in the appropriate source
modules.

2. After compiling, link the NLM™. The NLM does not need to export
any symbols to support a MIB. When linking, import the SNMP entry
points by including AGENT.IMP in the IMPORT section of the linker
command file.

Parent Topic:

Instrumenting Objects

Configuring NWSNMP to Provide MIB-II
Information

You can set several MIB-II variables in the SYS:\ETC\SNMP.CPG file, as
follows:

sysName Gives the system name.

sysLocation Gives the system location.

sysContact Gives the name of the system administrator
or other person who should be contacted
about system problems or maintenance.

1. To set these varables, edit the SYS:\ETC\SNMP.CFG file with any
ASCII text editor and follow the instructions given in the file
comments.

Parent Topic:

NWSNMP: Guides

Configuring NWSNMP to Send Traps to Your

Management Service Group

NWSNMP: Tasks 457

Application

1. To receive traps sent by NWSNMP, make sure your remote client
address is listed in the IP or IPX™ section of the
SYS:\ETC\TRAPTARG.CFG file. Edit the file with any ASCII text
editor and follow the instructions given in the file comments.

Parent Topic:

NWSNMP: Guides

Initiating Traps

Applications can initiate SNMP Traps, use NWSNMP to build the trap
Protocol Data Units (PDUs), and send them to remote clients (management
stations) that are configured to receive traps. The trap initiation process
involves the following three steps:

1. An entity initiates a trap by calling the trap function provided by
NWSNMP.

2. NWSNMP builds a trap PDU based on the information the entity
provides.

3. NWSNMP sends the trap PDU to all Internet Packet (IP) and
Internetwork Packet Exchange™IPX™ remote clients listed in the
SYS:\ETC\TRAPTARG.CFG file.

NOTE: When NWSNMP is installed, the IP loopback address is
the only address listed in the SYS:\ETC\TRAPTARG.CFG file.

Figure 6. Trap Initiation

Management Service Group

NWSNMP: Tasks 458

Any entity can call NWSNMP to send traps. The entity need not be one that
manages an instrumented object to send traps. Because of the way the
process works, the entity that requests the trap need not know which remote
clients receive the trap.

NWSNMP provides the following functions for trap initiation and data
retrieval. Use these functions to provide NWSNMP with the necessary
information to create an SNMP trap PDU:

Table . Trap initiation and data retreival functions

Function Purpose

SACTrap Initiates an SNMP trap. This is generally used
only for enterprise-specific traps.

SACReadSNMPOb
ject

Reads an SNMP object value given an SNMP
object ID. An entity can use this function to

Management Service Group

NWSNMP: Tasks 459

retrieve an object value for use in a trap
initiation request, if the entity is unable to
monitor the value directly.

These functions are defined in NWSNMP Functions and Structures.

In order for SNMP remote clients to interpret an SNMP trap, the trap must
be defined in a trap MIB. Trap MIBs must be defined according to
RFC-1215, "A Convention for Defining Traps for use with the SNMP." Your
trap MIB must be compiled on each remote client that receives traps from
your application before users at that remote client can interpret the trap.

Parent Topic:

NWSNMP: Guides

Loading NWSNMP

NWSNMP loads automatically when your server starts. However, you can
explicitly start NWSNMP with the LOAD command, or reenter the LOAD
command while NWSNMP is running, to change the options. You can also
modify the LOAD SNMP line in the AUTOEXEC.NCF file to include your
preferred default options.

1. To load NWSNMP, use the following command format:

load snmp [options] <Enter>

The options allow you to establish the community name used in SNMP
traps. NWSNMP also provides default community names (see Community
Name Options) for the monitor (read-only) and control (read/write)
communities. NWSNMP uses these names for access control. The
community name contained in a request message from an SNMP remote
client must match the name established by NWSNMP.

NOTE: If NWSNMP receives a request Protocol Data Unit (PDU)
whose community name is not authorized, NWSNMP does not respond
to the request. For example, suppose the control community name is
secret, and NWSNMP receives a SetRequest PDU with a community
name of public. NWSNMP discards the SetRequest PDU and does not
respond.

Community types can also be disabled. When a community type is
disabled, no management entity can access information for that community.
For example, if you disable the control community, no one can use
NWSNMP to do Set operations against the data NWSNMP manages.

Parent Topic:

NWSNMP: Guides

Related Topics:

Management Service Group

NWSNMP: Tasks 460

TCPIP and NWSNMP Load Information

Registering an Object

The MIB compiler generates a C file that describes the MIB being compiled.
That C file exports a single symbol: the name of the MIB, as defined by the
DEFINITIONS keyword in the concise MIB definition. Hyphens, which are
illegal in C identifiers, are changed to underbars. For MIB-II, for example,
the symbol is RFC1213_MIB.

1. During initialization, the exporting NLM™ must pass this handle
(the name of the MIB), along with a MIB resource tag, to NWSNMP
using SAIRegisterMIB. The resource tag is not used in NWSNMP and
it must be set to zero. This call registers the entire MIB tree with
NWSNMP.

Parent Topic:

Instrumenting Objects

Management Service Group

NWSNMP: Tasks 461

NWSNMP: Concepts

Abstract Objects

In the SNMP, each object is identified with an SNMP object identifier, which
describes the object location in the global naming tree (see The Global
Naming Tree and ASN.1 Notation). SNMP standards specify that an
identifier is treated as a single, indivisible value. For the purposes of the
NWSNMP interface, however, the object identifier is considered to have
three parts: an abstract object identifier, an attribute identifier, and an
instance identifier.

IMPORTANT: The concept of an abstract object is particular to the
NWSNMP instrumentation interface. Although this interface makes use
of this concept, it is not part of any SNMP standard. In fact, SNMP
avoids such divisions of the object identifier in the protocol itself. This
section is essential for understanding how the NWSNMP
intrumentation interface works, but should not be mistaken for the
discussion about SNMP practice.

Sub-IDs at the beginning of the SNMP object ID identify an abstract object.
An abstract object is an object in the global naming tree that has at least one
node below it in the tree.

A single sub-ID attribute identifier follows the abstract object ID,
separating it from the instance ID. In MIB definitions, this sub-ID is always
the last sub-ID of an object with no subtrees.

An instance identifier at the end of the SNMP object ID identifies which
particular instance of the object is being requested. In MIB definitions, this
information is identified by the INDEX clause.

In the NWSNMP instrumentation interface, the abstract object ID and the
instance ID find a specific object instance. Each object instance is then
viewed as a row of values indexed by the attribute ID.

The following sections give two examples, taken from MIB-II.

A Simple Example: ipForwarding

One SNMP object from the standard IP section of MIB-II is ipForwarding.
Its official SNMP object ID is 1.3.6.1.2.1.4.1.0. The string 1.3.6.1.2.1.4 is the
abstract object ID, identifying the hypothetical abstract object IP statistics.
The 1 following the abstract object ID identifies the attribute forwarded
packet count. The trailing 0 is the instance identifier. There is never more
than one instance of ipForwarding, so the instance identifier is always
zero.

Management Service Group

NWSNMP: Concepts 462

A More Complex Example: ipRouteMetric1

Another SNMP object from MIB-II is ipRouteMetric in the IP routing table (
ipRoutingTable). Its object ID is 1.3.6.1.2.1.4.21.1.3.d.d.d.d. Here the
abstract object ID is 1.3.6.1.2.1.4.21.1, which identifies an abstract routing
entry. The 3 gives the attribute ID, which in this case refers to the first
routing metric. The d.d.d.d is the instance ID. For routing entries, these four
sub-IDs are the IP address of the entry.

Overlap Between Abstract Objects

Because SNMP objects do not formally have this format, sometimes abstract
objects inconveniently overlap. For example, the preceding examples show
that ipRoutingTable, of which ipRoutingMetric1 is an attribute,
actually occurs as attribute 21 in the abstract object IP statistics, whose
abstract object ID is 1.3.6.1.2.1.4. Although this does complicate the object
lookup code within NWSNMP (particularly the implementation of
GetNext), the NLM™ exporting the objects is not affected and, in fact, does
not realize this overlap has occurred.

Parent Topic:

Working with MIBs

Related Topics:

Hierarchical and Flat Structures

Acquiring a MIB Definition

Compiling a MIB

Abstract Objects with Exactly One Instance

NWSNMP understands abstract objects that have only a single instance.
When these objects are requested, NWSNMP ensures that .0 is always the
instance ID. In addition, because GetNext is a trivial request for such objects,
you do not need to provide an OCBGetNext function when instrumenting
the object. NWSNMP uses OCBGet instead.

Parent Topic:

Universal Tasks Handled by NWSNMP

Related Topics:

Grouping

Data Conversion

Time Field Conversion

OCTET STRING Conversion

Attribute Range Checking

Management Service Group

NWSNMP: Concepts 463

Access Control

At the lowest level, MIB definitions indicate whether a particular attribute is
readable or writable. NWSNMP enforces these restrictions. However, these
characteristics merely indicate whether it makes sense to ever read or write
a particular value.

NWSNMP provides control through access lists for two community types,
monitor (read-only) and control (read/write). If community names are
defined for these types, Get, GetNext, and Set requests must supply the
appropriate community name. If the community name is not valid,
NWSNMP discards the request and performs no further processing.
NWSNMP also includes a community name in the traps it builds. For
information about defining the community names NWSNMP uses, see
Community Name Options.

NWSNMP handles all access control on behalf of instrumented objects.
Because NWSNMP discards any requests that do not have valid access,
without passing them to the instrumented object, the instrumented code is
not aware of the access control facilities in place.

Parent Topic:

NWSNMP Concepts

Acquiring a MIB Definition

The first step in instrumenting an object is to obtain a MIB definition for the
object in the "Concise MIB Definitions" format described in RFC 1212.

For many common objects, you can obtain a MIB definition created by the
Internet Engineering Task Force (IETF) or some other standards body. In
some cases, however, the object might not have been previously defined in
an Internet document. In this case, you might need to seek out an
unpublished definition, or write and publish your own definition.

When creating a MIB of your own, focus on the information to be stored in
the MIB. The MIB must be well-structured. Objects that are related to each
other must be placed together into one group. The best way to create a MIB
of your own is to modify an existing one. You can modify one of the MIBs
provided in the NetWare SDK or use a public MIB.

NOTE: You must include an INDEX clause for any tabular
(multiple-instance) object defined in your MIB. The NWSNMP
instrumentation interface uses the INDEX clause to locate the
instrumented object.

If you are using an unpublished MIB definition, it is recommended that you

Management Service Group

NWSNMP: Concepts 464

send the MIB into the IETF review process for eventual publication. SNMP
is an open protocol, and MIBs used by your products must be available to
all parties, encouraging them to support the objects your products export.

Once you decide the types of objects your MIB will contain, you can decide
on the data types of the attributes. NWSNMP supports the ASN.1 Notation
data types defined in the Structure of Management Information (SMI), RFC
1155. These types, along with their internal C representations, are listed in
the following table. Use only the data types that reduce to these primitives
in your MIB.

Table . Supported ASN.1 Notation Data Types

MIB
Type

Examples C Type Description

INTEGE
RS

ipInRecei
ves

unsigned
long

Includes GAUGE and COUNTER.

short
OCTET
STRING
S

ipRouteD
est

ipAddress

unsigned
long

Fixed length, four octets or less.
The first octet goes into the low
byte order, and so on. NWSNMP
distinguishes between short and
long OCTET STRING types.
(SNMP does not make this
distinction.)

long
OCTET
STRING
S

sysName

DisplaySt
ring

physAddr
ess

unsigned
char *

Maximum length greater than
four octets; length can vary.
Passed by reference using a
pointer to an array. NWSNMP
distinguishes between short and
long OCTET STRING types.
(SNMP does not make this
distinction.)

OBJECT
ID

sysObjectI
D

unsigned
long *

Pointer to an array; passed by
reference.

CHOICE atNetAdd
ress

unsigned
long

The only CHOICE supported is
atNetAddress; it is handled like
an IpAddress.

Parent Topic:

Working with MIBs

Related Topics:

Compiling a MIB

Abstract Objects

Hierarchical and Flat Structures

Management Service Group

NWSNMP: Concepts 465

Attribute Information Blocks

Each Attribute Information Block describes a single attribute maintained by
the abstract object. It provides the remainder of the MIB tree identifier for
that attribute, the data type and ASN.1 Notation type of the attribute, the
minimum and maximum sizes of the attribute, and flags that describe other
characteristics of the attribute.

The Object Information Block points to two arrays of Attribute Information
Blocks. One array describes every attribute in the table or group, while the
other describes only the attributes used to index object instances. The blocks
in the indexing array are always given in exactly the same order as the
attributes listed in the INDEX clause of the object MIB.

For example, suppose you are instrumenting a table that contains names of
system management contacts. The table contains the following columns: last
name, first name, electronic mail (E-mail) name, and primary system name.
To look up a manager uniquely, you need the first and last names. The
following figure shows a sample table and shows which Attribute
Information Blocks are contained in its attribute list and index list arrays.

Figure 7. Sample Attribute Information Block

Management Service Group

NWSNMP: Concepts 466

Parent Topic:

Instrumentation Structures

Related Topics:

Attribute Value Blocks

Object Information Blocks

Object Control Blocks

Attribute Range Checking

NWSNMP remembers which attributes are legal for each abstract object
from a registered MIB, and ensures that the attribute requested is legal. An
object handler might want to perform its own attribute range checking if it
does not fully support the attribute ranges defined in its associated MIB.

Parent Topic:

Universal Tasks Handled by NWSNMP

Related Topics:

Grouping

Data Conversion

Time Field Conversion

OCTET STRING Conversion

Abstract Objects with Exactly One Instance

Attribute Value Blocks

NWSNMP deals frequently with attribute values. NWSNMP expresses a
group of attribute values as a null-terminated linked list of Attribute Value
Blocks. Each of these blocks contains either an attribute value or a
description of a buffer for receiving an attribute value. The Attribute Value
Block points to an Attribute Information Block that describes the attribute
contained in it. Thus, the Attribute Information Block allows an entity to
handle an Attribute Value Block in a general way without knowing its
specific contents. Entities that must know more about the attribute can look
in the Attribute Information Block.

The length field of the Attribute Value Block has two uses:

For attributes whose values fit into an unsigned long field, the value is

Management Service Group

NWSNMP: Concepts 467

passed in the avb_length field. These attributes are identified by the
AIF_IMMEDIATE flag in the Attribute Information Block, and are
known as immediate attributes.

For all other attributes, the value is passed in a buffer to which the
avb_value field points. For these values, the buffer, the avb_value field, and
the avb_length field are used as follows:

When NWSNMP creates an Attribute Information Block for a Get or
GetNext request, it allocates the buffer, places a pointer to the buffer in
avb_value, and places the length, in bytes, of the buffer in avb_length.
When the responding NLM places a value in the buffer, it also must
replace the value in avb_length with the actual length of the value, in
bytes.

When NWSNMP creates an Attribute Information Block for a Set
request, it allocates the buffer, puts the new attribute value in the
buffer, and places the actual length of the value, in bytes, in avb_length.

Parent Topic:

Instrumentation Structures

Related Topics:

Object Information Blocks

Object Control Blocks

Attribute Information Blocks

Client and Trap Structures

These structures provide information used by the client interface and trap
interface functions:

TLV Contains an ASN.1 type, length, and value;
also used to describe a buffer for receiving
such a value.

VarBind Contains a single SNMP variable binding.

Parent Topic:

NWSNMP Functions and Structures

Related Topics:

Client Interface Functions

Trap Interface Functions

Management Service Group

NWSNMP: Concepts 468

Client Interface Functions

The following functions allow SNMP Set, GetNext, and Get requests on local
objects that NWSNMP controls:

SACReadSNMPObje
ct

Reads an SNMP object value.

SACSetAttributes Sets attributes in an abstract object.

SACReadAttributes Reads attributes from an abstract object.

Parent Topic:

NWSNMP Functions and Structures

Related Topics:

Client and Trap Structures

Trap Interface Functions

Client Interface Return Values

The following table shows the values returned by the client interface
functions. These values are the same as those used by the instrumentation
interface functions.

Table . Return Values for the Client Inferface Functions

Return Value Returned By Description

SNMP_ERR_NOERRO
R

All No error; the function
succeeded.

SNMP_ERR_TOOBIG SACReadAttrib
utes

The response exceeds the
space allocated to it.

SNMP_ERR_NOSUC
HNAME

All The indicated item does
not exist. This must be
returned if the instance
ID indicates an instance
that does not exist or if
the object handler
encounters an
unrecognized attribute. In
the latter case, the
Attribute Value Block
must also be flagged.

Management Service Group

NWSNMP: Concepts 469

SNMP_ERR_BADVAL
UE

SACSetAttribut
es

Returned on a Set request
if the object handler
detects an attempt to set
an attribute to an invalid
value.

SNMP_ERR_GENERR All General error not covered
by any of the other error
codes. For example, a
memory allocation
failure.

Parent Topic:

NWSNMP Client Interface

Related Topics:

NWSNMP Get Handling

NWSNMP Set Handling

Community Name Options

The LOAD command line accepts three SNMP option parameters, as
follows:

MonitorCommunity Describes the read-only community (the
community that is allowed to do Get and
GetNext requests). The default value is
public.

ControlCommunity Describes the read/write community (the
community that is allowed to do Set
requests). Any community name established
for read/write access is also valid for
read-only access.

By default, this community is disabled. When
the control community is disabled, all write
access is disabled.

TrapCommunity Describes the community name used for
traps. The default value is public.

NOTE: If the trap community name is disabled, NWSNMP does not
send traps.

The syntax for the options is as follows:

M[onitorCommunity] [= [communityName]]

Management Service Group

NWSNMP: Concepts 470

C[ontrolCommunity] [= [communityName]]
T[rapCommunity] [= [communityName]]

The option parameters (such as MonitorCommunity) are not case-sensitive.
In addition, when specifying option parameters, you need enter only the
first character of the option name, although complete or partial names are
also accepted. For example, T, TrapCom, and Trap are all interpreted as
TrapCommunity.

The communityName is an arbitrary ASCII, case-sensitive string of up to 32
characters. It can include any characters except space, tab, open square
bracket ([), equal sign (=), colon (:), semicolon (;), or number sign (#).

NOTE: Although the option names are not case-sensitive, community
names are case-sensitive. Thus, the names Public, public, and PUBLIC
denote three different communities.

Enabling Access by a Single Community Name

To enable access to a community for a single community name, enter the
option parameter, followed by an equal sign (=), followed by the
community name. Thereafter, the community name offered by the SNMP
remote client must match the specified value, or NWSNMP denies access for
the request.

Enabling Access by a Single Community Name

If you follow the option name only by an equal sign with no argument,
NWSNMP accepts any community name offered by an SNMP remote client
for that community.

Disabling Access to a Community

To disable access to a community, enter the associated option name without
following it by an equal sign (=).

Examples

To set the read/write community name to secret, use the following
command:

LOAD SNMP ControlCommunity =secret <Enter>

To disable all read/write access, use the following command:

LOAD SNMP ControlCommunity <Enter>

To allow any community name to be used for read access, use the following
command:

LOAD SNMP MonitorCommunity = <Enter>

To allow any community name to have read-only access and set the
read/write community name to private, use the following command (note
the abbreviated option names):

LOAD SNMP M = C =private <Enter>

Management Service Group

NWSNMP: Concepts 471

To set the community name for traps to AgentTrap, use the following
command:

LOAD SNMP TrapCommunity =AgentTrap <Enter>

Parent Topic:

Loading NWSNMP

Compiling a MIB

NWSNMP includes a MIB compiler, MIBCOMP.EXE, to compile your MIB.
When the compiler processes your MIB definition, it creates a C module (.C)
containing the C structures required by the NWSNMP to understand the
MIB. It also creates a header file (.H) containing the C extern definitions for
the data structures that the resulting C module is expecting from other C
modules in the NLM™. The header file also contains #define statements for
the object attribute IDs. Include the header file in the C modules that satisfy
the extern definitions. This ensures that the structures provided agree with
the requirements of the MIB definition.

IMPORTANT: The current version of the MIB compiler does not
ignore introductory text, page headers, or page footers in standard RFC
format MIBs. Therefore, you must edit your MIB definition to remove
any text other than the actual RFC-1212 format MIB definition. This
includes all text before the DEFINITIONS ::= BEGIN line, all headers
and footers within the actual definition, and any text following the MIB
END statement.

Parent Topic:

Working with MIBs

Related Topics:

Abstract Objects

Hierarchical and Flat Structures

Acquiring a MIB Definition

Data Conversion

The MIB compiler extracts data type information from the MIB. Using this
information, NWSNMP converts instance IDs and attribute values between
ASN.1 format, which SNMP uses in its packets, and the native format. This
means data type information is built into NWSNMP and the MIB compiler,
so you need to be concerned only with the native format.

Parent Topic:

Management Service Group

NWSNMP: Concepts 472

Universal Tasks Handled by NWSNMP

Related Topics:

Grouping

Time Field Conversion

OCTET STRING Conversion

Abstract Objects with Exactly One Instance

Attribute Range Checking

Get and GetNext Handling

The Get and GetNext requests are very similar. As the SNMP agent
processes a Get or GetNext request, it performs the following actions:

1. The SNMP agent decodes the Protocol Data Unit (PDU) request and
prepares to get the requested information. In the process, it completes
the following steps:

a. The SNMP agent identifies the authority for the request (by way of
the community name and any other authorization features
implemented) and the SNMP objects being requested.

b. The SNMP agent looks up each SNMP object requested in the data
store of registered abstract objects. From the abstract object
information, the SNMP agent identifies the abstract object ID, the
attribute ID, and the instance ID. If the request does not have the
authority to read this object, the SNMP agent rejects the request.

c. If the request does have the proper authority, the SNMP agent
groups all requests for each object ID/instance ID pair so they can
be treated as a single request for information about the indicated
object instance.

d. For each object instance, the SNMP agent gets the data type of the
object data.

e. The SNMP agent converts the instance ID into the native format of
the machine to which the ID arrives (for example, big endian). The
request fails if the index is invalid: too long, too short, out of range,
and so on.

2. If the decode process has been successful, the SNMP agent calls the
appropriate OCBGet or OCBGetNext function within the
Instrumentation Agent for the object, passing the Object Information
Block, the instance ID, and the list of attributes to be read.

3. The SNMP agent receives the requested information from the

Management Service Group

NWSNMP: Concepts 473

instrumented object.

4. Using the information returned by the OCBGet or the OCBGetNext
function, the SNMP agent builds and sends a PDU response message,
converting each piece of object information from the native format of
the machine into the appropriate ASN.1 Notation format.

The following figure shows the Get and GetNext handling process.

Figure 8. Get and GetNext Handling Process Flow

Parent Topic:

Get, GetNext, and Set Functions

Related Topics:

Set Handling

Group Objects

A group object is a collection of individual objects. A group is similar to a
directory that contains files. A MIB usually contains a number of group
objects; group objects can contain a number of scalar objects, table objects, or
other group objects.

In the Global Naming Tree example (see The Global Naming Tree and
ASN.1 Notation), mib-2(1) is the node name of the MIB, which is actually
a group object itself. The following groups are under mib-2(1).

system(1)

interfaces(2)

at(3)

ip(4)

Management Service Group

NWSNMP: Concepts 474

icmp(5)

tcp(6)

udp(7)

egp(8)

transmission(10)

snmp(11)

rmon(16)

In the Global Naming Tree example, the group tcp is expanded to show a
scalar object and a table object. If every group under mib-2(1) were
expanded, an object list similar to tcp would appear containing scalar and
table objects.

Parent Topic:

Three Types of SNMP Objects

Related Topics:

Scalar Objects

Table Objects

Grouping

Management entities can frequently provide better service when they
receive all attribute information for a given object instance simultaneously.
To facilitate this, NWSNMP gathers all attributes requested for each object
instance in the request into a list of information and passes it to the handler
at the same time. For instance, a Get request might contain a list of object
variables to be retrieved, instead of multiple Get requests with one variable
per call.

Parent Topic:

Universal Tasks Handled by NWSNMP

Related Topics:

Data Conversion

Time Field Conversion

OCTET STRING Conversion

Abstract Objects with Exactly One Instance

Attribute Range Checking

Hierarchical and Flat Structures

Management Service Group

NWSNMP: Concepts 475

MIBs define a hierarchical structure of nested objects. For example, a MIB
might define an object with two variables and a log table with three
columns and four rows.

In contrast, the NWSNMP MIB compiler views objects in a flat,
object-oriented structure. Thus, in the example above, the MIB compiler
defines two objects: one object with two attributes to represent the two
simple variables, and a second object to represent the table (see the
following figure). The table is redefined as a series of four arrays, each with
three elements.

This definition does not change the actual organization of the data. It simply
decouples the hierarchical dependencies of the table and the remaining
object attributes.

Figure 9. MIB Interpretation

Management Service Group

NWSNMP: Concepts 476

Parent Topic:

Working with MIBs

Related Topics:

Acquiring a MIB Definition

Compiling a MIB

Abstract Objects

Instrumentation

Instrumentation is the process of making NLM™ object data available to
NWSNMP. Thus, an instrumented object is one that has been made
accessible to NWSNMP. Once an object is instrumented, its associated data
is available to NWSNMP. NWSNMP can do Get and Set requests against
the object data at the request of management entities.

Instrumenting an object to NWSNMP allows you to make the object
manageable by SNMP without providing direct SNMP capabilities in your
code. Instead, NWSNMP handles tasks related to creating SNMP Protocol
Data Units (PDUs) and responding to requests from SNMP remote clients.
This approach allows your NLM to ignore most of the peculiarities of SNMP
and MIBs. In addition, this approach allows you to work at a higher level of
abstraction than SNMP objects.

NWSNMP provides an interface for instrumenting objects to NWSNMP, as
described in Instrumenting Objects.

Parent Topic:

NWSNMP Concepts

Related Topics:

Management Information Bases

Instrumentation Agents

Instrumentation Agents (IAs) contain the same information as a MIB, plus
additional code that enables the IA to get the information needed to respond
to an SNMP Manager's request, from the internals of the network device.

An IA is created by a process of development referred to as
Instrumentation. An IA is created from a MIB or multiple MIBs. An IA can
be created for every MIB. One IA can be created for a number of unique
MIBs. This process consists of the creation of an IA, MIB or multiple MIBs

Management Service Group

NWSNMP: Concepts 477

(data) and the code for accessing and manipulating this data. See
Instrumenting Objects for details on IA development.

MIBs and IAs are two separate entities. The IAs and MIBs are intricately
related. A MIB resides as a document on the remote client, while IAs are
internal to a network device. However, a MIB is the foundation in the
creation of an IA. The MIB provides information to the network manager on
the remote client, and the IA provides information to the SNMP agent on
the network device.

Parent Topic:

SNMP Basic Concepts

Instrumentation Functions

Instrumentation functions are used to register an object and its MIB, and
provide the functions NWSNMP uses when it receives Get and Set requests
against an object.

Standard Object-Handling Macros

The following macros are used to define Object Control Blocks for objects
instrumented with standard object-handling functions.

SAI_DEFINE_GROUP Defines a group table-oriented object.

SAI_DEFINE_POINTE
R

Defines a pointer table-oriented object.

SAI_DEFINE_TABLE Defines a simple table-oriented object.

Registration Functions

The following functions are used to define, register, and deregister MIBs:

SAIRegisterMIB Registers a MIB definition with NWSNMP.

SAIDeregisterMIB Deregisters a MIB definition that has been
registered with NWSNMP.

Specific Object-Handling Functions

The specific object-handling instrumentation functions give the structure of
calls your NLM™ must provide for each abstract object you instrument with
your own functions instead of with the standard object-handling functions.
NWSNMP calls the functions you provide to fulfill Get, GetNext, and Set
requests. Athough based on the specific object-handling functions, your
functions should have different names, expecially if you are instrumenting
multiple objects.

Management Service Group

NWSNMP: Concepts 478

In addition, the OCBLookupInst function defines the lookup function for
group objects registered with the standard object-handling functions.

The specific object-handling functions are as follows:

OCBAbortSet Aborts a previously checked set.

OCBCheckSet Checks the validity of parameters for a Set
request.

OCBCommitSet Sets a list of attributes in an object.

OCBGet Reads attributes from an object.

OCBGetNext Reads attributes from the next object instance
in an ordered set of objects.

OCBLookupInst Looks up an instance within a group of arrays
using NWSNMP standard object-handling
functions.

Parent Topic:

NWSNMP Functions and Structures

Related Topics:

Instrumentation Structures

Instrumentation Object Structures

The following structures are used to define the attributes of instrumented
objects:

AttrInfo Attribute Information Block

AttrValue Attribute Value Block

ObjControl Object Control Block

ObjInfo Object Information Block

Parent Topic:

NWSNMP Functions and Structures

Related Topics:

Instrumentation Functions

Instrumentation Using Specific Object-Handling

Management Service Group

NWSNMP: Concepts 479

Functions

If you cannot organize your abstract object data into a simple table, pointer
table, or group table, you must provide your own object-handling functions.
You can look in the header (.H) file produced by the MIB compiler to
determine which structures the MIB definition requires from your NLM™
code. Each group object requires an Object Control Block. The Object
Control Block provides pointers to the NWSNMP functions which handles
requests for Get, GetNext, or Set requests.

Each block includes pointers to functions for manipulating an object, as well
as context information for the functions. The Object Control Block is
described in Instrumentation Structures.

NWSNMP invokes the appropriate functions to handle the various requests
that can be performed on your object.

The following type definitions for object-handling functions give the
structure of functions your NLM must provide for each abstract object you
register. NWSNMP calls these functions to fulfill Get and Set requests.

Table . Specific Object-Handling Functions: Instrumentation Prototype Definitions

Function Purpose

OCBAbortSet Aborts a previously checked set.

OCBCheckSet Checks the validity of parameters for a Set
request.

OCBCommitSet Sets a list of attributes in an object.

OCBGet Reads attributes from a specific object.

OCBGetNext Reads attributes from the next object instance in
an ordered set of objects.

OCBLookupInst Looks up an instance within a group of arrays
using the NWSNMP standard access methods.

The functions are all quite similar in nature, so some common points are
covered here. These common points are process context, instance list
handling, attribute list handling, and error handling. Detailed information
about each function is provided in NWSNMP Functions and Structures.

Process Context

NWSNMP invokes your NLM object-handling functions on the NWSNMP
thread. Thus, NWSNMP can invoke an object-handling function in any
process context. For example, the context can be in a NetWare C Library
thread or a NetWare operating system process, and in either case the context
is not necessarily related in any way to the object-handling NLM.
Consequently, when writing object-handling functions, avoid C Library
functions except the context-free functions such as the memory and string

Management Service Group

NWSNMP: Concepts 480

manipulation functions.

IMPORTANT: Do not block in your object-handling functions
unless it is absolutely necessary. In particular, do not block in the
OCBCommitSet function.

If your NLM depends on its own C Library context (that is, it uses one or
more C Library functions), put the process into its own C Libarry context by
calling SetThreadGroupID. In addition, reset the thread group immediately
before returning.

Instance Lists

NWSNMP passes to each abstract object-handling function an array of
Attribute Value Blocks that contain instance information. For abstract
objects with only a single instance, such as statistics tables, this list is always
empty and can be ignored. For tabular objects, this list contains the group of
attributes that describe the instance involved in the request.

This instance list always contains blocks for all the variables in the INDEX
clause of the abstract object in the same order in which they appear in the
INDEX clause. (When NetWare SNMP receives a GetNext request with
insufficient instance information, it completes the instance list with NULL
values.)

Attribute Lists

NWSNMP passes an attribute list to each object-handling function when it
calls the function. This list is an array of Attribute Value Blocks. These
blocks contain the attributes that are involved in the current request. The
abstract object code must traverse the list of attributes and perform a Get or
Set request on the indicated value for each. The object can look at
avb_info->aib_id to determine which attribute is being addressed.

NWSNMP does not order attribute lists; it passes the attributes to the object
handler in the same order in which they appear in the original SNMP
packet. In addition, NWSNMP does not discard duplicates, so an attribute
list might contain multiple references to the same attribute. Your handling
function must process these duplicate blocks.

Error Handling

Your object-handling functions must return SNMP_ERR_NOERROR when
successful or one of the predefined error codes when they fail, indicating
the reason the request cannot be completed. The following table lists
NWSNMP return codes, which are defined in the SNMPAGNT.H header
file.

Table . Object-Handling Routing Return Values

Return Value Returned
By

Description

SNMP_ERR_NOERROR All No error; the function
succeeded.

Management Service Group

NWSNMP: Concepts 481

SNMP_ERR_TOOBIG OCBGet,
OCBGetNe
xt

The response exceeds the
space allocated to it.

SNMP_ERR_NOSUCH
NAME

All The indicated item does not
exist. This must be returned if
the instance ID indicates an
instance that does not exist or
if the object handler
encounters an unrecognized
attribute. In the latter case, the
Attribute Value Block must
also be flagged.

SNMP_ERR_BADVALU
E

OCBCheck
Set

An OCBCheckSet function
returns this if it detects an
attempt to set an attribute to
an invalid value.

SNMP_ERR_GENERR All General error not covered by
any of the other error codes.
For example, a memory
allocation failure.

If the reason for the failure is specific to a particular attribute in the attribute
list, your function must take the following steps when returning the error
code:

1. Set to NULL the avb_info field of AttrValue block for the attribute that
causes the failure.

2. Write the error code into the block's avb_length field.

Performing the above steps help identify the attribute that caused the
failure to NWSNMP.

If your function returns an error code but does not flag a particular
attribute, NWSNMP assumes that the failure applies generally to all the
attributes in the request.

For example, if a Get request asks for information from a nonexistent object
instance, the OCBGet function simply returns
SNMP_ERR_NOSUCHNAME without flagging any particular attribute. In
contrast, if the object exists but one of the queried attributes does not, the
OCBGet function returns the SNMP_ERR_NOSUCHNAME error in the
avb_length field for that attribute.

Parent Topic:

Specific Object-Handling Functions

Related Topics:

Instrumentation Using Standard Object-Handling Functions

Management Service Group

NWSNMP: Concepts 482

Instrumentation Using Standard Object-Handling
Functions

The NWSNMP instrumentation interface provides standard functions for
three data organizations: simple table, pointer table, and group table. The
SNMPGEN.H header file contains all the definitions for using the standard
access functions. You must include this file in your code if you are using
standard functions for any object you instrument.

When you instrument with standard object-handling functions, you must
provide a macro call to NWSNMP to set up each object. The macro call
creates an Object Control Block for the object and places the appropriate
object-handling functions in the block. The Object Control Block is described
in Instrumentation Structures.

Simple Table

A simple table is an organized array of unsigned long values indexed by an
attribute number. Immediate values are stored directly in the array fields.
For pointer values, a pointer to the value is stored in the array. Array index
zero contains a value giving the number of elements in the array. The
following figure shows a simple table.

For example, simple tables can be used for statistics tables where most of the
values are unsigned long data types.

Use the SAI_DEFINE_TABLE macro to define the Object Control Block for a
simple table.

Figure 10. Simple Table

Management Service Group

NWSNMP: Concepts 483

Pointer Table

The pointer table (see the following figure) is like the simple table, except it
contains immediate values, which are values that exist directly in the simple
table array. This allows for the simple instrumentation of values that cannot
themselves be reorganized into a standard format. The pointers in the array
are handled identically as in the simple table.

Use the SAI_DEFINE_POINTER macro to define the Object Control Block
for a pointer table.

Figure 11. Pointer Table

Management Service Group

NWSNMP: Concepts 484

Group Table

A group table is a two-dimensional structure, an array of simple table arrays
(see the following figure). Use a group table to instrument objects with
multiple instances.

The organization of the attribute information is identical to the simple
organization, but NWSNMP looks up the location of the array containing an
object before manipulating the object. The OCBLookupInst function

Management Service Group

NWSNMP: Concepts 485

handles this step and returns a pointer to the location of the particular
object.

Use the SAI_DEFINE_GROUP macro to define the Object Control Block for
a group table. In addition, you must provide a function based on the type
definition OCBLookupInst for the group table.

Figure 12. Group Table

Defining Values for a Standard Table

In all tables formatted for use with the standard access methods, the
following values must be NULL-terminated:

Non-immediate values in a simple table

Any OCTET STRING value in a pointer table

In addition, writable non-immediate values must be stored in buffers large
enough to hold the maximum length value. The length of attributes with no
maximum is arbitrarily capped at 256 bytes, including the terminating null.

Example

Management Service Group

NWSNMP: Concepts 486

As an example, consider the instrumented object shown in the figure below.
The MIB compiler interprets the MIB as two abstract objects. One has two
attributes; the second is a series of arrays. Using this interpretation, the
objects can be implemented as follows:

Object 1 can be represented as a simple table with two elements
representing the attributes. If the variable values cannot fit in four bytes,
the table can be implemented as a pointer table instead.

Object 2 can be represented as a group object of four elements, where
each element is a simple table with three elements.

The following figure diagrams the instrumented object structure.

Figure 13. Instrumenting an Object with Standard Object-Handling Functions

Management Service Group

NWSNMP: Concepts 487

Parent Topic:

Standard Object-Handling Functions

Related Topics:

Instrumentation Using Specific Object-Handling Functions

Manageable Object Definitions

Object definitions can be scalar or they can be presented in tables.

All Objects

All SNMP manageable objects are defined using the OBJECT-TYPE macro,
which performs a value assignment to define the object identifier for the
object and also captures the semantics of the object.

The Sample Object Definition example shows an example of a typical object
definition.

Sample Object Definition

 tcpRtoAlgorithm OBJECT-TYPE
SYNTAX INTEGER {
 other(1), -- none of the following
 constant(2), -- a constant rto
 rsre(3), -- MIL-STD-1778, Appendix B
 vanj(4) -- Van Jacobson's algorithm
 }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The algorithm used to determine the time-out value used for
 retransmitting unacknowledged octets."
 ::= { tcp 1 }

The following paragraphs explain all the clauses in the new manageable
object defined in the Sample Object Definition example.

tcpRtoAlgorithm is the textual name for the object. Its object identifier
(or "on the wire" name) is tcp (1) or 1.3.6.1.2.1.6.1 (because tcp was
defined, in Global Naming Tree example in The Global Naming Tree and
ASN.1 Notation, to have the value 1.3.6.1.2.1.6).

SYNTAX specifies the type of the object, which, in this case, is INTEGER.
In fact, it is an "enumerated INTEGER." The value of an enumerated
INTEGER is restricted to one of the explicitly listed values, which, in this
case, are 1, 2, 3, or 4. The name associated with each value is for
convenience only. On the wire, the value is impossible to differentiate
from any other INTEGER value.

Management Service Group

NWSNMP: Concepts 488

The SYNTAX clause can specify any of the legal SNMP types described
in the table entitled Values for Scalar Objects. You can also see "subtypes"
of these types. A subtype further restricts the set of values a type can take.

For INTEGER types, a subtype takes the form of an inclusive range of
values. In the following example, the integer is restricted to values in the
range 0 to 65535 inclusive.

INTEGER(0..65535)

For OCTET STRING types, a subtype can be defined that has either a
fixed length or a range of possible lengths. For example:

OCTET STRING (SIZE(6)); OCTET STRING (SIZE (0..255)); DisplayString (SIZE (0..127))

ACCESS specifies the maximum access for the object. Your access rights
can be less than the specified maximum value of 28. Access values
depend upon the community string used and the particular
implementation of the MIB. Possible access values include: read-only,
read-write, write-only, and not-accessible.

These are all self-explanatory, except for not-accessible. Tables and rows
within tables cannot be directly accessed using SNMP. Only individual
table entries are accessible. Hence, table and row level definitions are
flagged not-accessible. Objects that are defined to be used purely as
parameters of traps are also often defined not-accessible, because you
cannot access them directly.

STATUS provides information about the state of the MIB object. The
following are possible values:

Mandatory---indicates the object must be implemented.

Optional---is never used. The SNMP convention is that if any objects
within a group are implemented, then all objects within the group
must be implemented. Hence, the unit of compliance is the group, not
an individual object. A group is a collection of individual objects
under a common node.

Obsolete---indicates the object is no longer supported.

Deprecated---indicates the object is being phased out. At some time in
the future, it might become obsolete.

DESCRIPTION provides a textual description of the semantics of the
object.

REFERENCE (not shown in this example) has the same form as the
DESCRIPTION clause. It is sometimes used to provide a textual reference
to a definition in some other document, such as an IEEE or ISO standard.

Table Objects

In MIBs, table definitions usually comprise four pieces:

Management Service Group

NWSNMP: Concepts 489

The table object itself is defined with the SYNTAX "SEQUENCE OF
<TableEntry>".

The row object is defined under the table node with the SYNTAX
"<TableEntry>".

The type assignment for <TableEntry> defines the fields within the table.

The object definitions for each field are hung under the entry node.

The Sample Table Definition example provides a definition of
tcpConnTable used in Global Naming Tree example in The Global Naming
Tree and ASN.1 Notation.

Sample Table Definition

INDEX { tcpConnLocalAddress,
 tcpConnLocalPort,
 tcpConnRemAddress,
 tcpConnRemPort }
 ::= { tcpConnTable 1 }

TcpConnEntry ::= SEQUENCE {
 tcpConnState INTEGER,
 tcpConnLocalAddress IpAddress,
 tcpConnLocalPort INTEGER (0..65535),
 tcpConnRemAddress IpAddress,
 tcpConnRemPort INTEGER (0..65535)
 }

 tcpConnState OBJECT-TYPE
 SYNTAX INTEGER
 .
 .
 ::= { tcpConnEntry 1 }

 tcpConnLocalPort OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 .
 .
 ::= { tcpConnEntry 3 }

 tcpConnRemAddress OBJECT-TYPE
 SYNTAX IpAddress
 .
 .
 ::= { tcpConnEntry 4 }

 tcpConnRemPort OBJECT-TYPE
 SYNTAX INTEGER (0..65535)
 .
 .
 ::= { tcpConnEntry 5 }

Management Service Group

NWSNMP: Concepts 490

Most of the clauses in this example have been explained in Manageable
Object Definitions. The following paragraphs explain the INDEX and
DEFVAL clauses:

INDEX, which appears in the table entry definition, defines how to name
an instance of an object within the table. For instance, in tcpConnTable,
the index required to uniquely identify a row is formed from the ordered
set of values: tcpConnLocalAddress, tcpConnLocalPort,
tcpConnRemAddress, tcpConnRemPort. (See Table Objects for more
information.)

DEFVAL (not shown in this example) is sometimes used within the
OBJECT-TYPE macro, defining objects that are part of a table. This clause
defines an acceptable default value for the object. Examples of DEFVAL
clauses are shown below:

DEFVAL Clauses

 DEFVAL { 0 } -- INTEGER
 DEFVAL { `00000000'h } -- hexadecimal string
 DEFVAL { {0 0} } -- NULL OBJECT IDENTIFIER 0.0

Parent Topic:

MIB Module Contents

Related Topics:

Trap Definitions

Value Assignments

Type Assignments and Textual Conventions

MIBs

To instrument an object, you must acquire or develop a MIB that describes
that object (see Obtaining RFCs and MIBs). MIB development is discussed in
Working with MIBs. The information from the MIB is then included in your
NLM™, and NWSNMP uses the MIB information to read data and respond
to SNMP requests regarding your instrumented objects.

Parent Topic:

NWSNMP Concepts

NWSNMP Architecture

The following figure shows how NWSNMP and NLM™ software has been
instrumented to interact with the NetWare operating system and
management applications. An SNMP Manager can send SNMP requests to

Management Service Group

NWSNMP: Concepts 491

NWSNMP, which acts as an interface between the SNMP manager and
instrumented NLM files. An NLM that has been instrumented to NWSNMP
is manageable by any SNMP remote client. For example, NWSNMP acts as
an interface between the NMS Console and instrumented NLM files. Thus,
an object instrumented to NWSNMP is manageable by applications
compatible with the NMS console.

Figure 14. NWSNMP and NLM Software Architecture

Parent Topic:

NWSNMP Concepts

NWSNMP Get Handling

The Get and GetNext requests are very similar. As NWSNMP processes a
Get or GetNext request, it performs the following actions:

1. NWSNMP decodes the SNMP request and prepares to get the
requested information. In the process, it completes the following steps:

a. NWSNMP identifies the authority for the request (by way of the
community name and any other authorization features
implemented) and the SNMP objects being requested.

Management Service Group

NWSNMP: Concepts 492

b. NWSNMP looks up each SNMP object requested in the data store
of registered abstract objects. From the abstract object information,
NWSNMP identifies the abstract object ID, the attribute ID, and the
instance ID. If the request does not have the authority to read this
object, NWSNMP rejects the request.

c. If the request does have the proper authority, NWSNMP groups all
requests for each object ID/Instance ID pair so they can be treated
as a single request for information about the indicated object
instance.

d. For each object instance, NWSNMP gets the data type of the object
data.

e. NWSNMP converts the instance ID into native format. The request
fails if the index is invalid: too long, too short, out of range, and so
on.

2. If the decode process has been successful, NWSNMP calls the
appropriate OCBGet or OCBGetNext function for the object, passing
the Object Information Block, the instance ID, and the list of attributes to
be read.

3. NWSNMP receives the requested information form the instrumented
object.

4. Using the information returned by OCBGet or OCBGetNext,
NWSNMP builds and sends an SNMP reply message, converting each
piece of object information from native format into the appropriate
ASN.1 format.

Parent Topic:

NWSNMP Client Interface

Related Topics:

NWSNMP Set Handling

Client Interface Return Values

Get and GetNext Handling

Set Handling

NWSNMP Set Handling

NWSNMP processes SNMP Set requests one at a time, using a two-phased
commit to ensure that each Set is processed as a unit even if it affects
multiple objects. If, when NWSNMP tries to process a Set request, it finds
that it is currently blocked while processing a previous Set, it blocks the new
Set until the previous Set is completed. Once it is ready to process a

Management Service Group

NWSNMP: Concepts 493

particular Set request, NWSNMP takes the following steps:

1. NWSNMP decodes the SNMP request and prepares to complete the Set.
In the process, it completes the following steps:

a. NWSNMP identifies the authority for the request (by way of a
community name and any other authorization features
implemented) and the SNMP objects being requested.

b. NWSNMP looks up each SNMP object requested in the data store
of registered abstract objects. From the abstract object information,
NWSNMP identifies the abstract object ID, the attribute ID, and the
instance ID. The request fails if the object is not writable or if the
request does not have the authority to write this object.

c. NWSNMP groups all requests for each object ID/instance ID pair
so they can be treated as a single request to modify the indicated
object instance.

d. NWSNMP converts all attribute values from ASN.1 format into
native format.

e. For each object instance, NWSNMP gets the type of the object index
from the object data store entry. NWSNMP converts the instance ID
into native format. The request fails if the index to any of the
requested objects is invalid: too long, too short, out of range, and so
on.

2. If the decode process has been successful, NWSNMP calls the
appropriate OCBCheckSet function for each object, passing the object
ID, the instance ID, and the list of attribute values to be set. If
OCBCheckSet fails for any object instances, NWSNMP aborts the
request by calling the appropriate OCBAbortSet function for all object
instances that previously responded successfully to OCBCheckSet.

3. The instrumented NLM™ sends a response to NWSNMP. The response
indicates whether the object can complete the Set.

4. If all calls to OCBCheckSet are successful for the request, NWSNMP
calls the OCBCommitSet function for each object instance, passing the
object ID, the instance ID, and the list of attribute values to be set.

IMPORTANT: If OCBCheckSet succeeds, OCBCommitSet
should also succeed.

5. The instrumented NLM sends a response to NWSNMP indicating the
Set has been completed.

6. NWSNMP builds and sends an SNMP reply message indicating
whether the Set succeeded.

Parent Topic:

NWSNMP Client Interface

Management Service Group

NWSNMP: Concepts 494

Related Topics:

Client Interface Return Values

NWSNMP Get Handling

Get and GetNext Handling

Set Handling

Object Control Blocks

For each abstract object, the MIB compiler produces C code that refers to an
external Object Control Block of type struct ObjControl. This block must be
defined by the object-handling code. The name of the control block is
always the name of the abstract object with the prefix "OCB_." For example,
the IP statistics object is described by OCB_ip, and the IP routing entry
object is described by OCB_ipRouteEntry.

NOTE: The extern statements in the header (.H) file that the MIB
compiler generates name the Object Control Blocks you must define.

Each node of the MIB tree with accessible subbranches is an abstract object
and requires an Object Control Block. Nodes without accessible
subbranches are not abstract objects. For example, ipRouteTable does not
have a control block because its only subbranch is ipRouteEntry, which has
an ACCESS value that is not-accessible. The ipRouteEntry node does have
several accessible subbranches. Therefore, it does require a control block.

Parent Topic:

Instrumentation Structures

Related Topics:

Attribute Information Blocks

Attribute Value Blocks

Object Information Blocks

Object Information Blocks

An Object Information Block contains four pointers, as follows:

The oib_id_pt field points to an integer array. The array contains the ID of
the object in the MIB, one sub-ID per array element.

The oib_control field points to the Object Control Block.

The oib_attr_pt field points to an array of Attribute Information Blocks.
Each block in the array describes one of the attributes of the object. The

Management Service Group

NWSNMP: Concepts 495

array contains one block for each attribute.

The oib_index_pt field points to a second array of Attribute Information
Blocks that serve only as indexes. These indexes are used to find
attributes for objects that have multiple instances, such as tables. (The
Sample Attribute Information Block figure shows an example.)

Parent Topic:

Instrumentation Structures

Related Topics:

Object Control Blocks

Attribute Information Blocks

Attribute Value Blocks

Object Registration and Deregistration

Registration allows NWSNMP to manage a dynamically changing set of
objects, depending on which NLM™ files are loaded on the server. An NLM
registers its instrumented objects at load time, and deregisters them when it
unloads. Thus, NWSNMP always has current information about which
objects it can manage.

The set of data associated with objects that have been registered--that is, the
data NWSNMP can access--is the NWSNMP data store.

Parent Topic:

NWSNMP Concepts

Obtaining MIBs

The Internet Engineering Task Force (IETF), the standards body that created
TCP/IP and SNMP, has created several standard MIBs for common
network devices and protocols. These standard MIBs are published as RFCs
and are available through anonymous FTP from host 192.33.33.22 and other
sites. The standard MIBs are under the { ...internet(1) mgmt(2) }
node of the naming tree.

The RFC directory contains all published RFCs. The internet-drafts
directory contains the latest working versions of documents that have not
yet reached standards status.

Proprietary MIBs are available under each vendor's assigned node in the
{...internet(1) private(4) enterprises(1) } branch of the
naming tree. For instance, all Novell proprietary MIBs are under
{...internet(1) private(4) enterprises(1) novell(23) }.

Management Service Group

NWSNMP: Concepts 496

Often vendor proprietary MIBs are posted on host 128.9.0.32 and can be
obtained through anonymous FTP as well.

Parent Topic:

Management Information Bases

Related Topics:

The Two Uses of MIBs

The Global Naming Tree and ASN.1 Notation

Three Types of SNMP Objects

MIB Module Contents

Obtaining RFCs and MIBs

RFCs

RFCs are documents used to propose Internet (TCP/IP) protocols and
procedures. They provide the specification for all Internet Protocols. The
RFCs are available at the following World Wide Web address:

http://www.internic.net/ds/dspg0intdoc.html

In addition, you can use electronic mail (e-mail) to request RFCs from the
InterNIC Directory and Database Services automated mail server. To do
this, send a message to mailserv@ds.internic.net. In the body of the
message, indicate the RFC you want, as follows, where NNNN is the
number of the RFC:

document-by-name rfcNNNN

For RFCs in the PostScript format, specify the extension, as follows:

document-by-name rfcNNNN.ps

To send multiple requests in a single message, specify each request on a
separate line.

Use the following line to request the index of RFCs:

document-by-name rfc-index

The following protocol specifications, as well as other protocol-related
information, are gathered in the DDN Protocol Handbook, which is
available from the following centers:

DDN Network Information Center

14200 Park Meadow Dr., Suite 200

Chantilly, VA 22021, USA

Management Service Group

NWSNMP: Concepts 497

Defense Technical Information Center

Cameron Station

Alexandria, VA 22314, USA

The following RFCs define and provide background information relating to
SNMP:

RFC 1155, Structure and Identification of Management Information for
TCP/IP-based Internets, Rose, M. and McCloghrie, K., May 1990.

RFC 1157, A Simple Network Management Protocol, Case, J. and others, May
1990.

RFC 1212, Concise MIB Definitions, Rose, M. and McCloghrie, K., March
1991.

RFC 1213, Management Information Base for Network Management of
TCP/IP-Based Internets: MIB II, McCloghrie, K. and Rose, M., March 1991.

RFC 1215, A Convention for Defining Traps for use with the SNMP, Rose, M.,
March 1991.

MIBs

To obtain published MIBs using anonymous ftp, log in to venera.isi.edu (IP
address 128.9.0.32) with the login name anonymous. Give your E-mail
address as the password. Public MIBs are located in the mib directory.

Parent Topic:

NWSNMP Introduction

Related Topics:

Management Information Bases

OCTET STRING Conversion

Short OCTET STRING types are intended as a convenient way of handling
OCTET STRING types that fit in the four-byte length field of the Attribute
Value Block. Handling these as a special case eliminates the need for a
buffer, in addition to the Attribute Value Block, to pass these values around.

Storing the strings as unsigned long values does not change the
characteristics of the OCTET STRING types. An IpAddress is still an array of
four bytes and it continues to exist as an array of four bytes even when it
resides in an unsigned long field. When running on a machine that uses
Intel* format, this means that the first byte of the OCTET STRING is in the
low order byte of the unsigned long.

Therefore, when ordering short OCTET STRING types lexicographically,
you must perform a byte-by-byte comparison. Comparing the actual
unsigned long values for greater than or less than does not deliver the

Management Service Group

NWSNMP: Concepts 498

desired results.

Parent Topic:

Universal Tasks Handled by NWSNMP

Related Topics:

Grouping

Data Conversion

Time Field Conversion

Abstract Objects with Exactly One Instance

Attribute Range Checking

Operational Flow of an Instrumented NLM

The operational flow of an instrumented NLM™ is as follows:

1. Register with NWSNMP when loading the NLM.

2. Continue ordinary request. NWSNMP calls object management
functions when needed.

3. Deregister with NWSNMP when unloading.

Parent Topic:

NWSNMP Concepts

Request/Response Transaction

In a request/response transaction, the network manager sends a request
packet, referred to as a Protocol Data Unit (PDU), to the SNMP agent in a
network device. The SNMP agent searches for the response, and then sends
back a response PDU to the network manager.

There are three types of requests:

Get, which allows the network manager to ask the SNMP agent for the
current value of one or more objects, in random order, in the network
device. The SNMP agent gathers the requested data and sends it back to
the manager.

GetNext, which is essentially the same as Get, except that it allows a
manager to retrieve data from a table in sequential order.

Set, which allows the network manager to ask the SNMP agent to change
the value of one or more objects to specified values. The SNMP agent

Management Service Group

NWSNMP: Concepts 499

performs the Set and sends a confirmation back to the network manager.
If the network manager requests multiple objects to be set in the same
PDU, the SNMP agent is mandated to set them all as if simultaneously.
In particular, the SNMP agent must set either all or none of the objects.

For each request PDU, there is one response PDU. In the case of a Get or
GetNext request, the response PDU contains either the requested data or an
error code. For a Set request, the response PDU returns with an error status
if the Set failed. If the Set did not fail, the response is identical to the request
and all variables are updated.

In summary, the request/response transaction is performed as follows:

1. The network manager makes a management request by sending a
request PDU to the SNMP agent on the network device.

2. The SNMP agent receives the request.

3. The SNMP agent decides which IA can handle the request.

4. The SNMP agent calls the appropriate IA's Get, GetNext, or Set request
to get the response.

5. The response is sent back from the IA in the form of a response PDU to
the SNMP agent and returned to the network manager on the remote
client.

6. The network manager receives the response and the management task
is verified and completed.

Parent Topic:

SNMP Operation

Related Topics:

Trap Transaction

Get, GetNext, and Set Functions

Required Software

To develop an NLM using the NWSNMP, you must have a network
compiler SDK that allows you to develop NLM™ files for the NetWare
platform. This can be found in the NetWare SDK (see NLM Applications).
Certain C library calls must be used in association with the NWSNMP API
functions to register with NWSNMP successfully.

To run the MIB compiler, you must have MS-DOS* 3.3, MS-DOS 6.0, or DR
DOS 6.0 software or Novell DOS™ 7.0 software. The MIB Compiler has not
been tested on other versions of DOS.

To obtain Novell products, call 1-800-NETWARE (1-800-638-9273) or

Management Service Group

NWSNMP: Concepts 500

1-801-861-5588 in the U.S. or Canada, or contact your local Novell reseller.

To obtain SDKs, or for additional information on development tools and
developer support programs, call 1-800-NETWARE (1-800-638-9273) or
1-801-861-5588 in the U.S. or Canada, or contact your international Novell
office.

Parent Topic:

NWSNMP Introduction

Scalar Objects

Scalar objects represent an individual piece of management information.
The following table lists and explains the scalar object values.

Table . Values for Scalar Objects

Value Explanation

INTEGER A signed whole number. Although SNMP
imposes no size limit, most implementations
restrict an INTEGER to 32 bits.

Counter A non-negative integer that monotonically
increases until it reaches a maximum value
(232-1), when it wraps around and starts
increasing again from zero. As the name implies,
Counters are typically used to count notable
events in the system. The absolute value of a
Counter is often less useful than its delta value.
Rate information is derived from the last sample.

Gauge A non-negative integer that can increase or
decrease, but which can never exceed the
absolute maximum value (232-1). The value of a
Gauge is at maximum whenever the information
being modeled is greater than or equal to that
maximum. If the information being modeled
subsequently decreases below the maximum
value, the Gauge also decreases.

TimeTicks A non-negative integer that represents the time
(modulo 232) in hundredths of a second since
some epoch. For example, an object of type
TimeTicks can be used to model how long a
system has been up and running since it was
started.

IpAddress A 32-bit Internet address.

OCTET STRING A sequence of octets (bytes). Use an OCTET
STRING to represent the following:

(1) A string of printable characters, such as the

Management Service Group

NWSNMP: Concepts 501

name of a system.

(2) Any arbitrary binary data, such as a
Macintosh address.

OBJECT
IDENTIFIER

A number scheme, ASN.1 Notation, that
represents the name of a manageable object. See
Trap Transaction for more information about this
value.

Other Types SNMP allows three other types: NULL, Opaque,
and NetworkAddress. However, these are never
used and can safely be ignored.

Parent Topic:

Three Types of SNMP Objects

Related Topics:

Table Objects

Group Objects

Set Handling

The SNMP agent processes Set requests one at a time, using a two-phased
commit to ensure that each Set is processed as a unit even if it affects
multiple objects. When the SNMP agent tries to process a Set request, if it
finds that it is currently blocked while processing a previous Set, it blocks
the new Set until the previous Set is completed. Once it is ready to process a
particular Set request, the SNMP agent takes the following steps:

1. The SNMP agent decodes the SNMP request and prepares to complete
the Set. In the process, it completes the following steps:

a. The SNMP agent identifies the authority for the request (by way of
a community name and any other authorization features
implemented) and the SNMP objects being requested.

b. The SNMP agent looks up each SNMP object requested in the data
store of registered abstract objects. From the abstract object
information, the SNMP agent identifies the abstract object ID, the
attribute ID, and the instance ID. The request fails if the object is not
writable or if the request does not have the authority to write to this
object.

c. The SNMP agent groups all requests for each object ID/instance ID
pair so they can be treated as a single request to modify the
indicated object instance.

d. The SNMP agent converts all attribute values from ASN.1 Notation
format into the native format of the machine to which the ID

Management Service Group

NWSNMP: Concepts 502

arrives.

e. For each object instance, the SNMP agent gets the type of the object
index from the object data store entry. The SNMP agent converts
the instance ID into native format. The request fails if the index to
any of the requested objects is invalid: too long, too short, out of
range, and so on.

2. If the decode process has been successful, the SNMP agent calls the
appropriate OCBCheckSet function for each object, passing the object
ID, the instance ID, and the list of attribute values to be set. If
OCBCheckSet fails for any object instances, the SNMP agent aborts the
request by calling the appropriate OCBAbortSet function for all object
instances that previously responded successfully to OCBCheckSet.

3. The IA sends a response to the SNMP agent. The response indicates if
the object can complete the Set.

4. If all calls to OCBCheckSet are successful for the request, the SNMP
agent calls the OCBCommitSet function for each object instance,
passing the object ID, the instance ID, and the list of attribute values to
be set.

NOTE: If OCBCheckSet succeeds, OCBCommitSet most likely
will also succeed.

5. The IA sends a response to the SNMP agent indicating the Set has been
completed.

6. The SNMP agent builds and sends a Protocol Data Unit (PDU) response
message indicating whether the Set succeeded.

The following figure shows a Set request using the two-phased commit.

Figure 15. Set Handling Using the two-phased commit

Management Service Group

NWSNMP: Concepts 503

Parent Topic:

Get, GetNext, and Set Functions

Related Topics:

Get and GetNext Handling

SNMP Introduction

SNMP is a protocol that offers network management services within the
Internet (TCP/IP) suite of protocols. Most leading network products
support SNMP, allowing vendor-independent management of network
devices and applications.

SNMP is a datagram protocol that can run over several transport protocols,
including IPX™ and UDP.

Management Service Group

NWSNMP: Concepts 504

Benefits of SNMP include:

Minimal-impact design. SNMP is designed to be small, simple, and have
minimal impact on the network device it is managing.

Datagram (connectionless, best-effort) protocol. The time you need
network management the most is when the network is having trouble.
Under these conditions, a connectionless protocol performs better than a
connection-oriented protocol, which spends most of its time rebuilding
dropped connections rather than moving data.

Network diagnostic ability. SNMP provides a polling feature that
periodically polls the network device to see whether anything needs
attention. If it finds that a request or response gets lost, it has the global
knowledge to deal with the situation.

Trap-directed polling. When something goes wrong, such as the
network device is running low on memory, the SNMP agent sends a
message, called a trap, to the network manager, informing it of the status
of a network device. The network manager can then intelligently poll the
network device based upon the trap, to determine the exact problem.

Security. SNMP has a security mechanism whereby each packet contains
a string called the community string. The community string acts as a
combination of the user name and password and is used by a network
device to determine the level of management control a network manager
has over a network device.

Network management services. SNMP provides network management
services to the network, including installation, maintenance,
configuration, performance, and fault management.

If you are unfamiliar with SNMP management, you will need to understand
the following definitions:

Management objects: An item of configuration that can be managed on the
network.

Network devices: Includes a number of different SNMP-managed devices
such as routers, gateways, and hosts.

Instrumentation: The process of writing instrumentation code.
Instrumentation code resides on the network device and enables a network
device to be managed on the network. With each implementation,
instrumentation code is written according to development objectives. In
most implementations, instrumentation code results in an Instrumentation
Agent (see Instrumentation Agents).

Parent Topic:

SNMP Basic Concepts

Management Service Group

NWSNMP: Concepts 505

Table Objects

SNMP allows data to be structured into tables. A table object is made up of
rows and columns, similar to a table of information in a document. One way
to think of a table is as a list of records where each record corresponds to a
row in the table, and each field in the record corresponds to a cell, in which
the value can be of any of the simple types described in Scalar Objects.
Tables cannot be nested.

An example of a table is tcpConnTable (1.3.6.1.2.1.6.13) in the Global
Naming Tree example (see The Global Naming Tree and ASN.1 Notation),
which contains information about tcp. The following table, shows a
fragment of tcpConnTable belonging to a host. The table is used in
addressing the examples that follow.

Table . Sample SNMP Table Object

tcpConn
State

tcpConnLocalA
ddress

tcpConnLoc
alPort

tcpConnRe
mAddress

tcpConnRe
mPort

2 0.0.0.0 9 0.0.0.0 0.0.0.0

2 0.0.0.0 19 0.0.0.0 0

2 0.0.0.0 23 0.0.0.0 0

2 0.0.0.0 111 0.0.0.0 0

6 130.57.4.252 1028 130.57.10.1
23

6000

SNMP does not allow requests on a table as a whole, or on rows within
tables, because SNMP requests apply only to individual scalar objects. It
handles table requests as individual table entries. A table entry is addressed
by concatenating "instance" information to the end of the object identifier of
the field you want to access. Thus, the first part of the resultant object
identifier identifies the column within a row, and the latter part identifies
the row.

Tables in SNMP are required to have an index that uniquely identifies each
row in the table. This index can be either a single value or, if necessary to
create a unique index, an ordered set of values. The index is defined by the
designer of the table, and is usually (but not necessarily) the values of the
fields within the table. For instance, in the previous table, in tcpConnTable,
the index required to uniquely identify a row is formed from the ordered set
of values---tcpConnState, tcpConnLocalAddress,
tcpConnLocalPort, tcpConnRemAddress, and tcpConnRemPort.

The object identifier instance to access tcpConnState in the last row of the
table shown in the previous table is as follows:

1.3.6.1.2.1.6.13.1.1.130.57.4.252.1028.130.57.10.123.6000

where:

Management Service Group

NWSNMP: Concepts 506

1.3.6.1.2.1.6.13.1.1---is the object identifier of tcpConnState

130.57.4.252---specifies the local address of interest

1028---specifies the local port of interest

130.57.10.123---specifies the remote address of interest

6000---specifies the remote port of interest

You can access table entries in one of the following ways:

Randomly, by specifying the complete instance as described above and
using the Get request.

Sequentially, using the GetNext request. When you supply a (possibly
partial) object identifier instance with the GetNext request, it returns the
value and object identifier instance of the next object in lexicographic
order. If you subsequently do a GetNext on the returned object identifier
instance, the next instance is returned, and so on. In this way, you can "
walk" a table without any prior knowledge of the indexes.

For example, using the above table, GetNext 1.3.6.1.2.1.6.13.1.1 returns
the following:

value---2; instance---1.3.6.1.2.1.6.13.1.1.0.0.0.0.9.0.0.0.0.0

GetNext 1.3.6.1.2.1.6.13.1.1.0.0.0.0.9.0.0.0.0.0 returns

value---2; instance---1.3.6.1.2.1.6.13.1.1.0.0.0.0.19.0.0.0.0.0

GetNext 1.3.6.1.2.1.6.13.1.1.0.0.0.0.19.0.0.0.0.0 returns

value---2; instance---1.3.6.1.2.1.6.13.1.1.0.0.0.0.23.0.0.0.0.0

GetNext 1.3.6.1.2.1.6.13.1.1.0.0.0.0.23.0.0.0.0.0 returns

value---2; instance---1.3.6.1.2.1.6.13.1.1.0.0.0.0.111.0.0.0.0.0

GetNext 1.3.6.1.2.1.6.13.1.1.0.0.0.0.111.0.0.0.0.0 returns

value---6;
instance---1.3.6.1.2.1.6.13.1.1.130.57.4.252.1028.130.57.10.123.6000

To add a new row to a table, a remote client usually sends a Set Protocol
Data Unit (PDU) referring to a nonexistent object instance. The SNMP agent
then creates the complete row containing that object instance. If the Set PDU
does not contain a value for each field in the row, the SNMP agent normally
provides a default value for that field. Some tables, notably those in the
RMON MIB (RFC 1271), have a more complex row creation protocol, which
is described in the appropriate Requests for Comment (RFC).

Parent Topic:

Three Types of SNMP Objects

Management Service Group

NWSNMP: Concepts 507

Related Topics:

Group Objects

Scalar Objects

TCPIP and NWSNMP Load Information

NWSNMP allows command line parameters to change the community
strings required for read requests, write requests, and trap generation. Each
can be modified using the command line or INETCFG.

If NWSNMP is autoloaded by TCPIP, the default settings are used. By
default, NWSNMP allows read operations to be performed using the
community `public' string. Write operations are disallowed. To test write
operations or to use another community string for read operations,
NWSNMP must be loaded explicitly with the appropriate command line
parameters for Monitor and Control. See INETCFG help for more
information on configuring NWSNMP.

Parent Topic:

Loading NWSNMP

The Global Naming Tree and ASN.1 Notation

The global naming tree is an addressing scheme, central to MIBs, that
points to objects contained in a MIB (for a definition of objects, see Three
Types of SNMP Objects). This addressing scheme is a simple way of
assigning a unique name to each SNMP object, which helps to identify each
object during SNMP requests.

The global naming tree uses the hierarchical naming scheme, Abstract
Syntax Notation one (ASN.1 Notation), developed by the International
Standards Organization (ISO). In the ISO scheme, the structure is like a
directory tree. The tree consists of a root connected to a multitude of labeled
nodes or branches, descending downward. Each node might, in turn, have
subnodes of its own (termed subordinates), which are also labeled. The
figure below shows the global naming tree branches.

The root node of the global naming tree is unlabeled, and has three
subnodes directly under it, including:

ccitt(0)---administered by the International Telegraph and Telephone
Consultative Committee (CCITT), which issues recommendations that
are adopted and recognized as standards internationally.

iso(1)---administered by the International Standards Organization
(ISO), which is devoted to figuring standards for international data

Management Service Group

NWSNMP: Concepts 508

communications.

joint-iso-ccitt(2)---jointly administered by the ISO and the CCITT.

Each node has a label assigned to it. The label includes both a textual
description and a number. An example of a label is iso(1). The textual
description is iso. This part of the label is for convenience only. The number
portion of the label (1) is called an integer. The figure below shows the
location of the Novell's node---Novell(23). The textual description is
Novell; the integer is (23).

Each node has a specific location on the global naming tree. This location is
called an object identifier. An object identifier is created by assigning a
number to an object at a specific location on the global naming tree. As
explained above, Novell has its own object identifier, which is Novell(23)
. By beginning at the top of the global naming tree and descending
downward to Novell's location, adding each node number, separated by a
period, you would arrive at Novell's complete object identifier:
1.3.6.1.4.1.23.

Having been assigned an object identifier, Novell is free to assign names
under its node without conflicting with names generated by other vendors.

Figure 16. Global Naming Tree Branches

Management Service Group

NWSNMP: Concepts 509

The SNMP naming convention is very similar to a UNIX* or DOS fully
qualified path name. The Global Naming Tree example shows part of a
naming tree. All objects of interest to SNMP are in the iso(1) branch of the
tree under the internet(1)node.

The Global Naming Tree

iso(1)
 org(3)
 dod(6)
 internet(1)
 directory(1)
 mgmt(2)
 mib-2(1)
 system(1)
 interfaces(2)
 at(3)
 ip(4)
 icmp(5)
 tcp(6)
 tcpRtoAlgorithm(1)
 tcpConnTable(13)
 tcpConnEntry(1)
 tcpConnState(1)
 tcpConnLocalAddress(2)
 tcpConnLocalPort(3)
 tcpConnRemAddress(4)
 tcpConnRemPort(5)
 udp(7)
 egp(8)
 transmission(10
 snmp(11)
 rmon(16)
 experimental(3)
 private(4)
 enterprises(1)
 novell(23)

In the Global Naming Tree example, the tcpRtoAlgorithm, for example,
is the textual descriptive name for the manageable object that indicates the
tcp retransmission time-out algorithm in use on the managed network
device. Its object identifier is 1.3.6.1.2.1.6.1.

Parent Topic:

Management Information Bases

Related Topics:

Three Types of SNMP Objects

The Two Uses of MIBs

Management Service Group

NWSNMP: Concepts 510

MIB Module Contents

Obtaining MIBs

The Two Uses of MIBs

Management Information Bases are used on both the remote client and the
network device. On the remote client, the network manager uses the MIB
document to get the network device's management and configuration
information. Every network manager handles the MIB document
differently, depending on the design of the Network Manager.

On the network device, the SNMP agent uses the IA to get the network
device's management and configuration information. A MIB is the base for
IA development. For use on the network device, the MIB document is
compiled by a MIB compiler to form .H header and .C source files.
Additional code is added to the .H and .C files to create the IA. This process
of developing an IA is known as instrumentation.

NOTE: Some SNMP documentation simplifies the two uses of MIBs
by referring to the IA as a MIB on the network device side as well. In
this documentation, a MIB resides on the remote client and an IA
resides as a network device. Also, a MIB is only one part of the IA; it is
not identical to an IA.

Parent Topic:

Management Information Bases

Related Topics:

The Global Naming Tree and ASN.1 Notation

Three Types of SNMP Objects

MIB Module Contents

Obtaining MIBs

Time Field Conversion

NWSNMP automatically converts attributes of type TimeTicks from
internal NetWare operating system ticks to the SNMP 10 ms units. In most
cases, TimeTicks objects contain the value of sysUpTime when a particular
event occurred. To support such objects, your NLM™ code should call
GetCurrentTime and save the results to record the TimeTicks value.
NWSNMP automatically converts the GetCurrentTime value to SNMP
TimeTicks when the object attribute is accessed.

Parent Topic:

Management Service Group

NWSNMP: Concepts 511

Universal Tasks Handled by NWSNMP

Related Topics:

Grouping

Data Conversion

OCTET STRING Conversion

Abstract Objects with Exactly One Instance

Attribute Range Checking

Trap Definitions

Trap definitions are very similar to object definitions, except that they use
the TRAP-TYPE macro. The Sample Trap Definition example shows a
sample trap definition.

Sample Trap Definition

linkDown TRAP-TYPE
ENTERPRISE snmp
VARIABLES {ifIndex }
DESCRIPTION
"A linkDown trap signifies that the sending protocol entity
 recognizes a failure in one of the communication links
 represented in the agent's configuration.
::= 2

The following paragraphs explain the clauses in the trap definition:

ENTERPRISE contains the object identifier of a node in the vendor's tree,
which, along with the trap number (the 2 following the "::=" in the
Sample Trap Definition example), uniquely identifies the trap.

VARIABLES defines an ordered sequence of MIB objects that are passed
as parameters of the trap when it is generated.

DESCRIPTION provides a textual description of the semantics of the
trap.

Parent Topic:

MIB Module Contents

Related Topics:

Value Assignments

Type Assignments and Textual Conventions

Manageable Object Definitions

Management Service Group

NWSNMP: Concepts 512

Trap Interface Functions

The following function allows you to provide NWSNMP with the
information it needs to forward a trap:

SACTrap Generates an SNMP trap.

Parent Topic:

NWSNMP Functions and Structures

Related Topics:

Client and Trap Structures

Client Interface Functions

Trap Transaction

In a trap transaction, the SNMP agent sends an unsolicited notification
contained in a trap Protocol Data Unit (PDU) to the network manager to
inform it that some unexpected or extraordinary event has occurred. The
SNMP agent might include the names and values of pertinent objects in the
trap PDU to provide the network manager with additional information
about the event. Note that there is no confirmation back from the network
manager to the SNMP agent to say that it has received the trap.

In summary, the trap transaction is performed as follows:

1. An unexpected or extraordinary event occurs on the network device.

2. The SNMP agent sends a trap PDU to the network manager with a
message to inform the manager of the problem.

3. The network manager is notified by the trap PDU event that the
network device is in trouble. Depending upon the message, the network
manager deals with the problem, but does not notify the SNMP agent
that the message was received.

Parent Topic:

SNMP Operation

Related Topics:

Request/Response Transaction

Management Service Group

NWSNMP: Concepts 513

Type Assignments and Textual Conventions

Type assignments give a name to a new type. In SNMP MIBs, this feature is
mainly used to create what have become known as textual conventions. In
textual conventions, a descriptive name is defined as an alias for some
existing type, and additional semantics are defined in accompanying
comments. This new descriptive type name is then used throughout the rest
of the MIB to improve readability and clarity. Note that no new "on the
wire" types are defined; this is merely a way to document the conventions
on how to interpret a value of this type.

The Sample Textual Conventions example shows examples of textual
conventions.

Sample Textual Conventions

DisplayString ::=
 OCTET STRING
-- This data type is used to model textual information taken
-- from the NVT ASCII character set. By convention, objects
-- with this syntax are declared as having SIZE (0..255)

PhysAddress ::=
 OCTET STRING
-- This data type is used to model media addresses. For many
-- types of media, this will be in a binary representation.
-- For example, an ethernet address would be represented as
-- a string of 6 octets.

Parent Topic:

MIB Module Contents

Related Topics:

Manageable Object Definitions

Trap Definitions

Value Assignments

Value Assignments

Value assignments are usually used to define object identifiers for interior
nodes in the naming tree. The following are examples of value assignments:

mib-2(1) OBJECT IDENTIFIER::= { mgmt 1 }

mgmt was imported from module RFC1155-SMI, where it is defined to
have the value 1.3.6.1.2 (see Global Naming Tree example in The Global
Naming Tree and ASN.1 Notation). Hence, identifier mib-2(1) of type
object identifier is assigned the value 1.3.6.1.2.1.

Management Service Group

NWSNMP: Concepts 514

tcp OBJECT IDENTIFIER ::= { mib-2 6 }

mib-2(1) was previously defined to have the value 1.3.6.1.2.1. Hence,
identifier tcp of type object identifier is assigned the value 1.3.6.1.2.1.6.

Parent Topic:

MIB Module Contents

Related Topics:

Type Assignments and Textual Conventions

Manageable Object Definitions

Trap Definitions

Where SNMP Components Reside

SNMP Management components reside on:

A remote client (or Network Management Station)

A network device

Remote client components include the network manager and the MIBs. The
network manager gets query information from the MIB to send a request to
the network device. The interaction between the manager and MIB is
internal to the network manager and specific to each network manager. A
number of network managers are available commercially and each have
their own method for interaction among MIBs or other management
strategies. Some network managers on the network support management
tools other than SNMP.

Network device components include the SNMP agent and the
Instrumentation Agents (IA). Routers, servers, gateways, and printers are all
examples of different network device types that support SNMP.

The SNMP agent receives a request and passes it on to the appropriate IA.
The IA requests the information from the internals of the network device.
The response is sent to the SNMP agent, which sends it through the network
to the network manager.

Parent Topic:

Functional SNMP Components

Related Topics:

SNMP Operation

Management Information Bases

Instrumentation Agents

Management Service Group

NWSNMP: Concepts 515

NWSNMP: Functions

Management Service Group

NWSNMP: Functions 516

OCBAbortSet

Defines a function to abort a previously checked Set request

NetWare Server:

Platform: NLM

Service: NWSNMP

Syntax

void OCBAbortSet (
 struct ObjControl *ocb_pt,
 AttrValue *inst_list,
 void *handle_pt);

Parameters

ocb_pt

Points to the ObjControl structure containing the Object Control Block
that called OCBAbortSet.

inst_list

Points to the AttrValue structure containing a NULL-terminated list of
Attribute Value Blocks that give the index values of the object instance
(NULL if the specified object has no instance information).

handle_pt

Points to a handle returned by the OCBCheckSet function.

Remarks

The function defined by OCBAbortSet is called when a Set request was
checked by calling the OCBCheckSet function but the defined function
cannot be completed. For example, the Set request might be aborted
because the NWSNMP request makes several Set requests on different
objects and one of the Set requests cannot be completed for another
object.

If cleanup is not necessary when a Set request aborts, you do not need to
call OCBAbortSet. Set the ocb_abort_set field of the ObjControl structure to
NULL.

Your exporting module must call the OCBAbortSet function when
cleanup is necessary. Set the ocb_abort_set field of the ObjControl structure
to the address of the OCBAbortSet function for each abstract object.

Your function must free any resources that were allocated by the
OCBCheckSet function in preapration for handling the Set request. The
handle_pt parameter, originally set in the OCBCheckSet function,

Management Service Group

NWSNMP: Functions 517

provides a pointer to these resources.

See Also

OCBCheckSet

Management Service Group

NWSNMP: Functions 518

OCBCheckSet

Defines a function to ensure a Set request is legal

NetWare Server:

Platform: NLM

Service: NWSNMP

Syntax

int OCBCheckSet (
 struct ObjControl *ocb_pt,
 AttrValue *inst_list,
 AttrValue *attr_list,
 void **handle_pp);

Parameters

ocb_pt

Points to the ObjControl structure containing the Object Control Block
that called OCBCheckSet.

inst_list

Points to the AttrValue structure containing a NULL-terminated list of
Attribute Value Blocks specifying the index values of the object
instance (NULL if the object has no instance information).

attr_list

Points to the AttrValue structure containing a NULL-terminated list of
the Attribute Value Blocks for the attributes being set by the request.

handle_pp

Points to a pointer to a buffer into which OCBCheckSet can return a
handle to be passed to either the OCBCommitSet or OCBAbortSet
function.

Return Values

SNMP_ERR_NOE
RROR

Successful

SNMP_ERR_* Describes why values cannot be set.

When the SNMP_ERR_* failure is caused by a
particular attribute, set the aib_info field to NULL
and set the aib_length field to the returned error
code for the attribute.

Management Service Group

NWSNMP: Functions 519

Remarks

OCBCheckSet determines whether your exporting module allows the
setting of a set of attributes in a specific object instance. During a Set
request, OCBCheckSet determines whether all the requested attributes of
all the requested objects can be legally set before actually changing the
data store. Once NWSNMP has received a successful reutrn from all
object instances in the request, OCBCommitSet is called for each object
instance to make the changes.

You do not need to call OCBCheckSet if Set requests always succeed on
the specified object. Otherwise, you must call the OCBCheckSet function.
Set the ocb_check_set field of the ObjControl structure to the address of the
OCBCheckSet function for each abstract object.

Your function should complete the following steps:

1. Locate the object instance pointed to by the index information in the
Attribute Value Blocks pointed to by theinst_list parameter.

2. Confirm that the set of attributes of the specific object instance can
legally be set to the given values without modifying the database. Your
application can block, but it should only block if necessary.

IMPORTANT: Do not block in the OCBCheckSet function
unless absolutely necessary. Because a Set request affects multiple
objects and changes the system state, the transition window for
completing the Set request must be as small as possible. If your
function blocks, there could be a change in the system state on
which another affect object depends. The system state could then
become inconsistent once the Set request is complete.

3. Allocate any resources you will subsequently need to complete the Set
request when NWSNMP calls the OCBCommitSet function. This
ensures that the OCBCommitSet function does not fail from lack of
resources.

If you allocate resources, associate all the resources with a context block,
and place a pointer to the context block in the handle_pp parameter.
NWSNMP returns the handle_pp parameter to your NLM when it calls
the OCBCommitSet or OCBAbortSet function.

If no resources are needed, set the handle_pp parameter to NULL.

IMPORTANT: If you have already allocated some resources
and the check subsequently fails, clean up the previously allocated
resources before returning. NWSNMP does not call the
OCBAbortSet function if your OCBCheckSet function fails.

4. Set the appropriate return value.

See Also

Management Service Group

NWSNMP: Functions 520

OCBCommitSet

Management Service Group

NWSNMP: Functions 521

OCBCommitSet

Defines a function that sets a list of attributes in an object

NetWare Server:

Platform: NLM

Service: NWSNMP

Syntax

int OCBCommitSet (
 struct ObjControl *ocb_pt,
 AttrValue *inst_list,
 AttrValue *attr_list,
 void *handle_pt);

Parameters

ocb_pt

Points to the ObjControl structure containing the Object Control Block
that called OCBCommitSet.

inst_list

Points to the AttrValue structure containing a NULL-terminated list of
Attribute Value Blocks that give the index values of the object instance
(NULL if the object has no instance information).

attr_list

Points to the AttrValue structure containing a NULL-terminated list of
hte Attribute Value Blocks for the attributes being set by the request.

handle_pt

Points to a handle returned by the OCBCheckSet function.

Return Values

SNMP_ERR_NOE
RROR

Successful

SNMP_ERR_* Describes why values cannot be set.

When the SNMP_ERR_* failure is caused by a
particular attribute, set the aib_info field to NULL
and set the aib_length field to the returned error
code for the attribute.

Remarks

Management Service Group

NWSNMP: Functions 522

NWSNMP calls your function defined by OCBCommitSet to accomplish
an SNMP Set request. NWSNMP calls your function only after it has
called the OCBCheckSet function for all object instances to ensure that
the Set request can be legally completed.

Your exporting module must call the OCBCommitSet function for each
object that has one or more writeable attributes. Set the ocb_commit_set
field of the ObjControl structure to the address of the OCBCheckSet
function for each abstract object.

Your function must complete the following steps:

1. Use the attribute list pointed to by the inst_list parameter to find the
object instance being addressed.

2. Update the specific object instance to reflect the values in the list of
attribute values pointed to by the attr_list parameter.

The handle_pt parameter, originally set in the OCBCheckSet function,
provides a pointer to any resources required for the Set request. This
ensures that OCBCommitSet does not fail because it cannot access
required resources.

IMPORTANT: Do not block in OCBCommitSet unless
absolutely necessary. Because a Set request affects multiple objects
and changes the system state, the transition window for completing
the Set request must be as small as possible. If your function blocks,
there could be a change in the system state on which another affect
object depends. The system state could then become inconsistent
once the Set request is complete.

3. Set the appropriate return value.

IMPORTANT: OCBCommitSet should never fail. Any
circumstances that might cause a Set request to fail must be handled
in the OCBCheckSet function.

See Also

OCBCheckSet

Management Service Group

NWSNMP: Functions 523

OCBGet

Defines a function used to read attributes from a specific object

NetWare Server:

Platform: NLM

Service: NWSNMP

Syntax

int OCBGet (
 struct ObjControl *ocb_pt,
 AttrValue *inst_list,
 AttrValue *attr_list);

Parameters

ocb_pt

Points to the ObjControl structure containing the Object Control Block
that called OCBGet.

inst_list

Points to the AttrValue structure containing a NULL-terminated list of
Attribute Value Blocks that give the index values of the object
instance.

attr_list

Points to the AttrValue structure containing a NULL-terminated list of
Attribute Value Blocks specifying the attributes to be read.

Return Values

SNMP_ERR_NOE
RROR

Successful

SNMP_ERR_* Describes why values cannot be set.

When the SNMP_ERR_* failure is caused by a
particular attribute, set the aib_info field to NULL
and set the aib_length field to the returned error
code for the attribute.

Remarks

OCBGet is a typedef function definition. Your exporting module must
call the OCBGet function for each abstract object. Set the ocb_get field of
the ObjControl structure to the address of the OCBGet function for each

Management Service Group

NWSNMP: Functions 524

abstract object.

If the function fails for any SNMP object in the request, the entire request
fails.

Your function must complete the following steps:

1. Locate the correct instance of the abstract object by using the index
information in the NULL-terminated list of Attribute Value Blocks
pointed to by the inst_list parameter.

2. Search through the NULL-terminated attribute list of the Attribute
Value Blocks pointed to by the attr_list parameter and copy the value of
each attribute into its block.

If the AIF_IMMEDIATE flag is set for the attribute, copy the value into
the avb_length field. Otherwise, copy the value into the buffer pointed to
by the avb_value field and set the avb_length field to the length (in bytes)
of the value. If the buffer is too small, return SNMP_ERR_TOOBIG for
the attribute.

3. Return an appropriate return value.

See Also

OCBGetNext

Management Service Group

NWSNMP: Functions 525

OCBGetNext

Defines a function used to read attributes from the object instance that
follows the specified object instance

NetWare Server:

Platform: NLM

Service: NWSNMP

Syntax

int OCBGetNext (
 struct ObjControl *ocb_pt,
 AttrValue *inst_list,
 AttrValue *next_list,
 AttrValue *attr_list);

Parameters

ocb_pt

Points to the ObjControl structure containing the Object Control Block
that called OCBGetNext.

inst_list

Points to the AttrValue structure containing a NULL-terminated list of
Attribute Value Blocks that give the index value of the current object
instance.

next_list

Points to the AttrValue structure containing a NULL-terminated list of
Attribute Value Blocks in which to place the index value of the next
object instance.

attr_list

Points to the AttrValue structure containing a NULL-terminated list of
Attribute Value Blocks containing the attributes to be read once the
next instance is located.

Return Values

SNMP_ERR_NOERRO
R

Successful

SNMP_ERR_* Describes why values cannot be set.

When the SNMP_ERR_* failure is caused by
a particular attribute, set the aib_info field to
NULL and set the aib_length field to the
returned error code for the attribute.

Management Service Group

NWSNMP: Functions 526

SNMP_ERR_NOSUCH
NAME

No next instance of the object.

Do not flag any attributes.

Remarks

The function defined by OCBGetNext should fill in the Attribute Value
Blocks pointed to by the attr_list parameter with the values of the
attributes to be read.

Your exporting module should call the OCBGetNext function for any
object with multiple instances. Set the ocb_get_next field of the ObjControl
structure to the address of OCBGetNext for each abstract object.

NOTE: You do not need to call OCBGetNext for objects with only one
instance. NWSNMP calls the OCBGet function to fulfill GetNext
requests for these objects. For single-instance objects, set the
ocb_get_next field to NULL.

If the function fails for any SNMP object in the request, the entire
request fails.

Your function should complete the following steps:

1. Locate the previous instance of the abstract object by using the index
information in the Attribute Value Blocks pointed to by the inst_list
parameter.

2. Locate the next object instance. The exact meaning of “next” depends on
the MIB definition of the object. In general, the objects are presented in
lexicographical order of their MIB INDEX values.

If there is no next instance, return SNMP_ERR_NOSUCHNAME.
NWSNMP will then locate the next value after your object.

3. Return the index information for the new instance ID in the Attribute
Value Blocks pointed to by the next_list parameter. Specify the indexing
attributes in the same order as in the INDEX clause of the object MIB.

4. Search through the list of Attribute Value Blocks pointed to by the
attr_list parameter and use the next instance of the object to write the
correct value of the attribute into each Attribute Value Block.

If the AIF_IMMEDIATE flag is set for the attribute, copy the value into
the avb_length field. Otherwise, copy the value into the buffer pointed to
by the avb_value field and set the avb_length field to the actual length (in
bytes) of the value. If the buffer is too small, return
SNMP_ERR_TOOBIG for the attribute.

5. Return an appropriate return code.

See Also

Management Service Group

NWSNMP: Functions 527

OCBGet

Management Service Group

NWSNMP: Functions 528

OCBLookupInst

Defines a function used to find an instance from an instance group that has
been instrumented using the standard access methods

NetWare Server:

Platform: NLM

Service: NWSNMP

Syntax

unsigned long *OCBLookupInst (
 struct ObjControl *ocb_pt,
 AttrValue *inst_list,
 AttrValue *next_list);

Parameters

ocb_pt

Points to the ObjControl structure containing the Object Control Block
that called OCBLookupInst.

inst_list

Points to the AttrValue structure containing a NULL-terminated list of
Attribute Value Blocks that give the index values of the current
instance array within the group table (NULL if the object has no
instance information).

next_list

Points to the AttrValue structure containing a NULL-terminated list of
Attribute Value Blocks in which to place the index values of the next
instance array within the group table.

Return Values

Returns a pointer to an array of unsigned long values.

Remarks

OCBLookupInst should fill in the Attribute Value Blocks pointed to by
the next_list parameter in the same order as in the INDEX clause of the
object MIB.

If the next_list parameter is NULL, the function is treated as a Get request
instead of a GetNext request.

OCBLookupInst returns a pointer to a row that is a simple table.

Your exporting module must call OCBLookupInst for any group table

Management Service Group

NWSNMP: Functions 529

you define. The SAI_DEFINE_GROUP macro places a pointer to
OCBLookupInst in the ocb_context_pt field of the Object Control Block.

Your function should complete the following steps:

1. Locate the simple table instance pointed to by the inst_list parameter.

2. If the next_list parameter is NULL, a Get request should be called. The
index described the inst_list parameter must exactly match the index of
one of the simple tables in the group table. Return the pointer to the
simple table described by the Attribute Value Blocks as pointed to by
the inst_list parameter. If there is no match, return
SNMP_ERR_NOSUCHNAME.

3. If the next_list parameter is not NULL, a GetNext request should be
called. Locate the next simple table following the simple table described
by the inst_list parameter. Return the pointer to this table. Place the
index information for the table in the Attribute Value Blocks pointed to
by the next_list parameter in the same order as in the INDEX clause of
the object MIB.

If you cannot find the desired instance, return NULL.

See Also

SAI_DEFINE_TABLE

Management Service Group

NWSNMP: Functions 530

SACReadAttributes

Reads attributes from an abstract object

NetWare Server:

Platform: NLM

Service: NWSNMP

Syntax

int SACReadAttributes (
 unsigned long *object_id_pt,
 int inst_ct,
 struct TLV *inst_pt,
 int attr_ct,
 struct TLV *attr_pt);

Parameters

object_id_pt

Points to the beginning of a NULL-terminated array of long word
types containing the abstract object ID.

inst_ct

Specifies the number of type/length/values in the instance ID array
pointed to by the inst_pt parameter.

inst_pt

Points to the TLV structure containing an array of type/length/values
identifying the object instance (NULL if the inst_ct parameter is zero).

attr_ct

Specifies the number of type/length/values in the attribute buffer
array pointed to by the attr_pt parameter.

attr_pt

Points to the TLV structure containing an array of type/length/value
structures containing the attributes to read and the buffer space in
which the values should be returned (NULL if the attr_ct parameter is
zero).

Return Values

SNMP_ERR_NOE
RROR

Successful

error code Unsuccessful

Management Service Group

NWSNMP: Functions 531

Remarks

SACReadAttributes can block before returning.

A management application can call SACReadAttributes to extract
information from the management entities that have registered objects
with NWSNMP.

If the object being requested has a single instance only, the inst_ct
parameter can be zero and the inst_pt parameter can be NULL.

If no attributes are desired, the attr_ct parameter can be zero and the
attr_pt can be NULL.

SACReadAttributes finds the abstract object in the SNMP database. If
then calls the OCBGet function for the object to read the indicated
attributes from the object instance.

The inst_pt parameter array provides the necessary index information to
identify the specific object instance, as specified in the SNMP MIB
definition for the object. The instance values must be in the same order as
they are found in the INDEX clause of the object MIB. NWSNMP ignores
the tlv_id fields in the elements of the array.

In each type/length/value structure in the attr_pt parameter array, you
should complete the following steps:

1. Set the tlv_id field to the ID of the attribute to be read.

2. Set the tlv_value field to point to a buffer where the value should be
returned.

3. Set the tlv_length field to the number of bytes in the buffer. (NWSNMP
writes the actual length of the value into the tlv_length field.)

If NWSNMP finds a non-zero tlv_type field when processing the attr_pt
parameter array, it checks the actual type of the attribute to determine
whether it agrees with the tlv_type field. If the two types disagree,
SACReadAttributes fails. If the tlv_type field is zero, NWSNMP writes
the actual SNMP type code for the attribute into the field.

See SACReadNextAttributes: Example.

Management Service Group

NWSNMP: Functions 532

SACReadSNMPObject

Returns the SNMP object value for an SNMP object ID

NetWare Server:

Platform: NLM

Service: NWSNMP

Syntax

int SACReadSNMPObject (
 int object_id_ln,
 unsigned long *object_id_pt,
 struct TLV *value_buffer);

Parameters

object_id_ln

Specifies the number of long word types in the SNMP object ID
pointed to by the object_id_pt parameter.

object_id_pt

Points to the beginning of a NULL-terminated array of unsigned long
integers containing the SNMP object ID.

value_buffer

Points to the TLV structure containing a description of the buffer to
which NWSNMP should write the SNMP object value.

Return Values

SNMP_ERR_NOE
RROR

Successful

error code Unsuccessful

Remarks

You must know the specific SNMP object ID to call
SACReadSNMPObject.

SACReadSNMPObject can block before returning.

SACReadSNMPObject is not subject to authentication. You are
responsible for ensuring the information does not get read by
unauthorized requests.

Management Service Group

NWSNMP: Functions 533

The tlv_value field should point to a buffer to receive the returned value,
and the tlv_length field should contain the length of the buffer.

SACReadSNMPObject parses the object ID and calls the appropriate
management entity to retrieve the object value. NWSNMP then
completes the following steps:

1. Writes the resulting value into the memory pointed to by the tlv_value
field.

2. Sets the tlv_length field to the actual length of the value.

3. Sets the tlv_id field to the attribute ID of the attribute read (not expected
to be useful in this context).

4. Checks the tlv_type field to determine whether it is zero and continues
processing the request.

If the tlv_type field is zero, NWSNMP sets it to the correct type.

If the tlv_type field is non-zero, NWSNMP checks to ensure that the type
agrees with the actual type of the value. SACReadSNMPObject fails is
the two types do not agree.

See SACReadSNMPObject: Example.

Management Service Group

NWSNMP: Functions 534

SACSetAttributes

Sets specified attribute values for an abstract object

NetWare Server:

Platform: NLM

Service: NWSNMP

Syntax

int SACSetAttributes (
 unsigned long *object_id_pt,
 int inst_ct,
 struct TLV *inst_pt,
 int attr_ct,
 struct TLV *attr_pt);

Parameters

object_id_pt

Points to the beginning of a NULL-terminated array of long word
types containing the abstract object ID.

inst_ct

Specifies the number of type/length/values in the instance ID array
pointed to by the inst_pt parameter.

inst_pt

Points to the TLV structure containing an array of type/length/values
which identify the object instance (NULL if the inst_ct parameter is
zero).

attr_ct

Specifies the number of type/length/values contained in the attribute
value array pointed to by the attr_pt parameter.

attr_pt

Points to the TLV structure containing an array of type/length/value
structures describing the attribute values to set (NULL is the attr_ct
parameter is zero).

Return Values

SNMP_ERR_NOE
RROR

Successful

error code Unsuccessful

Management Service Group

NWSNMP: Functions 535

Remarks

An application can call SACSetAttributes to set information in the
objects that various management entities have registered with
NWSNMP.

SACSetAttributes can block before returning.

SACSetAttributes finds the abstract object in its database. It then calls the
OCBCheckSet and OCBCommitSet functions for the object to set the
indicated attributes in the object instance.

If the object being modified has a single instance only, the inst_ct
parameter can be zero and the inst_pt parameter can be NULL.

If no attributes should actually be modified, the attr_ct parameter can be
zero and the attr_pt parameter can be NULL.

The inst_pt parameter array provides the necessary index information to
identify the specific object instance as specified in the object SNMP MIB
definition. The instance values must be in the same order as they are
found in the INDEX clause of the object MIB. NWSNMP ignores the
tlv_id fields in the elements of the array.

The attr_pt parameter array indicates which attributes should be set and
to which value they should be set. In each type/length/value structure,
you should set the tlv_id field to the ID of the attribute to set. Set the
tlv_value field to the value to set and the tlv_length field to the number of
bytes in the value.

If NWSNMP finds a non-zero tlv_type field when processing the attr_pt
parameter array, it checks the actual type of the attribute to determine
whether the tlv_type field agrees. If the two types disagree,
SACSetAttributes fails.

If the tlv_type field is zero, NWSNMP writes the actual SNMP type code
for the attribute set into the field.

See SACSetAttributes mib-2: Example and SACSetAttributes on Table
Object: Example.

Management Service Group

NWSNMP: Functions 536

SACTrap

Generates an SNMP trap

NetWare Server:

Platform: NLM

Service: NWSNMP

Syntax

void SACTrap (
 unsigned long *enterpriseId,
 int genericType,
 int specificType,
 int varBindCount,
 struct VarBind *varBinds,
 char *communityString);

Parameters

enterpriseId

Specifies the enterprise ID of the MIB generating the
enterprise-specific trap (must be NULL-terminated).

genericType

Specifies the generic type of the trap (always
SNMP_TRAP_ENTERPISESPECIFIC).

specificType

Specifies the specific type of the trap (defined in the associated trap
MIB).

varBindCount

Specifies the number of variable bindings specified for the trap.

varBinds

Points to the VarBind structure containing an array identifying the
variable instance and value information to be included in the trap.

communityString

Points to a NULL-terminated octet string to be used as the community
name for the trap (NULL if the default trap community name is used).

Remarks

Any entity in the system can generate an SNMP trap by calling SACTrap
.

SACTrap takes the trap type information and the specified variable
bindings and combines them with information internal to NWSNMP to

Management Service Group

NWSNMP: Functions 537

bindings and combines them with information internal to NWSNMP to
produce an SNMP trap message as described by the SNMP standard. It
then sends the trap message to each SNMP manager configured to
receive traps for the indicated community.

Do not call SACTrap to generate SNMP generic traps.

SACTrap can block before returning.

The specificType parameter should contain an application-specific trap
type.

The variable bindings pointed to by the varBinds parameter are specific to
the type of trap being generated.

See SACTrap: Example.

Management Service Group

NWSNMP: Functions 538

SAIDeregisterMIB

Deregisters a B definition with NWSNMP

NetWare Server:

Platform: NLM

Service: NWSNMP

Syntax

void SAIDeregisterMIB (
 ObjInfo **mib_pp);

Parameters

mib_pp

Points to the ObjInfo structure containing an array of pointers to Ojbect
Information Blocks specifying the MIB handle exported from the
compiled MIB definition

Remarks

SAIDeregisterMIB allows an exiting NLM to remove its MIB
information from the NWSNMP data store.

Any NLM that called the SAIRegisterMIB function to register a MIB
with NWSNMP must call SAIDeregisterMIB. The NLM typically
deregisters the MIB when it is exiting because it will no longer be
available to support the MIB.

The MIB handle identifies the MIB tree compiled by the MIB compiler
during the build process.

When an NLM calls SAIDeregisterMIB, NWSNMP forgets about the
part of the MIB tree described by the MIB handle. SAIDeregisterMIB
must be called before the NLM supporting the object unloads.

See SAIDeregisterMIB: Example.

See Also

SAIRegisterMIB

Management Service Group

NWSNMP: Functions 539

SAIRegisterMIB

Allows a management entity to register its MIB tree with NWSNMP

NetWare Server:

Platform: NLM

Service: NWSNMP

Syntax

int SAIRegisterMib (
 ObjInfo **mib_pp,
 unsigned long rtag);

Parameters

mib_pp

Points to the MIB handle exported from the compiled MIB definition
(located in the header file produced by the MIB compiler).

rtag

Specifies the resource tag to which the MIB should be charged.

Return Values

SAI_REGISTER_OK Successful

SAI_REGISTER_FAIL_
DUP

One of the abstract objects is already
registered.

SAI_REGISTER_BAD_
RTAG

The resource tag is not for objects of type
SAI_MIB_RTAG.

Remarks

NWSNMP MIB resource tags use the ID SAI_MIB_RTAG defined by the
SNMP interface header file agent.h to define the rtag parameter.

The NLM that wants to present a MIB through SNMP calls
SAIRegisterMIB to inform NWSNMP of the part of the MIB tree it is
processing.

At the leaves of the MIB tree are the MIB Object Information Blocks that
refer to the Object Control Blocks defined by the NLM support modules.

Call the NetWare C Library AllocateResourceTag function to allocate a
resource tag for your object.

Management Service Group

NWSNMP: Functions 540

See SAIRegisterMIB: Example.

See Also

SAIDeregisterMIB

Management Service Group

NWSNMP: Functions 541

NWSNMP: Structures

Management Service Group

NWSNMP: Structures 542

AttrInfo

Points to the Attribute Information Block that describes the characteristics of
a specified attribute

Service: NWSNMP

Defined In: nwmediam.h

Structure

typedef struct {
 int aib_id;
 int aib_type;
 int aib_asn_type;
 int aib_min;
 int aib_max;
 int aib_flags;
} AttrInfo;

Fields

aib_id

Specifies the attribute ID for the specific attribute.

aib_type

Specifies the data type of the specific attribute.

aib_asn_type

Specifies the type of the specific attribute (see sa_asn1.h for values).

aib_min

Specifies the minimum legal value for an integer type or the smallest
legal length for an octet string or display string type.

aib_max

Specifies the maximum legal value for an integer type or the longest
legal length for an octet string or display string type.

aib_flags

Specifies the flags to use.

Remarks

The aib_id field identifies the object variable in the MIB tree.

The aib_type field can have the following values:

Name Va
lue

Description

Management Service Group

NWSNMP: Structures 543

AIT_UNKNOWN 0 Do not use in the AttrInfo structure.

AIT_INTEGER 1 Integer. Can specify a guage, counter, etc..

AIT_TIMETICKS 2 Each timetick represents 1/100 of a second.

AIT_SHORTOCT
ET

3 Octet strings of 4 bytes or less.

AIT_LONGOCTE
T

4 Octet strings of more than 4 bytes.

AIT_DISPLAYST
RING

5 NVT ASCII strings.

AIT_OBJECTID 6 An object ID.

AIT_CHOICE 7 ASN.1 is standard. Or the choice value (a
union).

AIT_HEADER 8 Type and length without any value (not used
in actual attribute blocks).

When the attribute is encoded as an ASN.1 value, the aib_asn_type field
specifies the ASN.1 type. Theaib_asn_type field is usually of interest only
to NWSNMP.

The aib_min and aib_max fields are ignored unless the AIF_LIMITS flag is
set.

The aib_flags field can have the following values:

Name Description

AIF_READ Attribute can be read by a sufficiently authorized
request. Does not indicate whether the current request
is authorized.

AIF_WRITE Attribute can be written by a sufficiently authorized
request. Does not indicate whether the current request
is authorized.

AIF_IMMEDI
ATE

Attribute fits in an unsigned long. These attributes are
always located in the avb_length field of the Attribute
Value Block instead of the associated avb_value field
buffer which eliminates the need for a buffer for
values that are four bytes or less in length.

AIF_LIMITS Attribute has a limited range or size.

Each Attribute Value Block points to the Attribute Information Block of
the corresponding attribute to provide identification and treatment
information for the specific attribute value carried in the AttrValue
structure block.

Management Service Group

NWSNMP: Structures 544

The MIB compiler creates one of these blocks for each attribute in the
MIB.

IMPORTANT: Do not change the blocks or modify the information
within them.

The Attribute Value Block is used by NWSNMP to process requests for
each attribute. NWSNMP converts the values and checks the range and
access so those fields of the Attribute Information Block are not useful to
the access routines.

For the convenience of the object-handling functions, NWSNMP passes a
pointer to the Attribute Information Block in the aib_info field of the
AttrValue structure.

Management Service Group

NWSNMP: Structures 545

AttrValue

Passes information between NWSNMP and an NLM during Get, GetNext,
and Set functions

Service: NWSNMP

Structure

typedef struct {
 struct AttrValue *avb_next;
 unsigned long avb_length;
 void *avb_value;
} AttrValue;

Fields

avb_next

Points to the next attribute value in the list (pass NULL if the attribute
is last in the list).

avb_length

Specifies the length, in bytes, of the buffer pointed to by the avb_value
field.

avb_value

Points to a buffer containing the attribute value.

Remarks

The Attribute Value Blocks are always in the same order and have the
same number of values as in the INDEX clause of the object MIB.

If the AIF_IMMEDIATE flag is set in the Attribute Information Block for
the specified attribute, the avb_length field specifies the attribute value
and the avb_value field will be ignored.

NWSNMP passes a NULL-terminated list of Attribute Information
Blocks to each object-handling function to provide the function with the
attribute being accessed. NWSNMP uses the following types of Attribute
Information Block arrays:

Name Description

instance
list

The object-handling function uses this set of Attribute
Information Blocks to identify the index values of the object
instance to be accessed. The values are always given in the
same order as in the INDEX clause of the object MIB.

next list The OCBGetNext and OCBLookupInst functions use this

Management Service Group

NWSNMP: Structures 546

set of Attribute Information Blocks to identify the next
object instance once it is located. The values are always
given in the same order as in the INDEX clause of the object
MIB.

attribute
list

The object-handling functions use this set of Attribute
Information Blocks to identify specific attributes and their
values. The functions either extract each attribute value
from each block (Set functions) or write the value into each
block (Get and GetNext functions).

NWSNMP passes lists of Attribute Value Blocks to the object-handling
functions. The number of lists that are passed depends on the specific
function. The object-handling functions are responsible for copying
attribute values into and out of the Attribute Value Blocks that
NWSNMP allocates.

IMPORTANT: All attributes that have the AIF_IMMEDIATE flag
set are copied directly from or into the avb_length field. Attributes that
are not immediate must be copied from or into the buffer pointed to by
the avb_value field. When an object-handling function is copying data
from the buffer, the avb_length field gives the actual length (in bytes) of
the entire value.

When a object-handling function is expected to return data in the
avb_value field, NWSNMP initially sets the avb_length field to the length
(in bytes) of the entire buffer. Once the function copies the data into the
buffer, it should update the avb_length field to reflect the actual length of
the attribute value. If the buffer is too short for the attribute value, the
function should return SNMP_ERR_TOOBIG.

Management Service Group

NWSNMP: Structures 547

ObjControl

controls the requests that can be applied to an abstract object

Service: NWSNMP

Structure

typedef struct {
 unsigned int ocb_flags;
 void *ocb_context_ptr;
 OCBGet ocb_get;
 OCBGetNext *ocb_get_next;
 OCBCheckSet *ocb_check_set;
 OCBCommitSet *ocb_commit_set;
 OCBAbortSet *ocb_abort_set;
} ObjControl;

Fields

ocb_flags

Specifies the flags that modify normal object treatment (no flags are
currently defined).

ocb_context_pt

Points to the context and used by the standard access functions.

ocb_get

Specifies the function that will return attribute values out of an object
by passing an object ID/instance ID pair.

ocb_get_next

Specifies the function that will return attribute values out of the next
object by passing the object ID/instance ID pair of the previous object.

ocb_check_set

Specifies the function that will check whether a Set request on a
specific set of attributes can be legally completed for the specified
object (NULL if Set requests always succeed).

ocb_commit_set

Specifies the function that will complete a previously checked Set
request for a specific object (NULL if the object is not writeable).

ocb_abort_set

Specifies the function that will abort a Set request that has successfully
called the function specified by the ocb_check_set field, but which
cannot be completed for other reasons (NULL if the object requires no
cleanup when the Set request is aborted).

Management Service Group

NWSNMP: Structures 548

Remarks

The exporting module defines the Object Control Block for each abstract
object and NWSNMP uses the block to perform requests on the abstract
object. NWSNMP passes the Object Control Block to functions and
provides them with the necessary context to complete each request.

The ocb_context_pt field can have the following values:

SAI_DEFINE_TABL
E

Points to the table location.

SAI_DEFINE_POIN
TER

Points to the table location.

SAI_DEFINE_GRO
UP

Points to the OCBLookupInst function for the
group table.

Use the Object Control Block in the NLM that exports the abstract object
and describes the functions that NWSNMP should call to manipulate
attributes of a specified object. The Object Control Block must be
initialized at link or run time (before the MIB handle is passed to the
SAIRegisterMIB function).

IMPORTANT: Once the NLM registers the MIB with NWSNMP, do
not modify the Object Control Block.

For Get requests, NWSNMP calls the function pointed to by the ocb_get
field. For GetNext requests, NWSNMP calls the function pointed to by
the ocb_get_next field.

For Set requests, NWSNMP calls the function pointed to by the
ocb_check_set field. If that function returns successfully for all objects,
NWSNMP will call the function pointed to by the ocb_commit_set field. If
the function pointed to by the ocb_check_set field fails for any object,
NWSNMP will call the function pointed to by the ocb_abort_set field for
all objects for which the check routine was called successfully.

Individual NWSNMP requests can operate on more than one abstract
object and can apply to several attributes for each object. NWSNMP calls
the object-handling functions exactly once for each object in the request
and combines all attributes for that object into a single request.

For example:

ObjControl OCB_ip {
 OCBF_NONE, /*no flags*/
 ipMIB, /*pointer to the statistics array context*/
 IPStatGet, /*based on OCBGet function*/
 NULL, /*no GetNext is necessary*/
 NULL, /*Set requests always succeed; do not check*/
 IpStatSet, /*based on OCBCommitSet function*/

Management Service Group

NWSNMP: Structures 549

 NULL /*no check so no abort either*/
};

Management Service Group

NWSNMP: Structures 550

ObjInfo

Describes the object to NWSNMP

Service: NWSNMP

Structure

typedef struct {
 struct ObjInfo *oib_next;
 ObjControl *oib_control;
 struct ResourceTagStructure *oib_rtag;
 unsigned int oib_id_ln;
 unsigned long *oib_id_pt;
 unsigned int oib_index_ln;
 AttrInfo *oib_index_pt;
 unsigned int oib_attr_mx;
 AttrInfo *oib_attr_pt;
} ObjInfo;

Fields

oib_next

Points to the next object in the NWSNMP list of registered objects.

oib_control

Points to the Object Control Block.

oib_rtag

Points to the resource tag used to register the specified object.

oib_id_ln

Specifies the number of unsigned long values in the object ID array.

oib_id_pt

Points to the object ID.

oib_index_ln

Specifies the number of items in the index for the specified object (0
specifies an unindexed object).

oib_index_pt

Points the AttrInfo structure containing a list of attribute descriptions
in the instance index (0 specifies the object has only one instance).

oib_attr_mx

Specifies the number of attributes for the specified object.

oib_attr_pt

Points to the AttrInfo structure containing an array of attribute
descriptions for each attribute of an object (indexed by attribute

Management Service Group

NWSNMP: Structures 551

number).

Remarks

An Object Information Block is generated by the MIB compiler for each
object and is used internally by NWSNMP.

WARNING: The Object Information Block is used internally by
NWSNMP. Do not modify the block.

Management Service Group

NWSNMP: Structures 552

TLV

describes an arbitrary value by providing ASN.1 identification, type, length,
and location for the value

Service: NWSNMP

Structure

typedef struct {
 int tlv_id;
 int tlv_type;
 int tlv_length;
 void *tlv_value;
} TLV;

Fields

tlv_id

Specifies the identifier describing what the value actually means
(optional).

tlv_type

Specifies the appropriate ASN.1 type of the value (if known).

tlv_length

Specifies the total number of bytes in the value (or the total number of
bytes available to receive the value).

tlv_value

Points to the value or to a buffer to receive the value.

Remarks

The Get and Set functions in the client interface use the TLV structure to
describe values. NWSNMP copies the value information into and out of
the TLV structure buffer.

The NLM that accesses the NWSNMP data must define and provide the
appropriate TVL structures.

Management Service Group

NWSNMP: Structures 553

VarBind

Service: NWSNMP

Structure

typedef struct {
 unsigned long *vb_id_pt;
 int vb_id_ln;
 int vb_encoding;
 int vb_asn_type;
 unsigned long vb_length;
 void *vb_value;
} VarBind;

Fields

vb_id_pt

Points to an array of unsigned long data containing the variable
binding object ID.

vb_id_ln

Specifies the number of sub IDs in the object ID.

vb_encoding

Specifies the AIT_* value indicating the appropriate encoding
mechanism for handling the specified value.

vb_asn_type

Specifies the value to put in the type field of the encoded ASN.1
type/length/value.

vb_length

Specifies the number of bytes in the value or the immediate value of
the variable bind for AIT_* values.

vb_value

Points to the value (if not an immediate value).

Remarks

The trap generation function in the client interface uses the VarBind
structure to describe variable bindings. NWSNMP copies the binding
information into and out of buffers described by the VarBind structure.

The NLM that accesses the NWSNMP data must define and provide the
appropriate VarBind structures.

Management Service Group

NWSNMP: Structures 554

NWSNMP: Macros

Management Service Group

NWSNMP: Macros 555

SAI_DEFINE_GROUP

Is a macro that defines a group table-oriented object

NetWare Server:

Platform:

Service: NWSNMP

Syntax

OCBLookupInst Lookup_Routine;

SAI_DEFINE_GROUP (
 Object_Name,
 Lookup_Routine);

Parameters

Ojbect_Name

Specifies the name of the Object Control Block being declared (should
be the MIB ‘OCB_’ object name as required by the MIB compiler).

LookupRoutine

Specifies the OCBLookupInst function that returns an array arranged
in the format of a simple table from which actual values can be read or
written.

Remarks

SAI_DEFINE_GROUP defines an Object Control Block with the name
specified by the Object_Name parameter that provides access to the group
table. The table is defined as a group of instances, where each individual
instance is arranged as a simple array of SNMP values.

Your exporting NLM should call SAI_DEFINE_GROUP to instrument a
group table. You must call the OCBLookupInst function that accesses the
group table and place a pointer to the OCBLookupInst function in the
Lookup_Routine parameter.

The OCBLookupInst function must be able to find a given table instance
and return a pointer to that table.

The elements of a group table are a standard format table in the simple
table format for which standard access functions can be called.

See Also

SAI_DEFINE_TABLE

Management Service Group

NWSNMP: Macros 556

SAI_DEFINE_POINTER

Is a macro that defines a pointer table-oriented object

NetWare Server:

Platform:

Service: NWSNMP

Syntax

unsigned long *Table_Location;

SAI_DEFINE_POINTER (
 Object_Name,
 Table_Location);

Parameters

Object_Name

Specifies the name of the Object Control Block being declared (the MIB
“OCB_” object name as required by the MIB compiler).

Table_Location

Specifies the name of an array of pointers defining the table.

Remarks

SAI_DEFINE_POINTER defines an Object Control Block with the name
specified by the Object_Name parameter and provides access to the
pointer table starting at the location specified by the Table_Location
parameter.

Your exporting NLM should call SAI_DEFINE_POINTER to instrument
a previously created pointer table that is formatted as an array of
pointers.

NOTE: The first element of the array (at index zero) should be the
number of elements in the array. The type of the first element is an
unsigned long and not a pointer. NWSNMP uses this value to
determine whether the table supports all the attributes in the MIB.

The array specified by the Table_Location parameter can contain both long
values and various kinds of pointers since unsigned long values and
pointers are assumed to be the same size.

Depending on the MIB definition, each element of the array can contain
any one of the following type of attributes in the prescribed form:

Management Service Group

NWSNMP: Macros 557

Integer Contained in the array as a pointer to an unsigned long.

TimeTic
ks

Contained in the array as a pointer to an unsigned long. The
unit of time in this value must be NetWare operating
system ticks.

short
OCTET
STRING

Contained in the array as a pointer to an unsigned long
with the low order byte being the first octet of the string.

long
OCTET
STRING

Contains in the array as a pointer to an array of type char
that contains the value. The value must be a
NULL-terminated string. Any long OCTET STRING that
can contain NULL must be specially handled by the
support module of the object. If the string is writeable, the
pointer must point to a buffer large enough to handle the
maximum length value. Any long OCTET STRING that has
no maximum length in the MIB is assumed to have a
maximum of 256 characters, including the terminating
NULL. If a truly unbound, writeable OCTET STRING must
be supported by the object, the object support code must
specially handle it.

OBJECT
ID

Contained in the array as a pointer to an array of type
unsigned long. The OBJECT ID is terminated by an element
of zero. If the OBJECT ID is writeable, the pointer must
point to a buffer large enough to handle a 256-element
OBJECT ID. If a truly unbound, writeable OBJECT ID must
be supported by the object, the object support code must
specially handle it.

The format of this table and, consequently, the implementation of
SAI_DEFINE_POINTER and its supporting functions can vary in
different architectures that have different size pointers and unsigned
long values.

The unit of time for TimeTicks can vary between environments.

See Also

SAI_DEFINE_TABLE

Management Service Group

NWSNMP: Macros 558

SAI_DEFINE_TABLE

Is a macro that defines a simple table-oriented object

NetWare Server:

Platform:

Service: NWSNMP

Syntax

unsigned long Table_Location;

SAI_DEFINE_TABLE (
 Object_Name,
 Table_Location);

Parameters

Object_Name

Specifies the name of the Object Control Block being declared (the MIB
“OCB_” object name as required by the MIB compiler).

Table_Location

Specifies the name of an array of unsigned long values defining the
table.

Remarks

SAI_DEFINE_TABLE defines an Object Control Block with the name
specified by the Object_Name parameter and provides access to the simple
table starting at the location specified by the Table_Location parameter.

Your exporting NLM should call SAI_DEFINE_TABLE to instrument a
previously created simple table formatted as an array of unsigned long
values that can include unsigned long integers, pointers to unsigned long
integers, or pointers to characters.

IMPORTANT: The value in the first array element (at index zero)
must give the number of elements in the array.

The Table_Location array can contain both long values and various kinds
of pointers since it assumes that long values and pointers are both the
same size.

Depending on the MIB definition, each element of the array can contain
any one of the following type of attributes in the prescribed form:

Integer Contained in the array as a pointer to an unsigned long.

Management Service Group

NWSNMP: Macros 559

TimeTic
ks

Contained in the array as a pointer to an unsigned long. The
unit of time in this value must be NetWare operating
system ticks.

short
OCTET
STRING

Contained in the array as a pointer to an unsigned long
with the low order byte being the first octet of the string.

long
OCTET
STRING

Contains in the array as a pointer to an array of type char
that contains the value. The value must be a
NULL-terminated string. Any long OCTET STRING that
can contain NULL must be specially handled by the
support module of the object. If the string is writeable, the
pointer must point to a buffer large enough to handle the
maximum length value. Any long OCTET STRING that has
no maximum length in the MIB is assumed to have a
maximum of 256 characters, including the terminating
NULL. If a truly unbound, writeable OCTET STRING must
be supported by the object, the object support code must
specially handle it.

OBJECT
ID

Contained in the array as a pointer to an array of type
unsigned long. The OBJECT ID is terminated by an element
of zero. If the OBJECT ID is writeable, the pointer must
point to a buffer large enough to handle a 256-element
OBJECT ID. If a truly unbound, writeable OBJECT ID must
be supported by the object, the object support code must
specially handle it.

The format of this table and, consequently, the implementation of
SAI_DEFINE_TABLE and its supporting functions can vary in different
architectures that have different size pointers and unsigned long values.

The unit of time for TimeTicks can vary between environments.

See Also

SAI_DEFINE_GROUP, SAI_DEFINE_POINTER

Management Service Group

NWSNMP: Macros 560

Queue Management

Management Service Group

 561

Queue Management: Guides

Queue Management: General Guide

NetWare’s queue management provides applications with generic queuing
mechanisms.

Queue Management Introduction

Queue Objects

Queue Attributes

The Queue Job Record

Queue Job Control Flags

Queue Job Client Record Area

Managing Queue Jobs

Managing a Queue Object

Servicing a Queue Object

Queue Functions

Queue Management: Tasks

Queue Management: Concepts

Queue Management: Functions

Queue Management: Structures

Parent Topic:

Management Overview

Queue Management: Task Guide

NetWare’s queue management provides applications with generic queuing
mechanisms.

Managing Queue Jobs

Creating Queue Jobs

Management Service Group

Queue Management: Guides 562

Deleting Queue Jobs

Managing a Queue Object

Creating a Queue Object

Deleting a Queue Object

Servicing a Queue Object

Attaching to a Queue Object

Aborting a Queue Job

Changing Queue Job Rights

Related Topics:

Queue Management: Concepts

Queue Management: Functions

Queue Management: Structures

Parent Topic:

Queue Management: General Guide

Queue Management: Concept Guide

NetWare’s queue management provides applications with generic queuing
mechanisms.

Queue Management Introduction

Queue Objects

Queue Attributes

The Queue Job Record

Queue Job Control Flags

Queue Job Client Record Area

Managing Queue Jobs

Modifiable Queue Job Information

Managing a Queue Object

Queue Status Information

Servicing a Queue Object

Management Service Group

Queue Management: Guides 563

Processing a Queue Job

Accessing the Queue Status Record

Queue Functions

Queue Job Functions

Queue Job Management Functions

Queue Management Functions

Queue Server Functions

Related Topics:

Queue Management: Tasks

Queue Management: Functions

Queue Management: Structures

Parent Topic:

Queue Management: General Guide

Managing a Queue Object

Queue Management provides full console-type control over the operation of
the queue. You can create and delete queue objects and read and set queue
status information for a queue.

Tasks

Creating a Queue Object

Deleting a Queue Object

Concepts

Queue Status Information

Parent Topic:

Queue Management: General Guide

Managing Queue Jobs

This topic details how to manage a queue job record.

Tasks

Creating Queue Jobs

Management Service Group

Queue Management: Guides 564

Deleting Queue Jobs

Concepts

Modifiable Queue Job Information

Parent Topic:

Queue Management: General Guide

Queue Functions

This section provides lists of queue functions.

Queue Job Functions

Queue Job Management Functions

Queue Management Functions

Queue Server Functions

Parent Topic:

Queue Management: General Guide

Servicing a Queue Object

After the user and operator, the server is the third component in the queue
management architecture. While the queue management system controls
access to the queue and keeps the jobs in order, a queue server is
responsible for removing jobs from the queue and processing them. Queue
Management makes a few assumptions about the kind of services provided
by a queue server.

Tasks

Attaching to a Queue Object

Aborting a Queue Job

Changing Queue Job Rights

Concepts

Processing a Queue Job

Accessing the Queue Status Record

Parent Topic:

Queue Management: General Guide

Management Service Group

Queue Management: Guides 565

Queue Management: Tasks

Aborting a Queue Job

1. If a queue server needs to interrupt a job in process, it calls
NWAbortServicingQueueJob2.

This function allows the queue management system to handle the
unfinished job according to the values of the job’s control flags.

Parent Topic:

Servicing a Queue Object

Related Topics:

Processing a Queue Job

Changing Queue Job Rights

Attaching to a Queue Object

1. To service a queue, a queue server application logs in to the
NetWare® server and calls NWAttachQueueServerToQueue.

To attach to the queue successfully, a queue server must be listed in the
queue’s Q_SERVERS property.

2. After attaching, a queue server calls NWServiceQueueJob2.

This function can include a job type identifying the type of job the
server will accept. (A value of -1 includes all job types.)

Parent Topic:

Servicing a Queue Object

Changing Queue Job Rights

1. While processing a job, a queue server can call
NWChangeToClientRights2 to assume the access rights of the user
who submitted the job.

This step is important if the job requires access to other files or bindery

Management Service Group

Queue Management: Tasks 566

objects. By assuming the client’s rights, a queue server can be sure the
user is permitted to access the specified files.

2. After the job is complete, a queue server calls
NWRestoreQueueServerRights to have its rights restored.

Parent Topic:

Servicing a Queue Object

Related Topics:

Processing a Queue Job

Aborting a Queue Job

Creating a Queue Object

1. Call NWCreateQueue to create a queue object.

This function creates the queue object and assigns it a queue type,
name, and directory path. The following queue types are defined by
Novell:

0300h Print Queue

0800h Archive Queue

0A00h Job Queue

An 8-character hexadecimal representation of the queue’s object ID is
added to the directory path, and the resulting path is assigned to the
queue’s Q_DIRECTORY property. Typically, the directory SYS:SYSTEM
is used as the directory path, although you can locate the queue
somewhere else.

Parent Topic:

Managing a Queue Object

Related Topics:

Deleting a Queue Object

Queue Status Information

Deleting a Queue Object

1. Call NWDestroyQueue to delete a queue object.

Deleting a queue deletes all associated data, including all jobs currently
in the queue. Any active jobs associated with the queue are aborted.

Parent Topic:

Management Service Group

Queue Management: Tasks 567

Managing a Queue Object

Related Topics:

Creating a Queue Object

Queue Status Information

Creating Queue Jobs

1. Call NWCreateQueueFile2 to create a queue job.

This function sets up a queue job record and opens a queue job file. Pass
this function the destination queue and, optionally, the target server,
target execution time, job type, and job control flags. You can also
include a text job description. The client record area can be used to store
any additional information required by your application.

The queue job returns a job file handle to the queue file upon its
creation. Use this handle to write data to the file.

2. Call NWCloseFileAndStartQueueJob2 to close the queue job file and
make the job available for processing.

Parent Topic:

Managing Queue Jobs

Related Topics:

Deleting Queue Jobs

Modifiable Queue Job Information

Deleting Queue Jobs

1. Call NWRemoveJobFromQueue2 to cancel a job and remove it from
the queue.

Parent Topic:

Managing Queue Jobs

Related Topics:

Creating Queue Jobs

Modifiable Queue Job Information

Management Service Group

Queue Management: Tasks 568

Queue Management: Concepts

Accessing the Queue Status Record

Queue management maintains a 64-byte status record for each queue to
which a queue server is attached. Although this field is available for your
application, queue management doesn’t use it. Any object listed in either
the queue’s Q_USERS or Q_OPERATORS properties can read or modify
this information. A pair of functions provide this service:

NWReadQueueServerCurrentStatus2

NWSetQueueServerCurrentStatus

Parent Topic:

Servicing a Queue Object

Modifiable Queue Job Information

Once in the queue, a job is identified by its queue job number. This number
is part of the information returned in the queue job record when you submit
the job. Use this number to read a the queue job record and to find the
current size of the job file. You can modify the following information in the
queue job record:

Target server ID number

Target execution time

Job type

User hold flag

Server restart flag

Server auto-start flag

Text job description in the client record area

Operator hold flag

Additionally, you can change the job’s position in the queue or remove the
job from the queue. To modify the operator hold flag, an application must
have operator status. Operators can also receive a list of all jobs currently in
the queue.

Management Service Group

Queue Management: Concepts 569

the queue.

Parent Topic:

Managing Queue Jobs

Related Topics:

Creating Queue Jobs

Deleting Queue Jobs

Processing a Queue Job

After receiving the request to service a job, queue management searches the
queue for a job that is appropriate for the queue server. The following
conditions must apply:

The job’s target server ID number must match the queue server or be set
to -1L.

The target execution time must have expired or be set to FFh.

The job’s type must match the type specified by the server.

The operator hold, user hold, and entry open flags must all be clear, and
the server ID number must be 0, indicating that the job isn’t being
serviced.

When an eligible job is found, the job’s server station, server task, and server
ID number are set to that of the queue server. The job file is opened for
read/write access, and the updated queue job record is returned to the
queue server. A queue server uses the job file handle to access the
application-specific data associated with the job. When it has finished
processing the job, a queue server calls NWFinishServicingQueueJob2.
This is queue management’s signal that the job has been processed.

Parent Topic:

Servicing a Queue Object

Related Topics:

Aborting a Queue Job

Changing Queue Job Rights

Queue Attributes

Queue attributes include Q_DIRECTORY, Q_OPERATOR, Q_SERVERS,
and Q_USERS. The following table shows the configuration of these
properties.

Management Service Group

Queue Management: Concepts 570

Table auto. The Queue Object Properties

Property Name Property Flag Property Security

Q_DIRECTORY 0x00 (item/static) 0x33

Q_OPERATOR 0x02 (set/static) 0x31

Q_SERVERS 0x02 (set/static) 0x31

Q_USERS (optional) 0x02 (set/static) 0x31

NOTE: Property security is based on the bindery access control
scheme in which the upper nibble indicates write access and the lower
nibble indicates read access. A value of 3 represents supervisor-only
access and 1 represents any logged in object. For example, the Q_USERS
property security is 0x31: only the supervisor can modify this property
but any logged in user can read its value.

The Q_DIRECTORY property holds the path of the queue directory (for
example, SYS:SYSTEM/055D0173). The queue object ID is used to name the
subdirectory where the queue is found.

The Q_OPERATOR property holds the object IDs of all bindery objects
assigned as queue operators. The Q_SERVERS property holds the object IDs
of all servers that can access the queue. The Q_USERS property holds the
object ID of all users who can access the queue.

Parent Topic:

Queue Management: General Guide

Queue Job Client Record Area

The client record area is a 152-byte field that can contain supplementary
information exchanged between the queue client and the queue server. For
NetWare® to process your print job correctly, you must enter the following
into the clientRecordArea when the job is submitted:

typedef struct NWQPrintServerRec_t
 nuint8 versionNumber;
 nuint8 tabSize;
 nuint16 numberOfCopies;
 nuint16 printControlFlags;
 nuint16 maxLinesPerPage;
 nuint16 maxCharsPerLine;
 char formName[13];
 nuint8 reserve[9];
 char bannerNameField[13];
 char bannerFileField[13];
 char bannerFileName[14];
 char directoryPath[80];

Management Service Group

Queue Management: Concepts 571

Parent Topic:

The Queue Job Record

Related Topics:

Queue Job Control Flags

Queue Job Control Flags

Job control flags affect the way the queue server processes a queue job. The
flags define the following bits. (Bits 0, 1, and 2 must be 0.):

First Byte

Bit 3 = service auto-start

Bit 4 = service restart

Bit 5 = entry open

Bit 6 = user hold

Bit 7 = operator hold

service auto-start indicates how to handle the job should the client station
lose its connection before submitting the job. If this flag is set, the job will
be marked for processing should the client station lose its connection to
the queue; otherwise the job is removed from the queue.

service restart indicates how to handle the job if the queue server fails
during processing. If this flag is set, the job will be left in the queue for
re-servicing.

entry open indicates whether the job is ready to be processed. When the
job entry is first created, this flag is set to indicate the job hasn’t been
submitted yet. Once the client submits a job with this flag, the flag is
cleared.

user hold indicates whether the job may be processed. If this flag is set, the
job will not be processed until the flag is clear, but the job continues to
advance toward the front of the queue. An operator or the client who
submitted the job can modify this flag.

operator hold indicates whether the job may be processed. If the flag is set,
the job will not be processed until the flag is clear, but the job continues to
advance toward the front of the queue. Only operators can modify this
flag.

Parent Topic:

The Queue Job Record

Related Topics:

Queue Job Client Record Area

Management Service Group

Queue Management: Concepts 572

Queue Job Functions

These functions let you create, abort, and close queue job files.

Function Header Comment

NWCloseFileAndAbortQu
eueJob2

nwqms.
h

Closes a queue file and
destroys it.

NWCloseFileAndStartQue
ueJob2

nwqms.
h

Closes a queue file and
marks the job ready for
processing.

NWCreateQueueFile2 nwqms.
h

Creates a queue file and
returns a handle to it.

Parent Topic:

Queue Functions

Queue Job Management Functions

These functions let you manage queue jobs after they are submitted to the
queue.

Function Header Comment

NWChangeQueueJobEnt
ry2

nwqms.
h

Changes the queue job
information for the specified
job.

NWChangeQueueJobPo
sition2

nwqms.
h

Changes the position of a job in
the specified queue.

NWGetQueueJobFileSiz
e2

nwqms.
h

Returns the size of the job file
associated with a queue job.

NWGetQueueJobList2 nwqms.
h

Returns a list of all entries in
the specified queue.

NWReadQueueJobEntry
2

nwqms.
h

Reads the queue job
information for the specified
job.

NWRemoveJobFromQue
ue2

nwqms.
h

Removes a job from the
specified queue.

Parent Topic:

Management Service Group

Queue Management: Concepts 573

Queue Functions

The Queue Job Record

Within the queue, each job has a record that holds information for
processing the job. The information identifies the client, the target server,
the job, and the actual server:

Client station number

Client task

ClientID

Target server ID

Target execution time

Job entry time

Job number

Job type

Job position

Job control flags

Job file name

Job file handle

Servicing server station

Servicing server ID

Job description

Client record area

NWQueueJobStruct contains this data.

Parent Topic:

Queue Management: General Guide

Related Topics:

Queue Job Control Flags

Queue Job Client Record Area

Queue Management Functions

Management Service Group

Queue Management: Concepts 574

These functions let you create queues, delete queues, and manage queue
status.

Function Header Comment

NWCreateQueue nwqms.h Creates a queue object in the
bindery along with its
associated queue properties.

NWDestroyQueue nwqms.h Deletes a queue object from
the bindery and removes its
queue directory. All entries
and associated job files are
also deleted.

NWGetPrinterQueueID nwqms.h Returns the object ID of the
queue assigned to a specified
LPT port.

NWReadQueueCurrentSt
atus2

nwqms.h Returns the current status of
the specified queue.

NWSetQueueCurrentStat
us2

nwqms.h Allows the operator to
modify a queue’s queue
status property. This
property affects the
submission of new jobs to the
queue and the attachment of
queue servers.

Parent Topic:

Queue Functions

Queue Management Introduction

NetWare’s queue management provides applications with generic queuing
mechanisms. A queue is simply an object that uses a directory on the
NetWare® server where files (such as print jobs) can be stored and
manipulated on a temporary basis. Although the primary use of queue
management is processing print jobs, any file can be queued for any kind of
processing.

Objects accessing the queue are defined as users, operators, or servers. A
user can send a file to the queue and monitor its progress. An operator
controls the queue’s status and has access to any queue jobs currently found
in the queue. A server removes jobs from the queue and performs the
requested specialized services (such as printing).

Queue Management functions correspond with these three roles---user,

Management Service Group

Queue Management: Concepts 575

operator, and server. User-oriented functions let users submit jobs to a
queue from an application. Operator functions allow applications to
manage and delete jobs from the queue. Server functions allow applications
to remove jobs from a queue for processing.

Jobs submitted to a queue are copied into the queue directory on the
network server. Print jobs are processed in the order they are submitted to
the queue. Each file in the directory is given a number identifying its place
relative to the other jobs in the queue. A hidden file in the queue directory
keeps track of the sequence in which the jobs will be processed.

A job server checks each assigned queue at a specified interval, taking care
of jobs on a first-in, first-out basis. As many as 25 job servers can be attached
to a queue at the same time. Once a job is processed, its associated file is
deleted from the queue directory.

For a description of structures and other data definitions relating to this
topic, see Queue Management: Structures.

Parent Topic:

Queue Management: General Guide

Queue Objects

Like other bindery objects, a queue has a name, type, ID, object flag, and
security flag. For example, a print queue might have the following object
data:

Object name: LASER_PRINTER (user-supplied queue name)

Object type: 0x0300 (print queue)

Object ID: 055D0173 (assigned by NetWare®)

Object flag: 0x00 (static)

Object security: 0x31 (write = supervisor; read = logged)

Parent Topic:

Queue Management: General Guide

Queue Server Functions

These functions let queue servers attach to queues, open queue jobs, and
assume client ID rights. They also provide access to the queue server status
records associated with a queue.

Function Header Comment

NWAbortServicingQueueJob
2

nwqms.
h

Signals queue
management that the

Management Service Group

Queue Management: Concepts 576

server has discontinued
servicing the specified
job.

NWAttachQueueServerToQu
eue

nwqms.
h

Attaches the local
workstation as a queue
server to the specified
queue.

NWChangeToClientRights2 nwqms.
h

Allows a queue server to
change its current login
identity to match the
identity of the client
whose job is being
serviced.

NWDetachQueueServerFrom
Queue

nwqms.
h

Removes the local
workstation from the
specified queue’s list of
active queue servers.

NWFinishServicingQueueJob
2

nwqms.
h

Signals queue
management that the
service has successfully
serviced the job.

NWReadQueueServerCurrent
Status2

nwqms.
h

Reads status information
for a queue server. The
information pertaining to
the queue server status is
specific to the application.

NWRestoreQueueServerRight
s

nwqms.
h

Restores the queue server
ID to a queue server. This
function typically is
called after
NWChangeToClientRig
hts2 has changed the
server’s identity to the
client ID.

NWServiceQueueJob2 nwqms.
h

Returns the next available
job in the specified queue.

NWSetQueueServerCurrentSt
atus

nwqms.
h

Modifies the status
information for a queue
server.

Parent Topic:

Queue Functions

Queue Status Information

Management Service Group

Queue Management: Concepts 577

Queue status flags indicate a queue’s current operational status. Below are
the values associated with these flags.

First Byte

Bit 0 = QS_CANT_ADD_JOBS

Bit 1 = QS_SERVERS_CANT_ATTACH

Bit 2 = QS_CANT_SERVICE_JOBS

If QS_CANT_ADD_JOBS is set, no new jobs can be submitted to the
queue.

If QS_SERVERS_CANT_ATTACH is set, no new servers can attach to the
queue.

If QS_CANT_SERVICE_JOBS is set, the queue can’t be serviced. A pair of
functions access the queue status flags:

NWReadQueueCurrentStatus2 reads the flags.

NWSetQueueCurrentStatus2 modifies the flags.

Parent Topic:

Managing a Queue Object

Related Topics:

Creating a Queue Object

Deleting a Queue Object

Management Service Group

Queue Management: Concepts 578

Queue Management: Functions

Management Service Group

Queue Management: Functions 579

NWAbortServicingQueueJob2

Signals to the queue management software a job previously accepted for
service cannot be completed successfully

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWAbortServicingQueueJob2 (
 NWCONN_HANDLE conn,
 nuint32 QueueID,
 nuint32 JobNumber,
 NWFILE_HANDLE fileHandle);

Pascal Syntax

#include <nwqms.inc>

Function NWAbortServicingQueueJob2
 (conn : NWCONN_HANDLE;
 QueueID : nuint32;
 JobNumber : nuint32;
 fileHandle : NWFILE_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the job server connection handle.

QueueID

(IN) Specifies the bindery object ID for the queue in which the aborted
job is located.

JobNumber

(IN) Specifies the job number of the job to abort (on servers previous to
3.11, the top 16 bits are ignored).

fileHandle

(IN) Specifies the file handle of the file associated with the aborted job.

Management Service Group

Queue Management: Functions 580

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_NO_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure, HARDWARE_FAILURE

Remarks

NWAbortServicingQueueJob2 is NetWare® 3.11+ compatible.

NWAbortServicingQueueJob2 closes the job file and resets the job
server’s access rights to their original (login) values. Only a queue server
that has previously accepted a job for service can call
NWAbortServicingQueueJob2.

An aborted job returns to its former position in the job queue if its
QF_ENTRY_RESTART flag (bit 0x10 of jobControlFlags in QueueJobStruct
) is set. For example, if a job is at the beginning of the queue before being
called, it returns to the beginning of the queue after being aborted.
Therefore, an aborted job could remain in the queue and be serviced and
aborted again and again. A job should not be aborted because of an error
in the job’s format or requests. Instead, call
NWFinishServicingQueueJob2 to remove such a job from the queue.

Also, if a job attempts to access data without proper security clearance
and is aborted, the job returns to the end of the queue. To remove such a

Management Service Group

Queue Management: Functions 581

job from the job queue, call NWFinishServicingQueueJob2.

A job should be aborted only if some temporary internal problem
prevents it from completing. For example, a print job might be aborted if
the printer has a paper jam. After the paper jam is corrected, the job
server can service the job successfully.

NCP Calls

0x2222 66 File Close

0x2222 23 17 Get File Server Information

 0x2222 23 115 Abort Servicing Queue Job (no 1000 user support)

 0x2222 23 132 Abort Servicing Queue Job (3.11 and above)

See Also

NWChangeQueueJobEntry2, NWCreateQueueFile2 ,
NWFinishServicingQueueJob2, NWReadQueueJobEntry2

Management Service Group

Queue Management: Functions 582

NWAttachQueueServerToQueue

Attaches the calling station to the specified queue as a queue server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWAttachQueueServerToQueue (
 NWCONN_HANDLE conn,
 nuint32 queueID);

Pascal Syntax

#include <nwqms.inc>

Function NWAttachQueueServerToQueue
 (conn : NWCONN_HANDLE;
 queueID : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue being attached.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

Management Service Group

Queue Management: Functions 583

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_NO_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89EA NO_SUCH_MEMBER

0x89FC NO_SUCH_OBJECT

0x89FF Failure, HARDWARE_FAILURE

Remarks

A station must attach itself to a queue as a job server before it can service
jobs from that queue. A queue can have as many as 25 job servers
attached.

The workstation calling NWAttachQueueServerToQueue must be
security equivalent to one of the objects listed in the queue’s Q_SERVERS
property.

NCP Calls

0x2222 23 111 Attach Queue Server To Queue

See Also

NWCreateQueue, NWDetachQueueServerFromQueue

Management Service Group

Queue Management: Functions 584

NWChangeQueueJobEntry2

Changes the information about a job in a queue

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWChangeQueueJobEntry2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 NWQueueJobStruct N_FAR job);

Pascal Syntax

#include <nwqms.inc>

Function NWChangeQueueJobEntry2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 Var job : NWQueueJobStruct
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue.

job

(IN) Points to NWQueueJobStruct containing the new information
about the job.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Queue Management: Functions 585

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_NO_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure, HARDWARE_FAILURE

Remarks

Information supplied by the caller overwrites information already in the
job record.

NWChangeQueueJobEntry2 can be used in conjunction with
NWReadQueueJobEntry2 to change a portion of the job’s entry record.
However, if the target entry is already being serviced,
NWChangeQueueJobEntry2 returns a servicing error and makes no
changes to the job’s entry record.

If the caller is an operator, QF_OPERATOR_HOLD can be reset to a value
supplied by the caller.

An operator or the job creator can call NWChangeQueueJobEntry2.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 109 Change Queue Job Entry (no 1000 user support)

0x2222 23 123 Change Queue Job Entry (3.11 and above)

See Also

NWChangeQueueJobPosition2, NWGetQueueJobList2,
NWReadQueueJobEntry2

Management Service Group

Queue Management: Functions 586

Management Service Group

Queue Management: Functions 587

NWChangeQueueJobPosition2

Changes a job’s position in a queue

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWChangeQueueJobPosition2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 nuint32 jobNumber,
 nuint32 newJobPos);

Pascal Syntax

#include <nwqms.inc>

Function NWChangeQueueJobPosition2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 jobNumber : nuint32;
 newJobPos : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the affected queue.

jobNumber

(IN) Specifies the job number of the job being repositioned.

newJobPos

(IN) Specifies the job’s new position.

Return Values

Management Service Group

Queue Management: Functions 588

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89FE BINDERY_LOCKED

0x89FF Failure

Remarks

newJobPos ranges from 1 to 250. Position 1 is the first position in the queue
and position 250 is the last position in a full queue. If a specified position
number places the job beyond the current end of the queue, the job
moves to the end of the current queue.

When a job is moved in the queue, the positions of all job entries are
updated to reflect the change. Changing the position of a job being
serviced has no effect on the service of that job. Also, note that moving a
job in the queue does not change jobNumber, only its position.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 110 Change Queue Job Position (no 1000 user support)

0x2222 23 130 Change Queue Job Priority (3.11 or later)

See Also

NWChangeQueueJobEntry2, NWGetQueueJobList2,
NWReadQueueJobEntry2, NWRemoveJobFromQueue2

Management Service Group

Queue Management: Functions 589

NWChangeToClientRights2

Allows a queue server to change its current login identity to match the
identity of the client for which it is acting

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWChangeToClientRights2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 nuint32 jobNumber);

Pascal Syntax

#include <nwqms.inc>

Function NWChangeToClientRights2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 jobNumber : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the queue server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue.

jobNumber

(IN) Specifies the job’s number.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Queue Management: Functions 590

0x0000 SUCCESSFUL

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_NO_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure, HARDWARE_FAILURE

Remarks

The queue server’s login user ID and associated security equivalence list
are replaced by the ID and security equivalence list of the user who
placed the job in the queue.

NWChangeToClientRights2 does not change any path mappings the
queue server may have on the job server. However, all access rights to
those directories are recalculated to conform to the rights of the queue
client. Files opened before calling NWChangeToClientRights2 continue
to be accessible with the server’s rights. Files opened after calling
NWChangeToClientRights2 are accessible only with the client’s rights.

The job server creates path mappings needed to carry out the client’s
requests after calling NWChangeToClientRights2.

NWRestoreQueueServerRights reverses the effects of
NWChangeToClientsRights2. The server’s rights are automatically reset
if the server calls NWFinishServicingQueueJob2 or
NWAbortServicingQueueJob2.

Only a queue server that has previously accepted a job for service can call
NWChangeToClientRights2.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 116 Change To Client Rights (no 1000 user support)

Management Service Group

Queue Management: Functions 591

0x2222 23 133 Change To Client Rights (3.11 and above)

See Also

NWAbortServicingQueueJob2, NWFinishServicingQueueJob2,
NWRestoreQueueServerRights

Management Service Group

Queue Management: Functions 592

NWCloseFileAndAbortQueueJob2

Allows the workstation to close a queue job and abort it

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCloseFileAndAbortQueueJob2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 nuint32 jobNumber,
 NWFILE_HANDLE fileHandle);

Pascal Syntax

#include <nwqms.inc>

Function NWCloseFileAndAbortQueueJob2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 jobNumber : nuint32;
 fileHandle : NWFILE_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the queue server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue.

jobNumber

(IN) Specifies the job entry number of the job whose service is being
aborted.

fileHandle

(IN) Specifies the aborted job’s file handle returned by
NWCreateQueueFile2 .

Management Service Group

Queue Management: Functions 593

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_QUEUE_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF HARDWARE_FAILURE

Remarks

jobNumber contains the job number returned by the Queue Management
System when the job was originally entered in the queue. The file
associated with the job number is closed, and the job is deleted from the
queue.

Only the workstation creating the queue job or a queue operator can call
NWCloseFileAndAbortQueueJob2.

NCP Calls

0x2222 66 File Close

0x2222 23 17 Get File Server Information

0x2222 23 106 Remove Job From Queue (no 1000 user support)

0x2222 23 128 Remove Job From Queue (3.11 and above)

See Also

NWCloseFileAndStartQueueJob2, NWCreateQueueFile2 ,
NWRemoveJobFromQueue2

Management Service Group

Queue Management: Functions 594

NWCloseFileAndStartQueueJob2

Closes a queue file and marks it ready for execution

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCloseFileAndStartQueueJob2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 nuint32 jobNumber,
 NWFILE_HANDLE fileHandle);

Pascal Syntax

#include <nwqms.inc>

Function NWCloseFileAndStartQueueJob2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 jobNumber : nuint32;
 fileHandle : NWFILE_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the queue server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue in which the specified
job was placed.

jobNumber

(IN) Specifies the job number of the job to be serviced.

fileHandle

(IN) Specifies the file handle of the job to be executed (returned by
NWCreateQueueFile2).

Management Service Group

Queue Management: Functions 595

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x0006 Queue file specified by fileHandle does not exist.

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_QUEUE_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure, HARDWARE_FAILURE

Remarks

jobNumber contains the job number returned by Queue Management
System when the job was originally entered in the queue.

NWCloseFileAndStartQueueJob2 closes the file associated with the job
and resets QF_ENTRY_OPEN in jobControlFlags.

jobControlFlags bit definitions follow:

Bit Flag Name Description

0x08 Auto Start Specifies how to handle the job should the
client station lose its connection before
submitting the job. If this bit is set, the job is
serviced after a queue server connection is
broken, even if the client has not cleared the
Entry Open bit. If the bit is cleared when a
server connection is broken, Queue
Management System removes the job from

Management Service Group

Queue Management: Functions 596

the queue.

0x10 Service
Restart

Specifies how to handle the job if the queue
server fails during processing. The job
remains in the queue (in its current position)
when a queue server fails. If this bit is
cleared, Queue Management System removes
the job from the queue when a server fails.

0x20 Entry Open Specifies whether the job is ready to be
processed. When the job entry is first created,
this flag is set to indicate the job has not been
submitted yet. When the client submits the
job, this flag is cleared.
NWCloseFileAndStartQueueJob2 clears this
bit (marking the job ready for service) if the
User Hold and Operator Hold bits are
cleared.

0x40 User Hold Specifies whether the job may be processed.
If the flag is set, the job will not be processed
until the flag is clear, but the job continues to
advance toward the front of the queue. An
operator or the client who submitted the job
can modify this flag.

0x80 Operator
Hold

Specifies whether the job may be processed.
If the flag is set, the job will not be processed
until the flag is clear, but the job continues to
advance toward the front of the queue. Only
operators can modify this flag.

The specified job is ready for execution when (1)
NWCloseFileAndStartQueueJob2 finishes, (2) QF_USER_HOLD and
QF_OPERATOR_HOLD are both cleared, and (3) targetExecutionTime in
NWQueueJobStruct either has not been specified or has elapsed.

Only the workstation that created the job can call
NWCloseFileAndStartQueueJob2.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 105 Close File And Start Queue Job (no 1000 user support)

0x2222 23 127 Close File And Start Queue Job (3.11 or later)

0x2222 66 File Close

See Also

NWCloseFileAndAbortQueueJob2, NWCreateQueueFile2 ,
NWRemoveJobFromQueue2

Management Service Group

Queue Management: Functions 597

NWCreateQueue

Creates a new queue and its associated Q_DIRECTORY property in the
Bindery and file system of the specified NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCreateQueue (
 NWCONN_HANDLE conn,
 pnstr8 queueName,
 nuint16 queueType,
 nuint8 dirPath,
 pnstr8 path,
 pnuint32 queueID);

Pascal Syntax

#include <nwqms.inc>

Function NWCreateQueue
 (conn : NWCONN_HANDLE;
 queueName : pnstr8;
 queueType : nuint16;
 dirPath : nuint8;
 path : pnstr8;
 queueID : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueName

(IN) Points to the name of the queue to be created (48 characters).

queueType

(IN) Specifies the number indicating the Bindery object ID type for the
new queue.

Management Service Group

Queue Management: Functions 598

dirPath

(IN) Specifies the NetWare directory handle pointing to the directory
in which the queue’s property is to be created (0 if the queue
subdirectory name will be stored in Q_DIRECTORY).

path

(IN) Points to the absolute path or a path relative to the NetWare
directory handle that will contain the queue files (stored in
Q_DIRECTORY).

queueID

(OUT) Points to the new queue ID.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8996 SERVER_OUT_OF_MEMORY

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_QUEUE_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89EE OBJECT_ALREADY_EXISTS

0x89FF Failure

Remarks

Q_DIRECTORY is determined by combining dirPath and path.
NWCreateQueue then creates a new subdirectory in this directory. The
subdirectory’s name is the 8-character ASCII hexadecimal representation

Management Service Group

Queue Management: Functions 599

of the new queue’s Bindery object ID. Queue Management System uses
this directory to store queue files until they are serviced.

Next, NWCreateQueue creates the following group properties:

Q_SERVERS
Q_OPERATORS
Q_USERS

Only SUPERVISOR or a Bindery object that is security equivalent to
SUPERVISOR can create a queue.

dirPath of 0 and SYS:SYSTEM is standard usage.

The file handle returned is appropriate for the platform the API is written
for. This file handle may be used for access to the attribute value through
standard file I/O with the handle. This includes closing the file as well as
reading and writing to the file.

For Windows, call _lread, _lwrite, _lclose, and _lseek rather than calling
the standard file I/O functions. Calling standard file I/O functions in
Windows returns unexpected results.

NCP Calls

0x2222 23 100 Create Queue

See Also

NWDestroyQueue

Management Service Group

Queue Management: Functions 600

NWCreateQueueFile2

Enters a new job on the queue and creates a job file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCreateQueueFile2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 NWQueueJobStruct N_FAR *job,
 NWFILE_HANDLE N_FAR *fileHandle);

Pascal Syntax

#include <nwqms.inc>

Function NWCreateQueueFile2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 Var job : NWQueueJobStruct;
 Var fileHandle : NWFILE_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery’s object ID for the queue.

job

(IN/OUT) Points to NWQueueJobStruct, which stores the information
about the job.

fileHandle

(OUT) Points to the file handle.

Management Service Group

Queue Management: Functions 601

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_QUEUE_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FC NO_SUCH_OBJECT

0x89FF Failure

Remarks

After creating a job file, NWCreateQueueFile2 attaches it to a special file
opened at the workstation. The special file handle is returned in
fileHandle.

The requesting workstation provides the Bindery ID of the queue the job
should be appended to, as well as the address of the entire 256-byte job
record (NWQueueJobStruct).

NWCreateQueueFile2 fills in the job record and returns the record
(minus jobDescription and clientRecordArea) to the requesting workstation.
After NWCreateQueueFile2 is called, all fields are initialized.

NWCreateQueueFile2 can be used in conjunction with
NWReadQueueJobEntry2 to change a portion of the job’s entry record.
However, if the target entry is already being serviced,
NWChangeQueueJobEntry2 returns Q_SERVICING and makes no
changes to the job’s entry record.

The file handle returned is appropriate for the platform the API is written
for. This file handle may be used for access to the attribute value through

Management Service Group

Queue Management: Functions 602

standard file I/O with the handle. This includes closing the file as well as
reading and writing to the file.

For Windows, call _lread, _lwrite, _lclose, and _lseek rather than calling
the standard file I/O functions. Calling standard file I/O functions in
Windows returns unexpected results.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 104 Create Queue Job And File (OS/2 only; no 1000 user
support)

0x2222 23 121 Create Queue Job And File (OS/2 only 3.11 or later)

0x2222 66 File Close

See Also

NWChangeQueueJobEntry2, NWCloseFileAndStartQueueJob2,
NWRemoveJobFromQueue2, NWReadQueueJobEntry2

Management Service Group

Queue Management: Functions 603

NWDestroyQueue

Deletes the specified queue

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDestroyQueue (
 NWCONN_HANDLE conn,
 nuint32 queueID);

Pascal Syntax

#include <nwqms.inc>

Function NWDestroyQueue
 (conn : NWCONN_HANDLE;
 queueID : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue to be deleted.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

Management Service Group

Queue Management: Functions 604

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_QUEUE_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure

Remarks

All active jobs are aborted, all servers are detached from the queue, and
all jobs in the queue are deleted, along with their associated files. The
queue object and its associated properties are also removed from the
Bindery and the queue’s subdirectory is deleted.

Only SUPERVISOR or a Bindery object that is security equivalent to
SUPERVISOR can destroy a queue.

NCP Calls

 0x2222 23 101 Destroy Queue

Management Service Group

Queue Management: Functions 605

NWDetachQueueServerFromQueue

Removes the requesting station from the queue’s list of active queue servers

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDetachQueueServerFromQueue (
 NWCONN_HANDLE conn,
 nuint32 queueID);

Pascal Syntax

#include <nwqms.inc>

Function NWDetachQueueServerFromQueue
 (conn : NWCONN_HANDLE;
 queueID : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the queue’s bindery object ID from which the calling
station is being detached.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

Management Service Group

Queue Management: Functions 606

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_QUEUE_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure

Remarks

If the requesting workstation is servicing a job, the service is
automatically aborted.

Only a workstation previously attached to the queue as a queue server
can call NWDetachQueueServerFromQueue.

NCP Calls

0x2222 23 112 Detach Queue Server From Queue

See Also

NWAttachQueueServerToQueue,
NWReadQueueServerCurrentStatus2 ,
NWSetQueueServerCurrentStatus

Management Service Group

Queue Management: Functions 607

NWFinishServicingQueueJob2

Allows a queue server to signal Queue Management System it has serviced
a job successfully

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWFinishServicingQueueJob2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 nuint32 jobNumber,
 NWFILE_HANDLE fileHandle);

Pascal Syntax

#include <nwqms.inc>

Function NWFinishServicingQueueJob2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 jobNumber : nuint32;
 fileHandle : NWFILE_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue containing the job
being finished.

jobNumber

(IN) Specifies the job’s number being finished.

fileHandle

(IN) Specifies the file handle pointing to the file associated with the
queue job.

Management Service Group

Queue Management: Functions 608

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure

Remarks

The job entry is destroyed, and the job file is closed and deleted. The
calling queue server’s access rights to the queue server are restored to
their original (login) values.

Only a queue server accepting a job to service can call
NWFinishServicingQueueJob2.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 114 Finish Servicing Queue Job (no 1000 user support)

0x2222 23 131 Finish Servicing Queue Job (3.11 or later)

0x2222 66 File Close

See Also

NWAbortServicingQueueJob2, NWChangeToClientRights2,
NWServiceQueueJob2

Management Service Group

Queue Management: Functions 609

NWGetPrinterQueueID

Returns the object ID of the queue servicing the specified printer

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetPrinterQueueID (
 NWCONN_HANDLE conn,
 nuint16 printerNum,
 pnuint32 queueID);

Pascal Syntax

#include <nwqms.inc>

Function NWGetPrinterQueueID
 (conn : NWCONN_HANDLE;
 printerNum : nuint16;
 queueID : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

printerNum

(IN) Specifies the local LPT device number whose output is assigned
to the queue.

queueID

(OUT) Points to the bindery object ID of the print queue.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Queue Management: Functions 610

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89FF BAD_PRINTER_ERROR

Remarks

printerNum can have one of the following values which are assigned to
the server not the workstation:

1 = LPT1
2 = LPT2
3 = LPT

For example, with LPT1 on queue name RIGHT_BRAIN, type on the
server console screen:

spool LPT1 RIGHT_BRAIN

NCP Calls

 0x2222 17 10 Get Printer’s Queue

Management Service Group

Queue Management: Functions 611

NWGetQueueJobFileSize2

Returns the file size of the file associated with a queue entry

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetQueueJobFileSize2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 nuint32 jobNumber,
 pnuint32 fileSize);

Pascal Syntax

#include <nwqms.inc>

Function NWGetQueueJobFileSize2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 jobNumber : nuint32;
 fileSize : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue with which the job is
associated.

jobNumber

(IN) Specifies the job number for which the information will be
obtained.

fileSize

(OUT) Points to the queue job’s file size.

Management Service Group

Queue Management: Functions 612

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure

Remarks

If the file associated with the queue entry is still open, the file size
returned does not necessarily reflect the file’s final size.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 120 Get Queue Job File Size (no 1000 user support)

0x2222 23 135 Get Queue Job Size (3.11 or later)

Management Service Group

Queue Management: Functions 613

NWGetQueueJobList2

Returns a list of all the jobs currently in a queue

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetQueueJobList2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 nuint32 queueStartPos,
 QueueJobListReply N_FAR *job);

Pascal Syntax

#include <nwqms.inc>

Function NWGetQueueJobList2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 queueStartPos : nuint32;
 Var job : QueueJobListReply
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue whose job list is being
reported.

queueStartPos

(IN) Specifies the job number from which to start reading jobs.

job

(OUT) Points to QueueJobListReply containing the job numbers of all
the jobs in the queue.

Management Service Group

Queue Management: Functions 614

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure

Remarks

When used in conjunction with NWReadQueueJobEntry2,
NWGetQueueJobList2 allows an application to retrieve information
about all the jobs in a given queue. Because the Queue Management
System environment is multi-threaded, the positioning, number, and
type of jobs in the queue can change between consecutive calls.

NWGetQueueJobList2 allows a workstation to determine how many
jobs are in the queue at a particular instant and the job number of each. If
a subsequent call to read information about a job in the queue fails with
NO_Q_JOB, the requesting workstation can assume either the job was
deleted from the queue or its service was completed.

NWGetQueueJobList2 will only read in 125 jobs at a time even though
the job array is defined as 250. If you wish to read a job that is above 125,
set queueStartPos to 126 and allow NWGetQueueJobList2 to read job
numbers 126 through 251.

The workstation calling NWGetQueueJobList2 must be security
equivalent to one of the objects listed in the queue’s Q_USERS or
Q_OPERATORS group properties.

Management Service Group

Queue Management: Functions 615

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 107 Get Queue Job List (no 1000 user support)

0x2222 23 129 Get Queue Job List (3.11 and above)

See Also

NWChangeQueueJobEntry2, NWChangeQueueJobPosition2,
NWReadQueueJobEntry2

Management Service Group

Queue Management: Functions 616

NWReadQueueCurrentStatus2

Reads the current status of the specified queue

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWReadQueueCurrentStatus2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 pnuint32 queueStatus,
 pnuint32 numberOfJobs,
 pnuint32 numberOfServers,
 pnuint32 serverIDlist,
 pnuint32 serverConnList);

Pascal Syntax

#include <nwqms.inc>

Function NWReadQueueCurrentStatus2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 queueStatus : pnuint32;
 numberOfJobs : pnuint32;
 numberOfServers : pnuint32;
 serverIDlist : pnuint32;
 serverConnList : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue for which the status is
being obtained.

queueStatus

Management Service Group

Queue Management: Functions 617

(OUT) Points to the status of the specified queue (optional).

numberOfJobs

(OUT) Points to the number of jobs currently in the queue, 0-250
(optional).

numberOfServers

(OUT) Points to the number of queue servers currently attached to
service the queue, 0-25 (optional).

serverIDlist

(OUT) Points to an array of server IDs associated with numberOfServers
(25 nuint32s, optional).

serverConnList

(OUT) Points to an array of station numbers corresponding to the
servers returned by serverIDlist (25 nuint32s, optional).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure

Remarks

queueStatus

Management Service Group

Queue Management: Functions 618

as follows:

C
Value

Pasca
l
Value

Value Name

0x01 $01 QS_CANT_ADD_JOBS

0x02 $02 QS_SERVERS_CANT_ATTACH

0x04 $04 QS_CANT_SERVICE_JOBS

serverIDList and serverConnList identify queue servers currently servicing
the queue by object ID number and current workstation attachment.

NOTE: Workstations calling NWReadQueueCurrentStatus2 must be
security equivalent to one of the objects listed in the queue’s Q_USERS,
Q_OPERATORS, or Q_SERVERS properties.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 102 Read Queue Current Status (no 1000 user support)

0x2222 23 125 Read Queue Current Status (3.11 or later)

See Also

NWAttachQueueServerToQueue, NWDetachQueueServerFromQueue,
NWReadQueueServerCurrentStatus2 , NWSetQueueCurrentStatus2,
NWSetQueueServerCurrentStatus

Management Service Group

Queue Management: Functions 619

NWReadQueueJobEntry2

Allows an application to retrieve information about a job from a queue

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWReadQueueJobEntry2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 nuint32 jobNumber,
 NWQueueJobStruct N_FAR *job);

Pascal Syntax

#include <nwqms.inc>

Function NWReadQueueJobEntry2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 jobNumber : nuint32;
 Var job : NWQueueJobStruct
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue associated with the
queue job being read.

jobNumber

(IN) Specifies the job number being read.

job

(OUT) Points to NWQueueJobStruct returning the queue job
information.

Management Service Group

Queue Management: Functions 620

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure

Remarks

The job’s full 256-byte record is returned, as defined in nwqms.h.

NWReadQueueJobEntry2 fills in the job record and returns the record to
the requesting workstation.

Workstations calling NWReadQueueJobEntry2 must be security
equivalent to one of the objects listed in the queue’s Q_USER or
Q_OPERATORS group properties.

NCP Calls

0x2222 23 108 Read Queue Job Entry (no 1000 user support)

0x2222 23 108 Read Queue Job Entry (no 1000 user support)

0x2222 23 122 Read Queue Job Entry (3.11 or later)

See Also

NWChangeQueueJobEntry2, NWChangeQueueJobPosition2,
NWCreateQueueFile2 , NWGetQueueJobList2

Management Service Group

Queue Management: Functions 621

NWReadQueueServerCurrentStatus2

Allows a station to read the current status of a queue server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWReadQueueServerCurrentStatus2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 nuint32 serverID,
 nuint32 serverConn,
 nptr statusRec);

Pascal Syntax

#include <nwqms.inc>

Function NWReadQueueServerCurrentStatus2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 serverID : nuint32;
 serverConn : nuint32;
 statusRec : nptr
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue being affected.

serverID

(IN) Specifies the bindery object ID of the queue server whose current
status is being read.

serverConn

(IN) Specifies the connection number of the queue server being read.

Management Service Group

Queue Management: Functions 622

statusRec

(OUT) Points to a buffer containing the status of the specified queue
server (64 bytes).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure

Remarks

Queue Management System maintains a 64-byte status record for each
queue server attached to a queue.

Queue Management System does not interpret the contents of the status
record. The record contains information important to the calling
application. It is recommended that the first 4 bytes of this record contain
an estimated cost for the given server to complete a standard job (in
hours, dollars, or whatever you define), to both indicate and standardize
the function.

Workstations calling NWReadQueueServerCurrentStatus2 must be
security equivalent to one of the objects listed in the queue’s Q_USER or
Q_OPERATORS properties.

NCP Calls

Management Service Group

Queue Management: Functions 623

0x222 23 17 Get Server Info

0x2222 23 118 Read Queue Server Current Status (no 1000 user support)

0x2222 23 134 Read Queue Server Current Status

See Also

NWSetQueueServerCurrentStatus

Management Service Group

Queue Management: Functions 624

NWRemoveJobFromQueue2

Allows the workstation to remove a job from a queue

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWRemoveJobFromQueue2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 nuint32 jobNumber);

Pascal Syntax

#include <nwqms.inc>

Function NWRemoveJobFromQueue2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 jobNumber : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue where the job to be
removed is located.

jobNumber

(IN) Specifies the job number being removed.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Queue Management: Functions 625

0x0000 SUCCESSFUL

0x8988 INVALID_FILE_HANDLE

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure

Remarks

jobNumber contains the job number returned by Queue Management
System when the job was created. jobNumber can also be obtained by
calling NWGetQueueJobList2.

The specified job is removed from the queue, and the job file is closed
and deleted. If the job is being serviced, the service is aborted. Further
I/O requests made to the job’s queue file return
INVALID_FILE_HANDLE.

Both the job’s creator and an operator can call
NWRemoveJobFromQueue2.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 106 Remove Job From Queue (no 1000 user support)

0x2222 23 128 Remove Job From Queue (3.11 or later)

See Also

NWChangeQueueJobEntry2, NWChangeQueueJobPosition2,
NWCreateQueueFile2 , NWGetQueueJobList2,
NWReadQueueJobEntry2

Management Service Group

Queue Management: Functions 626

NWRestoreQueueServerRights

Allows a queue server to restore its own identity after it has assumed its
client’s identity by calling NWChangeToClientRights2

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWRestoreQueueServerRights (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwqms.inc>

Function NWRestoreQueueServerRights
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

Management Service Group

Queue Management: Functions 627

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure

Remarks

After calling NWRestoreQueueServerRights, the queue server’s login
user ID and associated security equivalence list are restored to their
original values.

NWRestoreQueueServerRights does not change any of the path
mappings (directory bases) held by the queue server. However, access
rights to those directories are adjusted to reflect the queue server’s rights
in those directories.

If the queue server has changed some of its path mappings as part of its
efforts to service the queue job, the queue server must restore those
directory bases.

Files opened using the client’s rights before calling
NWRestoreQueueServerRights continue to be accessible with the
client’s rights. Files opened after calling NWRestoreQueueServerRights
are accessible only with rights of the queue server.

NWRestoreQueueServerRights does not need to be called if either
NWAbortServicingQueueJob2 or NWFinishServicingQueueJob2 were
called.

Only queue servers previously changing their identity by calling
NWChangeToClientRights2 can call NWRestoreQueueServerRights.

NCP Calls

0x2222 23 117 Restore Queue Server Rights

See Also

NWAbortServicingQueueJob2, NWChangeToClientRights2,
NWFinishServicingQueueJob2

Management Service Group

Queue Management: Functions 628

NWServiceQueueJob2

Allows a queue server to select a new job for servicing

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWServiceQueueJob2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 nuint16 targetJobType,
 NWQueueJobStruct N_FAR *job,
 NWFILE_HANDLE N_FAR *fileHandle);

Pascal Syntax

#include <nwqms.inc>

Function NWServiceQueueJob2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 targetJobType : nuint16;
 Var job : NWQueueJobStruct;
 Var fileHandle : NWFILE_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue whose jobs are being
serviced.

targetJobType

(IN) Specifies the job type to be serviced.

job

(OUT) Points to NWQueueJobStruct containing the job record of the

Management Service Group

Queue Management: Functions 629

next available job returned.

fileHandle

(OUT) Points to the file handle of the file associated with the job to be
serviced.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure

Remarks

The requesting workstation must have previously established itself as a
queue server for the target queue.

NWServiceQueueJob2 will fail if there are not enough directory handles
available.

The file handle returned is appropriate for the platform the API is written
for. This file handle may be used for access to the attribute value through
standard file I/O with the handle. This includes closing the file as well as
reading and writing to the file.

For Windows, call _lread, _lwrite, _lclose, and _lseek rather than calling
the standard file I/O functions. Calling standard file I/O functions in

Management Service Group

Queue Management: Functions 630

Windows returns unexpected results.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 108 Read Queue Job Entry (no 1000 user support)

0x2222 23 113 Serivce Queue Job (no 1000 user support)

0x2222 23 120 Get Queue Job File Size

0x2222 23 122 Read Queue Job Entry (3.11 or later)

0x2222 23 124 Service Queue Job

0x2222 23 125 Service Queue Job (3.11 or later)

0x2222 23 135 Get Queue Job File Size

0x2222 66 File Close

See Also

NWAbortServicingQueueJob2, NWAttachQueueServerToQueue,
NWCreateQueueFile2 , NWFinishServicingQueueJob2,
NWReadQueueJobEntry2

Management Service Group

Queue Management: Functions 631

NWSetQueueCurrentStatus2

Allows the operator to control the addition of jobs and servers to the queue

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSetQueueCurrentStatus2 (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 nuint32 queueStatus);

Pascal Syntax

#include <nwqms.inc>

Function NWSetQueueCurrentStatus2
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 queueStatus : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue whose status is being
updated.

queueStatus

(IN) Specifies the control byte determining the new queue status.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Queue Management: Functions 632

0x0000 SUCCESSFUL

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FC NO_SUCH_OBJECT

0x89FF Failure

Remarks

NWSetQueueCurrentStatus2 modifies the bits in queueStatus. The
following queue status values are defined for
NWSetQueueCurrentStatus2:

C
Value

Pasca
l
Value

Value Name

0x01 $01 QS_CANT_ADD_JOBS

0x03 $02 QS_SERVERS_CANT_ATTACH

0x04 $04 QS_CANT_SERVICE_JOBS

The workstation calling NWSetQueueCurrentStatus2 must be logged in
as one of the objects listed in Q_OPERATORS.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 103 Set Queue Current Status (no 1000 user support)

0x2222 23 126 Set Queue Current Status (3.11 or later)

Management Service Group

Queue Management: Functions 633

See Also

NWAttachQueueServerToQueue, NWDetachQueueServerFromQueue,
NWReadQueueCurrentStatus2

Management Service Group

Queue Management: Functions 634

NWSetQueueServerCurrentStatus

Updates the Queue Management System copy of a servers status record

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Queue Management System

Syntax

#include <nwqms.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSetQueueServerCurrentStatus (
 NWCONN_HANDLE conn,
 nuint32 queueID,
 nptr statusRec);

Pascal Syntax

#include <nwqms.inc>

Function NWSetQueueServerCurrentStatus
 (conn : NWCONN_HANDLE;
 queueID : nuint32;
 statusRec : nptr
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

queueID

(IN) Specifies the bindery object ID of the queue to which the specified
queue server is attached.

statusRec

(IN) Points to the 64-byte buffer containing the new status record of
the queue server.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Queue Management: Functions 635

0x0000 SUCCESSFUL

0x8999 DIRECTORY_FULL

0x89D0 ERR_Q_IO_FAILURE

0x89D1 ERR_NO_QUEUE

0x89D2 ERR_NO_Q_SERVER

0x89D3 ERR_NO_Q_RIGHTS

0x89D4 ERR_Q_FULL

0x89D5 ERR_NO_Q_JOB

0x89D6 ERR_NO_Q_JOB_RIGHTS

0x89D7 ERR_Q_IN_SERVICE

0x89D8 ERR_Q_NOT_ACTIVE

0x89D9 ERR_Q_STN_NOT_SERVER

0x89DA ERR_Q_HALTED

0x89DB ERR_Q_MAX_SERVERS

0x89FF Failure

Remarks

Queue Management System does not interpret the contents of the status
record. The record contains information important to the calling
application only. It is recommended the first four bytes of this record
contain an estimated cost (in hours, dollars, or whatever is defined) for
the given server to complete a standard job to both indicate and
standardize the function.

Only workstations previously attached to the queue as queue servers can
call NWSetQueueServerCurrentStatus.

NCP Calls

 0x2222 23 119 Set Queue Server Current Status

See Also

NWReadQueueServerCurrentStatus2

Management Service Group

Queue Management: Functions 636

Queue Management: Structures

Management Service Group

Queue Management: Structures 637

NWQueueJobStruct

Holds the information found in the queue job record

Service: Queue Management

Defined In: nwqms.h

Structure

typedef struct
{
 nuint32 clientStation;
 nuint32 clientTask;
 nuint32 clientID;
 nuint32 targetServerID;
 nuint8 targetExecutionTime[6];
 nuint8 jobEntryTime[6];
 nuint32 jobNumber;
 nuint16 jobType;
 nuint16 jobPosition;
 nuint16 jobControlFlags;
 nuint8 jobFileName[14];
 nuint32 jobFileHandle[6];
 nuint32 servicingServerStation;
 nuint32 servicingServerTask;
 nuint32 servicingServerID;
 nuint8 jobDescription[50];
 nuint8 clientRecordArea[152];
} NWQueueJobStruct;

Pascal Structure

Defined in nwqms.inc

 NWQueueJobStruct = Record
 clientStation : nuint32;
 clientTask : nuint32;
 clientID : nuint32;
 targetServerID : nuint32;
 targetExecutionTime : Array[0..5] Of nuint8;
 jobEntryTime : Array[0..5] Of nuint8;
 jobNumber : nuint32;
 jobType : nuint16;
 jobPosition : nuint16;
 jobControlFlags : nuint16;
 jobFileName : Array[0..13] Of nuint8;
 jobFileHandle : nuint32;
 servicingServerStation : nuint32;
 servicingServerTask : nuint32;
 servicingServerID : nuint32;

Management Service Group

Queue Management: Structures 638

 jobDescription : Array[0..49] Of nuint8;
 clientRecordArea : Array[0..151] Of nuint8
 End;

Fields

clientStation

Indicates the station number of the client submitting the job to the
queue.

clientTask

Indicates the task number the station was performing when it placed
the job in the queue.

clientID

Indicates the object ID of the person submitting the job.

targetServerID

Indicates the server ID of the queue server to service the job. If set to
0xFFFFFFFF, any queue server can service the job. If the specified
queue server is not attached to the queue, Queue Management System
Service removes the job from the queue.

targetExecutionTime

Indicates the earliest time the job can be serviced. The time is in the
format: year, month, day, hour, minute, second
(YYMMDDHHMMSS). If this field is set to 0xFFFFFFFFFFFF, the job is
serviced at the first opportunity.

jobEntryTime

Indicates the time the client submitted the job to the queue.

jobNumber

Indicates a number used to identify the job.

jobType

Indicates a number identifying the type of job entry. A queue server
can request specific job types from a queue. This value cannot be -1.

jobPosition

Indicates the job’s position in the queue. The first job is assigned
position 1, the next is assigned position 2, and so on. As jobs are
removed from the queue, this number changes to reflect the updated
position of the queue job.

jobControlFlags

Indicates flag bits indicating the status of the job. Bits 0, 1, and 2 must
be 0.

jobFileName

Indicates the name of the job file (in DOS 8.3 format) created by Queue
Management System. The name of the file is in the form
Q$XXXX.YYY.

Management Service Group

Queue Management: Structures 639

jobFileHandle

Indicates the handle of the job file created by Queue Management
System Service. The name of the file is in the form Q$XXXX.YYY. It is
normally not used by the client. Queue Management System provides
the client with a file handle specific to the local file system (DOS or
OS/2) for accessing the job.

servicingServerStation

Indicates the station number of the queue server servicing the job. If
the job isn’t being processed, this value is undefined.

servicingServerTask

Indicates the task number of the queue server servicing the job. If the
job isn’t being processed, this value is undefined.

servicingServerID

Indicates the server. If the job isn’t being processed, this value is
undefined.

jobDescription

Indicates the NULL-terminated ASCII text description of the content
or purpose of a job. Queue Management System Service displays this
text as part of the job description when users or operators examine a
queue.

clientRecordArea

Indicates supplementary information that can be exchanged between
the queue client and the queue server. The format for this information
is defined by your application.

Management Service Group

Queue Management: Structures 640

NWReplyJobStruct

Service: Queue Management

Defined In: nwqms.h

Structure

typedef struct
{
 nuint32 clientStation;
 nuint32 clientTask;
 nuint32 clientID;
 nuint32 targetServerID;
 nuint8 targetExecutionTime[6];
 nuint8 jobEntryTime[6];
 nuint32 jobNumber;
 nuint16 jobType;
 nuint16 jobPosition;
 nuint16 jobControlFlags;
 nuint8 jobFileName[14];
 nuint32 jobFileHandle;
 nuint32 servicingServerStation;
 nuint32 servicingServerTask;
 nuint32 servicingServerID;
} NWReplyJobStruct;

Pascal Structure

Defined in nwqms.inc

NWReplyJobStruct = Record
 clientStation : nuint32;
 clientTask : nuint32;
 clientID : nuint32;
 targetServerID : nuint32;
 targetExecutionTime : Array[0..5] Of nuint8;
 jobEntryTime : Array[0..5] Of nuint8;
 jobNumber : nuint32;
 jobType : nuint16;
 jobPosition : nuint16;
 jobControlFlags : nuint16;
 jobFileName : Array[0..13] Of nuint8;
 jobFileHandle : nuint32;
 servicingServerStation : nuint32;
 servicingServerTask : nuint32;
 servicingServerID : nuint32
 End;

Fields

Management Service Group

Queue Management: Structures 641

Fields

clientStation

Indicates the client submitting the job to the queue.

clientTask

Indicates the task number the station was performing when it placed
the job in the queue.

clientID

Indicates the object ID of the person submitting the job.

targetServerID

Indicates the server ID of the queue server servicing the job. If this
field is set to 0xFFFFFFFF, any queue server can service the job. If the
specified queue server is not attached to the queue, Queue
Management System Service removes the job from the queue.

targetExecutionTime

Indicates the earliest time the job can be serviced. The time is in the
format: year, month, day, hour, minute, second
(YYMMDDHHMMSS). If this field is set to 0xFFFFFFFFFFFF, the job is
serviced at the first opportunity.

jobEntryTime

Indicates the time the client submitted the job to the queue.

jobNumber

Indicates a number used to identify the job.

jobType

Indicates the number identifying the type of job entry. A queue server
can request specific job types from a queue. This value cannot be -1.

jobPosition

Indicates the job’s position in the queue. The first job is assigned
position 1, the next is assigned position 2, and so on. As jobs are
removed from the queue, this number changes to reflect the updated
position of the queue job.

jobControlFlags

Indicates the set of queue job control flags affecting the way a queue
server processes a queue job. This member is used only by the DOS
Requester and OS/2. Returns 0 under DOS/Windows. Under OS/2
jobControlFlags is defined as 0x0400 (print interrupted capture), and
bits 0, 1, and 2 must be 0.

jobFileName

Indicates the name of the job file (in DOS 8.3 format) created by Queue
Management System Service. The name of the file is in the form
Q$XXXX.YYY.

jobFileHandle

Indicates the handle of the job file created by Queue Management

Management Service Group

Queue Management: Structures 642

System Service. The name of the file is in the form Q$XXXX.YYY. It is
normally not used by the client. The Queue Service provides the client
with a file handle specific to the local file system (DOS or OS/2) for
accessing the job.

servicingServerStation

Indicates the server processing the job. If the job isn’t being processed,
these values are undefined.

servicingServerTask

Indicates the task number of the queue server servicing the job. If the
job isn’t being processed, this value is undefined.

servicingServerID

Indicates the server. If the job isn’t being processed, this value is
undefined.

Management Service Group

Queue Management: Structures 643

QueueJobListReply

Service: Queue Management

Defined In: nwqms.h

Structure

typedef struct
{
 nuint32 totalQueueJobs;
 nuint32 replyQueueJobNumbers;
 nuint32 jobNumberList[250];
} QueueJobListReply;

Pascal Structure

Defined in nwqms.inc

QueueJobListReply = Record
 totalQueueJobs : nuint32;
 replyQueueJobNumbers : nuint32;
 jobNumberList : Array[0..249] Of nuint32
 End;

Fields

totalQueueJobs

replyQueueJobNumbers

jobNumberList

Management Service Group

Queue Management: Structures 644

QueueJobStruct

Holds the information found in the queue job record

Service: Queue Management

Defined In: nwqms.h

Structure

typedef struct
{
 nuint8 clientStation;
 nuint8 clientTask;
 nuint32 clientID;
 nuint32 targetServerID;
 nuint8 targetExecutionTime[6];
 nuint8 jobEntryTime[6];
 nuint16 jobNumber;
 nuint16 jobType;
 nuint8 jobPosition;
 nuint8 jobControlFlags;
 nuint8 jobFileName[14];
 nuint8 jobFileHandle[6];
 nuint8 servicingServerStation;
 nuint8 servicingServerTask;
 nuint32 servicingServerID;
 nuint8 jobDescription[50];
 nuint8 clientRecordArea[152];
} QueueJobStruct;

Pascal Structure

Defined in nwqms.inc

QueueJobStruct = Record
 clientStation : nuint8;
 clientTask : nuint8;
 clientID : nuint32;
 targetServerID : nuint32;
 targetExecutionTime : Array[0..5] Of nuint8;
 jobEntryTime : Array[0..5] Of nuint8;
 jobNumber : nuint16;
 jobType : nuint16;
 jobPosition : nuint8;
 jobControlFlags : nuint8;
 jobFileName : Array[0..13] Of nuint8;
 jobFileHandle : Array[0..5] Of nuint8;
 servicingServerStation : nuint8;
 servicingServerTask : nuint8;
 servicingServerID : nuint32;

Management Service Group

Queue Management: Structures 645

 jobDescription : Array[0..49] Of nuint8;
 clientRecordArea : Array[0..151] Of nuint8
 End;

Fields

clientStation

Indicates the client submitting the job to the queue.

clientTask

Indicates the task number the station was performing when it placed
the job in the queue.

clientID

Indicates the object ID of the person submitting the job.

targetServerID

Indicates the server ID of the queue server servicing the job. If this
field is set to 0xFFFFFFFF, any queue server can service the job. If the
specified queue server is not attached to the queue, Queue
Management System Service removes the job from the queue.

targetExecutionTime

Indicates the earliest time the job can be serviced. The time is in this
format: year, month, day, hour, minute, second
(YYMMDDHHMMSS). If set to 0xFFFFFFFFFFFF, the job is serviced at
the first opportunity.

jobEntryTime

Indicates the time the client submitted the job to the queue.

jobNumber

Indicates a number used to identify the job.

jobType

Indicates the number identifying the type of job entry. A queue server
can request specific job types from a queue. This value cannot be -1.

jobPosition

Indicates the job’s position in the queue. The first job is assigned
position 1, the next is assigned position 2, and so on. As jobs are
removed from the queue, this number changes to reflect the updated
position of the queue job.

jobControlFlags

Indicates flag bits indicating the status of the job. Bits 0, 1, and 2 must
be 0.

jobFileName

Indicates the name of the job file (in DOS 8.3 format) created by Queue
Management System Service. The name of the file is in the form
Q$XXXX.YYY where Q$ is a required expression, XXXX is the last four
digits of the queue identification number, and YYY is the job number.

Management Service Group

Queue Management: Structures 646

The calling workstation can place information destined for the queue
server into the job file. The file is always created, even if the client does
not use it. After the file has been written, the requesting workstation
should then call NWCloseFileAndStartQueueJob2.

jobFileHandle

Indicates the handle of the job file created by Queue Management
System Service. The name of the file is in the form Q$XXXX.YYY
where Q$ is a required expression, XXXX is the last four digits of the
queue identification number, and YYY is the job number. It is
normally not used by the client. The Queue Service provides the client
with a file handle specific to the local file system (DOS or OS/2) for
accessing the job.

servicingServerStation

Indicates the server processing the job. If the job isn’t being processed,
these values are undefined.

servicingServerTask

Indicates the task number of the queue server servicing the job. If the
job isn’t being processed, this value is undefined.

servicingServerID

Indicates the server. If the job isn’t being processed, this value is
undefined.

jobDescription

Indicates the NULL-terminated ASCII text description of the content
or purpose of a job. Queue Management System Service displays this
text as part of the job description when users or operators examine a
queue.

clientRecordArea

Indicates supplementary information that can be exchanged between
the queue client and the queue server. The format for this information
is defined by your application.

Management Service Group

Queue Management: Structures 647

ReplyJobStruct

Service: Queue Management

Defined In: nwqms.h

Structure

typedef struct
{
 nuint8 clientStation;
 nuint8 clientTask;
 nuint32 clientID;
 nuint32 targetServerID;
 nuint8 targetExecutionTime[6];
 nuint8 jobEntryTime[6];
 nuint16 jobNumber;
 nuint16 jobType;
 nuint8 jobPosition;
 nuint8 jobControlFlags;
 nuint8 jobFileName[14];
 nuint8 jobFileHandle[6];
 nuint8 servicingServerStation;
 nuint8 servicingServerTask;
 nuint32 servicingServerID;
} ReplyJobStruct;

Pascal Structure

Defined in nwqms.inc

 ReplyJobStruct = Record
 clientStation : nuint8;
 clientTask : nuint8;
 clientID : nuint32;
 targetServerID : nuint32;
 targetExecutionTime : Array[0..5] Of nuint8;
 jobEntryTime : Array[0..5] Of nuint8;
 jobNumber : nuint16;
 jobType : nuint16;
 jobPosition : nuint8;
 jobControlFlags : nuint8;
 jobFileName : Array[0..13] Of nuint8;
 jobFileHandle : Array[0..5] Of nuint8;
 servicingServerStation : nuint8;
 servicingServerTask : nuint8;
 servicingServerID : nuint32
 End;

Fields

Management Service Group

Queue Management: Structures 648

Fields

clientStation

Indicates the client submitting the job to the queue.

clientTask

Indicates the task number the station was performing when it placed
the job in the queue.

clientID

Indicates the object ID of the person submitting the job.

targetServerID

Indicates the server ID of the queue server servicing the job. If this
field is set to 0xFFFFFFFF, any queue server can service the job. If the
specified queue server is not attached to the queue, Queue
Management System Service removes the job from the queue.

targetExecutionTime

Indicates the earliest time the job can be serviced. The time is in the
format: year, month, day, hour, minute, second
(YYMMDDHHMMSS). If this field is set to 0xFFFFFFFFFFFF, the job is
serviced at the first opportunity.

jobEntryTime

Indicates the time the client submitted the job to the queue.

jobNumber

Indicates a number used to identify the job.

jobType

Indicates the number identifying the type of job entry. A queue server
can request specific job types from a queue. This value cannot be -1.

jobPosition

Indicates the job’s position in the queue. The first job is assigned
position 1, the next is assigned position 2, and so on. As jobs are
removed from the queue, this number changes to reflect the updated
position of the queue job.

jobControlFlags

Indicates the set of queue job control flags affecting the way a queue
server processes a queue job. This member is used only by the DOS
Requester and OS/2. Returns 0 under DOS/Windows. Under OS/2
jobControlFlags is defined as 0x0400 (print interrupted capture), and
bits 0, 1, and 2 must be 0.

jobFileName

Indicates the name of the job file (in DOS 8.3 format) created by Queue
Management System Service. The name of the file is in the form
Q$XXXX.YYY.

jobFileHandle

Indicates the handle of the job file created by Queue Management

Management Service Group

Queue Management: Structures 649

System Service. The name of the file is in the form Q$XXXX.YYY. It is
normally not used by the client. The Queue Service provides the client
with a file handle specific to the local file system (DOS or OS/2) for
accessing the job.

servicingServerStation

Indicates the server processing the job. If the job isn’t being processed,
these values are undefined.

servicingServerTask

Indicates the task number of the queue server servicing the job. If the
job isn’t being processed, this value is undefined.

servicingServerID

Indicates the server. If the job isn’t being processed, this value is
undefined.

Management Service Group

Queue Management: Structures 650

Server Environment

Management Service Group

 651

Server Environment: Guides

Server Environment: General Guide

Server Environment Introduction

NetWare 2.2 and Above Server Functions

NetWare 4.x Server Functions

NetWare 2.2 Server Information Functions

Server Environment: Concepts

Server Environment: Functions

Server Environment: Structures

Parent Topic:

Management Overview

NetWare 2.2 and Above Server Functions

This is a list of the functions found in the header file server.h. This file
defines NetWare Server functions that attach and log into NetWare servers
and obtain server configuration data. These functions work for NetWare 2.2
and above.

Server Connection Functions

Server Console Functions

Server Configuration Functions

Parent Topic:

Server Environment: General Guide

NetWare 4.x Server Functions

This is a list of the functions found in the header file nwfse.h. This file
defines NetWare Server functions that are compatible with NetWare 4.x
only.

Management Service Group

Server Environment: Guides 652

4.x Server Information Functions

4.x Server NLM Information Functions

4.x Server LAN Board Information Functions

4.x Server Protocol Stack Information Functions

4.x Server Media Manager Information Functions

4.x Server Volume Information Functions

4.x Server Network and Router Information Functions

4.x Server Get Functions

4.x Server Set Functions

4.x Server User Information Functions

Parent Topic:

Server Environment: General Guide

Management Service Group

Server Environment: Guides 653

Server Environment: Concepts

4.x Server Get Functions

These functions return 4.x server information by server name and type.

Function Header Comment

NWGetServerInfo nwfse.h Returns information about the
server including the specified type
and name.

NWGetServerSources
Info

nwfse.h Returns information about all
servers matching the specified
type and name.

NWGetKnownServer
sInfo

nwfse.h Returns all known servers.

Parent Topic:

NetWare 4.x Server Functions

4.x Server Information Functions

These functions return detailed information about the NetWare® server
associated with the specified connection handle.

Function Header Comment

NWGetCacheInfo nwfse.h Returns information about a
server’s file cache.

NWGetFileServerInfo nwfse.h Returns server operation
statistics information.

NWGetNetWareFileSyste
msInfo

nwfse.h Returns counters of the times
specific operations on the file
system were performed.

NWGetPacketBurstInfo nwfse.h Returns counters and
statistics about packet burst
on the server.

NWGetIPXSPXInfo nwfse.h Returns a server’s internal

Management Service Group

Server Environment: Concepts 654

IPX and SPX statistics.

NWGetGarbageCollectio
nInfo

nwfse.h Returns counters about a
server’s memory allocation
manager.

NWGetDirCacheInfo nwfse.h Returns statistics about a
server’s directory caching.

NWGetCPUInfo nwfse.h Returns CPU information
and descriptive strings for
the CPU type, numeric
coprocessor, and bus type for
the indicated CPU number
(for 4.x, this is 1).

NWGetVolumeSwitchInf
o

nwfse.h Returns counters containing
the number of times a
specified code path was
taken in the server.

NWGetOSVersionInfo nwfse.h Returns version information
about the server’s operating
system.

Parent Topic:

NetWare 4.x Server Functions

4.x Server LAN Board Information Functions

These functions return information about LAN boards on a 4.x server.

Function Header Comment

NWGetActiveLANBoardLi
st

nwfse.h Returns a list of LAN Board
IDs that can be used as input
to other functions.

NWGetLANConfigInfo nwfse.h Returns configuration
information for a LAN
Board.

NWGetLANCommonCoun
tersInfo

nwfse.h Returns counters common to
all types of LAN Boards.

NWGetLANCustomCounte
rsInfo

nwfse.h Returns counters specific to a
particular LAN Board.

NWGetLSLInfo nwfse.h Returns information about
the link support layer (LSL).

NWGetLSLLogicalBoardSt
ats

nwfse.h Returns information about
the LSL logical boards.

Management Service Group

Server Environment: Concepts 655

Parent Topic:

NetWare 4.x Server Functions

4.x Server Media Manager Information Functions

These functions return media manager information for a 4.x server.

Function Header Comment

NWGetLoadedMediaNum
List

nwfse.h Returns a list of Media IDs
for all the managed media
objects in a server.

NWGetMediaMgrObjList nwfse.h Returns a list of Media IDs
for all the media objects
matching the specified type.

NWGetMediaMgrObjChil
drenList

nwfse.h Returns a list of children IDs
for a media object.

NWGetMediaMgrObjInfo nwfse.h Returns information about a
media object. This
information includes parent,
sibling, and children counts
and I/O capabilities.

NWGetMediaNameByMed
iaNum

nwfse.h Returns the descriptive
name and information about
a media object specified by
the media ID.

Parent Topic:

NetWare 4.x Server Functions

4.x Server Network and Router Information
Functions

These functions return routing and service advertising information for a 4.x
server.

Function Header Comment

NWGetKnownNetworksIn
fo

nwfse.h Returns a list of networks
known to a server.

NWGetNetworkRouterInfo nwfse.h Returns information about

Management Service Group

Server Environment: Concepts 656

NWGetNetworkRouterInfo nwfse.h Returns information about
the specified network to a
server, if known.

NWGetGeneralRouterAnd
SAPInfo

nwfse.h Returns flags and
information concerning the
status of routing and SAP on
a server.

NWGetNetworkRoutersInf
o

nwfse.h Returns information about
routers on the specified
network.

Parent Topic:

NetWare 4.x Server Functions

4.x Server NLM Information Functions

These functions return information about NLMs on a 4.x server.

Function Header Comment

NWGetNLMLoadedList nwfse.h Returns a list of NLM IDs
that can be used with
NWGetNLMInfo and
NWGetNLMsResourceTagL
ist.

NWGetNLMInfo nwfse.h Returns strings identifying
an NLM’s filename, name,
and copyright, along with
detailed information about
the module.

NWGetNLMsResourceTa
gList

nwfse.h Returns resource tag lists for
an NLM. Resource tags are
used by NetWare® to
identify resources allocated
by the module.

Parent Topic:

NetWare 4.x Server Functions

4.x Server Protocol Stack Information Functions

These functions return protocol stack information for a 4.x server.

Management Service Group

Server Environment: Concepts 657

Function Header Comment

NWGetActiveProtocolStacks nwfse.h Returns a list of Stack
IDs for all the loaded
protocol stacks in the
server.

NWGetProtocolStackConfigInfo nwfse.h Returns configuration
information describing
a protocol stack.

NWGetProtocolStackStatsInfo nwfse.h Returns counters for a
protocol stack,
including the number
of custom counters.

NWGetProtocolStkNumsByMedi
aNum

nwfse.h Returns Stack IDs for
the specified media
number.

NWGetProtocolStkNumsByLAN
BrdNum

nwfse.h Returns Stack IDs for
the protocol stacks
bound to a LAN
Board.

NWGetProtocolStackCustomInfo nwfse.h Returns the custom
counters for the
protocol stack.

Parent Topic:

NetWare 4.x Server Functions

4.x Server Set Functions

These functions return the set table configuration categories and commands
for a 4.x server.

Function Header Comment

NWGetServerSetComma
ndsInfo

nwfse.h Returns all of a server’s set
table commands for all
categories.

NWGetServerSetCategori
es

nwfse.h Returns the set table
categories on the server.

Parent Topic:

NetWare 4.x Server Functions

Management Service Group

Server Environment: Concepts 658

4.x Server User Information Functions

These functions return user information for a 4.x server.

Function Header Comment

NWGetActiveConnListBy
Type

nwfse.h Returns a bit map list of all
connections of a specified
type (NCP, FTAM,
AppleTalk, NLM).

NWGetUserInfo nwfse.h Returns user information
about the specified
connection, including the
user’s name.

Parent Topic:

NetWare 4.x Server Functions

4.x Server Volume Information Functions

These functions return volume information for a 4.x server.

Function Header Comment

NWGetVolumeSegment
List

nwfse.h Returns a list of volume
segment information for the
server.

NWGetVolumeInfoByLe
vel

nwfse.h Returns detailed information
about the specified volume
according to the specified
information level.

Parent Topic:

NetWare 4.x Server Functions

Server Environment Introduction

Server Environment returns detailed statistical information about
NetWare® servers. It also allows you to perform the following tasks:

Check the version of NetWare running on the server

Management Service Group

Server Environment: Concepts 659

Check whether you have console operator privileges on a server

Bring down a server

Enable and disable server logins

Attach, log in, and log out of NetWare servers using the bindery

The functions fall into three groups:

Functions compatible with 2.2 and above

Functions compatible with 4.x only

Functions compatible with 2.2 only

The header nwfse.h defines NetWare 4.x only functions; nwserver.h defines
the remaining functions.

For a description of structures and other data definitions that relate to this
topic, see Server Environment: Structures.

Parent Topic:

Server Environment: General Guide

Related Topics:

NetWare 2.2 and Above Server Functions

NetWare 4.x Server Functions

NetWare 2.2 Server Information Functions

NetWare 2.2 Server Information Functions

These functions return statistical information for 2.2 servers.

Function Header Comment

NWGetDiskCacheStats nwserver.
h

Returns statistics about disk
caching on a 2.2 server.

NWGetDiskChannelStats nwserver.
h

Returns statistics about a
specified disk channel on a
2.2 server.

NWGetFileServerLANIO
Stats

nwserver.
h

Returns statistics about
packets being sent and
received by a 2.2 server.

NWGetFileServerMiscInf
o

nwserver.
h

Returns miscellaneous
information about a 2.2
server.

Management Service Group

Server Environment: Concepts 660

NWGetFileSystemStats nwserver.
h

Returns statistics about the
file system for a 2.2 server.

NWGetFSDriveMapTable nwserver.
h

Returns the drive mapping
table for a 2.2 server.

NWGetFSLANDriverCon
figInfo

nwserver.
h

Returns configuration
information for a specified
LAN driver on a 2.2 server.

NWGetPhysicalDiskStats nwserver.
h

Returns information about a
physical disk on a 2.2 server.

Parent Topic:

Server Environment: General Guide

Server Configuration Functions

These functions read NetWare® server configuration data.

Function Header Comment

NWCheckNetWareVersio
n

nwserver.
h

Allows verification of
compatibility between
applications and the version
of NetWare running on a
NetWare server.

NWGetFileServerDateAn
dTime

nwserver.
h

Returns the network date
and time maintained on the
specified NetWare server.

NWGetFileServerDescrip
tion

nwserver.
h

Returns descriptive
information about the
specified NetWare server,
including company name,
version, revision date, and
copyright notice.

NWGetFileServerExtende
dInfo

nwserver.
h

Returns extended
information about the
specified NetWare server.

NWGetFileServerInforma
tion

nwserver.
h

Returns commonly
referenced information about
a NetWare server including
version numbers, connection
statistics, SFT level, and TTS
level.

NWGetFileServerLoginSt
atus

nwserver.
h

Returns whether clients can
log in to the specified

Management Service Group

Server Environment: Concepts 661

workstation.

NWCCGetConnInfo nwserver.
h

Returns the name of the
NetWare server associated
with the specified connection
ID.

NWGetFileServerVersion
Info

nwserver.
h

Returns name and version
information for the specified
NetWare server.

NWGetNetworkSerialNu
mber

nwserver.
h

Returns the NetWare
server’s serial number and
the application number.

NWIsManager nwserver.
h

Checks whether a calling
station is a manager

Parent Topic:

NetWare 2.2 and Above Server Functions

Server Connection Functions

These functions perform NetWare® server attachments and logins.

Function Header Comment

NWAttachToFileServer nwserver.
h

Attempts to establish a
connection with the specified
NetWare server.

NWAttachToFileServerBy
Conn

nwserver.
h

Attaches to a NetWare server
through a service identified
by a connection.

NWLoginToFileServer nwserver.
h

Attempts to log a bindery
object in to a NetWare
server. This function
performs only the login; the
workstation must be
currently attached to the
server.

NWLogoutFromFileServe
r

nwserver.
h

Attempts to log a bindery
object out of the specified
NetWare server. This
function doesn’t release the
connection.

Parent Topic:

Management Service Group

Server Environment: Concepts 662

NetWare 2.2 and Above Server Functions

Server Console Functions

These functions perform console operations.

Function Header Comment

NWCheckConsolePrivile
ges

nwserver.
h

Determines whether the
client is a NetWare® server
console operator.

NWDisableFileServerLog
in

nwserver.
h

Disables all logins to a
NetWare server.

NWDownFileServer nwserver.
h

Brings a NetWare server
down.

NWEnableFileServerLogi
n

nwserver.
h

Enables logins to a NetWare
server.

NWSetFileServerDateAn
dTime

nwserver.
h

Sets the date and time of a
NetWare server.

Parent Topic:

NetWare 2.2 and Above Server Functions

Management Service Group

Server Environment: Concepts 663

Server Environment: Functions

Management Service Group

Server Environment: Functions 664

GetServerConfigurationInfo

Returns the engine type and loader type of the server

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 3.12, 4.02, 4.1

Platform: NLM

SMP Aware: No

Service: Server Environment

Syntax

#include <nwenvrn.h>
int GetServerConfigurationInfo (
 int *serverType,
 int *loaderType);

Parameters

serverType

(OUT) Receives the NetWare server engine type.

loaderType

(OUT) Receives the NetWare loader type.

Return Values

0x
00

ESUCCESS always.

Remarks

You can pass a NULL pointer in either parameter. When a NULL pointer
is passed in, a value will not be returned for the specified parameter.

serverType receives one of the following values defined in NWENVRN.H:

TYPE_NORMAL_SE
RVER

NLM application is running on a normal
NetWare server.

TYPE_IO_ENGINE NLM applicaton is running in the IO
Engine of a NetWare SFT III™ server.

TYPE_OS_ENGINE NLM application is running in the MS
Engine of a NetWare SFT III server.

Management Service Group

Server Environment: Functions 665

Engine of a NetWare SFT III server.

loaderType receives one of the following values defined in NWENVRN.H:

1 LOADER_TYPE_DOS NLM application is running on a
dedicated NetWare server with a DOS
loader.

2 LOADER_TYPE_OS2 NLM application is running on a
nondedicated server running on OS/2.

3 LOADER_TYPE_MSW
IN31

NLM application is running on a
nondedicated server running Netware
for Windows.

Example

GetServerConfigurationInfo

#include <stdio.h>
#include <nwenvrn.h>

void main()
{
 int serverType, loaderType;

 if (!GetServerConfigurationInfo(&serverType, &loaderType))
 {
 if (loaderType == LOADER_TYPE_OS2)
 printf("This NLM is running on NetWare for OS/2.\n\n");
 else if (loaderType == LOADER_TYPE_DOS)
 {
 if (serverType == TYPE_IO_ENGINE)
 printf("This NLM is running on NetWare SFTIII"
 " in an IO Engine.\n\n");
 else if (serverType == TYPE_OS_ENGINE)
 printf("This NLM is running on NetWare SFTIII"
 " in an MS Engine.\n\n");
 else if (serverType == TYPE_NORMAL_SERVER)
 printf("This NLM is running on a dedicated"
 " NetWare server with a DOS loader.\n\n");
 }
 }
}

Management Service Group

Server Environment: Functions 666

NWAttachToFileServer

Attaches to the specified NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWAttachToFileServer
 (pnstr8 serverName,
 nuint16 scopeFlag,
 NWCONN_HANDLE N_FAR * newConnID);

Pascal Syntax

#include <nwserver.inc>

Function NWAttachToFileServer
 (serverName : pnstr8;
 scopeFlag : nuint16;
 Var newConnID : NWCONN_HANDLE
) : NWCCODE;

Parameters

serverName

(IN) Points to the name of the server to connect.

scopeFlag

Is reserved; must be 0.

newConnID

(OUT) Points to the new connection handle, if the attachment was
successful.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Server Environment: Functions 667

0x0
000

SUCCESSFUL

0x8
800

ALREADY_ATTACHED

0x8
801

INVALID_CONNECTION

0x8
847

NO_SERVER_ERROR

0x8
9FC

UNKNOWN_FILE_SERVER

0x8
9FF

NO_RESPONSE_FROM_SERVER

Remarks

WARNING: Before attaching to the specified server,
NWAttachToFileServer tries to get the server’s net address from the
default server’s Bindery. Under OS/2, if it cannot find a default
server, the requester attempts to find any server and look for a net
address in the server’s Bindery.

NO_RESPONSE_FROM_SERVER will be returned if RIP traffic is
filtered on a router but SAP traffic is not. The dynamic object can be
read from the bindery, but the request to attach to a server cannot be
routed

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 1 Ping for NDS NCP

Management Service Group

Server Environment: Functions 668

NWAttachToFileServerByConn

Attaches to a NetWare server through a service identified by a connection

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWAttachToFileServerByConn
 (NWCONN_HANDLE conn,
 pnstr8 serverName,
 nuint16 scopeFlag,
 NWCONN_HANDLE N_FAR * newConnID);

Pascal Syntax

#include <nwserver.inc>

Function NWAttachToFileServerByConn
 (conn : NWCONN_HANDLE;
 serverName : pnstr8;
 scopeFlag : nuint16;
 Var newConnID : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle through which to
attach.

serverName

(IN) Points to a 48-character buffer for the server name (optional).

scopeFlag

(IN) Reserved for Novell use only; must be 0.

newConnID

(OUT) Points to the connection handle, if any, to serverName.

Management Service Group

Server Environment: Functions 669

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
800

ALREADY_ATTACHED

0x8
801

INVALID_CONNECTION

0x8
847

NO_SERVER_ERROR

0x8
9FC

UNKNOWN_FILE_SERVER

Remarks

NWAttachToFileServerByConn allows attachments to servers not seen
by the preferred server.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWAttachToFileServer

Management Service Group

Server Environment: Functions 670

NWCheckConsolePrivileges

Determines if the logged-in user is a console operator

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCheckConsolePrivileges (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwserver.inc>

Function NWCheckConsolePrivileges
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
9C6

NO_CONSOLE_PRIVILEGES

Management Service Group

Server Environment: Functions 671

NCP Calls

0x2222 23 200 Check Console Privileges

Management Service Group

Server Environment: Functions 672

NWCheckNetWareVersion

Checks compatibility of OS modules

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWCheckNetWareVersion
 (NWCONN_HANDLE conn,
 nuint16 minVer,
 nuint16 minSubVer,
 nuint16 minRev,
 nuint16 minSFT,
 nuint16 minTTS,
 pnuint8 compatibilityFlag);

Pascal Syntax

#include <nwserver.inc>

Function NWCheckNetWareVersion
 (conn : NWCONN_HANDLE;
 minVer : nuint16;
 minSubVer : nuint16;
 minRev : nuint16;
 minSFT : nuint16;
 minTTS : nuint16;
 compatibilityFlag : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the connection handle of the server to check.

minVer

(IN) Specifies the minimum version required for the module to run.

minSubVer

(IN) Specifies the minimum sub-version required for the module to

Management Service Group

Server Environment: Functions 673

run.

minRev

(IN) Specifies the minimum revision required for the module to run.

minSFT

(IN) Specifies the minimum revision required to check System Fault
Tolerance (SFT).

minTTS

(IN) Specifies the mimimum revision required to check Transaction
Tracking System (TTS).

compatibilityFlag

(OUT) Points to a flag indicating compatibility:

C
Valu
e

Pascal
Value

Value Name

0x00 $00 COMPATIBLE

0x01 $01 VERSION_NUMBER_TOO_LOW

0x02 $02 SFT_LEVEL_TOO_LOW

0x04 $04 TTS_LEVEL_TOO_LOW

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

NCP Calls

0x2222 23 200 Check Console Privileges

See Also

NWGetFileServerVersionInfo

Management Service Group

Server Environment: Functions 674

NWDetachFromFileServer (obsolete 6/96)

Breaks a workstation/NetWare server connection and relinquishes the
connection number but is now obsolete. Call NWCCGetConnInfo followed
by a call to NWCCSysCloseConnRef instead.

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDetachFromFileServer
 (NWCONN_HANDLE conn);

Pascal Syntax

#include <nwserver.inc>

Function NWDetachFromFileServer
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

Remarks

Detaching from a NetWare server is not the same as logging out from a
NetWare server. Detaching relinquishes the connection number the
workstation was using and breaks the connection. The shell or requester

Management Service Group

Server Environment: Functions 675

automatically removes all drives mapped to detached NetWare servers.
For the workstation to send further requests to that NetWare server, it
must reattach. In contrast, logging out from a NetWare server does not
relinquish the connection.

To call NWDetachFromFileServer (obsolete 6/96), you must have
console operator rights.

NCP Calls

None

Management Service Group

Server Environment: Functions 676

NWDisableFileServerLogin

Allows an operator to instruct the NetWare server to refuse new login
requests

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDisableFileServerLogin (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwserver.inc>

Function NWDisableFileServerLogin
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
9C6

NO_CONSOLE_PRIVILEGES

Management Service Group

Server Environment: Functions 677

Remarks

NWDisableFileServerLogin is usually made during some crucial
time---before taking the server down, for instance.

It is recommended that caution be used with
NWDisableFileServerLogin. If, after calling
NWDisableFileServerLogin, the service connection to the NetWare
server is lost or destroyed, a new connection cannot be created; therefore,
the user cannot log in again. If no other user on the server has
SUPERVISOR privileges, the server must be brought down from the
console connected to the server and rebooted before any new users
(including the SUPERVISOR) can access it.

To call NWDisableFileServerLogin, you must have console operator
rights.

NCP Calls

0x2222 23 203 Disable File Server Login

Management Service Group

Server Environment: Functions 678

NWDownFileServer

Allows a supervisor to bring down a NetWare server from a remote console

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDownFileServer (
 NWCONN_HANDLE conn,
 nuint8 forceFlag);

Pascal Syntax

#include <nwserver.inc>

Function NWDownFileServer
 (conn : NWCONN_HANDLE;
 forceFlag : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

forceFlag

(IN) Specifies a flag enabling the server to shut down when files are
still open (0=enabled).

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Management Service Group

Server Environment: Functions 679

801

0x8
9C6

NO_CONSOLE_PRIVILEGES

0x8
9FF

Down Failure

Remarks

If forceFlag is zero, the server shuts down even if files are open. If forceFlag
is non-zero and any files are in use or open, 0x89FF (failure) is returned,
and the server stays up. If no files are open or in use, the server shuts
down, and SUCCESSFUL returns.

To call NWDownFileServer, you must have console operator rights.

NCP Calls

 0x2222 23 211 Down File Server

Management Service Group

Server Environment: Functions 680

NWEnableFileServerLogin

Allows an operator to instruct the server to begin accepting new login
requests from clients

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWEnableFileServerLogin (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwserver.inc>

Function NWEnableFileServerLogin
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
9C6

NO_CONSOLE_PRIVILEGES

Management Service Group

Server Environment: Functions 681

Remarks

Enabling the server’s log state also unlocks the SUPERVISOR’s account if
it has been locked because of intruder detection.

To call NWEnableFileServerLogin, you must have console operator
rights.

If the calling station does not have operator privileges,
NO_CONSOLE_PRIVILEGES is returned, and the NetWare server’s log
state remains unchanged.

NCP Calls

0x2222 23 204 Enable File Server Login

See Also

NWDisableFileServerLogin

Management Service Group

Server Environment: Functions 682

NWGetActiveConnListByType

Returns a bitmap (set if logged in) of all connections of a specified type

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetActiveConnListByType (
 NWCONN_HANDLE conn,
 nuint32 startConnNum,
 nuint32 connType,
 NWFSE_ACTIVE_CONN_LIST N_FAR
 *fseActiveConnListByType);

Pascal Syntax

#include <nwfse.inc>

Function NWGetActiveConnListByType
 (conn : NWCONN_HANDLE;
 startConnNum : nuint32;
 connType : nuint32;
 Var fseActiveConnListByType : NWFSE_ACTIVE_CONN_LIST
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

startConnNum

(IN) Specifies the first connection number to return information about.

connType

(IN) Specifies the type of the connection (NCP, AFP, NLM™, etc.).

fseActiveConnListByType

(OUT) Points to NWFSE_ACTIVE_CONN_LIST.

Management Service Group

Server Environment: Functions 683

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x89
7E

NCP_BOUNDARY_CHECK_FAILED

0x89
FD

Invalid Connection

0x89
FF

Failure or Invalid Start Number

Remarks

Console operator rights are NOT necessary to call
NWGetActiveConnListByType.

The following connection types are defined for connType.

FSE_NCP_CONNECTION_TYPE 2
FSE_NLM_CONNECTION_TYPE 3
FSE_AFP_CONNECTION_TYPE 4
FSE_FTAM_CONNECTION_TYPE 5
FSE_ANCP_CONNECTION_TYPE 6

NCP Calls

0x2222 123 14 Get Active Connection List By Type

See Also

NWGetUserInfo

Management Service Group

Server Environment: Functions 684

NWGetActiveLANBoardList

Returns information about the active LAN boards on a server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetActiveLANBoardList (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_ACTIVE_LAN_BOARD_LIST N_FAR
 *fseActiveLANBoardList);

Pascal Syntax

#include <nwfse.inc>

Function NWGetActiveLANBoardList
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseActiveLANBoardList : NWFSE_ACTIVE_LAN_BOARD_LIST
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

startNum

(IN) Specifies the starting LAN board number.

fseActiveLANBoardList

(OUT) Points to NWFSE_ACTIVE_LAN_BOARD_LIST.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Server Environment: Functions 685

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9FF

Failure or Invalid Start Number

Remarks

Console operator rights are NOT necessary to call
NWGetActiveLANBoardList.

startNum will normally be 0, unless the amount of LAN Boards is greater
than FSE_MAX_NUM_OF_LANS. To return the extra, set startNum to
LANLoadedCount + 1.

NCP Calls

 0x2222 123 20 Active LAN Board List

See Also

NWGetLANCommonCountersInfo, NWGetLANConfigInfo,
NWGetLANCustomCountersInfo, NWGetLSLLogicalBoardStats,
NWGetProtocolStkNumsByLANBrdNum

Management Service Group

Server Environment: Functions 686

NWGetActiveProtocolStacks

Returns protocol stack information in NWFSE_ACTIVE_STACKS

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetActiveProtocolStacks
 (NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_ACTIVE_STACKS N_FAR *fseActiveStacks);

Pascal Syntax

#include <nwfse.inc>

Function NWGetActiveProtocolStacks
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseActiveStacks : NWFSE_ACTIVE_STACKS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

startNum

(IN) Specifies the number to start with if NWGetActiveProtocolStacks
is called iteratively.

fseActiveStacks

(OUT) Points to NWFSE_ACTIVE_STACKS.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Server Environment: Functions 687

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9C6

NO_CONSOLE_PRIVILEGES

0x8
9FF

Failure or Invalid Start Number

Remarks

To call NWGetActiveProtocolStacks, you must have console operator
rights.

In the first call, startNumber should be 0. On subsequent calls, use the
number of stacks retrieved.

NCP Calls

0x2222 123 40 Active Protocol Stacks

See Also

NWGetProtocolStackConfigInfo, NWGetProtocolStackCustomInfo,
NWGetProtocolStackStatsInfo,
NWGetProtocolStkNumsByLANBrdNum,
NWGetProtocolStkNumsByMediaNum

Management Service Group

Server Environment: Functions 688

NWGetCacheInfo

Allows a caller from a workstation to get server cache management
statistical and operating system information

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetCacheInfo (
 NWCONN_HANDLE conn,
 NWFSE_CACHE_INFO N_FAR *fseCacheInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetCacheInfo
 (conn : NWCONN_HANDLE;
 Var fseCacheInfo : NWFSE_CACHE_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fseCacheInfo

(IN) Points to NWFSE_CACHE_INFO.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

Management Service Group

Server Environment: Functions 689

97E

Remarks

To call NWGetCacheInfo, you must have console operator rights.

NCP Calls

 0x2222 123 01 Get Cache Information

See Also

NWGetDirCacheInfo

Management Service Group

Server Environment: Functions 690

NWGetCPUInfo

Gets CPU and hardware configuration information about the server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetCPUInfo (
 NWCONN_HANDLE conn,
 nuint32 CPUNum,
 pnstr8 CPUName,
 pnstr8 numCoprocessor,
 pnstr8 bus,
 NWFSE_CPU_INFO N_FAR *fseCPUInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetCPUInfo
 (conn : NWCONN_HANDLE;
 CPUNum : nuint32;
 CPUName : pnstr8;
 numCoprocessor : pnstr8;
 bus : pnstr8;
 Var fseCPUInfo : NWFSE_CPU_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

CPUNum

(IN) Specifies the CPU number; 0 (zero) for NetWare 4.0.

CPUName

(OUT) Points to the ASCII string of the CPU type.

numCoprocessor

Management Service Group

Server Environment: Functions 691

(OUT) Points to the ASCII string of whether or not a coprocessor is
present.

bus

(OUT) Points to the ASCII string of the bus type.

fseCPUInfo

(OUT) Points to NWFSE_CPU_INFO.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
9FE

DIRECTORY_LOCKED

0x8
9FF

Failure or Invalid CPU Number

Remarks

Under NETX, if an invalid connection handle is passed to conn,
NWGetCPUInfo will return 0x0000. NETX will pick a default connection
handle if the connection handle cannot be resolved.

Console operator rights are NOT necessary to call NWGetCPUInfo.

NCP Calls

0x2222 123 08 CPU Information

Management Service Group

Server Environment: Functions 692

NWGetDirCacheInfo

Returns information about the directory cache manager

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetDirCacheInfo (
 NWCONN_HANDLE conn,
 NWFSE_DIR_CACHE_INFO N_FAR *fseDirCacheInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetDirCacheInfo
 (conn : NWCONN_HANDLE;
 Var fseDirCacheInfo : NWFSE_DIR_CACHE_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fseDirCacheInfo

(OUT) Points to NWFSE_DIR_CACHE_INFO.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

Management Service Group

Server Environment: Functions 693

Remarks

To call NWGetDirCacheInfo, you must have console operator rights.

NCP Calls

 0x2222 123 12 Get Directory Cache Information

Management Service Group

Server Environment: Functions 694

NWGetDiskCacheStats

Returns statistical information about a NetWare server’s caching

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetDiskCacheStats (
 NWCONN_HANDLE conn,
 DSK_CACHE_STATS N_FAR *statBuffer);

Pascal Syntax

#include <nwserver.inc>

Function NWGetDiskCacheStats
 (conn : NWCONN_HANDLE;
 Var statBuffer : DSK_CACHE_STATS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

statBuffer

(OUT) Points to DSK_CACHE_STATS.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Management Service Group

Server Environment: Functions 695

0x8
9C6

NO_CONSOLE_PRIVILEGES

Remarks

To call NWGetDiskCacheStats, you must have console operator rights.

NCP Calls

0x2222 23 214 Read Disk Cache Statistics

Management Service Group

Server Environment: Functions 696

NWGetDiskChannelStats

Allows a client to get the disk channel statistics for the specified Disk
Channel Number

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

##include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetDiskChannelStats (
 NWCONN_HANDLE conn,
 nuint8 channelNum,
 DSK_CHANNEL_STATS N_FAR *statBuffer);

Pascal Syntax

#include <nwserver.inc>

Function NWGetDiskChannelStats
 (conn : NWCONN_HANDLE;
 channelNum : nuint8;
 Var statBuffer : DSK_CHANNEL_STATS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

channelNum

(IN) Specifies the channel number to get status for.

statBuffer

(OUT) Points to DSK_CHANNEL_STATS.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Server Environment: Functions 697

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
9C6

NO_CONSOLE_PRIVILEGES

Remarks

To call NWGetDiskChannelStats, you must have console operator
rights.

NCP Calls

0x2222 23 217 Get Disk Channel Statistics

Management Service Group

Server Environment: Functions 698

NWGetFileServerDateAndTime

Returns the network date and time maintained on the specified NetWare
server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerDateAndTime (
 NWCONN_HANDLE conn,
 pnuint8 pbuDateTimeBufB7);

Pascal Syntax

#include <nwserver.inc>

Function NWGetFileServerDateAndTime
 (conn : NWCONN_HANDLE;
 dateTimeBuffer : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

pbuDateTimeBufB7

(OUT) Points to a 7-byte buffer for the network date and time.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Management Service Group

Server Environment: Functions 699

801

Remarks

Since the date and time are not automatically synchronized across an
internetwork, dates and times may differ among servers.

The system time clock is a 7-byte value defined in the following format:

By
te

Value Range

0 Year 80 through 179

1 Month 1 through 12

2 Day 1 through 31

3 Hour 0 through 23 (0 = 12 midnight; 23 = 11 PM)

4 Minute 0 through 59

5 Second 0 through 59

6 Day of
Week

0 through 6, 0=Sunday

NOTE: The year value corresponds to the specified years:

80-99 1980-1999

100-179 2000-2079

NCP Calls

0x2222 20 Get File Server Date And Time

Management Service Group

Server Environment: Functions 700

NWGetFileServerDescription

Returns information about a NetWare server, including company name,
NetWare version, revision date and copyright notice, using descriptive
strings

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerDescription (
 NWCONN_HANDLE conn,
 pnstr8 companyName,
 pnstr8 revision,
 pnstr8 revisionDate,
 pnstr8 copyrightNotice);

Pascal Syntax

#include <nwserver.inc>

Function NWGetFileServerDescription
 (conn : NWCONN_HANDLE;
 companyName : pnstr8;
 revision : pnstr8;
 revisionDate : pnstr8;
 copyrightNotice : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

companyName

(OUT) Points to the name of the company providing the version of
NetWare (80 characters, optional).

revision

(OUT) Points to the NetWare version and revision description string
(80 characters, optional).

Management Service Group

Server Environment: Functions 701

revisionDate

(OUT) Points to the revision date in the form xx/xx/xx. For example:
12/16/91 (24 characters, optional).

copyrightNotice

(OUT) Points to the copyright notice (80 characters, optional).

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
90A

Invalid connection (NLM only)

0x8
996

SERVER_OUT_OF_MEMORY

Remarks

Under NETX, if an invalid connection handle is passed to conn,
NWGetFileServerDescription will return 0x0000. NETX will pick a
default connection handle if the connection handle cannot be resolved.

Each string is NULL-terminated.

For items not desired in the return, substitute NULL. However, all
parameter positions must be filled.

Any client attached to the specified server can call
NWGetFileServerDescription. Console operator rights are not required.

NCP Calls

0x2222 23 201 Get File Server Description Strings

Management Service Group

Server Environment: Functions 702

NWGetFileServerExtendedInfo

Returns extended information about the specified NetWare server,
including versions for accounting, VAP, queueing, print server, virtual
console, security and internet bridging

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerExtendedInfo (
 NWCONN_HANDLE conn,
 pnuint8 accountingVer,
 pnuint8 VAPVer,
 pnuint8 queueingVer,
 pnuint8 printServerVer,
 pnuint8 virtualConsoleVer,
 pnuint8 securityVer,
 pnuint8 internetBridgeVer);

Pascal Syntax

#include <nwserver.inc>

Function NWGetFileServerExtendedInfo
 (conn : NWCONN_HANDLE;
 accountingVer : pnuint8;
 VAPVer : pnuint8;
 queueingVer : pnuint8;
 printServerVer : pnuint8;
 virtualConsoleVer : pnuint8;
 securityVer : pnuint8;
 internetBridgeVer : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

accountingVer

Management Service Group

Server Environment: Functions 703

(OUT) Points to the accounting version number (optional).

VAPVer

(OUT) Points to the VAP version number (optional).

queueingVer

(OUT) Points to the queueing version number (optional).

printServerVer

(OUT) Points to the print server version number (optional).

virtualConsoleVer

(OUT) Points to the virtual console version number (optional).

securityVer

(OUT) Points to the security version number (optional).

internetBridgeVer

(OUT) Points to the internet bridging version number (optional).

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
996

SERVER_OUT_OF_MEMORY

Remarks

NWGetFileServerExtendedInfo returns values as a single byte per
parameter, individual values between 0 and 255.

If you don’t want certain information, substitute NULL. However, all
parameter positions must be filled.

To call NWGetFileServerExtendedInfo, you must have console operator
rights.

NCP Calls

0x2222 23 17 Get File Server Information

See Also

Management Service Group

Server Environment: Functions 704

NWGetFileServerInformation , NWGetFileServerVersionInfo

Management Service Group

Server Environment: Functions 705

NWGetFileServerInfo

Calls for the server’s operational statistics

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerInfo (
 NWCONN_HANDLE conn,
 NWFSE_FILE_SERVER_INFO N_FAR
 *fseFileServerInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetFileServerInfo
 (conn : NWCONN_HANDLE;
 Var fseFileServerInfo : NWFSE_FILE_SERVER_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fseFileServerInfo

(OUT) Points to NWFSE_FILE_SERVER_INFO to get NetWare server
information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8 NCP_BOUNDARY_CHECK_FAILED

Management Service Group

Server Environment: Functions 706

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

Remarks

Under NETX, if an invalid connection handle is passed to conn,
NWGetFileServerInfo will return 0x0000. NETX will pick a default
connection handle if the connection handle cannot be resolved.

Console operator rights are NOT necessary to call NWGetFileServerInfo.

NCP Calls

 0x2222 123 02 Get File Server Information

Management Service Group

Server Environment: Functions 707

NWGetFileServerInformation

Returns several items, including NetWare server name, NetWare versions,
maximum and peak connections, number of licensed connections currently
in use, maximum volumes supported, and SFT™ and TTS™ level of support

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerInformation (
 NWCONN_HANDLE conn,
 pnstr8 serverName,
 pnuint8 majorVer,
 pnuint8 minVer,
 pnuint8 rev,
 pnuint16 maxConns,
 pnuint16 maxConnsUsed,
 pnuint16 connsInUse,
 pnuint16 numVolumes,
 pnuint8 SFTLevel,
 pnuint8 TTSLevel);

Pascal Syntax

#include <nwserver.inc>

Function NWGetFileServerInformation
 (conn : NWCONN_HANDLE;
 serverName : pnstr8;
 majorVer : pnuint8;
 minVer : pnuint8;
 rev : pnuint8;
 maxConns : pnuint16;
 maxConnsUsed : pnuint16;
 connsInUse : pnuint16;
 numVolumes : pnuint16;
 SFTLevel : pnuint8;
 TTSLevel : pnuint8
) : NWCCODE;

Management Service Group

Server Environment: Functions 708

Parameters

conn

(IN) Specifies the NetWare server connection handle.

serverName

(OUT) Points to the name of NetWare server (48 bytes, optional).

majorVer

(OUT) Points to the major NetWare version number (optional).

minVer

(OUT) Points to the minor NetWare version number (optional).

rev

(OUT) Points to the revision number of the NetWare OS on NetWare
server (optional).

maxConns

(OUT) Points to the maximum number of connections the server will
support (optional). The connection table for 4.0 is dynamic. This
number will be the maximum of what the table has grown to.

maxConnsUsed

(OUT) Points to the highest number of connections simultaneously in
use (optional).

connsInUse

(OUT) Points to the number of licensed connections the server
currently has in use (optional).

numVolumes

(OUT) Points to the maximum number of volumes the server will
support (optional).

SFTLevel

(OUT) Points to the SFT level the server supports (optional).

TTSLevel

(OUT) Points to the TTS Level of NetWare server operating system
(optional).

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
996

SERVER_OUT_OF_MEMORY

Management Service Group

Server Environment: Functions 709

Remarks

NWGetFileServerInformation will only return the number of licensed
connections in use. For NetWare 3.x, all connections are considered
licensed. For NetWare 4.x, many connections do not require a server
license and will not be returned in connsInUse.

Under NETX, if an invalid connection handle is passed to conn,
NWGetFileServerInformation will return 0x0000. NETX will pick a
default connection handle if the connection handle cannot be resolved.

The buffer allocated to receive NetWare server name should be at least 48
bytes long.

Substitute NULL for a parameter if a return is not desired. However, all
parameter positions must be filled. Any client can call
NWGetFileServerInformation without logging in to the specified
NetWare server.

NCP Calls

0x2222 23 17 Get File Server Information

See Also

NWGetFileServerInformation , NWGetFileServerVersionInfo

Management Service Group

Server Environment: Functions 710

NWGetFileServerLANIOStats

Returns statistical information about packets being received and sent by a
NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerLANIOStats (
 NWCONN_HANDLE conn,
 SERVER_LAN_IO_STATS N_FAR *statBuffer);

Pascal Syntax

#include <nwserver.inc>

Function NWGetFileServerLANIOStats
 (conn : NWCONN_HANDLE;
 Var statBuffer : SERVER_LAN_IO_STATS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

statBuffer

(OUT) Points to SERVER_LAN_IO_STATS.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Management Service Group

Server Environment: Functions 711

801

Remarks

To call NWGetFileServerLANIOStats, you must have console operator
rights.

Under 3.x and 4.x NetWare servers, ERR_NCP_NOT_SUPPORTED
(0x89FB) will be returned.

NCP Calls

0x2222 23 231 Get File Server LAN I/O Statistics

Management Service Group

Server Environment: Functions 712

NWGetFileServerLoginStatus

Returns a NetWare server’s login status

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerLoginStatus (
 NWCONN_HANDLE conn,
 pnuint8 loginEnabledFlag);

Pascal Syntax

#include <nwserver.inc>

Function NWGetFileServerLoginStatus
 (conn : NWCONN_HANDLE;
 loginEnabledFlag : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

loginEnabledFlag

(OUT) Points to a zero flag if clients cannot log in and non-zero if they
can.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Management Service Group

Server Environment: Functions 713

801

0x8
996

SERVER_OUT_OF_MEMORY

Remarks

NWGetFileServerLoginStatus determines if the users’ logins are
currently allowed on the target server.

NCP Calls

0x2222 23 205 Get File Server Login Status

Management Service Group

Server Environment: Functions 714

NWGetFileServerMiscInfo

Returns miscellaneous information about a 2.2 NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerMiscInfo
 (NWCONN_HANDLE conn,
 NW_FS_INFO N_FAR *fsInfo);

Pascal Syntax

#include <nwserver.inc>

Function NWGetFileServerMiscInfo
 (conn : NWCONN_HANDLE;
 Var fsInfo : NW_FS_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fsInfo

(OUT) Points to NW_FS_INFO.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
9C6

NO_CONSOLE_PRIVILEGES

Management Service Group

Server Environment: Functions 715

Remarks

To call NWGetFileServerMiscInfo, you must have console operator
rights.

NCP Calls

 0x2222 23 232 Get Server Misc Info

Management Service Group

Server Environment: Functions 716

NWGetFileServerName (obsolete 6/96)

Returns the name of the specified NetWare server but is now obsolete. Call
NWCCGetConnInfo instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerName
 (NWCONN_HANDLE conn,
 pnstr8 serverName);

Pascal Syntax

#include <nwserver.inc>

Function NWGetFileServerName
 (conn : NWCONN_HANDLE;
 serverName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

serverName

(OUT) Points to the NetWare server name (maximum length = 49
bytes).

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8 INVALID_CONNECTION

Management Service Group

Server Environment: Functions 717

0x8
801

INVALID_CONNECTION

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station’s Logged Info (old)

0x2222 23 28 Get Station’s Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWCCGetConnInfo, NWGetConnectionInformation

Management Service Group

Server Environment: Functions 718

NWGetFileServerVersion (obsolete 6/96)

Returns the NetWare server version multiplied by 1000 but is now obsolete.
Call NWCCGetConnInfo instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerVersion
 (NWCONN_HANDLE conn,
 pnuint16 serverVersion);

Pascal Syntax

#include <nwserver.inc>

Function NWGetFileServerVersion
 (conn : NWCONN_HANDLE;
 serverVersion : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

serverVersion

(OUT) Points to the NetWare server version multiplied by 1000.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
80

INVALID_CONNECTION

Management Service Group

Server Environment: Functions 719

80

0x8
99

SERVER_OUT_OF_MEMORY

Remarks

For example, NWGetFileServerVersion (obsolete 6/96) returns 3110 if
the NetWare version is 3.11. NWGetFileServerVersion (obsolete 6/96)
always returns the Personal NetWare version as a nunber less than 2000.

To call NWGetFileServerVersion (obsolete 6/96) , you must have console
operator rights.

NCP Calls

0x2222 23 17 Get File Server Information

Management Service Group

Server Environment: Functions 720

NWGetFileServerVersionInfo

Returns information about a NetWare server’s name and version levels

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileServerVersionInfo (
 NWCONN_HANDLE conn,
 VERSION_INFO N_FAR *versBuffer);

Pascal Syntax

#include <nwserver.inc>

Function NWGetFileServerVersionInfo
 (conn : NWCONN_HANDLE;
 Var versBuffer : VERSION_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

versBuffer

(OUT) Points to VERSION_INFO.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Management Service Group

Server Environment: Functions 721

0x8
996

SERVER_OUT_OF_MEMORY

Remarks

To call NWGetFileServerVersionInfo , you must have console operator
rights.

NCP Calls

0x2222 23 17 Get File Server Information

Management Service Group

Server Environment: Functions 722

NWGetFileSystemStats

Returns statistics about the file system for a NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFileSystemStats
 (NWCONN_HANDLE conn,
 FILESYS_STATS N_FAR *statBuffer);

Pascal Syntax

#include <nwserver.inc>

Function NWGetFileSystemStats
 (conn : NWCONN_HANDLE;
 Var statBuffer : FILESYS_STATS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

statBuffer

(OUT) Points to FILESYS_STATS.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Management Service Group

Server Environment: Functions 723

0x8
9C6

NO_CONSOLE_PRIVILEGES

Remarks

To call NWGetFileSystemStats, you must have console operator rights.

NCP Calls

0x2222 23 212 Get File Systems Statistics

Management Service Group

Server Environment: Functions 724

NWGetFSDriveMapTable

Returns NetWare server’s Drive Mapping Table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFSDriveMapTable
 (NWCONN_HANDLE conn,
 DRV_MAP_TABLE N_FAR *tableBuffer);

Pascal Syntax

#include <nwserver.inc>

Function NWGetFSDriveMapTable
 (conn : NWCONN_HANDLE;
 Var tableBuffer : DRV_MAP_TABLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

tableBuffer

(OUT) Points to DRV_MAP_TABLE.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Management Service Group

Server Environment: Functions 725

0x8
9C6

NO_CONSOLE_PRIVILEGES

Remarks

To call NWGetFSDriveMapTable, you must have console operator
rights.

If the calling station does not have operator privileges, No Console Rights
is returned.

NCP Calls

0x2222 23 215 Get Drive Mapping Table

Management Service Group

Server Environment: Functions 726

NWGetFSLANDriverConfigInfo

Returns configuration information for a specified LAN driver installed on a
NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetFSLANDriverConfigInfo (
 NWCONN_HANDLE conn,
 nuint8 lanBoardNum,
 NWLAN_CONFIG N_FAR *lanConfig);

Pascal Syntax

#include <nwserver.inc>

Function NWGetFSLANDriverConfigInfo
 (conn : NWCONN_HANDLE;
 lanBoardNum : nuint8;
 Var lanConfig : NWLAN_CONFIG
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

lanBoardNum

(IN) Specifies the physical LAN board number.

lanConfig

(OUT) Points to NWLAN_CONFIG.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Server Environment: Functions 727

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Remarks

To call NWGetFSLANDriveConfigInfo, you must have console operator
rights.

NCP Calls

0x2222 23 227 Get LAN Driver Configuration Information

Management Service Group

Server Environment: Functions 728

NWGetGarbageCollectionInfo

Returns the server’s memory manager’s statistical information

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetGarbageCollectionInfo (
 NWCONN_HANDLE conn,
 NWFSE_GARBAGE_COLLECTION_INFO N_FAR
 *fseGarbageCollectionInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetGarbageCollectionInfo
 (conn : NWCONN_HANDLE;
 Var fseGarbageCollectionInfo : NWFSE_GARBAGE_COLLECTION_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fseGarbageCollectionInfo

(OUT) Points to NWFSE_GARBAGE_COLLECTION_INFO returning
garbage collection information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8 NCP_BOUNDARY_CHECK_FAILED

Management Service Group

Server Environment: Functions 729

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

Remarks

To call NWGetGarbageCollectionInfo, you must have console operator
rights.

NCP Calls

 0x2222 123 07 Garbage Collection Information

Management Service Group

Server Environment: Functions 730

NWGetGeneralRouterAndSAPInfo

Returns router information received from RIP and SAP packets

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetGeneralRouterAndSAPInfo (
 NWCONN_HANDLE conn,
 NWFSE_GENERAL_ROUTER_SAP_INFO N_FAR
 *fseGeneralRouterSAPInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetGeneralRouterAndSAPInfo
 (conn : NWCONN_HANDLE;
 Var fseGeneralRouterSAPInfo : NWFSE_GENERAL_ROUTER_SAP_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fseGeneralRouterSAPInfo

(OUT) Points to NWFSE_GENERAL_ROUTER_SAP_INFO returning
general router SAP information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8 INVALID_CONNECTION

Management Service Group

Server Environment: Functions 731

0x8
801

INVALID_CONNECTION

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9C6

NO_CONSOLE_PRIVILEGES

Remarks

To call NWGetGeneralRouterAndSAPInfo, you must have console
operator rights.

NCP Calls

0x2222 123 50 Get General Router and SAP Information

Management Service Group

Server Environment: Functions 732

NWGetIPXSPXInfo

Returns the server’s internal IPX™ and SPX™ statistics information

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetIPXSPXInfo (
 NWCONN_HANDLE conn,
 NWFSE_IPXSPX_INFO N_FAR *fseIPXSPXInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetIPXSPXInfo
 (conn : NWCONN_HANDLE;
 Var fseIPXSPXInfo : NWFSE_IPXSPX_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fseIPXSPXInfo

(OUT) Points to NWFSE_IPXSPX_INFO returning IPX/SPX
information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

Management Service Group

Server Environment: Functions 733

97E

Remarks

Under NETX, if an invalid connection handle is passed to conn,
NWGetIPXSPXInfo will return 0x0000. NETX will pick a default
connection handle if the connection handle cannot be resolved.

Console operator rights are NOT necessary to call NWGetIPXSPXInfo.

NCP Calls

0x2222 123 06 IPX SPX Information

Management Service Group

Server Environment: Functions 734

NWGetKnownNetworksInfo

Returns information about networks for which the server has received
Routing Information Packets (RIPs)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetKnownNetworksInfo
 (NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_KNOWN_NETWORKS_INFO N_FAR
 *fseKnownNetworksInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetKnownNetworksInfo
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseKnownNetworksInfo : NWFSE_KNOWN_NETWORKS_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

startNum

(IN) Specifies the starting network with which to begin the search
(commonly 0 to begin the search, on subsequent calls it should be the
total number of networks returned up to the call.)

fseKnownNetworksInfo

(OUT) Points to NWFSE_KNOWN_NETWORKS_INFO returning
information about known networks.

Return Values

Management Service Group

Server Environment: Functions 735

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

Remarks

To call NWGetKnownNetworksInfo, you must have console operator
rights.

NCP Calls

0x2222 123 53 Get Known Networks Information

See Also

NWGetNetworkRouterInfo, NWGetNetworkRoutersInfo

Management Service Group

Server Environment: Functions 736

NWGetKnownServersInfo

Returns information about servers advertising themselves to the server with
SAP packets

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetKnownServersInfo
 (NWCONN_HANDLE conn,
 nuint32 startNum,
 nuint32 serverType,
 NWFSE_KNOWN_SERVER_INFO N_FAR
 *fseKnownServerInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetKnownServersInfo
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 serverType : nuint32;
 Var fseKnownServerInfo : NWFSE_KNOWN_SERVER_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

startNum

(IN) Specifies the cumulative number of servers returned from all
previous calls; normally, zero (0) for the first call.

serverType

(OUT) Receives the server type: 0x0400 = NetWare server; 0xFFFF =
All Types Of Servers.

fseKnownServerInfo

Management Service Group

Server Environment: Functions 737

(OUT) Points to NWFSE_KNOWN_SERVER_INFO containing known
server information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
901

Returned from NWFSE_KNOWN_SERVER_INFO when no
more items are found

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9C6

NO_CONSOLE_PRIVILEGES

Remarks

To call NWGetKnownServersInfo, you must have console operator
rights.

startNum should be set to zero on the first call. On subsequent calls, the
value returned in the numberOfEntries field in the
SERVER_AND_VCONSOLE_INFO structure should be added to the
value in startNum until INVALID_CONNECTION is returned.

NCP Calls

0x2222 123 56 Get Known Servers Information

See Also

NWGetServerSourcesInfo

Management Service Group

Server Environment: Functions 738

NWGetLANCommonCountersInfo

Returns common statistics for a LAN board

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetLANCommonCountersInfo (
 NWCONN_HANDLE conn,
 nuint32 boardNum,
 nuint32 blockNum,
 NWFSE_LAN_COMMON_COUNTERS_INFO N_FAR
 *fseLANCommonCountersInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetLANCommonCountersInfo
 (conn : NWCONN_HANDLE;
 boardNum : nuint32;
 blockNum : nuint32;
 Var fseLANCommonCountersInfo : NWFSE_LAN_COMMON_COUNTERS_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

boardNum

(IN) Specifies the board numbers returned by
NWGetActiveLANBoardList.

blockNum

(IN) Specifies the starting number of the common counters to return;
usually set to zero (0) to return all the counters.

fseLANCommonCountersInfo

(OUT) Points to NWFSE_LAN_COMMON_COUNTERS_INFO

Management Service Group

Server Environment: Functions 739

returning LAN common counters information.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FF Failure or Invalid Board or Block Number

Remarks

To call NWGetLANCommonCountersInfo, you must have console
operator rights.

NCP Calls

0x2222 123 22 LAN Common Counters Information

See Also

NWGetActiveLANBoardList, NWGetLANConfigInfo,
NWGetLANCustomCountersInfo, NWGetLSLLogicalBoardStats,
NWGetProtocolStkNumsByLANBrdNum

Management Service Group

Server Environment: Functions 740

NWGetLANConfigInfo

Returns configuration information for the LAN board identified by
boardNum

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetLANConfigInfo
 (NWCONN_HANDLE conn,
 nuint32 boardNum,
 NWFSE_LAN_CONFIG_INFO N_FAR *fseLANConfigInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetLANConfigInfo
 (conn : NWCONN_HANDLE;
 boardNum : nuint32;
 Var fseLANConfigInfo : NWFSE_LAN_CONFIG_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

boardNum

(IN) Specifies the number of the LAN board for which you want LAN
driver information.

fseLANConfigInfo

(OUT) Points to NWFSE_LAN_CONFIG_INFO returning LAN
configuration information.

Return Values

Management Service Group

Server Environment: Functions 741

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
979

ERR_NO_ITEMS_FOUND

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9C6

NO_CONSOLE_PRIVILEGES

0x8
9FF

Failure or Invalid Board Number

Remarks

To call NWGetLANConfigInfo, you must have console operator rights.

NCP Calls

0x2222 123 21 LAN Configuration Information

See Also

NWGetActiveLANBoardList, NWGetLANCommonCountersInfo,
NWGetLANCustomCountersInfo, NWGetLSLLogicalBoardStats,
NWGetProtocolStkNumsByLANBrdNum

Management Service Group

Server Environment: Functions 742

NWGetLANCustomCountersInfo

Returns custom statistics for a LAN board

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetLANCustomCountersInfo
 (NWCONN_HANDLE conn,
 nuint32 boardNum,
 nuint32 startingNum,
 NWFSE_LAN_CUSTOM_INFO N_FAR *fseLANCustomInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetLANCustomCountersInfo
 (conn : NWCONN_HANDLE;
 boardNum : nuint32;
 startingNum : nuint32;
 Var fseLANCustomInfo : NWFSE_LAN_CUSTOM_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

boardNum

(IN) Specifies the board number returned by
NWGetActiveLANBoardList.

startingNum

(IN) Specifies the cumulative number of custom counters already
returned; normally, zero (0) for the first call.

fseLANCustomInfo

(OUT) Points to NWFSE_LAN_CUSTOM_INFO returning
information.

Management Service Group

Server Environment: Functions 743

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9C6

NO_CONSOLE_PRIVILEGES

0x8
9FF

Failure or Invalid Start or Board Number

Remarks

To call NWGetLANCustomCountersInfo, you must have console
operator rights.

NCP Calls

 0x2222 123 23 LAN Custom Counters Information

See Also

NWGetActiveLANBoardList, NWGetLANConfigInfo,
NWGetLANCommonCountersInfo, NWGetLSLLogicalBoardStats,
NWGetProtocolStkNumsByLANBrdNum

Management Service Group

Server Environment: Functions 744

NWGetLoadedMediaNumList

Returns a list of loaded media numbers

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetLoadedMediaNumList (
 NWCONN_HANDLE conn,
 NWFSE_LOADED_MEDIA_NUM_LIST N_FAR
 *fseLoadedMediaNumList);

Pascal Syntax

#include <nwfse.inc>

Function NWGetLoadedMediaNumList
 (conn : NWCONN_HANDLE;
 Var fseLoadedMediaNumList : NWFSE_LOADED_MEDIA_NUM_LIST
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fseLoadedMediaNumList

(OUT) Points to NWFSE_LOADED_MEDIA_NUM_LIST returning
information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8 INVALID_CONNECTION

Management Service Group

Server Environment: Functions 745

0x8
801

INVALID_CONNECTION

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9C6

NO_CONSOLE_PRIVILEGES

Remarks

To call NWGetLoadedMediaNumList, you must have console operator
rights.

NCP Calls

0x2222 123 47 Get Loaded Media Num List

See Also

NWGetMediaMgrObjChildrenList, NWGetMediaMgrObjInfo,
NWGetMediaMgrObjList, NWGetMediaNameByMediaNum,
NWGetProtocolStkNumsByMediaNum

Management Service Group

Server Environment: Functions 746

NWGetLSLInfo

Returns LSL information

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetLSLInfo (
 NWCONN_HANDLE conn,
 NWFSE_LSL_INFO N_FAR *fseLSLInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetLSLInfo
 (conn : NWCONN_HANDLE;
 Var fseLSLInfo : NWFSE_LSL_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fseLSLInfo

(OUT) Points to NWFSE_LSL_INFO returning LSL™ information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Management Service Group

Server Environment: Functions 747

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9C6

NO_CONSOLE_PRIVILEGES

Remarks

To call NWGetLSLInfo, you must have console operator rights.

NCP Calls

 0x2222 123 25 LSL Information

See Also

NWGetLSLLogicalBoardStats

Management Service Group

Server Environment: Functions 748

NWGetLSLLogicalBoardStats

Returns LSL logical board statistics

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetLSLLogicalBoardStats
 (NWCONN_HANDLE conn,
 nuint32 LANBoardNum,
 NWFSE_LSL_LOGICAL_BOARD_STATS N_FAR
 *fseLSLLogicalBoardStats);

Pascal Syntax

#include <nwfse.inc>

Function NWGetLSLLogicalBoardStats
 (conn : NWCONN_HANDLE;
 LANBoardNum : nuint32;
 Var fseLSLLogicalBoardStats : NWFSE_LSL_LOGICAL_BOARD_STATS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

LANBoardNum

(IN) Specifies a board number returned by
NWGetActiveLANBoardList.

fseLSLLogicalBoardStats

(OUT) Points to NWFSE_LSL_LOGICAL_BOARD_STATS returning
LSL logical board statistics.

Return Values

These are common return values; see Return Values for more

Management Service Group

Server Environment: Functions 749

information.

0x00
000

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
7E

NCP_BOUNDARY_CHECK_FAILED

0x89
C6

NO_CONSOLE_PRIVILEGES

0x89
FB

ERR_NCP_NOT_SUPPORTED

0x89
FF

Failure or Invalid LAN Board Number

Remarks

To call NWGetLSLLogicalBoardStats, you must have console operator
rights.

NCP Calls

0x2222 123 26 LSL Logical Board Statistics

See Also

NWGetLSLInfo

Management Service Group

Server Environment: Functions 750

NWGetMediaMgrObjChildrenList

Returns a list of children belonging to a given media manager parent object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetMediaMgrObjChildrenList (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 nuint32 objType,
 nuint32 parentObjNum,
 NWFSE_MEDIA_MGR_OBJ_LIST N_FAR
 *fseMediaMgrObjList);

Pascal Syntax

#include <nwfse.inc>

Function NWGetMediaMgrObjChildrenList
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 objType : nuint32;
 parentObjNum : nuint32;
 Var fseMediaMgrObjList : NWFSE_MEDIA_MGR_OBJ_LIST
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

startNum

(IN) Specifies the value returned in nextStartObjNum of
NWFSE_MEDIA_MGR_OBJ_LIST; Normally, zero (0) on the first call.

objType

(IN) Specifies one of the types defined in nwfse.h, such as
ADAPTER_OBJECT or MIRROR_OBJECT.

Management Service Group

Server Environment: Functions 751

parentObjNum

(IN) Specifies the parent object ID number such as one returned by
NWGetMediaMgrObjList.

fseMediaMgrObjList

(OUT) Points to NWFSE_MEDIA_MGR_OBJ_LIST listing media
manager object’s children.

Return Values

These are common return values; see Return Values for more
information.

0x00
000

SUCCESSFUL

0x89
79

Invalid Start Number, Object Type, or Parent Object Number

0x89
7E

NCP_BOUNDARY_CHECK_FAILED

Remarks

To call NWGetMediaMgrObjChildrenList, you must have console
operator rights.

NCP Calls

0x2222 123 32 Get Media Manager Object Children’s List

See Also

NWGetLoadedMediaNumList, NWGetMediaMgrObjInfo,
NWGetMediaMgrObjList, NWGetMediaNameByMediaNum,
NWGetProtocolStkNumsByMediaNum

Management Service Group

Server Environment: Functions 752

NWGetMediaMgrObjInfo

Returns information about media manager objects (storage devices)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetMediaMgrObjInfo (
 NWCONN_HANDLE conn,
 nuint32 objNum,
 NWFSE_MEDIA_MGR_OBJ_INFO N_FAR
 *fseMediaMgrObjInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetMediaMgrObjInfo
 (conn : NWCONN_HANDLE;
 objNum : nuint32;
 Var fseMediaMgrObjInfo : NWFSE_MEDIA_MGR_OBJ_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objNum

(IN) Specifies the object ID number returned by
NWGetMediaMgrObjList representing the device you want
information about.

fseMediaMgrObjInfo

(OUT) Points to NWFSE_MEDIA_MGR_OBJ_INFO returning media
manager object information.

Return Values

Management Service Group

Server Environment: Functions 753

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

Remarks

To call NWGetMediaMgrObjInfo, you must have console operator
rights.

Media manager objects are storage devices which are managed by the OS
in an object-oriented database to allow for the needs of current and future
file system applications and storage applications.

NCP Calls

0x2222 123 30 Get Media Manager Object Information

See Also

NWGetLoadedMediaNumList, NWGetMediaMgrObjChildrenList,
NWGetMediaMgrObjList, NWGetMediaNameByMediaNum,
NWGetProtocolStkNumsByMediaNum

Management Service Group

Server Environment: Functions 754

NWGetMediaMgrObjList

Returns a list of media manager objects (storage devices) of the specified
type

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetMediaMgrObjList (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 nuint32 objType,
 NWFSE_MEDIA_MGR_OBJ_LIST N_FAR
 *fseMediaMgrObjList);

Pascal Syntax

#include <nwfse.inc>

Function NWGetMediaMgrObjList
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 objType : nuint32;
 Var fseMediaMgrObjList : NWFSE_MEDIA_MGR_OBJ_LIST
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

startNum

(IN) Specifies the value returned in the nextStartObjNum field of the
fseMediaMgrObjList parameter (set to zero initially).

objType

(IN) Specifies the object type.

fseMediaMgrObjList

(OUT) Points to the NWFSE_MEDIA_MGR_OBJ_LIST structure listing

Management Service Group

Server Environment: Functions 755

media manager objects.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
979

Invalid Start Number or Object Type

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

Remarks

To call NWGetMediaMgrObjList, you must have console operator
rights.

Media manager objects are storage devices maintained by the media
manager in an object-oriented database.

Object types are the following:

C
Valu
e

Pascal
Value

Value Name

0 0 FSE_ADAPTER_OBJECT

1 1 FSE_CHANGER_OBJECT

2 2 FSE_DEVICE_OBJECT

4 4 FSE_MEDIA_OBJECT

5 5 FSE_PARTITION_OBJECT

6 6 FSE_SLOT_OBJECT

7 7 FSE_HOTFIX_OBJECT

8 8 FSE_MIRROR_OBJECT

9 9 FSE_PARITY_OBJECT

10 10 FSE_VOLUME_SEG_OBJECT

11 11 FSE_VOLUME_OBJECT

12 12 FSE_CLONE_OBJECT

14 14 FSE_MAGAZINE_OBJECT

15 15 FSE_VIRTUAL_DEVICE_OBJECT

Management Service Group

Server Environment: Functions 756

0xFF
FF

$FFFF FSE_UNKNOWN_OBJECT

NCP Calls

0x2222 123 31 Get Media Manager Objects List

See Also

NWGetLoadedMediaNumList, NWGetMediaMgrObjInfo,
NWGetMediaMgrObjChildrenList, NWGetMediaNameByMediaNum,
NWGetProtocolStkNumsByMediaNum

Management Service Group

Server Environment: Functions 757

NWGetMediaNameByMediaNum

Returns the identifying name or label for the given media object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetMediaNameByMediaNum
 (NWCONN_HANDLE conn,
 nuint32 mediaNum,
 pnstr8 mediaName,
 NWFSE_MEDIA_NAME_LIST N_FAR *fseMediaNameList);

Pascal Syntax

#include <nwfse.inc>

Function NWGetMediaNameByMediaNum
 (conn : NWCONN_HANDLE;
 mediaNum : nuint32;
 mediaName : pnstr8;
 Var fseMediaNameList : NWFSE_MEDIA_NAME_LIST
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

mediaNum

(IN) Specifies the object ID number of the target media object returned
by calling either NWGetMediaMgrObjList or
NWGetMediaMgrChildrenList.

mediaName

(OUT) Points to the name of the media object specified by mediaNum.

fseMediaNameList

(OUT) Points to NWFSE_MEDIA_NAME_LIST returning information.

Management Service Group

Server Environment: Functions 758

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

Remarks

To call NWGetMediaNameByMediaNum, you must have console
operator rights.

mediaName requires a buffer at least as large as
FSE_MEDIA_NAME_LEN_MAX +1. It can be longer than that if desired.

NCP Calls

0x2222 123 46 Get Media Name By Media Number

See Also

NWGetLoadedMediaNumList, NWGetMediaMgrObjInfo,
NWGetMediaMgrObjChildrenList, NWGetMediaMgrObjList,
NWGetProtocolStkNumsByMediaNum

Management Service Group

Server Environment: Functions 759

NWGetNetWareFileSystemsInfo

Returns information about a loaded file system

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNetWareFileSystemsInfo (
 NWCONN_HANDLE conn,
 NWFSE_FILE_SYSTEM_INFO N_FAR
 *fseFileSystemInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetNetWareFileSystemsInfo
 (conn : NWCONN_HANDLE;
 Var fseFileSystemInfo : NWFSE_FILE_SYSTEM_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fseFilesystemInfo

(OUT) Points to NWFSE_FILE_SYSTEMS_INFO returning NetWare
file systems information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8 NCP_BOUNDARY_CHECK_FAILED

Management Service Group

Server Environment: Functions 760

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

Remarks

To call NWGetNetWareFileSystemsInfo, you must have console
operator rights.

NCP Calls

0x2222 123 03 NetWare File Systems Information

Management Service Group

Server Environment: Functions 761

NWGetNetworkRouterInfo

Returns information about network routing (other networks known to
NetWare server)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNetworkRouterInfo (
 NWCONN_HANDLE conn,
 nuint32 networkNum,
 NWFSE_NETWORK_ROUTER_INFO N_FAR
 *fseNetworkRouterInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetNetworkRouterInfo
 (conn : NWCONN_HANDLE;
 networkNum : nuint32;
 Var fseNetworkRouterInfo : NWFSE_NETWORK_ROUTER_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

networkNum

(IN) Specifies the number of the network for which to return
information.

fseNetworkRouterInfo

(OUT) Points to NWFSE_NETWORK_ROUTER_INFO returning
network router information.

Return Values

Management Service Group

Server Environment: Functions 762

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Remarks

To call NWGetNetworkRouterInfo, you must have console operator
rights.

NCP Calls

0x2222 123 51 Get Network Router Information

See Also

NWGetKnownNetworksInfo, NWGetNetworkRoutersInfo

Management Service Group

Server Environment: Functions 763

NWGetNetworkRoutersInfo

Returns information about the routers on a network

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNetworkRoutersInfo (
 NWCONN_HANDLE conn,
 nuint32 networkNum,
 nuint32 startNum,
 NWFSE_NETWORK_ROUTERS_INFO N_FAR
 *fseNetworkRoutersInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetNetworkRoutersInfo
 (conn : NWCONN_HANDLE;
 networkNum : nuint32;
 startNum : nuint32;
 Var fseNetworkRoutersInfo : NWFSE_NETWORK_ROUTERS_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

networkNum

(IN) Specifies the number of the network for which to return
information.

startNum

(IN) Specifies the value returned in numberOfEntries in
NWFSE_NETWORK_ROUTERS_INFO; normally, zero (0) on the first
call.

fseNetworkRoutersInfo

Management Service Group

Server Environment: Functions 764

(OUT) Points to NWFSE_NETWORK_ROUTERS_INFO returning
network routers information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

Invalid Network Number or Start Number

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

Remarks

To call NWGetNetworkRoutersInfo, you must have console operator
rights.

NCP Calls

0x2222 123 52 Get Network Routers Information

See Also

NWGetKnownNetworksInfo, NWGetNetworkRouterInfo

Management Service Group

Server Environment: Functions 765

NWGetNetworkSerialNumber

Returns the NetWare server’s serial number and the application number

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNetworkSerialNumber (
 NWCONN_HANDLE conn,
 pnuint32 serialNum,
 pnuint16 appNum);

Pascal Syntax

#include <nwserver.inc>

Function NWGetNetworkSerialNumber
 (conn : NWCONN_HANDLE;
 serialNum : pnuint32;
 appNum : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

serialNum

(OUT) Points to the NetWare server’s serial number.

appNum

(OUT) Points to the application number.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Server Environment: Functions 766

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
996

SERVER_OUT_OF_MEMORY

Remarks

The combination of the server’s serial number and the application
number is unique.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 18 Get Network Serial Number

Management Service Group

Server Environment: Functions 767

NWGetNLMInfo

Returns information about a specific loaded NLM

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNLMInfo (
 NWCONN_HANDLE conn,
 nuint32 NLMNum,
 pnstr8 fileName,
 pnstr8 NLMName,
 pnstr8 copyright,
 NWFSE_NLM_INFO N_FAR *fseNLMInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetNLMInfo
 (conn : NWCONN_HANDLE;
 NLMNum : nuint32;
 fileName : pnstr8;
 NLMname : pnstr8;
 copyright : pnstr8;
 Var fseNLMInfo : NWFSE_NLM_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

NLMNum

(IN) Specifies the NLM ID number returned by
NWGetNLMLoadedList.

fileName

(OUT) Points to the name of the NLM file.

Management Service Group

Server Environment: Functions 768

NLMName

(OUT) Points to the NLM name.

copyright

(OUT) Points to the copyright string (optional).

fseNLMInfo

(OUT) Points to NWFSE_NLM_INFO.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9C6

NO_CONSOLE_PRIVILEGES

0x8
9FF

Failure or Invalid NLM Number

Remarks

To call NWGetNLMInfo, you must have console operator rights.

NWGetNLMInfo should only be called for NLMs that have information
in the buffer.

NCP Calls

0x2222 123 11 NLM Information

See Also

NWGetNLMLoadedList, NWGetNLMsResourceTagList

Management Service Group

Server Environment: Functions 769

NWGetNLMLoadedList

Returns a list of loaded NLM sequence numbers

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNLMLoadedList (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_NLM_LOADED_LIST N_FAR *fseNLMLoadedList);

Pascal Syntax

#include <nwfse.inc>

Function NWGetNLMLoadedList
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseNLMLoadedList : NWFSE_NLM_LOADED_LIST
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

startNum

(IN) Specifies the starting number (set to zero the first time
NWGetNLMLoadedList is called.

fseNLMLoadedList

(OUT) Points to NWFSE_NLM_LOADED_LIST.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Server Environment: Functions 770

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9C6

NO_CONSOLE_PRIVILEGES

0x8
9FF

Failure

Remarks

To call NWGetNLMLoadedList, you must have console operator rights.

NWGetNLMLoadedList will only return information about 128 NLMs at
a time. If you have more than 128 NLMs loaded,
NWGetNLMLoadedList needs to be called iteratively. Set startNum to
zero the first time NWGetNLMLoadedList is called. Set startNum to the
number returned by the numberNLMsLoaded field of the
NWFSE_NLM_LOADED_LIST structure each time
NWGetNLMLoadedList is called subsequently.

NCP Calls

0x2222 123 10 Get NLM Loaded List

See Also

NWGetNLMInfo, NWGetNLMsResourceTagList

Management Service Group

Server Environment: Functions 771

NWGetNLMsResourceTagList

Returns information about resources used by NLMs on a server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNLMsResourceTagList (
 NWCONN_HANDLE conn,
 nuint32 NLMNum,
 nuint32 startNum,
 NWFSE_NLMS_RESOURCE_TAG_LIST N_FAR
 *fseNLMsResourceTagList);

Pascal Syntax

#include <nwfse.inc>

Function NWGetNLMsResourceTagList
 (conn : NWCONN_HANDLE;
 NLMNum : nuint32;
 startNum : nuint32;
 Var fseNLMsResourceTagList : NWFSE_NLMS_RESOURCE_TAG_LIST
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

NLMNum

(IN) Specifies the NLM ID number representing the NLM on the
server, returned by NWGetNLMLoadedList.

startNum

(IN) Specifies the previous startNum, plus the value in
packetResourceTags of NWFSE_NLMS_RESOURCE_TAG_LIST;
normally 0 (zero) on the first call.

fseNLMsResourceTagList

Management Service Group

Server Environment: Functions 772

(OUT) Points to NWFSE_NLMS_RESOURCE_TAG_LIST.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

Remarks

To call NWGetNLMsResourceTagList, you must have console operator
rights.

NCP Calls

0x2222 123 15 Get NLM’s Resource Tag List

See Also

NWGetNLMInfo, NWGetNLMLoadedList

Management Service Group

Server Environment: Functions 773

NWGetOSVersionInfo

Gets NetWare OS version information

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetOSVersionInfo (
 NWCONN_HANDLE conn,
 NWFSE_OS_VERSION_INFO N_FAR *fseOSVersionInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetOSVersionInfo
 (conn : NWCONN_HANDLE;
 Var fseOSVersionInfo : NWFSE_OS_VERSION_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fseOSVersionInfo

(OUT) Points to NWFSE_OS_VERSION_INFO getting operating
system version information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

Management Service Group

Server Environment: Functions 774

Remarks

Console operator rights are NOT necessary to call
NWGetOSVersionInfo.

NCP Calls

0x2222 123 13 Get Operating System Version Information

Management Service Group

Server Environment: Functions 775

NWGetPacketBurstInfo

Returns the server’s packet burst operational counters and statistics

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetPacketBurstInfo (
 NWCONN_HANDLE conn,
 NWFSE_PACKET_BURST_INFO N_FAR
 *fsePacketBurstInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetPacketBurstInfo
 (conn : NWCONN_HANDLE;
 Var fsePacketBurstInfo : NWFSE_PACKET_BURST_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fsePacketBurstInfo

(OUT) Points to NWFSE_PACKET_BURST_INFO getting packet burst
information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8 NCP_BOUNDARY_CHECK_FAILED

Management Service Group

Server Environment: Functions 776

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

Remarks

To call NWGetPacketBurstInfo, you must have console operator rights.

NCP Calls

0x2222 123 05 Packet Burst Information

Management Service Group

Server Environment: Functions 777

NWGetPhysicalDiskStats

Returns statistics about a specified disk

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetPhysicalDiskStats (
 NWCONN_HANDLE conn,
 nuint8 physicalDiskNum,
 PHYS_DSK_STATS N_FAR *tatBuffer);

Pascal Syntax

#include <nwserver.inc>

Function NWGetPhysicalDiskStats
 (conn : NWCONN_HANDLE;
 physicalDiskNum : nuint8;
 Var statBuffer : PHYS_DSK_STATS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

physicalDiskNum

(IN) Specifies the physical disk number.

statBuffer

(OUT) Points to PHYS_DSK_STATS.

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Server Environment: Functions 778

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
996

SERVER_OUT_OF_MEMORY

0x8
9C6

NO_CONSOLE_PRIVILEGES

Remarks

To call NWGetPhysicalDiskStats, you must have console operator
rights.

NCP Calls

0x2222 23 216 Read Physical Disk Statistics

Management Service Group

Server Environment: Functions 779

NWGetProtocolStackConfigInfo

Returns configuration information about the protocols on a server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetProtocolStackConfigInfo (
 NWCONN_HANDLE conn,
 nuint32 stackNum,
 pnstr8 stackFullName,
 NWFSE_PROTOCOL_STK_CONFIG_INFO N_FAR
 *fseProtocolStkConfigInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetProtocolStackConfigInfo
 (conn : NWCONN_HANDLE;
 stackNum : nuint32;
 stackFullName : pnstr8;
 Var fseProtocolStkConfigInfo : NWFSE_PROTOCOL_STK_CONFIG_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

stackNum

(IN) Specifies the number of the protocol stack to return information
about, usually returned by NWGetActiveProtocolStacks,

stackFullName

(OUT) Points to the full description of the protocol stack.

fseProtocolStkConfigInfo

(OUT) Points to NWFSE_PROTOCOL_STK_CONFIG_INFO getting
protocol stack configuration information.

Management Service Group

Server Environment: Functions 780

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9FF

Failure

Remarks

To call NWGetProtocolStackConfigInfo, you must have console
operator rights.

NCP Calls

0x2222 123 41 Get Protocol Stack Configuration Information

See Also

NWGetActiveProtocolStacks, NWGetProtocolStackCustomInfo,
NWGetProtocolStackStatsInfo,
NWGetProtocolStkNumsByLANBrdNum,
NWGetProtocolStkNumsByMediaNum

Management Service Group

Server Environment: Functions 781

NWGetProtocolStackCustomInfo

Returns custom information about a protocol stack on a server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetProtocolStackCustomInfo (
 NWCONN_HANDLE conn,
 nuint32 stackNum,
 nuint32 customStartNum,
 NWFSE_PROTOCOL_CUSTOM_INFO N_FAR
 *fseProtocolStackCustomInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetProtocolStackCustomInfo
 (conn : NWCONN_HANDLE;
 stackNum : nuint32;
 customStartNum : nuint32;
 Var fseProtocolStackCustomInfo : NWFSE_PROTOCOL_CUSTOM_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

stackNum

(IN) Specifies the number identifying the protocol stack to return
information about, usually returned by NWGetActiveProtocolStacks.

customStartNum

(IN) Specifies the custom information to begin with. Normally zero (0)
on the first call; on all subsequent call, the previous customStartNum,
plus the value returned in customCount of
NWFSE_PROTOCOL_CUSTOM_INFO.

Management Service Group

Server Environment: Functions 782

fseProtocolStackCustomInfo

(OUT) Points to NWFSE_PROTOCOL_CUSTOM_INFO getting
protocol stack custom information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9FF

Failure

Remarks

To call NWGetProtocolStackCustomInfo, you must have console
operator rights.

NCP Calls

0x2222 123 43 Get Protocol Stack Custom Information

See Also

NWGetActiveProtocolStacks, NWGetProtocolStackConfigInfo,
NWGetProtocolStackStatsInfo,
NWGetProtocolStkNumsByLANBrdNum,
NWGetProtocolStkNumsByMediaNum

Management Service Group

Server Environment: Functions 783

NWGetProtocolStackStatsInfo

Returns the protocol statistics indicated by stackNum for a server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetProtocolStackStatsInfo (
 NWCONN_HANDLE conn,
 nuint32 stackNum,
 NWFSE_PROTOCOL_STK_STATS_INFO N_FAR
 *fseProtocolStkStatsInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetProtocolStackStatsInfo
 (conn : NWCONN_HANDLE;
 stackNum : nuint32;
 Var fseProtocolStkStatsInfo : NWFSE_PROTOCOL_STK_STATS_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

stackNum

(IN) Specifies the number identifying the protocol stack to return
information about, usually returned by NWGetActiveProtocolStacks.

fseProtocolStkStatsInfo

(OUT) Points to NWFSE_PROTOCOL_STK_STATS_INFO getting
protocol stack configuration information.

Return Values

These are common return values; see Return Values for more

Management Service Group

Server Environment: Functions 784

information.

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9C6

NO_CONSOLE_PRIVILEGES

0x8
9FF

Failure

Remarks

To call NWGetProtocolStackStatsInfo, you must have console operator
rights.

NCP Calls

0x2222 123 42 Get Protocol Stack Statistics Information

See Also

NWGetActiveProtocolStacks, NWGetProtocolStackConfigInfo,
NWGetProtocolStackCustomInfo,
NWGetProtocolStkNumsByLANBrdNum,
NWGetProtocolStkNumsByMediaNum

Management Service Group

Server Environment: Functions 785

NWGetProtocolStkNumsByLANBrdNum

Returns a list of protocol stack ID numbers for a given LAN board

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetProtocolStkNumsByLANBrdNum (
 NWCONN_HANDLE conn,
 nuint32 LANBoardNum,
 NWFSE_PROTOCOL_ID_NUMS N_FAR
 *fseProtocolStkIDNums);

Pascal Syntax

#include <nwfse.inc>

Function NWGetProtocolStkNumsByLANBrdNum
 (conn : NWCONN_HANDLE;
 LANBoardNum : nuint32;
 Var fseProtocolStkIDNums : NWFSE_PROTOCOL_ID_NUMS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

LANBoardNum

(IN) Specifies the ID number of the LAN board for which you want a
list of protocols; normally an ID number returned by
NWGetActiveLANBoardList.

fseProtocolStkIDNums

(OUT) Points to NWFSE_PROTOCOL_ID_NUMS getting protocol
stack numbers by LAN board number.

Return Values

Management Service Group

Server Environment: Functions 786

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9C6

NO_CONSOLE_PRIVILEGES

0x8
9FF

Failure

Remarks

To call NWGetProtocolStkNumsByLANBrdNum, you must have
console operator rights.

NCP Calls

0x2222 123 45 Get Protocol Stack Numbers By LAN Board Number

See Also

NWGetActiveLANBoardList, NWGetActiveProtocolStacks,
NWGetProtocolStackConfigInfo, NWGetProtocolStackCustomInfo,
NWGetProtocolStackStatsInfo,
NWGetProtocolStkNumsByMediaNum

Management Service Group

Server Environment: Functions 787

NWGetProtocolStkNumsByMediaNum

Returns a list of protocol stack ID numbers for a given media

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetProtocolStkNumsByMediaNum (
 NWCONN_HANDLE conn,
 nuint32 mediaNum,
 NWFSE_PROTOCOL_ID_NUMS N_FAR
 *fseProtocolStkIDNums);

Pascal Syntax

#include <nwfse.inc>

Function NWGetProtocolStkNumsByMediaNum
 (conn : NWCONN_HANDLE;
 mediaNum : nuint32;
 Var fseProtocolStkIDNums : NWFSE_PROTOCOL_ID_NUMS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

mediaNum

(IN) Specifies the ID number representing the frame type used by the
protocol.

fseProtocolStkIDNums

(OUT) Points to NWFSE_PROTOCOL_ID_NUMS getting protocol
stack numbers by media number.

Return Values

These are common return values; see Return Values for more

Management Service Group

Server Environment: Functions 788

information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9C6

NO_CONSOLE_PRIVILEGES

An Invalid Media Number can abend the server

Remarks

To call NWGetProtocolStkNumsByMediaNum, you must have console
operator rights.

NCP Calls

0x2222 123 44 Get Protocol Stack Number By Media Number

See Also

NWGetActiveProtocolStacks, NWGetLoadedMediaNumList,
NWGetProtocolStackConfigInfo, NWGetProtocolStackCustomInfo,
NWGetProtocolStackStatsInfo,
NWGetProtocolStkNumsByLANBrdNum

Management Service Group

Server Environment: Functions 789

NWGetServerInfo

Returns the address and the number of hops to the server specified by
serverName in relation to the server represented by conn

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetServerInfo (
 NWCONN_HANDLE conn,
 nuint32 serverType,
 pnstr8 serverName,
 NWFSE_SERVER_INFO N_FAR *fseServerInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetServerInfo
 (conn : NWCONN_HANDLE;
 serverType : nuint32;
 serverName : pnstr8;
 Var fseServerInfo : NWFSE_SERVER_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

serverType

(IN) Specifies the type of server to search for, such as a file server
(0x0400).

serverName

(IN) Points to the name of the server for which to search.

fseServerInfo

(OUT) Points to NWFSE_SERVER_INFO getting server information.

Management Service Group

Server Environment: Functions 790

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

Invalid Server Name or Server Type

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9C6

NO_CONSOLE_PRIVILEGES

0x8
9FB

INVALID_PARAMETERS

Remarks

To call NWGetServerInfo, you must have console operator rights to the
4.x server indicated by conn. serverType can indicate either a 3.x or 4.x
server.

NCP Calls

0x2222 123 54 Get Server Information

See Also

NWGetServerSourcesInfo

Management Service Group

Server Environment: Functions 791

NWGetServerSetCategories

Returns SET console command configuration parameter categories for the
server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetServerSetCategories (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_SERVER_SET_CATEGORIES N_FAR
 *fseServerSetCategories);

Pascal Syntax

#include <nwfse.inc>

Function NWGetServerSetCategories
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseServerSetCategories : NWFSE_SERVER_SET_CATEGORIES
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

startNum

(IN) Specifies the value returned in nextSequenceNumber of
fseServerSetCategories; normally zero (0) on the first call.

fseServerSetCategories

(OUT) Points to NWFSE_SERVER_SET_CATEGORIES getting server
set categories.

Return Values

Management Service Group

Server Environment: Functions 792

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9F5

Invalid Star Number

Remarks

To call NWGetServerSetCategories, you must have console operator
rights.

NCP Calls

0x2222 123 61 Get Server Set Categories

See Also

NWGetServerSetCommandsInfo, NWSMSetDynamicCmdIntValue,
NWSMSetDynamicCmdStrValue

Management Service Group

Server Environment: Functions 793

NWGetServerSetCommandsInfo

Returns SET console command configuration parameter commands for the
server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetServerSetCommandsInfo (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_SERVER_SET_CMDS_INFO N_FAR
 *fseServerSetCmdsInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetServerSetCommandsInfo
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseServerSetCmdsInfo : NWFSE_SERVER_SET_CMDS_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

startNum

(IN) Specifies the value returned in nextSequenceNumber of
fseServerSetCmdsInfo; normally zero (0) on the first call.

fseServerSetCmdsInfo

(OUT) Points to NWFSE_SERVER_SET_CMDS_INFO getting server
set commands information.

Return Values

Management Service Group

Server Environment: Functions 794

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9FF

Failure of Invalid Start Number

Remarks

To call NWGetServerSetCommandsInfo, you must have console
operator rights.

NCP Calls

0x2222 123 60 Get Server Set Commands Information

See Also

NWGetServerSetCategories, NWSMSetDynamicCmdIntValue,
NWSMSetDynamicCmdStrValue

Management Service Group

Server Environment: Functions 795

NWGetServerSourcesInfo

Returns address information about servers known to a server with a given
name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetServerSourcesInfo (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 nuint32 serverType,
 pnstr8 serverName,
 NWFSE_SERVER_SRC_INFO N_FAR *fseServerSrcInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetServerSourcesInfo
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 serverType : nuint32;
 serverName : pnstr8;
 Var fseServerSrcInfo : NWFSE_SERVER_SRC_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

startNum

(IN) Specifies the value returned in numberOfEntries of fseServerSrcInfo;
normally zero (0) on the first call.

serverType

(IN) Specifies the server type to get information from, such as a file
server (0x0400).

Management Service Group

Server Environment: Functions 796

serverName

(IN) Points to the server name to get information from.

fseServerSetCmdsInfo

(OUT) Points to NWFSE_SERVER_SRC_INFO getting server sources
information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

Invalid Server Name or Server Type

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

Remarks

To call NWGetServerSourcesInfo, you must have console operator
rights.

NCP Calls

0x2222 123 55 Get Server Sources Information

See Also

NWGetServerInfo

Management Service Group

Server Environment: Functions 797

NWGetUserInfo

Gets NetWare user information about a given logged-in server connection

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetUserInfo (
 NWCONN_HANDLE conn,
 nuint32 connNum,
 pnstr8 userName,
 NWFSE_USER_INFO N_FAR *fseUserInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetUserInfo
 (conn : NWCONN_HANDLE;
 connNum : nuint32;
 userName : pnstr8;
 Var fseUserInfo : NWFSE_USER_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

connNum

(IN) Specifies the connection number of logged-in user.

userName

(OUT) Points to the user name; minimum buffer size is 48 characters.

fseServerSetCmdsInfo

(OUT) Points to NWFSE_USER_INFO getting user information.

Return Values

Management Service Group

Server Environment: Functions 798

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9FF

Failure or Invalid Connection Number

Remarks

To call NWGetUserInfo, you must have console operator rights.

NCP Calls

0x2222 123 04 User Information

See Also

NWCCGetAllConnInfo, NWGetActiveConnListByType,
NWGetConnectionInformation

Management Service Group

Server Environment: Functions 799

NWGetVolumeInfoByLevel

Returns information about the specified volume, returning different
structures depending on the infoLevel specified

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetVolumeInfoByLevel (
 NWCONN_HANDLE conn,
 nuint32 volNum,
 nuint32 infoLevel,
 NWFSE_VOLUME_INFO_BY_LEVEL N_FAR *fseVolumeInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetVolumeInfoByLevel
 (conn : NWCONN_HANDLE;
 volNum : nuint32;
 infoLevel : nuint32;
 Var fseVolumeInfo : NWFSE_VOLUME_INFO_BY_LEVEL
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number for which information is being
obtained.

infoLevel

(IN) Specifies which level of information to return (1 or 2).

fseVolumeInfo

(OUT) Points to NWFSE_VOLUME_INFO_BY_LEVEL containing the
information.

Management Service Group

Server Environment: Functions 800

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
998

VOLUME_DOES_NOT_EXIST

0x8
9FF

Failure

Remarks

Console operator rights are NOT necessary to call
NWGetVolumeInfoByLevel.

NCP Calls

0x2222 123 34 Get Volume Information By Level

See Also

NWGetVolumeInfoWithHandle, NWGetVolumeInfoWithNumber

Management Service Group

Server Environment: Functions 801

NWGetVolumeSegmentList

Returns a list of up to 32 volume segments for a given volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetVolumeSegmentList (
 NWCONN_HANDLE conn,
 nuint32 volumeNum,
 NWFSE_VOLUME_SEGMENT_LIST N_FAR
 *fseVolumeSegmentList);

Pascal Syntax

#include <nwfse.inc>

Function NWGetVolumeSegmentList
 (conn : NWCONN_HANDLE;
 volNum : nuint32;
 Var fseVolumeSegmentList : NWFSE_VOLUME_SEGMENT_LIST
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volumeNum

(IN) Specifies the number representing a specific volume. Zero (0) =
Volume SYS

fseVolumeSegmentList

(OUT) Points to NWFSE_VOLUME_SEGMENT_LIST containing the
volume segment list.

Return Values

These are common return values; see Return Values for more

Management Service Group

Server Environment: Functions 802

information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
998

VOLUME_DOES_NOT_EXIST

Remarks

Console operator rights are NOT necessary to call
NWGetVolumeSegmentList.

NCP Calls

0x2222 123 33 Get Volume Segment List

Management Service Group

Server Environment: Functions 803

NWGetVolumeSwitchInfo

Gets information about the volume switch counter such as the number of
overall times through the function

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwfse.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetVolumeSwitchInfo (
 NWCONN_HANDLE conn,
 nuint32 startNum,
 NWFSE_VOLUME_SWITCH_INFO N_FAR
 *fseVolumeSwitchInfo);

Pascal Syntax

#include <nwfse.inc>

Function NWGetVolumeSwitchInfo
 (conn : NWCONN_HANDLE;
 startNum : nuint32;
 Var fseVolumeSwitchInfo : NWFSE_VOLUME_SWITCH_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

startNum

(IN) Specifies the starting number; set to zero (0) on the first call.

fseVolumeSwitchInfo

(OUT) Points to NWFSE_VOLUME_SWITCH_INFO getting volume
switch information.

Return Values

These are common return values; see Return Values for more

Management Service Group

Server Environment: Functions 804

information.

0x0
000

SUCCESSFUL

0x8
97E

NCP_BOUNDARY_CHECK_FAILED

0x8
9FF

Failure or Invalid Start Item Number

Remarks

To call NWGetVolumeSwitchInfo, you must have console operator
rights.

NCP Calls

0x2222 123 09 Volume Switch Information

Management Service Group

Server Environment: Functions 805

NWIsManager

Checks whether a calling station is a manager

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWIsManager (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwserver.inc>

Function NWIsManager
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

Calling station is a manager.

0x8
9FF

Calling station is not a manager.

Remarks

To call NWIsManager, you must have console operator rights.

Management Service Group

Server Environment: Functions 806

To call NWIsManager, you must have console operator rights.

A station is a manager if it is a supervisor, or if it appears in the
MANAGERS property of the supervisor object.

NCP Calls

0x2222 23 73 Is Calling Station A Manager

Management Service Group

Server Environment: Functions 807

NWLoginToFileServer

Attempts to log an object in to the specified NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
#include <nwbindry.h>
or
#include <nwcalls.h>

NWCCODE N_API NWLoginToFileServer (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnstr8 password);

Pascal Syntax

#include <nwserver.inc>

Function NWLoginToFileServer
 (conn : NWCONN_HANDLE;
 objName : pnstr8;
 objType : nuint16;
 password : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to the bindery object name of the object logging in to the
NetWare server object name (up to 48 characters including the NULL
terminator).

objType

(IN) Specifies the Bindery object type of the object logging in to the
NetWare server.

password

Management Service Group

Server Environment: Functions 808

(IN) Points to the case sensitive password of the bindery object logging
in to the NetWare server (or pass in a zero-length string if a password
is not required).

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
00

ALREADY_ATTACHED

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
C1

LOGIN_DENIED_NO_ACCOUNT_BALANCE

0x89
C2

LOGIN_DENIED_NO_CREDIT

0x89
C5

INTRUDER_DETECTION_LOCK

0x89
D9

ERR_MAX_SERVERS

0x89
DA

UNAUTHORIZED_LOGIN_TIME

0x89
DB

UNAUTHORIZED_LOGIN_STATION

0x89
DC

ACCOUNT_DISABLED

0x89
DE

PASSWORD_HAS_EXPIRED_NO_GRACE

0x89
DF

PASSWORD_EXPIRED

0x89
FB

INVALID_PARAMETERS

0x89
FE

BINDERY_LOCKED

0x89
FF

NO_SUCH_OBJECT_OR_BAD_PASSWORD

0xFF Failure

Management Service Group

Server Environment: Functions 809

Remarks

To login to a 3.x NetWare server, both the conn and password parameters
must be specified by upper case letters.

Some utilities require an upper case password to be passed to the
password parameter.

If a Directory Services attachment exists, NWLoginToFileServer fails
with 0x8800.

Before calling NWLoginToFileServer, call the NWCCGetConnInfo and
NWGetConnectionInformation functions and check
CONNECTION_NDS. If it is set, NWLoginToFileServer cannot be used
to log in. NWCCSysCloseConnRef and NWCCGetConnInfo will also be
prevented from being called. Call Directory Services functions to
continue the operation.

If the encryption key is not available, it attempts an unencrypted login. If
the key is available, the password is encrypted and an encrypted login is
attempted.

NWLoginToFileServer performs only the login, not the attach. Clients
must be previously attached to call NWLoginToFileServer. Attaching to
a NetWare server is not the same as logging in. A workstation attaches to
a NetWare server to obtain a connection number. The workstation can
then log in to the NetWare server using that connection number.
NWLoginToFileServer does not, however, interpret the login script.

Valid Bindery object types for OT_ constants follow:

OT_WILD 0xFFFF
OT_UNKNOWN 0x0000
OT_USER 0x0100
OT_USER_GROUP 0x0200
OT_PRINT_QUEUE 0x0300
OT_FILE_SERVER 0x0400
OT_JOB_SERVER 0x0500
OT_GATEWAY 0x0600
OT_PRINT_SERVER 0x0700
OT_ARCHIVE_QUEUE 0x0800
OT_ARCHIVE_SERVER 0x0900
OT_JOB_QUEUE 0x0A00
OT_ADMINISTRATION 0x0B00
OT_NAS_SNA_GATEWAY 0x2100
OT_REMOTE_BRIDGE_SERVER 0x2600
OT_TCPIP_GATEWAY 0x2700

Extended bindery object types follow:

OT_TIME_SYNCHRONIZATION_SERVER 0x2D00
OT_ARCHIVE_SERVER_DYNAMIC_SAP 0x2E00

Management Service Group

Server Environment: Functions 810

OT_ADVERTISING_PRINT_SERVER 0x4700
OT_PRINT_QUEUE_USER 0x5300

NCP Calls

0x2222 23 24 Keyed Object Login

0x2222 23 53 Get Bindery Object ID

Management Service Group

Server Environment: Functions 811

NWLogoutFromFileServer

Attempts to log the workstation out of the specified NetWare server

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWLogoutFromFileServer (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwserver.inc>

Function NWLogoutFromFileServer
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle associated with
the server from which to log out.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
8FB

INVALID_PARAMETERS

Remarks

Management Service Group

Server Environment: Functions 812

To call NWLogoutFromFileServer, you must have console operator
rights.

If successful, drive mappings dependent on the connection are deleted.

For OS/2, after calling NetWare IFS to delete any drive mappings
dependent on the connection, the requester performs the logout function.

NCP Calls

None

Management Service Group

Server Environment: Functions 813

NWSetFileServerDateAndTime

Sets the date and time of a NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Server Environment

Syntax

#include <nwserver.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSetFileServerDateAndTime (
 NWCONN_HANDLE conn,
 nuint8 year,
 nuint8 month,
 nuint8 day,
 nuint8 hour,
 nuint8 minute,
 nuint8 second);

Pascal Syntax

#include <nwserver.inc>

Function NWSetFileServerDateAndTime
 (conn : NWCONN_HANDLE;
 year : nuint8;
 month : nuint8;
 day : nuint8;
 hour : nuint8;
 minute : nuint8;
 second : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

year

(IN) Specifies the value corresponding to the year (0-179).

month

(IN) Specifies the month value (1=January; 12=December).

Management Service Group

Server Environment: Functions 814

day

(IN) Specifies the day value (1-31).

hour

(IN) Specifies the hour value (0=midnight; 23=11 p.m.).

minute

(IN) Specifies the minute value (0-59).

second

(IN) Specifies the second value (0-59).

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
9C6

NO_CONSOLE_PRIVILEGES

Remarks

To call NWSetFileServerDateAndTime, you must have console operator
rights.

The year parameter contains the following values which correspond to the
specified years:

0-79 2000-2079

80-99 1980-1999

100-179 2000-2079

NCP Calls

0x2222 23 202 Set File Server Date And Time

Management Service Group

Server Environment: Functions 815

Server Environment: Structures

Management Service Group

Server Environment: Structures 816

CACHE_COUNTERS

Returns cache information

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 nuint32 readExistingBlockCount;
 nuint32 readExistingWriteWaitCount;
 nuint32 readExistingPartialReadCount;
 nuint32 readExistingReadErrorCount;
 nuint32 writeBlockCount;
 nuint32 writeEntireBlockCount;
 nuint32 getDiskCount;
 nuint32 getDiskNeedToAllocCount;
 nuint32 getDiskSomeoneBeatMeCount;
 nuint32 getDiskPartialReadCount;
 nuint32 getDiskReadErrorCount;
 nuint32 getAsyncDiskCount;
 nuint32 getAsyncDiskNeedToAlloc;
 nuint32 getAsyncDiskSomeoneBeatMe;
 nuint32 errorDoingAsyncReadCount;
 nuint32 getDiskNoReadCount;
 nuint32 getDiskNoReadAllocCount;
 nuint32 getDiskNoReadSomeoneBeatMeCount;
 nuint32 diskWriteCount;
 nuint32 diskWriteAllocCount;
 nuint32 diskWriteSomeoneBeatMeCount;
 nuint32 writeErrorCount;
 nuint32 waitOnSemaphoreCount;
 nuint32 allocBlockWaitForSomeoneCount;
 nuint32 allocBlockCount;
 nuint32 allocBlockWaitCount;
} CACHE_COUNTERS;

Pascal Structure

CACHE_COUNTERS = Record
 readExistingBlockCount : nuint32;
 readExistingWriteWaitCount : nuint32;
 readExistingPartialReadCount : nuint32;
 readExistingReadErrorCount : nuint32;
 writeBlockCount : nuint32;
 writeEntireBlockCount : nuint32;
 getDiskCount : nuint32;
 getDiskNeedToAllocCount : nuint32;
 getDiskSomeoneBeatMeCount : nuint32;

Management Service Group

Server Environment: Structures 817

 getDiskPartialReadCount : nuint32;
 getDiskReadErrorCount : nuint32;
 getAsyncDiskCount : nuint32;
 getAsyncDiskNeedToAlloc : nuint32;
 getAsyncDiskSomeoneBeatMe : nuint32;
 errorDoingAsyncReadCount : nuint32;
 getDiskNoReadCount : nuint32;
 getDiskNoReadAllocCount : nuint32;
 getDiskNoReadSomeoneBeatMeCount : nuint32;
 diskWriteCount : nuint32;
 diskWriteAllocCount : nuint32;
 diskWriteSomeoneBeatMeCount : nuint32;
 writeErrorCount : nuint32;
 waitOnSemaphoreCount : nuint32;
 allocBlockWaitForSomeoneCount : nuint32;
 allocBlockCount : nuint32;
 allocBlockWaitCount : nuint32
 End;

Fields

readExistingBlockCount

Specifies the number of times an existing cache block has been read.

readExistingWriteWaitCount

Specifies the number of times an existing cache block was being read
but had to wait until someone else was finished writing to it before it
could be read completely.

readExistingPartialReadCount

Specifies the number cache blocks that were being read but
encountered dirty sectors.

readExistingReadErrorCount

Specifies the number of cache blocks that experienced errors while
trying to be read.

writeBlockCount

Specifies the number of cache buffers that were dirty and written to
disk.

writeEntireBlockCount

Specifies the number of entire cache blocks that were dirty and written
to disk.

getDiskCount

Specifies the number of times a block is obtained from disk to be
compared against what is in a cache.

getDiskNeedToAllocCount

Specifies the number of times a cache control structure needs to be
allocated because what is obtained from disk is not in a cache.

Management Service Group

Server Environment: Structures 818

getDiskSomeoneBeatMeCount

Specifies the number of times a cache control structure is allocated to
store new data from a disk but a recheck of a cache shows the new
data is already stored indicating someone else beat the first attempt to
store the data. (The newly allocated cache control structure is then
returned to the available list.)

getDiskPartialReadCount

Specifies the number of times a disk was only partially read.

getDiskReadErrorCount

Specifies the number of times an error was encountered while reading
data from a disk.

getAsyncDiskCount

Specifies the number of times a block is obtained from an
asynchronous disk to be compared against what is in a cache.

getAsyncDiskNeedToAlloc

Specifies the number of times a cache control structure needs to be
allocated because what is obtained from an ansynchronous disk is not
in a cache.

getAsyncDiskSomeoneBeatMe

Specifies the number of times a cache control structure is allocated to
store new data from an asynchronous disk but a recheck of a cache
shows the new data is already stored indicating someone else beat the
first attempt to store the data. (The newly allocated cache control
structure is then returned to the available list.)

errorDoingAsyncReadCount

Specifies the number of times an error occurred while reading from a
disk. It is used to compare with what may or may not be in a cache.

getDiskNoReadCount

Specifies the number of times data is obtained from a disk and put into
a cache without requesting a read on the data.

getDiskNoReadAllocCount

Specifies the number of times a new cache control structure has to be
allocated during the time that data is obtained from disk to be put into
a cache.

getDiskNoReadSomeoneBeatMeCount

Specifies the number of times a cache control structure has to be
allocated during the time that data is obtained from disk to be put into
a cache but a recheck of a cache shows the new data is already stored
indicating someone else beat the first attempt to store the data. (The
newly allocated cache control structure is then returned to the
available list.)

diskWriteCount

Specifies the number of times a cache block has been written to disk.

Management Service Group

Server Environment: Structures 819

diskWriteAllocCount

Specifies the number of times a cache control structure was allocated
during the time that data is being written to disk.

diskWriteSomeoneBeatMeCount

Specifies the number of times a cache control structure has to be
allocated during the time that a cache block is written to disk but a
recheck of a cache shows the new data is already written to disk
indicating someone else beat the first attempt to store the data. (The
newly allocated cache control structure is then returned to the
available list.)

writeErrorCount

Specifies the number of times an error was encountered while writing
a cache to disk.

waitOnSemaphoreCount

Specifies the number of times a cache control blocks was waiting on a
semaphore while cache and disk blocks were being checked

allocBlockWaitForSomeoneCount

Specifies the number of times that the allocate waiting count was set.
You must set a semaphore and try again later.

allocBlockCount

Specifies the number of times a cache control block was allocated.

allocBlockWaitCount

Specifies the number of times the LRU and cache nodes were not
available.

Management Service Group

Server Environment: Structures 820

CACHE_INFO

Returns information about a cache

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 nuint32 maxByteCount;
 nuint32 minNumOfCacheBuffers;
 nuint32 minCacheReportThreshold;
 nuint32 allocWaitingCount;
 nuint32 numDirtyBlocks;
 nuint32 cacheDirtyWaitTime;
 nuint32 cacheMaxConcurrentWrites;
 nuint32 maxDirtyTime;
 nuint32 numOfDirCacheBuffers;
 nuint32 cacheByteToBlockShiftFactor;
} CACHE_INFO;

Pascal Structure

CACHE_INFO = Record
 maxByteCount : nuint32;
 minNumOfCacheBuffers : nuint32;
 minCacheReportThreshold : nuint32;
 allocWaitingCount : nuint32;
 numDirtyBlocks : nuint32;
 cacheDirtyWaitTime : nuint32;
 cacheMaxConcurrentWrites : nuint32;
 maxDirtyTime : nuint32;
 numOfDirCacheBuffers : nuint32;
 cacheByteToBlockShiftFactor : nuint32
 End;

Fields

maxByteCount

Specifies the length in bytes of a cache block.

minNumOfCacheBuffers

Specifies the minimum number of cache buffers allowed on the server
(default is 20, but values from 20-1000 are supported).

minCacheReportThreshold

Specifies the number of cache buffers used for the report threshold
(default value is 20, but values from 0-1000 are supported).

Management Service Group

Server Environment: Structures 821

allocWaitingCount

Specifies the number of processes waiting to allocate a cache block.

numDirtyBlocks

Specifies the number of dirty blocks waiting to be written to disk.

cacheDirtyWaitTime

Specifies the maximum wait before a Write request is written to disk
(default is 3.3 seconds, but values from 0.1-10 seconds are supported).

cacheMaxConcurrentWrites

Specifies the maximum number of Write requests for changed file data
that can be put in the elevator before the disk head begins a sweep
across the disk (default is 50, but values from 10-100 are supported).

maxDirtyTime

Specifies the longest time (in ticks) since the server was brought up
that a dirty block has waited before it was written to disk.

numOfDirCacheBuffers

Specifies the number of directory cache buffers on the server.

cacheByteToBlockShiftFactor

Specifies the n factor used in the block size equation.

Remarks

The minNumOfCacheBuffers, minCacheReportThreshold, cacheDirtyWaitTime,
and cacheMaxConcurrentWrites fields can be set by using the SET console
command.

When the number of cache buffers reach a number equal to the sum of
the numbers specified by the minNumOfCacheBuffers and
minCacheReportThreshold fields, the server sends a message warning that
the cache buffers are getting low.

The block size (in bytes) is calculated using:

block size = 2n+9

where n is the shift factor.

Management Service Group

Server Environment: Structures 822

CACHE_MEM_COUNTERS

Returns cache memory information

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 nuint32 originalNumOfCacheBuffers;
 nuint32 currentNumOfCacheBuffers;
 nuint32 cacheDirtyBlockThreshold;
 nuint32 waitNodeCount;
 nuint32 waitNodeAllocFailureCount;
 nuint32 moveCacheNodeCount;
 nuint32 moveCacheNodeFromAvailCount;
 nuint32 accelerateCacheNodeWriteCount;
 nuint32 removeCacheNodeCount;
 nuint32 removeCacheNodeFromAvailCount;
} CACHE_MEM_COUNTERS;

Pascal Structure

CACHE_MEM_COUNTERS = Record
 originalNumOfCacheBuffers : nuint32;
 currentNumOfCacheBuffers : nuint32;
 cacheDirtyBlockThreshold : nuint32;
 waitNodeCount : nuint32;
 waitNodeAllocFailureCount : nuint32;
 moveCacheNodeCount : nuint32;
 moveCacheNodeFromAvailCount : nuint32;
 accelerateCacheNodeWriteCount : nuint32;
 removeCacheNodeCount : nuint32;
 removeCacheNodeFromAvailCount : nuint32
 End;

Fields

originalNumOfCacheBuffers

Specifies the number of cache buffers that existed when the server was
brought up.

currentNumOfCacheBuffers

Specifies the number of cache buffers currently on the server.

cacheDirtyBlockThreshold

Specifies the maximum number of cache blocks allowed to be dirty
simultaneously.

Management Service Group

Server Environment: Structures 823

waitNodeCount

Specifies the number of wait nodes that have been allocated. (Wait
nodes are memory chunks created to track the start and end of internal
processes.)

waitNodeAllocFailureCount

Specifies the number of times a wait node was unable to be allocated.

moveCacheNodeCount

Specifies the number of times a cache block control node has been
moved from one node to another for memory management.

moveCacheNodeFromAvailCount

Specifies the number of times a cache block control node has been
available and sitting in the available list and then moved.

accelerateCacheNodeWriteCount

Specifies the number of dirty cache nodes that were moved to the
beginning of the list to be written to disk.

removeCacheNodeCount

Specifies the number of cache block control structure nodes that were
removed while collapsing cache memory segments.

removeCacheNodeFromAvailCount

Specifies the number of cache block control nodes that were removed
from the cache node available list.

Management Service Group

Server Environment: Structures 824

CACHE_TREND_COUNTERS

Returns cache trend information

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 nuint32 numCacheChecks;
 nuint32 numCacheHits;
 nuint32 numDirtyCacheChecks;
 nuint32 numDirtyCacheHits;
 nuint32 cacheUsedWhileChecking;
 nuint32 waitForDirtyBlocksDecreaseCount;
 nuint32 allocBlockFromAvailCount;
 nuint32 allocBlockFromLRUCount;
 nuint32 allocBlockAlreadyWaiting;
 nuint32 LRUSittingTime;
} CACHE_TREND_COUNTERS;

Pascal Structure

CACHE_TREND_COUNTERS = Record
 numCacheChecks : nuint32;
 numCacheHits : nuint32;
 numDirtyCacheChecks : nuint32;
 numDirtyCacheHits : nuint32;
 cacheUsedWhileChecking : nuint32;
 waitForDirtyBlocksDecreaseCount : nuint32;
 allocBlockFromAvailCount : nuint32;
 allocBlockFromLRUCount : nuint32;
 allocBlockAlreadyWaiting : nuint32;
 LRUSittingTime : nuint32
 End;

Fields

numCacheChecks

Specifies the total number of times any block in the cache was looked
at since the server was brought up.

numCacheHits

Specifies the number of times cache requests were serviced from
existing cache blocks.

numDirtyCacheChecks

Specifies the number of times a cache block was checked to determine

Management Service Group

Server Environment: Structures 825

if it is dirty.

numDirtyCacheHits

Specifies the time in ticks the oldest cache block has been available
(sitting in the LRU list).

cacheUsedWhileChecking

Specifies the number of cache blocks that were allocated and then
returned to the available list while a cache was being checked during
different cache operations (read, write, etc.).

waitForDirtyBlocksDecreaseCount

Specifies the number of times a process had to wait until the number
of dirty cache blocks decreased to less than the cache dirty block
threshold.

allocBlockFromAvailCount

Specifies the number of cache blocks removed from the available list
and used.

allocBlockFromLRUCount

Specifies the number of cache blocks removed from the LRU list and
used done if cache blocks cannot be removed from the available list).

allocBlockAlreadyWaiting

Specifies the number of times an attempt was made to allocate a cache
block but none are available in the available list or LRU (system waits
and tries again later).

LRUSittingTime

Specifies the time (in ticks) that the oldest cache block has been
available and was sitting in the LRU list.

Management Service Group

Server Environment: Structures 826

CPU_INFO

Returns CPU information

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 nuint32 pageTableOwnerFlag;
 nuint32 CPUTypeFlag;
 nuint32 coProcessorFlag;
 nuint32 busTypeFlag;
 nuint32 IOEngineFlag;
 nuint32 FSEngineFlag;
 nuint32 nonDedicatedFlag;
 nuint32 cpuString;
 nuint32 numericCoprocessorPresent/NotPresentString;
 nuint32 busString;
} CPU_INFO;

Pascal Structure

CPU_INFO = Record
 pageTableOwnerFlag : nuint32;
 CPUTypeFlag : nuint32;
 coProcessorFlag : nuint32;
 busTypeFlag : nuint32;
 IOEngineFlag : nuint32;
 FSEngineFlag : nuint32;
 nonDedicatedFlag : nuint32
 End;

Fields

pageTableOwnerFlag

Specifies which domain is the current domain.

CPUTypeFlag

Specifies the CPU type:

0=80386

1=80486

2=Pentium

coProcessorFlag

Specifies whether a numeric coprocessor is present (true=present).

busTypeFlag

Management Service Group

Server Environment: Structures 827

Specifies the bus type:

0x01=micro channel

0x02=EISA

0x04=PCI

0x08=PCMCIA

0x10=ISA

IOEngineFlag

Specifies whether the IO engine is installed (true=installed).

FSEngineFlag

Specifies whether the file system engine is installed (true=installed).

nonDedicatedFlag

Specifies whether the CPU is dedicated.

cpuString

Specifies the CPU type:

Default=CPU Type Unknown

0=80386

1=80486

2-Pentium

numericCoprocessorPresent/NotPresentString

Specifies whether a numerical coprocessor is present:

true=numerical coprocessor is present

false=numerical coprocessor is not present

busString

Specifies the type of bus:

PCI bus

PCMCIA bus

Micro channel bus

EISA bus

ISA bus

Unknown bus type

Management Service Group

Server Environment: Structures 828

DIR_CACHE_INFO

Returns information for a directory cache

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 nuint32 minTimeSinceFileDelete;
 nuint32 absMinTimeSinceFileDelete;
 nuint32 minNumOfDirCacheBuffers;
 nuint32 maxNumOfDirCacheBuffers;
 nuint32 numOfDirCacheBuffers;
 nuint32 dCMinNonReferencedTime;
 nuint32 dCWaitTimeBeforeNewBuffer;
 nuint32 dCMaxConcurrentWrites;
 nuint32 dCDirtyWaitTime;
 nuint32 dCDoubleReadFlag;
 nuint32 mapHashNodeCount;
 nuint32 spaceRestrictionNodeCount;
 nuint32 trusteeListNodeCount;
 nuint32 percentOfVolumeUsedByDirs;
} DIR_CACHE_INFO;

Pascal Structure

DIR_CACHE_INFO = Record
 minTimeSinceFileDelete : nuint32;
 absMinTimeSinceFileDelete : nuint32;
 minNumOfDirCacheBuffers : nuint32;
 maxNumOfDirCacheBuffers : nuint32;
 numOfDirCacheBuffers : nuint32;
 dCMinNonReferencedTime : nuint32;
 dCWaitTimeBeforeNewBuffer : nuint32;
 dCMaxConcurrentWrites : nuint32;
 dCDirtyWaitTime : nuint32;
 dCDoubleReadFlag : nuint32;
 mapHashNodeCount : nuint32;
 spaceRestrictionNodeCount : nuint32;
 trusteeListNodeCount : nuint32;
 percentOfVolumeUsedByDirs : nuint32
 End;

Fields

minTimeSinceFileDelete

Specifies the minimum time (in clock ticks) between when a file is

Management Service Group

Server Environment: Structures 829

deleted and when it can be purged.

absMinTimeSinceFileDelete

Specifies the minimum time (in clock ticks) between when a file is
deleted and when it can be purged after the system has no available
blocks.

minNumOfDirCacheBuffers

Specifies the minimum number of directory cache buffers that can be
allocated on the server.

maxNumOfDirCacheBuffers

Specifies the maximum number of directory cache buffers that can be
allocated on the server.

numOfDirCacheBuffers

Specifies the current number of directory cache buffers on the server.

dCMinNonReferencedTime

Specifies the time (in clock ticks) that must elapse between the last
reference of a directory buffer and the time it is reused.

dCWaitTimeBeforeNewBuffer

Specifies the time (in clock ticks) that must elapse before an additional
directory cache buffer can be allocated.

dCMaxConcurrentWrites

Specifies the maximum number of write requests from directory cache
buffers that can be put in the elevator before they are written to disk.

dCDirtyWaitTime

Specifies the maximum time (in clock ticks) that the server can wait
before writing dirty cache buffers to disk.

dCDoubleReadFlag

Specifies whether the directory block must be read and verified from
both copies of directory tables.

mapHashNodeCount

Specifies the number of times a hash node has been allocated for
directories.

spaceRestrictionNodeCount

Specifies the total number of disk space restrictions placed since the
server was brought up.

trusteeListNodeCount

Specifies the total number of trustee assignments set on the file system
since the server was brought up.

percentOfVolumeUsedByDirs

Specifies the total volume space percentage that is used by directory
entries.

Management Service Group

Server Environment: Structures 830

Remarks

The minNumOfDirCacheBuffers, maxNumOfDirCacheBuffers,
dCMinNonReferencedTime, dCWaitTimeBeforeNewBuffer,
dCMaxConcurrentWrites, dCDirtyWaitTime, and
percentOfVolumeUsedByDirs fields can be set by using the SET console
command.

Management Service Group

Server Environment: Structures 831

DRV_MAP_TABLE

Returns drive map table data

Service: Server Environment

Defined In: nwserver.h

Structure

typedef struct
{
 nuint32 systemElapsedTime;
 nuint8 SFTSupportLevel;
 nuint8 logicalDriveCount;
 nuint8 physicalDriveCount;
 nuint8 diskChannelTable[5];
 nuint16 pendingIOCommands;
 nuint8 driveMappingTable[32];
 nuint8 driveMirrorTable[32];
 nuint8 deadMirrorTable[32];
 nuint8 reMirrorDriveNumber;
 nuint8 reserved;
 nuint32 reMirrorCurrentOffset;
 nuint16 SFTErrorTable[60];
} DRV_MAP_TABLE;

Pascal Structure

Defined in nwserver.inc

DRV_MAP_TABLE = Record
 systemElapsedTime : nuint32;
 SFTSupportLevel : nuint8;
 logicalDriveCount : nuint8;
 physicalDriveCount : nuint8;
 diskChannelTable : Array[0..4] Of nuint8;
 pendingIOCommands : nuint16;
 driveMappingTable : Array[0..31] Of nuint8;
 driveMirrorTable : Array[0..31] Of nuint8;
 deadMirrorTable : Array[0..31] Of nuint8;
 reMirrorDriveNumber : nuint8;
 reserved : nuint8;
 reMirrorCurrentOffset : nuint32;
 SFTErrorTable : Array[0..59] Of nuint16
 End;

Fields

systemElapsedTime

Management Service Group

Server Environment: Structures 832

Specifies how long the NetWare server has been up. systemElapsedTime
is returned in units of approximately 1/18 second and is used to
determine the amount of time that has elapsed between consecutive
calls. When this field reaches 0xFFFFFFFF, it wraps back to zero.

SFTSupportLevel

Specifies the SFT level offered by the NetWare server: 1 hot disk error
fix 2 disk mirroring and transaction tracking 3 physical NetWare
server mirroring

logicalDriveCount

Specifies the number of logical drives attached to the server. If the
NetWare server supports SFT Level II or above and disks are
mirrored, logicalDriveCount will be lower than the actual number of
physical disk subsystems attached to the NetWare server. The
NetWare server’s operating system considers mirrored disks to be one
logical drive.

physicalDriveCount

Specifies the number of physical disk units attached to the server.

diskChannelTable

Specifies the 5-byte table that indicates which disk channels exists on
the server and what their drive types are. (Each channel is 1 byte.) A
nonzero value in the Disk Channel Table indicates that the
corresponding disk channel exists in the NetWare server. The drive
types are:

1 = XT
2 = AT
3 = SCSI
4 = disk coprocessor
50 to 255 = Value Added Disk Drive (VADD)

pendingIOCommands

Specifies the number of outstanding disk controller commands.

driveMappingTable

Specifies the 32-byte table containing the primary physical drive to
which each logical drive is mapped (0xFF = no such logical drive).

driveMirrorTable

Specifies the 32-byte table containing the secondary physical drive to
which each logical drive is mapped (0xFF = no such logical drive).

deadMirrorTable

Specifies the 32-byte table containing the secondary physical drive to
which each logical drive was last mapped (0xFF = logical drive was
never mirrored). This table is used in conjunction with the Drive
Mirror Table. If the entry in the Drive Mirror Table shows that a drive
is not currently mirrored, the table can be used to determine which
drive previously mirrored the logical drive. The Dead Mirror Table is
used to remirror a logical drive after a mirror failure.

Management Service Group

Server Environment: Structures 833

reMirrorDriveNumber

Specifies the physical drive number of the disk currently being
remirrored (0xFF = no disk being remirrored).

reserved

Is currently not used.

reMirrorCurrentOffset

Specifies the block number that is currently being remirrored.

SFTErrorTable

Specifies the 60-byte table containing SFT internal error counters.

Management Service Group

Server Environment: Structures 834

DSK_CACHE_STATS

Returns disk caching statistics

Service: Server Environment

Defined In: nwserver.h

Structure

typedef struct
{
 nuint32 systemElapsedTime;
 nuint16 cacheBufferCount;
 nuint16 cacheBufferSize;
 nuint16 dirtyCacheBuffers;
 nuint32 cacheReadRequests;
 nuint32 cacheWriteRequests;
 nuint32 cacheHits;
 nuint32 cacheMisses;
 nuint32 physicalReadReqeusts;
 nuint32 physicalWriteRequests;
 nuint16 physicalReadErrors;
 nuint16 physicalWriteErrors;
 nuint32 cacheGetRequests;
 nuint32 cacheFullWriteRequests;
 nuint32 cachePartialWriteRequests;
 nuint32 backgroundDirtyWrites;
 nuint32 backgroundAgedWrites;
 nuint32 totalCacheWrites;
 nuint32 cacheAllocations;
 nuint16 thrashingCount;
 nuint16 LRUBlockWasDirtyCount;
 nuint16 readBeyondWriteCount;
 nuint16 fragmentedWriteCount;
 nuint16 cacheHitOnUnavailCount;
 nuint16 cacheBlockScrappedCount;
} DSK_CACHE_STATS;

Pascal Structure

Defined in nwserver.inc

DSK_CACHE_STATS = Record
 systemElapsedTime : nuint32;
 cacheBufferCount : nuint16;
 cacheBufferSize : nuint16;
 dirtyCacheBuffers : nuint16;
 cacheReadRequests : nuint32;
 cacheWriteRequests : nuint32;
 cacheHits : nuint32;

Management Service Group

Server Environment: Structures 835

 cacheMisses : nuint32;
 physicalReadRequests : nuint32;
 physicalWriteRequests : nuint32;
 physicalReadErrors : nuint16;
 physicalWriteErrors : nuint16;
 cacheGetRequests : nuint32;
 cacheFullWriteRequests : nuint32;
 cachePartialWriteRequests : nuint32;
 backgroundDirtyWrites : nuint32;
 backgroundAgedWrites : nuint32;
 totalCacheWrites : nuint32;
 cacheAllocations : nuint32;
 thrashingCount : nuint16;
 LRUBlockWasDirtyCount : nuint16;
 readBeyondWriteCount : nuint16;
 fragmentedWriteCount : nuint16;
 cacheHitOnUnavailCount : nuint16;
 cacheBlockScrappedCount : nuint16
 End;

Fields

systemElapsedTime

Specifies how long the NetWare server has been up. This value is
returned in units of approximately 1/18 second and is used to
determine the amount of time that has elapsed between consecutive
calls. when systemElapsedTime reaches 0xFFFFFFFF, it wraps back to
zero.

cacheBufferCount

Specifies the number of cache buffers in the server.

cacheBufferSize

Specifies the number of bytes in a cache buffer.

dirtyCacheBuffers

Specifies the number of cache buffers in use.

cacheReadRequests

Specifies the number of times the cache software received a request to
read data from the disk.

cacheWriteRequests

Specifies the number of times the cache software received a request to
write data to the disk.

cacheHits

Specifies the number of times cache requests were serviced form
existing cache blocks.

cacheMisses

Specifies the number of times cache requests could not be serviced

Management Service Group

Server Environment: Structures 836

form existing cache blocks.

physicalReadReqeusts

Specifies the number of times the cache software issued a physical
read request to a disk driver. (A physical read requests reads in as
much data as the cache block holds.)

physicalWriteRequests

Specifies the number of times the cache software issued a physical
write request to a disk driver.

physicalReadRequests

Specifies the number of times the cache software received an error
from the disk driver on a disk read request.

physicalWriteErrors

Specifies the number of times the cache software received an error
from the disk driver on a disk write request.

cacheGetRequests

Specifies the number of times the cache software received a request to
read information from the disk.

cacheFullWriteRequests

Specifies the number of times the cache software was requested to
write information to disk that exactly filled one or more sectors.

cachePartialWriteRequests

Specifies the number of times the cache software was requested to
write information to disk that did not exactly fill a sector. (Partial write
requests require a disk preread.)

backgroundDirtyWrites

Specifies the number of times a cache block that was written to disk
was completely filled with information. (The whole cache block was
written.)

backgroundAgedWrites

Specifies the number of times the background disk write process wrote
a partially filled cache block to disk. (The cache block was written to
disk because the block had not been accessed for a significant period
of time.)

totalCacheWrites

Specifies the total number of cache buffers written to disk.

cacheAllocations

Specifies the number of times a cache block was allocated for use.

thrashingCount

Specifies the number of times a cache block was not available when a
cache block allocation was requested.

LRUBlockWasDirtyCount

Management Service Group

Server Environment: Structures 837

Specifies the number of times the Least_Recently_Used cache block
allocation algorithm reclaimed a dirty cache block.

readBeyondWriteCount

Specifies the number of times a file read request was received for data
not yet written to disk (due to file write requests that had not yet filled
the cache block). (This requires a disk preread.)

fragmentedWriteCount

Specifies the number of times a dirty cache block contained
noncontiguous sectors of information to be written, and the skipped
sectors were not preread from the disk. (Multiple disk writes were
issued to write out the cache buffer.)

cacheHitOnUnavailCount

Specifies the number of times a cache request could be serviced from
an available cache block but the cache buffer could not be used
because it was in the process of being written to or read from disk.

cacheBlockScrappedCount

Specifies the number of times a cache block was scrapped.

Management Service Group

Server Environment: Structures 838

DSK_CHANNEL_STATS

Returns the disk channel statistics

Service: Server Environment

Defined In: nwserver.h

Structure

typedef struct
{
 nuint32 systemElapsedTime;
 nuint16 channelState;
 nuint16 channelSyncState;
 nuint8 driverType;
 nuint8 driverMajorVersion;
 nuint8 driverMinorVersion;
 nuint8 driverDescription[65];
 nuint16 IOAddr1;
 nuint16 IOAddr1Size;
 nuint16 IOAddr2;
 nuint16 IOAddr2Size;
 nuint8 sharedMem1Seg[3];
 nuint16 sharedMem1Ofs;
 nuint8 sharedMem2Seg[3];
 nuint16 sharedMem2Ofs;
 nuint8 interrupt1Used;
 nuint8 interrupt1;
 nuint8 interrupt2Used;
 nuint8 interrupt2;
 nuint8 DMAChannel1Used;
 nuint8 DMAChannel1;
 nuint8 DMAChannel2Used;
 nuint8 DMAChannel2;
 nuint16 reserved2;
 nuint8 configDescription[80];
} DSK_CHANNEL_STATS;

Pascal Structure

Defined in nwserver.inc

 DSK_CHANNEL_STATS = Record
 systemElapsedTime : nuint32;
 channelState : nuint16;
 channelSyncState : nuint16;
 driverType : nuint8;
 driverMajorVersion : nuint8;
 driverMinorVersion : nuint8;
 driverDescription : Array[0..64] Of nuint8;

Management Service Group

Server Environment: Structures 839

 IOAddr1 : nuint16;
 IOAddr1Size : nuint16;
 IOAddr2 : nuint16;
 IOAddr2Size : nuint16;
 sharedMem1Seg : Array[0..2] Of nuint8;
 sharedMem1Ofs : nuint16;
 sharedMem2Seg : Array[0..2] Of nuint8;
 sharedMem2Ofs : nuint16;
 interrupt1Used : nuint8;
 interrupt1 : nuint8;
 interrupt2Used : nuint8;
 interrupt2 : nuint8;
 DMAChannel1Used : nuint8;
 DMAChannel1 : nuint8;
 DMAChannel2Used : nuint8;
 DMAChannel2 : nuint8;
 reserved2 : nuint16;
 configDescription : Array[0..79] Of nuint8
 End;

Fields

systemElapsedTime

Specifies how long the server has been up. This field is returned in
units of approximately 1/18 second and is used to determine the
amount of time that has elapsed between consecutive calls. When
systemElapsedTime reaches 0xFFFFFFFF, it wraps back to zero.

channelState

Specifies the state of the disk channel:

0x00 Channel is running
0x01 Channel is stopping
0x02 Channel is stopped
0x03 Channel is not functional

channelSyncState

Specifies the control state of the disk channel can have the values
below:

0x00 Channel is not being used
0x02 NetWare is using the channel; noone else wants it
0x04 NetWare is using the channel; someone else wants it
0x06 Someone else is using the channel; NetWare does not need it
0x08 Someone else is using the channel; NetWare needs it
0x0A Someone else has released the channel; NetWare should use it.

driverType

Specifies which type of disk driver software is installed in the disk
channel.

driverMajorVersion

Management Service Group

Server Environment: Structures 840

Specifies the major version of the disk driver software installed on the
disk channel.

driverMinorVersion

Specifies the minor version of the disk driver software installed on the
disk channel.

driverDescription

Specifies the NULL-terminated string describing the disk driver
software.

IOAddr1

Specifies the address the disk driver uses to control the disk channel.

IOAddr1Size

IOAddr2

Specifies the address the disk driver uses to control the disk channel.

IOAddr2Size

sharedMem1Seg

Specifies the shared memory address.

sharedMem1Ofs

Specifies the shared memory address offset.

sharedMem2Seg

Specifies the shared memory address.

sharedMem2Ofs

Specifies the shared memory address offset.

interrupt1Used

Specifies the interrupt number the disk driver uses to communicate
with the disk channel.

interrupt1

interrupt2Used

Specifies the interrupt number the disk driver uses to communicate
with the disk channel.

interrupt2

DMAChannel1Used

Specifies the DMA controller used by the disk driver to control the
disk channel.

DMAChannel1

DMAChannel2Used

Specifies the DMA controller used by the disk driver to control the
disk channel.

DMAChannel2

Management Service Group

Server Environment: Structures 841

reserved2

configDescription

Specifies the NULL-terminated string containing the channel’s current
IO driver configuration.

Management Service Group

Server Environment: Structures 842

FILE_SERVER_COUNTERS

Returns information regarding the number of file packets received by the
server

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 nuint16 tooManyHops;
 nuint16 unknownNetwork;
 nuint16 noSpaceForService;
 nuint16 noReceiveBuffers;
 nuint16 notMyNetwork;
 nuint32 netBIOSProgatedCount;
 nuint32 totalPacketsServiced;
 nuint32 totalPacketsRouted;
} FILE_SERVER_COUNTERS;

Pascal Structure

FILE_SERVER_COUNTERS = Record
 tooManyHops : nuint16;
 unknownNetwork : nuint16;
 noSpaceForService : nuint16;
 noReceiveBuffers : nuint16;
 notMyNetwork : nuint16;
 netBIOSProgatedCount : nuint32;
 totalPacketsServiced : nuint32;
 totalPacketsRouted : nuint32
 End;

Fields

tooManyHops

Specifies the number of packets discarded because they had passed
through more than 16 bridges without reaching their destination.

unknownNetwork

Specifies the number of packets discarded because their destination
network was unknown to the server.

noSpaceForService

Is reserved (pass 0).

noReceiveBuffers

Specifies the number of times a packet was discarded because no
buffers existed to receive it.

Management Service Group

Server Environment: Structures 843

buffers existed to receive it.

notMyNetwork

Specifies the number of received packets not destined for the server.

netBIOSProgatedCount

Specifies the number of NetBIOS packets received that were sent
forward.

totalPacketsServiced

Specifies the total packets received by the server.

totalPacketsRouted

Specifies the number of all packets forwarded by the server.

Management Service Group

Server Environment: Structures 844

FILESYS_STATS

Returns file system statistics

Service: Server Environment

Defined In: nwserver.h

Structure

typedef struct
{
 nuint32 systemElapsedTime;
 nuint16 maxOpenFiles;
 nuint16 maxFilesOpened;
 nuint16 currOpenFiles;
 nuint32 totalFilesOpened;
 nuint32 totalReadRequests;
 nuint32 totalWriteRequests;
 nuint16 currChangedFATSectors;
 nuint32 totalChangedFATSectors;
 nuint16 FATWriteErrors;
 nuint16 fatalFATWriteErrors;
 nuint16 FATScanErrors;
 nuint16 maxIndexFilesOpened;
 nuint16 currOpenIndexedFiles;
 nuint16 attachedIndexFiles;
 nuint16 availableIndexFiles;
} FILESYS_STATS;

Pascal Structure

Defined in nwserver.inc

 FILESYS_STATS = Record
 systemElapsedTime : nuint32;
 maxOpenFiles : nuint16;
 maxFilesOpened : nuint16;
 currOpenFiles : nuint16;
 totalFilesOpened : nuint32;
 totalReadRequests : nuint32;
 totalWriteRequests : nuint32;
 currChangedFATSectors : nuint16;
 totalChangedFATSectors : nuint32;
 FATWriteErrors : nuint16;
 fatalFATWriteErrors : nuint16;
 FATScanErrors : nuint16;
 maxIndexFilesOpened : nuint16;
 currOpenIndexedFiles : nuint16;
 attachedIndexFiles : nuint16;
 availableIndexFiles : nuint16

Management Service Group

Server Environment: Structures 845

 End;

Fields

systemElapsedTime

maxOpenFiles

maxFilesOpened

currOpenFiles

totalFilesOpened

totalReadRequests

totalWriteRequests

currChangedFATSectors

totalChangedFATSectors

FATWriteErrors

fatalFATWriteErrors

FATScanErrors

maxIndexFilesOpened

currOpenIndexedFiles

attachedIndexFiles

availableIndexFiles

Management Service Group

Server Environment: Structures 846

FSE_FILE_SYSTEM_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 FATMovedCount;
 nuint32 FATWriteErrorCount;
 nuint32 someoneElseDidItCount0;
 nuint32 someoneElseDidItCount1;
 nuint32 someoneElseDidItCount2;
 nuint32 iRanOutSomeoneElseDidItCount0;
 nuint32 iRanOutSomeoneElseDidItCount1;
 nuint32 iRanOutSomeoneElseDidItCount2;
 nuint32 turboFATBuildScrewedUpCount;
 nuint32 extraUseCountNodeCount;
 nuint32 extraExtraUseCountNodeCount;
 nuint32 errorReadingLastFATCount;
 nuint32 someoneElseUsingThisFileCount;
} FSE_FILE_SYSTEM_INFO;

Pascal Structure

Defined in nwfse.inc

FSE_FILE_SYSTEM_INFO = Record
 FATMovedCount : nuint32;
 FATWriteErrorCount : nuint32;
 someoneElseDidItCount0 : nuint32;
 someoneElseDidItCount1 : nuint32;
 someoneElseDidItCount2 : nuint32;
 iRanOutSomeoneElseDidItCount0 : nuint32;
 iRanOutSomeoneElseDidItCount1 : nuint32;
 iRanOutSomeoneElseDidItCount2 : nuint32;
 turboFATBuildScrewedUpCount : nuint32;
 extraUseCountNodeCount : nuint32;
 extraExtraUseCountNodeCount : nuint32;
 errorReadingLastFATCount : nuint32;
 someoneElseUsingThisFileCount : nuint32
 End;

Fields

FATMovedCount

Specifies the number of times the NetWare server OS has moved the

Management Service Group

Server Environment: Structures 847

location of the FAT.

FATWriteErrorCount

Specifies the number of disk write errors in both the original and
mirrored copy of a disk’s FAT sector.

someoneElseDidItCount0

Is used internally by the OS.

someoneElseDidItCount1

Is used internally by the OS.

someoneElseDidItCount2

Is used internally by the OS.

iRanOutSomeoneElseDidItCount0

Is used internally by the OS.

iRanOutSomeoneElseDidItCount1

Is used internally by the OS.

iRanOutSomeoneElseDidItCount2

Is used internally by the OS.

turboFATBuildScrewedUpCount

Specifies the number of times the OS tried to allocate a Turbo FAT
index but failed.

extraUseCountNodeCount

Specifies the number of times the OS tried to allocate a use count node
for a TTS transaction but failed.

extraExtraUseCountNodeCount

errorReadingLastFATCount

Specifies the number of times the OS received an error reading the
data in the last FAT.

someoneElseUsingThisFileCount

Specifies the number of times the OS was reading a file that another
process was also reading.

Management Service Group

Server Environment: Structures 848

FSE_MM_OBJ_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 MEDIA_INFO_DEF MediaInfo;
 nuint32 mediaType;
 nuint32 cartridgeType;
 nuint32 unitSize;
 nuint32 blockSize;
 nuint32 capacity;
 nuint32 preferredUnitSize;
 nuint8 name[64];
 nuint32 type;
 nuint32 status;
 nuint32 functionMask;
 nuint32 controlMask;
 nuint32 parentCount;
 nuint32 siblingCount;
 nuint32 childCount;
 nuint32 specificInfoSize;
 nuint32 objectUniqueID;
 nuint32 mediaSlot;
} FSE_MM_OBJ_INFO;

Pascal Structure

Defined in nwfse.inc

FSE_MM_OBJ_INFO = Record
 MediaInfo : MEDIA_INFO_DEF;
 mediaType : nuint32;
 cartridgeType : nuint32;
 unitSize : nuint32;
 blockSize : nuint32;
 capacity : nuint32;
 preferredUnitSize : nuint32;
 name : Array[0..63] Of nuint8;
 mediaManagerType : nuint32;
 status : nuint32;
 functionMask : nuint32;
 controlMask : nuint32;
 parentCount : nuint32;
 siblingCount : nuint32;
 childCount : nuint32;

Management Service Group

Server Environment: Structures 849

 specificInfoSize : nuint32;
 objectUniqueID : nuint32;
 mediaSlot : nuint32
 End;

Fields

MediaInfo

mediaType

Specifies the media type of the object, as follows:

0 Hard disk
1 CD-ROM
2 WORM device
3 Tape device
4 Magneto-optical device.

cartridgeType

Specifies the type of cartridge or magazine the device can use, as
follows:

0x00000000 Fixed media
0x00000001 5.25 floppy
0x00000002 3.5 floppy
0x00000003 5.25 optical
0x00000004 3.5 optical
0x00000005 0.5 tape
0x00000006 0.25 tape
0x00000007 8 mm tape
0x00000008 4 mm tape
0x00000009 Bernoulli disk

unitSize

Specifies the current transfer unit size in bytes for the device.

blockSize

Specifies the size of a block for the device in bytes.

capacity

Specifies the capacity of the device in blocks.

preferredUnitSize

Specifies the preferred trans unit size for the device.

name

Specifies the length-preceded string representing the name of the
object.

type

Specifies the media manager database type:

0 ADAPTER_OBJECT

Management Service Group

Server Environment: Structures 850

1 CHANGER_OBJECT
2 RDEVICE_OBJECT
3 DEVICE_OBJECT
4 MDEVICE_OBJECT
4 RMEDIA_OBJECT
5 PARTITION_OBJECT
6 SLOT_OBJECT
7 HOTFIX_OBJECT
8 MIRROR_OBJECT
9 PARITY_OBJECT
10 VOLUME_SEG_OBJECT
11 VOLUME_OBJECT
12 CLONE_OBJECT
13 FMEDIA_OBJECT
14 UNKNOWN_OBJECT

status

Contains the status mask for the object:

OBJECT_ACTIVATED 0x00000001
 OBJECT_CREATED 0x00000002
 OBJECT_SCRAMBLED 0x00000004
 OBJECT_RESERVED 0x00000010
 OBJECT_BEING_IDENTIFIED 0x00000020
 OBJECT_MAGAZINE_LOADED 0x00000040
 OBJECT_FAILURE 0x00000080
 OBJECT_REMOVABLE 0x00000100
 OBJECT_READ_ONLY 0x00000200
 OBJECT_IN_DEVICE 0x00010000
 OBJECT_ACCEPTS_MAGAZIN 0x00020000
 OBJECT_IS_IN_A_CHANGER 0x00040000
 OBJECT_LOADABLE 0x00080000
 OBJECT_BEING_LOADED 0x00080000
 OBJECT_DEVICE_LOCK 0x01000000
 OBJECT_CHANGER_LOCK 0x02000000
 OBJECT_REMIRRORING 0x04000000
 OBJECT_SELECTED 0x08000000

functionMask

Specifies the function mask:

0x0001 RANDOM_READ
0x0002 ANDOM_WRITE
0x0004 RANDOM_WRITE_ONCE
0x0008 SEQUENTIAL_READ
0x0010 SEQUENTIAL_WRITE
0x0020 RESET_END_OF_TAPE
0x0040 SINGLE_FILE_MARK
0x0080 MULTIPLE_FILE_MARK
0x0100 SINGLE_SET_MARK
0x0200 MULTIPLE_SET_MARK
0x0400 SPACE_DATA_BLOCKS
0x0800 LOCATE_DATA_BLOCKS

Management Service Group

Server Environment: Structures 851

0x1000 POSITION_PARTITION
0x2000 POSITION_MEDIA

controlMask

Specifies the control mask:

0x0001 ACTIVATE_DEACTIVE
0x0002 MOUNT_DISMOUNT
0x0004 SELECT_UNSELECT
0x0008 LOCK_UNLOCK
0x0010 EJECT
0x0020 MOVE

parentCount

Specifies the number of parent objects for the device, usually 1.

siblingCount

Specifies the number of sibling objects for the device.

childCount

Specifies the number of child objects for the device.

specificInfoSize

Specifies the size of the data structures that will be returned.

objectUniqueID

Specifies the number which identifies the device in the media
manager database.

mediaSlot

Specifies the number of the slot the device occupies.

Management Service Group

Server Environment: Structures 852

FSE_SERVER_INFO

Returns information about the NetWare server

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 nuint32 replyCanceledCount;
 nuint32 writeHeldOffCount;
 nuint32 writeHeldOffWithDupRequest;
 nuint32 invalidRequestTypeCount;
 nuint32 beingAbortedCount;
 nuint32 alreadyDoingReallocCount;
 nuint32 deAllocInvalidSlotCount;
 nuint32 deAllocBeingProcessedCount;
 nuint32 deAllocForgedPacketCount;
 nuint32 deAllocStillTransmittingCount;
 nuint32 startStationErrorCount;
 nuint32 invalidSlotCount;
 nuint32 beingProcessedCount;
 nuint32 forgedPacketCount;
 nuint32 stillTransmittingCount;
 nuint32 reExecuteRequestCount;
 nuint32 invalidSequenceNumCount;
 nuint32 duplicateIsBeingSentAlreadyCnt;
 nuint32 sentPositiveAcknowledgeCount;
 nuint32 sentDuplicateReplyCount;
 nuint32 noMemForStationCtrlCount;
 nuint32 noAvailableConnsCount;
 nuint32 reallocSlotCount;
 nuint32 reallocSlotCameTooSoonCount;
} FSE_SERVER_INFO;

Pascal Structure

FSE_SERVER_INFO = Record
 replyCanceledCount : nuint32;
 writeHeldOffCount : nuint32;
 writeHeldOffWithDupRequest : nuint32;
 invalidRequestTypeCount : nuint32;
 beingAbortedCount : nuint32;
 alreadyDoingReallocCount : nuint32;
 deAllocInvalidSlotCount : nuint32;
 deAllocBeingProcessedCount : nuint32;
 deAllocForgedPacketCount : nuint32;
 deAllocStillTransmittingCount : nuint32;
 startStationErrorCount : nuint32;

Management Service Group

Server Environment: Structures 853

 invalidSlotCount : nuint32;
 beingProcessedCount : nuint32;
 forgedPacketCount : nuint32;
 stillTransmittingCount : nuint32;
 reExecuteRequestCount : nuint32;
 invalidSequenceNumCount : nuint32;
 duplicateIsBeingSentAlreadyCnt : nuint32;
 sentPositiveAcknowledgeCount : nuint32;
 sentDuplicateReplyCount : nuint32;
 noMemForStationCtrlCount : nuint32;
 noAvailableConnsCount : nuint32;
 reallocSlotCount : nuint32;
 reallocSlotCameTooSoonCount : nuint32
 End;

Fields

replyCanceledCount

Specifies the number of replies that were cancelled because the
connection was reallocated while the request was being processed.

writeHeldOffCount

Specifies the number of times that writes were delayed because of a
pending TTS(tm) transaction or cache busy condition.

writeHeldOffWithDupRequest

Specifies the number of times that writes were cancelled since a
duplicate request was received. (DO EITHER OF THESE REQUESTS
GET WRITTEN? HOW ARE THEY PROCESSED--ORIGINAL OR
DUPLICATE? HOW CAN THE GET THEM TO BE PROCESSED?)

invalidRequestTypeCount

Specifies the number of packets received which had an invalid request
type or were received after the server was downed.

beingAbortedCount

Specifies the number of packets received for a connection being
terminated.

alreadyDoingReallocCount

Specifies the number of times that a connection is requested when a
connection already exists.

deAllocInvalidSlotCount

Specifies the number of times an attempt was made to deallocate a
connection slot which was not valid.

deAllocBeingProcessedCount

Specifies the number of times the server was deallocated because
requests were still being processed.

deAllocForgedPacketCount

Management Service Group

Server Environment: Structures 854

Specifies the number of times the server was deallocated because a
forget packet was received.

deAllocStillTransmittingCount

Specifies the number of times the server was deallocated because
information was still being transmitted.

startStationErrorCount

Specifies the number of times the server was unable to allocate a
connection for any reason.

invalidSlotCount

Specifies the number of requests received for an invalid connection
slot.

beingProcessedCount

Specifies the number of times a duplicate request was received during
processing of the first request.

forgedPacketCount

Specifies the number of suspicious invalid packets received.

stillTransmittingCount

Specifies the number of times a new request is received before a reply
to a previous request has been sent.

reExecuteRequestCount

Specifies the number of times the requester did not receive the reply
and the request had to be reprocessed.

invalidSequenceNumCount

Specifies the number of request packets the server received from a
connection where the sequence number in the packet did not match
the current sequence number or the next sequence number.

duplicateIsBeingSentAlreadyCnt

Specifies the number of times a duplicate reply was requested when
the reply had already been sent.

sentPositiveAcknowledgeCount

Specifies the number of acknowledgments sent by the server (sent
when a connection repeats a request being serviced).

sentDuplicateReplyCount

Specifies the number of request packets for which the server had to
send a duplicate reply (only sent for requests the server cannot
process).

noMemForStationCtrlCount

Specifies the number of times the server could not allocate memory to
expand the connection table for a new connection.

noAvailableConnsCount

Specifies the number of times no slots were available in the connection

Management Service Group

Server Environment: Structures 855

table for a new connection.

reallocSlotCount

Specifies the number of times the server reallocated the same slot in
the connection table for a client that logged out and relogged in.

reallocSlotCameTooSoonCount

Specifies the number of times that a request came from a client to relog
in before that client had been completely logged out.

Remarks

It is rarely possible to create suspicious packets because of faulty
equipment.

If the number specified by the forgedPacketCount and
invalidSequenceNumCount fields are large, it may indicate an attempt to
breach network security.

Packets with bad sequence numbers are discarded.

Management Service Group

Server Environment: Structures 856

IPX_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 IPXSendPacketCount;
 nuint16 IPXMalformPacketCount;
 nuint32 IPXGetECBRequestCount;
 nuint32 IPXGetECBFailCount;
 nuint32 IPXAESEventCount;
 nuint16 IPXPostponedAESCount;
 nuint16 IPXMaxConfiguredSocketCount;
 nuint16 IPXMaxOpenSocketCount;
 nuint16 IPXOpenSocketFailCount;
 nuint32 IPXListenECBCount;
 nuint16 IPXECBCancelFailCount;
 nuint16 IPXGetLocalTargetFailCount;
} IPX_INFO;

Pascal Structure

Defined in nwfse.inc

 IPX_INFO = Record
 IPXSendPacketCount : nuint32;
 IPXMalformPacketCount : nuint16;
 IPXGetECBRequestCount : nuint32;
 IPXGetECBFailCount : nuint32;
 IPXAESEventCount : nuint32;
 IPXPostponedAESCount : nuint16;
 IPXMaxConfiguredSocketCount : nuint16;
 IPXMaxOpenSocketCount : nuint16;
 IPXOpenSocketFailCount : nuint16;
 IPXListenECBCount : nuint32;
 IPXECBCancelFailCount : nuint16;
 IPXGetLocalTargetFailCount : nuint16
 End;

Fields

IPXSendPacketCount

Specifies the number of IPX packets sent by the server.

IPXMalformPacketCount

Management Service Group

Server Environment: Structures 857

Specifies the number of IPX packets discarded because they were
malformed.

IPXGetECBRequestCount

Specifies the number of ECB requests.

IPXGetECBFailCount

Specifies the number of times an ECB was requested, but could not be
supplied.

IPXAESEventCount

Specifies the number of AES events scheduled.

IPXPostponedAESCount

Specifies the number of AES events that could not be scheduled, but
were placed in a waiting list.

IPXMaxConfiguredSocketCount

Specifies the maximum number of sockets that can be open at one
time.

IPXMaxOpenSocketCount

Specifies the maximum number of sockets open at one time since the
server was booted.

IPXOpenSocketFailCount

Specifies the number of times a request to open a socket failed.

IPXListenECBCount

Specifies the number of ECBs listening for a packet.

IPXECBCancelFailCount

Specifies the number of ECB listens that were cancelled.

IPXGetLocalTargetFailCount

Specifies the number of times the server failed to find the target.

Management Service Group

Server Environment: Structures 858

KNOWN_NET_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 netIDNumber;
 nuint16 hopsToNet;
 nuint16 netStatus;
 nuint16 timeToNet;
} KNOWN_NET_INFO;

Pascal Structure

Defined in nwfse.inc

KNOWN_NET_INFO = Record
 netIDNumber : nuint32;
 hopsToNet : nuint16;
 netStatus : nuint16;
 timeToNet : nuint16
 End;

Fields

netIDNumber

hopsToNet

netStatus

timeToNet

Management Service Group

Server Environment: Structures 859

LAN_COMMON_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 notSupportedMask;
 nuint32 totalTxPacketCount;
 nuint32 totalRxPacketCount;
 nuint32 noECBAvailableCount;
 nuint32 packetTxTooBigCount;
 nuint32 packetTxTooSmallCount;
 nuint32 packetRxOverflowCount;
 nuint32 packetRxTooBigCount;
 nuint32 packetRxTooSmallCount;
 nuint32 packetTxMiscErrorCount;
 nuint32 packetRxMiscErrorCount;
 nuint32 retryTxCount;
 nuint32 checksumErrorCount;
 nuint32 hardwareRxMismatchCount;
 nuint32 reserved[50];
} LAN_COMMON_INFO;

Pascal Structure

Defined in nwfse.inc

 LAN_COMMON_INFO = Record
 notSupportedMask : nuint32;
 totalTxPacketCount : nuint32;
 totalRxPacketCount : nuint32;
 noECBAvailableCount : nuint32;
 packetTxTooBigCount : nuint32;
 packetTxTooSmallCount : nuint32;
 packetRxOverflowCount : nuint32;
 packetRxTooBigCount : nuint32;
 packetRxTooSmallCount : nuint32;
 packetTxMiscErrorCount : nuint32;
 packetRxMiscErrorCount : nuint32;
 retryTxCount : nuint32;
 checksumErrorCount : nuint32;
 hardwareRxMismatchCount : nuint32;
 reserved : Array[0..49] Of nuint32
 End;

Fields

Management Service Group

Server Environment: Structures 860

Fields

notSupportedMask

Specifies a bit mask representing the fields in the statistics table. If the
bit is 0, the counter is supported; if it is 1, the counter is not supported.

totalTxPacketCount

Specifies the total number of packets transmitted by the LAN board.

totalRxPacketCount

Specifies the total number of packets that were received by the LAN
board.

noECBAvailableCount

Specifies the number of times the LAN board failed to get a receive
ECB.

packetTxTooBigCount

Specifies the number of times the send packet was too big for this LAN
board to send.

packetTxTooSmallCount

Specifies the number of times the send packet was too small for this
LAN board to send.

packetRxOverflowCount

Specifies the number of times the LAN board’s receive buffers
overflowed.

packetRxTooBigCount

Specifies the number of times this LAN board could not receive a
packet because the packet was too big.

packetRxTooSmallCount

Specifies the number of times this LAN board could not receive a
packet because the packet was too small.

packetTxMiscErrorCount

Specifies the number of times any kind of transmit error occurred for
this LAN board.

packetRxMiscErrorCount

Specifies the number of times any kind of receive error occurred for
this LAN board.

retryTxCount

Specifies the number of times the LAN board retried a transmit
because of failure.

checksumErrorCount

Specifies the number of times a checksum error occurred for this LAN
board.

hardwareRxMismatchCount

Management Service Group

Server Environment: Structures 861

Specifies a counter that may be incremented when a packet is received
which does not pass length consistency checks.

reserved

Management Service Group

Server Environment: Structures 862

LAN_CONFIG_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint8 DriverCFG_MajorVersion;
 nuint8 DriverCFG_MinorVersion;
 nuint8 DriverNodeAddress[6];
 nuint16 DriverModeFlags;
 nuint16 DriverBoardNum;
 nuint16 DriverBoardInstance;
 nuint32 DriverMaxSize;
 nuint32 DriverMaxRecvSize;
 nuint32 DriverRecvSize;
 nuint32 reserved1[3];
 nuint16 DriverCardID;
 nuint16 DriverMediaID;
 nuint16 DriverTransportTime;
 nuint8 DriverReserved[16];
 nuint8 DriverMajorVersion;
 nuint8 DriverMinorVersion;
 nuint16 DriverFlags;
 nuint16 DriverSendRetries;
 nuint32 DriverLink;
 nuint16 DriverSharingFlags;
 nuint16 DriverSlot;
 nuint16 DriverIOPortsAndLengths[4];
 nuint32 DriverMemDecode0;
 nuint16 DriverLength0;
 nuint32 DriverMemDecode1;
 nuint16 DriverLength1;
 nuint8 DriverInterrupt[2];
 nuint8 DriverDMAUsage[2];
 nuint32 Reserved2[3];
 nuint8 DriverLogicalName[18];
 nuint32 DriverLinearMem[2];
 nuint16 DriverChannelNum;
 nuint8 DriverIOReserved[6];
} LAN_CONFIG_INFO;

Pascal Structure

Defined in nwfse.inc

 LAN_CONFIG_INFO = Record

Management Service Group

Server Environment: Structures 863

 DriverCFG_MajorVersion : nuint8;
 DriverCFG_MinorVersion : nuint8;
 DriverNodeAddress : Array[0..5] Of nuint8;
 DriverModeFlags : nuint16;
 DriverBoardNum : nuint16;
 DriverBoardInstance : nuint16;
 DriverMaxSize : nuint32;
 DriverMaxRecvSize : nuint32;
 DriverRecvSize : nuint32;
 Reserved1 : Array[0..2] Of nuint32;
 DriverCardID : nuint16;
 DriverMediaID : nuint16;
 DriverTransportTime : nuint16;
 DriverReserved : Array[0..15] Of nuint8;
 DriverMajorVersion : nuint8;
 DriverMinorVersion : nuint8;
 DriverFlags : nuint16;
 DriverSendRetries : nuint16;
 DriverLink : nuint32;
 DriverSharingFlags : nuint16;
 DriverSlot : nuint16;
 DriverIOPortsAndLengths : Array[0..3] Of nuint16;
 DriverMemDecode0 : nuint32;
 DriverLength0 : nuint16;
 DriverMemDecode1 : nuint32;
 DriverLength1 : nuint16;
 DriverInterrupt : Array[0..1] Of nuint8;
 DriverDMAUsage : Array[0..1] Of nuint8;
 Reserved2 : Array[0..2] Of nuint32;
 DriverLogicalName : Array[0..17] Of nuint8;
 DriverLinearMem : Array[0..1] Of nuint32;
 DriverChannelNum : nuint16;
 DriverIOReserved : Array[0..5] Of nuint8
 End;

Fields

DriverCFG_MajorVersion

Specifies the Novell® defined major version number of the
configuration table.

DriverCFG_MinorVersion

Specifies the Novell defined minor version of the configuration table.

DriverNodeAddress

Specifies the node address of the LAN board.

DriverModeFlags

Specifies the mode supported by the driver:

0x0001 Specifies whether the driver was real or a dummy; set to 1.

0x0002 Specifies if the driver uses DMA.

Management Service Group

Server Environment: Structures 864

0x0004 Specifies to routers to pass router table changes when they
occur, rather than forwarding all RIP and SAP packets; set only if but 4
is set.

0x0008 Specifies if the driver supports multicasting.

0x0010 Specifies if the driver can bind with a protocol stack without
providing a network number.

0x0030 Specifies if the driver supports raw sends, no prepending any
hardware header.

0x0400 Specifies if the HSM can handle fragmented RCBs.

0x2000 Specifies if the HSM can handle promiscuous RCBs.

0xC000 Specifies the driver node address, as follows:

00 Format is unspecified; the node address is assumed to
01 Illegal combination
10 Driver node address is canonical
11 Driver node address is noncanonical

DriverBoardNum

Specifies the logical board number (1-255) assigned to the LAN board
by the LSL(tm) service.

DriverBoardInstance

Specifies the number of the physical card the logical board is using.

DriverMaxSize

Specifies the maximum send or receive packet size in bytes the board
can handle.

DriverMaxRecvSize

Specifies the maximum packet size in bytes that the LAN board can
receive.

DriverRecvSize

Specifies the maximum packet size in bytes a protocol stack can send
or receive using this board.

reserved1

DriverCardID

Specifies the number assigned to the LAN board by IMSP.

DriverMediaID

Specifies the number identifying the link-level envelope used by the
MLID.

DriverTransportTime

Specifies the time in ticks to transmit a 576-byte packet.

DriverReserved

DriverMajorVersion

Specifies the major version number of the MLID.

DriverMinorVersion

Management Service Group

Server Environment: Structures 865

DriverMinorVersion

Specifies the minor version number of the MLID.

DriverFlags

Specifies a bit map showing the architecture supported by the MLID:

0x0001 EISA
0x0002 ISA
0x0004 MCA
0x0100 Hub management
0x0600 Multicast filtering and format:
 00 LAN medium defaults
 01 Illegal combination

The following bits are set if the board can share:

0x0020 Primary interrupt
0x0040 Secondary interrupt
0x0080 DMA channel 0
0x0100 DMA channel 1

The following bits are set if:

0x0200 A command line information string to
0x0400 To prevent default information from the

DriverSendRetries

DriverLink

DriverSharingFlags

DriverSlot

Specifies the slot number of the board if installed in MCA or EISA
machine; otherwise it is 0.

DriverIOPortsAndLengths

Each WORD is defined below:

Word 1 Primary base I/O port
Word 2 Number of I/O ports beginning with primary base I/O port
Word 3 Secondary base I/O port
Word 4 Number of I/O ports beginning with secondary base I/O port

DriverMemDecode0

Specifies the absolute primary memory address that the LAN board
uses.

DriverLength0

Specifies the amount of memory in paragraphs the board uses starting
at DriverMemDecode0

DriverMemDecode1

Specifies the absolute secondary memory address the board uses.

DriverLength1

Management Service Group

Server Environment: Structures 866

Specifies the amount of memory in paragraphs the board uses, starting
at DriverMemDecode1.

DriverInterrupt

Specifies the primary interrupt in the first byte; secondary interrupt in
the secondary byte. FFh means not used.

DriverDMAUsage

Specifies the primary DMA channel used in the board in the first byte;
secondary DMA channel in the second byte. FFh means not used.

Reserved2

Specifies the logical name of the LAN driver, given at load time.

DriverLogicalName

Specifies the logical name of the LAN driver, given at load time.

DriverLinearMem

Specifies the addresses of DriverMemDecode0 and DriverMemDecode1 in
the first and second LONGS.

DriverChannelNum

Specifies the multichannel adapters. It holds the channel number of
the NIC to use.

DriverIOReserved

Management Service Group

Server Environment: Structures 867

LSL_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 rxBufs;
 nuint32 rxBufs75PerCent;
 nuint32 rxBufsCheckedOut;
 nuint32 rxBufMaxSize;
 nuint32 maxPhysicalSize;
 nuint32 lastTimeRxBufAllocated;
 nuint32 maxNumsOfProtocols;
 nuint32 maxNumsOfMediaTypes;
 nuint32 totalTXPackets;
 nuint32 getECBBfrs;
 nuint32 getECBFails;
 nuint32 AESEventCounts;
 nuint32 postponedEvents;
 nuint32 ECBCxlFails;
 nuint32 validBfrsReused;
 nuint32 enqueuedSendCount;
 nuint32 totalRXPackets;
 nuint32 unclaimedPackets;
 nuint8 StatisticsTableMajorVersion;
 nuint8 StatisticsTableMinorVersion;
] LSL_INFO;

Pascal Structure

Defined in nwfse.inc

 LSL_INFO = Record
 rxBufs : nuint32;
 rxBufs75PerCent : nuint32;
 rxBufsCheckedOut : nuint32;
 rxBufMaxSize : nuint32;
 maxPhysicalSize : nuint32;
 lastTimeRxBufAllocated : nuint32;
 maxNumsOfProtocols : nuint32;
 maxNumsOfMediaTypes : nuint32;
 totalTXPackets : nuint32;
 getECBBfrs : nuint32;
 getECBFails : nuint32;
 AESEventCounts : nuint32;
 postponedEvents : nuint32;

Management Service Group

Server Environment: Structures 868

 ECBCxlFails : nuint32;
 validBfrsReused : nuint32;
 enqueuedSendCount : nuint32;
 totalRXPackets : nuint32;
 unclaimedPackets : nuint32;
 StatisticsTableMajorVersion : nuint8;
 StatisticsTableMinorVersion : nuint8
 End;

Fields

rxBufs

Specifies the total number of LSL receive buffers.

rxBufs75PerCent

Specifies the number of LSL receive buffers that must be in use before
a warning message is issued that buffers are getting low.

rxBufsCheckedOut

Specifies the number of LSL buffers in use.

rxBufMaxSize

Specifies the size of the data portion of the ECBs in bytes.

maxPhysicalSize

Specifies the total size of the ECB in bytes.

lastTimeRxBufAllocated

Specifies the last time in ticks a buffer was checked out.

maxNumsOfProtocols

Specifies the number of protocol stacks supported by the OS.

maxNumsOfMediaTypes

Specifies the number of frame types supported by the OS.

totalTXPackets

Specifies the number of packet transmit requests. getECBBfrs contains
the number of ECBs that were requested.

getECBBfrs

getECBFails

Specifies the number of times an ECB request failed.

AESEventCounts

Specifies the total number of AES events that have been processed.

postponedEvents

Specifies the total number of AES events postponed because of critical
sections.

ECBCxlFails

Management Service Group

Server Environment: Structures 869

Specifies the number of AES cancel requests that failed because the
event was not found on the AES list.

validBfrsReused

Specifies the number of ECBs in the hold queue that were reused
before they were removed from the hold queue.

enqueuedSendCount

Specifies the number of send events in the queue that have occurred.

totalRXPackets

Specifies the total number of received incoming packets.

unclaimedPackets

Specifies the total number of unclaimed incoming packets.

StatisticsTableMajorVersion

StatisticsTableMinorVersion

Management Service Group

Server Environment: Structures 870

MEDIA_INFO_DEF

Returns information on the media manager object

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint8 label[64];
 nuint32 identificationType;
 nuint32 identificationTimeStamp;
} MEDIA_INFO_DEF;

Pascal Structure

Defined in nwfse.inc

 MEDIA_INFO_DEF = Record
 mediaLabel : Array[0..63] Of nuint8;
 identificationType : nuint32;
 identificationTimeStamp : nuint32
 End;

Fields

label

Specifies the name of the object.

identificationType

Specifies the Novell assigned number for the object.

identificationTimeStamp

Specifies the DOS timestamp of the object.

Management Service Group

Server Environment: Structures 871

NLM_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 identificationNum;
 nuint32 flags;
 nuint32 type;
 nuint32 parentID;
 nuint32 majorVersion;
 nuint32 minorVersion;
 nuint32 revision;
 nuint32 year;
 nuint32 month;
 nuint32 day;
 nuint32 allocAvailableBytes;
 nuint32 allocFreeCount;
 nuint32 lastGarbageCollection;
 nuint32 messageLanguage;
 nuint32 numOfReferencedPublics;
} NLM_INFO;

Pascal Structure

Defined in nwfse.inc

 NLM_INFO = Record
 identificationNum : nuint32;
 flags : nuint32;
 NLMtype : nuint32;
 parentID : nuint32;
 majorVersion : nuint32;
 minorVersion : nuint32;
 revision : nuint32;
 year : nuint32;
 month : nuint32;
 day : nuint32;
 allocAvailableBytes : nuint32;
 allocFreeCount : nuint32;
 lastGarbageCollection : nuint32;
 messageLanguage : nuint32;
 numOfReferencedPublics : nuint32
 End;

Fields

Management Service Group

Server Environment: Structures 872

Fields

identificationNum

Specifies the number assigned to the NLM when it was loaded.

flags

Specifies a bit mask. Bits are defined as follows:

0x0000 = REENTRANT
0x0002 = MULTIPLE
0x0003 = SYNCHRONIZE
0x0008 = PSEUDOPREEMPTION

type

Specifies the type:

0 = NLM_GENERIC
1 = LAN_DRIVER
2 = DSK_DRIVER
3 = NAM_SPACE
4 = NLM_UTILITY
5 = MIRRORED_SERVER_LINK
6 = NLM_OS
7 = NLM_PAGED_HIGH_OS
8 = HOST_ADAPTER_MODULE
9 = CUSTOM_DEVICE_MODULE
10 = NLM_FILE_SYSTEM
11 = NLM_REAL_MODE

parentID

Specifies the number of the NLM that caused this NLM to be loaded.

majorVersion

Specifies the major version of the NLM.

minorVersion

Specifies the minor version of the NLM.

revision

Specifies the revision letter of the NLM.

year

Specifies the timestamp of the NLM.

month

Specifies the timestamp of the NLM.

day

Specifies the timestamp of the NLM.

allocAvailableBytes

Specifies the bytes available for allocation by the NLM.

allocFreeCount

Management Service Group

Server Environment: Structures 873

Specifies the number of bytes freed that can be reclaimed.

lastGarbageCollection

Specifies the last time garbage collection was done for the NLM.

messageLanguage

Specifies the number representing the language the NLM uses.

numOfReferencedPublics

Specifies the number of external symbols referenced by the NLM.

Management Service Group

Server Environment: Structures 874

NW_DYNAMIC_MEM

Service: Server Environment

Defined In: nwfserver.h

Structure

typedef struct
{
 nuint32 total;
 nuint32 max;
 nuint32 cur;
} NW_DYNAMIC_MEM;

Pascal Structure

Defined in nwserver.inc

 NW_DYNAMIC_MEM = Record
 total : nuint32;
 max : nuint32;
 cur : nuint32
 End;

Fields

total

Specifies the total amount of memory in dynamic memory area.

max

Specifies the amount of memory in dynamic memory area that has
been in use since the server was brought up.

cur

Specifies the amount of memory in dynamic memory area currently in
use.

Management Service Group

Server Environment: Structures 875

NW_FS_INFO

Service: Server Environment

Defined In: nwfserver.inc

Structure

Defined upTime;
 nuint8 processor;
 nuint8 reserved;
 nuint8 numProcs;
 nuint8 utilization;
 nuint16 configuredObjs;
 nuint16 maxObjs;
 nuint16 curObjs;
 nuint16 totalMem;
 nuint16 unusedMem;
 nuint16 numMemAreas;
 NW_DYNAMIC_MEM dynamicMem[3];
} NW_FS_INFO;

Fields

upTime

Specifies how long the file server has been up in 1/18 ticks (wraps at
0xFFFFFFFF).

processor

1=8086/8088, 2=80286

reserved

numProcs

Specifies the number processes that handle incoming service requests.

utilization

Specifies the server utilization percentage (0 to 100), updated once per
second.

configuredObjs

Specifies the maximum number of Bindery objects the file server will
track. A 0 means an unlimited number, and maxObjs and curObjs have
no meaning.

maxObjs

Specifies the maximum number of Bindery objects that have been
used concurrently since the file server came up.

curObjs

Specifies the actual number of Bindery objects currently in use on the

Management Service Group

Server Environment: Structures 876

server.

totalMem

Specifies the total amount of memory installed on the server.

unusedMem

Specifies the amount of memory the server has determined it is not
using.

numMemAreas

Specifies the number of dynamic memory areas (1 to 3).

dynamicMem

Management Service Group

Server Environment: Structures 877

NWFSE_ACTIVE_CONN_LIST

Returns the Active Connection List by type

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint8 activeConnBitList[512];
} NWFSE_ACTIVE_CONN_LIST;

Pascal Structure

Defined in nwfse.inc

 NWFSE_ACTIVE_CONN_LIST = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 activeConnBitList : Array[0..511] Of nuint8
 End;

Fields

serverTimeAndVConsoleInfo

reserved

activeConnBitList

Management Service Group

Server Environment: Structures 878

NWFSE_ACTIVE_LAN_BOARD_LIST

Returns the active LAN board list

Service: Server Environment

Defined In: nwfserver.inc

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 MaxNumOfLANs;
 nuint32 LANLoadedCount;
 nuint32 boardNums[FSE_MAX_NUM_OF_LANS];
} NWFSE_ACTIVE_LAN_BOARD_LIST;

Pascal Structure

Defined in nwfse.inc

 NWFSE_ACTIVE_LAN_BOARD_LIST = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 MaxNumOfLANs : nuint32;
 LANLoadedCount : nuint32;
 boardNums : Array[0..FSE_MAX_NUM_OF_LANS-1] Of nuint32
 End;

Fields

serverTimeAndVConsoleInfo

reserved

MaxNumOfLANs

MaxNumOfLANs

boardNums

Management Service Group

Server Environment: Structures 879

NWFSE_ACTIVE_STACKS

Returns information about active protocol stacks

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 maxNumOfStacks;
 nuint32 stackCount;
 nuint32 nextStartNum;
 STACK_INFO stackInfo[FSE_MAX_NUM_OF_STACKINFO];
} NWFSE_ACTIVE_STACKS;

Pascal Structure

Defined in nwfse.inc

 NWFSE_ACTIVE_STACKS = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 maxNumOfStacks : nuint32;
 stackCount : nuint32;
 nextStartNum : nuint32;
 stackInfo : Array[0.. FSE_MAX_NUM_OF_STACKINFO -1] Of STACK_INFO
 End;

Fields

serverTimeAndVConsoleInfo

reserved

maxNumOfStacks

Specifies the total number of protocol stacks.

stackCount

Specifies the number of STACK_INFO structures in the buffer.

nextStartNum

stackInfo

Management Service Group

Server Environment: Structures 880

NWFSE_CACHE_INFO

Returns Server Environment cache information

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 CACHE_COUNTERS cacheCounters;
 CACHE_MEM_COUNTERS cacheMemCounters;
 CACHE_TREND_COUNTERS cacheTrendCounters;
 CACHE_INFO cacheInformation;
} NWFSE_CACHE_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_CACHE_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 cacheCounters : CACHE_COUNTERS;
 cacheMemCounters : CACHE_MEM_COUNTERS;
 cacheTrendCounters : CACHE_TREND_COUNTERS;
 cacheInformation : CACHE_INFO
 End;

Fields

serverTimeAndVConsoleInfo

Points to SERVER_AND_VCONSOLE_INFO.

reserved

Is reserved for future use.

cacheCounters

Points to CACHE_COUNTERS.

cacheMemCounters

Points to CACHE_MEM_COUNTERS.

cacheTrendCounters

Points to CACHE_TREND_COUNTERS.

cacheInformation

Management Service Group

Server Environment: Structures 881

Points to CACHE_INFO.

Management Service Group

Server Environment: Structures 882

NWFSE_CPU_INFO

Returns Server Environment CPU information

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 numOfCPUs;
 CPU_INFO CPUInfo;
} NWFSE_CPU_INFO;

Pascal Structure

Defined in nwfse.inc

NWFSE_CPU_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 numOfCPUs : nuint32;
 CPUInfo : CPU_INFO
 End;

Fields

serverTimeAndVConsoleInfo

Points to SERVER_AND_VCONSOLE_INFO.

reserved

Is reserved (pass 0).

numOfCPUs

Specifies the number of CPUs in the server.

CPUInfo

Points to the CPU_INFO structure.

Management Service Group

Server Environment: Structures 883

NWFSE_DIR_CACHE_INFO

Returns Directory cache information

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 DIR_CACHE_INFO dirCacheInfo;
} NWFSE_DIR_CACHE_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_DIR_CACHE_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 dirCacheInfo : DIR_CACHE_INFO
 End;

Fields

serverTimeAndVConsoleInfo

reserved

dirCacheInfo

Management Service Group

Server Environment: Structures 884

NWFSE_FILE_SERVER_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 NCPStationsInUseCount;
 nuint32 NCPPeakStationsInUseCount;
 nuint32 numOfNCPRequests;
 nuint32 serverUtilization;
 FSE_SERVER_INFO ServerInfo;
 FILE_SERVER_COUNTERS fileServerCounters;
} NWFSE_FILE_SERVER_INFO;

Pascal Structure

Defined in nwfse.inc

NWFSE_FILE_SERVER_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 NCPStationsInUseCount : nuint32;
 NCPPeakStationsInUseCount : nuint32;
 numOfNCPRequests : nuint32;
 serverUtilization : nuint32;
 ServerInfo : FSE_SERVER_INFO;
 fileServerCounters : FILE_SERVER_COUNTERS
 End;

Fields

serverTimeAndVConsoleInfo

Specifies the time elapsed since the server was brought up (returned
in ticks---about 1/18 seconds) and the console version and revision
numbers to track packet information. When
serverTimeAndVConsoleInfo reaches 0xFFFFFFFF, it wraps to zero.

reserved

NCPStationsInUseCount

Specifies the number of workstations connected to the server.

NCPPeakStationsInUseCount

Specifies the maximum number of workstations connected at one time

Management Service Group

Server Environment: Structures 885

since the server was brought up.

numOfNCPRequests

Specifies the number of NCP requests received by the server since it
was brought up.

serverUtilization

Specifies the current percentage of CPU utilization for the server.

ServerInfo

Specifies the NetWare server statistics.

fileServerCounters

Specifies the NetWare server statistics.

Management Service Group

Server Environment: Structures 886

NWFSE_FILE_SYSTEM_INFO

Returns NetWare File Systems information

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 FSE_FILE_SYSTEM_INFO fileSystemInfo;
} NWFSE_FILE_SYSTEM_INFO;

Pascal Structure

Defined in nwfse.inc

NWFSE_FILE_SYSTEM_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 fileSystemInfo : FSE_FILE_SYSTEM_INFO
 End;

Fields

serverTimeAndVConsoleInfo

Specifies the time elapsed since the server was brought up (returned
in ticks---about 1/18 seconds) and the console version and revision
numbers to track packet information. When
serverTimeAndVConsoleInfo reaches 0xFFFFFFFF, it wraps to zero.

reserved

fileSystemInfo

Management Service Group

Server Environment: Structures 887

NWFSE_GARBAGE_COLLECTION_INFO

Returns information about failed requests

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 failedAllocRequestCount;
 nuint32 numOfAllocs;
 nuint32 noMoreMemAvailableCount;
 nuint32 numOfGarbageCollections;
 nuint32 garbageFoundSomeMem;
 nuint32 garbageNumOfChecks;
} NWFSE_GARBAGE_COLLECTION_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_GARBAGE_COLLECTION_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 failedAllocRequestCount : nuint32;
 numOfAllocs : nuint32;
 noMoreMemAvailableCount : nuint32;
 numOfGarbageCollections : nuint32;
 garbageFoundSomeMem : nuint32;
 garbageNumOfChecks : nuint32
 End;

Fields

serverTimeAndVConsoleInfo

Points to the SERVER_AND_VCONSOLE_INFO structure containing
the time since the server was brought up.

reserved

Is reserved (pass zero).

failedAllocRequestCount

Specifies the number of memory allocations that failed since the server
was brought up.

numOfAllocs

Specifies the number of memory allocations made since the server was

Management Service Group

Server Environment: Structures 888

Specifies the number of memory allocations made since the server was
brought up.

noMoreMemAvailableCount

Specifies the number of times that allocation failed because there was
no memory available since the server was brought up.

numOfGarbageCollections

Specifies the number of times garbage collection was invoked since the
server was brought up.

garbageFoundSomeMem

Specifies the number of times garbage collection reclaimed memory
since the server was brought up.

garbageNumOfChecks

Specifies the number of times garbage collection checked for memory
since the server was brought up.

Management Service Group

Server Environment: Structures 889

NWFSE_GENERAL_ROUTER_SAP_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo
 nuint16 reserved;
 nuint32 internalRIPSocket;
 nuint32 internalRouterDownFlag;
 nuint32 trackOnFlag;
 nuint32 externalRouterActiveFlag;
 nuint32 internalSAPSocketNumber;
 nuint32 replyToNearestServerFlag;
} NWFSE_GENERAL_ROUTER_SAP_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_GENERAL_ROUTER_SAP_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 internalRIPSocket : nuint32;
 internalRouterDownFlag : nuint32;
 trackOnFlag : nuint32;
 externalRouterActiveFlag : nuint32;
 internalSAPSocketNumber : nuint32;
 replyToNearestServerFlag : nuint32
 End;

Fields

serverTimeAndVConsoleInfo

reserved

internalRIPSocket

Specifies the router socket number.

internalRouterDownFlag

Specifies whether the internal router is up or down.

trackOnFlag

Specifies whether router tracking is active (the console operator issued
the TRACK ON console command).

Management Service Group

Server Environment: Structures 890

externalRouterActiveFlag

Specifies whether an external router is active.

internalSAPSocketNumber

Specifies the number of the socket that receives SAP packets.

replyToNearestServerFlag

Specifies whether the server will respond to GetNearestServer.

Management Service Group

Server Environment: Structures 891

NWFSE_IPXSPX_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 IPX_INFO IPXInfo;
 SPX_INFO SPXInfo;
} NWFSE_IPXSPX_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_IPXSPX_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 IPXInfo : IPX_INFO;
 SPXInfo : SPX_INFO
 End;

Fields

serverTimeAndVConsoleInfo

reserved

IPXInfo

SPXInfo

Management Service Group

Server Environment: Structures 892

NWFSE_KNOWN_NETWORKS_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo
 nuint16 reserved;
 nuint32 numberOfEntries;
 KNOWN_NET_INFO knownNetInfo[51];
} NWFSE_KNOWN_NETWORKS_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_KNOWN_NETWORKS_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 numberOfEntries : nuint32;
 knownNetInfo : Array[0..50] Of KNOWN_NET_INFO
 End;

Fields

serverTimeAndVConsoleInfo

Specifies the time elapsed since the server was brought up, and the
console version number.

reserved

numberOfEntries

knownNetInfo

Specifies the first knownNetworkStructure.

Management Service Group

Server Environment: Structures 893

NWFSE_KNOWN_SERVER_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 numberOfEntries;
 nuint8 data[512];
} NWFSE_KNOWN_SERVER_INFO;

Pascal Structure

Defined in nwfse.inc

NWFSE_KNOWN_SERVER_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 numberOfEntries : nuint32;
 data : Array[0..511] Of nuint8
 End;

Fields

serverTimeAndVConsoleInfo

Points to the SERVER_AND_VCONSOLE_INFO structure containing
the time since the server was brought up.

reserved

Is reserved (pass 0).

numberOfEntries

Specifies the number of entries.

data

Specifies an array containing the following fields:
SERVER_INFO=RECORD network Address:
Array[0..3] of BYTE; nodeAddress:
Array[0..5] of BYTE; socketAddress:
nuint16; HopsToServer: nuint16;
ServerName: Array[0..47] of char8; (#0
terminated) END;

The next field starts immediately after the trailing #0 of the last
ServerName field.

Management Service Group

Server Environment: Structures 894

NWFSE_LAN_COMMON_COUNTERS_INFO

Returns information on LAN common counters

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint8 statisticsMajorVersion;
 nuint8 statisticsMinorVersion;
 nuint32 numberOfGenericCounters;
 nuint32 numberOfCounterBlocks;
 nuint32 customVariableCount;
 nuint32 NextCounterBlock;
 LAN_COMMON_INFO LANCommonInfo;
} NWFSE_LAN_COMMON_COUNTERS_INFO;

Pascal Structure

NWFSE_LAN_COMMON_COUNTERS_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 statisticsMajorVersion : nuint8;
 statisticsMinorVersion : nuint8;
 numberOfGenericCounters : nuint32;
 numberOfCounterBlocks : nuint32;
 customVariableCount : nuint32;
 NextCounterBlock : nuint32;
 LANCommonInfo : LAN_COMMON_INFO
 End;

Fields

serverTimeAndVConsoleInfo

Points to the SERVER_AND_VCONSOLE_INFO structure containing
the time since the server was brought up.

statisticsMajorVersion

Specifies the major version number of the statistics table.

statisticsMinorVersion

Specifies the minor version number of the statistics table.

numberOfGenericCounters

Specifies the total number of LAN common counters.

numberOfCounterBlocks

Specifies the number of blocks used by LAN common counters by the

Management Service Group

Server Environment: Structures 895

LAN board.

customVariableCount

Specifies the number of custom counters for this LAN board.

NextCounterBlock

Specifies the value to be passed in block numbers to the
NWGetLANCommonCountersInfo function.

LANCommonInfo

Points to the LAN_COMMON_INFO structure containing information
about the LAN board.

Remarks

When 0 is returned in the NextCounterBlock field, all common counters
have been returned.

Management Service Group

Server Environment: Structures 896

NWFSE_LAN_CONFIG_INFO

Returns LAN configuration information

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 LAN_CONFIG_INFO LANConfigInfo;
} NWFSE_LAN_CONFIG_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_LAN_CONFIG_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 LANConfigInfo : LAN_CONFIG_INFO
 End;

Fields

serverTimeAndVConsoleInfo

Points to the SERVER_AND_VCONSOLE_INFO structure containing
the time since the server was brought up.

reserved

Is reserved (pass 0).

LANConfigInfo

Management Service Group

Server Environment: Structures 897

NWFSE_LAN_CUSTOM_INFO

Returns information on LAN custom counters

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 numCustomVar;
 nuint8 customInfo[512];
} NWFSE_LAN_CUSTOM_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_LAN_CUSTOM_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 numCustomVar : nuint32;
 customInfo : Array[0..511] Of nuint8
 End;

Fields

serverTimeAndVConsoleInfo

Points to the SERVER_AND_VCONSOLE_INFO structure containing
the time since the server was brought up.

reserved

Is reserved (pass 0).

numCustomVar

Specifies the value of the custom counter.

customInfo

Specifies the description of the custom counter.

Management Service Group

Server Environment: Structures 898

NWFSE_LOADED_MEDIA_NUM_LIST

Returns a list of loaded media numbers

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 maxMediaTypes;
 nuint32 mediaListCount;
 nuint32 mediaList[FSE_MEDIA_LIST_MAX];
} NWFSE_LOADED_MEDIA_NUM_LIST;

Pascal Structure

Defined in nwfse.inc

 NWFSE_LOADED_MEDIA_NUM_LIST = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 maxMediaTypes : nuint32;
 mediaListCount : nuint32;
 mediaList : Array[0.. FSE_MEDIA_LIST_MAX -1] Of nuint32
 End;

Fields

serverTimeAndVConsoleInfo

Points to the SERVER_AND_VCONSOLE_INFO structure containing
the time since the server was brought up.

reserved

Is reserved (pass 0).

maxMediaTypes

Specifies the maximum number of media allowed.

mediaListCount

Specifies the number of valid IDs returned in the mediaList parameter.

mediaList

Specifies the ID numbers of the returned media.

Management Service Group

Server Environment: Structures 899

NWFSE_LSL_INFO

Returns LSL information

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 LSL_INFO LSLInfo;
} NWFSE_LSL_INFO;

Pascal Structure

NWFSE_LSL_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 LSLInfo : LSL_INFO
 End;

Fields

serverTimeAndVConsoleInfo

Points to the SERVER_AND_VCONSOLE_INFO structure containing
the time since the server was brought up.

reserved

Is reserved (pass 0).

LSLInfo

Points to the LSL_INFO structure containing the LSL information.

Management Service Group

Server Environment: Structures 900

NWFSE_LSL_LOGICAL_BOARD_STATS

Returns statistics concerning LSL boards

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved0;
 nuint32 LogTtlTxPackets;
 nuint32 LogTtlRxPackets;
 nuint32 LogUnclaimedPackets;
 nuint32 reserved1;
} NWFSE_LSL_LOGICAL_BOARD_STATS;

Pascal Structure

NWFSE_LSL_LOGICAL_BOARD_STATS = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved0 : nuint16;
 LogTtlTxPackets : nuint32;
 LogTtlRxPackets : nuint32;
 LogUnclaimedPackets : nuint32;
 reserved1 : nuint32
 End;

Fields

serverTimeAndVConsoleInfo

Points to the SERVER_AND_VCONSOLE_INFO structure containing
the time since the server was brought up.

reserved0

Is reserved (pass zero).

LogTtlTxPackets

Specifies the total number of packets transmitted.

LogTtlRxPackets

Specifies the total number of packets received.

LogUnclaimedPackets

Specifies the total number of unclaimed packets.

reserved1

Is reserved (pass zero).

Management Service Group

Server Environment: Structures 901

NWFSE_MEDIA_MGR_OBJ_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 FSE_MM_OBJ_INFO fseMMObjInfo;
} NWFSE_MEDIA_MGR_OBJ_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_MEDIA_MGR_OBJ_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 fseMMObjInfo : FSE_MM_OBJ_INFO
 End;

Fields

reserved

fseMMObjInfo

Management Service Group

Server Environment: Structures 902

NWFSE_MEDIA_MGR_OBJ_LIST

Returns the media manager object list and the media manager object
children’s list

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 nextStartObjNum;
 nuint32 objCount;
 nuint32 objs[FSE_MAX_OBJECTS];
} NWFSE_MEDIA_MGR_OBJ_LIST;

Pascal Structure

Defined in nwfse.inc

 NWFSE_MEDIA_MGR_OBJ_LIST = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 nextStartObjNum : nuint32;
 objCount : nuint32;
 objs : Array[0.. FSE_MAX_OBJECTS -1] Of nuint32
 End;

Fields

serverTimeAndVConsoleInfo

reserved

nextStartObjNum

objCount

Specifies the number of object IDs returned.

objs

Specifies the list of object IDs.

Management Service Group

Server Environment: Structures 903

NWFSE_MEDIA_NAME_LIST

Returns the media name by using a media number

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
} NWFSE_MEDIA_NAME_LIST;

Pascal Structure

Defined in nwfse.inc

 NWFSE_MEDIA_NAME_LIST = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16
 End;

Fields

serverTimeAndVConsoleInfo

reserved

Management Service Group

Server Environment: Structures 904

NWFSE_NETWORK_ROUTER_INFO

Returns information about a specified router on the network

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 NetIDNumber;
 nuint16 HopsToNet;
 nuint16 NetStatus;
 nuint16 TimeToNet;
} NWFSE_NETWORK_ROUTER_INFO;

Pascal Structure

Defined in nwfse.inc

NWFSE_NETWORK_ROUTER_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 NetIDNumber : nuint32;
 HopsToNet : nuint16;
 NetStatus : nuint16;
 TimeToNet : nuint16
 End;

Fields

serverTimeAndVConsoleInfo

Points to the SERVER_AND_VCONSOLE_INFO structure containing
the time since the server was brought up.

reserved

Is reserved (pass zero).

NetIDNumber

Specifies the network ID number used by the server.

HopsToNet

Specifies the number of routers to cross to get to the network.

NetStatus

Specifies the status of the network.

TimeToNet

Management Service Group

Server Environment: Structures 905

Specifies the number of clock ticks to the network (roundtrip).

Remarks

The NetStatus field can have the following values:

0x01 LOCALBIT

0x02 NETSTARTBIT

0x04 NETRELIABLEBIT

0x10 NETWANBIT

Management Service Group

Server Environment: Structures 906

NWFSE_NETWORK_ROUTERS_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 NumberOfEntries;
 ROUTERS_INFO routersInfo[36];
} NWFSE_NETWORK_ROUTERS_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_NETWORK_ROUTERS_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 NumberOfEntries : nuint32;
 routersInfo : Array[0..35] Of ROUTERS_INFO
 End;

Fields

serverTimeAndVConsoleInfo

reserved

NumberOfEntries

routersInfo

Management Service Group

Server Environment: Structures 907

NWFSE_NLM_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 NLM_INFO NLMInfo;
} NWFSE_NLM_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_NLM_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 NLMInfo : NLM_INFO
 End;

Fields

serverTimeAndVConsoleInfo

reserved

NLMInfo

Management Service Group

Server Environment: Structures 908

NWFSE_NLM_LOADED_LIST

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 numberNLMsLoaded;
 nuint32 NLMsInList;
 nuint32 NLMNums[FSE_NLM_NUMS_RETURNED_MAX];
} NWFSE_NLM_LOADED_LIST;

Pascal Structure

Defined in nwfse.inc

 NWFSE_NLM_LOADED_LIST = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 numberNLMsLoaded : nuint32;
 NLMsInList : nuint32;
 NLMNums : Array[0..FSE_NLM_NUMS_RETURNED_MAX-1] Of nuint32
 End;

Fields

serverTimeAndVConsoleInfo

reserved

numberNLMsLoaded

Specifies the total number of NLMs loaded on the server including
hidden NLMs. No information will be returned about hidden NLMs.

NLMsInList

Specifies the number of valid NLM IDs returned in NLMNums. A
valid NLM is an NLM whose information was placed in the buffer and
does not include hidden NLMs.

NLMNums

Management Service Group

Server Environment: Structures 909

NWFSE_NLMS_RESOURCE_TAG_LIST

Returns the NLM’s resource tag list

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 totalNumOfResourceTags;
 nuint32 packetResourceTags;
 nuint8 resourceTagBuf[512];
} NWFSE_NLMS_RESOURCE_TAG_LIST;

Pascal Structure

Defined in nwfse.inc

 NWFSE_NLMS_RESOURCE_TAG_LIST = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 totalNumOfResourceTags : nuint32;
 packetResourceTags : nuint32;
 resourceTagBuf : Array[0..511] Of nuint8
 End;

Fields

serverTimeAndVConsoleInfo

reserved

totalNumOfResourceTags

Specifies the total number of resource tags the NLM is using.

packetResourceTags

Specifies the number of resource tags the structure contains.

resourceTagBuf

Contains the resourceTagBuf structure.

Management Service Group

Server Environment: Structures 910

NWFSE_OS_VERSION_INFO

Returns Operating System version information

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint8 OSMajorVersion;
 nuint8 OSMinorVersion;
 nuint8 OSRevisionNum;
 nuint8 accountingVersion;
 nuint8 VAPVersion;
 nuint8 queueingVersion;
 nuint8 securityRestrictionsLevel;
 nuint8 bridgingSupport;
 nuint32 maxNumOfVolumes;
 nuint32 numOfConnSlots;
 nuint32 maxLoggedInConns;
 nuint32 maxNumOfNameSpaces;
 nuint32 maxNumOfLans;
 nuint32 maxNumOfMediaTypes;
 nuint32 maxNumOfProtocols;
 nuint32 maxMaxSubdirTreeDepth;
 nuint32 maxNumOfDataStreams;
 nuint32 maxNumOfSpoolPrinters;
 nuint32 serialNum;
 nuint16 applicationNum;
} NWFSE_OS_VERSION_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_OS_VERSION_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 OSMajorVersion : nuint8;
 OSMinorVersion : nuint8;
 OSRevisionNum : nuint8;
 accountingVersion : nuint8;
 VAPVersion : nuint8;
 queueingVersion : nuint8;
 securityRestrictionsLevel : nuint8;
 bridgingSupport : nuint8;

Management Service Group

Server Environment: Structures 911

 maxNumOfVolumes : nuint32;
 numOfConnSlots : nuint32;
 maxLoggedInConns : nuint32;
 maxNumOfNameSpaces : nuint32;
 maxNumOfLans : nuint32;
 maxNumOfMediaTypes : nuint32;
 maxNumOfProtocols : nuint32;
 maxMaxSubdirTreeDepth : nuint32;
 maxNumOfDataStreams : nuint32;
 maxNumOfSpoolPrinters : nuint32;
 serialNum : nuint32;
 applicationNum : nuint16
 End;

Fields

serverTimeAndVConsoleInfo

reserved

OSMajorVersion

Specifies the major version number of the OS.

OSMinorVersion

Specifies the minor version number of the OS.

OSRevisionNum

Specifies the version revision letter of the OS.

accountingVersion

Specifies the version of the accounting subsystem.

VAPVersion

Is unused.

queueingVersion

Specifies the queueing version number.

securityRestrictionsLevel

Specifies the security restriction version number.

bridgingSupport

Specifies the internet bridge support version number.

maxNumOfVolumes

numOfConnSlots

Specifies the maximum number of connections that can be used
simultaneously on the server.

maxLoggedInConns

maxNumOfNameSpaces

Specifies the maximum number of name spaces that can be

Management Service Group

Server Environment: Structures 912

simultaneously loaded on the server.

maxNumOfLans

Specifies the maximum number of LAN boards that can be used on
the server.

maxNumOfMediaTypes

Specifies the maximum number of different media types allowed on
the server.

maxNumOfProtocols

Specifies the maximum number of protocol stacks that can be used on
the server.

maxMaxSubdirTreeDepth

Specifies the maximum depth of directories that can be used on the
server.

maxNumOfDataStreams

Specifies the maximum number of data streams that can be used on
the server.

maxNumOfSpoolPrinters

Specifies the maximum number of spool printers (default queue
assignments) that can be used on the server.

serialNum

Specifies the serial number of the server.

applicationNum

Is included for backward compatibility.

Management Service Group

Server Environment: Structures 913

NWFSE_PACKET_BURST_INFO

Returns packet burst information

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 PACKET_BURST_INFO packetBurstInfo;
} NWFSE_PACKET_BURST_INFO;

Pascal Structure

NWFSE_PACKET_BURST_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 packetBurstInfo : PACKET_BURST_INFO
 End;

Fields

serverTimeAndVConsoleInfo

Points to the SERVER_AND_VCONSOLE_INFO structure containing
the time since the server was brought up.

reserved

Is reserved (pass zero).

packetBurstInfo

Points to the PACKET_BURST_INFO structure containing information
about packet bursts.

Management Service Group

Server Environment: Structures 914

NWFSE_PROTOCOL_CUSTOM_INFO

Returns custom information about protocol stacks

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved0;
 nuint32 customCount;
 nuint8 customStruct[512];
} NWFSE_PROTOCOL_CUSTOM_INFO;

Pascal Structure

Defined in nwfse.inc

NWFSE_PROTOCOL_CUSTOM_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved0 : nuint16;
 customCount : nuint32;
 customStruct : Array[0.. 512 -1] Of nuint8
 End;

Fields

serverTimeAndVConsoleInfo

reserved0

customCount

customStruct

Specifies the structure with the DWORD value of the custom counter,
followed by a length preceded string describing the custom counter.

Management Service Group

Server Environment: Structures 915

NWFSE_PROTOCOL_ID_NUMS

Returns the protocol stack numbers using a media number or using a LAN
board number

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 stackIDCount;
 nuint32 stackIDs[FSE_STACK_IDS_MAX];
} NWFSE_PROTOCOL_ID_NUMS;

Pascal Structure

Defined in nwfse.inc

NWFSE_PROTOCOL_ID_NUMS = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 stackIDCount : nuint32;
 stackIDs : Array[0.. FSE_STACK_IDS_MAX -1] Of nuint32
 End;

Fields

serverTimeAndVConsoleInfo

reserved

stackIDCount

Specifies the number of protocol stack ID Number returned in stackIDs
by NWGetProtocolStkNumsByMediaNum

stackIDs

Specifies the list of stack ID numbers.

Management Service Group

Server Environment: Structures 916

NWFSE_PROTOCOL_STK_CONFIG_INFO

Returns information about the protocol stack configuration

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint8 configMajorVersionNum;
 nuint8 configMinorVersionNum;
 nuint8 stackMajorVersionNum;
 nuint8 stackMinorVersionNum;
 nuint8 stackShortName[16];
} NWFSE_PROTOCOL_STK_CONFIG_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_PROTOCOL_STK_CONFIG_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 configMajorVersionNum : nuint8;
 configMinorVersionNum : nuint8;
 stackMajorVersionNum : nuint8;
 stackMinorVersionNum : nuint8;
 stackShortName : Array[0..15] Of nuint8
 End;

Fields

serverTimeAndVConsoleInfo

reserved

configMajorVersionNum

Specifies the major version number of the configuration table.

configMinorVersionNum

Specifies the minor version number of the configuration table.

stackMajorVersionNum

Specifies the major version number of the protocol stack.

stackMinorVersionNum

Management Service Group

Server Environment: Structures 917

Specifies the minor version number of the protocol stack.

stackShortName

Specifies the short protocol name; name used to register the stack with
the LSL. The first byte is the length of the string followed by the string
itself. It is not a null-terminated string.

Management Service Group

Server Environment: Structures 918

NWFSE_PROTOCOL_STK_STATS_INFO

Returns information about protocol stack statistics

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint8 statMajorVersionNum;
 nuint8 statMinorVersionNum;
 nuint16 commonCounters;
 nuint32 validCountersMask;
 nuint32 totalTxPackets;
 nuint32 totalRxPackets;
 nuint32 ignoredRxPackets;
 nuint16 numCustomCounters;
} NWFSE_PROTOCOL_STK_STATS_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_PROTOCOL_STK_STATS_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 statMajorVersionNum : nuint8;
 statMinorVersionNum : nuint8;
 commonCounters : nuint16; (* always set to 3? *)
 validCountersMask : nuint32;
 totalTxPackets : nuint32;
 totalRxPackets : nuint32;
 ignoredRxPackets : nuint32;
 numCustomCounters : nuint16
 End;

Fields

serverTimeAndVConsoleInfo

reserved

statMajorVersionNum

Specifies the major version number of the statistics table.

statMinorVersionNum

Management Service Group

Server Environment: Structures 919

Specifies the minor version number of the statistics table.

commonCounters

Specifies the number of counters in the fixed portion of the table,
current 3.

validCountersMask

Specifies which counters are valid, right most bit for the first counter; 0
= Counter is valid, 1 = Counter is invalid

totalTxPackets

totalRxPackets

Specifies the total number of packets that were requested to be
transmitted.

ignoredRxPackets

Specifies the number of incoming packets that were ignored by the
stack.

numCustomCounters

Specifies the number of custom counters for the protocol stack.

Management Service Group

Server Environment: Structures 920

NWFSE_SERVER_INFO

Returns server information

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint8 serverAddress[12];
 nuint16 hopsToServer;
} NWFSE_SERVER_INFO;

Pascal Structure

Defined in nwfse.inc

NWFSE_SERVER_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 serverAddress : Array[0..11] Of nuint8;
 hopsToServer : nuint16
End;

Fields

serverTimeAndVConsoleInfo

reserved

serverAddress

hopsToServer

Management Service Group

Server Environment: Structures 921

NWFSE_SERVER_SET_CATEGORIES

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo
 nuint16 reserved;
 nuint32 numberOfSetCategories;
 nuint32 nextSequenceNumber;
 nuint8 categoryName[512];
} NWFSE_SERVER_SET_CATEGORIES;

Pascal Structure

Defined in nwfse.inc

 NWFSE_SERVER_SET_CATEGORIES = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 numberOfSetCategories : nuint32;
 nextSequenceNumber : nuint32;
 categoryName : Array[0..511] Of nuint8
 End;

Fields

serverTimeAndVConsoleInfo

reserved

numberOfSetCategories

Specifies the total number of set categories supported on the server.

nextSequenceNumber

Specifies the number to be used for startNum on subsequent calls.

categoryName

Specifies the null-terminated (not length-preceded) string describing
the category.

Management Service Group

Server Environment: Structures 922

NWFSE_SERVER_SET_CMDS_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 numberOfSetCommands;
 nuint32 nextSequenceNumber;
 nuint32 setCmdType;
 nuint32 setCmdCategory;
 nuint32 setCmdFlags;
 nuint8 setNameAndValueInfo[500];
} NWFSE_SERVER_SET_CMDS_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_SERVER_SET_CMDS_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 numberOfSetCommands : nuint32;
 nextSequenceNumber : nuint32;
 setCmdType : nuint32;
 setCmdCategory : nuint32;
 setCmdFlags : nuint32;
 setNameAndValueInfo : Array[0..499] Of nuint8
 End;

Fields

serverTimeAndVConsoleInfo

reserved

numberOfSetCommands

Specifies the total number of set commands for all the categories on
the server.

nextSequenceNumber

Specifies the next number to be used for startNum on the next call.

setCmdType

Specifies how to interpret the command as follows:

Management Service Group

Server Environment: Structures 923

O FSE_TYPE_NUMBER
1 FSE_TYPE_BOOLEAN
2 FSE_TYPE_TICKS
3 FSE_TYPE_BLOCK_SHIFT (512*number)
4 FSE_TYPE_TIME_OFFSET ([+|-]hh:mm:ss converted to seconds)
5 FSE_TYPE_STRING
6 FSE_TYPE_TRIGGER

The following show the types of triggers:

0x00 FSE_TYPE_TRIGGER_OFF
0x01 FSE_TYPE_TRIGGER_ON
0x10 FSE_TYPE_TRIGGER_PENDING
0x20 FSE_TYPE_TRIGGER_SUCCESS
0x30 FSE_TYPE_TRIGGER_FAILED

setCmdCategory

Specifies the category the command belongs to, as follows:

0 FSE_COMMUNICATIONS
1 FSE_MEMORY
2 FSE_FILE_CACHE
3 FSE_DIR_CACHE
4 FSE_FILE_SYSTEM
5 FSE_LOCKS
6 FSE_TRANSACTION_TRACKING
7 FSE_DISK
8 FSE_TIME
9 FSE_NCP
10 FSE_MISCELLANEOUS
11 FSE_ERRORS

setCmdFlags

Specifies the ways in which this category may be changed, as follows:

0x01 FSE_STARTUP_ONLY
0x02 FSE_HIDE
0x04 FSE_ADVANCED
0x08 FSE_STARTUP_OR_LATER
0x10 FSE_NOT_SECURED_CONSOLE (Can’t be performed on secured console)

setNameAndValueInfo

Specifies the null-terminated string containing the name of the
command at index 0, and the value that begins at strlen(name). The
string is not length-preceded.

Management Service Group

Server Environment: Structures 924

NWFSE_SERVER_SRC_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 numberOfEntries;
 SERVERS_SRC_INFO serverSrcInfo[42];
} NWFSE_SERVER_SRC_INFO;

Pascal Structure

Defined in nwfse.inc

 NWFSE_SERVER_SRC_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 numberOfEntries : nuint32;
 serversSrcInfo : Array[0..41] Of SERVERS_SRC_INFO
 End;

Fields

serverTimeAndVConsoleInfo

reserved

numberOfEntries

Specifies the number of SERVERS_SRC_INFOs that were returned by
NWGetServerSourcesInfo.

serverSrcInfo

Specifies SERVERS_SRC_INFO.

Management Service Group

Server Environment: Structures 925

NWFSE_USER_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 USER_INFO userInfo;
} NWFSE_USER_INFO;

Pascal Structure

 NWFSE_USER_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 userInfo : USER_INFO
 End;

Fields

serverTimeAndVConsoleInfo

reserved

userInfo

Management Service Group

Server Environment: Structures 926

NWFSE_VOLUME_INFO_BY_LEVEL

Returns volume information when the information level is specified

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 infoLevel;
 VOLUME_INFO_BY_LEVEL volumeInfo;
} NWFSE_VOLUME_INFO_BY_LEVEL;

Pascal Structure

NWFSE_VOLUME_INFO_BY_LEVEL = Record
 serverAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 infoLevel : nuint32;
 volumeInfo : VOLUME_INFO_BY_LEVEL
 End;

Fields

serverTimeAndVConsoleInfo

Points to the SERVER_AND_VCONSOLE_INFO structure containing
the time since the server was brought up.

reserved

Is reserved (pass zero).

infoLevel

Specifies the information level to be returned.

volumeInfo

Points to the VOLUME_INFO_BY_LEVEL structure containing the
specified volume information.

Remarks

If the infoLevel field is set to 1, the volInfoDef field of the
VOLUME_INFO_BY_LEVEL structure will be used.

If the infoLevel field is set to 2, the volInfoDef2 field of the
VOLUME_INFO_BY_LEVEL structure will be used.

Management Service Group

Server Environment: Structures 927

NWFSE_VOLUME_SEGMENT_LIST

Returns the volume segment list

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 numOfVolumeSegments;
 VOLUME_SEGMENT volumeSegment[42];
} NWFSE_VOLUME_SEGMENT_LIST;

Pascal Structure

Defined in nwfse.inc

 NWFSE_VOLUME_SEGMENT_LIST = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 numOfVolumeSegments : nuint32;
 volumeSegment : Array[0..41] Of VOLUME_SEGMENT (
 End;

Fields

serverTimeAndVConsoleInfo

reserved

numOfVolumeSegments

Specifies the number of volume segments on the volume.

volumeSegment

Specifies the volume information structures for all the volume
segments on the volume. Only the number of structures will contain
valid data.

Management Service Group

Server Environment: Structures 928

NWFSE_VOLUME_SWITCH_INFO

Returns information about volume switches

Service: Server Environment

Defined In: nwfse.h and nwfse.inc

Structure

typedef struct {
 SERVER_AND_VCONSOLE_INFO serverTimeAndVConsoleInfo;
 nuint16 reserved;
 nuint32 totalLFSCounters;
 nuint32 CurrentLFSCounters;
 nuint32 LFSCounters[128];
} NWFSE_VOLUME_SWITCH_INFO;

Pascal Structure

NWFSE_VOLUME_SWITCH_INFO = Record
 serverTimeAndVConsoleInfo : SERVER_AND_VCONSOLE_INFO;
 reserved : nuint16;
 totalLFSCounters : nuint32;
 CurrentLFSCounters : nuint32;
 LFSCounters : Array[0..127] Of nuint32 (* 512 / sizeof(nuint32) *)
End;

Fields

serverTimeAndVConsoleInfo

Points to the SERVER_AND_VCONSOLE_INFO structure containing
the time since the server was brought up.

reserved

Is reserved (pass zero).

totalLFSCounters

Specifies the total number of FS counters.

CurrentLFSCounters

Specifies the current number of FS counters.

LFSCounters

Specifies the number of LFS counters.

Management Service Group

Server Environment: Structures 929

NWLAN_CONFIG

Returns configuration data for a LAN card on a NetWare server

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint8 networdAddress[4];
 nuint8 hostAddress[6];
 nuint8 boardInstalled;
 nuint8 optionNumber;
 nuint8 configurationText1[80];
 nuint8 configurationText2

Pascal Structure

Defined in nwserver.inc

 NWLAN_CONFIG = Record
 networdAddress : Array[0..3] Of nuint8;
 hostAddress : Array[0..5] Of nuint8;
 boardInstalled : nuint8;
 optionNumber : nuint8;
 configurationText1 : Array[0..79] Of nuint8;
 configurationText2 : Array[0..79] Of nuint8
 End;

Fields

networdAddress

hostAddress

boardInstalled

optionNumber

configurationText1

configurationText2

Management Service Group

Server Environment: Structures 930

PACKET_BURST_INFO

Returns packet burst information

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 bigInvalidSlotCount;
 nuint32 bigForgedPacketCount;
 nuint32 bigInvalidPacketCount;
 nuint32 bigStillTransmittingCount;
 nuint32 stillDoingTheLastRequestCount;
 nuint32 invalidCtrlRequestCount;
 nuint32 ctrlInvalidMessageNumCount;
 nuint32 ctrlBeingTornDownCount;
 nuint32 bigRepeatTheFileReadCount;
 nuint32 bigSendExtraCCCount;
 nuint32 bigReturnAbortMessageCount;
 nuint32 bigReadInvalidMessageNumCount;
 nuint32 bigReadDoItOverCount;
 nuint32 bigReadBeingTornDownCount;
 nuint32 previousCtrlPacketCount;
 nuint32 sendHoldOffMessageCount;
 nuint32 bigReadNoDataAvailableCount;
 nuint32 bigReadTryingToReadTooMuchCount;
 nuint32 asyncReadErrorCount;
 nuint32 bigReadPhysicalReadErrorCount;
 nuint32 ctrlBadACKFragmentListCount;
 nuint32 ctrlNoDataReadCount;
 nuint32 writeDuplicateRequestCount;
 nuint32 shouldntBeACKingHereCount;
 nuint32 writeInconsistentPktLengthsCnt;
 nuint32 firstPacketIsntAWriteCount;
 nuint32 writeTrashedDuplicateRequestCnt;
 nuint32 bigWriteInvalidMessageNumCount;
 nuint32 bigWriteBeingTornDownCount;
 nuint32 bigWriteBeingAbortedCount;
 nuint32 zeroACKFragmentCountCount;
 nuint32 writeCurrentlyTransmittingCount;
 nuint32 tryingToWriteTooMuchCount;
 nuint32 writeOutOfMemForCtrlNodesCount;
 nuint32 writeDidntNeedThisFragmentCount;
 nuint32 writeTooManyBuffsCheckedOutCnt;
 nuint32 writeTimeOutCount;
 nuint32 writeGotAnACKCount;
 nuint32 writeGotAnACKCount1;

Management Service Group

Server Environment: Structures 931

 nuint32 pollerAbortedTheConnCount;
 nuint32 maybeHadOutOfOrderWritesCount;
 nuint32 hadAnOutOfOrderWriteCount;
 nuint32 movedTheACKBitDownCount;
 nuint32 bumpedOutOfOrderWriteCount;
 nuint32 pollerRemovedOldOutOfOrderCount;
 nuint32 writeDidntNeedButRequestACKCnt;
 nuint32 writeTrashedPacketCount;
 nuint32 tooManyACKFragmentsCount;
 nuint32 savedAnOutOfOrderPacketCount;
 nuint32 connBeingAbortedCount;
} PACKET_BURST_INFO;

Pascal Structure

Defined in nwfse.inc

 PACKET_BURST_INFO = Record
 bigInvalidSlotCount : nuint32;
 bigForgedPacketCount : nuint32;
 bigInvalidPacketCount : nuint32;
 bigStillTransmittingCount : nuint32;
 stillDoingTheLastRequestCount : nuint32;
 invalidCtrlRequestCount : nuint32;
 ctrlInvalidMessageNumCount : nuint32;
 ctrlBeingTornDownCount : nuint32;
 bigRepeatTheFileReadCount : nuint32;
 bigSendExtraCCCount : nuint32;
 bigReturnAbortMessageCount : nuint32;
 bigReadInvalidMessageNumCount : nuint32;
 bigReadDoItOverCount : nuint32;
 bigReadBeingTornDownCount : nuint32;
 previousCtrlPacketCount : nuint32;
 sendHoldOffMessageCount : nuint32;
 bigReadNoDataAvailableCount : nuint32;
 bigReadTryingToReadTooMuchCount : nuint32;
 asyncReadErrorCount : nuint32;
 bigReadPhysicalReadErrorCount : nuint32;
 ctrlBadACKFragmentListCount : nuint32;
 ctrlNoDataReadCount : nuint32;
 writeDuplicateRequestCount : nuint32;
 shouldntBeACKingHereCount : nuint32;
 writeInconsistentPktLengthsCnt : nuint32;
 firstPacketIsntAWriteCount : nuint32;
 writeTrashedDuplicateRequestCnt : nuint32;
 bigWriteInvalidMessageNumCount : nuint32;
 bigWriteBeingTornDownCount : nuint32;
 bigWriteBeingAbortedCount : nuint32;
 zeroACKFragmentCountCount : nuint32;
 writeCurrentlyTransmittingCount : nuint32;
 tryingToWriteTooMuchCount : nuint32;
 writeOutOfMemForCtrlNodesCount : nuint32;

Management Service Group

Server Environment: Structures 932

 writeDidntNeedThisFragmentCount : nuint32;
 writeTooManyBuffsCheckedOutCnt : nuint32;
 writeTimeOutCount : nuint32;
 writeGotAnACKCount : nuint32;
 writeGotAnACKCount1 : nuint32;
 pollerAbortedTheConnCount : nuint32;
 maybeHadOutOfOrderWritesCount : nuint32;
 hadAnOutOfOrderWriteCount : nuint32;
 movedTheACKBitDownCount : nuint32;
 bumpedOutOfOrderWriteCount : nuint32;
 pollerRemovedOldOutOfOrderCount : nuint32;
 writeDidntNeedButRequestACKCnt : nuint32;
 writeTrashedPacketCount : nuint32;
 tooManyACKFragmentsCount : nuint32;
 savedAnOutOfOrderPacketCount : nuint32;
 connBeingAbortedCount : nuint32
 End;

Fields

bigInvalidSlotCount

Specifies the number of requests determined not to be packet burst
requests. The requests are either not NCP connections, the connection
number is greater than available connection slots, or they have an
invalid connection structure.

bigForgedPacketCount

Specifies the number of times the station connection ID and unique
IDs do not match the server’.

bigInvalidPacketCount

Specifies the number of times the request packet is determined to be
invalid.

bigStillTransmittingCount

Specifies the number of times the previous request is still transmitting
so the current requests are delayed.

stillDoingTheLastRequestCount

Specifies the number of times the previous request is still being
processed and read.

invalidCtrlRequestCount

Specifies the number of times the type of the packet and the packet
nature cannot be determined.

ctrlInvalidMessageNumCount

Specifies the number of packets received that do not have a message
number corresponding to what is already been sent and what is being
inquired about.

ctrlBeingTornDownCount

Management Service Group

Server Environment: Structures 933

Specifies the number of times the connection is torn down.

bigRepeatTheFileReadCount

Specifies the number of times an old request had to be reread.

bigSendExtraCCCount

Specifies the number of times the completion code error needed to be
resent.

bigReturnAbortMessageCount

Specifies the number of times an ‘Abort Message’ was returned to the
server.

bigReadInvalidMessageNumCount

Specifies the number of times the message number comparison
between the station and server failed.

bigReadDoItOverCount

Specifies the number of times a request that had been processed was
received again and reprocessed.

bigReadBeingTornDownCount

Specifies the number of times the status flag is set to abort so the read
is torn down before being processed.

previousCtrlPacketCount

Specifies the number of times the server packet ID does not compare to
the station’s packet ID.

sendHoldOffMessageCount

Specifies the number of times the station’s request

bigReadNoDataAvailableCount

Specifies the number of times nothing was able to be read from the
request packet.

bigReadTryingToReadTooMuchCount

Specifies the number of times the request packet was greater than 64K
so was unreadable.

asyncReadErrorCount

Specifies the number of times an error is returned trying to read the
data in from the request packet.

bigReadPhysicalReadErrorCount

Specifies the number of times a physical read error was encountered
while reading the request packet.

ctrlBadACKFragmentListCount

Specifies the number of times the fragments making up the packet
burst exceeded the maximum fragments allowed.

ctrlNoDataReadCount

Specifies the number of times a control packet was received specifying

Management Service Group

Server Environment: Structures 934

to send more data after the request was thought to be over. The station
error confirmed the error that no control data was read.

writeDuplicateRequestCount

Specifies the number of times a duplicate write was performed after a
duplicate request was processed.

shouldntBeACKingHereCount

Specifies the number of times a request was being initialized when a
fragment count was found indicating the station still needs to send
some fragments.

writeInconsistentPktLengthsCnt

Specifies the number of times consistency checking on packet lengths
failed.

firstPacketIsntAWriteCount

Specifies the number of times the first fragment packet is not a write
request.

writeTrashedDuplicateRequestCnt

Specifies the number of times a duplicate write request was received
without a need to acknowledge receipt of the request so it was trashed.

bigWriteInvalidMessageNumCount

Specifies the number of times the message number comparison
between the station and the server failed.

bigWriteBeingTornDownCount

Specifies the number of times the write is aborted and the connection
is torn down.

bigWriteBeingAbortedCount

Specifies the number of times the write is aborted and the station is
cleared up.

zeroACKFragmentCountCount

Specifies the number of times the request needs to be retried so the
acknowledge fragment count is zeroed out.

writeCurrentlyTransmittingCount

Specifies the number of times data was currently being transmitted so
the transmission needed to complete before writing.

tryingToWriteTooMuchCount

Specifies the number of times an attempt was made to write a total
length greater than 64K.

writeOutOfMemForCtrlNodesCount

Is currently unused.

writeDidntNeedThisFragmentCount

Specifies the number of times that everything needed is already
acquired so the write process is ended.

Management Service Group

Server Environment: Structures 935

writeTooManyBuffsCheckedOutCnt

Specifies the number of times the next packet was received without
received the first packet. If the buffer cannot be kept, buffers are not
released.

writeTimeOutCount

Specifies the number of times the write retry limit was exceeded.

writeGotAnACKCount

Specifies the number of times the client is resending part or all of the
request back because the request timed out and there are missing
pieces.

writeGotAnACKCount1

Specifies the number of times the client is resending part or all of the
request back because the request timed out and there are missing
pieces.

pollerAbortedTheConnCount

Specifies the number of times the poller lost track of the connection
and the connection was cleared.

maybeHadOutOfOrderWritesCount

Specifies the number of times that extra packets for the write came in
and needed to be reordered before a write completed.

hadAnOutOfOrderWriteCount

Specifies the number of times out of order packets were received and
needed to be requested in the right order.

movedTheACKBitDownCount

Specifies the number of times out of order packets were reordered and
information that was buffered up will not be re-requested by the out of
order writes.

bumpedOutOfOrderWriteCount

Specifies the number of times packets needing to be reordered could
not be reordered. The packets were thrown out and need to be resent.

pollerRemovedOldOutOfOrderCount

Specifies the number of times the write received buffers that were
removed because they were on the out of order list too long.

writeDidntNeedButRequestACKCnt

Specifies the number of times the fragment count was zero indicating
no new fragments were expected but the acknowledge bit was
checked.

writeTrashedPacketCount

Specifies the number of times the cleaning up of additional receive
buffers queued up during the execution of an error path.

tooManyACKFragmentsCount

Management Service Group

Server Environment: Structures 936

Specifies the number of times a fragment placement needed to be
adjusted.

savedAnOutOfOrderPacketCount

Specifies the number of times an out of order packet was received,
saved for several seconds, and the buffer then moved onto the out of
order write list.

connBeingAbortedCount

Specifies the number of times a station’s connection was aborted.

Management Service Group

Server Environment: Structures 937

PHYS_DSK_STATS

Returns physical disk statistics

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 systemElapsedTime;
 nuint8 diskChannel;
 nuint8 diskRemovable;
 nuint8 driveType;
 nuint8 controllerDriveNumber;
 nuint8 controllerNumber;
 nuint8 controllerType;
 nuint32 driveSize;/*in 4096 byte blocks*/
 nuint16 driveCylinders;
 nuint8 driveHeads;
 nuint8 sectorsPerTrack;
 nuint8 driveDefinition[64];
 nuint16 IOErrorCount;
 nuint32 hotFixStart;/*only with SFT I or greater*/
 nuint16 hotFixSize;/*only with SFT I or greater*/
 nuint16 hotFixBlockAvailable;/*only with SFT I or greater*/
 nuint8 hotFixDisabled;/*only with SFT I or greater*/
} PHYS_DSK_STATS;

Pascal Structure

Defined in nwserver.inc

PHYS_DSK_STATS = Record
 systemElapsedTime : nuint32;
 diskChannel : nuint8;
 diskRemovable : nuint8;
 driveType : nuint8;
 controllerDriveNumber : nuint8;
 controllerNumber : nuint8;
 controllerType : nuint8;
 driveSize : nuint32;
 driveCylinders : nuint16;
 driveHeads : nuint8;
 sectorsPerTrack : nuint8;
 driveDefinition : Array[0..63] Of nuint8;
 IOErrorCount : nuint16;
 hotFixStart : nuint32;
 hotFixSize : nuint16;

Management Service Group

Server Environment: Structures 938

 hotFixBlockAvailable : nuint16;
 hotFixDisabled : nuint8
 End;

Fields

systemElapsedTime

Specifies how long the NetWare server has been up. This value is
returned in units of approximately 1/18 second and is used to
determine the amount of time that has elapsed between consecutive
calls. When systemElapsedTime reaches 0xFFFFFFFF, it wraps back to
zero.

diskChannel

Specifies the disk channel to which the disk unit is attached.

diskRemovable

Specifies whether a disk is removable (0 = nonremovable).

driveType

Specifies the type of drive, defined as follows:

1 XT
2 AT
3 SCSI
4 disk coprocessor
5 PS/2 with MFM Controller
6 PS/2 with ESDI Controller
7 Convergent Technology SBIC
50.to.255 Value-Added Disk Drive

controllerDriveNumber

Specifies the drive number of the disk unit relative to the controller
number.

controllerNumber

Specifies the address on the physical disk channel of the disk
controller.

controllerType

Specifies the number identifying the type (make and model) of the
disk controller.

driveSize

Specifies the size of the physical drive in blocks (1 block = 4,096 bytes).
The drive size does not include the portion of the disk reserved for Hot
Fix redirection in the event of media errors.

driveCylinders

Specifies the number of physical cylinders on the drive.

driveHeads

Specifies the number of disk heads on the drive.

Management Service Group

Server Environment: Structures 939

sectorsPerTrack

Specifies the number of sectors on each disk track (1 sector = 512
bytes).

driveDefinition

Specifies the make and model of the drive (NULL-terminated string).

IOErrorCount

Specifies the number of times I/O errors have occurred on the disk
since the server was brought up.

hotFixStart

Specifies the first block of the disk Hot Fix Redirection Table. This field
is meaningful only with SFT(tm) NetWare Level I or above. The
redirection table is used to replace bad disk blocks with usable blocks
in the event that a media failure occurs on the disk

hotFixSize

Specifies the total number of redirection blocks set aside on the disk for
Hot Fix redirection. Some or all of these blocks may be in use.
hotFixSize is meaningful only with SFT NetWare Level I or above. To
determine the number of redirection blocks still available for future
use, see hotFixBlocksAvailable

hotFixBlockAvailable

Specifies the number of redirection blocks that are still available.
hotFixBlockAvailable is meaningful only on SFT NetWare Level I or
above.

hotFixDisabled

Specifies whether Hot Fix is enabled or disabled. hotFixDisabled is
meaningful only with SFT NetWare Level I or above (0 = enabled).

Management Service Group

Server Environment: Structures 940

resourceTagBuf

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 number;
 nuint32 signature;
 nuint32 count;
 nuint8 name);

Fields

number

signature

count

name

Management Service Group

Server Environment: Structures 941

ROUTERS_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint8 nodeAddress[6];
 nuint32 connectedLAN;
 nuint16 routeHops;
 nuint16 routeTime;
} ROUTERS_INFO;

Pascal Structure

Defined in nwfse.inc

 ROUTERS_INFO = Record
 nodeAddress : Array[0..5] Of nuint8;
 connectedLAN : nuint32;
 routeHops : nuint16;
 routeTime : nuint16
 End;

Fields

nodeAddress

connectedLAN

routeHops

routeTime

Management Service Group

Server Environment: Structures 942

SERVER_AND_VCONSOLE_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 currentServerTime;
 nuint8 vconsoleVersion;
 nuint8 vconsoleRevision;
} SERVER_AND_VCONSOLE_INFO;

Pascal Structure

Defined in nwfse.inc

SERVER_AND_VCONSOLE_INFO = Record
 currentServerTime : nuint32;
 vconsoleVersion : nuint8;
 vconsoleRevision : nuint8
End;

Fields

currentServerTime

Specifies the time in ticks (about 1/18 second) since the server was
brought up. When currentServerTime reaches 0xFFFFFFFF, it wraps to
0.

vconsoleVersion

Specifies the console version number and tracks the packet format.

vconsoleRevision

Specifies the console version revision number and tracks the packet
format.

Management Service Group

Server Environment: Structures 943

SERVER_LAN_IO_STATS

Returns LAN IO statistics for a LAN card on a NetWare server

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 systemElapsedTime;
 nuint16 maxRoutingBuffersAvail;
 nuint16 maxRoutingBuffersUsed;
 nuint16 routingBuffersInUse;
 nuint32 totalFileServicePackets;
 nuint16 fileServicePacketsBuffered;
 nuint16 invalidConnPacketCount;
 nuint16 badLogicalConnCount;
 nuint16 packetsRcvdDuringProcCount;
 nuint16 reprocessedRequestCount;
 nuint16 badSequenceNumberPacketCount;
 nuint16 duplicateReplyCount;
 nuint16 acknowledgementsSent;
 nuint16 badRequestTypeCount;
 nuint16 attachDuringProcCount;
 nuint16 attachWhileAttachingCount;
 nuint16 forgedDetachRequestCount;
 nuint16 badConnNumberOnDetachCount;
 nuint16 detachDuringProcCount;
 nuint16 repliesCanceledCount;
 nuint16 hopCountDiscardCount;
 nuint16 unknownNetDiscardCount;
 nuint16 noDGroupBufferDiscardCount;
 nuint16 outPacketNoBufferDiscardCount;
 nuint16 IPXNotMyNetworkCount;
 nuint32 NetBIOSPropagationCount;
 nuint32 totalOtherPackets;
 nuint32 totalRoutedPackets;
} SERVER_LAN_IO_STATS;

Pascal Structure

Defined in nwserver.inc

 SERVER_LAN_IO_STATS = Record
 systemElapsedTime : nuint32;
 maxRoutingBuffersAvail : nuint16;
 maxRoutingBuffersUsed : nuint16;
 routingBuffersInUse : nuint16;

Management Service Group

Server Environment: Structures 944

 totalFileServicePackets : nuint32;
 fileServicePacketsBuffered : nuint16;
 invalidConnPacketCount : nuint16;
 badLogicalConnCount : nuint16;
 packetsRcvdDuringProcCount : nuint16;
 reprocessedRequestCount : nuint16;
 badSequenceNumberPacketCount : nuint16;
 duplicateReplyCount : nuint16;
 acknowledgementsSent : nuint16;
 badRequestTypeCount : nuint16;
 attachDuringProcCount : nuint16;
 attachWhileAttachingCount : nuint16;
 forgedDetachRequestCount : nuint16;
 badConnNumberOnDetachCount : nuint16;
 detachDuringProcCount : nuint16;
 repliesCanceledCount : nuint16;
 hopCountDiscardCount : nuint16;
 unknownNetDiscardCount : nuint16;
 noDGroupBufferDiscardCount : nuint16;
 outPacketNoBufferDiscardCount : nuint16;
 IPXNotMyNetworkCount : nuint16;
 NetBIOSPropagationCount : nuint32;
 totalOtherPackets : nuint32;
 totalRoutedPackets : nuint32
 End;

Fields

systemElapsedTime

Specifies how long the NetWare server has been up. This field is
returned in units of approximately 1/18 second and is used to
determine the amount of time that has elapsed between consecutive
calls. When systemElapsedTime reaches 0xFFFFFFFF, it wraps back to
zero.

maxRoutingBuffersAvail

Specifies the number of routing buffers the network is configured to
handle.

maxRoutingBuffersUsed

Specifies the maximum number of routing buffers that have been in
use simultaneously since the server was brought up.

routingBuffersInUse

Specifies the number of routing buffers that are being used by the
server.

totalFileServicePackets

Specifies the number of request packets serviced by the NetWare
server.

fileServicePacketsBuffered

Management Service Group

Server Environment: Structures 945

Specifies the number of times file service request packets were stored
in routing buffers.

invalidConnPacketCount

badLogicalConnCount

packetsRcvdDuringProcCount

Specifies the number of times a new request is received while the
previous request is still being processed. Such packets are received
when the client generates a duplicate request while the response to the
first request is being sent to the client. In this case, the NetWare server
will reprocess the request unnecessarily.

reprocessedRequestCount

Specifies a count of requests reprocessed by the server. Requests can
be reprocessed if the client repeats a request for one that did not
receive a response.

badSequenceNumberPacketCount

Specifies a count of request packets the server received from a
connection whose packet sequence number does not match the current
sequence number in the next sequence number. (Packets with bad
sequence numbers are discarded.)

duplicateReplyCount

Specifies a count of request packets for which the server had to send a
duplicate reply. (Duplicate replies are sent only for requests the server
cannot process.)

acknowledgementsSent

Specifies the number of times a client repeats a request that is being
serviced.

badRequestTypeCount

Specifies a count of request packets containing an invalid request type.

attachDuringProcCount

Specifies the number of times the server is requested to create a service
connection by clients for which the server is currently processing a
request. In this case, the server does not respond to the request
currently being processed, and the server recreates a connection with
the client (station).

attachWhileAttachingCount

Specifies the number of times the NetWare server receives a request to
create a service connection while still servicing the same request
received previously. Such duplicate requests are ignored.

forgedDetachRequestCount

Specifies the count of requests to terminate a connection whose source
address does not match the address the server has assigned to the
connection. The detach request is ignored.

Management Service Group

Server Environment: Structures 946

badConnNumberOnDetachCount

Specifies the count of requests to terminate a connection for a
connection number that is not supported by the server.

detachDuringProcCount

Specifies the number of requests to terminate a connection while
requests are still being processed for the client.

repliesCanceledCount

Specifies the number of replies that were cancelled because the
connection was reallocated during processing.

hopCountDiscardCount

Specifies the number of packets discarded because they have passed
through more than 16 bridges without reaching their destination. (The
maximum number of bridges might depend on the particular
implementation of NCP, but for NetWare 2.x compatibility the
maximum number of bridges should be 16.)

unknownNetDiscardCount

Specifies the number of packets that were discarded because their
destination network is unknown to the server.

noDGroupBufferDiscardCount

Specifies the number of incoming packets that were received in a
routing buffer that needed to be transferred to a DGroup buffer so that
the socket dispatcher could transfer the packet to the correct socket. If
no buffers are available, the packet is lost.

outPacketNoBufferDiscardCount

Specifies the number of packets the server attempted to send which
were lost because no routing buffers were available.

IPXNotMyNetworkCount

Specifies the count of packets received that were destined for the B or
C side drivers.

NetBIOSPropagationCount

Specifies a count of NetBIOS packets circulated through this network.

totalOtherPackets

Specifies a count of all packets received that were not requests for file
services.

totalRoutedPackets

Specifies a count of all packets routed by the server.

Management Service Group

Server Environment: Structures 947

SERVERS_SRC_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint8 serverNode[6];
 nuint32 connectedLAN;
 nuint16 sourceHops;
} SERVERS_SRC_INFO;

Pascal Structure

Defined in nwfse.inc

 SERVERS_SRC_INFO = Record
 serverNode : Array[0.. 6 -1] Of nuint8;
 connectedLAN : nuint32;
 sourceHops : nuint16
 End;

Fields

serverNode

Specifies the node address of the server.

connectedLAN

Specifies the LAN board number of the server.

sourceHops

Specifies the number of hops to the server.

Management Service Group

Server Environment: Structures 948

SPX_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint16 SPXMaxConnsCount;
 nuint16 SPXMaxUsedConns;
 nuint16 SPXEstConnReq;
 nuint16 SPXEstConnFail;
 nuint16 SPXListenConnectReq;
 nuint16 SPXListenConnectFail;
 nuint32 SPXSendCount;
 nuint32 SPXWindowChokeCount;
 nuint16 SPXBadSendCount;
 nuint16 SPXSendFailCount;
 nuint16 SPXAbortedConn;
 nuint32 SPXListenPacketCount;
 nuint16 SPXBadListenCount;
 nuint32 SPXIncomingPacketCount;
 nuint16 SPXBadInPacketCount;
 nuint16 SPXSuppressedPackCount;
 nuint16 SPXNoSesListenECBCount;
 nuint16 SPXWatchDogDestSesCount;
} SPX_INFO;

Pascal Structure

Defined in nwfse.inc

 SPX_INFO = Record
 SPXMaxConnsCount : nuint16;
 SPXMaxUsedConns : nuint16;
 SPXEstConnReq : nuint16;
 SPXEstConnFail : nuint16;
 SPXListenConnectReq : nuint16;
 SPXListenConnectFail : nuint16;
 SPXSendCount : nuint32;
 SPXWindowChokeCount : nuint32;
 SPXBadSendCount : nuint16;
 SPXSendFailCount : nuint16;
 SPXAbortedConn : nuint16;
 SPXListenPacketCount : nuint32;
 SPXBadListenCount : nuint16;
 SPXIncomingPacketCount : nuint32;
 SPXBadInPacketCount : nuint16;

Management Service Group

Server Environment: Structures 949

 SPXSuppressedPackCount : nuint16;
 SPXNoSesListenECBCount : nuint16;
 SPXWatchDogDestSesCount : nuint16
 End;

Fields

SPXMaxConnsCount

Specifies the maximum number of SPX™ connections allowed on the
server.

SPXMaxUsedConns

Specifies the maximum number of SPX connections used at one time
since the server was booted.

SPXEstConnReq

Specifies the total number of SPX connections established since the
server was booted.

SPXEstConnFail

Specifies the number of times that an attempt to establish an SPX
connection failed since the server was booted.

SPXListenConnectReq

Specifies the number of requests to post a listen since the server was
booted.

SPXListenConnectFail

Specifies the number of times a request to post a listen failed since the
server was booted.

SPXSendCount

Specifies the number of SPX packets sent since the server was booted.

SPXWindowChokeCount

Specifies the value used internally for debugging.

SPXBadSendCount

Specifies the number of bad packets sent since the server was booted.

SPXSendFailCount

Specifies the number of packets sent for which no acknowledgment
was received since the server was booted.

SPXAbortedConn

Specifies the number of times a connection was aborted since the
server was booted.

SPXListenPacketCount

Specifies the number of times a listen was posted on a socket since the
server was booted.

SPXBadListenCount

Management Service Group

Server Environment: Structures 950

Specifies the number of times a listen on a socket failed since the
server was booted.

SPXIncomingPacketCount

Specifies the number of packets in the queue.

SPXBadInPacketCount

Specifies the number of bad SPX packets received since the server was
booted.

SPXSuppressedPackCount

Specifies the number of times a duplicate SPX packet was received
since the server was booted.

SPXNoSesListenECBCount

Specifies the number of times a listen was posted on a session that was
not established since the server was booted.

SPXWatchDogDestSesCount

Specifies the number of times the watchdog destroyed a session since
the server was booted.

Management Service Group

Server Environment: Structures 951

STACK_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 StackNum;
 nuint8 StackShortName[16];
} STACK_INFO;

Pascal Structure

Defined in nwfse.inc

STACK_INFO = Record
 StackNum : nuint32;
 StackShortName : Array[0..15] Of nuint8
 End;

Fields

StackNum

Specifies the protocol number.

StackShortName

Specifies the protocol short name with StackShortName being the
length, and the rest of the name following. It is not null-terminated.

Management Service Group

Server Environment: Structures 952

USER_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 connNum;
 nuint32 useCount;
 nuint8 connServiceType;
 nuint8 loginTime[7];
 nuint32 status;
 nuint32 expirationTime;
 nuint32 objType;
 nuint8 transactionFlag;
 nuint8 logicalLockThreshold;
 nuint8 recordLockThreshold;
 nuint8 fileWriteFlags;
 nuint8 fileWriteState;
 nuint8 filler;
 nuint16 fileLockCount;
 nuint16 recordLockCount;
 nuint8 totalBytesRead[6];
 nuint8 totalBytesWritten[6];
 nuint32 totalRequests;
 nuint32 heldRequests;
 nuint8 heldBytesRead[6];
 nuint8 heldBytesWritten[6];
} USER_INFO;

Pascal Structure

Defined in nwfse.inc

 USER_INFO = Record
 connNum : nuint32;
 useCount : nuint32;
 connServiceType : nuint8;
 loginTime : Array[0..6] Of nuint8;
 status : nuint32;
 expirationTime : nuint32;
 objType : nuint32;
 transactionFlag : nuint8;
 logicalLockThreshold : nuint8;
 recordLockThreshold : nuint8;
 fileWriteFlags : nuint8; (* Includes active and stop bits *)
 fileWriteState : nuint8;

Management Service Group

Server Environment: Structures 953

 filler : nuint8;
 fileLockCount : nuint16;
 recordLockCount : nuint16;
 totalBytesRead : Array[0..5] Of nuint8;
 totalBytesWritten : Array[0..5] Of nuint8;
 totalRequests : nuint32;
 heldRequests : nuint32;
 heldBytesRead : Array[0..5] Of nuint8;
 heldBytesWritten : Array[0..5] Of nuint8;
 End;

Fields

connNum

Specifies the connection number of the user.

useCount

Specifies if the connection is in use: 1 if the connection is in use, 0 if the
connection is not in use.

connServiceType

Specifies the following connection types:

2 = FSE_NCP_CONNECTION_TYPE
3 = FSE_NLM_CONNECTION_TYPE
4 = FSE_AFP_CONNECTION_TYPE
5 = FSE_FTAM_CONNECTION_TYPE
6 = FSE_ANCP_CONNECTION_TYPE

loginTime

Specifies the time the user logged in.

status

Specifies the status of the connection:

LOGGED_IN 0x00000001
BEING_ABORTED 0x00000002
AUDITED 0x00000004
NEEDS_SECURITY_CHANGE 0x00000008
MAC_STATION 0x00000010
AUTHENTICATED_TEMPORARY 0x00000020
AUDIT_CONNECTION_RECORDED 0x00000040
DSAUDIT_CONNECTION_RECORDED 0x00000080

expirationTime

objType

Specifies the object type of the user, usually 0x0100.

transactionFlag

Specifies the transaction tracking information.

logicalLockThreshold

Management Service Group

Server Environment: Structures 954

Specifies the maximum number of logical locks a user an have.

recordLockThreshold

Specifies the maximum number of record locks the user can have.

fileWriteFlags

Specifies the writing status (includes active and stop bits) as follows:

1 = WRITING
2 = WRITING_ABORTED

fileWriteState

Specifies the writing status as follows:

0 = NOT_WRITING
1 = WRITE_IN_PROGRESS
2 = WRITE_BEING_STOPPED

filler

Is unused.

fileLockCount

Specifies the number of files the user has locked.

recordLockCount

Specifies the number of records the user has locked.

totalBytesRead

Specifies the number of bytes the user has read (48-bit value).

totalBytesWritten

Specifies the number of bytes the user has written (48-bit value).

totalRequests

Specifies the number of requests the user has sent.

heldRequests

Specifies the number of requests held for accounting purposes.

heldBytesRead

Specifies the number of bytes the user has read that have a hold on
them for accounting purposes.

heldBytesWritten

Specifies the number of bytes the user has written that have a hold on
them for accounting purposes

Management Service Group

Server Environment: Structures 955

VERSION_INFO

Returns version information for a NetWare server’s logical components

Service: Server Environment

Defined In: nwfserver.h

Structure

typedef struct
{
 nuint8 serverName[48];
 nuint8 fileServiceVersion;
 nuint8 fileServiceSubVersion;
 nuint16 maximumServiceConnections;
 nuint16 connectionsInUse;
 nuint16 maxNumberVolumes;
 nuint8 revision;
 nuint8 SFTLevel;
 nuint8 TTSLevel;
 nuint16 maxConnectionsEverUsed;
 nuint8 accountVersion;
 nuint8 VAPVersion;
 nuint8 queueVersion;
 nuint8 printVersion;
 nuint8 virtualConsoleVersion;
 nuint8 restrictionLevel;
 nuint8 internetBridge;
 nuint8 reserved[60];
} VERSION_INFO;

Pascal Structure

Defined in nwserver.inc

VERSION_INFO = Record
 serverName : Array[0..47] Of nuint8;
 fileServiceVersion : nuint8;
 fileServiceSubVersion : nuint8;
 maximumServiceConnections : nuint16;
 connectionsInUse : nuint16;
 maxNumberVolumes : nuint16;
 revision : nuint8;
 SFTLevel : nuint8;
 TTSLevel : nuint8;
 maxConnectionsEverUsed : nuint16;
 accountVersion : nuint8;
 VAPVersion : nuint8;
 queueVersion : nuint8;
 printVersion : nuint8;

Management Service Group

Server Environment: Structures 956

 virtualConsoleVersion : nuint8;
 restrictionLevel : nuint8;
 internetBridge : nuint8;
 reserved : Array[0..59] Of nuint8
 End;

Fields

serverName

fileServiceVersion

fileServiceSubVersion

maximumServiceConnections

connectionsInUse

maxNumberVolumes

revision

SFTLevel

TTSLevel

maxConnectionsEverUsed

accountVersion

VAPVersion

queueVersion

printVersion

virtualConsoleVersion

restrictionLevel

internetBridge

reserved

Management Service Group

Server Environment: Structures 957

VOLUME_INFO_BY_LEVEL

Service: Server Environment

Defined In: nwfse.h

Structure

typedef union
{
 VOLUME_INFO_BY_LEVEL_DEF volInfoDef;
 VOLUME_INFO_BY_LEVEL_DEF2 volInfoDef2;
} VOLUME_INFO_BY_LEVEL;

Fields

volInfoDef

volInfoDef2

Management Service Group

Server Environment: Structures 958

VOLUME_INFO_BY_LEVEL_DEF

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 volumeType;
 nuint32 statusFlagBits;
 nuint32 sectorSize;
 nuint32 sectorsPerCluster;
 nuint32 volumeSizeInClusters;
 nuint32 freedClusters;
 nuint32 subAllocFreeableClusters;
 nuint32 freeableLimboSectors;
 nuint32 nonFreeableLimboSectors;
 nuint32 nonFreeableAvailSubAllocSectors;
 nuint32 notUsableSubAllocSectors;
 nuint32 subAllocClusters;
 nuint32 dataStreamsCount;
 nuint32 limboDataStreamsCount;
 nuint32 oldestDeletedFileAgeInTicks;
 nuint32 compressedDataStreamsCount;
 nuint32 compressedLimboDataStreamsCount;
 nuint32 unCompressableDataStreamsCount;
 nuint32 preCompressedSectors;
 nuint32 compressedSectors;
 nuint32 migratedFiles;
 nuint32 migratedSectors;
 nuint32 clustersUsedByFAT;
 nuint32 clustersUsedByDirectories;
 nuint32 clustersUsedbyExtendedDirs;
 nuint32 totalDirectoryEntries;
 nuint32 unUsedDirectoryEntries;
 nuint32 totalExtendedDirectoryExtants;
 nuint32 unUsedExtendedDirectoryExtants;
 nuint32 extendedAttributesDefined;
 nuint32 extendedAttributeExtantsUsed;
 nuint32 directoryServicesObjectID;
 nuint32 volumeLastModifiedDateAndTime;
} VOLUME_INFO_BY_LEVEL_DEF;

Pascal Structure

Defined in nwfse.inc

 VOLUME_INFO_BY_LEVEL_DEF = Record

Management Service Group

Server Environment: Structures 959

 volumeType : nuint32;
 statusFlagBits : nuint32;
 sectorSize : nuint32;
 sectorsPerCluster : nuint32;
 volumeSizeInClusters : nuint32;
 freedClusters : nuint32;
 subAllocFreeableClusters : nuint32;
 freeableLimboSectors : nuint32;
 nonFreeableLimboSectors : nuint32;
 nonFreeableAvailSubAllocSectors : nuint32;
 notUsableSubAllocSectors : nuint32;
 subAllocClusters : nuint32;
 dataStreamsCount : nuint32;
 limboDataStreamsCount : nuint32;
 oldestDeletedFileAgeInTicks : nuint32;
 compressedDataStreamsCount : nuint32;
 compressedLimboDataStreamsCount : nuint32;
 unCompressableDataStreamsCount : nuint32;
 preCompressedSectors : nuint32;
 compressedSectors : nuint32;
 migratedFiles : nuint32;
 migratedSectors : nuint2;
 clustersUsedByFAT : nunt32;
 clustersUsedByDirectories : nuint32;
 clustersUsedByExtendedDirs : nuint32;
 totalDirectoryEntries : nuint32;
 unUsedDirectoryEntries : nuint32;
 totalExtendedDirectoryExtants : nuint32;
 unUsedExtendedDirectoryExtants : nuint32;
 extendedAttributesDefined : nuint32;
 extendedAttributeExtantsUsed : nuint32;
 directoryServicesObjectID : nuint32;
 volumeLastModifiedDateAndTime : nuint32
 End;

Fields

volumeType

statusFlagBits

sectorSize

sectorsPerCluster

volumeSizeInClusters

freedClusters

subAllocFreeableClusters

freeableLimboSectors

nonFreeableLimboSectors

Management Service Group

Server Environment: Structures 960

nonFreeableAvailSubAllocSectors

notUsableSubAllocSectors

subAllocClusters

dataStreamsCount

limboDataStreamsCount

oldestDeletedFileAgeInTicks

compressedDataStreamsCount

compressedLimboDataStreamsCount

unCompressableDataStreamsCount

preCompressedSectors

compressedSectors

migratedFiles

migratedSectors

clustersUsedByFAT

clustersUsedByDirectories

clustersUsedbyExtendedDirs

totalDirectoryEntries

unUsedDirectoryEntries

totalExtendedDirectoryExtants

unUsedExtendedDirectoryExtants

extendedAttributesDefined

extendedAttributeExtantsUsed

directoryServicesObjectID

volumeLastModifiedDateAndTime

Management Service Group

Server Environment: Structures 961

VOLUME_INFO_BY_LEVEL_DEF2

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 volumeActiveCount;
 nuint32 volumeUseCount;
 nuint32 mACRootIDs;
 nuint32 volumeLastModifiedDateAndTime;
 nuint32 volumeReferenceCount;
 nuint32 compressionLowerLimit;
 nuint32 outstandingIOs;
 nuint32 outstandingCompressionIOs;
 nuint32 compressionIOsLimit;
} VOLUME_INFO_BY_LEVEL_DEF2;

Pascal Structure

Defined in nwfse.inc

 VOLUME_INFO_BY_LEVEL_DEF2 = Record
 volumeActiveCount : nuint32;
 volumeUseCount : nuint32;
 mACRootIDs : nuint32;
 volumeLastModifiedDateAndTime : nuint32;
 volumeReferenceCount : nuint32;
 compressionLowerLimit : nuint32;
 outstandingIOs : nuint32;
 outstandingCompressionIOs : nuint32;
 compressionIOsLimit : nuint32
 End;

Fields

volumeActiveCount

volumeUseCount

mACRootIDs

volumeLastModifiedDateAndTime

volumeReferenceCount

compressionLowerLimit

outstandingIOs

Management Service Group

Server Environment: Structures 962

outstandingIOs

outstandingCompressionIOs

compressionIOsLimit

Management Service Group

Server Environment: Structures 963

VOLUME_SEGMENT

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 volumeSegmentDeviceNum;
 nuint32 volumeSegmentOffset;
 nuint32 volumeSegmentSize;
} VOLUME_SEGMENT;

Pascal Structure

Defined in nwfse.inc

 VOLUME_SEGMENT = Record
 volumeSegmentDeviceNum : nuint32;
 volumeSegmentOffset : nuint32;
 volumeSegmentSize : nuint32
 End;

Fields

volumeSegmentDeviceNum

Specifies the device the segment is located on.

volumeSegmentOffset

Specifies the offset of the segment in bytes.

volumeSegmentSize

Specifies the segment size in bytes.

Management Service Group

Server Environment: Structures 964

VOLUME_SWITCH_INFO

Service: Server Environment

Defined In: nwfse.h

Structure

typedef struct
{
 nuint32 readFile;
 nuint32 writeFile;
 nuint32 deleteFile;
 nuint32 renMove;
 nuint32 openFile;
 nuint32 createFile;
 nuint32 createAndOpenFile;
 nuint32 closeFile;
 nuint32 scanDeleteFile;
 nuint32 salvageFile;
 nuint32 purgeFile;
 nuint32 migrateFile;
 nuint32 deMigrateFile;
 nuint32 createDir;
 nuint32 deleteDir;
 nuint32 directoryScans;
 nuint32 mapPathToDirNum;
 nuint32 modifyDirEntry;
 nuint32 getAccessRights;
 nuint32 getAccessRightsFromIDs;
 nuint32 mapDirNumToPath;
 nuint32 getEntryFromPathStrBase;
 nuint32 getOtherNSEntry;
 nuint32 getExtDirInfo;
 nuint32 getParentDirNum;
 nuint32 addTrusteeR;
 nuint32 scanTrusteeR;
 nuint32 delTrusteeR;
 nuint32 purgeTrust;
 nuint32 findNextTrusteRef;
 nuint32 scanUserRestNodes;
 nuint32 addUserRest;
 nuint32 deleteUserRest;
 nuint32 rtnDirSpaceRest;
 nuint32 getActualAvailDskSp;
 nuint32 cntOwnedFilesAndDirs;
 nuint32 migFileInfo;
 nuint32 volMigInfo;
 nuint32 readMigFileData;
 nuint32 getVolUsageStats;

Management Service Group

Server Environment: Structures 965

 nuint32 getActualVolUsageStats;
 nuint32 getDirUsageStats;
 nuint32 NMFileReadsCount;
 nuint32 NMFileWritesCount;
 nuint32 mapPathToDirNumOrPhantom;
 nuint32 stationHasAccessRgtsGntedBelow;
 nuint32 gtDataStreamLensFromPathStrBase;
 nuint32 checkAndGetDirectoryEntry;
 nuint32 getDeletedEntry;
 nuint32 getOriginalNameSpace;
 nuint32 getActualFileSize;
 nuint32 verifyNameSpaceNumber;
 nuint32 verifyDataStreamNumber;
 nuint32 checkVolumeNumber;
 nuint32 commitFile;
 nuint32 VMGetDirectoryEntry;
 nuint32 createDMFileEntry;
 nuint32 renameNameSpaceEntry;
 nuint32 logFile;
 nuint32 releaseFile;
 nuint32 clearFile;
 nuint32 setVolumeFlag;
 nuint32 clearVolumeFlag;
 nuint32 getOriginalInfo;
 nuint32 createMigratedDir;
 nuint32 F3OpenCreate;
 nuint32 F3InitFileSearch;
 nuint32 F3ContinueFileSearch;
 nuint32 F3RenameFile;
 nuint32 F3ScanForTrustees;
 nuint32 F3ObtainFileInfo;
 nuint32 F3ModifyInfo;
 nuint32 F3EraseFile;
 nuint32 F3SetDirHandle;
 nuint32 F3AddTrustees;
 nuint32 F3DeleteTrustees;
 nuint32 F3AllocDirHandle;
 nuint32 F3ScanSalvagedFiles;
 nuint32 F3RecoverSalvagedFiles;
 nuint32 F3PurgeSalvageableFile;
 nuint32 F3GetNSSpecificInfo;
 nuint32 F3ModifyNSSpecificInfo;
 nuint32 F3SearchSet;
 nuint32 F3GetDirBase;
 nuint32 F3QueryNameSpaceInfo;
 nuint32 F3GetNameSpaceList;
 nuint32 F3GetHugeInfo;
 nuint32 F3SetHugeInfo;
 nuint32 F3GetFullPathString;
 nuint32 F3GetEffectiveDirectoryRights;
} VOLUME_SWITCH_INFO;

Management Service Group

Server Environment: Structures 966

Pascal Structure

Defined in nwfse.inc

 VOLUME_SWITCH_INFO = Record
 readFile : nuint32;
 writeFile : nuint32;
 deleteFile : nuint32;
 renMove : nuint32;
 openFile : nuint32;
 createFile : nuint32;
 createAndOpenFile : nuint32;
 closeFile : nuint32;
 scanDeleteFile : nuint32;
 salvageFile : nuint32;
 purgeFile : nuint32;
 migrateFile : nuint32;
 deMigrateFile : nuint32;
 createDir : nuint32;
 deleteDir : nuint32;
 directoryScans : nuint32;
 mapPathToDirNum : nuint32;
 modifyDirEntry : nuint32;
 getAccessRights : nuint32;
 getAccessRightsFromIDs : nuint32;
 mapDirNumToPath : nuint32;
 getEntryFromPathStrBase : nuint32;
 getOtherNSEntry : nuint32;
 getExtDirInfo : nuint32;
 getParentDirNum : nuint32;
 addTrusteeR : nuint32;
 scanTrusteeR : nuint32;
 delTrusteeR : nuint32;
 purgeTrust : nuint32;
 findNextTrustRef : nuint32;
 scanUserRestNodes : nuint32;
 addUserRest : nuint32;
 deleteUserRest : nuint2;
 rtnDirSpaceRest : nuint32;
 getActualAvailDskSp : nuint32;
 cntOwnedFilesAndDirs : nuint32;
 migFileInfo : nuint32;
 volMigInfo : nuint32;
 readMigFileData : nuint32;
 getVolUsageStats : nuint32;
 getActualVolUsageStats : nuint32;
 getDirUsageStats : nuint32;
 NMFileReadsCount : nuint32;
 NMFileWritesCount : nuint32;
 mapPathToDirNumOrPhantom : nuint32;
 stationHasAccessRgtsGntedBelow : nuint32;
 gtDataStreamLensFromPathStrBase : nuint32;

Management Service Group

Server Environment: Structures 967

 checkAndGetDirectoryEntry : nuint32;
 getDeletedEntry : nuint32;
 getOriginalNameSpace : nuint32;
 getActualFileSize : nuint32;
 verifyNameSpaceNumber : nuint32;
 verifyDataStreamNumber : nuint32;
 checkVolumeNumber : nuint32;
 commitFile : nuint32;
 VMGetDirectoryEntry : nuint32;
 createDMFileEntry : nuint32;
 renameNameSpaceEntry : nuint32;
 logFile : nuint32;
 releaseFile : nuint32;
 clearFile : nuint32;
 setVolumeFlag : nuint32;
 clearVolumeFlag : nuint32;
 getOriginalInfo : nuint32;
 createMigratedDir : nuint32;
 F3OpenCreate : nuint32;
 F3InitFileSearch : nuint32;
 F3ContinueFileSearch : nuint32;
 F3RenameFile : nuint32;
 F3ScanForTrustees : nuint32;
 F3ObtainFileInfo : nuint32;
 F3ModifyInfo : nuint32;
 F3EraseFile : nuint32;
 F3SetDirHandle : nuint32;
 F3AddTrustees : nuint32;
 F3DeleteTrustees : nuint32;
 F3AllocDirHandle : nuint32;
 F3ScanSalvagedFiles : nuint32;
 F3RecoverSalvagedFiles : nuint32;
 F3PurgeSalvageableFile : nuint32;
 F3GetNSSpecificInfo : nuint32;
 F3ModifyNSSpecificInfo : nuint32;
 F3SearchSet : nuint32;
 F3GetDirBase : nuint32;
 F3QueryNameSpaceInfo : nuint32;
 F3GetNameSpaceList : nuint32;
 F3GetHugeInfo : nuint32;
 F3SetHugeInfo : nuint32;
 F3GetFullPathString : nuint32;
 F3GetEffectiveDirectoryRights : nuint32
 End;

Fields

readFile

writeFile

deleteFile

Management Service Group

Server Environment: Structures 968

renMove

openFile

createFile

createAndOpenFile

closeFile

scanDeleteFile

salvageFile

purgeFile

migrateFile

deMigrateFile

createDir

deleteDir

directoryScans

mapPathToDirNum

modifyDirEntry

getAccessRights

getAccessRightsFromIDs

mapDirNumToPath

getEntryFromPathStrBase

getOtherNSEntry

getExtDirInfo

getParentDirNum

addTrusteeR

scanTrusteeR

delTrusteeR

purgeTrust

findNextTrusteRef

scanUserRestNodes

addUserRest

deleteUserRest

rtnDirSpaceRest

Management Service Group

Server Environment: Structures 969

getActualAvailDskSp

cntOwnedFilesAndDirs

cntOwnedFilesAndDirs

volMigInfo

readMigFileData

getVolUsageStats

getActualVolUsageStats

getDirUsageStats

NMFileReadsCount

NMFileWritesCount

mapPathToDirNumOrPhantom

stationHasAccessRgtsGntedBelow

gtDataStreamLensFromPathStrBase

checkAndGetDirectoryEntry

getDeletedEntry

getOriginalNameSpace

getActualFileSize

verifyNameSpaceNumber

verifyDataStreamNumber

checkVolumeNumber

commitFile

VMGetDirectoryEntry

createDMFileEntry

renameNameSpaceEntry

logFile

releaseFile

clearFile

setVolumeFlag

clearVolumeFlag

getOriginalInfo

createMigratedDir

Management Service Group

Server Environment: Structures 970

F3OpenCreate

F3InitFileSearch

F3ContinueFileSearch

F3RenameFile

F3ScanForTrustees

F3ObtainFileInfo

F3ModifyInfo

F3EraseFile

F3SetDirHandle

F3AddTrustees

F3DeleteTrustees

F3AllocDirHandle

F3ScanSalvagedFiles

F3RecoverSalvagedFiles

F3PurgeSalvageableFile

F3GetNSSpecificInfo

F3ModifyNSSpecificInfo

F3SearchSet

F3GetDirBase

F3QueryNameSpaceInfo

F3GetNameSpaceList

F3GetHugeInfo

F3SetHugeInfo

F3GetFullPathString

F3GetEffectiveDirectoryRights

Management Service Group

Server Environment: Structures 971

Server Management

Management Service Group

 972

Server Management: Guides

Server Management: General Guide

Tasks

Managing Volumes

Managing a Volume’s Name Space

Managing NCF Files

Managing NLMs

Managing SET Values

Concepts

Server Management Introduction

Related Topics:

Server Management: Tasks

Server Management: Concepts

Server Management: Functions

Parent Topic:

Management Overview

Management Service Group

Server Management: Guides 973

Server Management: Tasks

Managing a Volume’s Name Space

1. To add a specified name space to a volume on a server, call
NWSMAddNSToVolume.

Parent Topic:

Server Management: General Guide

Managing NCF Files

1. To execute a selected NCF file on a specified server, call
NWSMExecuteNCFFile.

Parent Topic:

Server Management: General Guide

Managing NLMs

1. To load a selected NLM on a server, call NWSMLoadNLM.

2. To unload a selected NLM on a server, call NWSMUnloadNLM.

Parent Topic:

Server Management: General Guide

Managing SET Values

1. To change a SET integer value, call NWSMSetDynamicCmdIntValue.

2. To change a SET string value, call NWSMSetDynamicCmdStrValue.

Parent Topic:

Server Management: General Guide

Managing Volumes

Management Service Group

Server Management: Tasks 974

1. To mount a volume using either a volume name or a volume number,
call NWSMMountVolume.

2. To dismount a volume using a volume name, call
NWSMDismountVolumeByName.

3. To dismount a volume using a volume number, call
NWSMDismountVolumeByNumber.

Parent Topic:

Server Management: General Guide

Management Service Group

Server Management: Tasks 975

Server Management: Concepts

Server Management Introduction

Server Management allows you to manage server functions from the
workstation.

From the workstation you can:

Manage a volume’s name space

Manage volumes

Manage NCF files on a server

Manage NLMs

Manage SET command values.

Parent Topic:

Server Management: General Guide

Management Service Group

Server Management: Concepts 976

Server Management: Functions

Management Service Group

Server Management: Functions 977

NWSMAddNSToVolume

Adds a specified name space to a mounted volume on a server

NetWare Server: 4.1

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT

Service: Server Management

Syntax

#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMAddNSToVolume
 (NWCONN_HANDLE connHandle,
 nuint16 volNumber,
 nuint8 namspc);

Pascal Syntax

#include <nwsm.inc>

Function NWSMAddNSToVolume
 (connHandle : NWCONN_HANDLE;
 volNumber : nuint16;
 namspc : nuint8
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the server connection handle which is being managed.

volNumber

(IN) Specifies the volume number on which the name space will be
loaded.

namspc

(IN) Specifies the name space to load on the volume.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESS

Management Service Group

Server Management: Functions 978

0x00BF No add name space string given

0x0205 Unable to add specified name space to a volume

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x89FB ERR_NCP_NOT_SUPPORTED

Remarks

You must be logged into connHandle, be permanently authenticated, and
have console operator rights at the minimum to call
NWSMAddNSToVolume.

namspc values cannot be ORed; they may be added on each call. namspc
values follow:

NW_NS_MAC

NW_NS_NFS

NW_NS_FTAM

NW_NS_OS2

Execute ADD NAME SPACE only once for each non-DOS naming
convention you want to store on a volume.

Before you can add a name space to a volume, the volume and the name
space module must both be loaded. See the NWSMLoadNLM function.

NCP Calls

0x2222 135 5 Add Name Space To Volume

See Also

NWSMLoadNLM

Management Service Group

Server Management: Functions 979

NWSMDismountVolumeByName

Dismounts a volume on a selected server

NetWare Server: 4.1

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT

Service: Server Management

Syntax

#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMDismountVolumeByName
 (NWCONN_HANDLE connHandle,
 pnstr8 volumeName);

Pascal Syntax

#include <nwsm.inc>

Function NWSMDismountVolumeByName
 (connHandle : NWCONN_HANDLE;
 volumeName : pnstr8
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the server connection handle which is being managed.

volumeName

(IN) Points to the name of the NetWare volume to dismount. It must
be NULL terminated.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESS

0x00BF Invalid volumeName string passed

0x0204 Unable to dismount specified volume name

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

Management Service Group

Server Management: Functions 980

0x89FB ERR_NCP_NOT_SUPPORTED

Remarks

You must be logged into connHandle, be permanently authenticated, and
have console operator rights at the minimum to call
NWSMDismountVolumeByName.

NCP Calls

0x2222 131 4 Dismount Volume

See Also

NWSMMountVolume

Management Service Group

Server Management: Functions 981

NWSMDismountVolumeByNumber

Dismounts a volume on a selected server

NetWare Server: 4.1

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT

Service: Server Management

Syntax

#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMDismountVolumeByNumber
 (NWCONN_HANDLE connHandle,
 nuint16 volumeNumber);

Pascal Syntax

#include <nwsm.inc>

Function NWSMDismountVolumeByNumber
 (connHandle : NWCONN_HANDLE;
 volumeNumber : nuint16
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the server connection handle which is being managed.

volumeNumber

(IN) Specifies the number of the NetWare volume to dismount.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESS

0x00BF Invalid volumeName string passed

0x0204 Unable to dismount specified volume name

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

Management Service Group

Server Management: Functions 982

0x89FB ERR_NCP_NOT_SUPPORTED

Remarks

You must be logged into connHandle, be permanently authenticated, and
have console operator rights at the minimum to call
NWSMDismountVolumeByNumber.

NCP Calls

0x2222 131 4 Dismount Volume

See Also

NWSMMountVolume

Management Service Group

Server Management: Functions 983

NWSMExecuteNCFFile

Executes a selected NCF file on a specified server

NetWare Server: 4.1

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT

Service: Server Management

Syntax

#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMExecuteNCFFile
 (NWCONN_HANDLE connHandle,
 pnstr8 NCFFileName);

Pascal Syntax

#include <nwsm.inc>

Function NWSMExecuteNCFFile
 (connHandle : NWCONN_HANDLE;
 NCFFileName : pnstr8
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the server connection handle which is being managed.

NCFFileName

(IN) Points to the name of the file to execute. It must be NULL
terminated.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESS

0x009E No Path and Name field supplied

0x0207 Unable to execute NCF file

0x8801 INVALID_CONNECTION

0x8993 INVALID_FILENAME

Management Service Group

Server Management: Functions 984

0x89FB ERR_NCP_NOT_SUPPORTED

Remarks

You must be logged into connHandle, be permanently authenticated, and
have console operator rights at the minimum to call
NWSMExecuteNCFFile.

fileName may include a volume and path in the following format:

{VOLUME NAME:}{PATH\...|file name}

NCP Calls

0x2222 131 7 Execute NCF File

Management Service Group

Server Management: Functions 985

NWSMLoadNLM

Loads a selected NLM on a server

NetWare Server: 4.1

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT

Service: Server Management

Syntax

#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMLoadNLM
 (NWCONN_HANDLE connHandle,
 pnstr8 loadCommand);

Pascal Syntax

#include <nwsm.inc>

Function NWSMLoadNLM
 (connHandle : NWCONN_HANDLE;
 loadCommand : pnstr8
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the server connection handle which is being managed.

loadCommand

(IN) Points to the load command for the NLM. It must be NULL
terminated; maximum length is 482 bytes.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESS

0x009E Bad file name or no file name given

0x0202 Unable to load specified module

0x8801 INVALID_CONNECTION

0x88FB ERR_NCP_NOT_SUPPORTED

Management Service Group

Server Management: Functions 986

0x899E INVALID_FILENAME

Remarks

You must be logged into connHandle, be permanently authenticated, and
have console operator rights at the minimum to call NWSMLoadNLM.

loadCommand can be any string that is valid for the LOAD command on
the console (except it does not include the actual “LOAD” command). It
contains the NLM name (including the path if it is not in the server path),
and command line parameters if any.

The LOAD command has the following format:

{VOLUME NAME:}{PATH\...}NLMname{.ext}{parameters}

NWSMLoadNLM does not support UNC paths.

The NLM does not have to include the extensions. .NLM will be assumed
if the extensions are not included.

The server console LOAD command is documented in the NetWare
server utilities documentation.

NCP Calls

0x2222 131 1 Load A NLM

See Also

NWSMUnloadNLM

Management Service Group

Server Management: Functions 987

NWSMMountVolume

Mounts a volume on a selected server

NetWare Server: 4.1

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT

Service: Server Management

Syntax

#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMMountVolume
 (NWCONN_HANDLE connHandle,
 pnstr8 volumeName,
 pnuint32 volumeNumber);

Pascal Syntax

#include <nwsm.inc>

Function NWSMMountVolume
 (connHandle : NWCONN_HANDLE;
 volumeName : pnstr8;
 volumeNumber : pnuint32
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the server connection handle which is being managed.

volumeName

(IN) Points to the name of the NetWare volume to mount. It must be
NULL terminated.

volumeNumber

(OUT) Points to the number of the volume.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESS

Management Service Group

Server Management: Functions 988

0x00BF Invalid volumeName string passed

0x0203 Unable to mount specified volume

0x8801 INVALID_CONNECTION

0x89FB ERR_NCP_NOT_SUPPORTED

0x8998 VOLUME_DOES_NOT_EXIST

VOLUME_ALREADY_MOUNTED

Remarks

You must be logged into connHandle, be permanently authenticated, and
have console operator rights at the minimum to call
NWSMMountVolume.

If upon mounting a volume, an error occurs, and if the set parameters are
such that VREPAIR will automatically execute, VREPAIR will execute
and NWSMMountVolume will not return until VREPAIR has
completed. The volume is then mounted.

NCP Calls

0x2222 131 3 Mount Volume

See Also

NWSMDismountVolumeByName,
NWSMDismountVolumeByNumber

Management Service Group

Server Management: Functions 989

NWSMSetDynamicCmdIntValue

Changes the current value of a set command (that takes in integer values)
on a specified server

NetWare Server: 4.1

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT

Service: Server Management

Syntax

#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMSetDynamicCmdIntValue
 (NWCONN_HANDLE connHandle,
 pnstr8 setCommandName,
 nuint32 cmdValue);

Pascal Syntax

#include <nwsm.inc>

Function NWSMSetDynamicCmdIntValue
 (connHandle : NWCONN_HANDLE;
 setCommandName : pnstr8;
 cmdValue : nuint32
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the server connection handle which is being managed.

setCommandName

(IN) Points to the set parameter name. It must be NULL terminated.

cmdValue

(IN) Specifies the new value for the set command parameter.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESS

Management Service Group

Server Management: Functions 990

0x008C Invalid type flag value

0x00BF No setCommandName string

0x0206 Unable to set the command

0x8801 INVALID_CONNECTION

0x89FB ERR_NCP_NOT_SUPPORTED

Remarks

You must be logged into connHandle, be permanently authenticated, and
have console operator rights at the minimum to call
NWSMSetDynamicCmdIntValue.

The server console SET command is documented in the NetWare server
utilities documentation. The SET values OFF/ON are treated as the
integers 0 (zero) and 1 respectively; they are not treated as strings.

NCP Calls

0x2222 131 6 Set Command Value

See Also

NWGetServerSetCommandsInfo, NWGetServerSetCategories,
NWSMSetDynamicCmdStrValue

Management Service Group

Server Management: Functions 991

NWSMSetDynamicCmdStrValue

Changes the current values of a set command (that takes in string values) on
a specified server

NetWare Server: 4.1

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT

Service: Server Management

Syntax

#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMSetDynamicCmdStrValue
 (NWCONN_HANDLE connHandle,
 pnstr8 setCommandName,
 pnstr8 cmdValue);

Pascal Syntax

#include <nwsm.inc>

Function NWSMSetDynamicCmdStrValue
 (connHandle : NWCONN_HANDLE;
 setCommandName : pnstr8;
 cmdValue : pnstr8
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the server connection handle which is being managed.

setCommandName

(IN) Points to the parameter command name. It must be NULL
terminated.

cmdValue

(IN) Points to the new value for the set command parameter. It must
be NULL terminated.s

Return Values

These are common return values; see Return Values for more
information.

Management Service Group

Server Management: Functions 992

0x0000 SUCCESS

0x008C Invalid type flag value

0x00BF No setCommandName string

0x0206 Unable to set the command

0x8801 INVALID_CONNECTION

0x89FB ERR_NCP_NOT_SUPPORTED

Remarks

You must be logged into connHandle, be permanently authenticated, and
have console operator rights at the minimum to call
NWSMSetDynamicCmdStrValue.

The server console SET command is documented in the NetWare server
utilities documentation. The SET values OFF/ON are treated as the
integers 0 (zero) and 1 respectively; they are not treated as strings.

NCP Calls

0x2222 131 6 Set Command Value

See Also

NWGetServerSetCommandsInfo, NWGetServerSetCategories,
NWSMSetDynamicCmdIntValue

Management Service Group

Server Management: Functions 993

NWSMUnloadNLM

Unloads a selected NLM on a server

NetWare Server: 4.1

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT

Service: Server Management

Syntax

#include <nwsm.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY NWCCODE NWSMUnloadNLM
 (NWCONN_HANDLE connHandle,
 pnstr8 NLMName);

Pascal Syntax

#include <nwsm.inc>

Function NWSMUnloadNLM
 (connHandle : NWCONN_HANDLE;
 NLMName : pnstr8
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the server connection handle which is being managed.

NLMName

(IN) Points to the name of the NLM to be unloaded (NULL-terminated
with a maximum length of 482 bytes).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESS

0x009E Bad file name or no file name given

0x0202 Unable to unload specified module

0x8801 INVALID_CONNECTION

0x89FB ERR_NCP_NOT_SUPPORTED

Management Service Group

Server Management: Functions 994

0x899E INVALID_FILENAME

Remarks

You must be logged into connHandle, be permanently authenticated, and
have console operator rights at the minimum to call NWSMUnloadNLM.

The NLMName parameter can be any string that is valid for the UNLOAD
command on the console (except it does not include the actual
“UNLOAD” command) and contains the NLM name.

The NLMName parameter has the following format:

NLMname{.ext}

NWSMUnloadNLM does not support UNC paths.

The NLM does not have to include the extensions. .NLM will be assumed
if the extension is not included.

The server console UNLOAD command is documented in the NetWare
server utilities documentation.

NCP Calls

0x2222 131 2 Unload A NLM

See Also

NWSMLoadNLM

Management Service Group

Server Management: Functions 995

Snap-in

Management Service Group

 996

Snap-in: Guides

Snap-in: General Guide

Tasks

Registering Object and View Snap-in DLLs Using Windows 3.1

Registering Object and View Snap-in DLLs Using Windows 95

Concepts

Snap-in Introduction

The Snap-in Interface

Snap-in View

Snap-in Status Bar

Snap-in Toolbar

Snap-in Dialogs

Snap-in DLL Menu Item Registering

The Flat Browser

Multi Value Edit (MVED) Control

General Information for Registering Object and View Snap-in DLLs

Snap-in Messages Sent by NetWare Administrator

Snap-in Messages Sent by the Snap-in

Developer-Supplied Functions

Snap-in DLL Functions

Registering Objects/Views

Registering Object and View Snap-in DLLs Using Windows 3.1

Registering Object and View Snap-in DLLs Using Windows 95

General Information for Registering Object and View Snap-in DLLs

Snap-in: Tasks

Management Service Group

Snap-in: Guides 997

Snap-in: Concepts

Snap-in: Functions

Snap-in: Structures

Parent Topic:

Management Overview

Management Service Group

Snap-in: Guides 998

Snap-in: Tasks

Registering Object and View Snap-in DLLs Using
Windows 3.1

When NetWare® Administrator loads in Windows* 3.1 it reads the
NWADMN3X.INI file, located in the windows directory, to see what
Snap-in DLLs need to be loaded.

1. List all object Snap-in DLLs you want to load under “Snapin Object
DLLs WIN3X”.

2. List all view Snap-in DLLs you want to load under “Snapin View
DLLs WIN3X”.

These two Snap-in entries are created automatically when you run NetWare
Administrator and exit with “Save Settings on Exit” checked. For each
Snap-in DLL listed in the .INI file, NetWare Administrator calls the DLL’s
initialization function InitSnapin. The DLL’s initialization function must
call the registration function(s) that registers each object class in the DLL. In
addition, the initialization function must supply the address of a callback
function for each object class.

Parent Topic:

Snap-in: General Guide

Related Topics:

General Information for Registering Object and View Snap-in DLLs

Registering Object and View Snap-in DLLs Using
Windows 95

When NetWare® Administrator loads in Windows 95*, it reads the registry.
Registrations for Snap-in DLLs are located in
HKEY_CURRENT_USER\Software\NetWare\Parameters under NetWare
Administrator. Two Snap-in entries “Snapin Object DLLs WIN95” and
“Snapin View DLLs WIN95” are created automatically when you run
NetWare Administrator and exit with “Save Settings on Exit” checked.

1. To register Snap-in DLLs, select the proper key name and add a new
“String Value,” which contains the full path to the Snap-in DLL.

Parent Topic:

Management Service Group

Snap-in: Tasks 999

Parent Topic:

Snap-in: General Guide

Related Topics:

General Information for Registering Object and View Snap-in DLLs

Management Service Group

Snap-in: Tasks 1000

Snap-in: Concepts

Developer-Supplied Functions

As a developer you must provide the following functions and callbacks for
each of your snap-in DLLs. The table shows how NetWare® Administrator
uses these functions and callbacks. The prototypes for these are provided in
nwsnapin.h

Table auto. Developer-supplied Functions

CanCloseSnapin This is called by NetWare
Administrator in a Snap-in DLL to
determine if the Snap-in can be closed.
If this call is not used NetWare
Administrator assumes it is OK to shut
down the DLL.

InitSnapin NetWare Administrator calls a DLL’s
InitSnapin function immediately after
loading a Snap-in DLL. The Snap-in
DLL uses InitSnapin to register its
Snap-in object classes and/or menu
items for the “Tools” menu.

NWAFlatBrowserProc This is a type definition for a flat
browser callback proc which returns the
filter values to use for the flat browser
and passes the selection results of the
flat browser to the DLL.

NWAMVEDProc This is a type definition for a MVED
callback proc which returns the initial
values and initial values-count for the
MVED control as well as the filter
values for the flat browser.(if MVED
values are distinguished names.)

NWASnapinMDIChildProc This is a type definition called by
NetWare Administrator to create, clear,
save and restore MDI child window
settings.

NWASnapinMenuActionPr
oc

This is a type definition called by
NetWare Administrator when its
associated Snap-in module’s menu item
is selected.

Management Service Group

Snap-in: Concepts 1001

NWASnapinMenuValidPro
c

This is a type definition called by
NetWare Administrator when the user
pulls down the associated Snap-in
menu item.

NWASnapinTBButtonEnab
leProc

This is a type definition called by
NetWare Administrator to find out if a
toolbar button registered by a tools
menu Snap-in item should be enabled
or disabled.

NWASnapinObjectProc This is a type definition for a Snap-in
object class callback function. NetWare
Administrator calls this with messages
to initialize or close a Snap-in object
class, register details pages, get a valid
operation, and so on.

PostInitSnapin This is sent by NetWare Administrator
after all Snap-in DLLs have been
loaded and initialized.

Shutdown This is called by NetWare
Administrator when Snap-in modules
are being closed. This function must
provide all Snap-in DLL-specific
cleanup.

Parent Topic:

Snap-in: General Guide

General Information for Registering Object and
View Snap-in DLLs

NetWare® Administrator allows you to add options in the command line at
the time of execution as follows:

/F Allows you to specify a filename to read Snap-in registration
information from.

This option with no parameters (no filename) acts like the default
(NWADMN3X.INI for Windows 3.1 and Registry for Windows 95). For
example, to save the DLLs in d:\temp\bob.txt, use the following:

nwadmn3x/f c:\temp\bob.txt or nwadmn95 /f c:\temp\bob.txt.

/N Allows you to read/save preferences to your Directory Services user
object, so they can be loaded at any workstation. For example:

nwadmn3x /n or nwadmn95 /n

Management Service Group

Snap-in: Concepts 1002

To have NetWare Administrator use your Snap-in DLL, you must include
its name in either the NWADMN3X.INI file (for Windows 3.1) or the
Registry (for Windows 95) if no option is used on the command line.

If /F (filename) is used, you must register your Snap-in DLL in the specified
file name. If /N is used, Snap-in DLL REGEDT16.DLL (for Windows 3.1) or
Snap-in DLL REGEDT95.DLL (for Windows 95) allows you to add or delete
your Snap-in DLLs from the database.

When using the /F option, Snap-in DLLs are registered under the “Snapin
Object DLLs WIN3X”, “Snapin View DLLs WIN3X”, or “Snapin Object
DLLs WIN95”, “Snapin View DLLs WIN95” section as appropriate by
adding a profile string similar to the following:

Snapex01=SNAPEX01.DLL

where Snapex01 is a keyword and SNAPEX01.DLL is the name of your
Snap-in DLL. Make sure that keyword and Snap-in DLL names are unique.

IMPORTANT: The Snap-in DLL’s shutdown function must do any
DLL-specific cleanup that is required.

If a Snap-in DLL depends on information provided by another Snap-in
DLL, the DLLs must be registered in the correct order. For example, an
object Snap-in DLL must be registered prior to an attribute Snap-in DLL.
The attribute is dependent on the object.

Parent Topic:

Snap-in: General Guide

Related Topics:

Registering Object and View Snap-in DLLs Using Windows 3.1

Registering Object and View Snap-in DLLs Using Windows 95

Multi Value Edit (MVED) Control

The MVED is a combination of the following three controls:

An edit box

A spinner

A push button

This control is used by a Snap-in object’s details window dialog. The edit
control displays one value at a time; other values can be viewed by using
the spinner. Values are added and deleted when the MVED value-list
push-button is pushed.

The values in the MVED can be either strings or distinguished name strings.
If they are distinguished-name strings, then the Flat Browser is invoked to
add or delete values in the MVED.

Management Service Group

Snap-in: Concepts 1003

When creating the dialog specification, use the class name “EDIT” for edit
control, “microscroll” (Windows 3.1) and “microscroll32” (Windows 95) for
spinner and “mvebbcontrol” for push button. Since MVED is not an MS
Window’s custom control, these controls will appear as dark rectangles in
you resource workshop. However, they will appear correctly in the
NetWare Administrator run-time context when your Snap-in DLL is loaded.

Parent Topic:

Snap-in: General Guide

Snap-in Dialogs

NetWare® Administrator uses dialog windows to add Snap-In functionality
for object classes. These dialogs are displayed in an objects’s details window
or in the object’s MPEW window. A Snap-in DLL can provide dialogs for a
new Snap-in object’s details. The Snap-in DLL can also enhance the
functionality of an existing object by adding additional dialogs for the
object.

Parent Topic:

Snap-in: General Guide

Snap-in DLL Functions

Snap-In functions are provided by compiler-specific SNAPIN3X.LIB and
SNAPIN95.LIB files, with the associated header file NWSNAPIN.H. The
following functions are part of Snap-In.

NWAAddClassData Adds the translated class name
and browser bitmaps to the
NetWare® Administrator tables.

NWAAddPropertyNameTranslat
ion

Adds the translated property
names to the NetWare
Administrator translation tables.

NWACreateMDIChildWindow Creates an instance of an MDI
child window in which a Snap-in
view window can be created.

NWACreateMved Creates and initializes Multi
Value Edit (MVED) control in a
dialog box.

NWACreateWindowMenu Inserts a Window drop-down
menu at the specified location in a
specified Snap-in view menu.

NWAExitNWAdmin Shuts down NetWare

Management Service Group

Snap-in: Concepts 1004

Administrator.

NWAGetClassAliasBitmap Returns the alias bitmap for any
object class registered in NetWare
Administrator.

NWAGetClassBitmap Returns the class bitmap for any
object class registered in NetWare
Administrator.

NWAGetClassReadOnlyBitmap Returns the read-only bitmap for
any object class registered in
NetWare Administrator.

NWAGetConsoleWindowHandl
e

Returns the window handle of
NetWare Administrator Console
Window.

NWAGetMvedCount Returns the count of values in an
MVED control.

NWAGetMvedValue Returns a string value from an
MVED control.

NWAGetNLSFilePath Retrieves the path for the
specified help/resource file in the
NetWare Administrator
environment.

NWAGetNWAdminVersion Returns the NetWare
Administrator version number.

NWAGetSaveSettingsOption Returns the value of the “Save
Settings on Exit” option in the
NetWare Administrator menu.

NWAGetSelObject Iteratively returns the objects
selected in the active Browser.

NWAGetSelObjectCount Returns the count of the objects
selected in the active Browser.

NWAGetToolsMenuItem Gets a Tools menu item present
under the Tools drop-down menu
in a specified view class menu.

NWAGetToolsMenuItemCount Returns the number of menu
items present under the Tools
drop-down menu in a specified
view class menu.

NWAGetTranslatedClassName Returns the translated name for
any object class in NetWare
Administrator.

NWAGetTranslatedPropertyNa
me

Returns the translated property
name for any object property in
NetWare Administrator.

NWAGetTreeName Gets a tree name and a browser
context corresponding to an active

Management Service Group

Snap-in: Concepts 1005

browser window in NetWare
Administrator.

NWALaunchConfigDialog Launches a dialog box to
configure the toolbar and status
bar preferences.

NWALaunchDetails Launches a details window.

NWALaunchDSFlatBrowser Launches a DS Flat Browser.

NWALaunchFSFlatBrowser Launches an FS Flat Browser.

NWAProcessToolsMenuItemCo
mmand

Executes a command
corresponding to a specified Tools
menu item.

NWAProcessToolsMenuItemVal
id

Executes a command to enable or
disable a Tools menu item.

NWARegisterMDIChildWindow Registers an MDI child window
class name with NetWare
Administrator.

NWARegisterMenu Registers menu items when they
are added to the Tools menu and
registers the functions to be called
when the Snap-in menu item is
selected.

NWARegisterObjectProc Registers an object class for the
Snap-in module.

NWARegisterObjectProcEx Registers an object class for the
Snap-in module (extended
version).

NWARegisterToolBarButton Allows tools that Snap-in to the
NetWare Administrator Tools
menu to register a button to be
displayed on the toolbar.

NWARemoveClassData Removes all class bitmaps from
NetWare Administrator bitmap
tables.

NWARemovePropertyNameTran
slation

Removes the translated property
name for any property in
NetWare Administrator.

Parent Topic:

Snap-in: General Guide

Snap-in DLL Menu Item Registering

Snap-in DLLs can register menu items to be added to NetWare®

Management Service Group

Snap-in: Concepts 1006

Administrator’s “Tools” menu. Snap-in DLLs must register two callbacks
for each menu item: one callback enables/disables the menu item, and the
other responds when the item is selected.

Parent Topic:

Snap-in: General Guide

Snap-in Messages Sent by NetWare Administrator

The Snap-in interface requires that the Snap-in module developer register
callback functions to respond to certain messages (see the next section).
These messages are described below:

NWA_MSG_APPLYTEMPLATE This is sent to the
Snap-in(s) with the object
name being created and
the template object name
being used to create the
object.

NWA_MSG_CLOSESNAPIN This is the last message a
Snap-in receives and it
should unregister its
translated names and
bitmaps, and free
allocated memory.

NWA _MSG_CREATEOBJECT This is sent by NetWare®
Administrator to the
Snap-in when a user
selects the object class
supported by the Snap-in
from the Create dialog in
the Object menu.

NWA_MSG_FBFILTER_COUNT This is the first message a
Flat Browser or MVED
callback function
receives.

NWA_MSG_FBFILTER_VALUE This is sent to the Flat
Browser or MVED
callback function with the
selected filter index.

NWA_MSG_FBOBJECT_COUNT This is sent to the Flat
Browser callback function
with the count of selected
objects in the flat browser,
if the OK button is
pressed.

Management Service Group

Snap-in: Concepts 1007

NWA_MSG_FBOBJECT_VALUE This is sent to the Flat
Browser callback function
with the selected object
index.

NWA_MSG_GETPAGECOUNT This is sent by NetWare
Administrator to the
Snap-in when a user
selects the object
supported by the Snap-in
and then selects Details
from the Object menu.

NWA_MSG_GETVALIDOPERATIONS This is sent by NetWare
Administrator to
SnapinObjectProc
function when a Snap-in
object is selected and the
user selects a menu
operation.

NWA_MSG_INITSNAPIN This is the first message a
Snap-in receives
indicating it should
register bitmaps,
translated property, and
class members.

NWA_MSG_MDICHILD_CLEARSETTIN
GS

This is sent to the
NWASnapinMDIChildP
roc callback function by
NetWare Administrator
when NetWare
Administrator is going
down and the Save
settings option in
NetWare Administrator is
set.

NWA_MSG_MDICHILD_CREATED This is sent to the
NWASnapinMDIChildP
roc callback function by
NetWare Administrator
when an instance of the
MDI child window is
created.

NWA_MSG_MDICHILD_RESTORE This is sent to the
NWASnapinMDIChildP
roc callback function by
NetWare Administrator
when NetWare
Administrator comes up.

NWA_MSG_MDICHILD_SAVESETTING
S

This is sent to the
NWASnapinMDIChildP

Management Service Group

Snap-in: Concepts 1008

roc callback function by
NetWare Administrator
when NetWare
Administrator is going
down and the Save
settings option in
NetWare Administrator is
set.

NWA_MSG_MODIFY This is sent by NetWare
Administrator to the
Snap-in when the user
selects the OK button
from the MPEW after
making modifications.

NWA_MSG_MPEWCLOSE This is sent by NetWare
Administrator to the
Snap-in when the details
window (MPEW) is being
closed.

NWA_MSG_MULTIOBJ_COUNT This is sent to the
NWASnapinObjectProc
callback function
indicating the number of
objects selected in the
browser to perform
multiple object details.

NWA_MSG_MULTIOBJ_NAME This is sent to the
NWASnapinObjectProc
callback function with the
complete DN name of the
selected object.

NWA_MSG_MVED_INITCOUNT This is the first message
an MVED callback
function receives
indicating the number of
MVED values to
initialize.

NWA_MSG_MVED_INITVALUE This is sent to the MVED
callback function with an
index of the MVED value.

NWA_MSG_NOTIFYCREATEOBJECT This is sent by NetWare
Administrator once the
object is created.

NWA_MSG_NOTIFYDELETEOBJECT NetWare Administrator
sends this notification
message to Snap-in when
the object is deleted.

NWA_MSG_NOTIFYMOVE NetWare Administrator

Management Service Group

Snap-in: Concepts 1009

sends this notification
message to Snap-in when
the object is moved.

NWA_MSG_NOTIFYRENAME NetWare Administrator
sends this notification
message to Snap-in when
the object is renamed.

NWA_MSG_QUERYCOPY This is sent by NetWare
Administrator to the
Snap-in when the user
selects an object that is
supported by the Snap-in
and then selects Copy
from the Object menu.

NWA_MSG_QUERYDELETE This is sent by NetWare
Administrator to the
Snap-in when the user
selects an object that is
supported by the Snap-in
and then selects Delete
from the Object menu.

NWA_MSG_QUERYMOVE This is sent by NetWare
Administrator to the
Snap-in when the user
selects an object that is
supported by the Snap-in
and then selects Move
from the Object menu.

NWA_MSG_REGISTERPAGE This is sent by NetWare
Administrator to the
Snap-in “n” times, where
“n” is the number
returned by the
NWA_MSG_GETPAGEC
OUNT message.

NWA_MSG_RENAME This is sent by NetWare
Administrator to the
Snap-in when a user
selects the object
supported by the Snap-in
and then selects Rename
from the Object menu.

NWA_MSG_STATUSBAR_ADDPREFITE
M

This is sent to the MDI
child window by the
NetWare Administrator
main window to the
number returned by the
NWA_MSG_STATUSBA
R_QUERYITEMCOUNT

Management Service Group

Snap-in: Concepts 1010

message.

NWA_MSG_STATUSBAR_DBLCLK This is sent to an MDI
child window when the
user double-clicks the left
mouse button over a field
in the status bar.

NWA_MSG_STATUSBAR_NEWACTIVEI
TEMS

This is sent to a view by
the NetWare
Administrator main
window when a user has
pressed the OK button in
the status bar preferences
dialog box.

NWA_MSG_STATUSBAR_POPULATE This is sent to the top MDI
child window after the
NetWare Administrator
main window has
handled a
NWA_MSG_IVEGOTFO
CUS message.

NWA_MSG_STATUSBAR_QUERYACTIV
ECOUNT

This is sent to an MDI
child window when the
user opens the status bar
preferences dialog box.

NWA_MSG_STATUSBAR_QUERYACTIV
EITEMS

This is sent to an MDI
child window when the
user opens the status bar
preferences dialog box
and has responded to a
NWA_MSG_STATUSBA
R_QUERYACTIVECOUN
T message.

NWA_MSG_STATUSBAR_QUERYITEMC
OUNT

This is sent to an MDI
child window when the
user opens the status bar
preferences dialog box.

NWA_MSG_TOOLBAR_ADDPREFITEM This is sent by the
NetWare Administrator
main window to the view
window according to the
number returned by the
NWA_MSG_TOOLBAR_
QUERYITEMCOUNT
message.

NWA_MSG_TOOLBAR_NEWACTIVEITE
MS

This is sent from the
NetWare Administrator
main window to a view
when the user has
pressed OK in the toolbar

Management Service Group

Snap-in: Concepts 1011

preferences dialog box.

NWA_MSG_TOOLBAR_POPULATE This is sent to the top MDI
child window each time
the toolbar is created.

NWA_MSG_TOOLBAR_QUERYACTIVE
COUNT

This is sent to an MDI
child window when the
user opens the toolbar
preferences dialog box.

NWA_MSG_TOOLBAR_QUERYACTIVEI
TEMS

This is sent to a view
when the user opens the
toolbar preferences dialog
box after the view
responds to a
NWA_MSG_TOOLBAR_
QUERYACTIVECOUNT
message.

NWA_MSG_TOOLBAR_QUERYENABLE
BUTTON

This is sent to an MDI
child window when the
NetWare Administrator
main window wants to
know if a toolbar item
should be enabled or
disabled (grayed out).

NWA_MSG_TOOLBAR_QUERYITEMCO
UNT

This is sent to an MDI
child window when the
user opens the toolbar
preferences dialog box.

NWA_WM_CANCLOSE Receives this message
when OK is selected and
is the dialog procedure
for a page dialog in a
MPEW.

NWA_WM_F1HELP Receives this message
when F1 Help) is selected
and is the dialog
procedure for a page
dialog in MPEW.

Parent Topic:

Snap-in: General Guide

Related Topics:

Snap-in Messages Sent by the Snap-in

Snap-in Messages Sent by the Snap-in

Management Service Group

Snap-in: Concepts 1012

NWA_MSG_IVEGOTFOCUS This is sent by an MDI child
window to the NetWare®
Administrator main window
when the child window
receives a WN_SETFOCUS
message.

NWA_MSG_STATUSBAR_ADDITE
M

This is sent to the NetWare
Administrator main window
after it sends a
NWA_MSG_STATUSBAR_PO
PULATE message to the top
MDI child window.

NWA_MSG_STATUSBAR_SETITEM
TEXT

This replaces the text in a
previously defined status bar
text field.

NWA_MSG_TOOLBAR_ADDITEM This is sent to the top MDI
child window after it sends a
NWA_MSG_TOOLBAR_POPU
LATE message to the NetWare
Administrator main window.

NWA_MSG_TOOLBAR_GETBUTT
ONSTATE

This is sent from an MDI child
window to the NetWare
Administrator main window to
determine the state of the
button corresponding to the
button ID.

NWA_MSG_TOOLBAR_GETBUTT
ONTYPE

This is sent by a view to the
NetWare Administrator main
window to determine what
type of button corresponds to
the button ID.

NWA_MSG_TOOLBAR_SETBUTTO
NSTATE

This is sent by an MDI child
window to the NetWare
Administrator main window to
set the state of the button
corresponding to the button ID.

NWA_WM_SETPAGEMODIFY This should be sent to the page
dialog window to indicate the
page dialog information has
changed.

Parent Topic:

Snap-in: General Guide

Related Topics:

Management Service Group

Snap-in: Concepts 1013

Snap-in Messages Sent by NetWare Administrator

Snap-in Introduction

Snap-in provides a “Snap-in” interface that allows developers to snap-in
objects into the NetWare® Administrator console. Snap-in allows a
developer’s applications to do the following:

Add a menu item under the “Tools” menu in the NetWare Administrator
console.

Enhance the details of an existing object class by registering additional
pages to the details Multi Page Edit Widget (MPEW) window.

Add details for a new Snap-in object by registering MPEW pages.

Add bitmaps (object bitmap, alias bitmap, and read-only bitmap) and
translation for object class names and object class property names.

Register Snap-in object classes and menu items with NetWare
Administrator.

Invoke the DS Flat Browser and File System Flat Browser in the
developer’s Snap-in dynamic link library (DLL) to browse Novell®
Directory Services™ (NDS™) and file system objects.

Create a Multi Values Edit (MVED) control in Snap-in dialogs that
implement MPEW pages. (However, it is not possible to use this control
in any other window or dialog as the control data is being managed by
the MPEW window.) The interfaces for the MVED and Flat Browser
enable the developer’s DLL to have a user interface similar to NetWare
Administrator.

Register a Snap-in view class and its associated menu, icon, and toolbar
and status bar items.

Create an instance of a Snap-in view window.

A Snapin-view window is an MDI child window. When the parent
window becomes active, the child window’s menu, toolbar and status bar
are displayed in NetWare Administrator.

Parent Topic:

Snap-in: General Guide

Snap-in Status Bar

The Snap-in interface allows the MDI child window to manage the entire
contents of the NWAdmin Status Bar. It can add items, change the text of

Management Service Group

Snap-in: Concepts 1014

those items and respond to user mouse double-clicks on an item.

Parent Topic:

Snap-in: General Guide

Related Topics:

Snap-in View

Snap-in Toolbar

The Snap-in interface allows a Snap-in to add buttons to the NWAdmin
Main Window Toolbar when the Snap-in MDI Child Window becomes
active. The MDI child window shares the toolbar with the NWAdmin main
window and all the child’s buttons display contiguously (with possible
interspersed separators) in a position determined by the user.

Parent Topic:

Snap-in: General Guide

Related Topics:

Snap-in View

Snap-in View

When you register a Snap-in view with NetWare® Administrator a view
proc, menu, icon and, if desired, toolbar and status bar items are also
registered. Registration is done using InitSnapin, where all other Snap-in
components are registered.

It is recommended that a menu item be added to NetWare Administrator’s
Tools menu where the view can be opened. The Snap-in view window
opens as an MDI child. When the MDI child window becomes active, its
menu displays in NetWare Administrator’s frame window. When the MDI
child is minimized, its corresponding icon displays. The toolbar and status
bar is updated to correspond with the active view.

It is recommended that a Snap-in view also contain a Tools menu that is
populated with the same menu items found in NetWare Administrator’s
Tools menu. This way, any instance of a view can be invoked from any
other instance.

Parent Topic:

Snap-in: General Guide

Related Topics:

Snap-in Status Bar

Management Service Group

Snap-in: Concepts 1015

Snap-in Toolbar

The Flat Browser

NetWare® Administrator uses the Flat Browser to browse NDS objects and
file system objects. The Flat Browser displays two lists:

The list on the right is a container list and displays container objects.

The list on the left displays objects contained by the selected object in the
container list.

The Flat Browser also allows the user to filter displayed objects.

Parent Topic:

Snap-in: General Guide

The Snap-in Interface

A Snap-in module is implemented as one or more dynamic-link libraries
(DLLs) with a message-passing callback mechanism. A single DLL can have
Snap-in functionality for one or more object classes. A typical developer’s
Snap-in DLL consists of the components listed in the table below.

Table auto. Components Typically Used in a DLL

Initialization
function

The initialization function registers the Snap-in DLL’s
object classes, “Tools” menu item(s), and view classes.

Shutdown
function

The shutdown function is called when the Snap-in
modules are being closed. If it is present,
CanCloseSnapin is called before shut down takes
place. If all snap-ins respond affirmatively, then
NetWare® Administrator will proceed with normal
shut down.

Callback
function(s)

NetWare Administrator sends messages to the
Snap-in object’s callback function when the user
requests an action on the object for which the Snap-in
object is responsible. One callback exists for each
object class.

Snap-in
dialogs

These dialogs provide the Snap-in functionality for
object classes, and are displayed when an object’s
details are invoked. Dialogs can be created to
administer the details of a new object class or to
enhance the details of an existing object class.

Snap-in menu
items

These menu items are added to the “Tools” menu of
NetWare Administrator. For each menu item that is
registered, a “valid” and an “action” callback function

Management Service Group

Snap-in: Concepts 1016

must be registered. The “valid” callback is invoked
when the Tools menu is pulled down. (This is where
the menu item is enabled and disabled.) The “action”
callback is invoked when the menu item is selected.

Snap-in view A Snap-in view registers a view class, proc, menu and
icon with NetWare Administrator.

Parent Topic:

Snap-in: General Guide

Management Service Group

Snap-in: Concepts 1017

Snap-in: Functions

Management Service Group

Snap-in: Functions 1018

CanCloseSnapin

Is called by NetWare Administrator in a Snap-in DLL to determine if the
Snap-in can be closed

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

nbool FAR PASCAL CanCloseSnapin
 (void);

Return Values

TRUE

FALSE

Remarks

CanCloseSnapin returns TRUE if Snap-in is ready to be closed.
Otherwise, FALSE will be returned.

If FALSE is returned, NetWare Administrator will display an appropriate
message explaining that the Snap-in is not ready to close and still allow
you to continue with the shut down (even though any unsaved
information might be lost).

Snap-in does not have to implement CanCloseSnapin. NetWare
Administrator will assume that the Snap-in is ready to close if
CanCloseSnapin is not available in a Snap-in DLL.

NCP Calls

None

Management Service Group

Snap-in: Functions 1019

InitSnapin

Is called by NetWare Administrator when it loads the Snap-in DLL

Syntax

#include <nwsnapin.h>

Return Values

NWA_RET_SUCCESS

Remarks

When InitSnapin is called, it must register the DLL’s Snap-in object
classes, view classes, and/or menu items for the tools menu.

See Also

ShutDown

Management Service Group

Snap-in: Functions 1020

NWAAddClassData

Adds the translated class name and browser bitmaps to the NetWare
Administrator tables

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAAddClassData
 (LPCSTR pszClassName,
 LPCSTR pszTranslation,
 HBITMAP hClassBitmap,
 HBITMAP hClassAliasBitmap,
 HBITMAP hClassReadOnlyBitmap);

Parameters

pszClassName

(IN) Specifies the schema class name.

pszTranslation

(IN) Specifies the translated name.

hClassBitmap

(IN) Specifies the normal bitmap of the class.

hClassAliasBitmap

(IN) Specifies the alias bitmap of the class.

hClassReadOnlyBitmap

(IN) Specifies the read only bitmap of the class.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

NWA_ERR_DUPLICATE_ENTRY

Remarks

The Snap-in calls NWAAddClassData when it receives
NWA_MSG_INITSNAPIN. NetWare Administrator uses these bitmap
parameters to display objects of this type.

The hClassBitmap and hClassReadOnlyBitmap must be 16x16 pixels in size

Management Service Group

Snap-in: Functions 1021

and hClassAliasBitmap must be 24x16 pixels in size.

NCP Calls

None

See Also

NWA_MSG_INITSNAPIN, NWA_MSG_CLOSESNAPIN,
NWAGetClassBitmap, NWAGetClassAliasBitmap,
NWAGetClassReadOnlyBitmap, NWARemoveClassData

Management Service Group

Snap-in: Functions 1022

NWAAddPropertyNameTranslation

Adds the translated property names to the NetWare Administrator
translation tables

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAAddPropertyNameTranslation
 (LPCSTR pszPropertyName,
 LPCSTR pszClassName,
 LPCSTR pszTranslation);

Parameters

pszPropertyName

(IN) Specifies the schema property name.

pszClassName

(IN) Specifies the schema class name.

pszTranslation

(IN) Specifies the translated property name.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

NWA_ERR_ATTRNAME_NOT_FOUND

Remarks

If pszClassName is NULL, NWAAddPropertyNameTranslation creates a
default translation for the property. The default translation is used if
other translations are not specified by a class name. To remove default
translations, call NWARemovePropertyNameTranslation, passing
NULL to pszClassName.

NCP Calls

None

See Also

Management Service Group

Snap-in: Functions 1023

NWAGetTranslatedPropertyName,
NWARemovePropertyNameTranslation

Management Service Group

Snap-in: Functions 1024

NWACreateMDIChildWindow

Creates an instance of an MDI child window in which a Snap-in view
window can be created

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWACreateMDIChildWindow
 (LPCSTR className,
 LPCSTR windowTitle,
 HWND *pHwnd,
 NWACreateMDIChildParam *pCreateParam);

Parameters

className

(IN) Specifies the registered view name to be created.

windowTitle

(IN) Specifies the view title to be displayed on view window.

pHwnd

(OUT) Points to the MDI child window handle created.

pCreateParam

(IN) Points to the window position parameters which are used to
create the MDI child window.

Return Values

NWA_RET_SUCCESS

NWA_ERR_NO_MEMORY

NWA_ERR_CLASSNAME_NOT_FOUND

Remarks

If the view name specified by className is not registered before calling
NWACreateMDIChildWindow, an error will be returned.

Snap-in must specify pCreateParam when the MDI child window is being
restored to the last position in which in was displayed; otherwise, it
might be set to NULL.

NCP Calls

Management Service Group

Snap-in: Functions 1025

NCP Calls

None

See Also

NWARegisterMDIChildWindow

Management Service Group

Snap-in: Functions 1026

NWACreateMved

Creates and initializes Multi Value Edit (MVED) control in a dialog box

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWACreateMVED
 (HWND hwndParent,
 nuint32 userParam,
 nuint16 idEdit,
 nuint16 idSpin,
 nuint16 idButton,
 nuint16 editType,
 nuint16 lengthEdit,
 LPCSTR label,
 LPCSTR contextStr,
 nuint32 brwsFlags,
 NWAMVEDProc pfn);

Parameters

hwndParent

(IN) Specifies the parent window handle of MVED control. hwndParent
is the handle of the Snap-in dialog that has MVED control.

userParam

(IN) Specifies the user parameter that will be provided in MVED
callback functions.

idEdit

(IN) Specifies the dialog control ID of MVED edit control.

idSpin

(IN) Specifies the dialog control ID of MVED spin control.

idButton

(IN) Specifies the dialog control ID of MVED push button control.

editType

(IN) Specifies the MVED edit type.

lengthEdit

(IN) Specifies the length of the MVED edit field. Its length must be
MWA_MAX_OBJECT_NAME if editType is
NWA_MVED_VALUE_DISTNAME.

Management Service Group

Snap-in: Functions 1027

label

(IN) Specifies the label used in add/delete string dialog which is
displayed when MVED push button is pressed.

contextStr

(IN) Specifies the context string used for Flat Browser display.

brwsFlags

(IN) is currently not used and must be zero.

pfn

(IN) Specifies the MVED callback function. pfn is invoked with the
messages to initialize MVED control. It is also used to specify object
class filters for Flat Browser display if editType is
NWA_MVED_VALUE_DISTNAME.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

NWA_ERR_NO_MEMORY

Remarks

MVED control is a combination of three controls, i.e. edit control, spin
control, and push button control. Display coordinates must be changed to
specify correct position on the dialog.

If dialog is viewed in resource work-shop, controls will be displayed as
dark rectangles; and they will appear fine in NetWare Administrator run
time environment.

editType can have one of the following types:

NWA_MVED_VALUE_READONLY allows MVED control to be read
only and is used for only displaying values. If this type is used, push
button control is not necessary. contextStr and brwsFlags will be
ignored with this type.

NWA_MVED_VALUE_STRING allows MVED control of string
values. If MVED push button is pressed to add/delete values, the
dialog to add/delete simple string values will be displayed. contextStr
and brwsFlags will be ignored with this type.

NWA_MVED_VALUE_DISTNAME allows MVED control over
distinguished name string values. If MVED push button is pressed to
add/delete values, the Flat Browser to add/delete distinguished name
string values will be displayed.

NWA_MVED_VALUE_DIGITSONLY allows MVED control over
digit-only string values. If MVED push button is pressed to
add/delete values, the dialog to add/delete digit-only string values

Management Service Group

Snap-in: Functions 1028

will be displayed. contextStr and brwsFlags will be ignored with this
type.

NWA_MVED_VALUE_PRINTABLE allows MVED control over
printable string values. If MVED push button is pressed to add/delete
values, the dialog to add/delete printable string values will be
displayed. contextStr and brwsFlags will be ignored with this type.

If MVED is implemented in a dialog box which is managed by a
message-mapping system (such as OWL and MFC class libraries), the
WM_VSCROLL messages must be passed to the default dialog box
procedure.

NCP Calls

None

See Also

NWAGetMvedCount, NWAGetMvedValue

Management Service Group

Snap-in: Functions 1029

NWACreateWindowMenu

Inserts a Window drop-down menu at the specified location in a specified
Snap-in view menu

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWACreateWindowMenu
 (pnstr8 className,
 HMENU hMenu,
 uint menuPos);

Parameters

className

(IN) Points to the MDI child window class name in which the window
menu will be created.

hMenu

(IN) Specifies the handle of the menu where the Window drop-down
menu will be inserted.

menuPos

(IN) Specifies the zero-based position at which the drop-down menu
will be inserted.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

NWA_ERR_INVALID_PARAMETER

Remarks

Snap-in can call NWACreateWindowMenu to insert a Window
drop-down menu at a given position in an MDI child window specific
menu.

The inserted window menu can not be added in the first or last position.
There must be at least 2 top-level items in hMenu prior to calling
NWACreateWindowMenu.

NCP Calls

Management Service Group

Snap-in: Functions 1030

None

Management Service Group

Snap-in: Functions 1031

NWAExitNWAdmin

Shuts down NetWare Administrator

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY (NWRCODE) NWAExitNWAdmin
 (void);

Return Values

None

Remarks

NWAExitNWAdmin closes all the active views and detail windows (if
present). It also closes and performs Shutdown on the Snap-in(s) loaded
in the system.

NCP Calls

None

Management Service Group

Snap-in: Functions 1032

NWAFlatBrowserProc

Is a type definition for a flat browser callback proc which returns the filter
values to use for the flat browser and passes the selection results of the flat
browser to the DLL

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_TYPEDEF_CALLBACK (nuint32, NWAFlatBrowserProc)
 (nuint32 userParam,
 nuint16 uMsg,
 nparam param1,
 nparam param2);

Parameters

userParam

Specifies the User Param provided in Launch Flat Browser function.

uMsg

Specifies the message to the callback.

param1

Specifies parameter 1 of the message.

param2

Specifies parameter 2 of the message.

Messages

NWA_MSG_FBFILTER_COUNT

NWA_MSG_FBFILTER_VALUE

NWA_MSG_FBOBJECT_COUNT

NWA_MSG_FBOBJECT_VALUE

Remarks

FlatBrowserProc is provided as a parameter to
NWALaunchFSFlatBrowser and NWALaunchDSFlatBrowser.
FlatBrowserProc is invoked to return the filter values to use for Flat
Browser. The selection results of the Flat Browser are passed to the DLL
through this callback.

Management Service Group

Snap-in: Functions 1033

NCP Calls

None

See Also

NWALaunchDSFlatBrowser, NWALaunchFSFlatBrowser

Management Service Group

Snap-in: Functions 1034

NWAGetClassAliasBitmap

Returns the alias bitmap for any object class registered in NetWare
Administrator

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetClassAliasBitmap
 (LPCSTR pszClassName,
 HBITMAP *phBitmap);

Parameters

pszClassName

(IN) Specifies the schema class name.

phBitmap

(OUT) Points to the class alias bitmap.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

NWA_ERR_BITMAP_NOT_FOUND

Remarks

If successful, phBitmap points to the class alias bitmap. If the class alias
bitmap is not found, NWA_ERR_BITMAP_NOT_FOUND is returned.
Otherwise, NWA_ERR_ERROR is returned.

NCP Calls

None

See Also

NWAGetClassBitmap, NWAGetClassReadOnlyBitmap

Management Service Group

Snap-in: Functions 1035

NWAGetClassBitmap

Returns the class bitmap for any object class registered in NetWare
Administrator

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetClassBitmap
 (LPCSTR pszClassName,
 HBITMAP *hBitmap);

Parameters

pszClassName

(IN) Specifies the schema class name.

phBitmap

(OUT) Points to the class bitmap.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

NWA_ERR_BITMAP_NOT_FOUND

Remarks

If successful, phBitmap points to the class bitmap. If the class bitmap is not
found, NWA_ERR_BITMAP_NOT_FOUND is returned. Otherwise,
NWA_ERR_ERROR is returned.

NCP Calls

None

See Also

NWAGetClassReadOnlyBitmap, NWAGetClassAliasBitmap

Management Service Group

Snap-in: Functions 1036

NWAGetClassReadOnlyBitmap

Returns the read-only bitmap for any object class registered in NetWare
Administrator

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetClassReadOnlyBitmap
 (LPCSTR pszClassName,
 HBITMAP *phBitmap);

Parameters

pszClassName

(IN) Specifies the schema class name.

phBitmap

(OUT) Points to the class read only bitmap.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

NWA_ERR_BITMAP_NOT_FOUND

Remarks

If successful, phBitmap points to the class read only bitmap. If the class
read only bitmap is not found, NWA_ERR_BITMAP_NOT_FOUND is
returned. Otherwise, NWA_ERR_ERROR is returned.

NCP Calls

None

See Also

NWAGetClassBitmap, NWAGetClassAliasBitmap

Management Service Group

Snap-in: Functions 1037

NWAGetConsoleWindowHandle

Returns the window handle of NetWare Administrator Console Window

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(HWND) NWAGetConsoleWindowHandle
 (void);

Return Values

HWND: Window Handle of NetWare Administrator Console Window

Remarks

The parent window of the console window is the window to which
Snap-in views should send view-related messages.

NCP Calls

None

See Also

NWAGetMvedValue, NWACreateMved

Management Service Group

Snap-in: Functions 1038

NWAGetMvedCount

Returns the count of values in an MVED control

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetMvedCount
 (hwnd hwndParent,
 nuint idEdit,
 pnuint16 pCount);

Parameters

hwndParent

(IN) Specifies the parent window handle of MVED control. It is the
handle of the dialog that contains MVED control.

idEdit

(IN) Specifies the dialog control ID of MVED edit control.

pCount

(OUT) Points to an integer.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

pCount points to the count of values MVED control has if
NWAGetMvedCount returns NWA_RET_SUCCESS.

In order to receive the values present in MVED control, first get the count
of the values and then iterate over MVED control by calling
NWAGetMvedValue.

NCP Calls

None

See Also

Management Service Group

Snap-in: Functions 1039

NWAGetMvedValue, NWACreateMved

Management Service Group

Snap-in: Functions 1040

NWAGetMvedValue

Returns a string value from an Mved control

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetMvedValue
 (hwnd hwndParent,
 nuint16 idEdit,
 nuint16 itemIndex,
 nuint16 bufSize,
 pnstr pValue);

Parameters

hwndParent

(IN) Specifies the parent window handle of MVED control. It is the
handle of the dialog that contains MVED control.

idEdit

(IN) Specifies the dialog control ID of MVED edit control.

itemIndex

(IN) Specifies the index of the string in MVED control.

bufSize

(IN) Specifies the size of the buffer.

pValue

(OUT) Points to a buffer in which a value will be placed.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

If NWAGetMvedValue returns NWA_RET_SUCCESS, pValue will have a
value present at the itemIndex position in the MVED control.

NCP Calls

None

Management Service Group

Snap-in: Functions 1041

See Also

NWAGetMvedCount, NWACreateMved

Management Service Group

Snap-in: Functions 1042

NWAGetNLSFilePath

Retrieves the path for the specified help/resource file in the NetWare
Administrator environment

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetNLSFilePath
 (pnstr8 fileName,
 pnstr8 pathName);

Parameters

fileName

(IN) Points to the file name for which to search.

pathName

(OUT) Points to the path where the specified file is located.

Return Values

NWA_RET_SUCCESS

NWA_ERR_INVALID_PARAMETER

NWA_ERR_FILE_NOT_FOUND

NWA_ERR_INSUFFICIENT_MEMORY

Remarks

NWAGetNLSFilePath searches for the specified file (resource or help) in
the appropriate paths specified by the NWLANGUAGE environment
variable.

Snap-in should allocate the buffer pointed to by szPathName to be at least
NWA_MAX_PATH_SIZE.

NWA_MAX_PATH_SIZE includes the drive letter in its path.
NWAGetNLSFilePath first searches for the file in the NLS directory
under the load area (from wherever NetWare Administrator is loaded). It
then searches the load area itself. If the file is still not found, szPathName
will contain an empty string value (“”).

NetWare Administrator uses the same algorithm to find a help or
resource file. Snap-in can use the same algorithm by calling
NWAGetNLSFilePath.

Management Service Group

Snap-in: Functions 1043

Snap-in should localize the help and resource file text and install the help
file in an appropriate language specific sub-directory (specified by
NWLANGUAGE) in the NLS directory under the NetWare
Administrator load area.

NCP Calls

None

Management Service Group

Snap-in: Functions 1044

NWAGetNWAdminVersion

Returns the NetWare Administrator version number

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetNWAdminVersion
 (pnuint32 pVersion);

Parameters

pVersion

(OUT) Points to the NetWare Administrator version number.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

If successful, pVersion points to 32 bit version information packed as:

HIGH WORD

HIGH BYTE: NW Admin Major Version

LOW BYTE: NW Admin Minor Version

LOW WORD

HIGH BYTE: 0

LOW BYTE: NW Admin Revision Number

NCP Calls

None

Management Service Group

Snap-in: Functions 1045

NWAGetSaveSettingsOption

Returns the value of the "Save Settings on Exit" option in the NetWare
Administrator menu

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetSaveSettingsOption
 (BOOL *pOptionFlag);

Parameters

pOptionFlag

(OUT) Points to the save settings option flag.

Return Values

NWA_RET_SUCCESS

NWA_ERR_INVALID_PARAMETER

Remarks

NWAGetSaveSettingsOption may be called to determine if the Save
Settings option is set. If the option is set, Snap-in should save settings.

NCP Calls

None

See Also

NWACreateMDIChildWindow

Management Service Group

Snap-in: Functions 1046

NWAGetSelObject

Iteratively returns the objects selected in the active Browser

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetSelObject
 (nint32 index,
 NWASelObject selObject);

Parameters

index

(IN) Specifies the index of the selected object.

selObject

(OUT) Points to the selected object.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

NetWare Administrator returns the requested object information through
selObject.

index can be any value between 0 and lpCount-1, where lpCount is
returned by NWAGetSelObjectCount.

NCP Calls

None

See Also

NWAGetSelObjectCount

Management Service Group

Snap-in: Functions 1047

NWAGetSelObjectCount

Returns the count of the objects selected in the active Browser

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetSelObjectCount
 (pnint32 lpCount);

Parameters

lpCount

(OUT) Points to the object count value.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

NetWare Administrator returns the object count through lpCount.

NCP Calls

None

See Also

NWAGetSelObject

Management Service Group

Snap-in: Functions 1048

NWAGetToolsMenuItem

Gets a Tools menu item present under the Tools drop-down menu in a
specified view class menu

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetToolsMenuItem
 (pnstr8 viewName,
 nuint16 itemIndex,
 NWAToolsMenuItem* pMenuItem);

Parameters

viewName

(IN) Points to the name of the view, NetWare Administrator console,
or MDI child window class name under which the Tools menu items
are registered.

itemIndex

(IN) Specifies the zero-based index of the items under the Tools
drop-down menu.

pMenuItem

(OUT) Points to the NWAToolsMenuItem structure in which the result
will be placed.

Return Values

NWA_RET_SUCCESS

NWA_ERR_INVALID_CLASSNAME

NWA_ERR_INVALID_PARAMETER

NWA_ERR_CLASSNAME_NOT_FOUND

NWA_ERR_ITEM_NOT_FOUND

Remarks

If viewName is set to NWA_VIEW_CONSOLE, the information about the
menu item under the Tools drop-down menu in the NetWare
Administrator console window will be provided.

If viewName is set to NWA_VIEW_BROWSER, the information about the
menu item under the Tools drop-down menu in the NetWare

Management Service Group

Snap-in: Functions 1049

Administrator browser view will be provided.

If NWA_RET_SUCCESS is returned by NWAGetToolsMenuItem,
pMenuItem receives a menu item at the index specified by itemIndex.

You should provide a Tools drop-down menu in a Snap-in MDI child
window menu. To make NetWare Administrator Tools functionality
available to the Snap-in MDI child window, call
NWAGetToolsMenuItem to get all the Tools menu items and add items
using the Snap-in Tools drop-down menu.

The NWAToolsMenuItem structure returns requested menu item
information.

NCP Calls

None

See Also

NWAGetToolsMenuItemCount,
NWAProcessToolsMenuItemCommand

Management Service Group

Snap-in: Functions 1050

NWAGetToolsMenuItemCount

Returns the number of menu items present under the Tools drop-down
menu in a specified view class menu

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetToolsMenuItemCount
 (pnstr8 viewName,
 pnuint16 pCount);

Parameters

viewName

(IN) Points to the name of the View, NetWare Administrator console,
or MDI child window class name under which the Tools menu items
are registered:

NWA_VIEW_CONSOLE

NWA_VIEW_BROWSER

pCount

(OUT) Points to a nuint16 value (non-NULL) where the menu item
count will be returned.

Return Values

NWA_RET_SUCCESS

NWA_ERR_INVALID_PARAMETER

NWA_ERR_INVALID_CLASSNAME

NWA_ERR_CLASSNAME_NOT_FOUND

Remarks

If viewName is set to NWA_VIEW_CONSOLE, the count of menu items
under the Tools drop-down menu in the NetWare Administrator console
window will be provided.

If viewName is set to NWA_VIEW_BROWSER, the count of menu items
under the Tools drop-down menu in the NetWare Administrator browser
view will be provided.

pCount points to the count of menu items under the Tools drop-down
menu if NWA_RET_SUCCESS is returned.

Management Service Group

Snap-in: Functions 1051

If pCount contains a NULL pointer, NWAGetToolsMenuItemCount will
return an error.

The Tools drop-down menu is provided in the NetWare Administrator
console and the NetWare Administrator browser window.

Although the Snap-in MDI child window (which implements some view
of the Snap-in data) is allowed to provide its own MDI child window
class specific menu, it is recommended that Snap-in provides the Tools
menu and implements the functionality of the Tools menu under the
NetWare Administrator console. Snap-in might also add some
functionality from the Tools menu registered under other views or MDI
child window classes.

To receive information about a menu item, get the count of the menu
items and iterate by calling NWAGetToolsMenuItem.

NCP Calls

None

See Also

NWAGetToolsMenuItem, NWAProcessToolsMenuItemCommand

Management Service Group

Snap-in: Functions 1052

NWAGetTranslatedClassName

Returns the translated name for any object class in NetWare Administrator

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetTranslatedClassName
 (LPCSTR pszClassName,
 pnstr8 pszTranslation,
 nint16 nMaxLen);

Parameters

pszClassName

(IN) Specifies the schema class name.

pszTranslation

(OUT) Points to a buffer for the translated name.

nMaxLen

(IN) Specifies the length of the buffer for the translated name.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

NWA_ERR_INSUFFICIENT_STRING_BUFFER

NWA_ERR_CLASSNAME_NOT_FOUND

Remarks

If translation is found and copied into pszTranslation up to a length of
nMaxLen, NWAGetTranslatedClassName returns
NWA_RET_SUCCESS; if there is an error,
NWAGetTranslatedClassName returns NWA_ERR_ERROR. If nMaxLen
is not of sufficient length, NWAGetTranslatedClassName returns
NWA_ERR_INSUFFICIENT_STRING_BUFFER.

The buffer of length nMaxLen should include two extra bytes for the
NULL character (instead of one byte) to accomodate internationalized
strings.

NCP Calls

Management Service Group

Snap-in: Functions 1053

None

See Also

NWAAddClassData, NWARemoveClassData

Management Service Group

Snap-in: Functions 1054

NWAGetTranslatedPropertyName

Returns the translated property name for any object property in NetWare
Administrator

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetTranslatedPropertyName
 (LPCSTR pszPropertyName,
 LPCSTR pszClassName,
 pnstr8 pszTranslation,
 nint16 nMaxLen);

Parameters

pszPropertyName

(IN) Specifies the schema property name.

pszClassName

(IN) Specifies the schema class name.

pszTranslation

(OUT) Points to a buffer for the translated name.

nMaxLen

(IN) Specifies the length of the buffer for the translated name.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

If pszClassName is NULL, default translation is provided. Otherwise,
default translation is provided only if the requested specific translation is
not provided.

The buffer of length nMaxLen should include two extra bytes for the
NULL character (instead of one byte) to accomodate internationalized
strings.

NCP Calls

Management Service Group

Snap-in: Functions 1055

None

See Also

NWARemovePropertyNameTranslation,
NWAAddPropertyNameTranslation

Management Service Group

Snap-in: Functions 1056

NWAGetTreeName

Gets a tree name and a browser context corresponding to an active browser
window in NetWare Administrator

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAGetTreeName
 (pnstr treeName,
 pnstr defContext);

Parameters

treeName

(OUT) Points to a buffer where the tree name will be provided.

defContext

(OUT) Points to a buffer where the browser context will be provided.

Return Values

NWA_RET_SUCCESS

NWA_ERR_BROWSER_NOT_ACTIVE

NWA_ERR_INVALID_PARAMETER

Remarks

NetWare Administrator sets the tree name corresponding to an active
browser as the default tree.

Snap-in must allocate the buffer specified by treeName to be of sufficient
size to hold MAX_TREE_NAME_CHARS (defined in nwdsdefs.h)
characters.

Snap-in must also allocate the buffer specified by brwsContext to be at
least MAX_DN_BYTES in size.

NCP Calls

None

Management Service Group

Snap-in: Functions 1057

NWALaunchConfigDialog

Launches a dialog box to configure the toolbar and status bar preferences

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWALaunchConfigDialog
 (void);

Return Values

NWA_RET_SUCCESS

NWA_RET_ERR

Remarks

If a Snap-in MDI child window needs to provide toolbar and status bar
configuration preferences, NWALaunchConfigDialog should be called.
Calling NWALaunchConfigDialog ensures that the functionality will be
accessable when a Snap-in MDI child window is active.

NCP Calls

None

Management Service Group

Snap-in: Functions 1058

NWALaunchDetails

Launches a details window

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWALaunchDetails
 (pnstr8 classType,
 pnstr8 className,
 pnstr8 objName);

Parameters

classType

(IN) Points to the class type of the object.

className

(IN) Points to the name of the class.

objName

(IN) Specifies the complete distinguished name of the object.

Remarks

NWALaunchDetails displays the details for the object specified in the
preferred tree. It is assumed that administrator is authenticated to the
tree. If the tree of interest is not set as the preferred tree, then Snap-in
must set the preferrred tree before calling NWALaunchDetails.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

NCP Calls

None

Management Service Group

Snap-in: Functions 1059

NWALaunchDSFlatBrowser

Launches a DS Flat Browser

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWALaunchDSFlatBrowser
 (HWND hwndParent,
 nuint32 userParam,
 LPSTR contextStr,
 LPCSTR selObjectStr,
 LPCSTR navObjectStr,
 LPCSTR selObjectLabel,
 nuint32 brwsFlags,
 NWAFlatBrowserProc pfn);

Parameters

hwndParent

(IN) Specifies a parent window handle of the DS Flat Browser
window.

userParam

(IN) Specifies a user parameter provided in the Flat Browser callback
function.

contextStr

(IN/OUT) Specifies the DS context used by the DS Flat Browser upon
input. Receives the DS context if it is changed in the Flat Browser
during the call to NWALaunchDSFlatBrowser upon output.

selObjectStr

(IN) Specifies the string used as a caption for the edit dialog box taking
the object filter input. If this is NULL, the default caption of the name
filter is displayed.

navObjectStr

(IN) Specifies the string used as a caption for the edit dialog box that
takes the directory context filter input. If this is NULL, the default
caption “Directory Context Filter” is displayed.

selObjectLabel

(IN) Specifies the string used as a caption for the edit dialog box which
displays the selected objects. If this is NULL, the default caption
“Selected Object” is displayed.

Management Service Group

Snap-in: Functions 1060

brwsFlags

(IN) Specifies the configuration flags used by Flat Browser. Flags
which can be ORed follow:

NWA_FB_BROWSE_PUBLIC: [PUBLIC] object can be selected.

NWA_FB_BROWSE_ROOT: [ROOT] object can be selected.

NWA_FB_SINGLE_SELECT: Allows selection of a single object.

NWA_FB_MULTIPLE_SELECT: Allows selection of multiple objects.

pfn

(IN) Specifies the Flat Browser callback function.

Remarks

NOTE: Snap-in must allocate a contextStr buffer of minimum size
NWA_MAX_PATH_SIZE.

contextStr specifies the context to use for browsing. This context refers to
the tree set as the preferred tree. If the tree of interest is different from the
current preferred tree, then Snap-in must set the preferrred tree before
calling NWALaunchDSFlatBrowser.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

NCP Calls

None

Management Service Group

Snap-in: Functions 1061

NWALaunchFSFlatBrowser

Launches an FS Flat Browser

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWALaunchFSFlatBrowser
 (HWND hwndParent,
 nuint32 userParam,
 LPSTR dscontextStr,
 LPSTR fscontextStr,
 LPCSTR selObjectStr,
 LPCSTR navObjectStr,
 LPCSTR selObjectLabel,
 nuint32 brwsFlags,
 NWAFlatBrowserProc pfn);

Parameters

hwndParent

(IN) Specifies a parent window handle of the FS Flat Browser window.

userParam

(IN) Specifies a user parameter provided in the Flat Browser callback
function.

dscontextStr

(IN/OUT) Specifies the DS context used by the FS Flat Browser upon
input. Receives the DS context if it is changed in the Flat Browser by
NWALaunchFSFlatBrowser upon output.

fscontextStr

(IN/OUT) Specifies the FS context used by the FS Flat Browser upon
input. Receives the FS context if it is changed in the Flat Browser by
NWALaunchFSFlatBrowser upon output.

selObjectStr

(IN) Specifies the string used as a caption for the edit dialog box taking
the Object Filter input. If this is NULL, the default caption of the Name
Filter is displayed.

navObjectStr

(IN) Specifies the string used as a caption for the edit dialog box taking
the Directory Context Filter input. If this is NULL, the default caption
“Directory Context Filter” is displayed.

Management Service Group

Snap-in: Functions 1062

selObjectLabel

(IN) Specifies the string used as a caption for the edit dialog box which
displays the selected objects. If this is NULL, the default caption
“Selected Objects” is displayed.

brwsFlags

(IN) Specifies the configuration flags used by Flat Browser. Flags
which can be ORed follow:

NWA_FB_NONDS_VOLUMES: Non DS volumes can be selected.

NWA_FB_EXPAND_VOLUMES: Volumes can be expanded to
display directories and files.

NWA_FB_SINGLE_SELECT: Allows selection of a single object.

NWA_FB_MULTIPLE_SELECT: Allows selection of multiple objects.

pfn

(IN) Specifies the Flat Browser callback function.

Remarks

NOTE: Snap-in must allocate a dscontextStr and fscontextStr buffer of
minimum size NWA_MAX_PATH_SIZE.

dscontextStr specifies the context to use for browsing. This context refers
to the tree set as the preferred tree. If the tree of interest is different from
the current preferred tree, then Snap-in must set the preferrred tree
before calling NWALaunchFSFlatBrowser.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

NCP Calls

None

Management Service Group

Snap-in: Functions 1063

NWAMVEDProc

Is a type definition for a MVED callback proc which returns the initial
values and initial values-count for the MVED control as well as the filter
values for the flat browser

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_TYPEDEF_CALLBACK (nuint32, NWAMVEDProc)
 (nuint32 userParam,
 nuint16 uMsg,
 nparam param1,
 nparam param2);

Parameters

userParam

Specifies the user parameter provided in NWACreateMved.

uMsg

Specifies the message to the callback.

param1

Specifies parameter 1 of the message.

param2

Specifies parameter 2 of the message.

Messages

NWA_MSG_MVED_INITCOUNT

NWA_MSG_MVED_INITVALUE

NWA_MSG_FBFILTER_COUNT

NWA_MSG_FBFILTER_VALUE

Remarks

MvedProc is provided as a parameter to NWACreateMved. The callback
gets invoked to return the initial values count and initial values for
MVED control. MvedProc also gets invoked for filter values for the flat
browser (if MVED values are distinguished names).

Since the MVED control is managed by MPEW window, MVED control
can be used only in a Snap-in dialog page and not in any other dialog or

Management Service Group

Snap-in: Functions 1064

window. NWAGetMvedCount and NWAGetMvedValue are used to get
the data from MVED control.

NCP Calls

None

See Also

NWA_MSG_MVED_INITCOUNT, NWA_MSG_MVED_INITVALUE,
NWA_MSG_FBFILTER_COUNT, NWA_MSG_FBFILTER_VALUE,
NWACreateMved, NWAGetMvedCount, NWAGetMvedValue

Management Service Group

Snap-in: Functions 1065

NWAProcessToolsMenuItemCommand

Executes a command corresponding to a specified Tools menu item

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAProcessToolsMenuItemCommand
 (pnstr8 viewName,
 NWAToolsMenuItem menuItem);

Parameters

viewName

(IN) Points to the name of the view, NetWare Administrator console,
or MDI child window class name under which the Tools menu items
are registered.

menuItem

(IN) Specifies the NWAToolsMenuItem structure which contains a
Tools menu item to be processed.

Return Values

NWA_ERR_SUCCESS

NWA_ERR_INVALID_CLASSNAME

NWA_ERR_CLASSNAME_NOT_FOUND

NWA_ERR_ITEM_NOT_FOUND

Remarks

viewName should be set to NWA_VIEW_CONSOLE to execute a menu
item under the Tools menu in the NetWare Administrator console.

If a Snap-in view is using its own view-specifiec menu, it is
recommended that the functionality of the NetWare Administrator Tools
menu items be provided under a drop-down menu in the View menu.

NWAGetToolsMenuItemCount and NWAGetToolsMenuItem can be
called to enumerate the NetWare Administrator Tools menu items.

NWAProcessToolsMenuItemCommand can be called to execute the
functionality of specific menu items under the Tools menu. Using this
process, it is possible to easily simulate the Tools menu of the NetWare
Administrator console window and any other Snap-in MDI child

Management Service Group

Snap-in: Functions 1066

window in a Snap-in MDI child window specific menu.

NCP Calls

None

See Also

NWAGetToolsMenuItem, NWAGetToolsMenuItemCount,
NWAProcessToolsMenuItemValid

Management Service Group

Snap-in: Functions 1067

NWAProcessToolsMenuItemValid

Executes a command to enable or disable a Tools menu item

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWAProcessToolsMenuItemValid
 (pnstr8 viewName,
 NWAToolsMenuItem menuItem,
 pnuint pFlags);

Parameters

viewName

(IN) Points to the name of the view, NetWare Administrator console,
or MDI child window class name under which the Tools menu items
are registered.

menuItem

(IN) Specifies the NWAToolsMenuItem function specifying the Tools
menu item to be processed.

pFlags

(OUT) Points to the flags used to display the menu item.

Return Values

NWA_RET_SUCCESS

NWA_ERR_INVALID_CLASSNAME

NWA_ERR_CLASSNAME_NOT_FOUND

NWA_ERR_ITEM_NOT_FOUND

Remarks

viewName should be set to NWA_VIEW_CONSOLE to enable/disable a
menu item under the Tools menu in the NetWare Administrator console.

If a Snap-in view is using its own view-specific menu, it is recommended
that the functionality of the NetWare Administrator Tools menu items be
provided under drop-down menus in the View menu.

NWAGetToolsMenuItemCount and NWAGetToolsMenuItem can be
called to enumerate the NetWare Administrator Tools menu item.

Management Service Group

Snap-in: Functions 1068

NWAProcessToolsMenuItemCommand can be called to execute the
functionality of specific menu items under the Tools menu. Call
NWAProcessToolsMenuItemValid to find out the menu flags used to
display menu items; Snap-in can then used the same flags to display
corresponding items in its menu.

NCP Calls

None

See Also

NWAGetToolsMenuItem, NWAGetToolsMenuItemCount,
NWAProcessToolsMenuItemCommand

Management Service Group

Snap-in: Functions 1069

NWARegisterMDIChildWindow

Registers an MDI child window class name with NetWare Administrator

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWARegisterMDIChildWindow
 (LPCSTR className,
 LPCSTR developerInfo,
 HINSTANCE hDLL,
 NWASnapinMDIChildProc classProc,
 HMENU hClassMenu,
 HICON hClassIcon,
 nuint32 version);

Parameters

className

(IN) Specifies the class name of an MDI child window to be registered
(non-NULL, NULL-terminated string, with a maximum length of
NWA_MAX_CLASSNAMELENGTH).

developerInfo

(IN) Specifies information about the Snap-in developer (non-NULL,
NULL-terminated string with a maximum length of
NWA_MAX_DEVINFOLENGTH).

hDLL

(IN) Specifies the valid DLL module handle of the Snap-in DLL.

classProc

(IN) Points to the NWASnapinMDIChildProc MDI child window
callback function (non-NULL).

hClassMenu

(IN) Specifies the menu which will be displayed on the NetWare
Administrator console when the MDI child window is active
(5000-10000).

hClassIcon

(IN) Specifies the icon which will be displayed when MDI child
window is minimized.

version

(IN) Specifies the compile time Snap-in version number indicating the

Management Service Group

Snap-in: Functions 1070

version of SNAPIN.LIB used to compile the Snap-in DLL.

Return Values

NWA_RET_SUCCESS

NWA_ERR_DUPLICATE_ENTRY

NWA_ERR_NO_MEMORY

NWA_ERR_INVALID_CALLBACK_PROC

NWA_ERR_INVALID_PARAMETER

NWA_ERR_INVALID_CLASSNAME

NWA_ERR_INVALID_MODULE_HANDLE

Remarks

NetWare Administrator will send the function pointed to by classProc
NWA_MSG_MDICHILD_CREATED,
NWA_MSG_MDICHILD_SAVESETTINGS,
NWA_MSG_MDICHILD_SAVESETTINGS, and
NWA_MSG_MDICHILD_RESTORE messages.

The menu Identifiers used in the hClassMenu parameter should be in the
range of 5000 to 10000. Using this range ensures there is no menu ID
conflict between NetWare Administrator and the Snap-in MDI child
menu.

NetWare Administrator identifies a Snap-in MDI child window by a class
name. With each such class registered, there is one callback function
specified.

The classProc is used for saving and restoring all the MDI child windows
of a specific class when NetWare Administrator shuts down and comes
up again. The callback function will be a
NWA_MSG_MDICHILD_CREATED message when an instance of MDI
child window is created. Snap-in usually will call
NWARegisterMDIChildWindow in InitSnapin implemented in a
Snap-in DLL.

NCP Calls

None

See Also

InitSnapin, NWACreateMDIChildWindow

Management Service Group

Snap-in: Functions 1071

NWARegisterMenu

Registers menu items when they are added to the Tools menu and registers
the functions to be called when the Snap-in menu item is selected

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWARegisterMenu
 (pnstr8 className,
 nuint16 menuParentId,
 pnstr8 menuParent,
 nuint16 menuOption,
 pnuint16 pmenuID,
 pnstr8 menuString,
 pnstr8 menuHint,
 NWASnapinMenuActionProc menuActionProc,
 NWASnapinMenuValidProc menuValidProc,
 nuint32 version);

Parameters

className

(IN) Points to the view where the Snap-in menu item will be added.
NWA_VIEW_CONSOLE and NWA_VIEW_BROWSER are the only
views supported.

menuParentId

(IN) Specifies the ID of the parent menu item. The ID must be zero for
the menu item to be added in the Tools menu.

menuParent

(IN) Points to the parent menu item. Must be null for the menu item to
be added in the Tools menu.

menuOption

(IN) Specifies the menu options for the Snap-in menu item; must be
MF_STRING.

pmenuID

(OUT) Points to the menu ID for the registered menu item.

menuString

(IN) Points to the NULL terminated string for a Snap-in menu item.

menuHint

Management Service Group

Snap-in: Functions 1072

(IN) Points to the NULL terminated string displayed as Hint on the
title bar when the menu item has a focus.

menuActionProc

(IN) Specifies a user-supplied callback menu action function which is
called when the menu item is selected.

menuValidProc

(IN) Specifies a user-supplied callback menu valid function which is
called when the menu is pulled down.

version

(IN) Specifies the Snap-in interface version at compile time.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

NCP Calls

None

Management Service Group

Snap-in: Functions 1073

NWARegisterObjectProc

Registers an object class for the Snap-in module

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWARegisterObjectProc
 (pnstr8 classType,
 pnstr8 className,
 pnstr8 developerInfo,
 HINSTANCE hDLL,
 NWASnapinObjectProc proc,
 nuint32 version);

Parameters

classType

(IN) Points to the object class type. For example, FS_OBJECT_TYPE or
DS_OBJECT_TYPE.

className

(IN) Points to the schema class name. Use the #defines in
NWDSNMTP for existing objects.

developerInfo

(IN) Points to information about the developer.

hDLL

(IN) Specifies the Snap-in’s DLL handle.

proc

(IN) Specifies the Snap-in call back function. NetWare Administrator
sends messages to this function.

version

(IN) Specifies the Snap-in version at compile time.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

Management Service Group

Snap-in: Functions 1074

NWARegisterObjectProc must be called in the Snap-in’s InitSnapin.

It is possible to register multiple procedures for the same Snap-in object
class in Snap-in DLLs. DLLs are invoked in the order they are registered
for the details page.

NCP Calls

None

Management Service Group

Snap-in: Functions 1075

NWARegisterObjectProcEx

Registers an object class for the Snap-in module (extended version)

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWARegisterObjectProcEx
 (pnstr8 classType,
 pnstr8 className,
 pnstr8 developerInfo,
 HINSTANCE hDLL,
 NWASnapinObjectProc proc,
 nuint32 version,
 nuint32 snapinFlags);

Parameters

classType

(IN) Points to the object class type. For example:

FS_OBJECT_TYPE

DS_OBJECT_TYPE

className

(IN) Points to the schema class name (use the #defines in nwdsnmtp
for existing objects).

developerInfo

(IN) Points to the developer information.

hDLL

(IN) Specifies the Snap-ins DLL handle (valid module handle).

proc

(IN) Specifies the NWASnapinObjectProc callback function to which
NetWare Administrator will send messages (non-NULL function
pointer).

version

(IN) Specifies the Snap-in version at compile time.

snapinFlags

(IN) Specifies flags indicating the type of the object proc (can also
specify whether the PageOption button in the MPEW windows is
displayed.

Management Service Group

Snap-in: Functions 1076

Return Values

NWA_RET_SUCCESS

NWA_ERR_INVALID_STRING_PARAM

Remarks

NWARegisterObjectProcEx achieves the same functionality as
NWARegisterObjectProc with an additional parameter that indicates a
specific scenario in which the NWASnapinObjectProc callback function
will be called.

snapinFlags should be set to one of the following enumeration values:

NWA_SNAPIN_NORMA
L

Proc to handle messages for bringing up
details of an object.

NWA_SNAPIN_TEMPL
ATE

Proc to handle messages for bringing up
details of a user template object. Currently
templates are only implemented for user
objects.

NWA_SNAPIN_MULTI
OBJ

Proc to handle messages for editing
multiple user objects at a time. Currently
multiple object details are only
implemented for user objects.

If Snap-in needs to register the same proc for more than one scenario, call
NWARegisterObjectProcEx and register the proc individually for a
specific scanario, as the flags in snapinFlags cannot be combined.

However, one of the above flags can be ORed with the
NWA_SNAPIN_DISABLED_PAGESETUP flag. If the
NWA_SNAPIN_DISABLED_PAGESETUP flag is set, the PageOption
push button in the MPEW details window will not be displayed. If the
Snap-in is only an attribute Snap-in (only adds an attribute definition to
an existing object class), the NWA_SNAPIN_DISABLE_PAGESETUP
flag will be ignored.

NWARegisterObjectProcEx must be called from within the Snap-ins
InitSnapin function.

NCP Calls

None

See Also

InitSnapin, NWARegisterObjectProc, NWASnapinObjectProc

Management Service Group

Snap-in: Functions 1077

NWARegisterToolBarButton

Allows tools that Snap-in to the NetWare Administrator Tools menu to
register a button to be displayed on the toolbar

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWARegisterToolBarButton
 (NWAToolBarRegistrationStruct *pStruct);

Parameters

pStruct

(IN) Points to the address of the NWAToolBarRegistrationStruct
structure.

Return Values

NWA_RET_SUCCESS

NWA_ERR_INVALID_SNAPIN_VERSION

NWA_ERR_NO_MEMORY

NWA_ERR_INVALID_CALLBACK_PROC

NWA_ERR_INVALID_STRING_RESOURCE_ID

NWA_ERR_INVALID_STRING_PARAMETER

NWA_ERR_INVALID_BITMAP_PARAMETER

NWA_ERR_INVALID_INSTANCE_HANDLE

NWA_ERR_INVALID_MENUID

NWA_ERR_INVALID_STRUCT_SIZE

NWA_ERR_INVALID_PARAMETER

NWA_ERR_DUPLICATE_TOOLBAR_BUTTON_NAME

Remarks

The button bitmap should measure 20 x 18 pixels with 16 colors.

NCP Calls

None

Management Service Group

Snap-in: Functions 1078

NWARemoveClassData

Removes all class bitmaps from NetWare Administrator bitmap tables

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWARemoveClassData
 (LPCSTR pszClassName,
 HBITMAP *phClassBitamp,
 HBITMAP *phClassAliasBitmap,
 HBITMAP *phClassReadOnlyBitmap);

Parameters

pszClassName

(IN) Specifies the schema class name.

phClassBitmap

(OUT) Points to the normal bitmap of the class.

phClassAliasBitmap

(OUT) Points to the alias birmap of the class.

phClassReadOnlyBitmap

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

The Snap-in calls NWARemoveClassData when it receives the
NWA_MSG_CLOSESNAPIN message. The Snap-in should free up
Windows resources.

NCP Calls

None

See Also

NWA_MSG_INITSNAPIN, NWA_MSG_CLOSESNAPIN,
NWAGetClassBitmap

Management Service Group

Snap-in: Functions 1079

NWAGetClassReadOnlyBitmap, NWAAddClassData

Management Service Group

Snap-in: Functions 1080

NWARemovePropertyNameTranslation

Removes the translated property name for any property in NetWare
Administrator

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_EXTERN_LIBRARY(NWRCODE) NWARemovePropertyNameTranslation
 (LPCSTR pszPropertyName,
 LPCSTR pszClassName);

Parameters

pszPropertyName

(IN) Specifies the schema property name.

pszClassName

(IN) Specifies the schema class name.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

If pszClassName is NULL, the default translation for the property is
removed. Passing NULL to pszClassName removes only the default
translation, not translations specified by a class name.

NCP Calls

None

See Also

NWAGetTranslatedClassName, NWAAddClassData

Management Service Group

Snap-in: Functions 1081

NWASnapinMDIChildProc

Is a type definition called by NetWare Administrator to create, clear, save
and restore MDI child window settings

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_TYPEDEF_CALLBACK (LRESULT, NWASnapinMDIChildProc)
 (pnstr8 viewName,
 nuint16 message,
 nparam param1,
 nparam param2);

Parameters

viewName

(IN) Points to the view or class name with which an MDI child
window is registered.

message

(IN) Specifies the message.

param1

(IN) Specifies the message parameter one.

param2

(IN) Specifies the message parameter two.

Return Values

NWA_RET_SUCCESS

NCP Calls

None

Management Service Group

Snap-in: Functions 1082

NWASnapinMenuActionProc

Is a type definition called by NetWare Administrator when its associated
Snap-in module's menu item is selected

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_TYPEDEF_CALLBACK (void, NWASnapinMenuActionProc)
 (void);

Return Values

None

Remarks

MenuAction is provided as a parameter to NWARegisterMenu.
MenuAction is invoked when the Snap-in menu item is selected in
NetWare Administrator.

NCP Calls

None

See Also

NWARegisterMenu

Management Service Group

Snap-in: Functions 1083

NWASnapinMenuValidProc

Is a type definition called by NetWare Administration when the user pulls
down the associated Snap-in menu item

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_TYPEDEF_CALLBACK(void, NWASnapinMenuValidProc)
 (pnuint16 pFlags);

Parameters

pFlags

Points to flags which are used in displaying menu items.

Return Values

None

Remarks

MenuValidProc is provided as a parameter to NWARegisterMenu.
MenuValidProc gets invoked when the Snap-in menu item is pulled
down in NetWare Administrator and is used to enable/disable a menu
item.

NCP Calls

None

See Also

NWARegisterMenu

Management Service Group

Snap-in: Functions 1084

NWASnapinObjectProc

Is a type definition for a Snap-in object class callback function

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_TYPEDEF_CALLBACK(NWRCODE, NWASnapinObjectProc)
 (pnstr8 objName,
 nuint16 message,
 nparam param1,
 nparam param2);

Parameters

objName

Points to the complete name of the object for which the callback is
involved.

message

Specifies the message to the callback.

param1

Specifies parameter 1 of the message.

param2

Specifies parameter 2 of the message.

Messages

NWA_MSG_INITSNAPIN

NWA_MSG_CLOSESNAPIN

NWA_MSG_CREATEOBJECT

NWA_MSG_GETPAGECOUNT

NWA_MSG_REGISTERPAGE

NWA_MSG_RENAME

NWA_MSG_MODIFY

NWA_MSG_QUERYDELETE

NWA_MSG_QUERYCOPY

NWA_MSG_QUERYMOVE

NWA_MSG_GETVALIDOPERATIONS

Remarks

Management Service Group

Snap-in: Functions 1085

ObjectclassProc is provided as a parameter to NWARegisterObjectProc.
ObjectclassProc is called by NetWare Administrator with messages to
initialize or close the Snap-in object class, register the details pages, get
valid oeprations, etc.

Make sure the callback function is FAR PASCAL and exported out of the
DLL.

NCP Calls

None

See Also

NWA_MSG_INITSNAPIN, NWA_MSG_CLOSESNAPIN,
NWA_MSG_CREATEOBJECT, NWA_MSG_GETPAGECOUNT,
NWA_MSG_REGISTERPAGE, NWA_MSG_RENAME,
NWA_MSG_MODIFY, NWA_MSG_QUERYDELETE,
NWA_MSG_QUERYCOPY, NWA_MSG_QUERYMOVE,
NWA_MSG_GETVALIDOPERATIONS, NWARegisterObjectProc

Management Service Group

Snap-in: Functions 1086

NWASnapinTBButtonEnableProc

Is a type definition called by NetWare Administration to find out if a toolbar
button registered by a tools menu Snap-in item should be enabled or
disabled

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

N_TYPEDEF_CALLBACK(void,NWASnapinTBButtonEnableProc)
 (nint menuID,
 pnbool pfEnabled);

Parameters

menuID

(IN) Specifies the button menu ID to enable or disable.

pfEnabled

(OUT) Points to N_TRUE if the button should be enabled and
N_FALSE if the button should be disabled.

Return Values

N_TRUE

N_TRUE

NCP Calls

None

Management Service Group

Snap-in: Functions 1087

PostInitSnapin

Is sent by NetWare Administrator after all Snap-in DLLs have been loaded
and initialized

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

void FAR PASCAL PostInitSnapin
 (HWND hwndAdmin);

Parameters

hwndAdmin

(IN) Specifies the window handle of the NetWare Administrator
frame window.

Return Values

None

Remarks

PostInitSnapin is implemented in a Snap-in DLL and is called by
NetWare Administrator after NetWare Administrator has loaded and
initialized all the Snap-in DLLs.

Snap-in does not have to implement PostInitSnapin.

NetWare Administrator will only call PostInitSnapin if it is available.

NCP Calls

None

Management Service Group

Snap-in: Functions 1088

ShutDown

Is called by NetWare Administrator when Snap-in modules are being closed

Syntax

#include <nwsnapin.h>

void PAR PASCAL ShutDown
 (void);

Return Values

None

Remarks

ShutDown must provide all Snap-in DLL specific cleanup.

See Also

InitSnapin

Management Service Group

Snap-in: Functions 1089

Snap-in: Structures

Management Service Group

Snap-in: Structures 1090

NWACreateMDIChildParam

Provides the parameters used to create an MDI child window

Service: Snap-in

Defined In: nwsnapin.h

Structure

typedef struct tagNWACreateMDIChildParam
{
 nuint32 structSize;
 WINDOWPLACEMENT wndpl;
} NWACreateMDIChildParam;

Fields

structSize

Specifies the size of the NWACreateMDIChildParam structure.

wndpl

Specifies the window position parameters which are used to create an
MDI child window.

Remarks

WINDOWPLACEMENT is a Microsoft Windows* defined structure and
can be found in the Microsoft Windows SDK documentation.

Management Service Group

Snap-in: Structures 1091

NWAPageStruct

Defines configuration information for the pages in MPEW of NWAdmin

Service: Snap-in

Defined In: nwsnapin.h

Structure

typedef struct
{
 DLGPROC dlgProc;
 HINSTANCE hDLL;
 LPSTR resName;
 LPSTR pageTitle;
 LPARAM initParam;
} NWAPageStruct;

Fields

digProc

Specifies the dialog procedure.

hDLL

Specifies the resource DLL handle.

resName

Points to the resource name.

pageTitle

Points to the title of the page in the listbox.

initParam

Specifies the initialization parameters.

Management Service Group

Snap-in: Structures 1092

NWASelObject, PNWASelObject

Defines configuration information for the type of object selected from the
NWADMIN View

Service: Snap-in

Defined In: nwsnapin.h

Structure

typedef struct
{
 char objType[NWA_MAX_CLASS_TYPE];
 char objClass[NWA_MAX_CLASS_NAME];
 char objName[NWA_MAX_OBJECT_NAME];
} NWASelObject, N_FAR *PNWASelObject;

Fields

objType

Specifies “DS”, “FS”, or some user defined object type.

objClass

Specifies the object class name. If objType specifies “FS”, then objClass
specifies a File and Directory object class name. If objType is “DS”, then
objClass specifies a DS object class name.

objName

Specifies the complete object class name or path.

Management Service Group

Snap-in: Structures 1093

NWAStatusBarItemStruct

Provides the information necessary to add text fields to the status of the
toolbar

Service: Snap-in

Defined In: nwsnapin.h

Structure

typedef struct
{
 nuint32 lStructSize;
 nint itemId;
 nuint maxChars;
 pnstr8 pszText;
} NWAStatusBarItemStruct;

Fields

lStructSize

Specifies the length (in bytes) of the NWAStatusBarItemStruct
structure.

itemId

Specifies the unique identifier of the item in the status bar.

maxChars

Specifies the maximum number of characters that can be displayed in
the text field.

pszText

Points to the text that will be displayed in the text field when the text
field is created.

Management Service Group

Snap-in: Structures 1094

NWAStatusBarPrefItemStruct

Provides the necessary information to add an item to the status bar
preferences dialog box

Service: Snap-in

Defined In: nwsnapin.h

Structure

typedef struct
{
 nuint32 lStructSize;
 nint itemId;
 HINSTANCE hResourceDLL;
 nint textResId;
 nint hintResId;
 nuint maxChars;
} NWAStatusBarPrefItemStruct;

Fields

lStructSize

Specifies the length (in bytes) of the NWAStatusBarPrefItemStruct
structure.

itemId

Specifies the unique identifier of the field in the status bar.

hResourceDLL

Specifies the instance handle of the DLL containing the string
resources corresponding to the textId and hintId structure fields.

textResId

Specifies the resource identifier of the string describing the status bar
option.

hintResId

Specifies the resource identifier of the string describing the nature of
the status bar option.

maxChars

Specifies the maximum number of characters that can be displayed in
the text field.

Remarks

The text specified by the textResId structure field will appear in the status
bar preferenced dialog listbox.

Management Service Group

Snap-in: Structures 1095

The text specified by the hintResId structure field will appear in the status
bar preferences dialog box when the mouse is over the corresponding
status bar dialog listbox item.

The number specified by the maxChars structure field should be the same
value as in the corresponding NWAStatusBarItemStruct structure.

Management Service Group

Snap-in: Structures 1096

NWAToolBarItemStruct

Provides the necessary information to add buttons and spaces to the toolbar

Service: Snap-in

Defined In: nwsnapin.h

Structure

typedef struct
{
 nuint32 lStructSize;
 HINSTANCE hResourceDLL;
 nint menuId;
 nint hintId;
 nint bitmapId;
 nint toolTipStrId;
 TBState buttonState;
 TBType buttonType;
 nbool fEnabled
} NWAStatusBarPrefItemStruct;

Fields

lStructSize

Specifies the length (in bytes) of the NWAStatusBarPrefItemStruct
structure.

hResourceDLL

Specifies the handle to the resource DLL containing the bitmap
resource corresponding to the bitmapId structure field.

menuId

Specifies the unique identifier of the button in the toolbar.

hintId

Specifies the resource ID of the string to be displayed in the
NWAdmin caption when the user's mouse flied over the
corresponding toolbar button (if set to zero, no hint will be displayed).

bitmapId

Specifies the resource ID of a bitmap resource to appear on the button.

toolTipStrId

Specifies the resource ID of the string to be displayed in the tool tip (if
set to zero, no tool tip will be displayed).

buttonState

Specifies the default state of the button.

buttonType

Management Service Group

Snap-in: Structures 1097

Specifies the type of the button.

fEnabled

Specifies whether the button is enabled when it is first created.

Remarks

When a view wants to add an item to the toolbar, it sends a
NWA_MSG_TOOLBAR_ADDITEM message to the NWAdmin main
window.

The lParam parameter for each desired item. parameter of the
NWA_MSG_TOOLBAR_ADDITEM message contains a long pointer to a
NWAToolBarItemStruct structure.

If the button specified by the menuId structure field has a buttonType of
Command, the menuId structure field should correspond to the command
ID for the menu item it represents.

The enumerated type, TBState, corresponding to the buttonState structure
field can be TBUp, TBDown, or TBIndeterminate. The indetereminate
state is an intermediate state between down and up.

The enumerated type, TBType, has three possible values described
below:

TBCommand Specifies the button is a command.

TBToggle Specifies the button is a toggle button.

Setting buttons may be used to indicate the state of something, similar to
toolbar buttons in WordPerfect for Windows that shows if selected text is
bold, italicized, or underlined.

Management Service Group

Snap-in: Structures 1098

NWAToolBarPrefItemStruct

Provides the necessary information to add an item to the toolbar preferences
dialog box

Service: Snap-in

Defined In: nwsnapin.h

Structure

typedef struct
{
 nuint32 lStructSize;
 nint menuId;
 HINSTANCE hResourceDLL;
 nint itemStrId;
 nint hintStrId;
 nint bitmapId;
} NWAToolBarPrefItemStruct;

Fields

lStructSize

Specifies the length (in bytes) of the NWAToolBarPrefItemStruct
structure.

menuId

Specifies the unique identifier of the button in the toolbar.

hResourceDLL

Specifies the handle to the resource DLL containing the bitmap
resource corresponding to the bitmapId, itemStrId, and hintStrId
structure fields.

itemStrId

Specifies the resource ID of the string to be displayed in the listbox of
available items.

hintStrId

Specifies the resource ID of the string describing the toolbar item to be
displayed in the hint static field when the corresponding item is
selected in the listbox of available items.

bitmapId

Specifies the resource ID of a bitmap resource to appear on the button.

Remarks

The toolbar preferences dialog box allows users to specify which items
they want to be visible in the toolbar.

Management Service Group

Snap-in: Structures 1099

they want to be visible in the toolbar.

When a view receives a NWA_MSG_TOOLBAR_QUERYITEMCOUNT
message, the view returns the number of items it wants to add to the
toolbar preferences dialog box. NWAdmin will then send a
NWA_MSG_TOOLBAR_ADDPREFITEM message containing a pointer
to a NWAToolBarPrefItemStruct structure in the lParam parameter for
each desired item.

If the button specified by the menuId structure field has a buttonType of
TBCommand, the menuId structure field should correspond to the
command ID for the menu item it represents.

Management Service Group

Snap-in: Structures 1100

NWAToolBarRegistrationStruct

Provides the necessary information for a Snap-in item under the NWAdmin
Tools menu to register an item for the toolbar and the toolbar preferences
dialog box

Service: Snap-in

Defined In: nwsnapin.h

Structure

typedef struct
{
 nuint32 lStructSize;
 pnstr8 nameOfSnapinButton;
 nint menuId;
 HINSTANCE hResourceDLL;
 nint bitmapId;
 nint textStrId;
 nint hintStrId;
 nint toolTipStrId;
 TBState buttonState;
 TBType buttonType;
 NWASnapinTBButtonEnableProc enableProc;
 nuint32 version;
} NWAToolBarRegistrationStruct;

Fields

lStructSize

Specifies the length (in bytes) of the NWAToolBarRegistrationStruct
structure.

nameOfSnapinButton

Points to the unique string identifier of the button in the toolbar
(maximum of NWA_MAX_SNAPIN_BUTTON_NAME).

menuId

Specifies the menu ID returned by the NWARegisterMenu function.

hResourceDLL

Specifies the handle to the resource DLL containing the bitmap
resource corresponding to the bitmapId, textStrId, hintStrId, and
toolTipStrId structure fields.

bitmapId

Specifies the resource ID of the bitmap resource to appear on the
button.

textStrId

Management Service Group

Snap-in: Structures 1101

Specifies the resource ID of the string to be displayed in the listbox of
available items in the toolbar preferences dialog box.

hintStrId

Specifies the resource ID of the descriptive string to be displayed in
the hint static field when the corresponding item is selected in the
listbox of available items.

toolTipStrId

Specifies the resource ID of the string to be displayed in the tool tip for
the button.

buttonState

Specifies the default state of the button.

buttonType

Specifies the type of the button.

enableProc

Points to the NWASnapinTBButtonEnableProc callback function used
to determine if the button should be enabled or disabled.

version

Specifies the Snap-in version at compile time.

Remarks

A pointer to the NWAToolBarRegistrationStruct structure is passed as a
parameter to the NWARegisterToolBarButton function.

The string pointed to by the nameOfSnapinButton structure field should
contain the Snap-in writer's company name and application name as well
as additional information to distinguish multiple buttons from each
other.

The enumerated type, TBState, can be set to: TBUp, TBDown, or
TBIndeterminate. The indeterminate state is an intermediate state
between down and up.

The enumerated type, TBType, has three possible values described
below:

TBCommand Specifies the button is a command.

TBToggle Specifies the button is a toggle button.

Setting buttons may be used to indicate the state of something, similar to
the toolbar buttons in WordPerfect for Windows that indicate if selected
text is bold, italicized, or underlined.

See Also

Management Service Group

Snap-in: Structures 1102

NWARegisterMenu, NWASnapinTBButtonEnableProc

Management Service Group

Snap-in: Structures 1103

NWAToolsMenuItem

Contains information about a menu item under the Tools drop-down menu
in an MDI child window

Service: Snap-in

Defined In: nwsnapin.h

Structure

typedef struct tagNWAToolsMenuItem
{
 nuint32 structSize;
 nuint parentMenuId;
 nuint menuId;
 nuint menuOption;
 char szMenuText[32];
 char szMenuHintText[128];
} NWAToolsMenuItem;

Fields

structSize

Specifies the size of the NWAToolsMenuItem structure.

parentMenuId

Specifies the ID of the parent menu item.

menuId

Specifies the ID of the menu item.

menuOption

Specifies the menu item options used to create the menu item
(MF_STRING, MF_POPUP, etc.)

szMenuText

Points to the menu item text string.

szMenuHintText

Points to the menu item hint text string.

See Also

NWAGetToolsMenuItemCount

Management Service Group

Snap-in: Structures 1104

Snap-in: Messages

Management Service Group

Snap-in: Messages 1105

NWA_MSG_APPLYTEMPLATE

Is sent to the Snap-in(s) with the object name being created and the template
object name being used to create the object

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the object name.

msg

Specifies NWA_MSG_APPLYTEMPLATE.

p1

Specifies the template object name being used to create the object.

p2

Is currently not being used.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

Snap-in should process the NWA_MSG_APPLYTEMPLATE message by
applying the template object attribute values to the attribute values of the
object being created.

Management Service Group

Snap-in: Messages 1106

NWA_MSG_CLOSESNAPIN

Is the last message a Snap-in receives and it should unregister its translated
names and bitmaps, and free allocated memory

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the object name.

msg

Specifies NWA_MSG_CLOSESNAPIN.

p1 and p2

Are currently not being used.

Return Values

NWA_RET_SUCCESS

See Also

NWA_MSG_INITSNAPIN

Management Service Group

Snap-in: Messages 1107

NWA_MSG_CREATEOBJECT

Is sent by NetWare Administrator to the Snap-in when a user selects the
object class supported by the Snap-in from the Create dialog in the Object
menu

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the parent container name where the new object must be
created.

msg

Specifies NWA_MSG_CREATEOBJECT.

p1 and p2

Are currently not being used.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

NWA_RET_SHOWDETAILS

NWA_RET_CREATEANOTHER

Remarks

If NWA_ERR_ERROR is returned, the Snap-in should show a message
dialog box detailing the error.

A Snap-in should show a Create dialog box in response to the
NWA_MSG_CREATOBJECT message. This dialog box should prompt
the user for necessary properties to create a new object in the NetWare
Directory. The user interface for the Snap-in should be similar to the
create dialog used by NetWare Administrator.

Management Service Group

Snap-in: Messages 1108

NWA_MSG_FBFILTER_COUNT

Is the first message a Flat Browser or MVED callback function receives

Syntax

#include <nwsnapin.h>

FlatBrowserProc(nuint32 userParam, nuint16 msg, nparam p1, nparam p2);

Parameters

userParam

Specifies the user parameter.

msg

Specifies NWA_MSG_FBFILTER_COUNT.

p1

Specifies the count of class filters.

p2

Is not currently being used.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

The callback function will receive the NWA_MSG_FBFILTER_VALUE
message as many times as indicated by the count.

See Also

NWA_MSG_FBFILTER_VALUE, NWA_MSG_FBOBJECT_COUNT,
NWA_MSG_FBOBJECT_VALUE

Management Service Group

Snap-in: Messages 1109

NWA_MSG_FBFILTER_VALUE

Is sent to the Flat Browser or MVED callback function with the filter index of
the p1 parameter

Syntax

#include <nwsnapin.h>

FlatBrowserProc(nuint32 userParam, nuint16 msg, nparam p1, nparam p2);

Parameters

userParam

Specifies the user parameter.

msg

Specifies NWA_MSG_FBFILTER_VALUE.

p1

Is not currently being used.

p2

Specifies the buffer containing the filter value.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

See Also

NWA_MSG_FBFILTER_COUNT, NWA_MSG_FBOBJECT_COUNT,
NWA_MSG_FBOBJECT_VALUE

Management Service Group

Snap-in: Messages 1110

NWA_MSG_FBOBJECT_COUNT

Is sent to the Flat Browser callback function with the count of selected
objects in the flat browser, if the OK button is pressed

Syntax

#include <nwsnapin.h>

FlatBrowserProc(nuint32 userParam, nuint16 msg, nparam p1, nparam p2);

Parameters

userParam

Specifies the user parameter.

msg

Specifies NWA_MSG_FBOBJECT_COUNT.

p1 and p2

Are not currently being used.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

See Also

NWA_MSG_FBFILTER_COUNT, NWA_MSG_FBFILTER_VALUE,
NWA_MSG_FBOBJECT_VALUE

Management Service Group

Snap-in: Messages 1111

NWA_MSG_FBOBJECT_VALUE

Is sent to the Flat Browser callback function with the selected object index

Syntax

#include <nwsnapin.h>

FlatBrowserProc(nuint32 userParam, nuint16 msg, nparam p1, nparam p2);

Parameters

userParam

Specifies the user parameter.

msg

Specifies NWA_MSG_FBOBJECT_VALUE.

p1

Specifies the index of the object selected.

p2

Specifies the NWASelObject, PNWASelObject structure indicating the
object selected.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

The NWASelObject, PNWASelObject structure defines configuration
information for the type of object selected from the NetWare
Administrator view.

See Also

NWA_MSG_FBFILTER_COUNT, NWA_MSG_FBFILTER_VALUE,
NWA_MSG_FBOBJECT_COUNT

Management Service Group

Snap-in: Messages 1112

NWA_MSG_GETPAGECOUNT

Is sent by NetWare Administrator to the Snap-in when a user selects the
object supported by the Snap-in and then selects Details from the Object
menu

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the object name.

msg

Specifies NWA_MSG_GETPAGECOUNT.

p1 and p2

Are not currently used.

Return Values

NWA_MSG_GETPAGECOUNT returns the number of pages the Snap-in
wants to put in the Multi-Page Edit Window (MPEW).

See Also

NWA_MSG_REGISTERPAGE

Management Service Group

Snap-in: Messages 1113

NWA_MSG_GETVALIDOPERATIONS

Is sent by NetWare Administrator to SnapinObjectProc function when a
Snap-in object is selected and the user selects a menu operation

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the selected object whose properties have been modified.

msg

Specifies NWA_MSG_GETVALIDOPERATIONS.

p1 and p2

Are not currently being used.

Return Values

NWA_OP_CONTAINER

NWA_OP_CREATE

NWA_OP_DELETE

NWA_OP_DETAILS

NWA_OP_DSTYPE

NWA_OP_FSTYPE

NWA_OP_MOVE

NWA_OP_RENAME

NWA_OP_SEARCH

NWA_OP_USERTEMPLATE

Remarks

The return value is the sum of the defined constants for which there are
valid operations.

NWA_OP_CONTAINER specifies whether an object is a container and
enables the Create menu item.

NWA_OP_CREATE adds a Snap-in object class name to the class list in the
New Object dialog.

NWA_OP_DELETE enables Delete menu item.

NWA_OP_DETAILS enables Details menu item.

NWA_OP_DSTYPE enables Rights to other objects and Trustees of the

Management Service Group

Snap-in: Messages 1114

object menu item.

NWA_OP_FSTYPE enables Move and Copy menu items.

NWA_OP_MOVE enables Move menu item.

NWA_OP_RENAME enables Rename menu item.

NWA_OP_SEARCH enables Search menu item.

NWA_OP_USERTAMPLATE enables User Template menu item.

Management Service Group

Snap-in: Messages 1115

NWA_MSG_INITSNAPIN

Is the first message a Snap-in receives indicating it should register bitmaps,
translated property, and class members

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the object name.

msg

Specifies NWA_MSG_INITSNAPIN.

p1 and p2

Are currently not being used

Return Values

NWA_MSG_SUCCESS

NWA_ERR_ERROR

Remarks

If the Snap-in returns NWA_ERR_ERROR, NetWare Administrator will
terminate communication with the Snap-in.

See Also

NWA_MSG_CLOSESNAPIN

Management Service Group

Snap-in: Messages 1116

NWA_MSG_IVEGOTFOCUS

Is sent by an MDI child window to the NetWare Administrator main
window when the child window receives a WM_SETFOCUS message

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

wParam = (WPARAM)hwndMDIChild;
lParam = 0;

Parameters

wParam

Specifies the handle of the MDI child window.

lParam

Is currently not used; must be zero.

Remarks

NetWare Administrator responds to the NWA_MSG_IVEGOTFOCUS
message by sending the MDI child window the
NWA_MSG_TOOLBAR_POPULATE and
NWA_MSG_STATUSBAR_POPULATE messages.

Each MDI child window type must have a registered Windows class
name if it wants to take control of the toolbar. If the MDI child window
does not want to have control of the toolbar, that child window will
receive a NWA_MSG_TOOLBAR_POPULATE or
NWA_MSG_STATUSBAR_POPULATE message.

Management Service Group

Snap-in: Messages 1117

NWA_MSG_MDICHILD_CLEARSETTINGS

Is sent to the NWASnapinMDIChildProc callback proc by NetWare
Administrator when NetWare Administrator is going down and the Save
settings option in NetWare Administrator is set

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

MDIChildCallbackProc (char* classname, UINT msg, nparam p1, nparam p2);

Parameters

classname

Points to the name of the Snap-in view class.

msg

Specifies NWA_MSG_MDICHILD_CLEARSETTINGS.

p1

Specifies the MDI child window going down with NetWare
Administrator.

p2

Specifies the integral order of the MDI child window.

Return Values

NWA_RET_SUCCESS

NWA_RET_ERROR

Remarks

The NetWare Administrator browser view saves the setting the browser
window position and browser context in nwadmin.ini. Snap-ins should
similarly manage their own information.

One of the important pieces of information that are displayed about the
view (the MDI child window) is the position of the window on the screen
(window placement). Snap-in should save the window placement and
restore the MDI child window to the same window placement in
NetWare Administrator.

Management Service Group

Snap-in: Messages 1118

NWA_MSG_MDICHILD_CREATED

Is sent to the NWASnapinMDIChildProc callback proc by NetWare
Administrator when an instance of the MDI child window is created

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

MDIChildCallbackProc (char* classname, UINT msg, nparam p1, nparam p2);

Parameters

classname

Points to the name of the Snap-in view class.

msg

Specifies NWA_MSG_MDICHILD_CREATED.

p1

Specifies the parent window handle of the MDI child window created.

p2

Specifies a window handle that must be filled by the Snap-in with a
window handle which will be used by NetWare Administrator to send
MDI child window related messages to the Snap-in.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Management Service Group

Snap-in: Messages 1119

NWA_MSG_MDICHILD_RESTORE

Is sent to the NWASnapinMDIChildProc callback proc by NetWare
Administrator when NetWare Administrator comes up

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

MDIChildCallbackProc (char* classname, UINT msg, nparam p1, nparam p2);

Parameters

classname

Points to the name of the Snap-in view class.

msg

Specifies NWA_MSG_MDICHILD_RESTORE.

p1 and p2

Are currently not being used.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Management Service Group

Snap-in: Messages 1120

NWA_MSG_MDICHILD_SAVESETTINGS

Is sent to the NWASnapinMDIChildProc callback proc by NetWare
Administrator when NetWare Administrator is going down and the Save
settings option in NetWare Administrator is set

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

MDIChildCallbackProc (char* classname, UINT msg, nparam p1, nparam p2);

Parameters

classname

Points to the name of the Snap-in view class.

msg

Specifies NWA_MSG_MDICHILD_SAVESETTINGS

p1

Specifies the MDI child window handle.

p2

Specifies the integral order of the MDI child window going down.

Return Values

NWA_RET_SUCCESS

NWA_RET_ERROR

Remarks

The NetWare Administrator browser view saves the setting the browser
window position and browser context in nwadmin.ini. Snap-ins should
similarly manage their own information.

One of the important pieces of information that are displayed about the
view (the MDI child window) is the position of the window on the screen
(window placement). Snap-in should save the window placement and
restore the MDI child window to the same window placement in
NetWare Administrator.

Management Service Group

Snap-in: Messages 1121

NWA_MSG_MODIFY

Is sent by NetWare Administrator to the Snap-in when the user selects the
OK button from the MPEW after making modifications

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the selected object whose properties have been modified.

msg

Specifies NWA_MSG_MODIFY.

p1 and p2

Are currently not being used.

Return Values

NWA_MSG_SUCCESS

NWA_MSG_ERROR

Remarks

The Snap-in can save its page information page by page in the
NWA_WM_CANCLOSE message of the dialog or it can save all of its
page information at once with NWA_MSG_MODIFY.

If NWA_ERR_ERROR is returned, the Snap-in should display the
appropriate error message. NetWare Administrator will not close the
MPEW, allowing the user to rectify their error.

Management Service Group

Snap-in: Messages 1122

NWA_MSG_MPEWCLOSE

Is sent by NetWare Administrator to the Snap-in when the details window
(MPEW) is being closed

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the object name.

msg

Specifies

p1

Specifies the ID of the button pressed in the details window (IDOK or
IDCANCEL).

p2

Is currently not being used.

Return Values

NWA_RET_SUCCESS

Management Service Group

Snap-in: Messages 1123

NWA_MSG_MULTIOBJ_COUNT

Is sent to the NWASnapinObjectProc callback proc indicating the number
of objects selected in the browser to perform multiple object details

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the object name.

msg

Specifies NWA_MSG_MULTIOBJ_COUNT.

p1

Specifies the number of objects selected in the browser for multiple
object details.

p2

Is currently not being used.

Return Values

NWA_RET_SUCCESS

Remarks

Currently, Multiple Object Details is only implemented for user objects.

NWSnapinObjectProc will be sent a NWA_MSG_MULTIOBJ_NAME
message the number of times indicated by objCount with a complete DN
name of the selected object from NWA_MSG_MULTIOBJ_NAME.

Management Service Group

Snap-in: Messages 1124

NWA_MSG_MULTIOBJ_NAME

Is sent to the NWASnapinObjectProc callback proc with the complete DN
name of the selected object

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the object name.

msg

Specifies NWA_MSG_MULTIOBJ_NAME.

p1

Specifies the index of the object being selected.

p2

Specifies the complete DN name for the object selected for multiple
object details.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

The Snap-in should modify the object details in accordance with the
NWA_MSG_MULTIOBJ_NAME message.

See Also

NWA_MSG_MULTIOBJ_COUNT

Management Service Group

Snap-in: Messages 1125

NWA_MSG_MVED_INITCOUNT

Is the first message an MVED callback function receives indicating the
number of MVED values to initialize

Syntax

#include <nwsnapin.h>

MvedProc(nuint32 userParam, nuint16 uMsg, nparam p1, nparam p2);

Parameters

userParam

Specifies the user parameter.

uMsg

Specifies NWA_MSG_MVED_INITCOUNT.

p1

Specifies the count of values in MVED.

p2

Is not currently being used.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

The MvedProc callback function will receive the
MWA_MSG_MVED_INITVALUE as many times as indicated by the
count.

See Also

NWA_MSG_MVED_INITVALUE

Management Service Group

Snap-in: Messages 1126

NWA_MSG_MVED_INITVALUE

Is sent to the MVED callback function with an index of the MVED value
indicated by the p1 parameter

Syntax

#include <nwsnapin.h>

MvedProc(nuint32 userParam, nuint16 uMsg, nparam p1, nparam p2);

Parameters

userParam

Specifies the user parameter.

uMsg

Specifies NWA_MSG_MVED_INITVALUE.

p1

Is not currently being used.

p2

Specifies a buffer containing the MVED value.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

See Also

NWA_MSG_MVED_INITCOUNT

Management Service Group

Snap-in: Messages 1127

NWA_MSG_NOTIFYCREATEOBJECT

Is sent by NetWare Administrator once the object is created

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, nuint16 msg, nparam p1, nparam p2);

Parameters

name

Points to the selected copied object.

msg

Specifies NWA_MSG_NOTIFYCREATEOBJECT.

p1 and p2

Are currently not used.

Return Values

NWA_RET_SUCCESS

Management Service Group

Snap-in: Messages 1128

NWA_MSG_NOTIFYDELETE

NetWare Administrator sends this notification message to Snap-in when the
object is deleted

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, nuint16 msg, nparam p1, nparam p2);

Parameters

name

Points to the selected copied object.

msg

Specifies NWA_MSG_NOTIFYDELETE.

p1 and p2

Are not currently used.

Return Values

NWA_RET_SUCCESS

Management Service Group

Snap-in: Messages 1129

NWA_MSG_NOTIFYMOVE

NetWare Administrator sends this notification message to Snap-in when the
object is moved

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, nuint16 msg, nparam p1, nparam p2);

Parameters

name

Points to the selected copied object.

msg

Specifies NWA_MSG_NOTIFYMOVE.

p1

Specifies the source context string from where the object is moved.

p2

Specifies the destination context string to where the object is moved.

Return Values

NWA_RET_SUCCESS

Management Service Group

Snap-in: Messages 1130

NWA_MSG_NOTIFYRENAME

NetWare Administrator sends this notification message to Snap-in when the
object is renamed

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, nuint16 msg, nparam p1, nparam p2);

Parameters

name

Points to the selected copied object.

msg

Specifies NWA_MSG_NOTIFYRENAME.

p1

Specifies the complete distinguished old object name before it is
renamed.

p2

Is not currently being used.

Return Values

NWA_RET_SUCCESS

Management Service Group

Snap-in: Messages 1131

NWA_MSG_QUERYCOPY

Is sent by NetWare Administrator to the Snap-in when the user selects an
object that is supported by the Snap-in and then selects Copy from the
Object menu

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the selected object to be copied.

msg

Specifies NWA_MSG_QUERYCOPY.

p1 and p2

Are not currently being used.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

If the return value is NWA_RET_SUCCESS, NetWare Administrator will
copy the object.

If the return value is NWA_ERR_ERROR, NetWare Administrator will
not copy the object. A message dialog box should tell the user the reason
why the object cannot be copied.

Management Service Group

Snap-in: Messages 1132

NWA_MSG_QUERYDELETE

Is sent by NetWare Administrator to the Snap-in when the user selects an
object that is supported by the Snap-in and then selects Delete from the
Object menu

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the selected object to be deleted.

msg

Specifies NWA_MSG_QUERYDELETE.

p1 and p2

Are not currently being used.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

If the return value is NWA_ERR_ERROR, NetWare Administrator will
not delete the object. If NWA_RET_SUCCESS is returned, NetWare
Administrator will delete the object.

If the Snap-in returns NWA_ERR_ERROR, a message dialog box should
tell the user the reason why the object cannot be deleted.

Management Service Group

Snap-in: Messages 1133

NWA_MSG_QUERYMOVE

Is sent by NetWare Administrator to the Snap-in when the user selects an
object that is supported by the Snap-in and then selects Move from the
Object menu

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the selected object to be moved.

msg

Specifies NWA_MSG_QUERYMOVE.

p1

Specifies the destination container where the object is being moved.

p2

Is currently not being used.

Return Values

NWA_ERR_ERROR

NWA_RET_SUCCESS

Management Service Group

Snap-in: Messages 1134

NWA_MSG_REGISTERPAGE

Is sent by NetWare Administrator to the Snap-in “n” times, where “n” is the
number returned by the NWA_MSG_GETPAGECOUNT message

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the selected object.

msg

Specifies NWA_MSG_REGISTERPAGE.

p1

Specifies the number of the page to be registered.

p2

Specifies the NWAPageStruct structure which the Snap-in fills with its
page information.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

See Also

NWAPageStruct, NWA_MSG_GETPAGECOUNT

Management Service Group

Snap-in: Messages 1135

NWA_MSG_RENAME

Is sent by NetWare Administrator to the Snap-in when a user selects the
object supported by the Snap-in and then selects Rename from the Object
menu

Syntax

#include <nwsnapin.h>

SnapinObjectProc(char* name, UINT msg, unsigned long p1, unsigned long p2);

Parameters

name

Points to the selected object.

msg

Specifies NWA_MSG_RENAME.

p1

Specifies a buffer to hold the new name.

p2

Is currently not being used.

Return Values

NWA_ERR_ERROR

NWA_RET_SUCCESS

NWA_RET_DODEFAULT

Remarks

A Snap-in can use its own rename dialog and complete the rename
operation, or it can request NetWare Administrator to use its default
rename operation.

After renaming the object, the Snap-in should return
NWA_RET_SUCCESS. The Snap-in should copy the new name into the
buffer pointed to by the p1.

To use the NetWare Administrator renaming method, the Snap-in should
return NWA_RET_DODEFAULT.

Management Service Group

Snap-in: Messages 1136

NWA_MSG_STATUSBAR_ADDITEM

Is sent to the NetWare Administrator main window after it sends a
NWA_MSG_STATUSBAR_POPULATE message to the top MDI child
window

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

wParam = 0;
lParam = (LPARAM)pStatusBarItem;

Parameters

wParam

Is currently not being used; must be zero.

lParam

Points to the NWAStatusBarItemStruct structure containing the data
required to add an item to the status bar.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

If the item was successfully added to the status bar,
NWA_RET_SUCCESS will be returned by the
NWA_MSG_STATUSBAR_ADDITEM message.

The items will appear on the status bar in the order they are added. The
items should be added to the status bar in the order indicated by the
values returned by the NWA_MSG_STATUSBAR_NEWACTIVEITEMS
message.

If an item is added whose itemId matches a previous items itemId, the
previous item will be removed from the status bar. In general, the last
item to be added to the status bar with a duplicate itemId will be added to
the status bar while the previous item with a matching itemId will be
deleted from the status bar.

See Also

Management Service Group

Snap-in: Messages 1137

NWAStatusBarItemStruct

Management Service Group

Snap-in: Messages 1138

NWA_MSG_STATUSBAR_ADDPREFITEM

Is sent to the MDI child window by the NetWare Administrator main
window according to the number returned by the
NWA_MSG_STATUSBAR_QUERYITEMCOUNT message

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

nPrefCnt = (nuint16)wParam;
ptbPrefItem = (NWAStatusBarPrefItemStruct *)lParam;

Parameters

nPrefCnt

Specifies the sequence number of the preference items.

ptbPrefItem

Points to the NWAStatusBarPrefItemStruct structure containing the
data necessary to display an item in the status bar preferences dialog
box.

Remarks

The items will appear in the status bar preference dialog box in the order
they are added.

The MDI child window fills in the NWAStatusBarPrefItemStruct
structure.

The results will be displayed in the status bar preferences dialog box
which allows you to select which status bar items will be visible in the
status bar.

Management Service Group

Snap-in: Messages 1139

NWA_MSG_STATUSBAR_DBLCLK

Is sent to an MDI child window when the user double-clicks the left mouse
button over a field in the status bar

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

itemId = (nint)wParam;
pszText = (pnstr8)lParam;

Parameters

itemId

Specifies the unique identifier of the field in the status bar.

pszText

Points to the text contained in the status bar field indicated by the
itemId parameter.

Remarks

The NWA_MSG_STATUSBAR_DBLCLK message gives the MDI child
window the opportunity to launch a dialog box or take another action
depending on which field was selected.

The itemId parameter corresponds to the itemId structure field in the
NWAStatusBarItemStruct structure.

If the status bar field is empty, the pszText parameter will be NULL.

Management Service Group

Snap-in: Messages 1140

NWA_MSG_STATUSBAR_NEWACTIVEITEMS

Is sent to a view by the NetWare Administrator main window when a user
has pressed the OK button in the status bar preferences dialog box

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

nCount = (nuint16)wParam;
pnArray = (pnint)lParam;

Parameters

nCount

Specifies the number of active items selected by the user.

pnArray

Points to an array of nCount integers. If the nCount parameter is set to
zero (0), pnArray will be NULL.

Remarks

The NWA_MSG_STATUSBAR_NEWACTIVEITEMS message indicates
the user's status bar preferences have changed.

Each integer value in the array pointed to by pnArray is the unique
identifier of an item that should be active in the status bar. The order of
the items in the array indicates the preferred order of items in the views
portion of the status bar.

Before the NetWare Administrator main window sends a
NWA_MSG_STATUSBAR_NEWACTIVEITEMS message to the view, it
will depopulate the status bar. After the NetWare Administrator main
window handles the NWA_MSG_STATUSBAR_NEWACTIVEITEMS
message, the view will receive a NWA_MSG_STATUSBAR_POPULATE
message.

The view is responsible for saving and restoring its own preferences.

See Also

NWA_MSG_STATUSBAR_QUERYACTIVECOUNT,
NWA_MSG_STATUSBAR_QUERYACTIVEITEMS

Management Service Group

Snap-in: Messages 1141

NWA_MSG_STATUSBAR_POPULATE

Is sent to the top MDI child window after the NetWare Administrator main
window has handled a NWA_MSG_IVEGOTFOCUS message

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

hwndMain = (HWND)wParam;

Parameters

hwndMain

Specifies the window handle which identifies the NetWare
Administrator main window that received the
NWA_MSG_IVEGOTFOCUS message and sent the
NWA_MSG_STATUSBAR_POPULATE message (value of wParam).

Remarks

When a window receives the NWA_MSG_STATUSBAR_POPULATE
message, it can respond by sending a
NWA_MSG_STATUSBAR_ADDITEM message to the hwndMain
parameter.

See Also

NWA_MSG_TOOLBAR_POPULATE

Management Service Group

Snap-in: Messages 1142

NWA_MSG_STATUSBAR_QUERYACTIVECOUNT

Is sent to an MDI child window when the user opens the status bar
preferences dialog box

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

Return Values

The view should return the number of active items in the status bar.

Remarks

The view should return the number of active items in the status bar.

The MDI child window responds to the
NWA_MSG_STATUSBAR_QUERYACTIVECOUNT message by
returning the number of items that will be in the active item list in the
status bar preferences dialog box.

The dialog box allows the user to determine which items will actually be
visible in the status bar and each items placement within the status bar.

If the MDI child window returns a value greater than zero, the NetWare
Administrator main window will respond by sending the
NWA_MSG_STATUSBAR_QUERYACTIVEITEMS message. The
NWA_MSG_STATUSBAR_QUERYACTIVEITEMS message will provide
the address of an array of integers whose size corresponds to the value
returned by the NWA_MSG_STATUSBAR_QUERYACTIVECOUNT
message.

See Also

NWA_MSG_STATUSBAR_NEWACTIVEITEMS,
NWA_MSG_STATUSBAR_QUERYACTIVEITEMS

Management Service Group

Snap-in: Messages 1143

NWA_MSG_STATUSBAR_QUERYACTIVEITEMS

Is sent to an MDI child window when the user opens the status bar
preferences dialog box and has responded to a
NWA_MSG_STATUSBAR_QUERYACTIVECOUNT message

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

nCount = (nuint16)wParam;
pnArray = (pnint)lParam;

Parameters

nCount

Specifies the number of items contained in the array specified by the
pnArray parameter.

pnArray

Specifies an array of integers to be filled.

Remarks

nCount corresponds to the value the MDI child window returned in the
NWA_MSG_STATUSBAR_QUERYACTIVECOUNT message.

The MDI child window should fill each element of the array in the
NWA_MSG_STATUSBAR_NEWACTIVEITEMS message with a unique
identifier for each status bar item added upon receiving the
NWA_MSG_STATUSBAR_ADDPREFITEM message. The elements in
the array should be filled in the order they are found on the status bar.

See Also

NWA_MSG_STATUSBAR_NEWACTIVEITEMS,
NWA_MSG_STATUSBAR_QUERYACTIVECOUNT

Management Service Group

Snap-in: Messages 1144

NWA_MSG_STATUSBAR_QUERYITEMCOUNT

Is sent to an MDI child window when the user opens the status bar
preferences dialog box

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

Return Values

The view should return the count of status bar items.

Remarks

The MDI child window responds to the
NWA_MSG_STATUSBAR_QUERYITEMCOUNT message by returning
the number of items to be added to the status bar preferences dialog box.
If the MDI child window returns a value greater than zero, the NetWare
Administrator main window will respond by sending the indicated
number of NWA_MSG_STATUSBAR_ADDPREFITEM messages back to
the MDI child window.

The dialog box allows the user to determine which items will actually be
visible in the status bar.

See Also

NWA_MSG_STATUSBAR_ADDPREFITEM

Management Service Group

Snap-in: Messages 1145

NWA_MSG_STATUSBAR_SETITEMTEXT

Replaces the text in a previously defined status bar text field with the
contents of the pszText parameter

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

wParam = (WPARAM)itemId;
lParam = (LPARAM)pszText;

Parameters

wParam

Specifies the unique identifier of the text field to be replaced.

lParam

Points to the NULL-terminated string to replace the contents of the text
field in the status bar.

Remarks

The itemId parameter corresponds to the itemId parameter of the
NWAStatusBarItemStruct structure passed in the lParam parameter of the
NWA_MSG_STATUSBAR_ADDITEM message.

Management Service Group

Snap-in: Messages 1146

NWA_MSG_TOOLBAR_ADDITEM

Is sent to the top MDI child window after it sends a
NWA_MSG_TOOLBAR_POPULATE message to the NetWare
Administrator main window

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

wParam = (WPARAM)hwndView;
lParam = (LPARAM)pToolBarItem;

Parameters

hwndView

Specifies the window handle of the view.

pToolBarItem

Points to the NWAToolBarItemStruct structure containing the data
required to add a button or spacer to the toolbar.

Return Values

NWA_RET_SUCCESS

NWA_ERR_ERROR

Remarks

To insert a separator to the toolbar, pToolBarItem must be set to
TDIB_SEPARATOR rather than the address of the
NWAToolBarItemStruct structure.

If the item was successfully added to the toolbar, NWA_RET_SUCCESS
will be returned by the NWA_MSG_TOOLBAR_ADDITEM message;
otherwise, NWA_ERR_ERROR will be returned.

The items will appear on the toolbar in the order they are added. The
items should be added in the order indicated by the values returned by
the NWA_MSG_TOOLBAR_NEWACTIVEITEMS message.

If an item is added whose menuId matches a previous items menuId, the
previous item will be removed from the status bar. In general, the last
item to be added to the status bar with a duplicate menuId will be added
to the status bar while the previous item with a matching menuId will be
deleted from the status bar.

Management Service Group

Snap-in: Messages 1147

See Also

NWA_MSG_TOOLBAR_NEWACTIVEITEMS

Management Service Group

Snap-in: Messages 1148

NWA_MSG_TOOLBAR_ADDPREFITEM

Is sent by the NetWare Administrator main window to the view window
according to the number returned by the
NWA_MSG_TOOLBAR_QUERYITEMCOUNT message

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

nPrefCnt = (nuint16)wParam;
ptbPrefItem = (NWAToolBarPrefItemStruct*)lParam;

Parameters

nPrefCnt

Specifies the sequence number of the preference items.

ptbPrefItem

Points to the NWAToolBarPrefItemStruct structure containing the data
necessary to display an item in the toolbar preferences dialog box.

Remarks

The view window will fill in the NWAToolBarPrefItemStruct structure.

The results will be displayed in the toolbar preferences dialog box which
allows you to select which toolbar items will be visible in the toolbar.

The items will appear in the toolbar preference dialog box in the order
they are added.

Management Service Group

Snap-in: Messages 1149

NWA_MSG_TOOLBAR_GETBUTTONSTATE

Is sent from an MDI child window to the NetWare Administrator main
window to determine the state of the button corresponding to the button ID
passed in menuId

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

wParam = (WPARAM)menuId;
lParam = 0;

Parameters

menuId

Specifies the unique identifier of the toolbar button (corresponds to the
menuId structure field of the NWAToolBarItemStruct structure.

Return Values

NWA_MSG_TOOLBAR_GETBUTTONSTATE returns the state of the
button (TBUp, TBDown, or TBIndeterminate).

Management Service Group

Snap-in: Messages 1150

NWA_MSG_TOOLBAR_GETBUTTONTYPE

Is sent by a view to the NetWare Administrator main window to determine
what type of button corresponds to the button ID passed in menuId

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

wParam = (WPARAM)menuId;
lParam = 0;

Parameters

menuId

Specifies the unique identifier of the toolbar button (corresponds to the
menuId structure field of the NWAToolBarItemStruct structure.

lParam

Is not currently being used; must be zero.

Return Values

NWA_MSG_TOOLBAR_GETBUTTONTYPE returns the button type
(TBCommand, TBToggle, or TBUnknown).

Management Service Group

Snap-in: Messages 1151

NWA_MSG_TOOLBAR_NEWACTIVEITEMS

Is sent from the NetWare Administrator main window to a view when the
user has pressed OK in the toolbar preferences dialog box

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

nCount = (nuint16)wParam;
pnArray = (pnint)lParam;

Parameters

nCount

Specifies the number of active items selected by the user.

pnArray

Points to an array of nCount integers. If the value of is zero, the pnArray
parameter will be NULL.

Remarks

The NWA_MSG_TOOLBAR_NEWACTIVEITEMS message indicates the
user's toolbar preferences have changed.

Each integer value in the array pointed to by thepnArray parameter is the
menuId of an item that should be active in the toolbar. If the value is
TBID_SEPARATOR, a separator should be added to the toolbar.

The order of the items in the array pointed to by the pnArray parameter
indicates the preferred order of items in the views portion of the toolbar.

Before the NetWare Administrator main window sends a
NWA_MSG_TOOLBAR_NEWACTIVEITEMS message to the view, it
will depopulate the toolbar. After NetWare Administrator handles the
NWA_MSG_TOOLBAR_NEWACTIVEITEMS message, the view will
receive a NWA_MSG_TOOLBAR_POPULATE message.

The view is responsible for saving and restoring its own preferences.

See Also

NWA_MSG_TOOLBAR_QUERYACTIVECOUNT,
NWA_MSG_TOOLBAR_QUERYACTIVEITEMS

Management Service Group

Snap-in: Messages 1152

NWA_MSG_TOOLBAR_POPULATE

Is sent to the top MDI child window each time the toolbar is created

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

hwndMain = (HWND) wParam;

Parameters

hwndMain

Specifies the NetWare Administrator main window sending the
NWA_MSG_TOOLBAR_POPULATE message (value of the wParam
parameter.

Remarks

When a window receives the NWA_MSG_TOOLBAR_POPULATE
message, it can respond by sending a
NWA_MSG_TOOLBAR_ADDITEM message to hwndMain.

Management Service Group

Snap-in: Messages 1153

NWA_MSG_TOOLBAR_QUERYACTIVECOUNT

Is sent to an MDI child window when the user opens the toolbar preferences
dialog box

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

Remarks

The MDI child window responds to the
NWA_MSG_TOOLBAR_QUERYACTIVECOUNT message by returning
the number of items that will be in the active items list in the toolbar
pereferences dialog box.

If the MDI child window returns a value greater than zero, the NetWare
Administrator main window will respond by sending a
NWA_MSG_TOOLBAR_QUERYACTIVEITEMS message. The
NWA_MSG_TOOLBAR_QUERYACTIVEITEMS message will provide
the address of any array of integers whose size corresponds to the value
returned by the NWA_MSG_TOOLBAR_QUERYACTIVECOUNT
message.

The dialog box allows the user to determine which items will be visible in
the toolbar.

See Also

NWA_MSG_TOOLBAR_NEWACTIVEITEMS,
NWA_MSG_TOOLBAR_QUERYACTIVEITEMS

Management Service Group

Snap-in: Messages 1154

NWA_MSG_TOOLBAR_QUERYACTIVEITEMS

Is sent to a view when the user opens the toolbar preferences dialog box and
after the view responds to a
NWA_MSG_TOOLBAR_QUERYACTIVECOUNT message

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

nCount = (nuint16)wParam;
pnArray = (pnint)lParam;

Parameters

nCount

Specifies the number of active items to be displayed in the toolbar
preferences dialog box.

pnArray

Points to an array of nCount integers (which correspond to the menu
ID of a button).

Remarks

The number specified by the nCount parameter corresponds to the value
the view returned in the
NWA_MSG_TOOLBAR_QUERYACTIVECOUNT message.

The view should fill each element of the array pointed to by the pnArray
parameter with the number specified by the menuId parameter of the
active toolbar item. The elements should be filled in the order they are
found on the toolbar.

TDIB_SEPARATOR can be used to indicate the presence of a separator
on the toolbar.

See Also

NWA_MSG_TOOLBAR_NEWACTIVEITEMS,
NWA_MSG_TOOLBAR_QUERYACTIVECOUNT

Management Service Group

Snap-in: Messages 1155

NWA_MSG_TOOLBAR_QUERYENABLEBUTTON

Is sent to an MDI child window when the NetWare Administrator main
window wants to know if a toolbar item should be enabled or disabled
(grayed out)

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

nMenuId = (nint)wParam;

Parameters

nMenuId

Specifies the menuId corresponding to the toolbar button.

Return Values

N_TRUE

N_FALSE

Remarks

The NWA_MSG_TOOLBAR_QUERYENABLEBUTTON message will
return N_TRUE if the button should be enabled; otherwise it will return
N_FALSE.

Management Service Group

Snap-in: Messages 1156

NWA_MSG_TOOLBAR_QUERYITEMCOUNT

Is sent to an MDI child window when the user opens the toolbar preferences
dialog box

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

Return Values

The MDI child window should return the number of items to be added to
the toolbar preferences dialog box.

Remarks

The MDI child window responds to the
NWA_MSG_TOOLBAR_QUERYITEMCOUNT message by returning the
number of items it will add to the toolbar preferences dialog box. If the
MDI child window returns a value greater than zero, the NetWare
Administrator main window will respond by sending the indicated
number of NWA_MSG_TOOLBAR_ADDPREFITEM messages back to
the MDI child window.

The dialog box allows the user to determine which items will be visible in
the toolbar.

See Also

NWA_MSG_TOOLBAR_ADDPREFITEM

Management Service Group

Snap-in: Messages 1157

NWA_MSG_TOOLBAR_SETBUTTONSTATE

Is sent by an MDI child window to the NetWare Administrator main
window to set the state of the button corresponding to the button ID passed
in the wParam parameter

Platform: Windows 3.1

Service: Snap-in

Syntax

#include <nwsnapin.h>

wParam = (WPARAM)menuId;
lParam = (LPARAM)buttonState;

Parameters

menuId

Specifies the unique identifier of the toolbar button.

buttonState

Specifies the desired state of the button (TBUp, TBDown, or
TBIndeterminate).

Remarks

The menuId parameter corresponds to the menuId structure field of the
NWAToolBarItemStruct structure.

See Also

NWA_MSG_TOOLBAR_GETBUTTONSTATE

Management Service Group

Snap-in: Messages 1158

NWA_WM_CANCLOSE

Receives this message when OK is selected and is the dialog procedure for a
page dialog in a MPEW

Syntax

#include <nwsnapin.h>

DialogProc(HWND hdlg, UINT msg, WPARAM wParam, LPARAM lParam);

Parameters

hdlg

Specifies the handle of the dialog box.

msg

Specifies NWA_WM_CANCLOSE.

p1 and p2

Are not currently being used.

Return Values

TRUE

FALSE

Remarks

If TRUE is returned, the MPEW window will close. If FALSE is returned,
the MPEW window will not close.

Management Service Group

Snap-in: Messages 1159

NWA_WM_F1HELP

Receives this message when F1 (Help) is selected and is the dialog
procedure for a page dialog in MPEW

Syntax

#include <nwsnapin.h>

DialogProc(HWND hdlg, UINT msg, WPARAM wParam, LPARAM lParam);

Parameters

hdlg

Specifies the handle of the dialog box.

msg

Specifies NWA_WM_F1HELP.

p1 and p2

Are not currently being used.

Management Service Group

Snap-in: Messages 1160

NWA_WM_SETPAGEMODIFY

Should be set to the page dialog window to indicate the page dialog
information has changed

Syntax

#include <nwsnapin.h>

DialogProc(HWND hdlg, UINT msg, WPARAM wParam, LPARAM lParam);

Parameters

hdlg

Specifies the handle of the dialog box.

msg

Specifies NWA_WM_SETPAGEMODIFY.

p1 and p2

Are not currently being used.

Remarks

If TRUE is sent in the low high-order word of the 1Param parameter of
the SendMessage function, the page has been modified.

If FALSE is sent, it has not been modified.

Management Service Group

Snap-in: Messages 1161

Time/Date Manipulation

Management Service Group

 1162

Time/Date Manipulation: Functions

Management Service Group

Time/Date Manipulation: Functions 1163

asctime, asctime_r

Converts the time information into a string

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Time/Date Manipulation

Syntax

#include <time.h>

char *asctime (
 const struct tm *timeptr);

#include <time.h>

char *asctime_r (
 const struct tm *timeptr,
 char *string);

Parameters

timeptr

(IN) Specifies the structure containing the time information to convert.

string

(OUT) The converted string.

Return Values

Return a pointer to the character string result.

Remarks

asctime and asctime_r convert the time information in the structure
pointed to by timeptr into a string containing exactly 26 characters.

This string has the form shown in the following example:

 Wed Mar 21 15:58:27 1990\n\0

All fields have a constant width. The newline character \n and the NULL
character (\0) occupy the last two positions of the string. The area
containing the returned string is reused each time asctime is called.

acetime has the same function as acetime_r, except that acetime_r

Management Service Group

Time/Date Manipulation: Functions 1164

requires the caller to pass storage for the results rather than relying on a
global variable to store the results. asctime_r is supported only in CLIB V
4.11 or above.

See Also

clock, ctime, ctime_r, difftime, gmtime, gmtime_r, localtime, localtime_r
, mktime, strftime, time

Example

asctime

#include <stdio.h>
#include <time.h>

main ()
{
 struct tm *time_of_day;
 time_t ltime;
 time (<ime);
 time_of_day = localtime (<ime);
 printf ("Date and time is: %s.Get to work.", asctime (time_of day));
}

produces the following:

Date and time is: Wed Mar 21 15:58:27 1990
.Get to work.

Management Service Group

Time/Date Manipulation: Functions 1165

clock

Returns the number of hundredths of seconds since the NLM™ application
began executing

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Time/Date Manipulation

Syntax

#include <time.h>

clock_t clock (void);

Return Values

The number of hundredths of seconds is returned encoded into type
clock_t.

Remarks

It is often important to run benchmarks or measure the time it takes for a
process to execute. The following example shows how to call clock to
time a process down to 1/100 of a second. In the example, assume that
CLK_TCK is a constant equal to 100.

asctime_r requires the user to pass storage for the function result, rather
than relying on a global variable for the result as in asctime.

See Also

time

Management Service Group

Time/Date Manipulation: Functions 1166

_ConvertDOSTimeToCalendar

Converts DOS-style date and time to calendar time

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: Yes

Service: Time/Date Manipulation

Syntax

#include <nwtime.h>

time_t _ConvertDOSTimeToCalendar (
 LONG dateTime);

Parameters

dateTime

(IN) Specifies the DOS-style date and time to be converted.

Return Values

Returns the calendar time.

Remarks

_ConvertDOSTimeToCalendar converts DOS-style date and time used
in directory entries (used in the DIR structure) to calendar time.

The standard DOS date and time format is as follows:

Calendar time represents the time in seconds since January 1, 1970
(UTC).

See Calendar program: Example.

See Also

_ConvertTimeToDOS

Management Service Group

Time/Date Manipulation: Functions 1167

_ConvertTimeToDOS

Converts calendar time to DOS-style date and time

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: Yes

Service: Time/Date Manipulation

Syntax

#include <nwdos.h>

void _ConvertTimeToDOS (
 time_t calendarTime,
 struct _DOSDate *fileDate,
 struct _DOSTime *fileTime);

Parameters

calendarTime

(IN) Specifies the calendar time to be converted to DOS-style date and
time.

fileDate

(OUT) Specifies the DOS-style date.

fileTime

(OUT) Specifies the DOS-style time.

Return Values

None

Remarks

This function converts calendar time to DOS-style date and time used in
directory entries (used in the DIR structure).

The standard DOS date and time format is as follows:

Calendar time represents the time in seconds since January 1, 1970
(UTC).

See Also

Management Service Group

Time/Date Manipulation: Functions 1168

_ConvertDOSTimeToCalendar

Management Service Group

Time/Date Manipulation: Functions 1169

ctime, ctime_r

Converts the calendar time to local time in the form of a string

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Time/Date Manipulation

Syntax

#include <time.h>

char *ctime (
 const time_t *timer);

#include <time.h>

char *ctime_r (
 const time_t *timer,
 char *string);

Parameters

timer

(IN) Specifies the calendar time to convert to local time.

string

(OUT) The converted string.

Return Values

Returns the pointer to the string containing the local time.

Remarks

ctime, ctime_r converts the calendar time information in the timer
structure into a local-time string containing 26 characters.

The string has the form shown in the following example:

 Wed Mar 21 15:58:27 1990\n\0

The string is equivalent to:

 asctime (localtime (timer))

All fields have a constant width. The newline character (\n) and the

Management Service Group

Time/Date Manipulation: Functions 1170

NULL character (\0) occupy the last two positions of the string. The area
containing the returned string is reused each time ctime, ctime_r is
called.

ctime_r requires the caller to pass storage for the results rather than
relying on a global variable to store the results. ctime_r is supported only
in CLIB V 4.11 or above.

See Also

asctime, asctime_r, clock, difftime, gmtime, gmtime_r, localtime,
localtime_r, mktime, strftime, time

Example

ctime

#include <stdio.h>
#include <time.h>

void print_time ()
{
 time_t time_of_day;
 time_of_day = time (NULL);
 printf ("It is now: %s.Get to work.\n", ctime (&time_of_day));
}

produces the following:

It is now: Tue Dec 25 15:58:42 1990
.Get to work.

Management Service Group

Time/Date Manipulation: Functions 1171

GetClockStatus

Returns the time-of-day clock and status register

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: Yes

Service: Time/Date Manipulation

Syntax

#include <time.h>

void GetClockStatus (
 clockAndStatus *dataPtr);

Parameters

dataPtr

(OUT) Receives the clock registers and status.

Return Values

None

Remarks

GetClockStatus succeeds whether or not time synchronization services
are active. You must examine the status register to determine whether the
time synchronization services are active and whether the clock is actually
synchronized. There are three masks which can be used to determine the
status of the clock.

CLOCK_SYNCHRONIZATION_IS_ACTIVE implies that the time
synchronization NLM is loaded and active. If clock synchronization is not
active, then the default state is to set CLOCK_IS_SYNCHRONIZED and
clear CLOCK_IS_NETWORK_SYNCHRONIZED. If clock
synchronization is not active, then the other status bits have no meaning.
However, accepting the default state of CLOCK_IS_SYNCHRONIZED
and taking precautions to prevent the exchange of time dependent
information with other servers on the network might be acceptable to
many applications.

CLOCK_IS_NETWORK_SYNCHRONIZED implies that the clock can be
used for network timestamps when CLOCK_IS_SYNCHRONIZED is
also true. If CLOCK_IS_NETWORK_SYNCHRONIZED is not set, then
time synchronization is inactive or the server has become isolated from

Management Service Group

Time/Date Manipulation: Functions 1172

other servers on the network. In this case, any timestamp derived from
the current clock should not be used to coordinate events with other
servers.

CLOCK_IS_SYNCHRONIZED implies that the time can safely be used
for timestamps for operations only on the local server. When
CLOCK_IS_NETWORK_SYNCHRONIZED is also set, then timestamps
can be used to coordinate events with other servers that are synchronized
to network time.

The parameter type clockAndStatus is defined as

typedef LONG clockAndStatus[3];

fields of the data are:

dataPtr
[0]

whole seconds

dataPtr
[1]

fractional seconds

dataPtr
[2]

status bits

Together the whole and fractional seconds fields can be interpreted as a
64-bit binary number with a binary point separating the two fields.
During each clock interrupt the fractional portion is incremented by a
value determined from the basic clock interrupt frequency of the host
machine and by a value supplied by time synchronization services to
account for drift between different clocks on the network. Attempts to use
the fractional seconds as a high precision timer fail because the implied
precision far exceeds the actual precision of any known hardware clock
and the increment values are not guaranteed to be uniform.

The whole seconds field represents the time (in seconds) since January 1,
1970, and is reported as Universal Coordinated Time (previously known
as GMT or Greenwich Mean Time) rather than local time. This format is
compatible with that returned by the ANSI time function.

Management Service Group

Time/Date Manipulation: Functions 1173

GetCurrentTicks

Returns the current server up-time

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: Time/Date Manipulation

Syntax

#include <nwstring.h>

LONG GetCurrentTicks (void);

Return Values

Returns the current server up-time in ticks (approximately eighteenths of
a second).

See Also

clock, time

Example

GetCurrentTicks

#Include <nwstring.h>

LONG serverUpTime;
serverUpTime = GetCurrentTicks ();

Management Service Group

Time/Date Manipulation: Functions 1174

gmtime, gmtime_r

Converts calendar time into Coordinated Universal Time (UTC)

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Time/Date Manipulation

Syntax

#include <time.h>

struct tm *gmtime (
 const time_t *timer);

#include <time.h>

struct tm *gmtime_r (
 const time_t *timer,
 struct tm *timeP);

Parameters

timer

(IN) Specifies the calendar time to convert to UTC.

timeP

(OUT) Pointer to the converted string.

Return Values

Returns a pointer to a structure containing the broken-down time.

Remarks

gmtime, gmtime_r converts the calendar time pointed to by the timer
parameter into a broken-down time, expressed as UTC.

Use the NetWare® console command SET TIME to set the date and time
kept by the server. Refer to the NetWare 386 System Administration manual
for more information on this command.

The structure returned is reused every time that gmtime, gmtime_r is
called.

gmtime_r requires the caller to pass storage for the results rather than
relying on a global variable to store the results. gmtime_r is supported

Management Service Group

Time/Date Manipulation: Functions 1175

only in CLIB V 4.11 or above.

See Also

asctime, asctime_r, clock, ctime, ctime_r, difftime, localtime, localtime_r,
mktime, strftime, time

Management Service Group

Time/Date Manipulation: Functions 1176

localtime, localtime_r

Converts calendar time to local time

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Time/Date Manipulation

Syntax

#include <time.h>

struct tm *localtime (
 const time_t *timer);

#include <time.h>

struct tm *localtime_r (
 const time_t *timer,
 struct tm *timeP);

Parameters

timer

(IN) Specifies the calendar time to convert into the tm structure.

timeP

(OUT) Pointer to the converted string.

Return Values

Returns a pointer to the tm structure containing the time information.

Remarks

localtime, localtime_r converts the calendar time pointed to by the timer
parameter into a structure of time information expressed as local time.

The calendar time (Coordinated Universal Time) is usually obtained by
calling the time function.

Use the NetWare console command SET TIME to set the date and time
kept by the server. Refer to the NetWare 386 System Administration manual
for more information on this command.

The structure returned is reused every time that localtime is called.

Management Service Group

Time/Date Manipulation: Functions 1177

localtime_r requires the caller to pass storage for the results rather than
relying on a global variable to store the results. localtime_r is supported
only in CLIB V 4.11 or above.

See Also

asctime, asctime_r, clock, ctime, ctime_r, difftime, gmtime, gmtime_r,
mktime, strftime, time

Example

localtime

#include <stdio.h>
#include <time.h>

void print_time ()
{
 time_t time_of_day;
 time_of_day = time (NULL);
 printf ("It is now: %s.Get to work.",asctime (localtime (&time_of_day)));
}

produces the following:

It is now: Wed Mar 21 15:58:27 1990
.Get to work.

Management Service Group

Time/Date Manipulation: Functions 1178

mktime

Converts the time information in a structure into calendar time

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Time/Date Manipulation

Syntax

#include <time.h>

time_t mktime (
 struct tm *timeptr);

Parameters

timeptr

(IN) Specifies the structure containing the time information to convert.

Return Values

Returns the converted calendar time. On error, -1 will be returned cast as
type (time_t). To test for an error condition, compare the return value to
(time_t) -1.

Remarks

mktime converts the time information in the structure pointed to by the
timeptr parameter into a calendar time with the same encoding used by
the time function.

The original values of the tm_sec, tm_min, tm_hour, tm_mday, and tm_mon
fields are not restricted to ranges described for the tm structure. If these
fields are not in their proper ranges, they are adjusted so that they are in
the proper ranges. Values for the tm_wday and tm_yday fields are
computed after all the other fields have been adjusted.

See Also

asctime, asctime_r, clock, ctime, ctime_r, difftime, gmtime, gmtime_r,
localtime, localtime_r, strftime, time

Example

Management Service Group

Time/Date Manipulation: Functions 1179

mktime

#include <stdio.h>
#include <time.h>

static const char *week_day[] =
{
 "Sunday", "Monday", "Tuesday", "Wednesday",
 "Thursday", "Friday", "Saturday"
};

main ()
{
 struct tm new_year;
 new_year.tm_year = 2001 - 1900;
 new_year.tm_mon = 0;
 new_year.tm_mday = 1;
 new_year.tm_hour = 0;
 new_year.tm_min = 0;
 new_year.tm_sec = 0;
 new_year.tm_isdst = 0;
 mktime (&new_year);
 printf ("The next century begins on a %s\n",
 week_day [new_year.tm_wday]);
}

produces the following:

The next century begins on a Monday

Management Service Group

Time/Date Manipulation: Functions 1180

NWPackDateTime

Packs a date and time into an nuint32

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Time/Date Manipulation

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

nuint32 N_API NWPackDateTime (
 NW_DATE N_FAR *sDate,
 NW_TIME N_FAR *sTime);

Pascal Syntax

#include <nwmisc.inc>

Procedure NWPackDateTime
 (Var sDate : NW_DATE;
 Var sTime : NW_TIME
) : nuint32;

Parameters

 sDate

(IN) Points to the NW_DATE structure (optional).

sTime

(IN) Points to the NW_TIME structure (optional).

Return Values

Returns the packed date and time upon successful completion.

Remarks

NWPackDateTime returns the packed date and time. If a parameter is
NULL, the associated bits will be set to zero.

Many functions return dates in a packed format identical to that defined
by DOS. Time occupies the low order word and date occupies the high
order word. The bits are defined as follows:

Management Service Group

Time/Date Manipulation: Functions 1181

0-4 seconds divided by two
5-10 minutes
11-15 hours (0-23)
16-20 day
21-24 month
25-31 year minus 1980

NWPackDateTime does no validity checking on the passed information.
The programmer should ensure dates and/or times in the associated
structures are valid before passing them to NWPackDateTime.

NCP Calls

None

See Also

NWUnpackDateTime

Management Service Group

Time/Date Manipulation: Functions 1182

NWUnpackDateTime

Unpacks a packed date and time into the passed structures

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Time/Date Manipulation

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

void N_API NWUnpackDateTime (
 nuint32 dateTime,
 NW_DATE N_FAR *sDate,
 NW_TIME N_FAR *sTime);

Pascal Syntax

#include <nwmisc.inc>

Procedure NWUnpackDateTime
 (dateTime : nuint32;
 Var sDate : NW_DATE;
 Var sTime : NW_TIME
);

Parameters

dateTime

(IN) Specifies the date and time in packed format.

sDate

(OUT) Points to the NW_DATE structure (optional).

sTime

(OUT) Points to the NW_TIME structure (optional).

Return Values

None

Remarks

Many functions return dates in a packed format identical to that defined
by DOS. The time occupies the low order word and the date occupies the

Management Service Group

Time/Date Manipulation: Functions 1183

high order word. The bits are defined as follows:

0-4 Seconds divided by two
5-10 Minutes
11-15 Hours (0-23)
16-20 Day
21-24 Month
25-31 Year minus 1980

NCP Calls

None

See Also

NWPackDateTime

Management Service Group

Time/Date Manipulation: Functions 1184

SecondsToTicks

Converts seconds to clock ticks

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: Yes

Service: Time/Date Manipulation

Syntax

#include <nwstring.h>

void SecondsToTicks (
 LONG seconds,
 LONG tenthsOfSeconds,
 LONG *ticks);

Parameters

seconds

(IN) Specifies the number of seconds to convert.

tenthsOfSeconds

(IN) Specifies the tenths of seconds to convert.

ticks

(OUT) Receives the equivalent number of clock ticks.

Return Values

None.

Remarks

To convert clock ticks back to seconds, call the TicksToSeconds function.

One IBM* PC clock tick is approximately 1/18 second. (Eighteen [18.21]
clock ticks equal approximately 1 second.)

See Also

TicksToSeconds

Management Service Group

Time/Date Manipulation: Functions 1185

strftime

Formats the time into an array under format control

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: No

Service: Time/Date Manipulation

Syntax

#include <time.h>

size_t strftime (
 char *s,
 size_t maxsize,
 const char *format,
 const struct tm *timeptr);

Parameters

s

(IN) Specifies a character array.

maxsize

(IN) Specifies the maximum number of characters that can be placed
in the array.

format

(IN) Specifies the format control string.

timeptr

(IN) Specifies the time argument.

Return Values

If the number of characters to be placed into the array is less than the
value specified by the maxsize parameter, the number of characters
placed into the array pointed to by the s parameter (not including the
terminating NULL character) will be returned. Otherwise, a value of 0 is
returned. If an error occurs, errno is set.

Remarks

strftime formats the time in the timeptr parameter into the array pointed
to by the s parameter according to the format parameter.

Management Service Group

Time/Date Manipulation: Functions 1186

The format parameter string consists of zero or more directives and
ordinary characters. A directive consists of a character followed by a
character that determines the substitution that is to take place. All
ordinary characters are copied unchanged into the array. No more than
the number of characters specified by the maxsize parameter are placed in
the array.

%a Locale’s abbreviated weekday name

%A Locale’s full weekday name

%b Locale’s abbreviated month name

%B Locale’s full month name

%c Locale’s appropriate date and time representation

%d Day of the month as a decimal number (01-31)

%D Date in the format mm/dd/yy (POSIX)

%h Locale’s abbreviated month name (POSIX)

%H Hour (24-hour clock) as a decimal number (00-23)

%I Hour (12-hour clock) as a decimal number (01-12)

%j Day of the year as a decimal number (001-366)

%m Month as a decimal number (01-12)

%M Minute as a decimal number (00-59)

%n Newline character (POSIX)

%p Locale’s equivalent of either AM or PM

%r 12-hour clock time (01-12) using the AM/PM notation in the
format hh:mm:ss (POSIX)

%S Second as a decimal number (00-59)

%t Tab character (POSIX)

%T 24-hour clock time in the format hh:mm:ss (POSIX)

%U Week number of the year as a decimal number (00-52) where
Sunday is the first day of the week

%w Weekday as a decimal number (0-6) where 0 is Sunday

%W Week number of the year as a decimal number (00-52) where
Monday is the first day of the week

%x Locale’s appropriate date representation

%X Locale’s appropriate time representation

%y Year without century as a decimal number (00-99)

%Y Year with century as a decimal number

%Z Timezone name, or by no characters if no timezone exists

%% Character %

Management Service Group

Time/Date Manipulation: Functions 1187

See Also

asctime, asctime_r, clock, ctime, ctime_r, difftime, gmtime, gmtime_r,
localtime, localtime_r, mktime, setlocale, time

Example

strftime

#include <stdio.h>
#include <time.h>

main()
{
 time_t time_of_day;
 char buffer[80];
 time_of_day = time (NULL);
 strftime (buffer, 80, "Today is %A %B %d, %Y",
 localtime (&time_of_day));
 printf ("%s\n", buffer);
}

produces the following:

Today is Friday December 25, 1990

Management Service Group

Time/Date Manipulation: Functions 1188

TicksToSeconds

Converts clock ticks to seconds

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: Yes

Service: Time/Date Manipulation

Syntax

#include <nwstring.h>

void TicksToSeconds (
 LONG Ticks,
 LONG *seconds,
 LONG *tenthsOfSeconds);

Parameters

ticks

(IN) Specifies the number of ticks to convert to seconds.

seconds

(OUT) Specifies the number of seconds.

tenthsOfSeconds

(OUT) Specifies the tenths of seconds.

Return Values

None

Remarks

TicksToSeconds converts clock ticks to seconds and tenths of seconds. To
convert seconds back to clock ticks, call the SecondsToTicks function.

One IBM PC clock tick is approximately 1/18 second. (Eighteen [18.21]
clock ticks equal approximately 1 second.)

See Also

SecondsToTicks

Management Service Group

Time/Date Manipulation: Functions 1189

time

Returns the current calendar time

Local Servers: nonblocking

Remote Servers: N/A

Classification: ANSI

SMP Aware: Yes

Service: Time/Date Manipulation

Syntax

#include <time.h>

time_t time (
 time_t *timer);

Parameters

timer

(IN) Specifies the object containing the encoded calendar time.

Return Values

Returns the current calendar time encoded into type time_t. On error,
returns -1 cast as type (time_t). To test for an error condition, compare the
return value to (time_t) -1.

Remarks

The time represents the time in seconds since January 1, 1970 (Universal
Coordinated Time). If the timer parameter is not NULL, the current
calendar time is also stored in the object pointed to by the timer
parameter.

See Also

clock

Management Service Group

Time/Date Manipulation: Functions 1190

tzset

Sets the tzname, timezone, and daylight global variable parameters

Local Servers: nonblocking

Remote Servers: N/A

Classification: Other

SMP Aware: No

Service: Time/Date Manipulation

Syntax

#include <time.h>

void tzset (void);

Return Values

None

Remarks

Before accessing the tzname, timezone, and daylight global variable
parameters, you must first call tzset to initialize or update these variables
to the correct values.

CLIB.NLM uses the time zone information that is set by issuing the SET
TIMEZONE (also SET TIME ZONE) console command.

For NetWare 3.x, tzset always uses the time zone information that is
active when CLIB.NLM loads. If the SET TIMEZONE command is issued
after CLIB.NLM loads, tzset does not use the updated information.
Therefore, for NetWare 3.x, the SET TIMEZONE command must be
issued in the following prescribed order:

At the server console, issue the SET TIMEZONE command with the time
zone name, hours, and daylight savings code parameters.

Load CLIB.NLM.

Load your NLM application.

Refer to the Supervising the Network manual for more information on the
SET TIMEZONE command.

In NetWare 4.x, tzset uses the current time zone setting of the server to
initialize or update the values of the tzname, timezone, and daylight global
variable parameters. However, remember that these variables will not be
automatically updated when the SET TIMEZONE command is issued.
They are updated only when tzset is called. For this reason, you should

Management Service Group

Time/Date Manipulation: Functions 1191

call tzset before calling any of the time functions. Doing so ensures that
the tzname, timezone, and daylight global variable parameters contain the
proper values.

See Also

asctime, asctime_r, gmtime, gmtime_r, localtime, localtime_r, time

Example

tzset

#include <time.h>
#include <stdio.h>

void print_zone()
{
 tzset();

 printf("time zone names: %s %s\ n", tzname[0], tzname[1]);
 printf("timezone: %ld \ n", timezone) ;
 printf("daylight: %d\n", daylight) ;
}

produces the following:

 time zone names: PST PDT
 timezone: 28800
 daylight: 1

Management Service Group

Time/Date Manipulation: Functions 1192

Time/Date Manipulation: Structures

Management Service Group

Time/Date Manipulation: Structures 1193

NW_DATE

Contains the date in packed format

Service: Time/Date Manipulation

Defined In: nwmisc.h and nwmisc.inc

Structure

typedef struct {
 nuint8 day;
 nuint8 month;
 nuint16 year;
} NW_DATE;

Pascal Structure

NW_DATE = Record
 day : nuint8;
 month : nuint8;
 year : nuint16
 End;

Fields

day

Specifies the day.

month

Specifies the month.

year

Specifies the year.

Management Service Group

Time/Date Manipulation: Structures 1194

NW_TIME

Contains the time in packed format

Service: Time/Date Manipulation

Defined In: nwmisc.h and nwmisc.inc

Structure

typedef struct {
 nuint8 seconds;
 nuint8 minutes;
 nuint16 hours;
} NW_TIME;

Pascal Structure

NW_TIME = Record
 seconds : nuint8;
 minutes : nuint8;
 hours : nuint16
 End;

Fields

seconds

Specifies the seconds.

minutes

Specifies the minutes.

hours

Specifies the hours.

Remarks

Because the hours field is defined as a nuint16, NW_TIME takes up a
nuint32 of space.

Management Service Group

Time/Date Manipulation: Structures 1195

tm

Contains time information

Service: Time/Date Manipulation

Defined In: time.h

Structure

struct tm {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
};

Fields

tm_sec

Contains the number of seconds after the minute. This number is in
the range [0,61].

tm_min

Contains the number of minutes after the hour. This number is in the
range [0,59].

tm_hour

Contains the number of hours after midnight. This number is in the
range [0,23].

tm_mday

Contains the day of the month. This number is in the range [1,31].

tm_mon

Contains the months since January. This number is in the range [0,11].

tm_year

Contains the number of years since 1900.

tm_wday

Contains the number of days since Sunday. This number is in the
range [0,6].

tm_yday

Contains the number of days since January 1. This number is in the
range [0,365].

Management Service Group

Time/Date Manipulation: Structures 1196

tm_isdst

Contains a Daylight Savings Time flag, defined as follows:

0 Daylight savings time is not in effect.

>0 Daylight savings time is in effect.

<0 Daylight savings time information is not available.

Remarks

Some locales such Korean, Chinese, and Italian use the tm_wday structure
field for the standard date format. If the tm_wday structure field is not set,
an incorrect day will be displayed. An application which sets only the
year, month, and day structure fields can compute the weekday by
calling the C library function:

 mktime(timePtr)

Management Service Group

Time/Date Manipulation: Structures 1197

TTS

Management Service Group

 1198

TTS: Guides

TTS: General Guide

Tasks

Enabling TTS

Concepts

TTS Introduction

Implicit Transaction Tracking

Explicit Transaction Tracking

Transaction Tracking Process

Implicit Tracking Threshold

TTS Transaction Functions

TTS Status and File Control Functions

TTS Threshold Functions

TTS: Concepts

TTS: Functions

TTS: Structures

Parent Topic:

Management Overview

Management Service Group

TTS: Guides 1199

TTS: Tasks

Enabling TTS

When TTS is disabled, NDS operations which require modifying the
database on that server are also disabled.

1. At the console prompt of the file server, type ENABLE TTS.

NOTE: If TTS was disabled because volume SYS: was full, log onto the
server and delete unnecessary files from volume SYS:, then type
ENABLE TTS at the console.

Parent Topic:

TTS: General Guide

Management Service Group

TTS: Tasks 1200

TTS: Concepts

Explicit Transaction Tracking

Explicit transaction tracking uses TTS. To signal an explicit transaction,
bracket file update sequences with a pair of TTS functions.

NWTTSBeginTransaction signals the beginning of a transaction.

NWTTSEndTransaction signals the end of a transaction.

TTS tracks all transactional files accessed between these two functions and
automatically places a physical lock on transactional files that you write to
during this time. As with implicit tracking, if your connection is disrupted,
TTS backs out of any modified files. You can force TTS to back out of the
transaction by calling NWTTSAbortTransaction.

TTS affects only transactional files. To make a file transactional, set the file’s
transaction bit. This bit is a file attribute and can be modified using the File
System service. (See File System Directory Entry Attributes.)

Parent Topic:

TTS: General Guide

Related Topics:

Implicit Transaction Tracking

Implicit Tracking Threshold

TTS lets you read and modify the implicit tracking threshold. This is the
number of logical and physical locks your application can set before implicit
tracking takes effect. The default threshold is 0, meaning that whenever you
place a logical or physical lock on a transactional file, the file will be tracked.
A threshold of 0xFF means that implicit transactions for the associated lock
type have been completed.

There are two reasons to modify the threshold value:

If your application is performing explicit transactions but also locking
records you don’t want to track, you can turn off implicit transactions.

If your application always keeps one or more records locked, raising the
threshold prevents these records from being tracked.

Management Service Group

TTS: Concepts 1201

Parent Topic:

TTS: General Guide

Implicit Transaction Tracking

Implicit transaction tracking requires no coding on your part. If TTS is
installed and enabled on a NetWare® server, transaction tracking applies to
any logical or physical record lock you place on a transactional file. If the
workstation’s connection is disrupted before the records are unlocked, TTS
backs out of the transaction and restores the records to their original state.

Parent Topic:

TTS: General Guide

Related Topics:

Explicit Transaction Tracking

Transaction Tracking Process

A typical transaction scenario is a banking database application that writes
a debit to one account, a credit to another account, and a note to a log. The
dependencies among the three operations make it extremely important that
they are performed as a single transaction.

If any one of the operations fails, the integrity of the other operations is
undermined. TTS ensures data integrity under circumstances such as these.
Below is a description of how TTS responds to a request to write to a
transactional file.

1. TTS stores the new data in cache memory. The file itself remains
unchanged.

2. TTS scans the target file on the server hard disk, finds the data to be
changed (old data), and copies the old data to cache memory. TTS also
records the name and directory path of the target file and the location
and length of the old data (record) within the file. The target file on the
server hard disk is still unchanged.

3. TTS writes the old data in cache memory to a transaction work file on
the server hard disk. The transaction work file resides at the root level of
a volume on the server. The file is flagged system and hidden. The
target file on the server hard disk is still unchanged.

4. TTS finally writes the new data in cache memory to the target file on the
server hard disk.

TTS repeats these steps for each write within a transaction. The transaction
work file grows to accommodate the old data for each write. If the

Management Service Group

TTS: Concepts 1202

transaction is interrupted, TTS writes the contents of the transaction work
file to the target file, thereby restoring the file to its pre-transaction state.

Parent Topic:

TTS: General Guide

TTS Introduction

The Transaction Tracking System™ (TTS™) software allows NetWare®
servers to track transactions and ensure file integrity by backing out of or
erasing interrupted or partially completed transactions. For example, the
server can back out of a transaction if your application terminates
unexpectedly while a transaction is in progress.

A transaction can include any series of requests that affect transactional
files. TTS can monitor from 1 to 200 transactions at a time. The maximum
number (50 to 200) is configurable.

TTS can track only one transaction at a time for each session. If a session
sends several transactions to a server rapidly, TTS queues the transactions
and services them one at a time. TTS lets you begin and end transactions,
monitor TTS status, and access TTS information.

For a description of structures and other data definitions relating to this
chapter, see TTS: Structures.

Parent Topic:

TTS: General Guide

TTS Status and File Control Functions

These functions check and modify the status of TTS on a NetWare® server
and access the TTS transaction bit flags associated with transactional files.

Function Header Comment

NWDisableTTS nwtts.h Disables transaction tracking on a
server.

NWEnableTTS nwtts.h Enables transaction tracking on a
server.

NWGetTTSStats nwtts.h Returns TTS statistics.

NWTTSGetControlFl
ags

nwtts.h Returns the transaction bits for
files flagged as transactional.

NWTTSIsAvailable nwtts.h Verifies that the server supports
transaction tracking.

Management Service Group

TTS: Concepts 1203

NWTTSSetControlFla
gs

nwtts.h Enables or disables automatic
record locking when writing to
transactional files.

NWTTSTransactionSt
atus

nwtts.h Verifies whether a transaction has
been written to disk.

Parent Topic:

TTS: General Guide

TTS Threshold Functions

These functions read and modify the connection and process thresholds
affecting implicit transaction tracking.

Function Header Comment

NWTTSGetConnectionThr
esholds

nwtts.h Returns the number of
logical and physical record
locks allowed before implicit
transactions begin.

NWTTSGetProcessThresho
lds

nwtts.h Returns the number of
explicit physical and logical
record locks allowed before
implicit locking begins.

NWTTSSetConnectionThre
sholds

nwtts.h Informs a server of how
many explicit physical and
logical record locks to
permit before invoking
implicit transactions.

NWTTSSetProcessThreshol
ds

nwtts.h Sets the number of logical
and physical locks to
perform before implicit
locking begins.

Parent Topic:

TTS: General Guide

TTS Transaction Functions

These functions perform transaction tracking.

Management Service Group

TTS: Concepts 1204

Function Header Comment

NWTTSAbortTransac
tion

nwtts.h Aborts all transactions, explicit or
implicit. When this function
returns successfully, all
transactions have been
successfully backed out of.

NWTTSBeginTransac
tion

nwtts.h Begins an explicit transaction.

NWTTSEndTransacti
on

nwtts.h Ends an explicit transaction and
returns a transaction reference
number.

Parent Topic:

TTS: General Guide

Management Service Group

TTS: Concepts 1205

TTS: Functions

Management Service Group

TTS: Functions 1206

NWDisableTTS

Disables transaction tracking on a NetWare® server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDisableTTS (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwtts.inc>

Function NWDisableTTS
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x89C6 NO_CONSOLE_PRIVILEGES

Remarks

Transaction Tracking is always enabled on 4.x servers due to Directory

Management Service Group

TTS: Functions 1207

Services requirements; therefore, enabling or disabling transaction
tracking is only supported on 2.x and 3.x servers.

NCP Calls

0x2222 23 207 Disable Transaction Tracking

Management Service Group

TTS: Functions 1208

NWEnableTTS

Enables transaction tracking on a NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWEnableTTS (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwtts.inc>

Function NWEnableTTS
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89C6 NO_CONSOLE_PRIVILEGES

Remarks

Management Service Group

TTS: Functions 1209

Transaction Tracking is always enabled on 4.x servers due to Directory
Services requirements; therefore, enabling or disabling transaction
tracking is only supported on 2.x and 3.x servers.

NCP Calls

0x2222 23 208 Enable Transaction Tracking

Management Service Group

TTS: Functions 1210

NWGetTTSStats

Returns Transaction Tracking System™ (TTS™) statistics

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetTTSStats (
 NWCONN_HANDLE conn,
 TTS_STATS NWPTR ttsStats);

Pascal Syntax

#include <nwtts.inc>

Function NWGetTTSStats
 (conn : NWCONN_HANDLE;
 Var ttsStats : TTS_STATS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

ttsStats

(OUT) Points to TTS_STATS where the TTS statistics will be returned.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x89C6 NO_CONSOLE_PRIVILEGES

Management Service Group

TTS: Functions 1211

Remarks

You must have console rights to call NWGetTTSStats.

NCP Calls

 0x2222 23 213 Get Transaction Tracking Statistics

Management Service Group

TTS: Functions 1212

NWTTSAbortTransaction

Aborts all transactions, explicit and implicit

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSAbortTransaction (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwtts.inc>

Function NWTTSAbortTransaction
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x00 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x89FE DIRECTORY_LOCKED

0x89FE Transaction Restart

0x89FF LOCK_ERROR

Management Service Group

TTS: Functions 1213

Remarks

When NWTTSAbortTransaction is complete, all transactions will have
been successfully backed out.

If a transaction is aborted, all Writes made since the beginning of a
transaction are cancelled, and all files are returned to the state they were
in before the transaction began.

NWTTSAbortTransaction releases the following record locks:

Physical record locks generated by the NetWare server when an
application tried to write an unlocked record.

Physical or logical locks not released because of a file Write.

0x89FE indicates more than the threshold number of logical or physical
records are still locked by the application. However, the transaction is
finished and any locks being held are released. When this happens, the
NetWare server automatically starts a new implicit transaction.

NCP Calls

0x2222 34 3 TTS Abort Transaction

See Also

NWTTSBeginTransaction, NWTTSEndTransaction

Management Service Group

TTS: Functions 1214

NWTTSBeginTransaction

Begins an explicit transaction

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSBeginTransaction (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwtts.inc>

Function NWTTSBeginTransaction
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0000 Successful

0x8801 INVALID_CONNECTION

Remarks

NWTTSBeginTransaction tracks all transactional files currently open,
and those opened during the transaction.

Management Service Group

TTS: Functions 1215

When data is written to a transaction file during a transaction, the
NetWare server automatically generates a physical record lock for the
region being written. If a lock already exists, no additional lock is
generated. This automatic locking can be disabled by calling
NWTTSSetControlFlags.

Any closing and unlocking of transaction files is delayed until either
NWTTSEndTransaction or NWTTSAbortTransaction is executed.
Logical and physical records are not unlocked until the end of the
transaction if file writes are performed while the lock is in force.

NCP Calls

0x2222 34 1 TTS Begin Transaction

See Also

NWTTSAbortTransaction, NWTTSEndTransaction,
NWTTSSetControlFlags

Management Service Group

TTS: Functions 1216

NWTTSEndTransaction

Ends an explicit transaction and returns a transaction reference number

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSEndTransaction (
 NWCONN_HANDLE conn,
 pnuint32 transactionNum);

Pascal Syntax

#include <nwtts.inc>

Function NWTTSEndTransaction
 (conn : NWCONN_HANDLE;
 transactionNum : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

transactionNum

(OUT) Points to the transaction reference number for the transaction
being ended (optional).

Return Values

These are common return values; see Return Values for more
information.

0x0000 Successful

0x8801 INVALID_CONNECTION

0x89FE Transaction Restart

Management Service Group

TTS: Functions 1217

0x89FF LOCK_ERROR

Remarks

The transaction number is used to verify a successful transaction
completion to disk.

The transaction is not necessarily written to disk when the reference
number is returned. A client must call NWTTSTransactionStatus to
verify a transaction has been written to disk. If the NetWare server fails
before all updates contained within the transaction have been written to
disk, the transaction is backed out when the NetWare server is rebooted.

If transaction tracking is disabled, transactionNum can still determine
when the transaction has been completely written to disk. Since
transactionNum is optional, substitute NULL if no return values are
desired.

NWTTSEndTransaction releases all physical record locks generated by
the NetWare server when a Write is made to an unlocked record. In
addition, physical or logical locks that were not released due to a file
Write are unlocked at this time.

0x89FE indicates more than the threshold number of logical or physical
records are still locked by the application. However, the transaction is
finished and any locks being held are released. In this case, the NetWare
server automatically starts a new implicit transaction.

NCP Calls

 0x2222 34 2 TTS End Transaction

See Also

NWTTSAbortTransaction, NWTTSBeginTransaction,
NWTTSTransactionStatus

Management Service Group

TTS: Functions 1218

NWTTSGetConnectionThresholds

Returns the number of logical and physical record locks allowed before
implicit transactions begin

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSGetConnectionThresholds (
 NWCONN_HANDLE conn,
 pnuint8 logicalLockLevel,
 pnuint8 physicalLockLevel);

Pascal Syntax

#include <nwtts.inc>

Function NWTTSGetConnectionThresholds
 (conn : NWCONN_HANDLE;
 logicalLockLevel : pnuint8;
 physicalLockLevel : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

logicalLockLevel

(OUT) Points to the number of logical record locks allowed before
implicit transactions begin (0 to 255, optional).

physicalLockLevel

(OUT) Points to the number of physical record locks allowed before
implicit transactions begin (0 to 255, optional).

Return Values

These are common return values; see Return Values for more

Management Service Group

TTS: Functions 1219

information.

0x0000 Successful

0x8801 INVALID_CONNECTION

Remarks

Both NWTTSSetConnectionThresholds and
NWGetConnectionThresholds are useful for applications changing the
implicit application thresholds that later want to restore them. For
example, NWTTSGetConnectionThresholds can get the number of
logical and physical locks, and NWTTSSetConnectionThresholds can
perform one of the following:

Turn off implicit transactions. (Applications using only explicit
transactions, but sometimes generating unnecessary implicit
transactions, need to turn off all implicit transactions.)

Set implicit thresholds for applications always keeping one or more
records locked.

The default threshold for logical and physical locks is 0. 0xFF means
implicit transactions for the lock type have been completed.

Both physicalLockLevel and logicalLockLevel are optional parameters.
Substitute NULL if these parameters are not to be returned. However, all
parameter positions must be filled.

NCP Calls

0x2222 34 7 TTS Get Workstation Threshold

See Also

NWTTSSetConnectionThresholds

Management Service Group

TTS: Functions 1220

NWTTSGetControlFlags

Returns the transaction bits for files flagged as transactional

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSGetControlFlags (
 NWCONN_HANDLE conn,
 pnuint8 controlFlags);

Pascal Syntax

#include <nwtts.inc>

Function NWTTSGetControlFlags
 (conn : NWCONN_HANDLE;
 controlFlags : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

controlFlags

(OUT) Points to Transaction Tracking Control flags.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Management Service Group

TTS: Functions 1221

Remarks

Transaction tracking control flags are only valid for files flagged as TTS.
Bits 1 to 7 in controlFlags are reserved; bit 0 is defined below:

0x00 Automatic record locking is disabled
0x01 Automatic record locking is enabled

NCP Calls

0x2222 34 9 TTS Get Transaction Bits

See Also

NWTTSSetControlFlags

Management Service Group

TTS: Functions 1222

NWTTSGetProcessThresholds

Returns the number of explicit physical and logical record locks allowed
before implicit locking begins

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSGetProcessThresholds (
 NWCONN_HANDLE conn,
 pnuint8 logicalLockLevel,
 pnuint8 physicalLockLevel);

Pascal Syntax

#include <nwtts.inc>

Function NWTTSGetProcessThresholds
 (conn : NWCONN_HANDLE;
 logicalLockLevel : pnuint8;
 physicalLockLevel : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

logicalLockLevel

(OUT) Points to the number of explicit logical record locks allowed
before implicit transactions begin (0 to 255, optional).

physicalLockLevel

(OUT) Points to the number of explicit physical record locks allowed
before implicit transactions begin (0 to 255, optional).

Return Values

These are common return values; see Return Values for more

Management Service Group

TTS: Functions 1223

information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Remarks

NWTTSGetProcessThresholds and NWTTSSetProcessThresholds are
useful for applications changing the implicit process thresholds that later
want to restore them. For example, NWTTSGetProcessThresholds can
query an application for the number of logical and physical record locks
allowed before an implicit transaction begins, and
NWTTSSetProcessThresholds can perform one of the following:

Turn off implicit transactions. (Applications intending to use only
explicit transactions, but sometimes generate unnecessary implicit
transactions, need to turn off all implicit transactions.)

Set implicit thresholds for applications always keeping one or more
records locked.

The default threshold for logical and physical locks is 0. 0xFF means no
implicit transactions are allowed for the lock type.

Thresholds returned by NWTTSGetProcessThresholds are valid for the
requesting application only. When the application terminates, the
connection thresholds are restored.

Both physicalLockLevel and logicalLockLevel are optional parameters.
Substitute NULL if these parameters are not to be returned. However, all
parameter positions must be filled.

NCP Calls

0x2222 34 5 TTS Get Application Threshold

See Also

NWTTSSetProcessThresholds

Management Service Group

TTS: Functions 1224

NWTTSIsAvailable

Verifies the NetWare server supports transaction tracking

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSIsAvailable (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwtts.inc>

Function NWTTSIsAvailable
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0000 Transaction Tracking is Unavailable

0x8801 INVALID_CONNECTION

0x89FD Transaction Tracking is Disabled

0x89FF Transaction Tracking is Available

Remarks

Management Service Group

TTS: Functions 1225

0x0000 does not indicate successful completion of NWTTSIsAvailable.
Instead, 0x0000 indicates TTS is unavailable. The successful completion
code is 0x89FF, TTS is available.

NCP Calls

 0x2222 34 0 TTS Is Available

Management Service Group

TTS: Functions 1226

NWTTSSetConnectionThresholds

Sets the number of explicit physical and logical record locks to permit
before invoking implicit transactions

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSSetConnectionThresholds (
 NWCONN_HANDLE conn,
 nuint8 logicalLockLevel,
 nuint8 physicalLockLevel);

Pascal Syntax

#include <nwtts.inc>

Function NWTTSSetConnectionThresholds
 (conn : NWCONN_HANDLE;
 logicalLockLevel : nuint8;
 physicalLockLevel : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

logicalLockLevel

(IN) Specifies the number of logical record locks to allow before
implicit transactions begin (0 to 255).

physicalLockLevel

(IN) Specifies the number of physical record locks to allow before
implicit transactions begin (0 to 255).

Return Values

These are common return values; see Return Values for more

Management Service Group

TTS: Functions 1227

information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Remarks

The return values are in effect for all applications, not just ones calling
NWTTSSetConnectionThresholds.

The default threshold for logical and physical locks is 0. 0xFF means no
implicit transactions for the lock type can be performed.

NWTTSSetConnectionThresholds and
NWTTSGetConnectionThresholds are useful for applications changing
the implicit application thresholds that later want to restore them.

For example, NWTTSGetConnectionThresholds can obtain the current
number of logical and physical locks, and
NWTTSSetConnectionThresholds can perform one of the following:

Turn off implicit transactions. (Applications using only explicit
transactions, but sometimes generate unnecessary implicit
transactions, need to turn off all implicit transactions.)

Set implicit thresholds for applications always keeping one or more
records locked.

NCP Calls

 0x2222 34 8 TTS Set Workstation Thresholds

See Also

NWTTSGetConnectionThresholds

Management Service Group

TTS: Functions 1228

NWTTSSetControlFlags

Enables or disables automatic record locking on Writes to transactional files

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSSetControlFlags (
 NWCONN_HANDLE conn,
 nuint8 controlFlags);

Pascal Syntax

#include <nwtts.inc>

Function NWTTSSetControlFlags
 (conn : NWCONN_HANDLE;
 controlFlags : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

controlFlags

(IN) Specifies the Transaction Tracking control flags.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Management Service Group

TTS: Functions 1229

Remarks

NWTTSSetControlFlags allows a client to set the transaction bits in
controlFlag.

Transaction tracking control flags are only valid for files flagged as
transactional. Only bit 0 is used currently. Flag definitions follow:

0x00 Automatic record locking is disabled
0x01 Automatic record locking is enabled

NCP Calls

 0x2222 34 10 TTS Set Transaction Bits

Management Service Group

TTS: Functions 1230

NWTTSSetProcessThresholds

Sets the number of logical and physical locks to perform before implicit
locking begins

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSSetProcessThresholds (
 NWCONN_HANDLE conn,
 nuint8 logicalLockLevel,
 nuint8 physicalLockLevel);

Pascal Syntax

#include <nwtts.inc>

Function NWTTSSetProcessThresholds
 (conn : NWCONN_HANDLE;
 logicalLockLevel : nuint8;
 physicalLockLevel : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

logicalLockLevel

(IN) Specifies the number of logical record locks to allow before
implicit transactions begin (0-255).

physicalLockLevel

(IN) Specifies the number of physical record locks to allow before
implicit transactions begin (0-255).

Return Values

These are common return values; see Return Values for more

Management Service Group

TTS: Functions 1231

information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

Remarks

The thresholds set by NWTTSSetProcessThresholds are valid for the
requesting application only. When the application terminates, the default
workstation thresholds are restored.

NWTTSSetProcessThresholds either turns off implicit transactions or
allows applications always keeping one or more records locked to work.
Applications intending to use only explicit transactions, but sometimes
generating unnecessary implicit transactions, can call
NWTTSSetProcessThresholds to turn off all implicit transactions.

The default threshold for logical and physical locks is 0 unless the
number has been changed by calling NWTTSSetConnectionThresholds.
0xFF means no implicit transactions for the lock type are performed.

NCP Calls

0x2222 34 6 TTS Set Application Thresholds

See Also

NWTTSGetProcessThresholds

Management Service Group

TTS: Functions 1232

NWTTSTransactionStatus

Verifies whether a transaction has been written to disk

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Transaction Tracking System (TTS)

Syntax

#include <nwtts.h>
or
#include <nwcalls.h>

NWCCODE N_API NWTTSTransactionStatus (
 NWCONN_HANDLE conn,
 nuint32 transactionNum);

Pascal Syntax

#include <nwtts.inc>

Function NWTTSTransactionStatus
 (conn : NWCONN_HANDLE;
 transactionNum : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

transactionNum

(IN) Specifies the transaction reference number (obtained from
NWTTSEndTransaction).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x89FF Transaction not written to disk

Management Service Group

TTS: Functions 1233

Remarks

NWTTSTransactionStatus can be called even if NWTTSEndTransaction
returns TTS_DISABLED.

Applications should not wait for transactions to be written to disk unless
it is absolutely necessary. Because the NetWare server caches algorithms,
it may be up to five seconds before they are actually written. Transactions
are written to disk in the order in which they terminate.

NCP Calls

 0x2222 34 4 TTS Transaction Status

See Also

NWTTSEndTransaction

Management Service Group

TTS: Functions 1234

TTS: Structures

Management Service Group

TTS: Structures 1235

TTS_STATS

Returns TTS statistics

Service: TTS

Defined In: nwtts.h

Structure

typedef struct
{
 nuint32 systemElapsedTime;
 nuint8 TTS_Supported;
 nuint8 TTS_Enabled;
 nuint16 TTS_VolumeNumber;
 nuint16 TTS_MaxOpenTransactions;
 nuint16 TTS_MaxTransactionsOpened;
 nuint16 TTS_CurrTransactionsOpen;
 nuint32 TTS_TotalTransactions;
 nuint32 TTS_TotalWrites;
 nuint32 TTS_TotalBackouts;
 nuint16 TTS_UnfilledBackouts;
 nuint16 TTS_DiskBlocksInUse;
 nuint32 TTS_FATAllocations;
 nuint32 TTS_FileSizeChanges;
 nuint32 TTS_FilesTruncated;
 nuint8 numberOfTransactions;
 struct
 {
 nuint8 connNumber;
 nuint8 taskNumber;
 } connTask[235];
} TTS_STATS;

Pascal Structure

Defined in nwtts.inc

 TTS_STATS = Record
 systemElapsedTime : nuint32;
 TTS_Supported : nuint8;
 TTS_Enabled : nuint8;
 TTS_VolumeNumber : nuint16;
 TTS_MaxOpenTransactions : nuint16;
 TTS_MaxTransactionsOpened : nuint16;
 TTS_CurrTransactionsOpen : nuint16;
 TTS_TotalTransactions : nuint32;
 TTS_TotalWrites : nuint32;
 TTS_TotalBackouts : nuint32;
 TTS_UnfilledBackouts : nuint16;

Management Service Group

TTS: Structures 1236

 TTS_DiskBlocksInUse : nuint16;
 TTS_FATAllocations : nuint32;
 TTS_FileSizeChanges : nuint32;
 TTS_FilesTruncated : nuint32;
 numberOfTransactions : nuint8;
 connTask : Array[0..234] Of CONN_TASK;
 End;

CONN_TASK = Record
 connNumber : nuint8;
 taskNumber : nuint8;
 End;

Fields

systemElapsedTime

TTS_Supported

TTS_Enabled

TTS_VolumeNumber

TTS_MaxOpenTransactions

TTS_MaxTransactionsOpened

TTS_CurrTransactionsOpen

TTS_TotalTransactions

TTS_TotalWrites

TTS_TotalBackouts

TTS_UnfilledBackouts

TTS_DiskBlocksInUse

TTS_FATAllocations

TTS_FileSizeChanges

TTS_FilesTruncated

numberOfTransactions

Management Service Group

TTS: Structures 1237

