
File Service Group

File Service Group

 1

File Overview

AFP: Guides

Data Migration: Guides

Deleted File: Guides

Direct File System: Guides

DOS Partition: Guides

Extended Attribute: Guides

File System: Guides

File System Monitoring: Guides

Media Manager: Guides

Name Space: Guides

NetWare STREAMS: Guides

Operating System I/O: Guides

Path and Drive: Guides

Stream I/O: Guides

Synchronization: Guides

Volume: Guides

Volume Management: Guides

File Service Group

 2

AFP

File Service Group

 3

AFP: Guides

AFP: Task Guide

AFP Directories

Operating on AFP Directory Entries

AFP Support Information

Checking for AFP Support

Additional Links

AFP: Functions

AFP: Structures

Parent Topic:

AFP: Guides

AFP: Concept Guide

AFP File Information

AFP File Information

Accessing AFP File Information: Example

AFP Directories

AFP Entry IDs

Creating AFP Directory Entries: Example

AFP Support Information

Checking for AFP Support: Example

General AFP Information

AFP Filename and Path Conventions

Finder Information

AFP Data and Resource Forks

Additional Links

AFP: Functions

File Service Group

AFP: Guides 4

AFP: Structures

Parent Topic:

AFP: Guides

File Service Group

AFP: Guides 5

AFP: Tasks

Checking for AFP Support

NetWare® servers support AFP files on a volume-by-volume basis.
However, this support is optional. The appropriate name space NLM™
application must be loaded at the server, and AFP support must be enabled
on the volume. This is equivalent to asking if MAC.NAM (or the Macintosh
namespace NLM) is loaded for the volume in question.

Before attempting to perform AFP operations on an entry, call
NWAFPSupported to make sure the AFP name space is supported on the
NetWare volume.

Parent Topic:

AFP: Guides

Operating on AFP Directory Entries

Always use AFP Services to create, delete, and rename AFP directory
entries. The File Access Services used to access other NetWare® files cannot
perform these operations since they are unable to preserve the relationship
between the files data and resource forks.

AFP Services include the following functions to operate on AFP files:

NWAFPCreateDirectory

NWAFPCreateFile

NWAFPDelete

NWAFPOpenFileFork

NWAFPRename

These functions take a combination AFP entry ID and path string that
identifies the entry. Also, the string should be length-preceded, the initial
byte indicating the length of the string.

Parent Topic:

AFP: Guides

File Service Group

AFP: Tasks 6

AFP: Examples

Accessing AFP File Information: Example

The following code uses NWAFPGetFileInformation to return the long
name for an AFP file or directory. At the command line, type a full
NetWare® path (including server and volume names).
NWParseNetWarePath finds the server's connection handle.
NWAFPDirectoryEntry verifies the path is an AFP directory entry.

NWParsePath and NWGetVolumeNumber are used together to find the
volume number. In turn, the volume number is used as input to
NWAFPGetEntryIDFromPathName to find the AFP entry ID. The example
then prepares a request mask for returning the short and long names of the
entry. The mask is passed to NWAFPGetFileInformation.

Getting an AFP Directory Name

/* ***
 *
 * Name : Getting an AFP Directory Name
 *
 *
 * Abstract : Call NWAFPGetFileInformation to return the long name for an
 * AFP file or directory.
 *
 * Inputs : Usage: AFPNAME <path>
 *
 * Outputs : Short and long file names
 *
 * ***
 */

#define AFP_FILE 1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <nwcalls.h>
#include <nwdpath.h>
#include <nwafp.h>

void main(int argc, char *argv[])
{
 NWAFP_FILE_INFO fileInfo;
 nuint32 AFPEntryID;

File Service Group

AFP: Examples 7

 NWDIR_HANDLE dirHandle;
 nuint16 requestMask = 0;
 NWCONN_HANDLE conn;
 nuint16 volNumber;
 NWCCODE ccode;
 char volName[16];
 char path[256];

 if(argc < 2)
 { printf("Usage: AFPNAME <path>\n");
 exit(1);
 }

 ccode = NWCallsInit(NULL, NULL);
 if(ccode)
 exit(1);

 #ifndef N_PLAT_UNIX
 strupr(argv[1]);
 #endif

 NWParseNetWarePath(argv[1], &conn, &dirHandle, path);

 ccode = NWAFPDirectoryEntry(conn, dirHandle, path);
 if(ccode != AFP_FILE)
 exit(1);

 ccode = NWAFPGetEntryIDFromPathName(conn, dirHandle, path, &AFPEntryID);
 if(ccode)
 exit(1);
 requestMask = AFP_GET_LONG_NAME | AFP_GET_SHORT_NAME;

 ccode = NWParsePath(path, NULL, NULL, volName, NULL);
 if(ccode)
 exit(1);

 ccode = NWGetVolumeNumber(conn, volName, &volNumber);
 if(ccode)
 exit(1);

 ccode = NWAFPGetFileInformation(conn, volNumber, AFPEntryID, requestMask, "",
 sizeof(fileInfo), &fileInfo);
 if(ccode)
 exit(1);

 printf("\nShort name: %s", fileInfo.shortName);
 printf("nLong name: %s", fileInfo.longName);
 }

Parent Topic:

AFP: Guides

File Service Group

AFP: Examples 8

Checking for AFP Support: Example

The following code checks whether AFP is supported by volume SYS:
(volume number 0) on a NetWare® server, SERV1.

AFP Support

/* ***
 * Name : Checking for AFP Support
 *
 * Abstract : Call NWAFPSupported to make sure the AFP name space is supported

 * on a NetWare volume.
 *
 * Notes : This example checks whether AFP is supported by volume
 * SYS: (volume number 0) on server named SERV1.
 * ***/

#include <stdio.h>
#include <stdlib.h>
#include <nwcalls.h>
#include <nwconnec.h>
#include <ntypes.h>

void main(void)
{
 NWCONN_HANDLE conn;
 NWCCODE ccode;

 ccode = NWCallsInit(NULL, NULL);
 if(ccode)
 exit(1);

 ccode = NWGetConnectionHandle((pnuint8)"SERV1", 0, &conn, NULL);
 if (ccode)
 exit(1);

 ccode = NWAFPSupported(conn, 0); /* 0 = volume SYS: */
 if(ccode)
 printf("\nAFP not supported on volume SYS.\n");
 else
 printf("\nAFP supported on volume SYS.\n");
}

Parent Topic:

AFP: Guides

Creating AFP Directory Entries: Example

File Service Group

AFP: Examples 9

This code uses NWAFPCreateDirectory to create a directory with an AFP
name. At the command line, type the directory path (including server and
volume names) followed by the AFP directory name. Because the AFP name
can contain spaces, the code checks for multiple arguments and
concatenates them into a length-preceded long name.

NWParseNetWarePath parses the NetWare® path and returns the server's
connection ID and a combination DOS directory handle and directory path.
NWParsePath parses the resulting path and finds the volume name, which
is used as input for NWGetVolumeNumber.

NWAFPGetEntryIDFromPathName returns an AFP entry ID for the DOS
handle and path. NWAFPCreateDirectory creates the AFP directory. No
Finder Information is passed to NWAFPCreateDirectory, so the Finder
automatically creates that information when the entry is first accessed.

Creating AFP Directories

/* ***
 *
 * Name : Using AFP Directory Entry Operations
 *
 *
 * Abstract : Call NWAFPCreateDirectory to create a directory with an
 * AFP name.
 *
 *
 * Inputs : Usage: AFPMD <directory path> AFP <directory name>
 *
 * ***
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <nwcalls.h>
#include <ntypes.h>

void main (int argc, char *argv[])
{
 nuint32 entryID1, entryID2;
 nuint8 finderInfo;
 NWDIR_HANDLE dirHandle;
 NWCONN_HANDLE conn;
 nuint16 volNumber;
 NWCCODE ccode;
 nstr8 afpPathString[32];
 nstr8 path[256] = "";
 nstr8 volName[16];
 nint16 i;

 if(argc < 3)

File Service Group

AFP: Examples 10

 { printf("Usage: AFPMD <server\path> <directory
 name>\n");
 exit(1);
 }
 strcpy(afpPathString + 1, argv[2]);
 for(i = 3; i < argc; i++)
 { strcat(afpPathString + 1, " ");
 strcat(afpPathString + 1, argv[i]);
 }
 afpPathString[0] = strlen(afpPathString + 1);

 ccode = NWCallsInit(NULL, NULL);
 printf("\r\n NWCallsInit return ccode= %08lx",ccode);
 if(ccode)
 exit(1);

 #ifndef N_PLAT_UNIX
 strupr(argv[1]);
 #endif
 NWParseNetWarePath(argv[1], &conn, &dirHandle, path);

 ccode = NWParsePath(path, NULL, NULL, volName, NULL);
 printf("\r\n NWParsePath return ccode= %08lx",ccode);
 if(ccode)
 exit(1);

 ccode = NWGetVolumeNumber(conn, volName, &volNumber);
 printf("\r\n NWGetVolumeNumber ccode= %08lx",ccode);

 ccode = NWAFPGetEntryIDFromPathName(conn, dirHandle, path, &entryID1);
 printf("\r\n NWAFPGetEntryIDFromPathName return ccode= %08lx",ccode);
 if(ccode)
 exit(1);

 ccode = NWAFPCreateDirectory(conn, volNumber, entryID1, &finderInfo,
 afpPathString, &entryID2);
 printf("\r\n NWAFPCreateDirectory ccode= %08lx",ccode);
 if(ccode)
 { printf("Unable to create \"%s\".\n", afpPathString + 1);
 exit(1);
 }

 printf("Directory \"%s\" created successfully.\n", afpPathString + 1);
}

Parent Topic:

AFP: Guides

File Service Group

AFP: Examples 11

AFP: Concepts

AFP Data and Resource Forks

AFP files are divided into a data fork and a resource fork. The data fork
stores data formatted according to the creator's discretion. The resource fork,
if present, stores data understood in prescribed formats, such as code, icons,
menu bars, alerts, version information, and execution behavior.

From the AFP standpoint, a DOS file is a data file with no resource fork or
long name. To endow a DOS file with a Macintosh name, the NetWare® OS
permits Macintosh users to give the file a name in the Macintosh
namespace. Otherwise, Macintosh users see the DOS name just as DOS
users do.

Parent Topic:

AFP: Guides

AFP Entry IDs

The AFP entry ID is similar to the NetWare® directory handle. The AFP
long filename relates to an AFP entry ID that represents some portion of the
file's directory path. However, AFP and NetWare conventions are not
interchangeable. Never mix NetWare directory handles with long names or
AFP entry IDs with short names.

AFP Services includes the following functions for returning AFP entry IDs
using a NetWare directory handle, a long name, or a short name.

NWAFPGetEntryIDFromHandle

NWAFPGetEntryIDFromName

NWAFPGetEntryIDFromPathName

Parent Topic:

AFP: Guides

AFP File Information

AFP Services include three functions that access AFP file information:

File Service Group

AFP: Concepts 12

NWAFPGetFileInformation

NWAFPScanFileInformation

NWAFPSetFileInformation

NWAFPGetFileInformation and NWAFPScanFileInformation return file
information in an NW_AFP_FILE_INFO structure.
NWAFPSetFileInformation uses an NW_AFP_SET_INFO structure to
modify file information. AFP file information includes the following items:

The AFP ID of the entry

The AFP ID of the parent of the entry

File or directory attributes

Data fork size

Resource fork size

Number of files and subdirectories contained in the entry

Dates and times the entry was created, accessed, modified, and backed
up

Macintosh Finder information

AFP long name

The object ID that created or last modified the entry

NetWare® name in the DOS or primary name space

Access privileges of the client

Apple Pro DOS information (Apple II Information)

All three functions include a request mask parameter that indicates the
information to be returned or modified. The request mask defines the
following values:

First Byte:

Bit 0 = AFP_GET_ATTRIBUTES

Bit 1 = AFP_GET_PARENT_ID

Bit 2 = AFP_GET_CREATE_DATE

Bit 3 = AFP_GET_ACCESS_DATE

Bit 4 = AFP_GET_MODIFY_DATE/TIME

Bit 5 = AFP_GET_BACKUP_DATE/TIME

Bit 6 = AFP_GET_FINDER_INFO

Bit 7 = AFP_GET_LONG_NAME

Second Byte:

File Service Group

AFP: Concepts 13

Bit 0 = AFP_GET_ENTRY_ID

Bit 1 = AFP_GET_DATE_FORK_LEN

Bit 2 = AFP_RESOURCE_LEN

Bit 3 = AFP_GET_NUM_OFFSPRING

Bit 4 = AFP_GET_OWNER_ID

Bit 5 = AFP_GET_SHORT_NAME

Bit 6 = AFP_GET_ACCESS_RIGHTS

Bit 7 = undefined

Parent Topic:

AFP: Guides

AFP Filename and Path Conventions

AFP directories and files differ from their counterparts in NetWare® in the
length of file names and the way naming paths are designated. AFP names
can contain from 1 to 31 characters comprised of any ASCII character
between 1 and 255 except the colon (:) or the NULL character. A NetWare
server automatically generates short names (DOS-style filenames) for all
AFP directories, as well as for any files created or accessed from DOS. The
server maintains both the long name and the short name for each AFP
directory and file.

Be aware that although most AFP functions use AFP directory paths, some
require a directory path in NetWare format, and that AFP and NetWare
formats cannot be mixed for entry. These differences are noted for each
function in AFP: Functions.

Parent Topic:

AFP: Guides

Finder Information

The Mac OS uses Finder information---the file type, the icon's location in its
parents window, and assorted file flags---to display files on the desktop.
Operations such as creating an AFP file or directory require Finder
information. If you pass a NULL value for the Finder information when you
create a file, the Mac OS automatically creates Finder information.

Parent Topic:

AFP: Guides

File Service Group

AFP: Concepts 14

AFP: Functions

File Service Group

AFP: Functions 15

NWAFPAllocTemporaryDirHandle

Allocates a directory handle for an AFP directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPAllocTemporaryDirHandle (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 pnstr8 AFPPathString,
 NWDIR_HANDLE N_FAR *dirHandle,
 pnuint8 accessRights);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPAllocTemporaryDirHandle
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 AFPPathString : pnstr8;
 Var dirHandle : NWDIR_HANDLE;
 accessRights : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare® server connection handle.

volNum

(IN) Specifies the volume number of the directory entry location.

AFPEntryID

(IN) Specifies the AFP base ID.

AFPPathString

File Service Group

AFP: Functions 16

(IN) Points to the AFP style directory path relative to AFPEntryID.

dirHandle

(OUT) Points to the NetWare directory handle.

accessRights

(OUT) Points to the effective rights the requesting user has on the
directory.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8805 NET_RECV_ERROR

0x8988 INVALID_FILE_HANDLE

0x8983 IO_ERROR_NETWORK_DISK

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x899D NO_MORE_DIRECTORY_HANDLES

0x89A1 DIRECTORY_IO_ERROR

Remarks

The directory handles allocated by NWAFPAllocTemporaryDirHandle
are automatically deallocated when the task terminates.

NCP Calls

0x2222 35 11 AFP Alloc Temporary Directory Handle

See Also

NWAllocTemporaryDirectoryHandle, NWAllocTempNSDirHandle2

File Service Group

AFP: Functions 17

NWAFPASCIIZToLenStr

Changes a NULL-terminated string to a length-preceded string

NetWare Server:

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwcalls.h>

NWCCODE NWAPI NWAFPASCIIZToLenStr (
 pnstr8 dstStr,
 pnstr8 srcStr);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPASCIIZToLenStr
 (pbstrDstStr : pnstr8;
 pbstrSrcStr : pnstr8
) : NWCCODE;

Parameters

dstStr

(OUT) Points to a length-preceeded string of PASCAL type.

srcStr

(IN) Points to a NULL-terminated string.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Remarks

NWAFPASCIIZToLenStr returns the length of the string if it is greater
than the predetermined accepted size.

File Service Group

AFP: Functions 18

NCP Calls

None

File Service Group

AFP: Functions 19

NWAFPCreateDirectory

Creates an AFP directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPCreateDirectory (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 pnuint8 finderInfo,
 pnstr8 AFPPathString,
 pnuint32 newAFPEntryID);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPCreateDirectory
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 finderInfo : pnuint8;
 AFPPathString : pnstr8;
 newAFPEntryID : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number of the directory entry location.

AFPEntryID

(IN) Specifies the AFP base ID.

finderInfo

File Service Group

AFP: Functions 20

(IN) Points to AFPFILEINFO containing the finder information for the
new directory.

AFPPathString

(IN) Points to the AFP directory path relative to AFPEntryID.

newAFPEntryID

(OUT) Points to the ID of the newly created directory.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8805 NET_RECV_ERROR

0x8983 IO_ERROR_NETWORK_DISK

0x8984 NO_CREATE_PRIVILEGES

0x8988 INVALID_FILE_HANDLE

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x8999 DIRECTORY_FULL

0x899C INVALID_PATH

0x899E INVALID_FILENAME

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

NCP Calls

0x2222 35 13 AFP 2.0 Create Directory

See Also

NWAFPDelete, NWCreateDirectory

File Service Group

AFP: Functions 21

NWAFPCreateFile

Creates an AFP file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPCreateFile (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 nuint8 delExistingFile,
 pnuint8 finderInfo,
 pnstr8 AFPPathString,
 pnuint32 newAFPEntryID);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPCreateFile
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 delExistingFile : nuint8;
 finderInfo : pnuint8;
 AFPPathString : pnstr8;
 newAFPEntryID : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number of the directory's entry location.

AFPEntryID

(IN) Specifies the AFP base ID.

File Service Group

AFP: Functions 22

delExistingFile

(IN) Specifies whether to delete the file of the same name (0 = do not
delete).

finderInfo

(IN) Points to AFPFILEINFO containing the finder information for the
new file.

AFPPathString

(IN) Points to the AFP directory path relative to AFPEntryID.

newAFPEntryID

(OUT) Points to the ID of the newly created directory.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8805 NET_RECV_ERROR

0x8980 ERR_LOCK_FAIL

0x8981 NO_MORE_FILE_HANDLES

0x8983 IO_ERROR_NETWORK_DISK

0x8984 NO_CREATE_PRIVILEGES

0x8987 WILD_CARDS_IN_CREATE_FILE_NAME

0x8988 INVALID_FILE_HANDLE

0x898A NO_DELETE_PRIVILEGES

0x898D SOME_FILES_AFFECTED_IN_USE

0x898E NO_FILES_AFFECTED_IN_USE

0x898F SOME_FILES_AFFECTED_READ_ONLY

0x8990 NO_FILES_AFFECTED_READ_ONLY

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x8999 DIRECTORY_FULL

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x899E INVALID_FILENAME

0x89A1 DIRECTORY_IO_ERROR

File Service Group

AFP: Functions 23

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR

0x89FF File Exists Error

Remarks

The file resulting from NWAFPCreateFile is not opened; it is created as a
normal Read/Write file with the system and hidden bits cleared.

For AFPPathString, byte 0 must be the length of the file name. The file
name begins at byte 1 of the string. (Only include the file name---not the
full path name---when calling NWAFPCreateFile .)

NCP Calls

0x2222 35 14 AFP 2.0 Create File

See Also

NWOpenNSEntry, NWOpenDataStream, NWAFPDelete,
NWAFPRename

File Service Group

AFP: Functions 24

NWAFPDelete

Deletes an AFP file or directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPDelete (
 NWCONN_HANDLE conn
 nuint16 volNum,
 nuint32 AFPEntryID,
 pnstr8 AFPPathString);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPDelete
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 AFPPathString : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number of the directory entry location.

AFPEntryID

(IN) Specifies the AFP base ID.

AFPPathString

(IN) Points to the AFP directory path relative to AFPEntryID.

Return Values

File Service Group

AFP: Functions 25

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8805 NET_RECV_ERROR

0x8983 IO_ERROR_NETWORK_DISK

0x8988 INVALID_FILE_HANDLE

0x898A NO_DELETE_PRIVILEGES

0x898D SOME_FILES_AFFECTED_IN_USE

0x898E NO_FILES_AFFECTED_IN_USE

0x898F SOME_FILES_AFFECTED_READ_ONLY

0x8990 NO_FILES_AFFECTED_READ_ONLY

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B Bad AFP Entry ID

0x899C INVALID_PATH

0x899E INVALID_FILENAME

0x899F DIRECTORY_ACTIVE

0x89A0 DIRECTORY_NOT_EMPTY

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR

0x89FF File Exists Error

Remarks

The directories to be deleted must be empty. Files to be deleted must be
closed by all users.

For AFPPathString, byte 0 must be the length of the file name. The file
name begins at byte 1 of the string. Include only the file name---not the
full path name---when calling NWAFPDelete.

NCP Calls

0x2222 35 03 AFP Delete

File Service Group

AFP: Functions 26

See Also

NWAFPCreateDirectory, NWAFPCreateFile ,
NWAFPGetEntryIDFromName, NWAFPGetEntryIDFromHandle,
NWAFPGetEntryIDFromPathName

File Service Group

AFP: Functions 27

NWAFPDirectoryEntry

Tests a directory entry to see if it is an AFP file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPDirectoryEntry (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPDirectoryEntry
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle for the path name.

path

(IN) Points to the path relative to dirHandle.

Return Values

These are common return values; see Return Values for more
information.

File Service Group

AFP: Functions 28

0x0000 DOS File

0x0001 Macintosh File

0x8801 INVALID_CONNECTION

0x8983 IO_ERROR_NETWORK_DISK

0x8988 INVALID_FILE_HANDLE

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x899C INVALID_PATH

0x89A2 READ_FILE_WITH_RECORD_LOCKED

Remarks

The dirHandle and path parameters must be given in the DOS name space
format.

NCP Calls

0x2222 22 5 Get Volume Number

0x2222 22 21 Get Volume Info With Handle

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 35 12 AFP Get Entry ID From Path Name

0x2222 35 15 AFP 2.0 Get File

0x2222 87 06 Obtain File or Subdirectory Information

0x2222 104 1 Ping for NDS NCP

See Also

NWAFPGetEntryIDFromPathName, NWGetVolumeInfoWithHandle,
NWParsePath, NWGetVolumeNumber, NWAFPGetFileInformation,
NWGetOwningNameSpace

File Service Group

AFP: Functions 29

NWAFPGetEntryIDFromHandle

Returns an AFP entry ID for the specified NetWare handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwcaldef.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPGetEntryIDFromHandle (
 NWCONN_HANDLE conn,
 pnuint8 NWHandle,
 pnuint16 volNum,
 pnuint32 AFPEntryID,
 pnuint8 forkIndicator);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPGetEntryIDFromHandle
 (conn : NWCONN_HANDLE;
 NWHandle : pnuint8;
 volNum : pnuint16;
 AFPEntryID : pnuint32;
 forkIndicator : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

NWHandle

(IN) Points to the 6-byte NetWare handle for the path name.

volNum

(OUT) Points to the volume number of the directory entry location.

AFPEntryID

(OUT) Points to the AFP file entry ID.

forkIndicator

File Service Group

AFP: Functions 30

forkIndicator

(OUT) Points to the fork indicator (0 = data; 1 = resource).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8988 INVALID_FILE_HANDLE

0x8998 VOLUME_DOES_NOT_EXIST

0x899C INVALID_PATH

Remarks

AFPEntryID points to the AFP file ID. It is not the AFP base ID.
INVALID_PATH will be returned if you use the AFPEntryID as the AFP
base ID.

NCP Calls

0x2222 35 06 AFP Get Entry ID From NetWare Handle

See Also

NWAFPGetEntryIDFromName, NWAFPGetEntryIDFromPathName,
NWAFPGetFileInformation, NWAFPAllocTemporaryDirHandle

File Service Group

AFP: Functions 31

NWAFPGetEntryIDFromName

Returns a unique AFP entry ID from an AFP entry ID of a parent and a
modifying path

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPGetEntryIDFromName (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 pnstr8 AFPPathString,
 pnuint32 newAFPEntryID);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPGetEntryIDFromName
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 AFPPathString : pnstr8;
 newAFPEntryID : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number of the directory entry location.

AFPEntryID

(IN) Specifies the unique AFP base ID.

AFPPathString

(IN) Points to the path string modifying AFPEntryID.

File Service Group

AFP: Functions 32

newAFPEntryID

(OUT) Points to the AFP entry ID of the given path.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8988 INVALID_FILE_HANDLE

0x8983 IO_ERROR_NETWORK_DISK

0x8993 NO_READ_RRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x899C INVALID_PATH

0x8998 VOLUME_DOES_NOT_EXIST

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR

NCP Calls

0x2222 35 04 AFP Get Entry ID From Name

See Also

NWAFPGetEntryIDFromHandle, NWAFPGetEntryIDFromPathName

File Service Group

AFP: Functions 33

NWAFPGetEntryIDFromPathName

Returns a unique 32-bit AFP file or directory ID, given a combination of
path and directory handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPGetEntryIDFromPathName (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 pnuint32 AFPEntryID);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPGetEntryIDFromPathName
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 AFPEntryID : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle for path.

path

(IN) Points to the path given relative to the directory handle.

AFPEntryID

(OUT) Points to the AFP base ID.

File Service Group

AFP: Functions 34

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 IO_ERROR_NETWORK_DISK

0x8988 INVALID_FILE_HANDLE

0x8993 NO_READ_RRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR

Remarks

The directory base and path specifications must be given in DOS name
space format.

NCP Calls

0x2222 35 12 AFP Get Entry ID From Path Name

See Also

NWAFPGetEntryIDFromHandle, NWAFPGetEntryIDFromName,
NWAFPGetFileInformation, NWAFPAllocTemporaryDirHandle,
NWAllocTempNSDirHandle2

File Service Group

AFP: Functions 35

NWAFPGetFileInformation

Returns AFP information for a directory or file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPGetFileInformation (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 nuint16 reqMask,
 pnstr8 AFPPathString,
 nuint16 structSize,
 NW_AFP_FILE_INFO N_FAR *AFPFileInfo);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPGetFileInformation
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 reqMask : nuint16;
 AFPPathString : pnstr8;
 structSize : nuint16;
 Var AFPFileInfo : NW_AFP_FILE_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number of the directory entry location.

AFPEntryID

(IN) Specifies the unique AFP base ID.

File Service Group

AFP: Functions 36

reqMask

(IN) Specifies the request bit mask information.

AFPPathString

(IN) Points to the AFP directory path relative to AFPEntryID.

structSize

(IN) Specifies the request AFPFILEINFO buffer size.

AFPFileInfo

(OUT) Points to AFPFILEINFO returning AFP file information.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8988 INVALID_FILE_HANDLE

0x8983 IO_ERROR_NETWORK_DISK

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899C INVALID_PATH

0x89A1 DIRECTORY_I/O_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF Failure. NO_FILES_FOUND_ERROR

Remarks

Valid bit map information request values follow for reqMask: (Bits can be
ORed together.)

C
Values

Pascal Values Value Names

0x0001 $0001 AFP_GET_ATTRIBUTES

0x0002 $0002 AFP_GET_PARENT_ID

0x0004 $0004 AFP_GET_CREATE_DATE

0x0008 $0008 AFP_GET_ACCESS_DATE

File Service Group

AFP: Functions 37

0x0010 $0010 AFP_GET_MODIFY_DATETIME

0x0020 $0020 AFP_GET_BACKUP_DATETIME

0x0040 $0040 AFP_GET_FINDER_INFO

0x0080 $0080 AFP_GET_LONG_NAME

0x0100 $0100 AFP_GET_ENTRY_ID

0x0200 $0200 AFP_GET_DATA_LEN

0x0400 $0400 AFP_GET_RESOURCE_LEN

0x0800 $0800 AFP_GET_NUM_OFFSPRING

0x1000 $1000 AFP_GET_OWNER_ID

0x2000 $2000 AFP_GET_SHORT_NAME

0x4000 $4000 AFP_GET_ACCESS_RIGHTS

0x8000 $8000 AFP_GET_PRO_DOS_INFO

0xffff $ffff AFP_GET_ALL

NCP Calls

0x2222 35 15 AFP 2.0 Get File

See Also

NWAFPSetFileInformation, NWAFPScanFileInformation

File Service Group

AFP: Functions 38

NWAFPOpenFileFork

Opens an AFP file fork from a DOS environment

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPOpenFileFork (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 nuint8 forkIndicator,
 nuint8 accessMode,
 pnstr8 AFPPathString,
 pnuint32 fileID,
 pnuint32 forkLength,
 pnuint8 NWHandle,
 NWFILE_HANDLE N_FAR *DOSFileHandle);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPOpenFileFork
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 forkIndicator : nuint8;
 accessMode : nuint8;
 AFPPathString : pnstr8;
 fileID : pnuint32;
 forkLength : pnuint32;
 NWHandle : pnuint8;
 Var DOSFileHandle : NWFILE_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

File Service Group

AFP: Functions 39

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number of the directory entry location.

AFPEntryID

(IN) Specifies the AFP base ID.

forkIndicator

(IN) Specifies the data or resource fork indicator (0=data; 1=resource).

accessMode

(IN) Specifies the file access mode indicator. (AR_READ and/or
AR_WRITE should be set.)

AFPPathString

(IN) Points to the AFP directory path relative to AFPEntryID.

fileID

(OUT) Points to the file entry ID.

forkLength

(OUT) Points to the length of the opened fork.

NWHandle

(OUT) Points to the 6-byte NetWare file handle.

DOSFileHandle

(OUT) Points to the file handle.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8980 FILE_IN_USE_ERROR

0x8981 NO_MORE_FILE_HANDLES

0x8988 INVALID_FILE_HANDLE

0x8983 IO_ERROR_NETWORK_DISK

0x8993 NO_READ_PRIVILEGES

0x8994 NO_WRITE_PRIVILEGES_OR_READONLY

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x8999 DIRECTORY_FULL

0x899C Invalid AFP Path String

File Service Group

AFP: Functions 40

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF LOCK_ERROR, NO_FILES_FOUND_ERROR

Remarks

If a file does not exist, NWAFPOpenFileFork returns
NO_FILES_FOUND_ERROR (0x89FF).

If an existing file does not have a resource or data file fork associated
with it, NWAFPOpenFileFork will automatically create and open the
specified file fork.

These constants are used by NWAFPOpenFileFork to identify access
rights attributes.

C Value Pascal Value Value Name

0x0001 $0001 AR_READ

0x0002 $0002 AR_WRITE

0x0001 $0001 AR_READ_ONLY

0x0002 $0002 AR_WRITE_ONLY

0x0004 $0004 AR_DENY_READ

0x0008 $0008 AR_DENY_WRITE

0x0010 $0010 AR_COMPATIBILITY

0x0040 $0040 AR_WRITE_THROUGH

0x0100 $0100 AR_OPEN_COMPRESSED

NCP Calls

0x2222 35 08 AFP Open File Fork

See Also

NWAFPCreateFile , NWAFPGetFileInformation,
NWAFPGetEntryIDFromName

File Service Group

AFP: Functions 41

NWAFPRename

Renames an AFP file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPRename (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPSourceEntryID,
 nuint32 AFPDestEntryID,
 pnstr8 AFPSrcPath,
 pnstr8 AFPDstPath);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPRename
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPSourceEntryID : nuint32;
 AFPDestEntryID : nuint32;
 AFPSrcPath : pnstr8;
 AFPDstPath : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number of the directory entry location.

AFPSourceEntryID

(IN) Specifies the AFP source base ID.

AFPDestEntryID

File Service Group

AFP: Functions 42

(IN) Specifies the AFP destination base ID.

AFPSrcPath

(IN) Points to the AFP source directory path relative to
AFPSourceEntryID.

AFPDstPath

(IN) Points to the AFP destination directory path, relative to
AFPDestEntryID.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8984 NO_CREATE_PRIVILEGES

0x8988 INVALID_FILE_HANDLE

0x8983 IO_ERROR_NETWORK_DISK

0x898B NO_RENAME_PRIVILEGES

0x898E NO_FILES_AFFECTED_IN_USE

0x8990 NO_FILES_AFFECTED_READ_ONLY

0x8992 NO_FILES_RENAMED_NAME_EXISTS

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x8999 DIRECTORY_FULL

0x899C Invalid AFP Path String

0x899E INVALID_FILENAME

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR

NCP Calls

0x2222 35 07 AFP Rename

See Also

File Service Group

AFP: Functions 43

NWNSRename, NWAFPGetEntryIDFromName

File Service Group

AFP: Functions 44

NWAFPScanFileInformation

Scans a directory and returns AFP file/directory information

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPScanFileInformation (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPEntryID,
 pnuint32 AFPLastSeenID,
 nuint16 searchMask,
 nuint16 reqMask,
 pnstr8 AFPPathString,
 nuint16 structSize,
 NW_AFP_FILE_INFO N_FAR *AFPFileInfo);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPScanFileInformation
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPEntryID : nuint32;
 AFPLastSeenID : pnuint32;
 searchMask : nuint16;
 reqMask : nuint16;
 AFPPathString : pnstr8;
 structSize : nuint16;
 Var AFPFileInfo : NW_AFP_FILE_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

File Service Group

AFP: Functions 45

(IN) Specifies the volume number of the directory entry location.

AFPEntryID

(IN) Specifies the AFP base ID.

AFPLastSeenID

(IN) Points to AFPEntryID.

searchMask

(IN) Specifies the search mask.

reqMask

(IN) Specifies the request bit mask information.

AFPPathString

(IN) Points to the AFP directory path relative to AFPEntryID.

structSize

(IN) Specifies the size of the AFPFILEINFO buffer.

AFPFileInfo

(OUT) Points to AFPFILEINFO returning AFP file information.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8983 IO_ERROR_NETWORK_DISK

0x8988 INVALID_PATH

0x8993 NO_READ_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR

Remarks

AFPLastSeenID should be initialized to -1 on the first iteration.

File Service Group

AFP: Functions 46

Valid bit map information request values follow for reqMask. (Bits can be
ORed together.)

C
Values

Pascal Values Value Names

0x0001 $0001 AFP_GET_ATTRIBUTES

0x0002 $0002 AFP_GET_PARENT_ID

0x0004 $0004 AFP_GET_CREATE_DATE

0x0008 $0008 AFP_GET_ACCESS_DATE

0x0010 $0010 AFP_GET_MODIFY_DATETIME

0x0020 $0020 AFP_GET_BACKUP_DATETIME

0x0040 $0040 AFP_GET_FINDER_INFO

0x0080 $0080 AFP_GET_LONG_NAME

0x0100 $0100 AFP_GET_ENTRY_ID

0x0200 $0200 AFP_GET_DATA_LEN

0x0400 $0400 AFP_GET_RESOURCE_LEN

0x0800 $0800 AFP_GET_NUM_OFFSPRING

0x1000 $1000 AFP_GET_OWNER_ID

0x2000 $2000 AFP_GET_SHORT_NAME

0x4000 $4000 AFP_GET_ACCESS_RIGHTS

0x8000 $8000 AFP_GET_PRO_DOS_INFO

0xffff $ffff AFP_GET_ALL

NWSEARCH_MASK is defined as follows:

C
Values

Pascal Values Value Names

0x0000 $0000 AFP_SA_NORMAL

0x0100 $0100 AFP_SA_HIDDEN

0x0200 $0200 AFP_SA_SYSTEM

0x0400 $0400 AFP_SA_SUBDIR

0x0800 $0800 AFP_SA_FILES

0xF00 $0F00 AFP_SA_ALL

AFPFILEINFO attributes follow:

0x0001 = Search Mode
0x0002 = Search Mode

File Service Group

AFP: Functions 47

0x0004 = Search Mode
0x0008 = Undefined
0x0010 = Transaction
0x0020 = Index
0x0040 = Read Audit
0x0080 = Write Audit
0x0100 = Read Only
0x0200 = Hidden
0x0400 = System
0x0800 = Execute Only
0x1000 = Subdirectory
0x2000 = Archive
0x4000 = Undefined
0x8000 = Shareable File

NCP Calls

0x2222 35 17 AFP 2.0 Scan File Information

See Also

NWAFPGetFileInformation

File Service Group

AFP: Functions 48

NWAFPSetFileInformation

Sets AFP information for a file or directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPSetFileInformation (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 AFPBaseID,
 nuint16 reqMask,
 pnstr8 AFPPathString,
 nuint16 structSize,
 NW_AFP_SET_INFO N_FAR *AFPSetInfo);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPSetFileInformation
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 AFPBaseID : nuint32;
 reqMask : nuint16;
 AFPPathString : pnstr8;
 structSize : nuint16;
 Var AFPSetInfo : NW_AFP_SET_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number of the directory entry location.

AFPBaseID

(IN) Specifies the AFP base ID.

File Service Group

AFP: Functions 49

reqMask

(IN) Specifies the request bit mask information.

AFPPathString

(IN) Points to the AFP directory path relative to AFPBaseID.

structSize

(IN) Specifies the size of the AFPSETINFO buffer.

AFPSetInfo

(IN) Points to AFPSETINFO to set AFP file information.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8901 ERR_INSUFFICIENT_SPACE

0x8988 INVALID_FILE_HANDLE

0x8901 ERR_INSUFFICIENT_SPACE

0x8983 IO_ERROR_NETWORK_DISK

0x8993 NO_READ_PRIVILEGES

0x8994 NO_WRITE_PRIVILEGES_OR_READONLY

0x8995 FILE_DETACHED

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89A2 READ_FILE_WITH_RECORD_LOCKED

0x89FD BAD_STATION_NUMBER

0x89FF Failure; NO_FILES_FOUND_ERROR

Remarks

The following constants are used by NWAFPSetFileInformation to
manipulate requestMask. They are also used in by NWSEARCH_MASK in
NWAFPScanFileInformation.

C Pascal Values Value Names

File Service Group

AFP: Functions 50

Values

0x0001 $0001 AFP_GET_ATTRIBUTES

0x0002 $0002 AFP_GET_PARENT_ID

0x0004 $0004 AFP_GET_CREATE_DATE

0x0008 $0008 AFP_GET_ACCESS_DATE

0x0010 $0010 AFP_GET_MODIFY_DATETIME

0x0020 $0020 AFP_GET_BACKUP_DATETIME

0x0040 $0040 AFP_GET_FINDER_INFO

0x0080 $0080 AFP_GET_LONG_NAME

0x0100 $0100 AFP_GET_ENTRY_ID

0x0200 $0200 AFP_GET_DATA_LEN

0x0400 $0400 AFP_GET_RESOURCE_LEN

0x0800 $0800 AFP_GET_NUM_OFFSPRING

0x1000 $1000 AFP_GET_OWNER_ID

0x2000 $2000 AFP_GET_SHORT_NAME

0x4000 $4000 AFP_GET_ACCESS_RIGHTS

0x8000 $8000 AFP_GET_PRO_DOS_INFO

0xffff $ffff AFP_GET_ALL

These constants identify AFP entries to be included in
NWAFPSetFileInformation.

C
Values

Pascal Values Value Names

0x0000 $0000 AFP_SA_NORMAL

0x0100 $0100 AFP_SA_HIDDEN

0x0200 $0200 AFP_SA_SYSTEM

0x0400 $0400 AFP_SA_SUBDIR

0x0800 $0800 AFP_SA_FILES

0xF00 $0F00 AFP_SA_ALL

Valid bit map information request values follow for reqMask: (Bits can be
ORed together.)

C
Values

Pascal Values Value Names

0x0001 $0001 AFP_SET_ATTRIBUTES

File Service Group

AFP: Functions 51

0x0004 $0004 AFP_SET_CREATE_DATE

0x0008 $0008 AFP_SET_ACCESS_DATE

0x0010 $0010 AFP_SET_MODIFY_DATETIME

0x0020 $0020 AFP_SET_BACKUP_DATETIME

0x0040 $0040 AFP_SET_FINDER_INFO

0x8000 $8000 AFP_SET_PRO_DOS_INFO

AFPSETINFO attributes follow:

0x0001 = Search Mode
0x0002 = Search Mode
0x0004 = Search Mode
0x0008 = Undefined
0x0010 = Transaction
0x0020 = Index
0x0040 = Read Audit
0x0080 = Write Audit
0x0100 = Read Only
0x0200 = Hidden
0x0400 = System
0x0800 = Execute Only
0x1000 = Subdirectory
0x2000 = Archive
0x4000 = Undefined
0x8000 = Shareable File

NCP Calls

0x2222 35 16 AFP 2.0 Set File Information

See Also

NWAFPGetFileInformation, NWAFPScanFileInformation,
NWSetLongName

File Service Group

AFP: Functions 52

NWAFPSupported

Reports whether the AFP is supported on a server volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: AFP

Syntax

#include <nwafp.h>
or
#include <nwcalls.h>

NWCCODE NWAPI NWAFPSupported (
 NWCONN_HANDLE conn,
 nuint16 volNum);

Pascal Syntax

#include <nwafp.inc>

Function NWAFPSupported
 (conn : NWCONN_HANDLE;
 volNum : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number to test.

Return Values

These are common return values; see Return Values for more
information.

0x0000 AFP supported

Non-zer
o

AFP not supported

File Service Group

AFP: Functions 53

NCP Calls

0x2222 22 6 Get Volume Name

0x2222 35 12 AFP Get Entry ID From Path Name

See Also

NWReadNSInfo, NWGetVolumeName,
NWAFPGetEntryIDFromPathName

File Service Group

AFP: Functions 54

AFP: Structures

File Service Group

AFP: Structures 55

NW_AFP_FILE_INFO

 Defines file information for AFP files

Service: AFP

Defined In: nwafp.h

Structure

typedef struct
{
 nuint32 entryID;
 nuint32 parentID;
 nuint16 attributes;
 nuint32 dataForkLength;
 nuint32 resourceForkLength;
 nuint16 numOffspring;
 nuint16 creationDate;
 nuint16 accessDate;
 nuint16 modifyDate;
 nuint16 modifyTime;
 nuint16 backupDate;
 nuint16 backupTime;
 nuint8 finderInfo[32];
 nstr8 longName[34];
 nuint32 ownerID;
 nstr8 shortName[14];
 nuint16 accessPrivileges;
 nuint8 proDOSInfo[6];
} NW_AFP_FILE_INFO, AFPFILEINFO;

Pascal Structure

Defined in nwafp.inc

AFPFILEINFO = Record
 entryID : nuint32;
 parentID : nuint32;
 attributes : nuint16;
 dataForkLength : nuint32;
 resourceForkLength : nuint32;
 numOffspring : nuint16;
 creationDate : nuint16;
 accessDate : nuint16;
 modifyDate : nuint16;
 modifyTime : nuint16;
 backupDate : nuint16;
 backupTime : nuint16;
 finderInfo : Array[0..31] Of nuint8;
 longName : Array[0..33] Of nstr8;

File Service Group

AFP: Structures 56

 ownerID : nuint32;
 shortName : Array[0..13] Of nstr8;
 accessPrivileges : nuint16;
 proDOSInfo : Array[0..5] Of nuint8
 End;

Fields

entryID

Indicates the unique AFP identifier of a file or directory.

parentID

Indicates the unique AFP identifier for the parent directory. The root
will be 0.

attributes

Indicates the set of bits identifying the entry's attributes:

0x0001 = Search Mode

0x0002 = Search Mode

0x0004 = Search Mode

0x0008 = Undefined

0x0010 = Transaction

0x0020 = Index

0x0040 = Read Audit

0x0080 = Write Audit

0x0100 = Read Only

0x0200 = Hidden

0x0400 = System

0x0800 = Execute Only

0x1000 = Subdirectory

0x2000 = Archive

0x4000 = Undefined

0x8000 = Shareable File

dataForkLength

Indicates the data size of the target AFP file. If pathModString specifies
an AFP directory, dataForkLength returns a zero (0).

resourceForkLength

Indicates the resource fork size of the target AFP file. If pathModString
specifies an AFP directory, resourceForkLength returns a zero.

numOffspring

Indicates the number of files and subdirectiries contained within the
specified directory. If the AFP directory or file path specifies an AFP
file, numOffspring returns a zero (0).

creationDate

Indicates the creation date (in AFP format) of the target directory or

File Service Group

AFP: Structures 57

file.

accessDate

Indicates when the target AFP file was last accessed (returned in AFP
format). If pathModString specifies an AFP directory, accessDate returns
a zero.

modifyDate

Indicates the last modified date (in AFP format) of the target AFP file.
If pathModString specifies an AFP directory, modifyDate returns zero.

modifyTime

Indicates the last modified time (in AFP format) of the target AFP file.
If pathModString specifies an AFP directory, modifyTime returns zero.

backupDate

Indicates the last backup date (in AFP format) of the specified
directory or file.

backupTime

Indicates the last backup time (in AFP format) of the specified
directory or file.

finderInfo

Indicates the 32-byte finder information structure associated with each
AFP directory or file.

longName

Indicates the AFP directory or file name of the specified directory or
file. An AFP directory or filename can be from 1 to 31 characters long.
longName is a null-terminated ASCII string. One extra byte has been
added for the NULL terminator and another byte has been added to
ensure word alignment.

ownerID

Indicates the 4-byte bindery object ID of the object creating or last
modifying the file.

shortName

Indicates the NetWare® directory or file name of the specified
directory or file in the DOS name space. A NetWare directory or file
name is in DOS 8.3 format. shortName is a null-terminated ASCII
string. One extra byte has been added for the NULL terminator and
another byte has been added to ensure word alignment.

accessPrivileges

Indicates the one-word bit mask of the calling station's privileges for
accessing the specified file or directory.

proDOSInfo

Indicates the 6-byte structure defined in Apple documentation.

File Service Group

AFP: Structures 58

NW_AFP_SET_INFO

Defines Apple file attributes

Service: AFP

Defined In: nwafp.h

Structure

typedef struct
{
 nuint16 attributes;
 nuint16 creationDate;
 nuint16 accessDate;
 nuint16 modifyDate;
 nuint16 modifyTime;
 nuint16 backupDate;
 nuint16 backupTime;
 nuint8 finderInfo[32];
 nuint8 proDOSInfo[6];
} NW_AFP_SET_INFO, AFPSETINFO;

Pascal Structure

Defined in nwafp.inc

AFPSETINFO = Record
 attributes : nuint16;
 creationDate : nuint16;
 accessDate : nuint16;
 modifyDate : nuint16;
 modifyTime : nuint16;
 backupDate : nuint16;
 backupTime : nuint16;
 finderInfo : Array[0..31] Of nuint8;
 proDOSInfo : Array[0..5] Of nuint8
 End;

Fields

attributes

Indicates the file attributes.

creationDate

Indicates the creation date (in AFP format) of the target directory or
file.

accessDate

Indicates when the target AFP file was last accessed (returned in AFP

File Service Group

AFP: Structures 59

format).

modifyDate

Indicates the last modified date (in AFP format) of the target AFP file.

modifyTime

Indicates the last modified time (in AFP format) of the target AFP file.

backupDate

Indicates the last date (in AFP format) the file was backed up.

backupTime

Indicates the time (in AFP format) the file was last backed up.

finderInfo

Indicates the information defined in Apple documentation.

proDOSInfo

Indicates the 6-byte structure defined in Apple documentation.

File Service Group

AFP: Structures 60

RECPKT_AFPFILEINFO

Is the structure actually returned from the NCP call

Service: AFP

Defined In: nwafp.h

Structure

typedef struct
{
 nuint32 entryID;
 nuint32 parentID;
 nuint16 attributes;
 nuint32 dataForkLength;
 nuint32 resourceForkLength;
 nuint16 numOffspring;
 nuint16 creationDate;
 nuint16 accessDate;
 nuint16 modifyDate;
 nuint16 modifyTime;
 nuint16 backupDate;
 nuint16 backupTime;
 nuint8 finderInfo[32];
 nstr8 longName[32];
 nuint32 ownerID;
 nstr8 shortName[12];
 nuint16 accessPrivileges;
 nuint8 proDOSInfo[6];
} RECPKT_AFPFILEINFO;

Pascal Structure

Defined in nwafp.inc

RECPKT_AFPFILEINFO = Record
 entryID : nuint32;
 parentID : nuint32;
 attributes : nuint16;
 dataForkLength : nuint32;
 resourceForkLength : nuint32;
 numOffspring : nuint16;
 creationDate : nuint16;
 accessDate : nuint16;
 modifyDate : nuint16;
 modifyTime : nuint16;
 backupDate : nuint16;
 backupTime : nuint16;
 finderInfo : Array[0..31] Of nuint8;
 longName : Array[0..31] Of nstr8;

File Service Group

AFP: Structures 61

 ownerID : nuint32;
 shortName : Array[0..11] Of nstr8;
 accessPrivileges : nuint16;
 proDOSInfo : Array[0..5] Of nuint8
 End;

Fields

entryID

Indicates the unique AFP identifier of a file or directory.

parentID

Indicates the unique AFP identifier for the parent directory. The root
will be 0.

attributes

Indicates the set of bits identifying the entry's attributes:

0x0001 = Search Mode

0x0002 = Search Mode

0x0004 = Search Mode

0x0008 = Undefined

0x0010 = Transaction

0x0020 = Index

0x0040 = Read Audit

0x0080 = Write Audit

0x0100 = Read Only

0x0200 = Hidden

0x0400 = System

0x0800 = Execute Only

0x1000 = Subdirectory

0x2000 = Archive

0x4000 = Undefined

0x8000 = Shareable File

dataForkLength

Indicates the data size of the target AFP file. If pathModString specifies
an AFP directory, dataForkLength returns a zero (0).

resourceForkLength

Indicates the resource fork size of the target AFP file. If pathModString
specifies an AFP directory, resourceForkLength returns a zero.

numOffspring

Indicates the number of files and subdirectiries contained within the
specified directory. If the AFP directory or file path specifies an AFP
file, numOffspring returns a zero (0).

creationDate

Indicates the creation date (in AFP format) of the target directory or

File Service Group

AFP: Structures 62

file.

accessDate

Indicates when the target AFP file was last accessed (returned in AFP
format). If pathModString specifies an AFP directory, accessDate returns
a zero.

modifyDate

Indicates the last modified date (in AFP format) of the target AFP file.
If pathModString specifies an AFP directory, modifyDate returns zero.

modifyTime

Indicates the last modified time (in AFP format) of the target AFP file.
If pathModString specifies an AFP directory, modifyTime returns zero.

backupDate

Indicates the last backup date (in AFP format) of the specified
directory or file.

backupTime

Indicates the last backup time (in AFP format) of the specified
directory or file.

finderInfo

Indicates the 32-byte finder information structure associated with each
AFP directory or file.

longName

Indicates the AFP directory or file name of the specified directory or
file. An AFP directory or filename can be from 1 to 31 characters long.

ownerID

Indicates the 4-byte bindery object ID of the object creating or last
modifying the file.

shortName

Indicates the NetWare® directory or file name of the specified
directory or file in the DOS name space. A NetWare directory or file
name is in DOS 8.3 format.

accessPrivileges

Indicates the one-word bit mask of the calling station's privileges for
accessing the specified file or directory.

proDOSInfo

Indicates the 6-byte structure defined in Apple documentation.

File Service Group

AFP: Structures 63

Data Migration

File Service Group

 64

Data Migration: Guides

Data Migration: Concepts

Data Migration Introduction

Data Migration Volume Information

Support Module Information

Data Migration Functions

Migrating Files Example

Additional Links

Data Migration: Functions

Data Migration: Structures

Parent Topic:

File Overview

File Service Group

Data Migration: Guides 65

Data Migration: Examples

Migrating Files Example

The following is an example of migrating files on a monthly basis.

NOTE: This example contains DOS specific screen functions that
should be ignored on non-DOS platforms.

Migrating Files on a Monthly Basis

define N_PLAT_DOS

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <dir.h>
#include <ntypes.h>
#include <dos.h>
#include <nwmigrate.h>
#include <nwmisc.h>
#include <nwdpath.h>
#include <nwnamespc.h>

extern unsigned int _stklen = 8192;

#define HCSSSMID 0x640F0F6DL

DWORD HCSSSupportModuleID = HCSSSMID;

main(int argc, char *argv[])
{
 struct
 {
 WORD len;
 BYTE subFunction;
 nuint32 supportModuleID;
 DWORD vol;
 DWORD TargetDirectoryBase;
 } reqBuf;

 struct Info3RepStruct
 {
 DWORD BlockSizeInSectors;
 DWORD TotalBlocks;
 DWORD UsedBlocks;

File Service Group

Data Migration: Examples 66

 } info3Rep;

 struct Info0RepStruct
 {
 DWORD rIOStatus;
 DWORD rInfoBlockSize;
 DWORD rAvailSpace;
 DWORD rUsedSpace;
 BYTE rSMString[128];
 DWORD majorVersion;
 DWORD minorVersion;
 DWORD revision;
 DWORD year;
 DWORD month;
 DWORD day;

 } info0Rep;

 NWDIR_HANDLE dirHandle;
 NWCONN_HANDLE conn;
 NW_FRAGMENT reqFrag[1], repFrag[1];
 NW_IDX idxStruct;
 DWORD retLen;
 nuint16 drive;
 struct ffblk ffblk;
 NWCCODE ccode;
 nstr8 path[MAXPATH], dirname[MAXPATH], dirPath[MAXPATH],
 *months[] = {"January", "February", "March",
 "April", "May", "June", "July", "August",
 "September", "October", "November", "December"};

 if (argc !=2)
 {
 printf("Usage: migrate <filename>\n");
 exit(1);
 }
 strupr(argv[1]);

 getcwd(dirname, MAXPATH);
 drive = dirname[0]-64;

 ccode = NWCallsInit(NULL, NULL):
 if(ccode)
 exit(1);

 ccode = findfirst(argv[1], &ffblk, 0);
 if(ccode)
 exit(1);

 ccode = NWGetDriveInformation(drive, 0, &conn, &dirHandle, 0,
 dirPath);
 if(ccode)

File Service Group

Data Migration: Examples 67

 exit(1);

 ccode = NWGetDirectoryBase(conn, dirHandle, dirPath, NW_NS_DOS,
 &idxStruct);
 if(ccode)
 exit(1);

 ccode = NWSetDefaultSupportModule(conn, &HCSSSupportModuleID);
 if(ccode)
 exit(1);
 {
 sprintf(path, "%s\\%s", dirPath, argv[1]); /* path minus
 drive */
 /* Get media capacities relative to the path. */

 reqBuf.len = 9;
 reqBuf.subFunction = 135; /* For SM info level 3 */
 reqBuf.supportModuleID = HCSSMID;
 reqBuf.vol = idxStruct.volNumber;
 reqBuf.TargetDirectoryBase = idxStruct.dstDirBase;

 reqFrag[0].fragAddress = &reqBuf'
 reqFrag[0].fragSize = sizeof(reqBuf);

 repFrag[0].fragAddress = &info3Rep;
 repFrag[0].fragSize = sizeof(struct Info3RepStruct);

 ccode = NWRequest(conn, 90, 1, reqFrag, 1, repFrag);
 if(ccode)
 exit(1);
 {

 /* Make sure the file is not greater than the available space on the
 media. */

 if(((ffblk.ff_fsize+511)/512) <
 ((info3Rep.TotalBlocks - info3Rep.UsedBlocks)
 * info3Rep.BlockSizeInSectors))

 {
 /* Migrate the file. */
 switch(ccode = NWMoveFileToDM(conn, dirHandle,
 path, NW_NS_DOS, HCSSSupportModuleID, 1))

 {
 case 0:
 /* Get media capacities relative to the path. */

 retLen = sizeof(struct
 Info0RepStruct);

 ccode = NWGetSupportModuleInfo(

File Service Group

Data Migration: Examples 68

 conn, 0L,HCSSSupportModuleID,
 (BYTE far*)&info0Rep.rIOStatus,
 &retLen);

 if(ccode)
 printf("\nNWGetSupport
 ModuleInfo() Failure
 0x%x\n",);
 else
 {
 printf("Info block size:
 %lu\n", info0Rep.rInfo
 BlockSize);

 printf("Total available space
 (in sectors): %lu\n",
 info0Rep.rAvailSpace);

 printf("Total used space (in
 sectors): %lu\n, info0Rep.
 rUsedSpace);

 printf("Support module name:
 %s\n", info0Rep.rSMString);

 printf("Support module version:
 %lu.%lu rev. %lu\n",
 info0Rep.majorVersion,
 info0Rep.minorVersion,
 info0Rep.revision);

 printf("Support module date:
 %s %lu, %lu\n", months
 [(int)(info0Rep.month-1)],
 info0Rep.day, info0Rep.year);

 }
 break;

 case 0x8995:
 printf("File is already migrated.\n");

 break;

 default:
 printf("Unsuccessful completion code:
 x0%x\n", ccode);
 }
 }
 }
 }
 return(0);

File Service Group

Data Migration: Examples 69

}

Parent Topic:

Data Migration: Guides

File Service Group

Data Migration: Examples 70

Data Migration: Concepts

Data Migration Functions

These functions move files to and from remote storage, return data
migration information for files and volumes, and return information about
the Data Migrator and support modules.

Function Comment

NWMoveFileToDM Moves a file's data to an online, long
term storage media but leaves the file
visible on the NetWare® volume.

NWMoveFileFromDM Moves a file's data from an online,
long term storage media to a
NetWare volume.

NWGetDataMigratorInfo Returns version numbers for the Data
Migrator NLM. Use this function to
test whether the Data Migrator is
loaded.

NWGetDefaultSupportModu
le

Returns the default support module
for reading and writing migrated
data.

NWGetDMFileInfo Returns information about migrated
files.

NWGetDMVolumeInfo Returns information about the data
that has been migrated in relation to
the specified volume.

NWGetSupportModuleInfo Can return either a list of data
migration support module IDs or
information about a specific support
module.

NWSetDefaultSupportModul
e

Sets the default support module for
reading and writing migrated data.

Parent Topic:

Data Migration: Guides

Data Migration Introduction

File Service Group

Data Migration: Concepts 71

Data Migration Services enable client applications to move NetWare® files
to supplementary nearline storage devices. Nearline storage devices include
another volume, another server, another media type, another file system, a
tape or even a jukebox. Migrated files are still readily accessible, although
the files themselves are remote. When the files are accessed, they are
de-migrated in real time to primary storage. The files remain in the file
system's directory structure and all file information stays intact.

Retrieval time for migrated files varies, depending on the nearline storage
device. Retrieval from a CD ROM or disk subsystem is nearly as fast as
retrieval from a NetWare volume.

Files migrated are still accessed through the NetWare file system. For
example, files migrated to a jukebox remain visible in the NetWare
directory and when a user attempts to access one of these files, the system
retrieves the data from the jukebox.

A Data Migrator NLM™ application administers data migration and is
available from Novell®. Support module NLM applications register with
the Data Migrator to provide access to specific storage schemas. The Novell
Data Migrator can register up to 32 support modules.

Users and administrators determine the criteria for migrating files. These
criteria typically specify seldom accessed files or files that require excessive
storage space, such as large database files. Users can migrate an unlimited
number of files.

Parent Topic:

Data Migration: Guides

Data Migration Volume Information

NWGetDMVolumeInfo returns information about the Data Migrator NLM
on a volume. Data migration volume information includes:

Number of migrated files

Total size of migrated data

Size of data on the migration media

Amount of limbo space

Limbo space refers to migrated files that have been restored to the file
system but not removed from remote storage. Generally, files are retained in
remote storage after they have been migrated until the file is either deleted
or re-migrated.

Parent Topic:

File Service Group

Data Migration: Concepts 72

Data Migration: Guides

Support Module Information

All available support modules are registered with the Data Migrator under
a support module ID. Call NWGetSupportModuleInfo to receive a list of
support modules. After receiving the IDs, use the same function to receive
information about individual support modules.

The support module list is returned as a SUPPORT_MODULE_IDS
structure. It contains an array of support module IDs.

Information about individual modules is returned as a
SUPPORT_MODULE_INFO structure.

IO status

Block size

Available space

Space in-use

Information specific to the module can also be returned as a
length-preceded string.

Parent Topic:

Data Migration: Guides

File Service Group

Data Migration: Concepts 73

Data Migration: Functions

File Service Group

Data Migration: Functions 74

NWGetDataMigratorInfo

Returns information about the data migrator

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: Data Migration

Syntax

#include <nwmigrat.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetDataMigratorInfo (
 NWCONN_HANDLE conn,
 pnuint32 DMPresentFlag,
 pnuint32 majorVersion,
 pnuint32 minorVersion,
 pnuint32 DMSMRegistered);

Pascal Syntax

#include <nwmigrat.inc>

Function NWGetDataMigratorInfo
 (conn : NWCONN_HANDLE;
 DMPresentFlag : pnuint32;
 majorVersion : pnuint32;
 minorVersion : pnuint32;
 DMSMRegistered : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare® server connection handle.

DMPresentFlag

(OUT) Points to a flag. If equal to -1, the DM NLM has been loaded
and is running; if equal to 0, the DM NLM is not loaded.

majorVersion

(OUT) Points to the data migrator major version number.

minorVersion

(OUT) Points to the data migrator minor version number.

File Service Group

Data Migration: Functions 75

DMSMRegistered

(OUT) Points to a flag indicating if the support module has been
registered with the data migrator: non-zero = support module was
registered, zero = support module was not registered.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89FB Data Migration is not supported

NCP Calls

0x2222 90 131 Migrator Status Info

See Also

NWGetDMVolumeInfo, NWGetDMFileInfo

File Service Group

Data Migration: Functions 76

NWGetDefaultSupportModule

Returns the default Read/Write Support Module ID for data migration

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Data Migration

Syntax

#include <nwmigrat.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetDefaultSupportModule (
 NWCONN_HANDLE conn,
 pnuint32 supportModuleID);

Pascal Syntax

#include <nwmigrat.h>

Function NWGetDefaultSupportModule
 (conn : NWCONN_HANDLE;
 supportModuleID : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

supportModuleID

(OUT) Points to the currently supported module ID.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89EC NO_SUCH_SEGMENT

File Service Group

Data Migration: Functions 77

0x00F0 ERR_INVALID_SM_ID

0x89FB N0_SUCH_PROPERTY

NCP Calls

0x2222 90 134 Get/Set Default Read-Write Support Module ID

See Also

NWSetDefaultSupportModule, NWGetSupportModuleInfo

File Service Group

Data Migration: Functions 78

NWGetDMFileInfo

Returns information about data migrated files

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Data Migration

Syntax

#include <nwmigrat.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetDMFileInfo (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint8 nameSpace,
 pnuint32 supportModuleID,
 pnuint32 restoreTime,
 pnuint32 dataStreams);

Pascal Syntax

#include <nwmigrat.h>

Function NWGetDMFileInfo
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 nameSpace : nuint8;
 supportModuleID : pnuint32;
 restoreTime : pnuint32;
 dataStreams : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired name
space (optional).

path

File Service Group

Data Migration: Functions 79

(IN) Points to a valid DOS path pointing to a file.

nameSpace

(IN) Specifies the name space of the DOS path.

supportModuleID

(OUT) Points to the ID of the Support Module containing the migrated
data.

restoreTime

(OUT) Points to an estimate of the time (in ticks) needed to retrieve the
data.

dataStreams

(OUT) Points to an array of supported data streams.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x8998 VOLUME_DOES_NOT_EXIST

0x899B Bad AFP Entry ID

0x899E INVALID_FILENAME

0x89A8 ERR_ACCESS_DENIED

0x89BF INVALID_NAME_SPACE

0x00F0 ERR_INVALID_SM_ID

NCP Calls

The time returned in the restoreTime parameter represents the estimated
number of ticks needed. There are 18.2 ticks in one second.

NCP Calls

0x2222 87 06 Obtain File or Subdirectory Information

0x2222 90 129 DM File Information

See Also

NWGetSupportModuleInfo, NWMoveFileFromDM,
NWMoveFileToDM

File Service Group

Data Migration: Functions 80

NWGetDMVolumeInfo

Returns information about the Data Migrator NLM on a NetWare volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Data Migration

Syntax

#include <nwmigrat.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetDMVolumeInfo (
 NWCONN_HANDLE conn,
 nuint16 volume,
 nuint32 supportModuleID,
 pnuint32 numberOfFilesMigrated,
 pnuint32 totalMigratedSize,
 pnuint32 spaceUsedOnDM,
 pnuint32 limboSpaceUsedOnDM,
 pnuint32 spaceMigrated,
 pnuint32 filesInLimbo);

Pascal Syntax

#include <nwmigrat.h>

Function NWGetDMVolumeInfo
 (conn : NWCONN_HANDLE;
 volume : nuint16;
 supportModuleID : nuint32;
 numberOfFilesMigrated : pnuint32;
 totalMigratedSize : pnuint32;
 spaceUsedOnDM : pnuint32;
 limboSpaceUsedOnDM : pnuint32;
 spaceMigrated : pnuint32;
 filesInLimbo : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volume

File Service Group

Data Migration: Functions 81

(IN) Specifies the volume number having the migrated files.

supportModuleID

(IN) Specifies the currently supported module ID.

numberOfFilesMigrated

(OUT) Points to the migrated number of files from the selected
volume.

totalMigratedSize

(OUT) Points to the total number of bytes needed to recover all the
data on the selected volume.

spaceUsedOnDM

(OUT) Points to the size of the data on the migrator media.

limboSpaceUsedOnDM

(OUT) Points to the size of the demigrated data on the migrator area.
Since the data is generally Read Only, the file will be kept on the
migrator until the file is either deleted or remigrated with changes.

spaceMigrated

(OUT) Points to the total size of the migrated data for the volume
(includes the limbo space used).

filesInLimbo

(OUT) Points to the number of files that are in limbo or were
demigrated with SAVE_KEY_WHEN_FILE_IS_DEMIGRATED and
have not been migrated back to the data migrator.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x00F0 ERR_INVALID_SM_ID

0x8801 INVALID_CONNECTION

0x8978 ERR_VOLUME_FLAG_NOT_SET

0x897E NCP_BOUNDARY_CHECK_FAILED

0x8998 VOLUME_DOES_NOT_EXIST

NCP Calls

0x2222 90 130 Get Volume DM Status

See Also

File Service Group

Data Migration: Functions 82

NWGetDefaultSupportModule, NWGetDataMigratorInfo,
NWGetSupportModuleInfo

File Service Group

Data Migration: Functions 83

NWGetSupportModuleInfo

Returns information about the Data Migrator NLM support modules or a
list of all loaded support module IDs

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Data Migration

Syntax

#include <nwmigrat.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetSupportModuleInfo (
 NWCONN_HANDLE conn,
 nuint32 informationLevel,
 nuint32 supportModuleID,
 pnuint8 returnInfo,
 pnuint32 returnInfoLen);

Pascal Syntax

#include <nwmigrat.h>

Function NWGetSupportModuleInfo
 (conn : NWCONN_HANDLE;
 informationLevel : nuint32;
 supportModuleID : nuint32;
 returnInfo : pnuint8;
 returnInfoLen : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

informationLevel

(IN) Specifies the level of information to be returned. If information
Level = 0, returns information about the DM NLM support module; if
information Level = 1, returns a list of all loaded support module IDs.

supportModuleID

(IN) Specifies the assigned ID number of the support module
migrating the data.

File Service Group

Data Migration: Functions 84

returnInfo

(OUT) Points to the area in which to store the information.

returnInfoLen

(OUT) Points to the size of the data area the user allocated in which to
return information.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89A8 ERR_ACCESS_DENIED

0x00F0 ERR_INVALID_SM_ID

0x89FF Failure, Invalid Info Level, or Invalid Parameter

Remarks

If the informationLevel parameter contains 0 (zero), the
SUPPORT_MODULE_INFO structure will be used to return information
about the DM NLM support module to the returnInfo parameter. If the
informationLevel parameter contains 1, the SUPPORT_MODULE_IDS
structure will be used to return a list of all loaded support module IDs to
the returnInfo parameter.

NCP Calls

0x2222 90 132 DM Support Module Information

See Also

NWGetDefaultSupportModule, NWGetDataMigratorInfo,
NWGetDMVolumeInfo

File Service Group

Data Migration: Functions 85

NWMoveFileFromDM

Moves file data from an on-line, long term storage medium to a NetWare
volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Data Migration

Syntax

#include <nwmigrat.h>
or
#include <nwcalls.h>

NWCCODE N_API NWMoveFileFromDM (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint8 nameSpace);

Pascal Syntax

#include <nwmigrat.h>

Function NWMoveFileFromDM
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 nameSpace : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired name
space (optional).

path

(IN) Points to a valid DOS path pointing to a file.

nameSpace

(IN) Specifies the name space of the DOS path.

File Service Group

Data Migration: Functions 86

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8978 ERR_VOLUME_FLAG_NOT_SET

0x897E NCP_BOUNDARY_CHECK_FAILED

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x899E INVALID_FILENAME

0x89A8 ERR_ACCESS_DENIED

0x89FB Invalid Namespace (abends the server)

NCP Calls

0x2222 87 06 Obtain File or Subdirectory Information

0x2222 90 133 Move File Data From DM

See Also

NWMoveFileToDM, NWSetDefaultSupportModule,
NWGetDMFileInfo

File Service Group

Data Migration: Functions 87

NWMoveFileToDM

Moves file data to an online, long term storage medium but leaves the file
visible on a NetWare volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Data Migration

Syntax

#include <nwmigrat.h>
or
#include <nwcalls.h>

NWCCODE N_API NWMoveFileToDM (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint8 nameSpace,
 nuint32 supportModuleID,
 nuint32 saveKeyFlag);

Pascal Syntax

#include <nwmigrat.h>

Function NWMoveFileToDM
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 nameSpace : nuint8;
 supportModuleID : nuint32;
 saveKeyFlag : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired name
space (optional).

path

(IN) Points to a valid DOS path (pointing to a directory or file).

File Service Group

Data Migration: Functions 88

nameSpace

(IN) Specifies the name space of the DOS path.

supportModuleID

(IN) Specifies the assigned ID number of the support module
migrating the data.

saveKeyFlag

(IN) Specifies if the migrator key will be saved when the file is
demigrated: 0 = migrator key will not be saved, 1 = migrator key will
be saved.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899E INVALID_FILENAME

0x899C INVALID_PATH

0x89A8 ERR_ACCESS_DENIED

0x89FB Invalid Namespace

Remarks

If saveKeyFlag equals SAVE_KEY_WHEN_FILE_IS_DEMIGRATED, the
key will be saved when the file is demigrated. This saves time because
the file will not be deleted from the migrated media and will be checked
for changes before subsequent migrations.

NCP Calls

0x2222 87 06 Obtain File or Subdirectory Information

0x2222 90 128 Move File Data To DM

See Also

NWMoveFileFromDM, NWSetDefaultSupportModule,

File Service Group

Data Migration: Functions 89

NWGetDMFileInfo

File Service Group

Data Migration: Functions 90

NWSetDefaultSupportModule

Sets the default Read/Write support module ID

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Data Migration

Syntax

#include <nwmigrat.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSetDefaultSupportModule (
 NWCONN_HANDLE conn,
 pnuint32 supportModuleID);

Pascal Syntax

#include <nwmigrat.h>

Function NWSetDefaultSupportModule
 (conn : NWCONN_HANDLE;
 supportModuleID : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

supportModuleID

(IN) Points to the support module ID.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89EC NO_SUCH_SEGMENT

File Service Group

Data Migration: Functions 91

0x89FB N0_SUCH_PROPERTY or INVALID_PARAMETERS

NCP Calls

0x2222 90 134 Get/Set Default Read Write Support Module ID

File Service Group

Data Migration: Functions 92

Data Migration: Structures

File Service Group

Data Migration: Structures 93

SUPPORT_MODULE_IDS

Returns a list of support module IDs (level 1 information) by
NWGetSupportModuleInfo

Service: Data Migration

Defined In: nwmigrat.h

Structure

typedef struct
{
 nuint32 numberOfSMs;
 nuint32 SMIDs[MAX_NUM_OF_SM];
} SUPPORT_MODULE_IDS;

Pascal Structure

Defined in nwmigrat.inc

 SUPPORT_MODULE_IDS = Record
 numberOfSMs : nuint32;
 SMIDs : Array[0..MAX_NUM_OF_SM-1] Of nuint32
 End;

Fields

numberOfSMs

Indicates the number of valid support module IDs returned by the
Data Migrator.

SMIDs

Indicates the list of support module IDs.

File Service Group

Data Migration: Structures 94

SUPPORT_MODULE_INFO

Returns (level 0) support module information by
NWGetSupportModuleInfo

Service: Data Migration

Defined In: nwmigrat.h

Structure

typedef struct
{
 nuint32 IOStatus;
 nuint32 InfoBlockSize;
 nuint32 AvailSpace;
 nuint32 UsedSpace;
 nuint8 SMInfo[MAX_SIZE_OF_SM_STRING + MAX_SIZE_OF_SM_INFO];
} SUPPORT_MODULE_INFO;

Defined In

Defined in nwmigrat.inc

 SUPPORT_MODULE_INFO = Record
 IOStatus : nuint32;
 InfoBlockSize : nuint32;
 AvailSpace : nuint32;
 UsedSpace : nuint32; (*A length preceded string is followed by SMInfo data*)
 SMInfo : Array[0..MAX_SIZE_OF_SM_STRING + MAX_SIZE_OF_SM_INFO - 1] Of nuint8
 End;

Fields

IOStatus

Indicates the IO read and write access status of the associated storage
device .

InfoBlockSize

Indicates the information block size on the associated storage device.

AvailSpace

Indicates the amount of space available on the associated storage
device.

UsedSpace

Indicates the amount of used space on the associated storage device.
This length-preceded string is followed by SMInfo data.

SMInfo

Indicates the support-module specific data in the form of a

File Service Group

Data Migration: Structures 95

length-preceded string.

File Service Group

Data Migration: Structures 96

Deleted File

File Service Group

 97

Deleted File: Guides

Deleted File: Concept Guide

File Purging and Recovery

File Purging and Recovery on NetWare 2.2 Servers

File Purging and Recovery on NetWare 3.11 and 4.x Servers

Salvaging Files: Example

Compatibility of Deleted File with File System

Summary of File Purging and Recovery Functions

Additional Links

Deleted File: Functions

Deleted File: Structures

Parent Topic:

File Overview

File Purging and Recovery

NetWare® servers retain deleted files in a recoverable state. The final
deallocation of a deleted file is called purging. Deleted File Services include
functions for purging and recovering deleted files. Two functions purge and
recover deleted files on NetWare 2.2 and later servers:

 NWPurgeDeletedFile

 NWRecoverDeletedFile

Although the same functions can handle deleted files across different
versions of NetWare, there are important differences between version 2.2
and versions 3.11 and 4.x.

File Purging and Recovery on NetWare 3.11 and 4.x Servers

File Purging and Recovery on NetWare 2.2 Servers

Parent Topic:

File Service Group

Deleted File: Guides 98

Deleted File: Guides

File Service Group

Deleted File: Guides 99

Deleted File: Examples

Salvaging Files: Example

This code example recovers a deleted file.

NOTE: This example contains DOS specific screen functions that
should be ignored on non-DOS platforms.

Salvaging Files

#define N_PLAT_DOS

#include <stdlib.h>
#include <stdio.h>
#include <stddef.h>
#include <fcntl.h>
#include <share.h>
#include <direct.h>
#include <dos.h>
#include <string.h>
#include <conio.h>
#include <time.h>
#include <nwfile.h>
#include <nwdirect.h>
#include <nwaudit.h>
#include <nwfse.h>
#include <nwdel.h>
#include <nwmisc.h>
#include <ntypes.h>

main()
{
 NWCCODE ccode;
 NWCONN_HANDLE conn;
 int commandChar, purgeAllFlag;
 nstr8 newFileName[100];
 char fullPathName[200];
 NWDIR_HANDLE dirHandle;
 pnuint32 iterHandle;
 pnuint32 volNum;
 pnuint32 dirBase;
 NWDELETED_INFO entryInfo;
 nuint32 delTime;
 char scanDirectory[100], *charP;
 long nen;

File Service Group

Deleted File: Examples 100

 nen = -1;
 purgeAllFlag = 0;
 printf("Directory to scan: ");
 gets(scanDirectory);
 if(!scanDirectory[0])
 {
 scanDirectory[0] = '\\';
 scanDirectory[1] = 0;

 }

 clrscr();
 printf("Filename Size Attr Date&Time Seq#\r\n");

 gotoxy(0, 24);
 printf("A - purge all; P - purge; S - salvage; <enter> - next file;
 X - exit");
 gotoxy(0, 24);
 while(TRUE)
 {
 ccode = NWScanForDeletedFiles((NWCONN_HANDLE)&conn,
 (NWDIR_HANDLE)&dirHandle, (pnuint32)&iterHandle,
 (pnuint32)&volNum, (pnuint32)&dirBase,
 &entryInfo);

 if(ccode == 0)
 break;

 delTime = entryInfo.deletedDateAndTime;
 strcpy(newFileName, (const char *)entryInfo.name);
 if((charP = strchr(newFileName, '.')) == NULL)
 charP = " ";
 charP++ =0; / overwrite period with a zero */

 if(wherey() == 24)
 {
 gotoxy(0, 23);
 }
 printf(" %-8.8s %-3.3s %8d 0x%04x %s %4d\r\n",
 newFileName, charP, entryInfo.fileSize, entryInfo.attributes,
 delTime, nen & 0xFFFFFFL);

 /* SetScreenRegionAttribute(wherey()-1, 1, 10); */
 /* underline current file */
 /* SetScreenRegionAttribute(wherey()-2, 1, 7); */
 /* un-underline prev file */

 if(!purgeAllFlag)
 {
 commandChar - getch();
 if(commandChar == 'A')

File Service Group

Deleted File: Examples 101

 purgeAllFlag = 1;
 }

 if((commandChar == 'p') || (commandChar =='P') || purgeAllFlag)
 {
 strcpy(fullPathName, scanDirectory);
 if(scanDirectory[1])
 strcat(fullPathName, "\\");
 strcat(fullPathName, (const char *)entryInfo.name);
 if((ccode = NWPurgeDeletedFile(conn, dirHandle,
 (nuint32)iterHandle,(nuint32)volNum, (nuint32)dirBase,
 (unsigned char *)fullPathName)) !=0)

 printf("Could Not Purge File %s; error = %d\r\n",
 fullPathName, ccode);

 }
 else if((commandChar == 's') || (commandChar == 'S'))
 {
 if(wherey() == 24)
 {
 /* ScrollScreenRegionUp(2, 22); */
 gotoxy(0, 23);
 }
 printf("New Filename: ");
 gets(newFileName);
 strcpy(fullPathName, scanDirectory);
 if(scanDirectory[1])
 strcat(fullPathName, "\\");
 strcat(fullPathName, (const char *)entryInfo.name);
 ccode = NWRestoreErasedFile(conn, dirHandle, fullPathName,
 (char *)nen, newFileName);
 if(ccode !=0)
 printf("Could Not Salvage File %s; error = %d\r\n",
 entryInfo.name, ccode);
 }
 else if((commandChar == 'x') || (commandChar == 'X'))
 {
 break;
 }
 }
 return (0);
}

Parent Topic:

Deleted File: Guides

Related Topics:

File Purging and Recovery

File Service Group

Deleted File: Examples 102

Deleted File: Concepts

Compatibility of Deleted File with File System

NetWare® contains important changes to the file system in versions after
2.15. These changes primarily affect trustee rights, file attributes, and
purgeable files. For further information about these changes, see File
System: Guides.

Although differences between overlapping functions are noted, developers
need to be aware of compatibility issues affecting specific functions. To
verify the compatibility of a function, see its reference in Deleted File:
Functions.

Parent Topic:

Deleted File: Guides

File Purging and Recovery on NetWare 2.2 Servers

When a client erases a file on a NetWare® 2.2 server, the server marks the
file for deletion but does not relocate it. You cannot scan for such files on
NetWare 2.2 servers. To restore a file, you must know the file path and
filename.

NetWare 2.2 servers hold only the most recently deleted file for each client
and purge older files to reclaim disk and directory space. Performing a
purge operation on a 2.2 server permanently removes all deleted files. Files
marked for deletion are only recoverable until the client attempts to erase or
create another file.

Parent Topic:

File Purging and Recovery

File Purging and Recovery on NetWare 3.11 and
4.x Servers

When a client erases a file on a NetWare® 3.11 or 4.x server, the server
moves the file to a holding area in the directory structure of the volume. You
can scan this area for deleted files by calling NWScanForDeletedFiles using
a search pattern. Scanning deleted files returns file information for all

File Service Group

Deleted File: Concepts 103

recoverable files in a specified directory. The file information can be used to
restore deleted files using NWRestoreErasedFile. No prior knowledge of
filenames is necessary.

When you purge files on a NetWare 3.11 or 4.x server, only the specified
files are removed from the holding area. Other deleted files are not affected.
Deleted files can remain on the server for an indefinite period. However, if
the server must reclaim disk space, the files can be purged, after which they
cannot be recovered.

Parent Topic:

File Purging and Recovery

Summary of File Purging and Recovery Functions

These functions handle the purging and recovery of deleted NetWare® files.

Function Comment

NWPurgeDeletedFi
le

Removes recoverable files from a NetWare
server.

NWPurgeErasedFil
es

Purges all erased files on a NetWare server.
This function is for a 2.2 NetWare server.

NWRecoverDeleted
File

Recovers deleted files from the NetWare server.

NWRestoreErasedF
ile

Recovers the specified erased file on NetWare
servers. This is for a NetWare 2.2 server.

NWScanForDeleted
Files

Scans the specified directory for any deleted
(salvageable) files.

Parent Topic:

Deleted File: Guides

File Service Group

Deleted File: Concepts 104

Deleted File: Functions

File Service Group

Deleted File: Functions 105

NWPurgeDeletedFile

Removes recoverable files from a NetWare® server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: Deleted File

Syntax

#include <nwdel.h>
or
#include <nwcalls.h>

NWCCODE N_API NWPurgeDeletedFile (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 nuint32 iterHandle,
 nuint32 volNum,
 nuint32 dirBase,
 pnstr8 fileName);

Pascal Syntax

#include <nwdel.inc>

Function NWPurgeDeletedFile
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 iterHandle : nuint32;
 volNum : nuint32;
 dirBase : nuint32;
 fileName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle to purge.

dirHandle

(IN) Specifies the directory handle for the directory containing the file
to purge (valid for 3.x and above only).

iterHandle

(IN) Specifies the sequence number returned by
NWScanForDeletedFiles (valid for 3.x and above only).

File Service Group

Deleted File: Functions 106

volNum

(IN) Specifies the volume number returned by
NWScanForDeletedFiles (valid for 3.11 and above only).

dirBase

(IN) Specifies the directory base number returned by
NWScanForDeletedFiles (valid for 3.11 and above only).

fileName

(IN) Points to the name of the file to purge (valid for 3.0 and 3.1 only).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8985 NO_CREATE_DELETE_PRIVILEGES

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

Remarks

For 2.x servers, all salvageable files on all volumes of the specified
NetWare server are purged. For 3.x servers, only the specified file is
purged.

For 3.x servers, NWPurgeDeletedFile is used in connection with
NWScanForDeletedFiles. iterHandle, volNum, and dirBase are returned by
NWScanForDeletedFiles and should not be modified prior to calling
NWPurgeDeletedFile.

Although parameters may only be valid for some servers, each
parameter must be filled. Valid parameters for NWPurgeDeletedFile on
each platform are listed below:

 2.x 3.0 and 3.1 3.11

 conn conn conn

 dirHandle dirHandle

 sequence iterHandle

 volNum

File Service Group

Deleted File: Functions 107

 dirBase

 fileName

NCP Calls

0x2222 22 16 Purge Deleted File

0x2222 23 17 Get File Server Information

0x2222 87 18 Purge Salvageable File

0x2222 22 29 Purge Salvageable File

See Also

NWScanForDeletedFiles

File Service Group

Deleted File: Functions 108

NWPurgeErasedFiles

Purges all erased files on the specified NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Deleted File

Syntax

#include <nwdel.h>
or
#include <nwcalls.h>

NWCCODE N_API NWPurgeErasedFiles (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwdel.inc>

Function NWPurgeErasedFiles
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle to purge.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8981 NO_MORE_FILE_HANDLES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 Disk Map Error

0x89A1 DIRECTORY_IO_ERROR

0x89FB ERR_NCP_NOT_SUPPORTED

File Service Group

Deleted File: Functions 109

0x89FF Failure

Remarks

NWPurgeErasedFiles permanently deletes all files that have been
marked for deletion and deallocates their space.

NCP Calls

0x2222 22 16 Purge Erased Files (old)

File Service Group

Deleted File: Functions 110

NWRecoverDeletedFile

Recovers deleted files from the NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Deleted File

Syntax

#include <nwdel.h>
or
#include <nwcalls.h>

NWCCODE N_API NWRecoverDeletedFile (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 nuint32 iterHandle,
 nuint32 volNum,
 nuint32 dirBase,
 pnstr8 delFileName,
 pnstr8 rcvrFileName);

Pascal Syntax

#include <nwdel.inc>

Function NWRecoverDeletedFile
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 iterHandle : nuint32;
 volNum : nuint32;
 dirBase : nuint32;
 delFileName : pnstr8;
 rcvrFileName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle containing the
deleted file.

dirHandle

(IN) Specifies the directory handle of the directory containing the file
to recover.

File Service Group

Deleted File: Functions 111

iterHandle

(IN) Specifies the number returned by NWScanForDeletedFiles (valid
for 3.x and above only, use NULL for 2.x).

volNum

(IN) Specifies the number returned by NWScanForDeletedFiles (valid
for 3.11 and above only, use NULL for 2.x).

dirBase

(IN) Specifies the number returned by NWScanForDeletedFiles (valid
for 3.11 and above only, use NULL for 2.x).

delFileName

(IN/OUT) Points to the name of the erased file:

IN 3.0, 3.1
OUT 2.x

rcvrFileName

(IN/OUT) Points to the name to use in recovering the file.

IN 3.0, 3.1
OUT 2.x

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x8984 NO_CREATE_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x89A1 DIRECTORY_IO_ERROR

0x89FD BAD_STATION_NUMBER

0x89FE File name already exists in this directory

0x89FF Failure

Remarks

For 3.x-4.x servers, files deleted by a client are moved to a holding area
on the volume until they are either purged, restored (by calling

File Service Group

Deleted File: Functions 112

NWRecoverDeletedFile), or replaced by other deleted files.

For 3.11 servers, the recovery is performed one file at a time.
NWRecoverDeletedFile can also recover the deleted file and give it a
new name. This feature alleviates problems with recovering a file when a
new file exists with the same name.

For 2.x servers, applications are unable to scan for the deleted file.
Therefore, dirHandle must contain a handle pointing to the directory
containing the deleted file. If a file with the same name already exists in
that same directory, the server gives the recovered file a new name and
returns it to the caller.

For 2.x servers, only the last deleted entry is recoverable. Also, this file is
recoverable only until a client attempts another erase or file create
request. NWScanForDeletedFiles returns all necessary information to be
passed into NWRecoverDeletedFile.

For 2.x servers, the server returns delFileName (rather than passing it in).
This buffer cannot be NULL.

A 2.x NetWare server returns the appropriate name for rcvrFileName. For
3.x, the application must specify the file name in rcvrFileName not the
path; no wildcards are allowed.

NOTE: Due to earlier support for 14 character names in NetWare,
both delFileName and rcvrFileName buffers must be at least 15 bytes long.

Although parameters may only be valid for some servers, each
parameter must be filled. Valid parameters for NWRecoverDeletedFile
on each platform are listed below:

 2.x 3.0 and 3.1 3.11 and 4.0

 conn conn conn

 dirHandle dirHandle dirHandle

 sequence iterHandle

 volNum

 dirBase

deletedFileName(return) deletedFileName(passed
in)

recoverFileName(return) recoverFileName
(passed in)

rcvrFileName

NCP Calls

0x2222 22 17 Recover Erased File (old)

0x2222 22 28 Recover Salvageable File

File Service Group

Deleted File: Functions 113

0x2222 23 17 Get File Server Information

0x2222 87 17 Recover Salvageable File

See Also

NWScanForDeletedFiles

File Service Group

Deleted File: Functions 114

NWRestoreErasedFile

Recovers the specified erased file on NetWare servers

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Deleted File

Syntax

#include <nwdel.h>
or
#include <nwcalls.h>

NWCCODE N_API NWRestoreErasedFile (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 dirPath,
 pnstr8 oldName,
 pnstr8 newName);

Pascal Syntax

#include <nwdel.inc>

Function NWRestoreErasedFile
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 dirPath : pnstr8;
 oldName : pnstr8;
 newName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle containing the
erased file.

dirHandle

(IN) Specifies the directory handle of the directory containing the file
to restore.

dirPath

(IN) Points to the path (relative to dirHandle) containing the erased file.

oldName

File Service Group

Deleted File: Functions 115

(IN) Points to the original name of the erased file.

newName

(IN) Points to the name to be given to the restored file.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89FB ERR_NCP_NOT_SUPPORTED

Remarks

dirHandle can be zero if dirPath contains the complete path, including the
volume name.

Applications can optionally use newName to rename the file when
restoring.

NCP Calls

0x2222 22 17 Recover Erased File (old)

File Service Group

Deleted File: Functions 116

NWScanForDeletedFiles

Scans the specified directory for any deleted (salvageable) files

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Deleted File

Syntax

#include <nwdel.h>
or
#include <nwcalls.h>

NWCCODE N_API NWScanForDeletedFiles (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnuint32 iterHandle,
 pnuint32 volNum,
 pnuint32 dirBase,
 NWDELETED_INFO N_FAR *entryInfo);

Pascal Syntax

#include <nwdel.inc>

Function NWScanForDeletedFiles
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 iterHandle : pnuint32;
 volNum : pnuint32;
 dirBase : pnuint32;
 Var entryInfo : NWDELETED_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle of the directory to scan.

iterHandle

(IN) Points to the address of the search sequence number. Must be
initially set to -1.

File Service Group

Deleted File: Functions 117

volNum

(OUT) Points to the volume's number index (valid for 3.11 and above
only).

dirBase

(OUT) Points to the directory's number index (valid for 3.11 and above
only).

entryInfo

(OUT) Points to NWDELETED_INFO, containing the deleted file
information.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x899B BAD_DIRECTORY_HANDLE

0x89FF No more salvageable files in directory

Remarks

NWScanForDeletedFiles replaces NWScanSalvageableFiles.

Initially, iterHandle needs to be set to -1. The server maintains the
sequence number once a match has been found. No file names or
wildcards are allowed in the search.

volNum and dirBase are used only when scanning NetWare 3.11 and
above. These two numbers are indices used by the server to speed up the
location of a deleted file. They should not be modified by an application.

Although parameters may only be valid for some servers, each
parameter must be filled. The valid parameters for
NWScanForDeletedFiles on each platform follow:

 3.0 and 3.1 3.11

 conn conn

 dirHandle dirHandle

 sequence iterHandle

 volNum

 dirBase

File Service Group

Deleted File: Functions 118

 entryInfo entryInfo

NCP Calls

0x2222 22 27 Scan Salvageable Files

0x2222 23 17 Get File Server Information

0x2222 87 16 Scan Salvageable Files

See Also

NWPurgeDeletedFile, NWRecoverDeletedFile

File Service Group

Deleted File: Functions 119

Deleted File: Structures

File Service Group

Deleted File: Structures 120

NWDELETED_INFO

Returns information on a deleted file

Service: Deleted File

Defined In: nwdel.h

Structure

typedef struct
{
 nuint32 sequence;
 nuint32 parent;
 nuint32 attributes;
 nuint8 uniqueID;
 nuint8 flags;
 nuint8 nameSpace;
 nuint8 nameLength;
 nuint8 name[256];
 nuint32 creationDateAndTime;
 nuint32 ownerID;
 nuint32 lastArchiveDateAndTime;
 nuint32 lastArchiverID;
 nuint32 updateDateAndTime;
 nuint32 updatorID;
 nuint32 fileSize;
 nuint8 reserved[44];
 nuint16 inheritedRightsMask;
 nuint16 lastAccessDate;
 nuint32 deletedTime;
 nuint32 deletedDateAndTime;
 nuint32 deletorID;
 nuint8 reserved3[16];
} NWDELETED_INFO;

Pascal Structure

Defined in nwdel.inc

 NWDELETED_INFO = Record
 sequence : nuint32;
 parent : nuint32;
 attributes : nuint32;
 uniqueID : nuint8;
 flags : nuint8;
 nameSpace : nuint8;
 nameLength : nuint8;
 name : Array[0..255] Of nuint8;
 creationDateAndTime : nuint32;
 ownerID : nuint32;

File Service Group

Deleted File: Structures 121

 lastArchiveDateAndTime : nuint32;
 lastArchiverID : nuint32;
 updateDateAndTime : nuint32;
 updatorID : nuint32;
 fileSize : nuint32;
 reserved : Array[0..43] Of nuint8;
 inheritedRightsMask : nuint16;
 lastAccessDate : nuint16;
 deletedTime : nuint32;
 deletedDateAndTime : nuint32;
 deletorID : nuint32;
 reserved3 : Array[0..15] Of nuint8
 End;

Fields

sequence

Indicates the sequence number of the associated information.

parent

Indicates the ID of the owning subdirectory.

attributes

Indicates the attributes of the associated file.

uniqueID

Indicates the entry number of the file.

flags

Indicates the DOS attributes on the deleted file.

nameSpace

Indicates the name space of the associated file:

0 NW_NS_DOS

1 NW_NS_MAC

2 NW_NS_NFS

3 NW_NS_FTAM

4 NW_NS_OS2

4 NW_NS_LONG

nameLength

Indicates the length of the file name.

name

Indicates the file name.

creationDateAndTime

Indicates the date and time the file was created.

ownerID

Indicates the object which created the file.

File Service Group

Deleted File: Structures 122

lastArchiveDateAndTime

Indicates the date and time the file was last archived.

lastArchiverID

Indicates the object which last archived the file.

updateDateAndTime

Indicates the date and time the file was last updated.

updatorID

Indicates the object which last updated the file.

fileSize

Indicates the size of the file in bytes.

reserved

Is reserved for future use.

inheritedRightsMask

Indicates a bit mask of the following:

0x0000 TR_NONE

0x0001 TR_READ

0x0002 TR_WRITE

0x0004 TR_OPEN

0x0004 TR_DIRECTORY

0x0008 TR_CREATE

0x0010 TR_DELETE

0x0010 TR_ERASE

0x0020 TR_OWNERSHIP

0x0020 TR_ACCESS_CTRL

0x0040 TR_FILE_SCAN

0x0040 TR_SEARCH

0x0040 TR_FILE_ACCESS

0x0080 TR_MODIFY

0x01FB TR_ALL

0x0100 TR_SUPERVISOR

0x00FB TR_NORMAL

lastAccessDate

Indicates the date the file was last accessed.

deletedTime

Indicates the time the file was deleted.

deletedDateAndTime

Indicates the date and time the file was deleted.

deletorID

Indicates the user ID of the person who deleted the file.

File Service Group

Deleted File: Structures 123

reserved3

Is reserved for future use.

File Service Group

Deleted File: Structures 124

Direct File System

File Service Group

 125

Direct File System: Guides

Direct File System: Task Guide

Creating a File with the Direct File System

Extending an NLM File

Extending a File Using Default File Allocation

Extending a File Using Specific File Allocation

Additional Links

Direct File System: Functions

Direct File System: Structures

Parent Topic:

Direct File System: Guides

Direct File System: Concept Guide

Direct File System Overview

Direct File System File Allocation

Impact of Striping

Setting the File Size and Zero-Filling with DFS

Direct File System I/O

Direct File System File Locks

File Structures

Volume Structures

Direct File System Completion Codes

Direct File System: Functions

Additional Links

Direct File System: Functions

File Service Group

Direct File System: Guides 126

Direct File System: Structures

Parent Topic:

Direct File System: Guides

File Service Group

Direct File System: Guides 127

Direct File System: Tasks

Creating a File with the Direct File System

Files can be created by calling DFScreat. This creates a file on the specified
volume with the permissions indicated, and leaves the file open in Direct
File Mode (the file must later be closed). DFScreat is the DFS equivalent of
creat.

Create files by calling DFSsopen (providing that the file does not currently
exist). DFSsopen is the DFS equivalent of sopen.

Parent Topic:

Direct File System File Allocation

Extending a File Using Default File Allocation

Extend an NLM application file using default file allocation:

1. Determine if space is available.

Call DFSReturnVolumeMappingInformation to obtain the volume
size, allocation unit size, sector size, number of free blocks, number of
blocks available in deleted files, number of blocks not available in
deleted files, and so forth. If the desired number of blocks is not
available on the volume, skip to Step 4.

Since the OS is multitasking, it is possible (and likely) that other
processes allocate (and free) volume blocks at any time, making
information returned by DFSReturnVolumeMappingInformation
obsolete. As a result you must design DFS NLM applications to repeat
this procedure multiple times to deal with the failure of
DFSExpandFile and DFSFreeLimboVolumeSpace.

2. Determine the current allocation of the file, specifically the file block
where the file is to be extended.

Call DFSReturnFileMappingInformation to determine the file's
current mapping, including volume segments and blocks allocated. The
starting file block to be extended must be specified in the extend request
made in Step 3.

A file might not be extended by specifying file block addresses that
already exist. This means that an extend request to allocate file space for

File Service Group

Direct File System: Tasks 128

a hole in a sparse file must not specify a number or contiguous blocks
that exceed the size of the hole.

3. Allocate blocks to expand the file.

Call DFSExpandFile specifying the number of blocks to be extended
and wildcards (-1) for the volume block number and optionally for the
volume segment number. This allows DFS to select the range of
contiguous blocks used to extend the file.

For normal files, extending a file a single block at a time and specifying
wildcards for both the volume block address and the volume segment is
identical in function to letting the NetWare® OS allocate for normal
files.

Specifying a wildcard segment number in conjunction with a wildcard
volume block address allows the OS to alternate its selection of volume
segments for file allocation, thus facilitating file striping on systems
where it is advantageous to stripe files. Specifying a larger number of
blocks with a wildcard volume segment stripes the file (provided that
multiple volume segments exist) with the larger granularity. If there is
not enough contiguous available space to expand the file by the
requested number of blocks, applications may be required to make
several calls specifying smaller request sizes, or fail the request.

If the return code indicates that the above operation was not successful,
proceed to Step 4. Otherwise, the file has been extended as requested.

4. Free up volume space.

Call DFSFreeLimboVolumeSpace specifying the volume number and
the requested number of blocks to be freed. This causes one or more
deleted files to be purged from the volume in order of time of deletion.
Go to Step 1.

Parent Topic:

Extending an NLM File

Extending a File Using Specific File Allocation

Extend an NLM application file by selecting the volume segments and/or
blocks to be allocated:

1. Determine if space is available.

Call DFSReturnVolumeMappingInformation to obtain the volume
size, allocation unit size, sector size, number of free blocks, number of
blocks available in deleted files, number of blocks not available in
deleted files, and so forth. If adequate space for the file extension is not
available, go to Step 5.

File Service Group

Direct File System: Tasks 129

2. Determine the current allocation for the file.

Call DFSReturnFileMappingInformation to determine the file's
current mapping, including volume segments and blocks allocated. This
information is required to determine where to extend a file.

A file may not be extended by specifying file block addresses which
already exist. This means that an extend request to allocate file space for
a hole in a sparse file must not specify a number or contiguous blocks
which exceed the size of the hole.

3. Determine the available blocks on a volume.

Call DFSReturnVolumeBlockInformation to obtain a bit map of
available blocks on the desired volume. Determine from the bitmap a
contiguous range of blocks large enough to extend the file as needed.

As a result of multitasking, the bitmap of available blocks is valid only
at the moment it is obtained, and may have changed by the time an
application NLM requests a specific range of blocks to be allocated for a
file (possibly requiring this step to be repeated multiple times).

Call DFSExpandFile to specify the range of contiguous available blocks
selected from the preceding bitmap. Specifying more than a single block
causes the requested contiguous blocks to be allocated from the same
volume segment. A good return code indicates that the requested
function is completed.

4. Extend the file.

If enough contiguous space to expand the file the requested number of
blocks is not available, applications may be required to make several
calls specifying smaller request sizes, or fail the request.

If the return code indicates that the above operation was not successful,
proceed to Step 5. Some other module may have allocated the requested
blocks, so the calling application must be prepared to retry the
operation several times.

5. Free up volume space.

Call DFSFreeLimboVolumeSpace to specify the volume number and
the requested number of blocks to be freed. This causes one or more
deleted files to be purged from the volume in the order of the time of
deletion. Go back to Step 1.

Parent Topic:

Extending an NLM File

Extending an NLM File

Follow one of these options to extend an NLM application file:

File Service Group

Direct File System: Tasks 130

Follow one of these options to extend an NLM application file:

Extending a File Using Default File Allocation

Extending a File Using Specific File Allocation

Parent Topic:

Direct File System: Guides

File Service Group

Direct File System: Tasks 131

Direct File System: Concepts

Direct File System Completion Codes

The following table lists and defines DFS completion codes.

Table auto. DFS Completion Codes

Cod
e

Name Meaning

0 DFSNormalCompletion The operation was completed as
specified.

1 DFSInsufficientSpace The required space does not
currently exist on the volume to
expand the file as requested.

4 DFSVolumeSegmentDeacti
vated

The volume segment(s) on which
the file is located have been
deactivated by the operating
system.

16 DFSTruncationFailure The DFSSetEndOfFile function
detected that the caller requested
excess blocks to be truncated, but
the file was open for other
connections, causing the request
to be rejected.

17 DFSHoleInFileError An operation (read or write) was
requested for one or more file
sectors where file space has not
been allocated (a sparse file). The
buffer is also zeroed for read
functions.

18 DFSParameterError The function caller supplied an
invalid parameter.

19 DFSOverlapError An attempt was made to allocate
additional file space where file
blocks already exist.

20 DFSSegmentError A volume segment number was
requested that was not one of the
volume segments of the volume.

21 DFSBoundaryError One or more blocks in the range
requested are not currently

File Service Group

Direct File System: Concepts 132

available, or are not in the
volume or volume segment
specified.

22 DFSInsufficientLimboFileSp
ace

The request could not be
completed because there were not
enough contiguous limbo blocks
to complete the request
successfully.

23 DFSNotInDirectFileMode A function requiring a file to be
opened in direct mode (using
DFSsopen or DFScreat) was
requested, but the file is not
currently opened in direct mode.

24 DFSOperationBeyondEndO
fFile

A read operation was requested
beyond the end-of-file (current
file size).

129 DFSOutOfHandles All available handles for the file
are already in use.

131 DFSHardIOError Problem decompressing or
insufficient allocatable space.

136 DFSInvalidFileHandle A DFS call was made using a file
handle that is not
valid---typically an open was
omitted or the user inadvertently
closed the file before attempting
this access.

147 DFSNoReadPrivilege The current connection does not
have read privileges for the file.

148 DFSNoWritePrivilege The current connection does not
have write privileges for the file.

149 DFSFileDetached The file system will not allow
further processing on this handle.

150 DFSInsufficientMemory The Direct File System could not
obtain sufficient memory to
complete the requested function.

152 DFSInvalidVolume The volume number specified
does not exist or not mounted.

-1 DFSFailedCompletion The requested operation was not
completed.

Parent Topic:

Direct File System: Guides

Direct File System File Allocation

File Service Group

Direct File System: Concepts 133

The DFS allocation functions allow a great deal of control in determining
where and how file space is allocated. The application NLM may allow the
OS to allocate required space for a file using OS default allocation, or may
request allocation to be on a specific volume segment and/or specify the
actual volume blocks to be allocated. File allocation may be used to fill holes
in sparse files or to extend existing files. Writing to a nonexistent area in a
file (either to a hole or beyond the allocated file space) is not allowed with
the DFS functions.

Creating a File with the Direct File System

Extending an NLM File

Impact of Striping

Setting the File Size and Zero-Filling with DFS

Parent Topic:

Direct File System: Guides

Direct File System File Locks

All DFS application file, record, and field locks must be provided and
managed by the DFS application NLM. OS utilities that are designed to
perform reorganization or relocation of DFS files use an exclusive lock on
the file, so that the lock fails if the file is currently in use by an application
NLM. An application NLM need only lock the file with a shared or
nonexclusive lock to ensure that an OS utility NLM has not exclusively
locked the file for operations such as reorganization.

An application NLM should make sure that the current connection ID
matches the connection ID of the client so that OS Auditing is meaningful.
However, auditing of database record and field accesses require that the
database application NLM perform its own auditing, since DFS is not aware
of the actual record and field definitions.

Parent Topic:

Direct File System: Guides

Direct File System Functions

Table auto. Direct File System Functions

Function Purpose

DFSclose Closes a file that is open in
direct file mode.

File Service Group

Direct File System: Concepts 134

DFScreat Creates and opens a file in
direct file mode, and returns a
file handle.

DFSExpandFile Expands a file with a range of
contiguous blocks.

DFSFreeLimboVolumeSpace Frees a number of limbo blocks
on a volume.

DFSRead Reads sectors from a file in
direct file mode (sleeps until
completion).

DFSReadNoWait Reads sectors from a file in
direct file mode (returns
immediately after initiation).

DFSReturnFileMappingInformatio
n

Returns file extents, each with
number of blocks and starting
file and volume block
numbers.

DFSReturnVolumeBlockInformatio
n

Returns volume block usage
bitmap.

DFSReturnVolumeMappingInformat
ion

Returns information about a
volume required for file
allocation.

DFSSetEndOfFile Sets the file size of a file.

DFSsopen Opens a file in direct file mode.

DFSWrite Writes sectors into a file using
DFS (sleeps until completion).

DFSWriteNoWait Writes sectors into a file using
DFS (returns immediately after
initiation).

Parent Topic:

Direct File System: Guides

Direct File System I/O

An open file is in one of two possible modes: normal mode or direct mode.
In a normal open mode, any of the valid opens are used. For direct open
mode, the DFSsopen function is used. If a file is already open in normal
mode and DFSsopen is called, the file changes from the normal mode to the
direct mode.

In this condition, any files in the normal open mode can continue to be read,
but attempts to write to the file fail. Programs using the direct mode can

File Service Group

Direct File System: Concepts 135

read and write to the file successfully. The only way to write to files in the
normal open mode again is by closing all direct mode opens, and closing
and re-opening the normal mode open.

When a file is successfully opened for direct file I/O by calling DFSsopen,
the server opens the file, flushes all cache entries for the file, and flags the
file so that future I/Os do not use caching and TTS functions. Subsequent
file I/O must be done using the I/O functions DFSRead, DFSReadNoWait,
DFSWrite, or DFSWriteNoWait. The "no wait" versions of these functions
do not block execution of the thread until completion, thus allowing a single
thread to have multiple outstanding DFS I/O functions.

When direct file I/O operations are completed, the file must be closed by
calling DFSclose. The file may not be used for normal I/O writes until all
handles are relinquished for the file by calling DFSclose, followed by a
normal open. If a normal open exists, it must be closed and re-opened for
read/writes.

When a file is in Direct mode, writes may not be made to areas of the file
where a hole exists (sparse files) or beyond the file's currently allocated last
block address. Read operations to these areas are indicated successful and
the data area is zeroed.

Also, a file cannot be extended while in Direct mode by writing beyond its
current extents. A separate call to DFSExpandFile must be made to extend a
file or to fill in holes in a file area.

Parent Topic:

Direct File System: Guides

Related Topics:

Direct File System File Locks

Direct File System Overview

NetWare® Direct File System (DFS) functions provide a method of
bypassing the NetWare disk caching and Transaction Tracking System™ (
TTS™) subsystems. The NetWare Cache and NetWare TTS provide the best
possible throughput and should not normally be bypassed. However,
several applications exist where this bypass may be desirable:

Large database packages typically provide their own caching and
transaction tracking facilities, tailored to specific requirements and
integrated into the package, making it desirable to use their caching and
transaction facilities instead of those provided by NetWare. (Performance
degradation results when both are used together.)

Backup applications often access large amounts of data not being
accessed by other applications. If these accesses are made through the
cache, the cache becomes non-relevant for all other accesses, and general

File Service Group

Direct File System: Concepts 136

server performance suffers for other users.

Some utilities may also require the ability to specify exactly where files
are placed so that volumes can be defragmented and files accessed
optimally.

The DFS functions provide a standardized solution by bypassing the
NetWare disk caching and TTS subsystems, while providing more direct
control of file allocation. The DFS functions fall into two groups: basic direct
mode file I/O, and file allocation primitives.

The following figure illustrates the DFS as it interfaces with the file system,
applications, NLM™ applications, and with other portions of the NetWare
OS.

Figure 1. Direct File System Interfaces

Parent Topic:

Direct File System: Guides

File Structures

Files in direct file mode may be viewed as an array of sectors numbered
from zero to n, where n is the last sector in the last block currently allocated
for the file. All direct file I/O must be done in multiples of sectors (one or

File Service Group

Direct File System: Concepts 137

more). The sectors allocated in the file are actually allocated on an allocation
block size, which is either 4 K, 8 K, 16 K, 32 K, or 64 K with NetWare® (the
default allocation block size for NetWare 3.x is 4 K). The allocation size must
be specified for a volume when the volume is created.

It is possible to create files that have blocks allocated for high addresses, but
do not have blocks allocated for intermediate addresses. (Such files are
called sparse files, and have holes in their actual allocation space). Normal
(non-direct) I/O allows writes to be made into these holes or beyond the
current end of allocated space for a file, in which case space is automatically
allocated to fill the hole or extend the file. However, the Direct File System
does not allow such writes when the file is in direct mode. Files must be
extended before writes can be issued to holes or beyond the end of the
allocated space for a file.

The logical block address of the blocks in the above array are referred to as
File Block Addresses, and the associated logical sector addresses are
referred to as File Sector Addresses. These addresses exist even for holes in
the file, though actual storage space may not have been allocated for the
corresponding locations on the file.

No space is allocated when a file is initially created by DFScreat or
DFSsopen. All space must be allocated by the application process for files in
direct mode (and must be allocated on the same volume).

When a file not currently opened by another process is opened in direct
mode, the OS creates a turbo FAT for the file if one does not currently exist,
flushes the cache of entries for the file, and marks the file as open in direct
mode (only direct mode operations are allowed).

Sample File Structures

File with 4 K allocation block size and only one block allocated:

File with 4 K allocation block size and four blocks allocated (no holes):

File Service Group

Direct File System: Concepts 138

File with 4 K allocation block size and three blocks allocated (with hole):

File with 64 K allocation and three blocks allocated (with hole):

File with 8 K allocation block size and three blocks allocated (no holes):

Parent Topic:

Direct File System: Guides

Impact of Striping

Causing a file to be allocated with striping has different effects on different
configurations. A drive array normally provides optimum throughput using
internal striping, so specifying striping by the OS in this case would defeat
optimum throughput, while specifying striping on files on a SCSI host
adapter providing disconnect with multiple drives normally provides more
optimal performance. Striping may not necessarily provide significant
performance benefits for extremely large files accessed in true random
fashion, but provides performance benefits when accessed sequentially.

File Service Group

Direct File System: Concepts 139

Parent Topic:

Direct File System File Allocation

Setting the File Size and Zero-Filling with DFS

The size of a file may be specified independent of the actual file space
allocated by making a call to DFSSetEndOfFile. Reads attempted beyond
the current end-of-file (indicated by the file size) are always rejected as an
attempted operation beyond the current file size.

If the file size is expanded beyond its previous value, the additional file area
incorporated in the new file size is zero-filled, provided that the file space is
actually allocated. If the file size specified is smaller than the previously
indicated file size and the returnTrunctatedBlocksFlag is nonzero, blocks
previously allocated beyond the newly defined file size are truncated, that
is, returned to the OS for future use.

The file size is also modified by a call to DFSWrite (only the "wait" version)
indicating a write to a file sector address beyond the current file size (the file
size is updated accordingly) but within the range of blocks allocated for the
file. If the write does not start immediately following the current file size,
the intervening blocks are zero-filled.

When a file has additional space allocated at the end of the file by a call to
DFSExpandFile, the additional file space is not zero-filled immediately.
Subsequent writes to the file set a new file size and eliminate the
requirement to zero-fill the additional file space. Calling DFSSetEndOfFile
also sets a new file size, and zero-fills any sectors in the new file size that are
beyond the previous file size.

When a file has additional space allocated to fill a hole in a sparse file, the
DFSExpandFile function also zero-fills the additional space if the space is
not beyond the current file size.

Parent Topic:

Direct File System File Allocation

Volume Structures

NetWare® volumes may be viewed as an array of allocation blocks
numbered from zero to n, where n is the total number of allocation blocks in
all segments of the volume (volume segments), minus one. Volumes may be
extended by adding additional segments, which are logically added at the
end of the list of current volume segments. Each logical block number in the
logical array of volume blocks is referred to by a Volume Block Number.
There are no holes in the volume block numbers. (Using this organization, a
specific Volume Block Number also indirectly indicates the segment upon

File Service Group

Direct File System: Concepts 140

which it occurs in the list of volume segments.)

NetWare supports a maximum of 255 volumes, with a NetWare volume
consisting of from 1 to 64 segments.

Multiple Volume Segments may exist on a single logical NetWare partition
on a drive. It is also possible that a drive may have a single volume segment
on it. A Logical partition has blocks numbered logically from zero through
the last block available in the partition, and does not include the physical
partition blocks which are allocated for Hot Fix™ and Mirroring tables at
the time the NetWare partition is created.

Sample Volume

Volume with a single volume segment (9444 volume blocks):

Volume with four volume segments (25288 volume blocks):

Parent Topic:

Direct File System: Guides

File Service Group

Direct File System: Concepts 141

Direct File System: Functions

File Service Group

Direct File System: Functions 142

DFSclose

Closes a file currently open in Direct File Mode

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Direct File System

Syntax

#include <nwdfs.h>

LONG DFSclose (
 LONG fileHandle);

Parameters

fileHandle

(IN) The file handle returned from a prior successful call to DFSsOpen
(the file must have previously opened by DFSsOpen). After a file is
closed, the file handle is no longer valid and should not be reused.

Return Values

0 (0x00
)

DFSNormalCom
pletion

The operation was completed as
specified.

-1 DFSFailedCompl
etion

An error occurred closing the file. If
this status is returned, errno is set to: 4
EBADF (Bad file number). If the
function does not complete
successfully, NetWareErrno is set.

Remarks

Calling DFSclose causes the file to be closed (the handle becomes
invalid). If DFSClose determines that this was the last valid handle (no
other opens outstanding for the file), the Direct File Mode flag is reset,
allowing a subsequent open file call to be either open (normal mode), or
DFSsOpen (direct mode). Remember, if a file is in direct mode, any
programs with normal mode opens into the file are able to read the file
but not write to it (see Direct File System I/O).

File Service Group

Direct File System: Functions 143

See Also

DFSsopen

File Service Group

Direct File System: Functions 144

DFScreat

Creates and opens a file in Direct File Mode, returning a file handle to the
called file

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Direct File System

Syntax

#include <nwdfs.h>

LONG DFScreat (
 BYTE *fileName,
 LONG access,
 LONG flagBits);

Parameters

fileName

(IN) Specifies the name of the file to be created. The filename must be
NULL-terminated and must include the path, including the volume
name but not the server name.

access

(IN) Specifies the access permissions for the file.

flagBits

(IN) Specifies the following when a file is created:

0x000
1

DELETE_FILE_ON_CREATE_BIT

0x000
2

NO_RIGHTS_CHECK_ON_CREATE_BIT

Return Values

!= DFSFailedCompletion The file now exists, is open, and is
in direct mode. The return value is
the file handle assigned when the
file was created.

File Service Group

Direct File System: Functions 145

!= -1 RemarksDFSFailedCom
pletion

An error occurred creating the file.

If -1 is returned, errno is set to

1 ENONENT No such file.

6 EACCES Permission denied.

9 EINVAL Invalid argument.

If the function does not complete successfully, NetWareErrno is set to

15
2

(0x98) ERR_INVALID_VOLUME

15
6

(0x9C
)

ERR_INVALID_PATH

Remarks

Calling DFScreat causes DFS to create a file, or to truncate the file if it
already exists and if the current connection has write privileges. The
name of the file to be created is given by the filename parameter. If the file
exists, it is truncated to contain no data and the preceding permission
setting is unchanged. The file is switched to direct mode, forcing
subsequent file accesses to be direct (The file must be extended using
DFSExpandFile to provide required file space). The file is left open and
must be closed by a subsequent call to DFSclose.

Not all functions are allowed with this form of open once the file has
been created. If additional functions such as specifying a stream are
required, the caller should close the file and open it again by calling
DFSsopen.

The access permissions are defined in FCNTL.H as follows:

0x0000 O_RDONL
Y

open for read only now if this wrap

0x0001 O_WRONL
Y

open for write only

0x0002 O_RDWR open for read and write

0x0010 O_APPEN
D

writes done at end of file

0x0020 O_CREAT create new file if one does not exist

File Service Group

Direct File System: Functions 146

0x0040 O_TRUNC truncate existing file

0x0080 O_EXCL exclusive open

If access is 0, the default value is O_CREAT, O_TRUNC, and
O_WRONLY.

See Also

DFSclose, DFSExpandFile, DFSsopen

File Service Group

Direct File System: Functions 147

DFSExpandFile

Requests DFS to expand a file with a range of contiguous blocks

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Direct File System

Syntax

#include <nwdfs.h>

LONG DFSExpandFile (
 LONG fileHandle,
 LONG fileBlockNumber,
 LONG numberOfBlocks,
 LONG volumeBlockNumber,
 LONG segmentNumber);

Parameters

fileHandle

(IN) The file handle returned from a prior DFSsopen or DFScreat call.

fileBlockNumber

(IN) The beginning file logical block number where the additional
contiguous space is to be allocated.

numberOfBlocks

(IN) The number of contiguous blocks requested to be linked into the
file allocation at the starting location.

volumeBlockNumber

(IN) The beginning volume logical block number at which contiguous
blocks are to be allocated for the file. A wildcard value of -1 indicates
that DFS can allocate the blocks anywhere it can find the required
contiguous space on the volume segment.

segmentNumber

(IN) The volume segment number where the contiguous blocks are to
be allocated when the logical volume block number is not specified (a
wildcard volume block number was provided). A wildcard value of -1
in this parameter indicates that DFS can allocate the blocks in any
volume segment on the volume where the specified number of
contiguous free blocks can be found.

Return Values

File Service Group

Direct File System: Functions 148

0 DFSNormalCompl
etion

File was expanded in the area specified.

1 DFSInsufficientSp
ace

The required space does not exist on the
volume to expand the file as requested.

18 DFSParameterErro
r

The caller supplied one or more invalid
parameters.

19 DFSOverlapError An attempt was made to allocate additional
file space where file blocks already exist.

20 DFSSegmentError A volume segment was specified which
does not exist on the volume.

21 DFSBoundaryErro
r

One or more blocks in the range requested
are not available or are not in the volume or
volume segment specified.

13
1

DFSHardIOError Attempted allocation of file blocks where
file blocks are already defined, etc.

13
6

DFSInvalidFileHa
ndle

A DFS call was made using a file handle
which is not valid---typically an open was
omitted or the user inadvertently closed the
file before attempting this access.

14
8

DFSNoWritePrivil
ege

The current connection does not have write
privileges for this file.

14
9

DFSFileDetached The function was not performed because
the file is detached.

Remarks

The DFSExpandFile function is required to expand a file or to write in a
hole in a sparse file (DFSWrite and DFSWriteNoWait cannot expand a
file by writing beyond the current end of the file or by writing in a hole in
a sparse file. Also, normal (non-direct) writes which could normally
expand a file are rejected by the OS while a file is in direct file mode).

Since it is always possible that DFS might find that some of the blocks in
the indicated range have been allocated by other threads or processes
after the caller determined that they were free, the caller must handle this
contingency. It is logical that the caller repeat the sequence of freeing
limbo blocks and attempting to expand several times before reducing the
number of contiguous blocks requested and making multiple requests.
For details on striping and other allocation details, see Impact of Striping.
New file space allocated to fill a hole in a sparse file is zero-filled.
Contiguous blocks added to the end of allocated file space are not
zero-filled.

NOTE: A range of blocks that spans two volume segments is not

File Service Group

Direct File System: Functions 149

considered contiguous, even though the logical volume block addresses
are contiguous.

See Also

DFSFreeLimboVolumeSpace

File Service Group

Direct File System: Functions 150

DFSFreeLimboVolumeSpace

Requests DFS to free a number of limbo blocks on a volume

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Direct File System

Syntax

#include <nwdfs.h>

LONG DFSFreeLimboVolumeSpace (
 LONG volumeNumber,
 LONG numberOfBlocks);

Parameters

volumeNumber

(IN) The volume number where the requested number of limbo blocks
are to be freed.

numberOfBlocks

(IN) Specifies the number of limbo blocks requested to be freed.

Return Values

0 DFSNormalCompletion The operation was completed as
specified.

22 DFSInsufficientLimboFil
eSpace

The request could not be completed
because there were not enough
contiguous limbo blocks to complete
the request successfully.

15
2

DFSInvalidVolume The volume does not exist or is not
mounted.

Remarks

This function requests the OS to free a number of limbo blocks on a given
volume. This function performs the equivalent of a purge of one or more
files until it has freed the requested number of blocks (or more). There is
no guarantee that the OS can free as many blocks as requested by the
caller, or that the blocks freed are contiguous. Also there is no way to

File Service Group

Direct File System: Functions 151

caller, or that the blocks freed are contiguous. Also there is no way to
guarantee that the blocks will be made available on a specific volume
segment.

Other processes, including system functions, can acquire blocks that have
just been freed before they can be allocated. The OS normally stripes
allocation of files when multiple segments exist for a volume, so it can be
very difficult to find a large contiguous area of free blocks on a volume
where non-direct or normal files are allocated in multisegment volumes.
Callers should be prepared to call this function multiple times.

See Also

DFSExpandFile

File Service Group

Direct File System: Functions 152

DFSRead

Reads the sectors requested from a file using DFS (sleeps until completion)

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Direct File System

Syntax

#include <nwdfs.h>

LONG DFSRead (
 LONG fileHandle,
 LONG startingSector,
 LONG sectorCount,
 BYTE *buffer);

Parameters

fileHandle

(IN) The file handle returned from a prior call to open for the
indicated file.

startingSector

(IN) The starting sector number (logical offset from beginning of the
file) in the file where the read operation is to begin.

sectorCount

(IN) The number of sectors to be read into the buffer.

buffer

(OUT) Pointer to a contiguous buffer area large enough to contain the
number of sectors indicated to be read.

Return Values

0 DFSNormalCompletion The operation was completed as
specified.

17 DFSHoleInFileError A read was attempted to file sector
addresses where no file blocks are
allocated. The buffer is zero-filled.

18 DFSParameterError The caller supplied one or more
invalid parameters.

File Service Group

Direct File System: Functions 153

23 DFSNotInDirectFileMod
e

A direct file read (DFSRead) was
issued but the file has not been
opened successfully in direct mode.

24 DFSOperationBeyondE
ndOfFile

A read function was requested beyond
the current end of file.

13
1

DFSHardIOError

13
6

DFSInvalidFileHandle A DFS call was made using a file
handle which is not valid. Typically
an open was omitted or the user
inadvertently closed the file before
attempting this access.

14
7

DFSNoReadPrivilege Current connection does not have read
privileges for the file.

14
9

DFSFileDetached The function was not completed
because the file is detached.

15
0

DFSInsufficientMemory DFS could not allocate sufficient
memory to complete the request.

16
2

DFSIOLockError

Remarks

This function performs a read of one or more sectors using a logical
zero-based sector offset into the indicated file. Since this function is
blocking, control is returned to the caller after all reads relating to the
requested read function have been completed. If a status indicating a
hole was detected during the requested read operation, the buffer is
zeroed. It is not possible to read beyond the end of the allocated area of a
file.

See Also

DFSReadNoWait, DFSWrite

File Service Group

Direct File System: Functions 154

DFSReadNoWait

Reads the sectors requested from a file using DFS (returns after initiation)

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Direct File System

Syntax

#include <nwdfs.h>

LONG DFSReadNoWait (
 LONG fileHandle,
 LONG startingSector,
 LONG sectorCount,
 BYTE *buffer,
 struct DFSCallBackParameters
 *callBackNode);

Parameters

fileHandle

(IN) The file handle returned from a prior call to open for the
indicated file.

startingSector

(IN) The starting sector number (logical offset from beginning of file)
in the file where the read operation is to begin.

sectorCount

(IN) The number of sectors to be read into the buffer.

buffer

(OUT) Pointer to a contiguous buffer area large enough to contain the
number of sectors indicated to be read.

callBackNode

(IN) Pointer to a structure used to signal completion of all requested
reads for a particular call to DFSReadNoWait.

Return Values

0 Read Normal Initiation

!=0 Read not initiated

File Service Group

Direct File System: Functions 155

NOTE: The actual completion is stored in the completionCode field of
the DFSCallBackParameters upon completion of the request.

Remarks

This function is identical to DFSRead, except that the return to the
function caller is made immediately after posting the reads to the driver.
This means that the status returned from the function only indicates
whether the call was initiated or not. The completion status is returned in
the structure provided for completion notification. A calling process must
allow other processes to run. Consequently, any long sequence of code
including this function call should make frequent calls to ThreadSwitch
to allow other processes to be executed.

The DFSCallBackParameters structure is defined as follows:

struct DFSCallBackParameters
{
 LONG localSemaphoreHandle;
 LONG completionCode;
};

The localSemaphoreHandle field contains a local semaphore handle
obtained by calling OpenLocalSemaphore. WaitOnLocalSemaphore or
ExamineLocalSemaphore should be called to determine when the
semaphore has been signalled.

The completionCode field contains the actual completion code, initialized to
-1 by this function and updated upon completion. For completion code
values, see DFSRead.

See Also

DFSRead, DFSWriteNoWait, OpenLocalSemaphore

File Service Group

Direct File System: Functions 156

DFSReturnFileMappingInformation

Returns file extents, each with the number of blocks, and starting file and
volume block numbers

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Direct File System

Syntax

#include <nwdfs.h>

LONG DFSReturnFileMappingInformation (
 LONG fileHandle,
 LONG startingBlockNumber,
 LONG *numberOfEntries,
 LONG tableSize,
 struct FileMapStructure
 *table);

Parameters

fileHandle

(IN) Specifies the file handle returned from a prior call to open for the
file.

startingBlockNumber

(IN) Specifies the starting file block address for which map is
requested (zero relative).

numberOfEntries

(OUT) Receives the number of valid file map entries returned.

tableSize

(IN) Receives the number of file map entries for which space has been
allocated by the caller in the following table (that is, max # of struct
FileMapStructure to be returned).

table

(OUT) Receives a table of file map entries.

Return Values

0 DFSNormalCompl
etion

The operation was completed and
information fields are valid.

File Service Group

Direct File System: Functions 157

18 DFSParameterErro
r

The function caller supplied an invalid
parameter.

13
6

DFSInvalidFileHa
ndle

A DFS call was made using a file handle
that is not valid. Typically an open was
omitted or the user inadvertently closed the
file before attempting this access.

Remarks

This function is required to provide the calling NLM™ application with
details of exactly where a given file's logical blocks are located, including
where file holes and the end of a file's allocated storage space is, so that
the application can expand the file by calling DFSExpandFile.

Each file map entry has the following structure (found in nwdfs.h):

struct FileMapStructure
{
 LONG fileBlock;
 LONG volumeBlock;
 LONG numberOfBlocks;
};

See FileMapStructure.

See Also

DFSReturnVolumeBlockInformation,
DFSReturnVolumeMappingInformation

File Service Group

Direct File System: Functions 158

DFSReturnVolumeBlockInformation

Returns the volume block usage bitmap for requested volume

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Direct File System

Syntax

#include <nwdfs.h>

LONG DFSReturnVolumeBlockInformation (
 LONG volumeNumber,
 LONG startingBlockNumber,
 LONG numberOfBlocks,
 BYTE *buffer);

Parameters

volumeNumber

(IN) Specifies the volume number for which the volume block
information is desired.

startingBlockNumber

(IN) Specifies volume logical block zero or an even multiple of 8 up to
the last block of the volume.

numberOfBlocks

(IN/OUT) Specifies the number of blocks for which allocation bit flags
are to be transferred into the buffer (If startingBlockNumber plus
numberOfBlocks is greater than the total number of volume blocks, the
number of volume blocks remaining starting from startingBlockNumber
is substituted here).

buffer

(OUT) Receives a pointer to a buffer area where the information is
returned. The area required for the buffer is the number of blocks
rounded up modulus 8. The format of the data in the buffer is bit
array, with 1 bits indicating available blocks. The relative bit address
of each bit is the block address relative to the beginning of the
specified starting file block number.

Return Values

0 DFSNormalCompl The operation is complete and information

File Service Group

Direct File System: Functions 159

0 DFSNormalCompl
etion

The operation is complete and information
fields are valid.

15
2

DFSInvalidVolum
e

The volume number specified does not exist
or not mounted.

Remarks

This function is used to determine which blocks on a volume are in use
and that are available for allocation. This function returns a bitmap which
has a bit for each block in the range specified in the calling parameters,
beginning with the logical (zero-based) volume block indicated by
startingBlockNumber. This information is required if an application NLM
is attempting to do specific allocation for a file, in order to pick block
ranges of contiguous free blocks to expand a file.

The data returned by this function is only valid until it is changed by
some request, and can change dynamically before an application can
successfully request allocation of the blocks selected. The application
process must be designed to handle this exception, as well as the case
where there is not a single contiguous free block area large enough to
satisfy the file expansion request.

See Also

DFSReturnFileMappingInformation ,
DFSReturnVolumeMappingInformation

File Service Group

Direct File System: Functions 160

DFSReturnVolumeMappingInformation

Returns information about a volume required for file allocation

Local Servers: nonblocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Direct File System

Syntax

#include <nwdfs.h>

LONG DFSReturnVolumeMappingInformation (
 LONG volumeNumber,
 struct VolumeInformationStructure
 *volumeInformation);

Parameters

volumeNumber

(IN) Indicates the system volume number of the selected volume. A
requesting process can determine the appropriate volume number
using the File System Services functions.

volumeInformation

(OUT) Provides a structure of type VolumeInformationStructure (see
below).

Return Values

0 DFSNormalCom
pletion

The operation is complete and information
fields are valid.

15
2

DFSInvalidVolu
me

The volume number specified does not exist
or is not mounted.

Remarks

This function provides volume information, including allocation block
size, that is necessary to determine how many blocks to allocate in order
to allocate a specified number of bytes for a request. This information
changes dynamically. Therefore, it can become invalid before an
application NLM can use the information. Application NLM applications
must be designed to handle the likelihood that blocks available change

File Service Group

Direct File System: Functions 161

dynamically.

The VolumeInformationStructure structure defined as follows:

struct VolumeInformationStructure
{
 LONG VolumeAllocationUnitSizeInBytes;
 LONG VolumeSizeInAllocationUnits;
 LONG VolumeSectorSize;
 LONG AllocationUnitsUsed;
 LONG AllocationUnitsFreelyAvailable;
 LONG AllocationUnitsInDeletedFilesNotAvailable;
 LONG AllocationUnitsInAvailableDeletedFiles;
 LONG NumberOfPhysicalSegmentsInVolume;
 LONG PhysicalSegmentSizeInAllocationUnits[64];
};

See VolumeInformationStructure.

See Also

DFSReturnFileMappingInformation ,
DFSReturnVolumeBlockInformation

File Service Group

Direct File System: Functions 162

DFSSetEndOfFile

Sets file size

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Direct File System

Syntax

#include <nwdfs.h>

LONG DFSSetEndOfFile (
 LONG fileHandle,
 LONG newFileSize,
 LONG returnTruncatedBlocksFlag);

Parameters

fileHandle

(IN) Specifies the file handle returned from a prior DFSsopen or
DFScreat call for the indicated file.

newFileSize

(IN) Specifies the new file size in bytes.

returnTruncatedBlocksFlag

(IN) A nonzero value specified here indicates that any blocks
truncated by the new file size should be freed up for future OS use.

Return Values

0 DFSNormalCom
pletion

The operation is complete as specified.

16 DFSTruncationFa
ilure

The DFSSetEndOfFile function detected that
the caller requested excess blocks to be
truncated, but the file was open for other
connections, causing the request to be
rejected.

13
1

DFSHardIOError

13
6

DFSInvalidFileH
andle

A call was made with an invalid file handle.
Typically an open was omitted or the user
inadvertently closed the file.

File Service Group

Direct File System: Functions 163

Remarks

If the connection making the request is the only entity with the file open
and if the returnTruncatedBlocksFlag is nonzero, setting a new file size that
is one or more blocks less than the previous file size causes blocks
(actually allocated) beyond the new defined file size to be truncated, or
returned for future OS usage. If a new file size is specified that is greater
than the previous file size, the newly defined file area is zero-filled,
provided that actual file space is allocated. A new file size can be
specified that is beyond the range of current allocated file space, or that is
less than current allocated file space.

See Also

DFSExpandFile, DFSReturnFileMappingInformation, DFSWrite

File Service Group

Direct File System: Functions 164

DFSsopen

Opens the requested file in Direct File Mode

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Direct File System

Syntax

#include <nwdfs.h>

LONG DFSsopen (
 BYTE *fileName,
 LONG access,
 LONG share,
 LONG permission,
 LONG flagBits,
 LONG dataStream);

Parameters

fileName

(IN) Specifies the name of the file to be opened. The file name must be
NULL-terminated and must include the path including the volume
name but not the server name.

access

(IN) Specifies the access mode.

share

(IN) Specifies the sharing mode of the file.

permission

(IN) Specifies the access permissions for the file. The access
permissions (see the sys\stat.h file) are as follows:

S_IWRITE The file is writable

S_IREAD The file is readable

flagBits

(IN) Specifies the following flags when a file is opened:

0x0000004 FILE_WRITE_THROUGH_BIT

File Service Group

Direct File System: Functions 165

0

0x0001000
0

NO_RIGHTS_CHECK_ON_OPEN_BIT

dataStream

(IN) Specifies the name space.

Return Values

!= DFSFailedCompl
etion

The requested operation is complete. The
actual value returned is a file handle which is
used for other functions that operate on the
file.

-1 DFSFailedCompl
etion

The requested file was not opened.

If an error has occurred, errno can be set to

1 No such file

4 Bad file handle

6 Permission denied

9 Invalid argument

When an error occurs, NetWareErrno is set to

10
8

(0x6C
)

ERR_BAD_ACCESS

15
2

(0x98) ERR_INVALID_VOLUME

15
6

(0x9C
)

ERR_INVALID_PATH

Remarks

The name of the file to be opened is given by the filename parameter. The
file is accessed according to the access mode specified by the access
parameter.

When a file is opened in direct file mode by calling DFSsopen, DFS flags

File Service Group

Direct File System: Functions 166

the file as being in direct file mode. In this mode, the cache and TTS are
bypassed for future accesses to the file. Existing cache entries for the file
are flushed and a turbo FAT for the file is built if one does not currently
exist.

This could cause problems with other applications that have already
opened the file in normal non-direct mode. In this case, the file is
switched to direct mode, and the program with the file open in normal
mode is able to read the file but cannot write to it. A close must be issued
for each handle obtained by an open for the file before the file can be
reopened for full normal mode access again (see Direct File System I/O).

The access parameter can have the following values as defined in
FCNTL.H:

0x000
0

O_RDON
LY

open for read only

0x000
1

O_WRON
LY

open for write only

0x000
2

O_RDWR open for read and write

0x001
0

O_APPE
ND

writes done at end of file

0x002
0

O_CREAT create new file

0x004
0

O_TRUN
C

truncate existing file

0x008
0

O_EXCL exclusive open

The share parameter can have the following values as defined in
NWSHARE.H:

SH_COMP
AT

Sets compatibility mode

SH_DENY
RW

Prevents read or write access to the file

SH_DENY
WR

Prevents write access of the file

SH_DENY
RD

Prevents read access of the file

SH_DENY
NO

Permits both read and write access to the file

File Service Group

Direct File System: Functions 167

The dataStream parameter can have the following values as defined in
nwfile.h:

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

See Also

DFSclose, DFScreat

File Service Group

Direct File System: Functions 168

DFSWrite

Writes sectors into a file using DFS (sleeps until completion)

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Direct File System

Syntax

#include <nwdfs.h>

LONG DFSWrite (
 LONG fileHandle,
 LONG startingSector,
 LONG sectorCount,
 BYTE *buffer);

Parameters

fileHandle

(IN) Specifies the file handle returned from a prior DFSsopen or
DFScreat call for the indicated file.

startingSector

(IN) Specifies the starting sector number in the file (logical offset from
beginning of the file) where the write operation is to begin.

sectorCount

(IN) Specifies the number of sectors to be written from the buffer.

buffer

(IN) Points to a contiguous buffer area large enough to contain the
number of sectors to be written.

Return Values

0 DFSNormalCompletion The operation was completed as
specified.

4 DFSVolumeSegmentDeac
tivated

The volume segments on which the
file is located have been deactivated
by the operating system.

17 DFSHoleInFileError An attempt was made to write to a
file block address for which space
has not been allocated (a hole in a

File Service Group

Direct File System: Functions 169

sparse file). Space must be allocated
by calling DFSExpandFile to fill
holes in sparse files before the
associated file block address can be
written to successfully when using
DFS.

18 DFSParameterError The function caller supplied an
invalid parameter.

23 DFSNotInDirectFileMode A function requiring a file to be
opened in direct mode (using
DFSsopen or DFScreat) was
requested but the file is not open in
direct mode.

13
1

DFSHardIOError

13
6

DFSInvalidFileHandle (A DFS call was made using a file
handle which is not valid. Typically
an open was omitted or the user
inadvertently closed the file before
attempting this access).

14
8

DFSNoWritePrivilege The current permissions that the file
has been opened with do not allow
writes to this file.

14
9

DFSFileDetached

15
0

DFSInsufficientMemory The Direct File System could not
obtain memory necessary to
complete the requested function.

16
2

DFSIOLockError

Remarks

This function performs a write of one or more sectors using a logical
zero-based sector offset into the indicated file. Since this function is
blocking, control is returned to the caller after all writes relating to the
requested write function are completed. If a status indicating a hole was
detected during the requested read operation, the operation failed. It is
not possible to write beyond the end of the allocated area of a file, or in
holes where no blocks are allocated. This function sets a new file size if a
write is issued to allocated file space beyond the current file size.

See Also

DFSExpandFile, DFSWriteNoWait

File Service Group

Direct File System: Functions 170

DFSWriteNoWait

Writes sectors into a file using DFS (returns immediately after initiation)

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: Direct File System

Syntax

#include <nwdfs.h>

LONG DFSWriteNoWait (
 LONG fileHandle,
 LONG startingSector,
 LONG sectorCount,
 BYTE *buffer,
 struct DFSCallBackParameters
 *callBackNode);

Parameters

fileHandle

(IN) Specifies the file handle returned from a prior DFSsopen call for
the file.

startingSector

(IN) Specifies the starting sector number in the file (logical offset from
beginning of file) where the write operation is to begin.

sectorCount

(IN) Specifies the number of sectors to be written from the buffer.

buffer

(IN) Points to a contiguous buffer area large enough to contain the
number of sectors to be written.

callBackNode

(IN) Points to a structure used to signal completion of all requested
writes for a particular call to DFSWriteNoWait.

Return Values

0 Write operation initiated

-1 Bad file handle

File Service Group

Direct File System: Functions 171

This function can also return the return status codes found in the
DFSWrite information above.

Remarks

Operation is identical to DFSWrite except that the current thread of
execution is not blocked until the completion of the requested operation (
DFSWrite calls DFSWriteNoWait, then waits for the completion to be
signalled).

The DFSCallBackParameters structure is defined as follows:

struct DFSCallBackParameters
{
 LONG localSemaphoreHandle;
 LONG completionCode;
};

The localSemaphoreHandle field contains a local semaphore handle
obtained by calling OpenLocalSemaphore. WaitOnLocalSemaphore or
ExamineLocalSemaphore should be called to determine when the
semaphore has been signalled.

The completionCode field contains a zero (or the value already in the field
if it has not been zeroed out before DFSWriteNoWait is called) if a bad
file handle is passed, and a -1 for all other completions.

See Also

DFSExpandFile, DFSWrite

File Service Group

Direct File System: Functions 172

Direct File System: Structures

File Service Group

Direct File System: Structures 173

DFSCallBackParameters

Used to signal completion of DFSReadNoWait

Service: Direct File System

Defined In: nwdfs.h

Structure

struct DFSCallBackParameters
{
 LONG localSemaphoreHandle;
 LONG completionCode;
};

Fields

localSemaphoreHandle

Contains a local semaphore handle obtained by calling
OpenLocalSemaphore.

completionCode

Contains the completion code for DFSReadNoWait.

Remarks

See DFSReadNoWait for more information.

File Service Group

Direct File System: Structures 174

FileMapStructure

Service: Direct File System

Defined In: nwdfs.h

Structure

struct FileMapStructure
{
 LONG fileBlock;
 LONG volumeBlock;
 LONG numberOfBlocks;
};

Fields

fileBlock

Contains the starting logical block (zero-based) of the file for this
extent or group of contiguous blocks.

volumeBlock

Contains the actual starting logical volume block (zero-based) of the
contiguous volume blocks assigned to the logical file blocks above.

numberOfBlocks

Contains the number of contiguous volume blocks that compose this
extent (extent block length).

File Service Group

Direct File System: Structures 175

VolumeInformationStructure

Contains information about a NetWare volume

Service: Direct File System

Defined In: nwdfs.h

Structure

struct VolumeInformationStructure
{
 LONG VolumeAllocationUnitSizeInBytes;
 LONG VolumeSizeInAllocationUnits;
 LONG VolumeSectorSize;
 LONG AllocationUnitsUsed;
 LONG AllocationUnitsFreelyAvailable;
 LONG AllocationUnitsInDeletedFilesNotAvailable;
 LONG AllocationUnitsInAvailableDeletedFiles;
 LONG NumberOfPhysicalSegmentsInVolume;
 LONG PhysicalSegmentSizeInAllocationUnits[64];
};

Fields

VolumeAllocationUnitSizeInBytes

Contains the number of bytes contained in a block allocated by the OS
(this can be 4K, 8K, 16K, 32K, or 64K).

VolumeSizeInAllocationUnits

Contains the number of blocks of the size indicated in the parameter
above that are contained in a volume (the volume total size can be
calculated with these two parameters).

VolumeSectorSize

Contains the size of each sector on a volume (currently only a sector
size of 512 bytes is supported by the OS).

AllocationUnitsUsed

Contains the number of blocks on a volume used with current
non-deleted files.

AllocationUnitsFreelyAvailable

Contains the number of blocks currently available for file allocation.

AllocationUnitsInDeletedFilesNotAvailable

Contains the number of blocks on a volume which compose files that
have been deleted but for which the necessary time has not yet
elapsed before they can be purged or moved to the
AllocationUnitsFreelyAvailable category.

AllocationUnitsInAvailableDeletedFiles

File Service Group

Direct File System: Structures 176

Contains the number of blocks which compose files deleted for which
the required time has expired prior to being purged, but which have
not yet been purged or moved to the AllocationUnitsFreelyAvailable
category.

NumberOfPhysicalSegmentsInVolume

Contains the number of physical volume segments that are linked to
form a volume.

PhysicalSegmentSizeInAllocationUnits

Contains an array that specifies the number of blocks in each volume
segment, of which a maximum of 64 are allowed per volume. This also
allows an application process to determine at what point in the logical
volume block number a transition takes place from one volume
segment to another. This information is needed by applications doing
specific file allocation.

File Service Group

Direct File System: Structures 177

DOS Partition

File Service Group

 178

DOS Partition: Guides

DOS Partition: Concept Guide

DOS Partition Introduction

DOS Partition Access

Summary of DOS Partition Functions

Additional Links

DOS Partition: Functions

DOS Partition: Structures

Parent Topic:

File Overview

File Service Group

DOS Partition: Guides 179

DOS Partition: Concepts

DOS Partition Access

The DOS Partition functions allow developers to access files that are in a
disk's DOS partition. These functions should be used only when it is
absolutely necessary to access a file in the DOS partition. Accessing files in
the DOS partition is much slower than accessing files in the NetWare®
partition of a disk, and adversely affect other aspects of the server's
performance.

The DOS partition refers to the set of files accessible from the server PC
booted under DOS. The set of files includes files on floppy disks, on DOS
partitions on hard disks, and on any other DOS drive.

A DOS drive can include RAM disks and network drives. However,
accessing RAM disks and network drives from NetWare is not
recommended. Both RAM disks and NetWare 3.x and above use extended
memory and temporarily switch to protected mode, causing a conflict.
Accessing network drives uses the LAN board. Since the NetWare 3.x and
above OS, in most configurations, also uses this board, two programs would
access the same board. For many kinds of LAN boards, this causes a
deadlock. Therefore, NLM™ applications that use the DOS partition should
only reference files on floppy or hard disks.

The DOS partition functions have been made available primarily for the
installation of new software from the DOS partition to the NetWare
partition. If a file in the DOS partition is to be accessed more than once or
twice, it should be moved into the NetWare partition.

Additional functions for accessing the DOS partition are available through
the File System Services and Operating System I/O Services. You can call
these functions on the DOS partition just as you would for the NetWare
partition. The functions available for NetWare 3.x and above are open,
fopen, and freopen. The same functions are available for NetWare 4.x and
above along with these additional functions: access, chmod, remove, and
rename.

DOSPresent should be called before using any of the DOS partition
functions.

Parent Topic:

DOS Partition: Guides

File Service Group

DOS Partition: Concepts 180

DOS Partition Introduction

NOTE: DOS Partition Services provide functions for NLM
development.

The DOS Partition functions allow developers to access files that are in a
disk's DOS partition. These functions should be used only when it is
absolutely necessary to access a file in the DOS partition. Accessing files in
the DOS partition is much slower than accessing files in the NetWare®
partition of a disk, and adversely affect other aspects of the server's
performance.

The DOS partition refers to the set of files accessible from the server PC
booted under DOS. The set of files includes files on floppy disks, on DOS
partitions on hard disks, and on any other DOS drive.

A DOS drive can include RAM disks and network drives. However,
accessing RAM disks and network drives from NetWare is not
recommended. Both RAM disks and NetWare 3.x and above use extended
memory and temporarily switch to protected mode, causing a conflict.
Accessing network drives uses the LAN board. Since the NetWare 3.x and
above OS, in most configurations, also uses this board, two programs would
access the same board. For many kinds of LAN boards, this causes a
deadlock. Therefore, NLM™ applications that use the DOS partition should
only reference files on floppy or hard disks.

The DOS partition functions have been made available primarily for the
installation of new software from the DOS partition to the NetWare
partition. If a file in the DOS partition is to be accessed more than once or
twice, it should be moved into the NetWare partition.

Additional functions for accessing the DOS partition are available through
the File System Services and Operating System I/O Services. You can call
these functions on the DOS partition just as you would for the NetWare
partition. The functions available for NetWare 3.x and above are open,
fopen, and freopen. The same functions are available for NetWare 4.x and
above along with these additional functions: access, chmod, remove, and
rename.

DOSPresent should be called before using any of the DOS partition
functions.

Parent Topic:

DOS Partition: Guides

Summary of DOS Partition Functions

Table auto. DOS Partition Functions

Function Purpose

File Service Group

DOS Partition: Concepts 181

DOSClose Closes a file in the DOS partition.

DOSCopy Copies a file from the DOS partition to the
NetWare® partition.

DOSCreate Creates a file in the DOS partition of the disk.

DOSFindFirstFile Initializes a search for files in the DOS partition.

DOSFindNextFile Searches for files in the DOS partition.

DOSOpen Opens a file in the DOS partition of the disk.

DOSPresent Determines whether DOS is still present in
memory.

DOSRead Reads from a file in the DOS partition.

DOSsopen Opens a DOS file for shared access.

DOSWrite Writes to a file in the DOS partition.

Parent Topic:

DOS Partition: Guides

File Service Group

DOS Partition: Concepts 182

DOS Partition: Functions

File Service Group

DOS Partition: Functions 183

DOSClose

Closes a file in the DOS partition

Local Servers: blocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSClose (
 int handle);

Parameters

handle

(IN) Specifies the file handle obtained with a previous call to
DOSCreate or DOSOpen.

Return Values

0 (0x0
0)

ESUCCESS

DOSCode UNSUCCESSFUL

Remarks

The DOSClose function closes a file in the DOS partition.

See Also

DOSCreate, DOSOpen, DOSPresent

File Service Group

DOS Partition: Functions 184

DOSCopy

Copies a file from the DOS partition to the NetWare® partition.

Local Servers: blocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSCopy (
 char *NetWareFileName,
 char *DOSFileName);

Parameters

NetWareFileName

(IN) Specifies the name of the file in the NetWare partition; a full
NetWare pathname, including a volume name, is allowed.

DOSFileName

(IN) Specifies the name of the file that is to be copied from the DOS
partition; any legal DOS pathname is allowed.

Return Values

0 (0x0
0)

ESUCCESS

DOSCode UNSUCCESSFUL

Remarks

The DOSCopy function copies an existing file from the DOS partition to
the NetWare partition. If a file with the same name already exists in the
NetWare partition, the new file overwrites it.

See Also

DOSPresent

File Service Group

DOS Partition: Functions 185

DOSCreate

Creates a file in the DOS partition

Local Servers: blocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSCreate (
 char *fileName,
 int *handle);

Parameters

fileName

(IN) Specifies the DOS filename of the file to be created (any legal
DOS pathname is allowed).

handle

(OUT) Receives a file handle which provides access to the DOS file.

Return Values

0 (0x0
0)

ESUCCESS

DOSCode UNSUCCESSFUL

Remarks

If the file does not exist, DOSCreate creates it. If the file does exist, it is
truncated to zero bytes in length. The file is created with read/write
access.

See Also

DOSOpen, DOSPresent

File Service Group

DOS Partition: Functions 186

DOSFindFirstFile

Used to search for files in the DOS partition

Local Servers: blocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSFindFirstFile (
 char *fileName,
 WORD searchAttributes,
 struct find_t *diskTransferAddress);

Parameters

fileName

(IN) Specifies the name of the file to be found in the DOS partition (a
full pathname, including a drive letter and wildcards, is allowed).

searchAttributes

(IN) Determines the type of file for which the search is to be made.

diskTransferAddress

(OUT) Receives DOS information about the file.

Return Values

0 (0x0
0)

ESUCCESS

DOSCode UNSUCCESSFUL

Remarks

The DOSFindFirstFile function finds the first file that matches the
fileName and searchAttributes parameters. If wildcards are used in the
fileName, DOSFindNextFile can be called to find other files that also
match the fileName and searchAttributes.

The following attributes, defined in the nwdos.h header file, can also be

File Service Group

DOS Partition: Functions 187

obtained in find_->attrib. The search attributes are: _A_NORMAL,
_A_SUDIR, A_HIDDEN, and _A_SYSTEM.

_A_NORMAL 0x00 /* Normal file; read/write permitted */
_A_RDONLY 0x01 /* Read-only file */
_A_HIDDEN 0x02 /* Hidden file */
_A_SYSTEM 0x04 /* System file */
_A_VOLID 0x08 /* Volume ID entry */
_A_SUBDIR 0x10 /* Subdirectory */
_A_ARCH 0x20 /* Archive file */

The find_t structure is defined in the nwdos.h file and has the following
format:

struct find_t
{
 char reserved[21]; /* Reserved by DOS */
 char attrib; /* File's attributes */
 unsigned short wr_time; /* File's time stamp (DOS
 format) */
 unsigned short wr_date; /* File's date stamp (DOS
 format) */
 LONG size; /* File size in bytes */
 char name[13]; /* Name of file */
};

See Also

DOSFindNextFile, DOSPresent, DOS Technical Reference manual

File Service Group

DOS Partition: Functions 188

DOSFindNextFile

Used to search for files in the DOS partition

Local Servers: blocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSFindNextFile (
 struct find_t *diskTransferAddress);

Parameters

diskTransferAddress

(IN/OUT) Obtained from a previous call to DOSFindFirstFile; it
receives information about the file.

Return Values

0 (0x0
0)

ESUCCESS

DOSCode UNSUCCESSFUL

Remarks

Consecutive calls to this function return information about all DOS files
which match the fileName and searchAttributes parameters specified in the
call to DOSFindFirstFile.

The find_t structure is defined in the nwdos.h file and has the following
format:

struct find_t
{
 char reserved[21]; /* Reserved by DOS */
 char attrib; /* File's attributes */
 unsigned short wr_time; /* File's time stamp (DOS
 format) */
 unsigned short wr_date; /* File's date stamp (DOS

File Service Group

DOS Partition: Functions 189

 format) */
 LONG size; /* File size in bytes */
 char name[13]; /* Name of file */
};

See Also

DOSFindFirstFile, DOSPresent

File Service Group

DOS Partition: Functions 190

DOSMkdir

Creates a directory on the DOS partition of the NetWare server

Local Servers: blocking

Remote Servers: blocking

Classification: 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSMkdir (
 char *dirName);

Parameters

dirName

(IN) Indicates the DOS directory name to be created.

Return Values

0 Success

DOS error
code

Failure

File Service Group

DOS Partition: Functions 191

DOSOpen

Opens a file in the DOS partition of the disk

Local Servers: blocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSOpen (
 char *fileName,
 int *handle);

Parameters

fileName

(IN) Specifies the DOS filename of the file to be opened (any legal
DOS pathname is allowed).

handle

(OUT) Receives a file handle which provides access to the DOS file.

Return Values

0 (0x0
0)

ESUCCESS

DOSCode UNSUCCESSFUL

Remarks

The file is opened with read/write access.

See Also

DOSCreate, DOSPresent

File Service Group

DOS Partition: Functions 192

DOSPresent

Determines whether DOS is still present in memory

Local Servers: nonblocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSPresent (void);

Return Values

This function returns a value of 1 if DOS is still present in memory.
Otherwise, it returns a value of 0.

Remarks

DOS must be present in memory for any of the other DOS functions to
work.

The REMOVE DOS console command is used to remove DOS from
memory.

File Service Group

DOS Partition: Functions 193

DOSRead

Reads from a file in the DOS partition

Local Servers: blocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSRead (
 int handle,
 LONG fileOffset,
 char *buffer,
 LONG numberOfBytesToRead,
 LONG *numberOfBytesRead);

Parameters

handle

(IN) Specifies the file handle obtained with a previous call to
DOSOpen or DOSCreate.

fileOffset

(IN) Specifies the position in the file at which the first character is to be
read.

buffer

(OUT) Receives the data read from the file.

numberOfBytesToRead

(IN) Specifies the number of bytes that are to be read from the file.

numberOfBytesRead

(OUT) Receives the number of bytes that are actually read from the
file.

Return Values

0 (0x0
0)

ESUCCESS

DOSCode UNSUCCESSFUL

File Service Group

DOS Partition: Functions 194

Remarks

The DOSRead function reads from a file in the DOS partition.

See Also

DOSPresent, DOSWrite

File Service Group

DOS Partition: Functions 195

DOSRemove

Removes a file from the DOS Partition of the NetWare server

Local Servers: blocking

Remote Servers: blocking

Classification: 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSRemove (
 const char *fileName);

Parameters

fileName

(IN) Indicates the DOS file name to be removed.

Return Values

0 Success

DOS error
code

Failure

File Service Group

DOS Partition: Functions 196

DOSRmdir

Removes a directory from the DOS Partition of the NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Servers: 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSRmdir (
 char *dirName);

Parameters

dirName

(IN) Indicates the DOS directory name to be removed.

Return Values

0 Success

DOS error
code

Failure

File Service Group

DOS Partition: Functions 197

DOSsopen

Opens a DOS file for shared access

Local Servers: blocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSsopen (
 const char *filename,
 int access,
 int share,
 int permission);

Parameters

access

(IN) Specifies the access mode of the file on open, as defined in
FCNTL.H.

share

(IN) Specifies the sharing mode of the file on open as defined in
NWSHARE.H (DOS 3.0 and above; must be 0 in DOS 2.x).

permission

(IN) File permissions if file is created (file does not exist, and
O_CREAT is true).

Normal---0x00 Read/write

Read Only---0x01 Read only

Return Values

This function returns a file handle if successful. Otherwise, it returns:

-1 The NetWare or DOS error is in NetWareErrno. (The DOS and
NetWare error codes do not overlap. If NetWareErrno = -1, DOS is
not present.)

Remarks

File Service Group

DOS Partition: Functions 198

This function is similar to the NetWare partition function sopen, except
that it does not support O_APPEND and O_BINARY.

The following access modes are defined in FCNTL.H:

O_RDONLY 0x0000 /* Open for read only */
O_WRONLY 0x0001 /* Open for write only */
O_RDWR 0x0002 /* Open for read and write */

The following can be ORed with the above.

O_CREAT 0x0020 /* Create new file if file does not
 exist */
O_TRUNC 0x0040 /* Truncate existing file */

The following share modes are defined in NWSHARE.H:

SH_COMPAT 0x00 /* Compatibility mode */
SH_DENYRW 0x10 /* Deny read/write mode */
SH_DENYWR 0x20 /* Deny write mode */
SH_DENYRD 0x30 /* Deny read mode */
SH_DENYNO 0x40 /* Deny none mode */

See Also

DOSOpen, sopen

File Service Group

DOS Partition: Functions 199

DOSUnlink

Removes a file from the DOS Partition of the NetWare server

Local Servers: blocking

Remote Servers: blocking

Classification: 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSUnlink (
 const char *fileName);

Parameters

fileName

(IN) Indicates the DOS file name to be removed.

Return Values

0 Success

DOS error
code

Failure

File Service Group

DOS Partition: Functions 200

DOSWrite

Writes to a file in the DOS partition

Local Servers: blocking

Remote Servers: N/A

Classification: 2.x, 3.x, 4.x

SMP Aware: No

Service: DOS Partition

Syntax

#include <nwdos.h>

int DOSWrite (
 int handle,
 LONG fileOffset,
 char *buffer,
 LONG numberOfBytesToWrite,
 LONG *numberOfBytesWritten);

Parameters

handle

(IN) Specifies the file handle obtained with a previous call to
DOSOpen or DOSCreate.

fileOffset

(IN) Specifies the position in the file at which the first character is
written.

buffer

(IN) Specifies the data to be written to the file.

numberOfBytesToWrite

(IN) Specifies the number of bytes in the buffer that are to be written to
the file.

numberOfBytesWritten

(OUT) Receives the number of bytes actually written to the file.

Return Values

0 (0x0
0)

ESUCCESS

DOSCode UNSUCCESSFUL

File Service Group

DOS Partition: Functions 201

Remarks

The DOSWrite function writes to a file in the DOS partition.

See Also

DOSPresent, DOSRead

File Service Group

DOS Partition: Functions 202

DOS Partition: Structures

File Service Group

DOS Partition: Structures 203

find_t

Contains DOS file information

Service: DOS Partition

Defined In: nwdos.h

Structure

struct find_t
{
 char reserved[21];
 char attrib;
 unsigned short wr_time;
 unsigned short wr_date;
 LONG size;
 char name[13];
};

Fields

reserved

Reserved by DOS.

attrib

Contains the file's attributes.

wr_time

Contains the file's time stamp in DOS format.

wr_date

Contains the file's date stamp in DOS format.

size

Contains the file's size in bytes.

name

Contains the anme of the file.

File Service Group

DOS Partition: Structures 204

Extended Attribute

File Service Group

 205

Extended Attribute: Guides

Extended Attribute: Task Guide

Accessing Extended Attributes

Accessing Attribute Selection by Name

Scanning for Extended Attributes

Closing an Extended Attribute

Additional Links

Extended Attribute: Functions

Extended Attribute: Structures

Parent Topic:

Extended Attribute: Guides

Extended Attribute: Concept Guide

Extended Attribute Introduction

Manipulating Extended Attribute Byte: Example

Extended Attribute Functions

Additional Links

Extended Attribute: Functions

Extended Attribute: Structures

Parent Topic:

Extended Attribute: Guides

File Service Group

Extended Attribute: Guides 206

Extended Attribute: Tasks

Accessing Attribute Selection by Name

To access an extended attribute by name, prepare the NWEA structure by
calling NWOpenEA.

NOTE: NWOpenEA doesn't actually open the extended attribute, but
fills in the fields in the NWEA structure. The NWOpenEA function uses
the directory handle/file path of the associated file, the name of the
extended attribute, and the name space as arguments.

You can also call the NWGetEAHandleStruct function to obtain the NWEA
structure if you know the extended attribute name. This function requires a
valid NW_IDX structure. Call NWGetDirectoryBase or NWNSGetMiscInfo
. (NWOpenEA performs this step for you.)

Parent Topic:

Extended Attribute: Guides

Accessing Extended Attributes

Use the following functions to read and write to the extended attributes of a
file:

NWReadEA

NWWriteEA

Both functions open the extended attribute before proceeding, and both
require a valid NWEA structure as input.

NOTE: There are several ways to prepare this structure before passing
it to either function. Refer to the structure information before
proceeding.

Parent Topic:

Extended Attribute: Guides

Closing an Extended Attribute

File Service Group

Extended Attribute: Tasks 207

1. Complete the read or write operation on an extended attribute before
closing an extended attribute.

Partial read or write operations aren't allowed. Any data past the end of
the last read or write operation is lost when the file is closed.

2. Call NWCloseEA to close the extended attribute directory entry after
accessing a file's extended attributes.

Parent Topic:

Extended Attribute: Guides

Scanning for Extended Attributes

1. Call NWFindFirstEA and NWFindNextEA to scan the extended
attributes of a file.

NWFindFirstEA initializes the scan operation and NWFindNextEA
returns an NWEA structure for each extended attribute. The returned
structure can be passed to NWReadEA or NWWriteEA.

NWFindFirstEA takes an NW_IDXstructure as input. NW_IDX must
identify the file associated with the extended attribute.

2. To prepare NW_IDX, call the Name Space Services function
NWGetDirectoryBase.

Parent Topic:

Extended Attribute: Guides

File Service Group

Extended Attribute: Tasks 208

Extended Attribute: Concepts

Extended Attribute Functions

Extended Attribute Services include the functions listed below.

Function Comment

NWCloseEA Closes the specified extended attribute.

NWFindFirstEA Initializes the process of scanning extended
attributes.

NWFindNextEA Returns NWEA for accessing the next extended
attribute.

NWGetEAHandleS
truct

Prepares NWEA to be used by NWReadEA or
NWWriteEA.

NWOpenEA Opens the specified extended attribute.

NWReadEA Reads the next block of data from the specified
extended attribute.

 NWWriteEA Writes data to an extended attribute. If the
extended attribute doesn't exist, this function
attempts to create it.

Parent Topic:

Extended Attribute: Guides

Extended Attribute Introduction

A file's extended attributes are stored as fields in a separate directory entry.
This entry is not accessible through conventional means (that is, directory
handles and path specifications). Instead, the entry and its fields are
referenced by a NetWare® Extended Attribute (NWEA) structure. The
structure includes the following:

Connection ID

Read/write position

Extended attribute handle

File Service Group

Extended Attribute: Concepts 209

Volume number

Directory entry

Key used

Key length

Key

The information in the NWEA structure is for internal use only. Allocate
and maintain space for the structure, but don't modify its values.

Parent Topic:

Extended Attribute: Guides

File Service Group

Extended Attribute: Concepts 210

Extended Attribute: Functions

File Service Group

Extended Attribute: Functions 211

NWCloseEA

Closes the specified Extended Attribute

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: Extended Attribute

Syntax

#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWCloseEA (
 NW_EA_HANDLE N_FAR *EAHandle);

Pascal Syntax

#include <nwea.inc>

Function NWCloseEA
 (Var EAHandle : NW_EA_HANDLE
) : NWCCODE;

Parameters

EAHandle

(IN) Points to NW_EA_HANDLE.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x89CF INVALID_EA_HANDLE

0x89D3 EA_VOLUME_NOT_MOUNTED

Remarks

File Service Group

Extended Attribute: Functions 212

NWCloseEA must be called to save any changes made to an Extended
Attribute. NWCloseEA must be called after a complete Read and/or
Write cycle, not after each read or write function. (NWCloseEA should
not be called after a find.)

NW_EA_HANDLE is referenced in all Extended Attribute functions.
NW_EA_HANDLE is for internal use only; do not manipulate
NW_EA_HANDLE in any way.

NCP Calls

0x2222 86 01 Close Extended Attribute Handle

File Service Group

Extended Attribute: Functions 213

NWFindFirstEA

Initializes the find-first/find-next Extended Attribute process

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Extended Attribute

Syntax

#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWFindFirstEA (
 NWCONN_HANDLE conn,
 NW_IDX N_FAR *idxStruct,
 NW_EA_FF_STRUCT N_FAR *ffStruct,
 NW_EA_HANDLE N_FAR *EAHandle,
 pnstr8 EAName);

Pascal Syntax

#include <nwea.inc>

Function NWFindFirstEA
 (conn : NWCONN_HANDLE;
 Var idxStruct : NW_IDX;
 Var ffStruct : NW_EA_FF_STRUCT;
 Var EAHandle : NW_EA_HANDLE;
 EAName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare® server connection handle.

idxStruct

(IN) Points to the NW_IDX structure containing the directory entry
index.

ffStruct

(OUT) Points to the NW_EA_FF_STRUCT structure.

EAHandle

File Service Group

Extended Attribute: Functions 214

(OUT) Points to the NW_EA_HANDLE structure for the Extended
Attribute.

EAName

(OUT) Points to the name of the Extended Attribute (optional).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x0001 No EAs

0x8801 INVALID_CONNECTION

0x8836 INVALID_PARAMETER

Remarks

If any EAs exist for the associated file, NWFindFirstEA returns the
NW_EA_HANDLE structure. If no EAs exist, NWFindFirstEA returns 1.

The NW_EA_HANDLE structure can call the NWReadEA and/or
NWWriteEA function. Therefore, you do not need to call the
NWGetEAHandleStruct function after NWFindFirstEA to initialize a
Read or Write.

If you do call the NWGetEAHandleStruct function in preparation for
writing, use the EAName parameter. When you copy by calling either
NWFindFirstEA or the NWFindNextEA function, you must use the
EAName parameter. If the EAName parameter is not needed, it can be
passed NULL.

Information for the NW_IDX structure is obtained by calling the
NWNSGetMiscInfo or NWGetDirectoryBase function. Functions use the
NW_IDX structure to hold information concerning the name space and
directory entry index of a file. This is how an application associates an
Extended Attribute with a particular directory entry.

The NW_EA_FF_STRUCT structure is used internally by
NWFindFirstEA.

The NW_EA_HANDLE and NW_EA_FF_STRUCT structures are for
internal use only; do not manipulate these structures in any way.

NWFindFirstEA will return INVALID_PARAMETER if NULL is passed
to either the ffStruct or EAHandle parameters.

NCP Calls

File Service Group

Extended Attribute: Functions 215

0x2222 86 04 Enumerate Extended Attribute

See Also

NWFindNextEA, NWGetDirectoryBase, NWGetEAHandleStruct,
NWNSGetMiscInfo

File Service Group

Extended Attribute: Functions 216

NWFindNextEA

Returns the NW_EA_HANDLE structure for the next Extended Attribute

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Extended Attribute

Syntax

#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWFindNextEA(
 NW_EA_FF_STRUCT N_FAR *ffStruct,
 NW_EA_HANDLE N_FAR *EAHandle,
 pnstr8 EAName);

Pascal Syntax

#include <nwea.inc>

Function NWFindNextEA
 (Var ffStruct : NW_EA_FF_STRUCT;
 Var EAHandle : NW_EA_HANDLE;
 EAName : pnstr8
) : NWCCODE;

Parameters

ffStruct

(IN/OUT) Points to the NW_EA_FF_STRUCT structure returned by
the NWFindFirstEA function.

EAHandle

(OUT) Points to the NW_EA_HANDLE structure.

EAName

(OUT) Points to the name of the Extended Attribute (optional).

Return Values

These are common return values; see Return Values for more
information.

File Service Group

Extended Attribute: Functions 217

0x0000 SUCCESSFUL

0x0001 EA_DONE

0x8996 ERR_NO_ALLOC_SPACE

0x89C9 ERR_EA_NOT_FOUND

0x89CF ERR_INVALID_EA_HANDLE

0x89D1 ERR_EA_ACCESS_DENIED

0x89FB ERR_UNKNOWN_REQUEST

0x89FF ERR_BAD_PARAMETER

Remarks

Before calling NWFindNextEA, you must call the NWFindFirstEA
function. NWFindNextEA can then be called multiple times until all EAs
have been found. EA_DONE is returned when there are no more EAs.

The NW_EA_HANDLE structure can also call the NWReadEA and/or
NWWriteEA function. Therefore, do not call the NWGetEAHandleStruct
function after the NWFindFirstEA function in order initialize a Read or
Write.

If you do call the NWGetEAHandleStruct function in preparation for a
Write, use the EAName parameter. When you copy by calling either the
NWFindFirstEA or NWFindNextEA function, the EAName parameter
must be used. If the EAName parameter is not needed, pass NULL.

The NW_EA_FF_STRUCT structure is used by the NWFindFirstEA
function to return a handle to the first or next Extended Attribute.

The NW_EA_HANDLE and NW_EA_FF_STRUCT structures are for
internal use only; do not manipulate these structures in any way.

NCP Calls

0x2222 86 04 Enumerate Extended Attribute

See Also

NWFindFirstEA

File Service Group

Extended Attribute: Functions 218

NWGetEAHandleStruct

Fills the NW_EA_HANDLE structure for use in the NWReadEA and
NWWriteEA functions

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Extended Attribute

Syntax

#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWGetEAHandleStruct(
 NWCONN_HANDLE conn,
 pnstr8 EAName,
 NW_IDX N_FAR *idxStruct,
 NW_EA_HANDLE N_FAR *EAHandle);

Pascal Syntax

#include <nwea.inc>

Function NWGetEAHandleStruct
 (conn : NWCONN_HANDLE;
 EAName : pnstr8;
 Var idxStruct : NW_IDX;
 Var EAHandle : NW_EA_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

EAName

(IN) Points to the string containing the name of the Extended
Attribute.

idxStruct

(IN) Points to the NW_IDX structure containing the directory entry
index.

EAHandle

(IN/OUT) Points to the NW_EA_HANDLE structure containing the
handle of the current Extended Attribute.

File Service Group

Extended Attribute: Functions 219

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Remarks

The NW_EA_HANDLE structure is referenced in all Extended Attribute
functions. The NWReadEA and NWWriteEA functions use the
NW_EA_HANDLE structure to maintain state information. The state
information is required to access the Extended Attribute database.

The NW_IDX structure information is obtained by calling the
NWNSGetMiscInfo or NWGetDirectoryBase function. Functions use the
NW_IDX structure to hold information about the name space and
directory entry index of a file. This is how an application associates an
Extended Attribute with a particular directory entry.

NCP Calls

None

See Also

NWFindFirstEA, NWFindNextEA, NWGetDirectoryBase,
NWNSGetMiscInfo, NWReadEA, NWWriteEA

File Service Group

Extended Attribute: Functions 220

NWOpenEA

Fills the NW_EA_HANDLE structure so it can be used by the NWReadEA
and NWWriteEA functions

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Extended Attribute

Syntax

#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWOpenEA (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 pnstr8 EAName,
 nuint8 nameSpace,
 NW_EA_HANDLE N_FAR *EAHandle);

Pascal Syntax

#include <nwea.inc>

Function NWOpenEA
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 EAName : pnstr8;
 nameSpace : nuint8;
 Var EAHandle : NW_EA_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle pointing to the directory
to search.

path

File Service Group

Extended Attribute: Functions 221

(IN) Points to a path.

EAName

(IN) Points to the string containing the name of the Extended
Attribute.

nameSpace

(IN) Specifies the name space of the Extended Attribute.

EAHandle

(IN/OUT) Points to the NW_EA_HANDLE structure containing the
handle of the current Extended Attribute.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

Remarks

NWOpenEA combines the functionality of the NWGetDirectoryBase
and NWGetEAHandleStruct functions in one function.

The NWFindFirstEA and NWFindNextEA functions also return a filled
NW_EA_HANDLE structure.

NCP Calls

0x2222 87 22 Generate Directory Base and Volume Number

See Also

NWFindFirstEA, NWFindNextEA, NWGetDirectoryBase,
NWGetEAHandleStruct, NWNSGetMiscInfo, NWReadEA,
NWWriteEA

File Service Group

Extended Attribute: Functions 222

NWReadEA

Reads the next block of data from the specified Extended Attribute

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Extended Attribute

Syntax

#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWReadEA (
 NW_EA_HANDLE N_FAR *EAHandle,
 nuint32 bufferSize,
 pnuint8 buffer,
 pnuint32 totalEASize,
 pnuint32 amountRead);

Pascal Syntax

#include <nwea.inc>

Function NWReadEA
 (Var EAHandle : NW_EA_HANDLE;
 bufferSize : nuint32;
 buffer : pnuint8;
 totalEASize : pnuint32;
 amountRead : pnuint32
) : NWCCODE;

Parameters

EAHandle

(IN/OUT) Points to the NW_EA_HANDLE structure, obtained by
calling either the NWGetHandleStruct, NWFindFirstEA,
NWFindNextEA, or NWOpenEA function.

bufferSize

(IN) Specifies the size of the buffer.

buffer

(OUT) Points to a data buffer.

File Service Group

Extended Attribute: Functions 223

totalEASize

(OUT) Points to the size of the Extended Attribute.

amountRead

(OUT) Points to the total amount of data read with the call (not
cumulative across multiple calls).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8833 INVALID_BUFFER_LENGTH

0x8988 INVALID_FILE_HANDLE

0x898C NO_MODIFY_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x899C INVALID_PATH

0x89C9 EA_NOT_FOUND

0x89CE EA_BAD_DIR_NUM

0x89CF INVALID_EA_HANDLE

0x89D1 EA_ACCESS_DENIED

0x89D3 EA_VOLUME_NOT_MOUNTED

0x89D5 INSPECT_FAILURE

Remarks

The data block to be read is determined from the state information
identified by the EAHandle parameter.

NWReadEA and the NWWriteEA function can perform multiple actions,
such as opening or creating an Extended Attribute and then calling the
appropriate function. To properly end NWReadEA, call the NWCloseEA
function after the last Read or Write.

Extended Attribute values should always be read or written completely.
Extended Attributes are not treated like files when transferring.
Therefore, partial Reads or Writes are not allowed.

If 0x0000 is returned, more data can be written to the Extended Attribute.
If 0x0001 is returned, the data in the buffer was written successfully;
however, no more data can be written to the Extended Attribute. If other
errors are returned, the data in the buffer was not written to the Extended
Attribute.

File Service Group

Extended Attribute: Functions 224

CAUTION: If an Extended Attribute is not read or written
completely, data past the end of the last Read or Write may be lost!

The NW_EA_HANDLE structure is referenced in all Extended Attribute
functions. NWReadEA and the NWWriteEA function use the
NW_EA_HANDLE structure to maintain state information. The state
information is required to access the Extended Attribute database. The
NW_EA_HANDLE structure is for internal use only; do not manipulate it
in any way.

Before calling NWReadEA initially, you must obtain the EAHandle
parameter to access the Extended Attribute database. An application can
obtain an Extended Attribute handle by calling one of the following
functions:

NWFindFirstEA

NWFindNextEA

NWGetEAHandleStruct

NWOpenEA

NWReadEA can be called multiple times until the bytes of data read is
equal to the value identified by the totalEASize parameter.

NOTE: The value referenced by the amountRead parameter does not
reflect the total number of bytes in the Extended Attribute.

For Reads, the bufferSize parameter must be at least 512 bytes; it can be
greater than 512 bytes---but must be in multiples of 512. If the bufferSize
parameter is less than 512 bytes, NWReadEA returns
INVALID_BUFFER_LENGTH.

The NWEARead function reads up to thenumber of bytes specified by the
bufferSize parameter or until the end of the Extended Attribute data,
whichever comes first.

NCP Calls

0x2222 86 03 Read Extended Attribute

See Also

NWFindNextEA, NWFindFirstEA, NWOpenEA, NWWriteEA

File Service Group

Extended Attribute: Functions 225

NWWriteEA

Writes data to an Extended Attribute

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Extended Attribute

Syntax

#include <nwnamspc.h>
#include <nwea.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWWriteEA (
 NW_EA_HANDLE N_FAR *EAHandle,
 nuint32 totalWriteSize,
 nuint32 bufferSize,
 pnuint8 buffer,
 pnuint32 amountWritten);

Pascal Syntax

#include <nwea.inc>

Function NWWriteEA
 (Var EAHandle : NW_EA_HANDLE;
 totalWriteSize : nuint32;
 bufferSize : nuint32;
 buffer : pnuint8;
 amountWritten : pnuint32
) : NWCCODE;

Parameters

EAHandle

(IN/OUT) Points to the NW_EA_HANDLE structure returned by the
NWGetEAHandleStruct, NWFindFirstEA, NWFindNextEA, or
NWOpenEA function.

totalWriteSize

(IN) Specifies the size of the total Write.

bufferSize

(IN) Specifies the size of the buffer.

File Service Group

Extended Attribute: Functions 226

buffer

(IN) Points to a data buffer.

amountWritten

(OUT) Points to the amount of data written by NWWriteEA (not
cumulative across multiple calls).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL; valid data remains in the Extended
Attribute

0x0001 SUCCESSFUL; valid data remains in the buffer, not the
Extended Attribute

0x8901 ERR_INSUFFICIENT_SPACE

0x898C NO_MODIFY_PRIVILEGES

0x899C INVALID_PATH

0x89C8 MISSING_EA_KEY

0x89C9 EA_NOT_FOUND

0x89CB EA_NO_KEY_NO_DATA

0x89CE EA_BAD_DIR_NUM

0x89CF INVALID_EA_HANDLE

0x89D0 EA_POSITION_OUT_OF_RANGE

0x89D1 EA_ACCESS_DENIED

0x89D2 DATA_PAGE_ODD_SIZE

0x89D3 EA_VOLUME_NOT_MOUNTED

0x89D4 BAD_PAGE_BOUNDARY

0x89FF HARDWARE_FAILURE

Remarks

If the Extended Attribute does not exist, NWWriteEA attempts to create
it.

NWWriteEA returns 0x0000 when there is more data in the Extended
Attribute and NWWriteEA needs to be called again. NWWriteEA returns
0x0001 when there is valid data in the buffer but none left in the
Extended Attribute.

The NWReadEA function and NWWriteEA can perform multiple actions,
such as opening or creating an Extended Attribute and then performing

File Service Group

Extended Attribute: Functions 227

the appropriate function. To properly end NWWriteEA, the NWCloseEA
function must be called after the last Read, Write, and/or Find Extended
Attribute function.

Extended Attribute values should always be read or written completely.
Extended Attributes are not treated like files when transferring.
Therefore, partial Reads or Writes are not allowed.

CAUTION: If an Extended Attribute is not read or written
completely, data past the end of the last Read or Write may be lost!

Before calling NWWriteEA, an application must properly initialize the
NW_EA_HANDLE structure to access the Extended Attribute database.
An application can initialize the NW_EA_HANDLE structure by calling
the NWFindFirstEA, NWFindNextEA, NWGetEAHandleStruct, or
NWOpenEA function. The NW_EA_HANDLE structure is for internal
use only; do not manipulate it in any way.

For Writes, the bufferSize parameter should be at least 512 bytes. If the
bufferSize parameter is less than the totalWriteSize parameter, it must be a
multiple of 512.

NWWriteEA writes up to the number of bytes specified by the bufferSize
parameter or until the end of the Extended Attribute data, whichever
comes first. If the data to be written is larger than the buffer size,
NWWriteEA must be called multiple times to write all the data to the
Extended Attribute.

An application should complete the entire Write before closing the
Extended Attribute.

NCP Calls

0x2222 86 02 Write Extended Attribute

See Also

NWReadEA

File Service Group

Extended Attribute: Functions 228

Extended Attribute: Structures

File Service Group

Extended Attribute: Structures 229

NW_EA_FF_STRUCT

Maintains state information when scanning an extended attribute file

Service: Extended Attribute

Defined In: nwea.h

Structure

typedef struct
{
 NWCONN_HANDLE connID;
 nuint16 nextKeyOffset;
 nuint16 nextKey;
 nuint32 numKeysRead;
 nuint32 totalKeys;
 nuint32 EAHandle;
 nuint16 sequence;
 nuint16 numKeysInBuffer;
 nuint8 enumBuffer[512];
} NW_EA_FF_STRUCT;

Pascal Structure

Defined in nwea.inc

 NW_EA_FF_STRUCT = Record
 connID : NWCONN_HANDLE;
 nextKeyOffset : nuint16;
 nextKey : nuint16;
 numKeysRead : nuint32;
 totalKeys : nuint32;
 EAHandle : nuint32;
 sequence : nuint16;
 numKeysInBuffer : nuint16;
 enumBuffer : Array[0..511] Of nuint8
 End;

Fields

connID

Specifies a connection to the server storing the Extended Attribute.

nextKeyOffset

Specifies a value that the server uses as part of an internal handle.

nextKey

Specifies a value that the server uses as part of an internal handle.

numKeysRead

File Service Group

Extended Attribute: Structures 230

Specifies the number of keys that have been read from the extended
attribute file.

totalKeys

Specifies the total number of keys in the extended attribute file.

EAHandle

Specifies the handle for the current key.

sequence

Specifies the current key number.

numKeysInBuffer

Specifies the number of keys in the current buffer.

enumBuffer

Specifies the current buffer containing keys read from the extended
attribute file.

Remarks

NW_EA_FF_STRUCT is an internal handle for library use only.
Appplications must not modify this structure in any way.

File Service Group

Extended Attribute: Structures 231

NW_EA_HANDLE

Defines information associated with the extended attribute handle

Service: Extended Attribute

Defined In: nwea.h

Structure

typedef struct
{
 NWCONN_HANDLE connID;
 nuint32 rwPosition;
 nuint32 EAHandle;
 nuint32 volNumber;
 nuint32 dirBase;
 nuint8 keyUsed;
 nuint16 keyLength;
 nuint8 key[256];
} NW_EA_HANDLE;

Pascal Structure

Defined in nwea.inc

 NW_EA_HANDLE = Record
 connID : NWCONN_HANDLE;
 rwPosition : nuint32;
 EAHandle : nuint32;
 volNumber : nuint32;
 dirBase : nuint32;
 keyUsed : nuint8;
 keyLength : nuint16;
 key : Array[0..255] Of nuint8
 End;

Fields

connID

Specifies the server storing the Extended Attribute.

rwPosition

Specifies the current position within the Extended Attribute file.

EAHandle

Specifies the handle to the Extended Attribute file.

volNumber

Specifies the volume storing the Extended Attribute file.

File Service Group

Extended Attribute: Structures 232

dirBase

Specifies the directory base associated with the Extended Attribute
file.

keyUsed

Specifies the key used to access the Extended Attribute.

keyLength

Specifies the length of the key parameter.

key

Specifies the Extended Attribute key.

Remarks

NW_EA_HANDLE is an internal handle for library use only.
Appplications must not modify this structure in any way.

File Service Group

Extended Attribute: Structures 233

T_enumerateEAnoKey

Describes the data layout returned by the EnumerateEA function when a
key value is not specified

Service: Extended Attribute

Defined In: nwextatt.h

Structure

typedef struct
{
 LONG valueLength;
 WORD keyLength;
 LONG accessFlags;
 char keyValue[1];
} T_enumerateEAnoKey;

Fields

valueLength

Specifies the length of the Extended Attribute corresponding to the
key.

keyLength

Specifies the length of the key value, which starts at the keyValue field.

accessFlags

Specifies developer-defined access flags.

keyValue

Specifies the first character of the key value.

Remarks

The key is a developer-defined value used for catagorizing Extended
Attributes.

File Service Group

Extended Attribute: Structures 234

T_enumerateEAwithKey

Describes the data layout returned by the EnumerateEA function when a
key value is specified

Service: Extended Attribute

Defined In: nwextatt.h

Structure

typedef struct
{
 LONG EALength;
 WORD keyLength;
 LONG accessFlags;
 LONG keyExtants;
 LONG valueExtants;
 char keyValue[1];
} T_enumerateEAwithKey;

Fields

EALength

Specifies the length of the Extended Attribute.

keyLength

Specifies the length of the keyValue field.

accessFlags

Specifies developer-defined access flags.

keyExtants

Specifies the number of 128-byte extants used by the key value.

valueExtants

Specifies the number of 128-byte extants used by the Extended
Attribute.

keyValue

Specifies the first character of the key value.

Remarks

The key is a developer-defined value used for catagorizing Extended
Attributes.

File Service Group

Extended Attribute: Structures 235

File Engine

File Service Group

 236

File Engine: Functions

File Service Group

File Engine: Functions 237

CountComponents

Returns the number of components contained in a NetWare® pathname

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: Yes

Service: File Engine

Syntax

#include <nwfile.h>

int CountComponents (
 BYTE *pathString,
 int len);

Parameters

pathString

(IN) Specifies the string containing the NetWare pathname.

len

(IN) Specifies the length (in bytes) of the pathString.

Return Values

This function returns the number of components in pathString.

Remarks

This function works only with NetWare pathnames, which can consist of
a directory path, filename, and filename extension.

A NetWare path consists of a path string and a path count. The path
string does not use any type of delimiter character between components
of the path. Instead, the length of each path component is specified in the
byte immediately preceding each component of the path string. The path
count tells how many path components there are in a path. This is the
number returned by CountComponents.

For example, a normal path might look like this:

serverName/vol2:first/second/third/file.dat

If serverName is assigned file server ID 1, and vol2 is assigned volume

File Service Group

File Engine: Functions 238

number 2, then the corresponding NetWare path format would be:

fileServerID = 1 volumeNumber = 2 pathString = 5first6second5third8file.dat pathCount = 4

The fileServerID and volumeNumber are not actually part of the pathString,
but are kept as separate numeric values. The numbers that are part of the
pathString are actual binary values, not their ASCII equivalents. The
pathString is the entity that would be passed to CountComponents (with
a length of 28, which is the total length of pathString), and the returned
component count would be 4 (the number of component parts in
pathString).

See Also

_makepath, _splitpath

File Service Group

File Engine: Functions 239

FEConvertDirectoryNumber

Converts a directory number in one name space to the comparable directory
number in another name space

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

int FEConvertDirectoryNumber (
 int sourceNameSpace,
 LONG volumeNumber,
 LONG sourceDirectoryNumber,
 int destinationNameSpace,
 LONG *destinationDirectoryNumberP);

Parameters

sourceNameSpace

(IN) Specifies the name space of the directory number to be converted.

volumeNumber

(IN) Specifies the volume number of the directory number to be
converted.

sourceDirectoryNumber

(IN) Specifies the directory number that is to be converted.

destinationNameSpace

(IN) Specifies the name space to which the directory number is to be
converted.

destinationDirectoryNumberP

(OUT) Receives the converted directory number which corresponds to
the destination name space.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns a
nonzero value.

File Service Group

File Engine: Functions 240

Remarks

A single directory entry has a different directory number for each name
space that is supported on a volume. This function converts a directory
number in one name space to the comparable directory number in
another name space.

See Also

FEMapHandleToVolumeAndDirectory,
FEMapPathVolumeDirToVolumeDir

File Service Group

File Engine: Functions 241

FEcreat

Creates a file

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

int FEcreat (
 char *name,
 int permission,
 int flagBits);

Parameters

name

(IN) Specifies the name of the file to be opened.

permission

(IN) Specifies the file permission (if the file is being created).

flagBits

(IN) Specifies the special flags that allow more file flexibility.

Return Values

When there is no error opening the file, the function returns a file handle.
When an error occurs, it returns a value of -1, and errno and NetWareErrno
are set to the appropriate error codes.

Remarks

This function also works on the DOS partition.

This is a special version of creat.

If the specified file does not exist, FEcreat creates the file with the
specified file permission.

The permission mode is established as a combination of bits found in the
SYS\STAT.H file. The following bits are defined:

File Service Group

File Engine: Functions 242

S_IWRIT
E

The file is writeable.

S_IREA
D

The file is readable.

A value of 0 can be specified to indicate that the file is readable and
writeable.

The flag bits can be found in the nwfile.h file and are defined as follows:

DELETE_FILE_ON_CREATE_BIT If the file already exists, it is
deleted. This allows the file to
be created again.

NO_RIGHTS_CHECK_ON_OPEN_B
IT

The user's rights to the file are
not checked when the file is
opened.

NO_RIGHTS_CHECK_ON_CREATE
_BIT

The user's rights to the file are
not checked when the file is
created.

FILE_WRITE_THROUGH_BIT When a file write is performed,
the write function does not
return until the data is actually
written to the disk.

ENABLE_IO_ON_COMPRESSED_D
ATA_BIT

Any subsequent I/O on this
entry is compressed (NetWare
4.x)

LEAVE_FILE_COMPRESSED_DAT
A_BIT

After all I/O has been done,
leave this file compressed
(NetWare 4.x)

See Also

close

File Service Group

File Engine: Functions 243

FEFlushWrite

Flushes all pending writes for a file

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

int FEFlushWrite (
 int handle);

Parameters

handle

(IN) Specifies handle of the file to be flushed.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns a
NetWare error code.

Remarks

When this function returns, all writes associated with the file specified by
the file handle are complete.

File Service Group

File Engine: Functions 244

FEGetCWDnum

Returns the current working directory (CWD) number

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

LONG FEGetCWDnum (void);

Return Values

This function returns the CWD number (the default directory) for the
current thread group.

Remarks

This function can be used by a registered path parsing function to get the
CWD number when the path being parsed is a relative path.

See Also

FESetCWDnum, FESetCWVandCWDnums, FESetCWVnum

File Service Group

File Engine: Functions 245

FEGetCWVnum

Returns the current working volume (CWV) number

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

LONG FEGetCWVnum (void);

Return Values

This function returns the CWV number (the default volume) for the
current thread group.

Remarks

This function can be used by a registered path parsing function to get the
CWV number when the path being parsed does not include a volume
name.

See Also

FEGetCWDnum, FESetCWDnum, FESetCWVandCWDnums,
FESetCWVnum

File Service Group

File Engine: Functions 246

FEGetEntryVersion

Returns the version number for a directory entry (files or directories)

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

LONG FEGetEntryVersion (
 LONG volumeNumber,
 LONG directoryNumber,
 BYTE *pathString,
 LONG pathCount,
 WORD *version);

Parameters

volumeNumber

(IN) Specifies the volume number on which the entry is located.

directoryNumber

(IN) Specifies the directory number used by the directory entry.

pathString

(IN) Points to a NetWare style path string relative to the
volume/directory number. This is the name of the directory entry.

pathCount

(IN) Specifies the number of elements in the path string.

version

(OUT) Specifies the version number for the entry.

Return Values

0 (0x00) Success

25
5

(0xFF) Failure

File Service Group

File Engine: Functions 247

Remarks

This function returns the version number for a specified directory entry.
The version number of a directory entry is incremented once each time
the entry is modified.

See Also

readdir, stat (Function)

File Service Group

File Engine: Functions 248

FEGetOpenFileInfo

Returns directory entry information for a given connections file handle

Local Servers: blocking

Remote Servers: blocking

Classification: 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

int FEGetOpenFileInfo (
 LONG connection,
 LONG handle,
 LONG *volume,
 LONG *directoryNumber,
 LONG *dataStream
 LONG *flags);

Parameters

connection

(IN) Indicates the connection number of the object that has the file
open.

handle

(IN) Indicates the file handle for which to return volume or
directoryNumber.

volume

(OUT) Points to the number of the volume on which the directory
entry is located.

directoryNumber

(OUT) Points to the directory entry number of the entry.

dataStream

(OUT) Points to the data stream with which the handle is associated.

flags

(OUT) Points to the status of the handle.

Return Values

File Service Group

File Engine: Functions 249

0 Success

0xFF Failure

Remarks

When given a connection number and a NetWare file handle,
FEGetOpenFileInfo returns the information in the output parameters.
The file handle for the handle parameter must be an OS file handle such as
the fileHandle field returned in various FS Hooks return structures
defined in nwfshook.h.

FEGetOpenFileInfo is useful if you are using FS Hooks because it gives
the status/flags for an open file. However, keep in mind that fileHandle
may not be populated by some callbacks---for example
FSHOOK_PRE_OPENFILE if the file has not yet been opened. Also keep
in mind that FEGetOpenFileInfo is a blocking function and cannot be
used in a POST FS Hooks routine. In that case callback information
would have to be passed to another routine to call FEGetOpenFileInfo.

File Service Group

File Engine: Functions 250

FEGetOpenFileInfoForNS

Returns name space specific directory entry information for a given
connections file handle

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

int FEGetOpenFileInfoForNS (
 LONG connection,
 LONG handle,
 LONG *volume,
 LONG *DOSDirectoryNumber,
 LONG *directoryNumber,
 LONG *nameSpace,
 LONG *dataStream
 LONG *flags);

Parameters

connection

(IN) Indicates the connection number of the object that has the file
open.

handle

(IN) Indicates the file handle for which to return volume or
directoryNumber.

volume

(OUT) Points to the number of the volume on which the directory
entry is located.

DOSDirectoryNumber

(OUT) Points to the DOS directory entry number of the entry.

directoryNumber

(OUT) Points to the directory entry number of the entry corresponding
with nameSpace.

nameSpace

(OUT) Points to the name space corresponding with directoryNumber.

File Service Group

File Engine: Functions 251

dataStream

(OUT) Points to the data stream with which the handle is associated.

flags

(OUT) Points to the status of the handle.

Return Values

0 Success

0xFF Failure

Remarks

When given a connection number and a NetWare file handle,
FEGetOpenFileInfoForNS returns the information in the output
parameters.

FEGetOpenFileInfo is useful if you are using FS Hooks because it gives
the status/flags for an open file as well as some name space specific
directory entry information.

File Service Group

File Engine: Functions 252

FEGetOriginatingNameSpace

Gets the originating name space for a volume and directory number pair

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

LONG FEGetOriginatingNameSpace (
 LONG volumeNumber,
 LONG directoryNumber);

Parameters

volumeNumber

(IN) Specifies the volume number for which the originating name
space is desired.

directoryNumber

(IN) Specifies the directory number for which the originating name
space is desired.

Return Values

This function returns a number indicating the originating name space for
the volume and directory number pair, if successful. Otherwise, it returns
a value of - 1, and errno and NetWareErrno contain appropriate error
codes.

Remarks

This function provides useful information for file backup operations.
With NetWare support for name spaces, knowing which name space
created the file helps you determine the correct set of information to back
up.

FEGetOriginatingNameSpace returns one of the following name spaces:

0 DOS

1 MACINTOSH

File Service Group

File Engine: Functions 253

1 MACINTOSH

2 NFS*

3 FTAM

4 OS2 (OS/2*)

5 NT (MS Windows NT*)

See Also

SetCurrentNameSpace

File Service Group

File Engine: Functions 254

FEMapConnsHandleToVolAndDir

Returns a volume number and a directory number for a given connection's
file handle

Local Servers: blocking

Remote Servers: N/A

Classification: 3.12, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

int FEMapConnsHandleToVolAndDir (
 LONG connectionNumber,
 int handle,
 int *volumeNumber,
 LONG *directoryNumber);

Parameters

connectionNumber

(IN) Specifies the connection number of the object that owns the file
handle.

handle

(IN) Specifies the file handle for which to return the volume and
directory numbers.

volumeNumber

(OUT) Points to the number of the volume on which the directory
entry is located.

directoryNumber

(OUT) Points to the directory entry number of the entry.

Return Values

0 (0x00) Success.

25
5

(0xFF) Failure

Other NetWare errors can be returned upon failure.

File Service Group

File Engine: Functions 255

Remarks

When given a connection number and a file handle, this function returns
a volume number and a directory number. This information can be used
to get other information about the directory entry. The file handle can be
obtained from normal CLIB file I/O or from the NetWare OS.

See Also

FEMapHandleToVolumeAndDirectory,
FEMapVolumeAndDirectoryToPath

File Service Group

File Engine: Functions 256

FEMapHandleToVolumeAndDirectory

Gets the volume and directory numbers being used by a file handle

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

int FEMapHandleToVolumeAndDirectory (
 int handle,
 int *volumeNumberP,
 LONG *directoryNumberP);

Parameters

handle

(IN) Specifies the file handle to be used to get the volume and
directory numbers.

volumeNumberP

(OUT) Specifies the volume number used by the file handle.

directoryNumberP

(OUT) Specifies the directory number used by the file handle.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns a
NetWare error code.

Remarks

FEMapHandleToVolumeAndDirectory returns the volume and
directory numbers used by the file handle.

See Also

FEMapPathVolumeDirToVolumeDir,
FEMapVolumeAndDirectoryToPath, FEMapVolumeNumberToName

File Service Group

File Engine: Functions 257

FEMapPathVolumeDirToVolumeDir

Maps a path consisting of a volume number, directory number, and
pathname to a path consisting of a volume number and directory number

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

int FEMapPathVolumeDirToVolumeDir (
 char *pathName,
 int volumeNumber,
 LONG directoryNumber,
 int *newVolumeNumberP,
 LONG *newDirectoryNumberP);

Parameters

pathName

(IN) Specifies the pathname for which the volume and directory
number are desired.

volumeNumber

(IN) Specifies the volume number on which the pathname is based.

directoryNumber

(IN) Specifies the directory number on which the pathname is based.

newVolumeNumberP

(OUT) Receives the returned volume number.

newDirectoryNumberP

(OUT) Receives the returned directory number.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns a
NetWare error code.

Remarks

File Service Group

File Engine: Functions 258

If the pathName parameter is a full volume pathname, a new volume and
directory number are returned. If the path does not include a volume,
volumeNumber is returned for newVolumeNumberP. If the path is relative,
newDirectoryNumberP is based on the directory number and pathname.

See Also

FEMapHandleToVolumeAndDirectory,
FEMapPathVolumeDirToVolumeDir, FEMapVolumeNumberToName

File Service Group

File Engine: Functions 259

FEMapVolumeAndDirectoryToPath

Maps a volume number and directory number to a NetWare style path

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

int FEMapVolumeAndDirectoryToPath (
 int volumeNumber,
 LONG directoryNumber,
 BYTE *pathString,
 LONG *pathCount);

Parameters

volumeNumber

(IN) Specifies the volume number of the desired path.

directoryNumber

(IN) Specifies the directory number of the desired path.

pathString

(OUT) Receives the NetWare style path string.

pathCount

(OUT) Receives the path count of the returned path string.

Return Values

0 Success

0x009C Invalid path---directory number and volume pair
cannot be found

0xFFFE The directory number has become invalid

other NetWare errors

Remarks

File Service Group

File Engine: Functions 260

The FEMapVolumeAndDirectoryToPath function gets a NetWare style
path (pathname and path count) from a volume number and directory
number.

FEMapVolumeAndDirectoryToPath relies on the current name space
setting of the underlying thread. If that name space does not match the
name space of the volume and directory to be mapped, the function
returns 0x009C. This error can occur, for example, when the directory
number comes from a file system monitoring hook, and the associated
name space is something other than DOS.

To avoid the 0x009C error, call FEMapVolumeAndDirectoryToPath only
if the name space of the underlying thread and the name space of the
directory to be mapped can be guaranteed to be identical. Otherwise, call
FEMapVolumeAndDirectoryToPathForNS, which allows you to specify
the name space. You can also call SetCurrentNameSpace before and after
calling FEMapVolumeAndDirectoryToPath to set and restore the
current name space of the underlying thread.

0xFFFE (-2) is returned when the directory number has become invalid.
This error occurs, for example, when the directory number comes from a
FSHOOK_PRE_CLOSE file system monitoring hook, and a separate
reporting procedure calls FEMapVolumeAndDirectoryToPath after the
file has already been deleted.

See Also

FEMapHandleToVolumeAndDirectory,
FEMapPathVolumeDirToVolumeDir, FEMapVolumeNumberToName

File Service Group

File Engine: Functions 261

FEMapVolumeAndDirectoryToPathForNS

Maps a volume number and directory number to a NetWare style path

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

int FEMapVolumeAndDirectoryToPathForNS (
 int volumeNumber,
 LONG directoryNumber,
 LONG nameSpace,
 BYTE *pathString,
 LONG *pathCount);

Parameters

volumeNumber

(IN) Specifies the volume number of the desired path.

directoryNumber

(IN) Specifies the directory number of the desired path.

nameSpace

(IN) Indicates the nsame space directoryNumber is in.

pathString

(OUT) Receives the NetWare-style path string.

pathCount

(OUT) Receives the path count of the returned path string.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns a
NetWare error code.

Remarks

The FEMapVolumeAndDirectoryToPathForNS function is useful if you
are using FS Hooks.

File Service Group

File Engine: Functions 262

See Also

FEMapHandleToVolumeAndDirectory,
FEMapPathVolumeDirToVolumeDir, FEMapVolumeNumberToName

File Service Group

File Engine: Functions 263

FEMapVolumeNumberToName

Maps a volume number to a volume name

Local Servers: nonblocking

Remote Servers: blocking

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

int FEMapVolumeNumberToName (
 int volumeNumber,
 BYTE *volumeName);

Parameters

volumeNumber

(IN) Specifies the volume number for which the volume name is
desired.

volumeName

(OUT) Receives the name of the volume.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns a
NetWare error code.

Remarks

The volume name is returned as a length-preceded ASCII string.

NOTE: This function works remotely only on NetWare 3.12 and 4.x
servers.

See Also

FEMapVolumeAndDirectoryToPath, NWGetVolumeName

File Service Group

File Engine: Functions 264

FERegisterNSPathParser

Registers a function to convert a pathname in a name space format to the
NetWare format (volume number, path, string, path count)

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

int FERegisterNSPathParser (
 T_PathParseFunc parser);

Parameters

parser

(IN) Specifies the address of a function to be called by all other
functions that require a NetWare style pathname.

Return Values

This function returns a value of 0 if successful. Otherwise, it returns a
NetWare error code.

Remarks

When a path parse function has been registered, and conversion of a
pathname to NetWare format is required by a function, the registered
name space path parser is called in place of the regular NetWare API
path parser.

The registered name space path parser must convert a pathname string
into a NetWare pathname. A NetWare pathname consists of a path string
count and a string of elements (path). The count is the number of
elements that are in the path. Each element can be a length-preceded
directory or filename. The NetWare path, however, does not contain the
server or volume information.

The following is an example of a NetWare path. The path string count is
3; it contains three elements (dir1, dir2, and dir3).

\0x3dir1\0x3dir2\0x8filename

File Service Group

File Engine: Functions 265

The prototype for the path parse function is in nwfile.h and is defined as
follows:

typedef int (*T_PathParseFunc) (
 const char *inputPath,
 WORD *fileServerIDp,
 int *volumeNumberP,
 LONG *directoryNumberP,
 BYTE *outPathStringP,
 LONG *outPathCountP)

inputPath

(IN) Input path string to be parsed.

fileServerID

(OUT) File server ID of the server where the file is located.

volumeNumberP

(OUT) Volume number of the file.

directoryNumberP

(OUT) Directory number of the file.

outPathStringP

(OUT) Path string in NetWare format.

outPathCount

(OUT) Path string count.

The current name space must be set to the appropriate name space before
you call FERegisterNSPathParser. Call the SetCurrentNameSpace
function to set the current name space. Once the new path parser is
registered, functions such as open call the new path parser to translate
the path parameter into its NetWare counterparts.

See Also

SetCurrentNameSpace

File Service Group

File Engine: Functions 266

FESetCWDnum

Sets the current working directory (CWD) number (the default directory)

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

LONG FESetCWDnum (
 LONG CWDnum);

Parameters

CWDnum

(IN) Specifies the number of the directory that is to become the default
directory for the current thread group.

Return Values

This function returns the old CWD number.

Remarks

The FESetCWDnum function sets the directory number that is to be used
as the default for parsing pathnames that are not full pathnames.

See Also

FEGetCWDnum, FEGetCWVnum, FESetCWVandCWDnums,
FESetCWVnum

File Service Group

File Engine: Functions 267

FESetCWVandCWDnums

Sets the current working volume (CWV) number and the current working
directory (CWD) the default volume and directory

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

LONG FESetCWVandCWDnums (
 LONG CWVnum,
 LONG CWDnum);

Parameters

CWVnum

(IN) Specifies the number of the volume that is to become the default
volume for the current thread group.

CWDnum

(IN) Specifies the number of the directory that is to become the default
directory for the current thread group.

Return Values

This function returns the old CWD number.

Remarks

The FESetCWVandCWDnums function sets the volume and directory
numbers that are to be used as the defaults for parsing pathnames that
are not full volume paths.

See Also

FEGetCWDnum, FEGetCWVnum, FESetCWDnum, FESetCWVnum

File Service Group

File Engine: Functions 268

FESetCWVnum

Sets the current working volume (CWV) number (the default volume)

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

LONG FESetCWVnum (
 LONG CWVnum);

Parameters

CWVnum

(IN) Specifies the number of the volume that is to become the default
volume for the current thread group.

Return Values

This function returns the old CWV number.

Remarks

The FESetCWVnum function sets the volume number that is to be used
as the default for parsing pathnames that are not full volume paths.

See Also

FEGetCWDnum, FESetCWDnum, FESetCWVandCWDnums

File Service Group

File Engine: Functions 269

FESetOriginatingNameSpace

Allows the user to set the originating name space of a directory entry

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

LONG FESetOriginatingNameSpace (
 LONG volumeNumber,
 LONG directoryNumber,
 LONG dirNumNameSpace,
 LONG newNameSpace);

Parameters

volumeNumber

(IN) Specifies the number of the volume on which the directory entry
is located.

directoryNumber

(IN) Specifies the directory number of the entry to be changed.

dirNumNameSpace

(IN) Specifies the name space number corresponding with
directoryNumber.

newNameSpace

(IN) Specifies the name space to be the new originating name space on
the directory entry.

Return Values

0 Success

-1 Fail

other NetWare errors

Remarks

File Service Group

File Engine: Functions 270

FESetOriginatingNameSpace returns errors on 3.x because there is no
OS support.

directoryNumber can be an entry number for any loaded name space.

dirNumNameSpace specifies in which name space the directoryNumber is
located.

File Service Group

File Engine: Functions 271

FEsopen

Opens a file for shared access

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File Engine

Syntax

#include <nwfile.h>

int FEsopen (
 char *name,
 int access,
 int share,
 int permission,
 int flagBits,
 BYTE dataStream);

Parameters

name

(IN) Specifies the name of the file to be opened.

access

(IN) Specifies the access mode of the file.

share

(IN) Specifies the sharing mode of the file.

permission

(IN) Specifies the file permission (if the file is being created).

flagBits

(IN) Specifies the special flags that allow more file flexibility.

dataStream

(IN) Specifies the flag that indicates the data stream under which the
file is to be opened.

Return Values

Returns a file handle upon success. Returns a value of -1, and errno and
NetWareErrno are set to the appropriate error codes if errors occur.

File Service Group

File Engine: Functions 272

Remarks

FEsopen also works on the DOS partition and is a special version of the
sopen function. Call the sopen function if the primary data stream is
requested rather than calling FEsopen.

FEsopen does not behave identically to the sopen function when only the
O_CREAT and O_TRUNC bits are passed. You must also pass
DELETE_FILES_ON_CREATE_BIT to the flagBits parameter in FEsopen
which allows the file to be deleted and created again.

The access mode is established as a combination of bits found in the
FCNTL.H file and follow:

O_RDONL
Y

The file can only be read.

O_WRON
LY

The file can only be written.

O_RDWR The file can be read or written.

O_APPEN
D

Records are written to the end of the file.

O_CREAT If the file does not exist, it is created.

O_TRUNC Any data in the file is truncated.

O_BINAR
Y

Data is transmitted unchanged. Text mode is not
supported.

The sharing mode is established as a combination of bits found in the
NWSHARE.H file and follow:

SH_COMP
AT

Sets the compatibility mode.

SH_DENY
RW

Prevents read or write access to the file.

SH_DENY
WR

Prevents write access to the file.

SH_DENY
RD

Prevents read access to the file.

SH_DENY
NO

Permits both read and write access to the file.

NOTE: If a new file is created, the share flag is ignored.

If FEsopen opens a file for compressed file I/O, the file must be opened

File Service Group

File Engine: Functions 273

in "exclusive mode" with SH_DENYRW. Otherwise, FEsopen fails.

The permission mode is established as a combination of bits found in the
SYS\STAT.H file and follow:

S_IWRIT
E

The file is writeable.

S_IREA
D

The file is readable.

A value of 0 can be specified to indicate that the file is readable and
writeable.

The flag bits are in the nwfile.h file and follow:

DELETE_FILE_ON_CREAT
E_BIT

If the file already exists, it is deleted
allowing the file to be created again.

NO_RIGHTS_CHECK_ON_
OPEN_BIT

The rights to the file are not checked
when the file is opened.

NO_RIGHTS_CHECK_ON_
CREATE_BIT

The rights to the file are not checked
when the file is created.

FILE_WRITE_THROUGH_B
IT

When a write is performed, the write
function does not return until the data
is actually written to disk.

ENABLE_IO_ON_COMPRE
SSED_ DATA_BIT

Any subsequent I/O on this entry is
compressed (NetWare 4.x).

LEAVE_FILE_COMPRESSE
D_ DATA_BIT

After all I/O has been done, leave this
file compressed (NetWare 4.x).

NOTE: If the flag is set to
ENABLE_IO_ON_COMPRESSED_DATA_BIT or
LEAVE_FILE_COMPRESSED_DATA_BIT (can be ORed), the share
parameter must be set to SH_DENYRW or FEsopen fails.

The dataStream parameter is a constant defined in nwfile.h indicating
which of the data streams (streams of data stored as separate files on the
volume) associated with a file stored on a NetWare 3.x or above server is
to be opened. The defined data streams are PrimaryDataStream,
MACResourceForkDataStream, and FTAMStructuringDataStream.

See Also

close, sopen

File Service Group

File Engine: Functions 274

File System

File Service Group

 275

File System: Guides

File System: Task Guide

Directory

Allocating a File System Directory Handle

Accessing a File System Directory Handle

Combining a Path and Directory Handle

Accessing File Information for 3.11 and Above

Accessing File Information for 2.2 and Above

File

Deleting Files

Locating File Beginning and Ending

Converting File Handles

Disk Space Management

Limiting Directory Space

Monitoring File Usage

Trustees

File System Trustee Management

Adding and Deleting File System Trustees

Scanning File System Trustees

NLM

Accessing Files on a Server (NLM)

Purging and Salvaging Files (NLM)

Additional Links

File System: Functions

File System: Structures

Parent Topic:

File Service Group

File System: Guides 276

File System: Guides

File System: Concept Guide

Introduction

File System Introduction

Directory

File System Directory Entries

File System Directory Entry Information

File System Directory Entry Attributes

File System Directory Handles

File System File and Directory Paths

File System Wildcard Characters

File System Search Attributes

Directory Entry Information Access

Accessing File Information for 3.11 and Above: Example

Accessing File Information for 2.2 and Above: Example

File

File Access Operations

File I/O Operations

Disk Space Management

File System Inheritance

File System Effective Rights

Trustees

File System Directory Trustees

File System Trustee Management

File System Directory Trustee Rights

NLM

File Information (NLM)

Attributes (NLM)

File Attributes

File Service Group

File System: Guides 277

Extended File Attributes

File System Tables (NLM)

Directory Entry Table

Volume Table

File System Program: Example (NLM)

Functions - Directory

Directory Entry Functions

Directory Handle Functions

Directory Information Functions

Directory Space Functions

Directory Task Functions

Functions - File

File Handle Conversion Functions

File Information Functions

File System Trustee Functions

File Task Functions

File Usage Functions

Additional Links

File System: Functions

File System: Structures

Parent Topic:

File System: Guides

File System Directory Entries

Volume Directory Entry Tables contain volume files and directories.
Consequently, both files and directories are referred to as directory entries.
If additional name spaces are loaded on a volume, a file or directory has a
directory entry in each name space. However, DOS is the server's primary
name space. Therefore, every file or directory is represented by a DOS
directory entry.

File System Directory Entry Information

File Service Group

File System: Guides 278

File System Directory Entry Attributes

Parent Topic:

File System: Guides

File System Directory Handles

Directory Handles identify individual directories.

A NetWare® server maintains a Directory Table for each workstation
connection. This table is an array of 256 slots, each of which can point to a
volume or a volume and directory path. For the DOS client, the server
allocates a directory slot for each drive the workstation maps. The
workstation can also request that the server enter a directory slot into the
table without a drive mapping. This is important for UnixWare clients,
which don't support drive mapping.

For each directory the NetWare server enters into the table, the server
returns an index to the workstation. This value (from 1 to 256) is referred to
as the directory handle. The handle provides a convenient method for
referring to the associated directory.

There are several ways to acquire a directory handle for a given directory
path. You can use an existing handle as is, you can modify a handle's
associated path, or you can allocate a new handle.

Allocating a File System Directory Handle

Accessing a File System Directory Handle

Parent Topic:

File System: Guides

File System File and Directory Paths

From the client point of view, a complete NetWare® file path includes the
names of the NetWare server, the volume, any parent directories, and the
file itself. For example, in the following file path FS1 is the server, SYS is the
volume, DOC and REPORT are directories, and CHAP1.TXT is the filename:

FS1/SYS:DOC/REPORT/CHAP1.TXT

NetWare accepts forward slashes or back slashes between the components
of a file path.

WARNING: All filenames and path parameters must be consistent
with the name space used to access the directory entry. For DOS
names, all characters should be upper case. Generally, directory

File Service Group

File System: Guides 279

handles and path names are expected to follow DOS conventions
unless you are running a different OS and the corresponding name
space is loaded for the specified volume.

Combining a Path and Directory Handle

File System Wildcard Characters

File System Search Attributes

Parent Topic:

File System: Guides

Directory Entry Information Access

How you access directory entry information depends on which version of
NetWare® is running on the server.

NetWare 3.11 introduced multiple name space support to the NetWare file
system. The inherited rights mask replaced the maximum rights mask and
was applied to files as well as directories. The set of trustee rights was
modified and additional file attributes were added.

The other functions used to access directory entry information for NetWare
servers 2.2 and above return a subset of the 3.11 directory entry information.
Therefore, additional functions are provided to access the rest of the
available information for 3.11 servers and above.

Accessing File Information for 3.11 and Above

Accessing File Information for 3.11 and Above: Example

Accessing File Information for 2.2 and Above

Accessing File Information for 2.2 and Above: Example

Parent Topic:

File System: Guides

Disk Space Management

With NetWare® 3.11 and above, you can control the total amount of space
available within a directory and monitor usage for each connection:

Limiting Directory Space

Monitoring File Usage

Parent Topic:

File Service Group

File System: Guides 280

File System: Guides

File System Trustee Management

Duplicate functions exist for adding, deleting, and scanning trustees. One
group of functions operates both on directories and files; the other operates
only on directories.

Adding and Deleting File System Trustees

Scanning File System Trustees

Parent Topic:

File System: Guides

Attributes (NLM)

The file attributes are contained in a 4-byte field within the file's directory
entry stored in the volume's DET. The attributes bytes (bytes 0 to 3) consist
of flag bits whose settings can be modified.

File Attributes

Extended File Attributes

Parent Topic:

File System: Guides

File System Tables (NLM)

The server maintains several tables relevant to File System. These tables
record information about directories, files, and volumes.

Directory Entry Table

Volume Table

Parent Topic:

File System: Guides

File Service Group

File System: Guides 281

File System: Tasks

Accessing a File System Directory Handle

A pair of functions read and modify the file path associated with a directory
handle:

 NWGetDirectoryHandlePath

 NWSetDirectoryHandlePath

For NetWare® 2.2 and below, special functions are included for saving and
restoring a directory handle path:

 NWSaveDirectoryHandle

 NWRestoreDirectoryHandle

These functions aren't needed in NetWare 3.11 or 4.x environments.

Parent Topic:

File System Directory Handles

Accessing File Information for 2.2 and Above

Under NetWare® 2.2, separate requests access information for files and
directories. A pair of functions read and set information for 2.2 files and
above:

NWIntScanFileInformation2 reads file information and file attributes.

NWSetFileInformation2 modifies file information.

Another pair of functions access what were considered extended attributes
under 2.2, such as the transaction bit:

NWGetExtendedFileAttributes2 reads extended file attributes.

NWSetExtendedFileAttributes2 modifies extended file attributes.

A third pair of functions read and set directory information for 2.2 and
above:

NWIntScanDirectoryInformation2 returns directory information.

File Service Group

File System: Tasks 282

NWSetDirectoryInformation modifies a directory's creation date/time,
owner ID, and maximum rights mask.

Parent Topic:

Directory Entry Information Access

Accessing File Information for 3.11 and Above

File System Services provide access to directory entry information in the
DOS name space. (Name Space Services provide access to entry information
in other name spaces.) A pair of functions read and set directory entry
information:

 NWIntScanDirEntryInfo reads directory entry information.

 NWSetDirEntryInfo modifies directory entry information.

These functions operate on NetWare® 3.11 and above only. They use three
structures to pass directory entry information across the NetWare interface:
NWENTRY_INFO, NWFILE_INFO, and NWDIR_INFO.

The following code calls NWSetDirEntryInfo to return some information
about either a file or a directory. The command line supplies the directory
path and search string, and also indicates whether to scan for files or
directories. For example, if you want file directory entry information and
PROG is the name of the executable, FS1 is the file server, DIR1 is the
directory, and *.* is the search string for files, the command line would be:

PROG FS1:\DIR1 *.*

 If you want directory information the command line would be:

PROG FS1:\DIR1 * /d

NWParseNetWarePath finds the connection handle, and
NWAllocTemporaryDirectoryHandle gets a directory handle to the input
path. NWSetDirEntryInfo is then called until it returns an error. Results are
displayed for each entry found. The inherited rights mask is shown for
directories, and the file attributes are shown for files.

Parent Topic:

Directory Entry Information Access

Accessing Files on a Server (NLM)

Most NetWare® File functions identify files by a file path. The file path can
be an absolute with a volume name or it can be relative to the current
working directory (CWD):

File Service Group

File System: Tasks 283

Absolute Path---Specify the entire path to the target directory or file as
the pathName parameter.

Relative Path---Specify a current working directory (CWD) using chdir.
Then specify a directory or file path as the pathName parameter. The full
path to the target directory or file is the concatenation of the CWD
parameter followed by the pathName parameter.

File Services functions do not require a server name as a parameter. The
target server is always the server to which the NLM™ application is
currently logged in (or connected in the case of the local server).

File paths can be up to 255 bytes and must be NULL-terminated. When
specifying a file to a File Services function, format the file path as follows:

volume:directory\...\directory\filename

The volume name can be up to 16 characters long and must include a
terminating colon (:). The name cannot include spaces or the following
characters:

* Asterisk

? Question mark

: Colon

\ Backslash

/ Slash

Filenames and directory names on the network are represented as strings
with periods embedded as normal characters. Filenames and directory
names can be from 1 to 8 characters and can include a 1 to 3 character
extension.

Some NetWare File functions accept wildcard characters in filenames.
NetWare supports a larger set of wildcard characters than does DOS.

The following wildcard characters can be used:

* An asterisk matches zero or more characters. The
pattern * therefore matches any string without an
extension. The pattern *.* matches anything.

The network wildcard substitution algorithm is implemented as follows:

All characters except the wildcard characters are treated as normal
characters.

In a search pattern, the wildcard characters must match the characters

File Service Group

File System: Tasks 284

recorded in the file and directory names on the network.

Parent Topic:

File System: Guides

Adding and Deleting File System Trustees

To add to or delete from a file or directory's trustee list, you supply the path
specification and a trustee object ID. When adding a trustee you also specify
the trustee's rights mask. Only static objects can be added as trustees. If the
added object is a trustee already, the trustee's current rights mask is
replaced by the new one.

Parent Topic:

File System Trustee Management

Allocating a File System Directory Handle

Directory handles can be permanent or temporary. A temporary handle is
deleted as soon as the process that allocated the handle terminates.
Permanent handles persist until the connection is closed or a process
specifically deallocates them.

Separate functions allocate temporary and permanent directory handles:

NWAllocPermanentDirectoryHandle

NWAllocTemporaryDirectoryHandle

Call NWDeallocateDirectoryHandle to deallocate a directory handle. It is
especially important to deallocate permanent handles since they can remain
after your application terminates.

Parent Topic:

File System Directory Handles

Combining a Path and Directory Handle

Many functions allow you to combine a path with a directory handle to
specify a file or directory. If the directory handle parameter is a nonzero
value, these functions generally interpret the path relative to the directory
associated with the handle. Including a directory handle with a file
operation can reduce the amount of space required to store the path
variable.

Parent Topic:

File Service Group

File System: Tasks 285

File System File and Directory Paths

Converting File Handles

The two basic types of file handles generated in the network environment
are local file handles and NetWare® file handles. Local file handles are
created and accessed by the local OS running on an individual workstation.
NetWare file handles are created for files on the network and are accessed
by the NetWare OS. Two functions convert these two types of file handles
from one form to the other:

NWConvertFileHandle

NWConvertHandle

NWConvertFileHandle converts a file handle allocated by a local OS to a
four-byte or six-byte NetWare file handle. Along with returning the
NetWare handle, this function also returns the references of the connection
containing the NetWare handle. NWConvertFileHandle does not create a
NetWare file handle, rather it returns an existing NetWare handle.
Therefore the function will fail if the local file handle is not associated with a
NetWare file.

NWConvertHandle creates a local file handle from a NetWare file. This
function should be called only once per file because it creates a new local file
handle and allocates resources each time it is called. The local file handle
should be closed using the local OS's close file call.

Parent Topic:

File I/O Operations

Deleting Files

 NetWare® files can be deleted on a server using NWIntEraseFiles.

Parent Topic:

File Access Operations

Limiting Directory Space

NetWare® 3.11, 3.12 and 4.x servers let you restrict the amount of space
allocated to a directory. Directory space limits are specified in 4K blocks. A
pair of functions read and set directory space limits:

NWGetDirSpaceLimitList returns the space limit for a directory.

File Service Group

File System: Tasks 286

NWSetDirSpaceLimit sets a directory's space limit.

Parent Topic:

Disk Space Management

Locating File Beginning and Ending

The beginning and ending of NetWare® files can be located using lseek
found with most C compilers.

Parent Topic:

File System: Guides

Monitoring File Usage

File System includes two functions that monitor file usage on a connection
basis:

NWScanConnectionsUsingFile scans for a list of connections using a
specified file. It returns CONNS_USING_FILE to give the various counts
for the file, such as the use count and the open count. For each connection
accessing the file, the task number, lock status, and access control are also
included.

NWScanOpenFilesByConn2 scans for a list of files opened by a specified
connection. It returns an OPEN_FILE_CONN structure identifying the
file, and includes information such as the lock status and access control.

These functions are compatible with NetWare® 2.2 and above although
there are some differences in the information returned across versions.

Parent Topic:

Disk Space Management

Purging and Salvaging Files (NLM)

An application can mark files for deletion with remove or unlink. These
functions cause files to be marked for deletion. A file marked for deletion is
not automatically erased until another file needs the space it occupies. The
NetWare® 3.x and 4.x OS saves deleted files (and all information about
those files) in their original directory until the server runs out of disk
allocation blocks on the volume or until the files marked for deletion are
purged.

The SalvageErasedFile function can be used to salvage a file that has been

File Service Group

File System: Tasks 287

marked for deletion. The PurgeErasedFile function can be used to
permanently delete a file marked for deletion. Files deleted with
PurgeErasedFile cannot be recovered.

See Salvaging Files: Example.

Parent Topic:

File System: Guides

Scanning File System Trustees

You can scan for trustees across multiple directories. When you scan for
trustees, trustee information is returned as an array of TRUSTEE_INFO. (
NWIntScanForTrustees nests this structure within NWET_INFO.)
Information for up to 20 trustees can be returned per iteration.

Parent Topic:

File System Trustee Management

File Service Group

File System: Tasks 288

File System: Examples

Accessing File Information for 3.11 and Above:
Example

NOTE: This example assumes entry names are being returned in the
DOS name space.

Accessing File and Directory Information (3.11 and above)

#define N_PLAT_DOS

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <nwfse.h>
#include <nwdentry.h>
#include <nwdpath.h>
#include <nwmisc.h>
#include <nwalias.h>

void main(int argc, char *argv[])
{
 nuint16 attrs;
 NWCONN_HANDLE conn;
 NWDIR_HANDLE dirHandle1, dirHandle2;
 NWENTRY_INFO e;
 nuint32 iterHandle = -1L;
 NWCCODE ccode = 0;
 char dirPath[256], name[14];

 if (argc < 2) {
 printf("\nUsage: INFO <directory path> <search string>
 </d>");
 exit(1);
 }
 /* argv[1] is the directory path, argv[2] is the search string */
 strupr(argv[1]);
 if (argc > 2)
 strupr(argv[2]);
 if (argc > 3)
 attrs = SA_SUBDIR_ONLY;
 else
 attrs = SA_ALL;

File Service Group

File System: Examples 289

 ccode = NWCallsInit(NULL, NULL);
 if(ccode)
 exit(1);

 ccode = NWParseNetWarePath(argv[1], &conn, &dirHandle1, dirPath);
 if(ccode)
 exit(1);

 ccode = NWAllocTemporaryDirectoryHandle(conn, dirHandle1, dirPath,
 &dirHandle2, NULL);
 iterHandle = -1L;
 for(; ;)
 {
 ccode = NWScanDirEntryInfo(conn, dirHandle2, attrs,
 &iterHandle, (unsigned char *)argv[2], &e);
 if (ccode)
 exit(1);
 strncpy(name, (char *)e.name, 12);
 name[12] = '\0';
 printf("%-14s ", name);
 if (attrs == SA_SUBDIR_ONLY)
 {
 printf("Inherited Rights Mask: [%c%c%c%c%c%c%c%c]\n",
 (e.info.dir.inheritedRightsMask & TR_SUPERVISOR) ? 'S' : ' ',
 (e.info.dir.inheritedRightsMask & TR_READ) ? 'R' : ' ',
 (e.info.dir.inheritedRightsMask & TR_WRITE) ? 'W' : ' ',
 (e.info.dir.inheritedRightsMask & TR_CREATE) ? 'C' : ' ',
 (e.info.dir.inheritedRightsMask & TR_DELETE) ? 'D' : ' ',
 (e.info.dir.inheritedRightsMask & TR_ACCESS_CTRL) ? 'A' : ' ',
 (e.info.dir.inheritedRightsMask & TR_FILE_SCAN) ? 'F' : ' ',
 (e.info.dir.inheritedRightsMask & TR_MODIFY) ? 'M' : ' ');
 }
 else
 {
 printf("[%s %s %s %s %s %s %s %s %s %s %s %s %s %s]\n",
 (e.attributes & A_READ_ONLY) ? "Ro" : "Rw",
 (e.attributes & A_HIDDEN) ? "H" : "-",
 (e.attributes & A_SYSTEM) ? "Sy" : "--",
 (e.attributes & A_EXECUTE_ONLY) ? "Xo" : "--",
 (e.attributes & A_DIRECTORY) ? "Dir" : "---",
 (e.attributes & A_NEEDS_ARCHIVED) ? "A" : "-",
 (e.attributes & A_SHAREABLE) ? "Sh" : "--",
 (e.attributes & A_TRANSACTIONAL) ? "T" : "-",
 (e.attributes & A_INDEXED) ? "I" : "-",
 (e.attributes & A_IMMEDIATE_PURGE) ? "P" : "-",
 (e.attributes & A_RENAME_INHIBIT) ? "RI" : "--",
 (e.attributes & A_DELETE_INHIBIT) ? "DI" : "--",
 (e.attributes & A_COPY_INHIBIT) ? "CI" : "--",
 (e.attributes & A_FILE_MIGRATED) ? "FM" : "--");
 }
 }
}

File Service Group

File System: Examples 290

Parent Topic:

Directory Entry Information Access

Related Topics:

Accessing File Information for 3.11 and Above

Accessing File Information for 2.2 and Above:
Example

The following code calls NWIntScanFileInformation2 to display the file
name, size, and creation date for a specified file. Command line parameters
supply the file path. NWParseNetWarePath parses the path input and finds
the connection handle and the current directory handle.
NWAllocTemporaryDirectoryHandle allocates a new handle to the path
input. NWIntScanDirEntryInfo could have been used instead of
NWIntScanFileInformation2 to return the same results.

Accessing File Information (2.2 and above)

#define N_PLAT_DOS

#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <string.h>
#include <time.h>
#include <nwdpath.h>
#include <nwdentry.h>
#include <nwfile.h>
#include <nwmisc.h>

void main(int argc, char *argv[])
{
 NW_FILE_INFO2 info;
 NWDIR_HANDLE dirHandle;
 NWCONN_HANDLE conn;
 NWCCODE ccode;
 NW_DATE sDate;
 NW_TIME sTime;
 nuint8 iterHandle[9];
 nstr8 newPath[256];

 if (argc != 2) {
 printf("Usage: LIST <filepath>\n");
 printf("Example: LIST SYS:SYSTEM*\n");
 exit(1);
 }
 /* argv[1] is the file path */
 strupr(argv[1]);

File Service Group

File System: Examples 291

 ccode = NWCallsInit(NULL, NULL);
 if(ccode)
 exit(1);

 ccode = NWParseNetWarePath(argv[1], &conn, &dirHandle, newPath);
 if(ccode)
 exit(1);

 *(LONG *)iterHandle = -1L;
 for(; ;)
 {
 ccode = NWScanFileInformation2(conn, dirHandle, newPath,
 SA_ALL,(unsigned char *)iterHandle, &info);
 if (ccode)
 exit(1);
 printf("%-13s %10ld", info.fileName, info.fileSize);
 NWUnpackDateTime(info.creationDate, &sDate, &sTime);
 printf("\t%2d-%2d-%d\n", sDate.month, sDate.day, sDate.year);
 }
}

Parent Topic:

Directory Entry Information Access

Related Topics:

Accessing File Information for 2.2 and Above

File System Program: Example (NLM)

The following example illustrates how SalvageErasedFile , PurgeErasedFile,
and ScanErasedFiles can be used.

File System Programming

#include <stdlib.h>
#include <stdio.h>
#include <stddef.h>
#include <fcntl.h>
#include <share.h>
#include <direct.h>
#include <nwfile.h>
#include <nwdir.h>
#include <dos.h>
#include <string.h>
#include <conio.h>
main()
{
 int rc;
 int commandChar,purgeAllFlag;
 char newFileName[100];

File Service Group

File System: Examples 292

 char fullPathName[200];
 struct _DOSTime filTim;
 struct _DOSDate filDat;
 char scanDirectory[100], *charP;
 long nen;
 DIR dirP;
 nen = -1;
 purgeAllFlag = 0;
 printf("Directory to scan: ");
 gets(scanDirectory);
 if(!scanDirectory[0])
 {
 scanDirectory[0] = '\\';
 scanDirectory[1] = 0;
 }

 clrscr();
 printf(" filename Size Attr Date Time\
 Ser# Vol# Seq#\r\n");
 printf("------- ----- ----- ---- ----- ---- ---- ----\r\n");
 gotoxy(0, 24);
 printf("A - purge all; P - purge; S - salvage;
 <enter> - next file; X - exit");
 SetScreenRegionAttribute(24, 1, 0x70);
 gotoxy(0, 2);
 while (!ScanErasedFiles(scanDirectory, &nen, &dirP))
 {
 filTim = *(struct _DOSTime *) &dirP.d_time;
 filDat = *(struct _DOSDate *) &dirP.d_date;
 strcpy(newFileName,dirP.d_name);
 if ((charP = strchr(newFileName, '.')) == NULL)
 charP = " ";
 charP++ = 0; / overwrite period with a zero */

 if (wherey() == 24)
 {
 ScrollScreenRegionUp(2, 22);
 gotoxy(0, 23);
 }

 printf("%-8.8s %-3.3s %8d 0x%04x %02u/%02u/%02u\
 %02u:%02u:%02u %4d %4d %4d\r\n",
 newFileName, charP, dirP.d_size, dirP.d_attr,
 filDat.month, filDat.day, filDat.yearsSince80+80,
 filTim.hour, filTim.minute, filTim.bisecond,
 dirP.d_ino, dirP.d_dev, nen & 0xFFFFFF);
 SetScreenRegionAttribute(wherey()-1, 1, 10);

 //underline current file
 SetScreenRegionAttribute(wherey()-2, 1, 7);

 //un-underline prev file

File Service Group

File System: Examples 293

 if(!purgeAllFlag)
 {
 commandChar = getch();
 if(commandChar == 'A')
 purgeAllFlag = 1;
 }

 if((commandChar == 'p') || (commandChar == 'P') || purgeAllFlag)
 {
 strcpy(fullPathName,scanDirectory);
 if(scanDirectory[1])
 strcat(fullPathName,"\\");
 strcat(fullPathName,dirP.d_name);
 if (rc = PurgeErasedFile(fullPathName, nen))
 printf("Could Not Purge File %s;error = %d\r\n",
 fullPathName,rc);
 }
 else if((commandChar == 's') || (commandChar == 'S')) {
 if (wherey() == 24)
 {
 ScrollScreenRegionUp(2, 22);
 gotoxy(0, 23);
 }
 printf("new filename: ");
 gets(newFileName);
 strcpy(fullPathName,scanDirectory);
 if(scanDirectory[1])
 strcat(fullPathName,"\\");
 strcat(fullPathName,dirP.d_name);
 if (rc = SalvageErasedFile(fullPathName, nen, newFileName))
 printf("Could Not Salvage File %s; error = %d\r\n",
 dirP.d_name,rc);
 }

 else if((commandChar == 'x') || (commandChar == 'X'))
 {
 break;
 }
 }
}

Parent Topic:

File System: Guides

File Service Group

File System: Examples 294

File System: Concepts

Directory Entry Functions

These functions access directory entry information. Some of these functions
have older versions that are being phased out. Although both work,
Novell® recommends using the newer version.

Function Comment

NWIntMoveDirEntry Moves or renames a directory entry (file
or directory) on the same server.

NWIntScanDirectoryInfor
mation2

Returns directory information for a
directory specified by the connection
handle.

NWIntScanDirEntryInfo Obtains information about 3.x and 4.x
directory entries (files or directories.

NWIntScanExtendedInfo Scans directory for the extended file
information.

NWIntScanDirEntryInfo Scans a 3.11 directory for directory
entry information.

NWIntScanExtendedInfo Scans a directory for extended directory
entry information.

NWSetDirEntryInfo Modifies information for a directory
entry.

NWIntMoveDirEntry Moves or renames a directory entry.
The destination must be on the same
NetWare® server. (For 2.2 servers this
function operates on files only.)

Parent Topic:

File System: Guides

Directory Entry Table

To record information about directories and files, a server maintains a DET.
The DET consists of several types of 128-byte entries, including directory
nodes, file nodes, and trustee nodes.

File Service Group

File System: Concepts 295

A directory node includes the following information about a directory:
directory name, attributes, inherited rights mask, creation date and time,
creator's object ID, a link to the parent directory, and a link to a trustee node
(if one exists). It also includes a name space indicator, last archived date and
time, last modification date and time, up to 8 trustee object IDs, up to 8
trustee rights masks.

A file node includes the following information about a file: filename,
attributes, file size, creation date and time, deletion date and time, owner's
object ID, object ID of the object that performed the last deletion, object IDs
of up to 6 trustees, trustee rights mask for up to 6 trustees, inherited rights
mask, last-accessed date, last-updated date and time, and a link to a
directory.

A trustee node includes the following information: the object IDs of 2 to 16
trustees of a directory linked to the trustee node, 2 to 16 corresponding
trustee rights masks, a link to a directory, and a link to the next trustee node
(if one exists).

Parent Topic:

File System Tables (NLM)

Directory Handle Functions

These functions read and manipulate directory handles. Note many of the
functions work with both regular and short directory handles.

Function Comment

NWAllocPermanentDirectory
Handle

Allocates a permanent directory
handle and returns the caller's
effective rights to the associated
directory.

NWAllocTemporaryDirectory
Handle

Allocates a temporary directory
handle and returns the caller's
effective rights to the associated
directory.

NWDeallocateDirectoryHandl
e

Deallocates a directory handle.

NWGetDirectoryHandlePath Returns the path name of the
directory associated with the given
directory handle.

NWRestoreDirectoryHandle Restores a directory handle from its
saved state. [NetWare® 2.2 only]

NWSaveDirectoryHandle Saves the information necessary to
restore a directory handle later.
[NetWare 2.2 only]

File Service Group

File System: Concepts 296

[NetWare 2.2 only]

NWSetDirectoryHandlePath Sets the path name of the directory
associated with the given directory
handle.

Parent Topic:

File System: Guides

Directory Information Functions

These functions access general directory information.

Function Comment

NWModifyMaximumRig
htsMask

Modifies a directory's inherited rights
mask.

NWIntScanDirectoryInfor
mation2

Returns directory information for the
specified directory.

NWSetDirectoryInformati
on

Changes information about the specified
directory.

Parent Topic:

File System: Guides

Directory Space Functions

These functions access directory space limits and return directory space
information.

Function Comment

NWGetDirSpaceLimitLi
st

Returns the actual space limitations for a
directory.

NWGetDirSpaceInfo Returns directory space information.

NWSetDirSpaceLimit Limits the space available on a specified
directory.

Parent Topic:

File System: Guides

File Service Group

File System: Concepts 297

Directory Task Functions

These functions create, delete, and rename directories.

Function Comment

NWCreateDirector
y

Creates a NetWare® directory on the specified
NetWare server.

NWDeleteDirector
y

Deletes a NetWare directory.

NWRenameDirecto
ry

Renames a NetWare directory.

Parent Topic:

File System: Guides

Extended File Attributes

The GetExtendedFileAttributes and SetExtendedFileAttributes functions
obtain and set the second file attribute byte (byte 1), known in NetWare®
2.x as the extended attributes (and called that here for compatibility), by
passing a file path and extended file attributes byte.

The bits in byte 1 have the meanings illustrated in the following figure.

Figure 2. File Attributes Byte 1

File Service Group

File System: Concepts 298

The Index file attribute is no longer supported since all the files are
automatically indexed when they have 64 or more regular File Allocation
Table (FAT) entries and are randomly accessed.

The following figure illustrates the bits defined for byte 2.

Figure 3. File Attributes Byte 2

NetWare 4.x also defines attributes in byte 3 (as shown in the following
figure).

Figure 4. File Attributes Byte 3

File Service Group

File System: Concepts 299

Parent Topic:

Attributes (NLM)

File Access Operations

NetWare® supports standard DOS services in addition to some specialized
functions for accessing NetWare files. Typically, the only difference
between accessing a NetWare file and a DOS file is that a NetWare file path
includes server and volume names. UnixWare, on the other hand, doesn't
support the standard DOS services and must therefore rely more heavily on
the specialized functions for file access operations. For high level languages
such as C, you can access files using the language's standard I/O functions.
Similarly, in assembly language you can use the standard DOS functions.

File System Services supplement standard file IO facilities with functions

File Service Group

File System: Concepts 300

that perform single-server operations. These functions can help reduce
network traffic since the source and destination of the operations are
contained within a single server. For NetWare 3.11 and 4.x these functions
operate on a file or a subdirectory:

NWFileServerFileCopy copies a file or a portion of a file to a new
location on the same server.

NWRenameFile moves or renames a file on the same server.

NWIntEraseFiles erases NetWare system and hidden files. See Deleting
Files.

Parent Topic:

File System: Guides

File Attributes

The low-order file attribute byte contains flag bits similar to the DOS
attribute byte. A client must have Modify rights to change the setting of bits
in the file attribute bytes.

When set, the bits in the low-order attribute byte (byte 0) have the meanings
illustrated in the following figure

Figure 5. File Attributes Byte 0

File Service Group

File System: Concepts 301

The following table gives the attribute bits that are set for each possible
mode setting (the _A constants are defined in DIRECT.H).

Table auto. Attributes for UNIX Modes

Mode Attributes

None _A_EXECUTE _A_NODELE
T

_A_NORENA
M

_A_SYSTE
M

R _A_RDONLY _A_NODELE
T

_A_NORENA
M

W _A_HIDDEN _A_NODELE
T

_A_NORENA
M

X _A_EXECUTE

RW None

RX _A_RDONLY _A_NODELE
T

_A_NORENA
M

WX _A_HIDDEN _A_NODELE
T

_A_NORENA
M

RWX None

File Service Group

File System: Concepts 302

The access and chmod functions indirectly work on the attributes in byte 0.
The attribute bits in this byte are used to emulate what is called the mode of
the file under UNIX.

File Handle Conversion Functions

These functions provide the ability to convert between local and NetWare®
file handles.

Function Comment

NWConvertFileHa
ndle

Converts a local file handle to a NetWare file
handle.

NWConvertHandle Converts a NetWare file handle to a local file
handle.

Parent Topic:

File System: Guides

File Information Functions

These functions search for files, access file information, and monitor file
usage. Some of these functions have older versions that are being phased
out. Although both work, Novell® recommends using the newer version.

Function Comment

NWGetSparseFileBitMap Returns a bit map showing which blocks
in a sparse file contain data.

NWIntFileSearchContinu
e

Performs a search operation for files on
the specified volume.

NWIntFileSearchInitializ
e

Initializes a search operation for files on
the specified volume.

NWGetExtendedFileAttri
butes2

Returns the extended attributes for the
specified file.

NWGetFileConnectionID Returns the connection ID of the NetWare
server that owns the specified file handle.

NWIntScanFileInformatio
n2

Scans the specified directory for the
specified file (or directory), and returns
the associated directory entry
information.

NWIntScanFileInformatio Scans the specified directory for the

File Service Group

File System: Concepts 303

NWIntScanFileInformatio
n2

Scans the specified directory for the
specified file and returns the file's
directory entry information.

NWSetCompressedFileSi
ze

Attempts to set the logical file size for a
compressed file.

NWSetExtendedFileAttri
butes2

Modifies the extended attributes for the
specified file.

NWSetFileAttributes Modifies the attributes for the specified
file.

NWSetFileInformation2 Modifies file information for the specified
file.

Parent Topic:

File System: Guides

File Information (NLM)

Each network file has directory information associated with it. This data is
stored in the server's Directory Entry Table (DET) (see Directory Entry Table
).

A file's directory information consists of the file's size, attributes, creation
date, date of last access, date and time the file was last modified, and the
date and time the file was last archived. It also includes the owner's object
ID, object IDs of up to 6 trustees, trustee rights mask for up to 6 trustees,
Inherited Rights Mask, and so on. The file attributes contains the
information obtained by the NetWare® FLAG utility: read-only versus
read/write, sharable versus nonsharable, and so on.

A file's directory information can be set by calling SetFileInfo. In addition,
GetExtendedFileAttributes and SetExtendedFileAttributes respectively
obtain and set a part of a file's attributes called extended file attributes.

An application can call SetFileInfo to set specific file information such as

creationDateAndTime---Creation date of the file (DOS format; 4 bytes)

fileAttributes---File attributes to be assigned to the file

fileOwnerID---Unique Bindery object ID of the file's owner (the name and
Bindery object type of the file owner can be obtained by calling
NWGetObjectName.

lastArchiveDateAndTime---Last archived date and time of the file (DOS
format; 4 bytes)

lastUpdateDateAndTime---Last update date and time of the file (DOS
format; 4 bytes).

File Service Group

File System: Concepts 304

The creationDateAndTime, lastAccessDate, lastArchiveDateAndTime, and
lastUpdateDateAndTime parameters require a little interpretation.
_ConvertTimeToDOS and _ConvertDOSTimeToCalendar (see Time/Date
Manipulation) can be used to manipulate DOS times.

The creationDateAndTime parameter consists of 4 bytes indicating the
hour, minute, second, year, month, and day that the file was created.

The lastAccessDate parameter consists of 2 bytes indicating the year,
month, and day that the file was last accessed.

The lastUpdateDateAndTime and lastArchiveDateAndTime parameters
consist of 4 bytes indicating the hour, minute, second, year, month, and
day that the file was last modified or archived, respectively. The first 2
bytes of each parameter contain the year, month, and day fields, the same
as the lastAccessDate parameter. The hour, minute, and second fields are
in the second 2 bytes of each parameter. (See the following figure.)

Figure 6. Time Bytes

Parent Topic:

File System: Guides

File I/O Operations

File I/O functions provide the ability to perform the following tasks:

Convert local file handles to NetWare® file handles

Convert NetWare file handles to local file handles

File Service Group

File System: Concepts 305

Convert NetWare file handles to local file handles

See Converting File Handles for information on how to perform these tasks.

Parent Topic:

File System: Guides

File System Directory Entry Attributes

Directory entry attributes are commonly known as file flags (though they
also can pertain to directories). They have wide influence over the events
that can or will be performed on a directory or file entry. The following table
lists the attributes and explains their function.

Table auto. Directory Entry Attributes Defined

Attribute Bit Value Applicat
ion

Comment

A_READ_ONLY 0x00000001
L

Files
only.

Entry can't be
written, deleted
or renamed.

A_HIDDEN 0x00000002
L

Files and
directori
es.

Entry doesn't
appear in a
normal directory
listing.

A_SYSTEM 0x00000004
L

Files and
directori
es.

Entry is used by
the system and is
hidden.

A_EXECUTE_ONLY 0x00000008
L

Files
only.

Entry can be
loaded for
execution only
once.

A_DIRECTORY 0x00000010
L

Files and
directori
es.

Entry is a
directory, not a
file.

A_NEEDS_ARCHIVED 0x00000020
L

Files
only.

Entry has been
changed since
last archived.

A_SHAREABLE 0x00000080
L

Files
only.

Entry can be
opened by
multiple clients.

A_DONT_SUBALLOCA
TE

0x00000800
L

Files
only.

A file is stored in
its own
separately
allocated
memory for ease
of access.

File Service Group

File System: Concepts 306

A_TRANSACTIONAL 0x00001000
L

Files
only.

A transaction on
the entry is being
tracked.

A_INDEXED 0x00002000
L

Files and
directori
es.

Not in use.
Provided for
compatibility
only.

A_READ_AUDIT 0x00004000
L

Files and
directori
es.

Not in use.

A_WRITE_AUDIT 0x00008000
L

Files and
directori
es.

Not in use.

A_IMMEDIATE_PURGE 0x00010000
L

Files and
directori
es.

Entry will be
purged when
deleted.

A_RENAME_INHIBIT 0x00020000
L

Files
only.

Entry can't be
renamed.

A_DELETE_INHIBIT 0x00040000
L

Files and
directori
es.

Entry can't be
deleted.

A_COPY_INHIBIT 0x00080000
L

Files
only.

Entry can't be
copied.

A_FILE_MIGRATED 0x00400000
L

Files
only.

Entry has been
migrated.

A_DONT_MIGRATE 0x00800000
L

Files
only.

Entry should not
be migrated.

A_IMMEDIATE_COMPR
ESS

0x02000000
L

Files
only.

Entry should be
compressed
when written.

A_FILE_COMPRESSED 0x04000000
L

Files
only.

Entry is
compressed.

A_DONT_COMPRESS 0x08000000
L

Files
only.

Entry should not
be compressed.

A_CANT_COMPRESS 0x20000000
L

Files
only.

Entry can't be
compressed.

Parent Topic:

File System Directory Entries

File System Directory Entry Information

File Service Group

File System: Concepts 307

The term "directory entry information" is used loosely to refer to the DOS
information associated with a file or directory. The file system uses
directory entry information to maintain the file or directory entry. Some of
the more significant items included in directory entry information are the
following:

Short name

Directory entry attributes

Owner ID

Inherited rights mask

Entry event dates and times

Additional information is also included depending on whether the entry is a
file or directory. For example, file size is returned for files and maximum
space is returned for directories.

Parent Topic:

File System Directory Entries

File System Directory Trustees

Directory trustees are network users assigned access rights to a directory or
file. Trustees are identified by their object ID. Access rights at both the
directory and files level are expressed as a bit mask. (NetWare® 2.2 servers
don't support trustee assignments at the file level.)

Parent Topic:

File System: Guides

File System Directory Trustee Rights

The following trustee rights are defined for NetWare® 3.11 and above.

0x0001 TR_READ

0x0002 TR_WRITE

0x0004 undefined

0x0008 TR_CREATE

0x0010 TR_DELETE

0x0020 TR_ACCESS_CTRL

0x0040 TR_FILE_SCAN

0x0080 TR_MODIFY

0x0100 TR_SUPERVISOR

With the exception of the TR_SUPERVISOR bit, these rights also apply to

File Service Group

File System: Concepts 308

NetWare 2.2. The following table compares the privileges associated with
trustee rights when assigned at the directory level and at the file level.

Table auto. Trustee Rights

Right Directory Level File Level

TR_READ Trustee can open and
read the directory.

Trustee can open and
read the files.

TR_WRITE Trustee can open and
write to the directory.

Trustee can open and
write to the file.

TR_CREATE Trustee can create entries
in the directory.

Trustee can salvage
the file after deletion.

TR_ERASE Trustee can remove
entries from the directory.

Trustee can erase the
file.

TR_ACCESS_CT
RL

Trustee can grant trustee
rights and modify
inheritance for the
directory.

Trustee can grant
trustee rights and
modify inheritance for
the file.

TR_FILE_SCAN Trustee can scan for
directory entries.

Trustee can see the file
when scanning.

TR_MODIFY Trustee can modify
directory attributes and
rename entries.

Trustee can modify the
file's attributes (but not
its content).

TR_SUPERVISO
R

Trustee has all rights to
the directory.

Trustee has all rights to
the file.

Parent Topic:

File System: Guides

File System Effective Rights

Effective rights take into account a trustee's assigned rights, inherited rights,
and security equivalences to find the rights a trustee can exercise. To find
the effective rights for a file or directory under your current object ID, call
NWGetEffectiveRights.

An assigned rights mask takes precedence over any inherited rights. It can
remove rights that would have been inherited or grant new rights that
would not have been inherited. A trustee's assigned rights are not affected
by an Inherited Rights Mask. Consequently, the computation of effective
rights depends on whether rights are assigned or inherited:

If a trustee has an assigned rights mask, effective rights are computed by
ORing the trustee's rights mask with any assigned rights mask of objects
that the trustee is equivalent to in the bindery.

File Service Group

File System: Concepts 309

If the trustee does not have assigned rights (either directly or through
equivalence) in a given directory, the trustee inherits rights assigned
(directly or through equivalence) in a superior directory. These rights are
limited by the Inherited Rights Mask. The effective inherited rights are
computed by ORing the trustee's inherited rights with any equivalent
inherited rights, then ANDing the result with the Inherited Rights Mask.

Parent Topic:

File System: Guides

File System Inheritance

Rights assigned to a trustee in the parent directory apply to all subordinate
directories. This is referred to as inheritance. The trustee does not need to
appear in the trustee list of a subordinate directory to receive these rights.

There are two ways to block inheritance:

The trustee may be assigned new rights in a subordinate directory (thus
overriding the inherited rights).

The Inherited Rights Mask for the directory (or file) can be modified to
exclude specific rights.

When a file or directory is created, its Inherited Rights Mask includes all
rights. Any rights removed from the inherited rights mask can't be
inherited. An exception is the TR_SUPERVISOR bit, which can't be masked
by an Inherited Rights Mask.

The Inherited Rights Mask is stored with directory entry information. See
Directory Entry Information Access for a description of functions that read
and modify this information.

Parent Topic:

File System: Guides

File System Introduction

File System functions enable developers to manipulate NetWare® file
system information. The principle operations performed by these functions
include:

Accessing files

Accessing directory entry information

Managing disk space

File Service Group

File System: Concepts 310

Monitoring file usage

Managing trustees

Although this chapter generally notes the differences between overlapping
functions, it's important for developers to be aware of compatibility issues
affecting specific functions. To verify a function's compatibility, see the
specific reference for that function.

Functions beginning with NWInt, such as NWIntScanFileInformation2,
support wildcard augmentation of filename parameters. Functions ending
with integers such as 2 or 3 include support for more recent file system
features (such as long names).

For a description of structures and other data definitions that relate to this
chapter, see File System: Structures.

Parent Topic:

File System: Guides

File System Search Attributes

Functions operating on directory entries typically include a search attribute.
The attribute specifies the type of entries to include in the operation. The
search attribute lets you include system and hidden files and files in
subdirectories.

For functions that can operate on both directories and files, typically do one
to the exclusion of the other. For these functions, the search attribute lets
you specify whether to operate on files or directories. Below are the possible
bits defined by the search attribute:

0x0000 SA_NORMA

0x0002 SA_HIDDEN

0x0004 SA_SYSTEM

0x0010 SA_SUBDIR_ONLY

0x8000 SA_SUBDIR_FILES

0x8006 SA_ALL

Parent Topic:

File System File and Directory Paths

File System Trustee Functions

These functions operate on directories or files and so are oriented more
toward NetWare® 3.11 and above. On NetWare 2.2 servers, these functions
operate on directories only; however, they don't verify whether the input

File Service Group

File System: Concepts 311

path specifies a file or directory.

NWAddTrustee

NWDeleteTrustee

NWIntScanForTrustees

These functions operate on directories only, and so are oriented toward
NetWare 2.2. These functions aren't able to read or set the TR_SUPERVISOR
bit.

NWAddTrusteeToDirectory

NWDeleteTrusteeFromDirectory

NWScanDirectoryForTrustees2

NWIntScanForTrustees

Parent Topic:

File System: Guides

File System Wildcard Characters

Many functions accept wildcard characters within a filename parameter.
For example, with NWIntEraseFiles the file path can include wildcard
characters, in which case a single request is able to erase multiple files. The
following table shows the wildcard characters supported by NetWare®.

Table auto. NetWare Wildcard Characters

Characte
r

Wildcard Match

* Asterisk Zero or more characters.

? Question
mark

Any single character.

Parent Topic:

File System File and Directory Paths

File Task Functions

These functions erase, copy, and rename files on a NetWare® server. Some
of these functions have older versions that are being phased out. Although
both work, Novell® recommends using the newer version.

File Service Group

File System: Concepts 312

Function Comment

NWIntEraseFiles Deletes NetWare files from a server.

NWFileServerFileCop
y

Copies from one file to another. The source
and target directories must be on the same
NetWare server.

NWIntEraseFiles Deletes NetWare files from the server.

NWIntFileSearchCont
inue

Iteratively retrieves all directory entries
matching searchPath.

NWRenameFile Moves or renames a file.

Parent Topic:

File System: Guides

File Usage Functions

These functions return file usage statistics.

Function Comment

NWScanConnectionsUsing
File

Returns a list of workstation connection
numbers for connections using the
specified file.

NWScanOpenFilesByConn
2

Returns information for files currently
opened by the specified connection.

Parent Topic:

File System: Guides

Volume Table

To record information about volumes, a server maintains a Volume Table
that includes the number of volumes mounted in the server, the name, size,
and other information pertaining to each volume. Functions that return
information about volumes access the Volume Table.

Parent Topic:

File System Tables (NLM)

File Service Group

File System: Concepts 313

File System: Functions

File Service Group

File System: Functions 314

access

Determines whether a file or directory exists and if it can be accessed

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <unistd.h>

int access (
 const char *path,
 int mode);

Parameters

path

(IN) Specifies the string containing the path that includes the file or
directory to be accessed (maximum 255 characters, including the
NULL terminator).

mode

(IN) Specifies the access permission mode for the file.

Return Values

Returns 0 if the file or directory exists and can be accessed with the
specified mode. Otherwise, it returns a value of -1. If an error occurs, the
errno parameter is set.

Remarks

access also works on the DOS partition.

access determines if the file or directory specified by the path parameter
exists and if it can be accessed with the file permission given by the mode
parameter.

When the mode parameter is 0, only the existence of the file is verified. The
read and/or write and/or execute permission for the file can be
determined when the bits of the mode parameter are a combination of the
following:

File Service Group

File System: Functions 315

0 F_OK: File existence

1 X_OK: Execute permission

2 W_OK: Write permission

4 R_OK: Read permission

The result is dependent on the current connection number.

The SetCurrentNameSpace function sets the name space which is used
for parsing the path input to this function.

NOTE: For NetWare® versions before 4.x, access only works with
DOS name space for remote servers.

See Using access(): Example.

See Also

chmod, fstat

File Service Group

File System: Functions 316

chdir

Changes the current working directory to the specified path name

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <unistd.h>

int chdir (
 const char *pathname);

Parameters

pathname

(IN) Specifies the buffer containing the directory path (can include a
volume name).

Return Values

Returns a value of 0 if successful, nonzero otherwise. If an error occurs,
errno and NetWareErrno are set.

Remarks

chdir causes all threads in the current thread group to have a new
current working directory. The pathname parameter can be either relative
to the current working directory or it can be an absolute path name.

The SetCurrentNameSpace function sets the name space which is used
for parsing the path input to chdir.

NOTE: For NetWare versions before 4.x, chdir only works with DOS
name space for remote servers.

See Also

getcwd, mkdir, rmdir

File Service Group

File System: Functions 317

chmod

Changes the file access mode

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <stat.h>

int chmod (
 const char *path,
 int mode);

Parameters

path

(IN) Specifies the string containing the path that includes the file
whose access mode is to be modified (maximum 255 characters,
including the NULL terminator).

mode

(IN) Specifies the access permission mode for the file.

Return Values

Returns a value of 0 if successful, -1 otherwise. If an error occurs, errno is
set.

Remarks

chmod also works on the DOS partition.

The current connection must have modify permission to the specified file
to call chmod.

The various mode settings are given in the SYS\STAT.H header file. The
access permissions for the file are specified as a combination of bits
defined in the SYS\STAT.H header file.

S_IWRIT
E

The file is writeable

File Service Group

File System: Functions 318

S_IREA
D

The file is readable

Alternatively, zero can be specified to indicate that the file is readable
and writeable.

The SetCurrentNameSpace function sets the name space which is used
for parsing the path input.

NOTE: For NetWare versions before 4.x, chmod only works with DOS
name space for remote servers.

See Also

fstat, stat (Function)

File Service Group

File System: Functions 319

closedir

Closes a specified directory

Local Servers: nonblocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <dirent.h>

int closedir (
 DIR *dirP);

Parameters

dirP

Specifies the directory to be closed.

Return Values

0 0x00 ESUCCESS

22 0x16 EBADHNDL

NetWare
Error

UNSUCCESSFUL

Remarks

closedir closes the directory specified by the dirP parameter and frees the
memory allocated by the opendir function. All open directories are
automatically closed when an NLM™ application is terminated.

See Also

opendir, readdir

File Service Group

File System: Functions 320

FileServerFileCopy

Copies a file, or a portion of a file, to another file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <nwfile.h>

int FileServerFileCopy (
 int sourceFileHandle,
 int destinationFileHandle,
 LONG sourceFileOffset,
 LONG destinationFileOffset,
 LONG numberOfBytesToCopy,
 LONG *numberOfBytesCopied);

Parameters

sourceFileHandle

(IN) Specifies the file handle of the source file.

destinationFileHandle

(IN) Specifies the file handle of the destination file.

sourceFileOffset

(IN) Specifies the offset (in bytes) in the source file where copy should
begin.

destinationFileOffset

(IN) Specifies the offset (in bytes) in the destination file where the data
should be copied.

numberOfBytesToCopy

(IN) Specifies the number of bytes to be copied.

numberOfBytesCopied

(OUT) Points to the number of bytes actually copied.

Return Value

0 0x0 ESUCCESS

File Service Group

File System: Functions 321

0

1 0x0
1

ERR_INSUFFICIENT_SPACE

22 0x1
6

EBADHNDL

13
1

0x8
3

ERR_NETWORK_DISK_IO

13
6

0x8
8

ERR_INVALID_FILE_HANDLE

14
7

0x9
3

ERR_NO_READ_PRIVILEGE

14
8

0x9
4

ERR_NO_WRITE_PRIVILEGE_OR_READONLY

14
9

0x9
5

ERR_FILE_DETACHED

16
2

0xA
3

ERR_IO_LOCKED

Remarks

An application must pass file handles in the sourceFileHandle and
destinationFileHandle parameters. A file handle can be obtained by calling
the open, sopen, creat, or fileno function.

To copy from the beginning of the source file to a new file, set the
sourceFileOffset and destinationFileOffset parameters to 0x00.

To copy the entire source file, specify a value in the numberOfBytesToCopy
parameter that matches or exceeds the file size.

The numberOfBytesCopied parameter returns the number of bytes copied
between files as a result of calling this function.

On remote servers running NetWare 2.x, FileServerFileCopy returns
ERR_NO_READ_PRIVILEGE.

See Also

creat, fileno, open, sopen

File Service Group

File System: Functions 322

getcwd

Returns the current working directory of the current thread group

Local Servers: either blocking or nonblocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <unistd.h>

char *getcwd (
 char *buffer,
 size_t size);

Parameters

buffer

(OUT) Specifies the buffer in which to place the current working
directory.

size

(IN) Specifies the length of buffer (including space for the delimiting
\0 character).

Return Values

Returns the address of the string containing the name of the current
working directory if successful. Otherwise, NULL is returned and errno is
set.

Remarks

When the buffer parameter is NULL, a string is allocated to contain the
current working directory. The string can be freed by calling the free
function.

Blocking InformationLocally, getcwd blocks when the buffer parameter is
NULL and does not block when the buffer parameter is not NULL.

See Also

chdir, free, mkdir, rmdir

File Service Group

File System: Functions 323

GetExtendedFileAttributes

Returns the extended attributes for a file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <nwfile.h>

int GetExtendedFileAttributes (
 char *filePath,
 BYTE *extendedFileAttributes);

Parameters

filePath

(IN) Points to a string containing the absolute path or path relative to
the current working directory of the file for which to get extended file
attributes (maximum 255 characters, including the NULL terminator).

extendedFileAttributes

(OUT) Points to the extended attributes.

Return Value

0 0x0
0

ESUCCESS

13
7

0x8
9

ERR_NO_SEARCH_PRIVILEGE

15
6

0x9
C

ERR_INVALID_PATH

15
8

0x9
F

ERR_BAD_FILE_NAME

19
1

0xB
F

ERR_INVALID_NAME_SPACE

25
3

0xF
D

ERR_BAD_STATION_NUMBER

25
4

0xF
E

ERR_SPOOL_DIRECTORY_ERROR

File Service Group

File System: Functions 324

4 E

Remarks

GetExtendedFileAttributes returns the value of the first byte of the file
attributes, known as the extended attributes byte. The following bits are
defined:

NOTE: Do not confuse the file attributes byte with true extended
attributes, which can be manipulated with the Extended Attribute
functions.

If the transaction bit is set in the extendedFileAttributes parameter,
NetWare TTS™ software tracks all writes to the file during a transaction.
A transaction file cannot be deleted or renamed until the transaction bit is
turned off with the SetExtendedFileAttributes function.

An application can specify a file in several ways. For example, suppose
the full path of the file TARGET.DAT is:

SYS:ACCOUNT\DOMEST\TARGET.DAT

and the current working directory is SYS:ACCOUNT. The application
can specify the partial path, DOMEST\TARGET.DAT, or the full path in
the filePath parameter.

GetExtendedFileAttributes requires that the current connection have See
File rights to the directory where the file resides.

The SetCurrentNameSpace function sets the name space which is used
for parsing the path input to GetExtendedFileAttributes.

NOTE: For NetWare versions before 4.x, GetExtendedFileAttributes
only works with DOS name space for remote servers.

See Also

File Service Group

File System: Functions 325

SetExtendedFileAttributes

File Service Group

File System: Functions 326

_makepath

Constructs a full NetWare path name

Local Servers: blocking

Remote Servers: N/A

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>

void _makepath (
 char *path,
 const char *volume,
 const char *dir,
 const char *fname,
 const char *ext);

Parameters

path

(OUT) Points to the string containing the full path name.

volume

(IN) Specifies the volume name.

dir

(IN) Specifies the directory name.

fname

(IN) Specifies the base name of the file without an extension.

ext

(IN) Specifies the file name extension.

Return Values

None

Remarks

The NetWare path name is constructed from the components consisting
of a volume name, directory path, file name, and file name extension. The
full path name is placed in the buffer pointed to by the path parameter.

The maximum size required for each buffer is specified by the manifest

File Service Group

File System: Functions 327

constants which are defined in the NWDIR.H file.

255 _MAX_PATH
 16 _MAX_VOLUME (volume name length)
255 _MAX_DIR
 9 _MAX_FNAME
 5 _MAX_EXT

See Using _makepath and _splitpath: Example.

See Also

_splitpath

File Service Group

File System: Functions 328

mkdir

Creates a new directory

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <stat.h>

int mkdir (
 const char *pathname);

Parameters

pathname

(IN) Specifies the path containing the new directory (either relative to
the current working directory or an absolute path name).

Return Values

Returns a value of 0 if successful, nonzero otherwise.

Remarks

mkdir also works on the DOS partition.

The current connection must have Create rights in the parent directory.
The inherited rights mask for the new directory is ALL rights.

The SetCurrentNameSpace function sets the name space which is used
for parsing the path input to mkdir.

NOTE: For NetWare versions before 4.x, mkdir only works with DOS
name space for remote servers.

See Also

chdir, getcwd, rmdir

File Service Group

File System: Functions 329

NWAddTrustee

Adds a trustee to the list of trustees in a file or directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: File System

Syntax

#include <nwdentry.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWAddTrustee (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint32 objID,
 nuint16 rightsMask);

Pascal Syntax

#include <nwdentry.inc>

Function NWAddTrustee
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 objID : nuint32;
 rightsMask : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare® server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired
directory path (0 if the path parameter contains the complete path,
including the volume name).

path

(IN) Points to the absolute path (or a path relative to the dirHandle
parameter) of the directory to which a trustee is being added.

File Service Group

File System: Functions 330

objID

(IN) Specifies the bindery object ID for the object being added as a
trustee.

rightsMask

(IN) Specifies the access rights mask being granted to the new trustee.

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

0x880
1

INVALID_CONNECTION

0x898
C

NO_MODIFY_PRIVILEGES

0x899
0

NO_FILES_AFFECTED_READ_ONLY

0x899
6

SERVER_OUT_OF_MEMORY

0x899
8

VOLUME_DOES_NOT_EXIST

0x899
9

DIRECTORY_FULL

0x899
B

BAD_DIRECTORY_HANDLE

0x899
C

INVALID_PATH

0x89A
1

DIRECTORY_IO_ERROR

0x89F
C

NO_SUCH_OBJECT

0x89F
D

BAD_STATION_NUMBER

0x89F
F

HARDWARE_FAILURE

Remarks

To modify a trustee rights list, the requesting workstation must have
parental rights to the directory or to a parent of the directory.

File Service Group

File System: Functions 331

If the object is already a trustee for the specified directory, the current
access mask of the trustee is replaced by the value contained in the
rightsMask parameter. Otherwise, the object is added as a trustee to the
directory with rights equal to the rightsMask parameter.

NOTE: 2.x servers do not support file level trustee assignments.
NWAddTrustee does not check whether the specified path is a file, or a
directory path. The input parameters are passed as is to the server, and
the server returns an error for a file level input.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 22 13 Add Trustee To Directory

0x2222 22 39 Add Extended Trustee To Directory Or File

0x2222 87 10 Add Trustee Set To File Or Subdirectory

See Also

NWAddTrusteeToDirectory

File Service Group

File System: Functions 332

NWAddTrusteeToDirectory

Adds a trustee to the trustee list in a directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWAddTrusteeToDirectory (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint32 trusteeID,
 nuint8 rightsMask);

Pascal Syntax

#include <nwdirect.inc>

Function NWAddTrusteeToDirectory
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 trusteeID : nuint32;
 rightsMask : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired
directory path (0 if the path parameter contains the complete path,
including the volume name).

path

(IN) Points to the absolute path (or a path relative to the directory
handle) of the directory to which a trustee is being added.

File Service Group

File System: Functions 333

trusteeID

(IN) Specifies the bindery object ID for the object being added as a
trustee.

rightsMask

(IN) Specifies the access rights mask the new trustee is being granted.

Return Values

These are common return values; see Return Values for more
information.

0x000
0

SUCCESSFUL

0x880
1

INVALID_CONNECTION

0x898
C

NO_MODIFY_PRIVILEGES

0x899
0

NO_FILES_AFFECTED_READ_ONLY

0x899
6

SERVER_OUT_OF_MEMORY

0x899
8

VOLUME_DOES_NOT_EXIST

0x899
9

DIRECTORY_FULL

0x899
B

BAD_DIRECTORY_HANDLE

0x899
C

INVALID_PATH

0x89A
1

DIRECTORY_IO_ERROR

0x89F
C

NO_SUCH_OBJECT

0x89F
D

BAD_STATION_NUMBER

0x89F
F

HARDWARE_FAILURE

Remarks

If the object is already a trustee for the specified directory, the current
access mask of the trustee is replaced by the value contained in the
trusteeID

File Service Group

File System: Functions 334

trusteeID parameter. Otherwise, the object is added as a trustee to the
directory and given a rights mask equal to the trusteeID parameter.

To modify a trustee rights list, the requesting workstation must have
parental rights to the directory or to a parent of the directory.

The object must be static. If the object is dynamic,
NWAddTrusteeToDirectory will return an error.

NCP Calls

0x2222 22 13 Add Trustee To Directory

0x2222 22 39 Trustee Add Ext

0x2222 23 17 Get File Server Information

0x2222 87 10 Add Trustee Set To File Or Subdirectory

See Also

NWAddTrustee

File Service Group

File System: Functions 335

NWAllocPermanentDirectoryHandle

Allocates a permanent directory handle for a network directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWAllocPermanentDirectoryHandle (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 dirPath,
 NWDIR_HANDLE N_FAR *newDirHandle,
 pnuint8 effectiveRights);

Pascal Syntax

#include <nwdirect.inc>

Function NWAllocPermanentDirectoryHandle
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 dirPath : pnstr8;
 Var newDirHandle : NWDIR_HANDLE;
 effectiveRights : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired
directory path.

dirPath

(IN) Points to an absolute directory path (or a path relative to the
dirHandle parameter) specifying the directory with which the new
directory handle is to be associated (optional).

File Service Group

File System: Functions 336

newDirHandle

(OUT) Points to the new directory handle.

effectiveRights

(OUT) Points to the effective rights of the directory trustee connected
through the dirHandle parameter (optional).

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
99

DIRECTORY_FULL

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
9D

NO_MORE_DIRECTORY_HANDLES

0x89
A1

DIRECTORY_IO_ERROR

0x89
FD

BAD_STATION_NUMBER

0x89
FF

INVALID_DRIVE_NUMBER, HARDWARE_FAILURE

Remarks

To deallocate a permanent directory handle, call the
NWDeallocateDirectoryHandle function.

If more than 255 handles are allocated,
NWAllocPermanentDirectoryHandle may return a successful code;
however, the dirHandle parameter will be zero.

File Service Group

File System: Functions 337

NCP Calls

0x2222 22 03 Get Effective Directory Rights

0x2222 22 18 Alloc Permanent Directory Handle

0x2222 23 17 Get File Server Information

0x2222 87 12 Allocate Short Directory Handle

See Also

NWAllocTempNSDirHandle2, NWAllocTemporaryDirectoryHandle,
NWDeallocateDirectoryHandle

File Service Group

File System: Functions 338

NWAllocTemporaryDirectoryHandle

Assigns a temporary directory handle for the current name space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWAllocTemporaryDirectoryHandle (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 dirPath,
 NWDIR_HANDLE N_FAR *newDirHandle,
 pnuint8 rightsMask);

Pascal Syntax

#include <nwdirect.inc>

Function NWAllocTemporaryDirectoryHandle
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 dirPath : pnstr8;
 Var newDirHandle : NWDIR_HANDLE;
 rightsMask : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired
directory path (or 0 if the dirPath parameter points to the complete
path, including the volume name).

dirPath

(IN) Points to an absolute directory path (or a path relative to the
NetWare directory handle) specifying the directory with which the
new directory handle is associated.

File Service Group

File System: Functions 339

newDirHandle

(OUT) Points to the new directory handle.

rightsMask

(OUT) Points to the effective rights of the directory trustee connected
through the newDirHandle parameter (optional).

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
99

DIRECTORY_FULL

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
9D

NO_MORE_DIRECTORY_HANDLES

0x89
A1

DIRECTORY_IO_ERROR

0x89
FD

BAD_STATION_NUMBER

0x89
FF

INVALID_DRIVE_NUMBER, HARDWARE_FAILURE

Remarks

The directory handles allocated by
NWAllocTemporaryDirectoryHandle are automatically deallocated
when the task terminates, or when the NWDeallocateDirectoryHandle
function is called.

If more than 255 handles are allocated,
NWAllocTemporaryDirectoryHandle

File Service Group

File System: Functions 340

NWAllocTemporaryDirectoryHandle may return a successful code;
however, the dirHandle parameter will be zero.

Under DOS and Windows 3.1, the current name space is NW_NS_DOS.

Under OS/2, Windows NT, and Windows95, the current name space is
NW_NS_OS2.

NCP Calls

0x2222 22 03 Get Effective Directory Rights

0x2222 22 19 Allocate Temporary Directory Handle

0x2222 23 17 Get File Server Information

0x2222 87 12 Allocate Short Directory Handle

See Also

NWAllocPermanentDirectoryHandle, NWAllocTempNSDirHandle2,
NWDeallocateDirectoryHandle

File Service Group

File System: Functions 341

NWConvertFileHandle

Converts a file handle to a 4- or 6-byte NetWare handle

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWConvertFileHandle (
 NWFILE_HANDLE fileHandle,
 nuint16 handleType,
 pnuint8 NWHandle,
 NWCONN_HANDLE N_FAR *conn);

Pascal Syntax

#include <nwmisc.inc>

Function NWConvertFileHandle
 (fileHandle : NWFILE_HANDLE;
 handleType : nuint16;
 NWHandle : pnuint8;
 Var conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

fileHandle

(IN) Specifies the name of the local file handle to be converted to a
NetWare handle.

handleType

(IN) Specifies the type of handle to create:

4 = Create a 4-byte NetWare handle

6 = Create a 6-byte NetWare handle

NWHandle

(OUT) Points to a 4- or 6-byte NetWare Handle to which the local file
handle is being converted.

conn

(OUT) Points to the connection for which the NetWare handle is valid
(optional).

File Service Group

File System: Functions 342

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x00
06

INVALID_HANDLE

0x88
01

INVALID_CONNECTION

0x89
88

INVALID_FILE_HANDLE

Remarks

The handle returned by NWConvertFileHandle should not be used to
call the NWConvertHandle function. Otherwise, a new OS file handle
will be created.

If NWConvertFileHandle is called with only theNETX shell running,
INVALID_CONNECTION will be returned. However, the NetWare
handle will still be valid and the conn parameter will be set to zero.

If NULL is passed in the conn parameter, no error will be returned. If a
pointer is passed in the conn parameter and the shell is running, a valid
NetWare handle will be returned as well as 0x8801.

When a connection handle is obtained, a new licensed connection handle
will be created. Close the new connection handle by calling the
NWCCCloseConn function.

NCP Calls

None

See Also

NWConvertHandle

File Service Group

File System: Functions 343

NWConvertHandle

Converts a NetWare handle to a local file handle

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWConvertHandle (
 NWCONN_HANDLE conn,
 nuint8 accessMode,
 nptr NWHandle,
 nuint16 handleSize,
 nuint32 fileSize,
 NWFILE_HANDLE N_FAR *fileHandle);

Pascal Syntax

#include <nwmisc.inc>

Function NWConvertHandle
 (conn : NWCONN_HANDLE;
 accessMode : nuint8;
 NWHandle : nptr;
 handleSize : nuint16;
 fileSize : nuint32;
 Var fileHandle : NWFILE_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the connection where the NetWare handle exists to
which the local file handle is being converted.

accessMode

(IN) Specifies the type of access the user will have to the newly created
file handle.

NWHandle

(IN) Points to the 4- or 6-byte NetWare handle being converted to a
local file handle.

handleSize

File Service Group

File System: Functions 344

(IN) Specifies the number of bytes in the NetWare handle; either 4 or 6.

fileSize

(IN) Specifies the number of bytes in the file being converted.

fileHandle

(OUT) Points to the local file handle created by NWConvertHandle.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

Remarks

The handle returned by the NWConvertFileHandle function should not
be used to call NWConvertHandle. Otherwise, a new OS file handle will
be created.

The file handle returned is appropriate for the platform for which the
function is written. The file handle may be used for access to the attribute
value including closing the file as well as reading and writing to the file.

The accessMode parameter can have the following values:

0x00
01

$000
1

AR_READ (AR_READ_ONLY)

0x00
02

$000
2

AR_WRITE (AR_WRITE_ONLY)

0x00
04

$000
4

AR_DENY_READ

0x00
08

$000
8

AR_DENY_WRITE

0x00
10

$001
0

AR_COMPATIBILITY

0x00
40

$004
0

AR_WRITE_THROUGH

0x01
00

$010
0

AR_OPEN_COMPRESSED

For Windows, call the _lread, _lwrite, _lclose, and _llseek functions.

File Service Group

File System: Functions 345

Calling other functions in Windows returns unexpected results.

NCP Calls

None

See Also

NWConvertFileHandle

File Service Group

File System: Functions 346

_NWConvertHandle (obsolete 6/97)

Converts a NetWare handle to a client platform handle but is now obsolete.
Call the NWConvertHandle function instead.

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwmisc.h>
#include <nwnamspc.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)_NWConvertHandle (
 NWCONN_HANDLE conn,
 nuint8 accessMode,
 pnuint8 NWHandle,
 nuint32 fileSize,
 NWFILE_HANDLE N_FAR *fileHandle);

Pascal Syntax

#include <nwmisc.inc>

Function _NWConvertHandle
 (conn : NWCONN_HANDLE;
 accessMode : nuint8;
 NWHandle : pnuint8;
 fileSize : nuint32;
 Var fileHandle : NWFILE_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

accessMode

(IN) Specifies the access mode of the file.

NWHandle

(IN) Points to the NetWare handle to be converted.

fileSize

(IN) Specifies the size of the file.

fileHandle

File Service Group

File System: Functions 347

(OUT) Points to the file handle returned.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x88
A0

MEMORY_ALLOCATION_ERROR

Remarks

AR_READ and/or AR_WRITE must be used in the accessMode parameter.
If neither of these are used, _NWConvertHandle (obsolete 6/97) sets
both.

The following are the access mode definitions:

0x0001 AR_READ
0x0002 AR_WRITE
0x0004 AR_DENY_READ
0x0008 AR_DENY_WRITE
0x0010 AR_COMPATIBILITY
0x0040 AR_WRITE_THROUGH
0x0100 AR_OPEN_COMPRESSED

NCP Calls

None

File Service Group

File System: Functions 348

NWCreateDirectory

Creates a NetWare directory on the specified server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWCreateDirectory
 (NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 dirPath,
 nuint8 accessMask);

Pascal Syntax

#include <nwdirect.inc>

Function NWCreateDirectory
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 dirPath : pnstr8;
 accessMask : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle of the root directory for the new
directory (0 if thedirPath parameter points to the complete path,
including the volume name) .

dirPath

(IN) Points to the string containing the name and path of the new
directory.

accessMask

(IN) Specifies the access rights mask for the new directory.

File Service Group

File System: Functions 349

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
84

NO_CREATE_PRIVILEGES

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
99

DIRECTORY_FULL

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
9E

INVALID_FILENAME

0x89
A1

DIRECTORY_IO_ERROR

0x89
FD

BAD_STATION_NUMBER

0x89
FF

HARDWARE_FAILURE (directory/file already exists)

Remarks

The accessMask parameter can be set using one or more of the following:

Hex Definition

0xF
B

TA_ALL

0x0
1

TA_READ

0x0
2

TA_WRITE

File Service Group

File System: Functions 350

2

0x0
4

TA_OPEN

0x0
8

TA_CREATE

0x1
0

TA_DELETE

0x2
0

TA_OWNERSHIP

0x4
0

TA_SEARCH

0x8
0

TA_MODIFY

NOTE: Actual rights are set according to inherited rights.

NCP Calls

0x2222 22 10 Create Directory

0x2222 23 17 Get File Server Information

0x2222 87 01 Open Create File Or Subdirectory

See Also

NWDeleteDirectory

File Service Group

File System: Functions 351

NWDeallocateDirectoryHandle

Deallocates a directory handle allocated by the
NWAllocTemporaryDirectoryHandle or
NWAllocPermanentDirectoryHandle function

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWDeallocateDirectoryHandle (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle);

Pascal Syntax

#include <nwdirect.inc>

Function NWDeallocateDirectoryHandle
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle to be deallocated.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88 INVALID_CONNECTION

File Service Group

File System: Functions 352

0x88
01

INVALID_CONNECTION

0x89
9B

BAD_DIRECTORY_HANDLE

Remarks

When a workstation terminates or logs out, all directory handles for the
workstation are deleted.

NCP Calls

0x2222 22 20 Deallocate Directory Handle

See Also

NWAllocPermanentDirectoryHandle, NWAllocTempNSDirHandle2,
NWAllocTemporaryDirectoryHandle, NWGetDirectoryHandlePath

File Service Group

File System: Functions 353

NWDeleteDirectory

Deletes a NetWare directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWDeleteDirectory (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 dirPath);

Pascal Syntax

#include <nwdirect.inc>

Function NWDeleteDirectory
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 dirPath : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle of the target directory root (0 if the
dirPath parameter contains the complete path, including the volume
name).

dirPath

(IN) Points to the string containing the path (relative to the dirHandle
parameter) of the directory being deleted.

Return Values

These are common return values; see Return Values for more

File Service Group

File System: Functions 354

information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
8A

NO_DELETE_PRIVILEGES

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
9F

DIRECTORY_ACTIVE

0x89
A0

DIRECTORY_NOT_EMPTY

0x89
A1

DIRECTORY_IO_ERROR

0x89
FD

BAD_STATION_NUMBER

0x89
FF

Failure

NCP Calls

0x2222 22 11 Delete Directory

0x2222 23 17 Get File Server Information

0x2222 87 08 Delete A File Or Subdirectory

See Also

NWCreateDirectory

File Service Group

File System: Functions 355

NWDeleteTrustee

Removes a trustee from the specified directory or a trustee list for a file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdentry.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWDeleteTrustee (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 dirPath,
 nuint32 objID);

Pascal Syntax

#include <nwdentry.inc>

Function NWDeleteTrustee
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 dirPath : pnstr8;
 objID : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle for the directory whose
trustee list is being deleted (0 if thedirPath parameter points to the
complete path, including the volume name).

dirPath

(IN) Points to the directory from which the trustee is being removed.

objID

(IN) Specifies the bindery object ID for the trustee being deleted.

File Service Group

File System: Functions 356

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
8C

N0_MODIFY_PRIVILEGES

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
99

DIRECTORY_FULL

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
A1

DIRECTORY_IO_ERROR

0x89
FC

NO_SUCH_OBJECT

0x89
FD

BAD_STATION_NUMBER

0x89
FE

TRUSTEE_NOT_FOUND

0x89
FF

HARDWARE_FAILURE, Failure

Remarks

NWDeleteTrustee also revokes the rights of the trustee in the specified
directory.

To delete a trustee, the requesting workstation must have access control
rights for 3.x servers or parental rights for 2.x servers in the directory or
in a parent directory.

Deleting the explicit assignment of an trustee object in a directory is not
the same as assigning no rights to the object in the directory. If no rights
are assigned in a directory, the object inherits the same rights as the

File Service Group

File System: Functions 357

parent directory.

NCP Calls

0x2222 22 14 Delete Trustee From Directory

0x2222 22 43 Trustee Remove Ext

0x2222 23 17 Get File Server Information

0x2222 87 11 Delete Trustee Set From File Or Subdirectory

See Also

NWAddTrustee, NWIntScanForTrustees, NWParseNetWarePath

File Service Group

File System: Functions 358

NWDeleteTrusteeFromDirectory

Removes a trustee from a directory trustee list

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWDeleteTrusteeFromDirectory (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint32 objID);

Pascal Syntax

#include <nwdirect.inc>

Function NWDeleteTrusteeFromDirectory
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 objID : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle for the directory whose
trustee list is being modified (zero if thepath parameter points to the
complete path, including the volume name).

path

(IN) Points to an absolute path (or a path relative to the dirHandle
parameter) specifying the directory from which the trustee is being
removed.

objID

File Service Group

File System: Functions 359

(IN) Specifies the bindery object ID for the trustee being deleted.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

Remarks

NWDeleteTrusteeFromDirectory revokes the rights for a trustee in a
specific directory. The requesting workstation must have parental rights
in the directory, or in a parent directory, to delete a trustee.

Deleting the explicit assignment of an trustee object in a directory is not
the same as assigning no rights to the object in the directory. If no rights
are assigned in a directory, the object inherits the same rights it has in the
parent directory.

NCP Calls

0x2222 22 14 Delete Trustee From Directory

0x2222 22 43 Trustee Remove Ext

0x2222 23 17 Get File Server Information

0x2222 87 11 Delete Trustee Set From File Or Subdirectory

See Also

NWAddTrusteeToDirectory, NWParseNetWarePath,
NWScanDirectoryForTrustees2

File Service Group

File System: Functions 360

NWEraseFiles (obsolete 6/96)

Deletes NetWare files from the server but is now obsolete. Call the
NWIntEraseFiles function instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include<nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWEraseFiles
 (NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint8 searchAttrs);

Pascal Syntax

#include <nwfile.inc>

Function NWEraseFiles
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 searchAttrs : nuint8;
 augmentFlag : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle containing the
file to erase.

dirHandle

(IN) Specifies the directory handle of the file to be erased (0 if the path
parameter contains the complete path, including the volume name).

path

(IN) Points to the string containing the file path, including the file
name, of the file to be erased.

File Service Group

File System: Functions 361

searchAttrs

(IN) Specifies the search attributes.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

Remarks

The searchAttrs parameter includes system and/or hidden files. If only
the system bit is set in the searchAttrs parameter, all files are affected
except hidden files. If only the hidden bit is set, all files are affected
except system files. When neither bit is set (0x00), only files that are not
designated either hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file
attribute is set.

Search attributes to use in finding a file follow:

0x00 none
0x02 FA_HIDDEN
0x04 FA_SYSTEM
0x06 both

The path parameter can specify either the complete path name for a file or
a path relative to the current working directory. For example, if the
complete path name is SYS:ACCOUNT/DOMEST/TARGET.DAT and
the directory handle mapping is SYS:ACCOUNT, the value of the path
parameter could be either of the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT or
DOMEST/TARGET.DAT

The path parameter can point to wildcards in the file name only. Wildcard
matching uses the method defined by the application when it passes a

File Service Group

File System: Functions 362

wildcard character.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 68 Erase File

0x2222 87 08 Delete A File Or Subdirectory

See Also

NWPurgeErasedFiles, NWRenameFile

File Service Group

File System: Functions 363

NWFileSearchContinue (obsolete 6/96)

Iteratively retrieves all directory entries matching the searchPath parameter
but is now obsolete. Call the NWIntFileSearchContinue function instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include<nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWFileSearchContinue
 (NWCONN_HANDLE conn,
 nuint8 volNum,
 nuint16 dirID,
 nuint16 searchContext,
 nuint8 searchAttr,
 pnstr8 searchPath,
 pnuint8 retBuf);

Pascal Syntax

#include <nwfile.inc>

Function NWFileSearchContinue
 (conn : NWCONN_HANDLE;
 volNum : nuint8;
 dirID : nuint16;
 searchContext : nuint16;
 searchAttr : nuint8;
 searchPath : pnstr8;
 retBuf : pnuint8;
 augmentFlag : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number returned by the initialize function.

File Service Group

File System: Functions 364

dirID

(IN) Specifies the directory ID returned by the initialize function.

searchContext

(IN) Specifies the sequence number returned by the
NWIntFileSearchInitialize function.

searchAttr

(IN) Specifies the attributes to apply to the search.

searchPath

(IN) Points to the path (file name, directory name, or wildcard).

retBuf

(OUT) Points to the information returned by the server.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

Remarks

On the first iteration, use the sequence number returned by the
NWIntFileSearchInitialize function. For subsequent iterations, use the
sequenceNumber field from the SEARCH_FILE_INFO or
SEARCH_DIR_INFO structure.

NWFileSearchContinue (obsolete 6/96) returns two different search
structures depending on whether the match is a directory or a file. The
application is responsible for determining the type of match, or for
limiting the search to files or directories only. The two search structures
are SEARCH_FILE_INFO and SEARCH_DIR_INFO.

Search attributes follow:

C
Valu
e

Pasca
l
Valu
e

Value Name

File Service Group

File System: Functions 365

0x00 $00 FA_NORMAL

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x10 $10 FA_DIRECTORY

If other values are used for search attributes, each will be treated as
FA_NORMAL.

NCP Calls

0x2222 63 File Search Continue

See Also

NWIntFileSearchInitialize

File Service Group

File System: Functions 366

NWFileSearchInitialize (obsolete 6/97)

Searches for files on a server but is now obsolete. Call the
NWIntFileSearchInitialize function instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWFileSearchInitialize (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 pnuint8 volNum,
 pnuint16 dirID,
 pnuint16 iterHnd,
 pnuint8 accessRights);

Pascal Syntax

#include <nwfile.inc>

Function NWFileSearchInitialize
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 volNum : pnuint8;
 dirID : pnuint16;
 iterhandle : pnuint16;
 accessRights : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the base directory handle to search.

path

File Service Group

File System: Functions 367

(IN) Points to the path (relative to the dirHandle parameter) on which to
initialize the search.

volNum

(OUT) Points to the corresponding volume number.

dirID

(OUT) Points to the directory ID corresponding to the specified path.

iterHnd

(OUT) Points to a sequence number to be used in calling the
NWIntFileSearchContinue function (initially -1).

accessRights

(OUT) Points to the access rights to the specified directory.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

Remarks

If the directory handle is unknown, a value of 0 should be passed. In the
absence of the directory handle, the path parameter needs to specify the
volume as well.

NCP Calls

0x2222 62 File Search Initialize

See Also

NWIntFileSearchContinue

File Service Group

File System: Functions 368

NWFileServerFileCopy

Copies a file or portion of a file from a source to a destination on the same
NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include<nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWFileServerFileCopy (
 NWFILE_HANDLE srcFileHandle,
 NWFILE_HANDLE dstFileHandle,
 nuint32 srcOffset,
 nuint32 dstOffset,
 nuint32 bytesToCopy,
 pnuint32 bytesCopied);

Pascal Syntax

#include<nwfile.inc>

Function NWFileServerFileCopy
 (srcFileHandle : NWFILE_HANDLE;
 dstFileHandle : NWFILE_HANDLE;
 srcOffset : nuint32;
 dstOffset : nuint32;
 bytesToCopy : nuint32;
 bytesCopied : pnuint32
) : NWCCODE;

Parameters

srcFileHandle

(IN) Specifies the source file handle (index).

dstFileHandle

(IN) Specifies the destination file handle (index).

srcOffset

(IN) Specifies the offset in the source file where the copying is to begin.

File Service Group

File System: Functions 369

dstOffset

(IN) Specifies the offset in the destination file where the copying is to
begin.

bytesToCopy

(IN) Specifies the maximum number of bytes to copy.

bytesCopied

(OUT) Points to the number of bytes actually copied, or the size of a
new destination file (optional).

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x00
06

Invalid File Handle

0x88
30

NOT_SAME_CONNECTION

0x89
01

ERR_INSUFFICIENT_SPACE

0x89
83

IO_ERROR_NETWORK_DISK

0x89
88

INVALID_FILE_HANDLE

0x89
93

NO_READ_PRIVILEGES

0x89
94

NO_WRITE_PRIVILEGES_OR_READONLY

0x89
95

FILE_DETACHED

0x89
96

SERVER_OUT_OF_MEMORY

0x89
A2

READ_FILE_WITH_RECORD_LOCKED

Remarks

NWFileServerFileCopy is very efficient since the data does not come to
the workstation; the server handles the duplication of the data internally.

If the source and destination files do not reside on the same server,

File Service Group

File System: Functions 370

NOT_SAME_CONNECTION is returned.

You must pass OS file handles in the srcFileHandle and dstFileHandle
parameters. Use the appropriate OS functions that create and open files
to return the file handles, depending on whether the destination file is a
new or an existing file.

If the destination file is new, the bytesCopied parameter points to the size
of the destination file. Otherwise, it points to the number of bytes copied.

To copy the entire source file, specify a value that matches or exceeds the
file size in the bytesToCopy parameter.

Under OS/2, the given handles are converted to NetWare handles via the
NetWare IFS.

Under DOS, NWFileServerFileCopy is a direct call to the shell. The shell
handles the copy.

NCP Calls

0x2222 74 Copy From One File To Another

File Service Group

File System: Functions 371

NWGetCompressedFileLengths

Returns information about the lengths of a compressed file

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <nwfile.h>

int NWGetCompressedFileLengths (
 int handle,
 LONG *uncompressedLength,
 LONG *compressedLength;

Parameters

handle

(IN) Specifies the file handle for which to return the lengths.

uncompressedLength

(OUT) Points to the length of the file in an uncompressed state.

compressedLength

(OUT) Points to the length of the file after being compressed.

Return Values

0 Success

0xFF Failure

Remarks

NWGetCompressedFileLengths returns information about the lengths
of a compressed file.

If the handle parameter represents a file that is not compressed, the
lengths will be invalid.

The uncompressedLength parameter specifies the length normally seen in

File Service Group

File System: Functions 372

directory listings.

See Also

NWSetCompressedFileLengths

File Service Group

File System: Functions 373

NWGetDirectoryEntryNumber

Returns file information for a specified file under DOS and the name space
associated with the specified directory handle

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY (NWCCODE) NWGetFileDirEntryNumber (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 pnuint32 volumeNum,
 pnuint32 directoryEntry,
 pnuint32 DOSDirectoryEntry,
 pnuint32 nameSpace,
 pnuint32 parentDirEntry,
 pnuint32 parentDOSDirEntry);

Pascal Syntax

Function NWGetFileDirEntryNumber
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 volumeNum : pnuint32;
 directoryEntry : pnuint32;
 DOSDirectoryEntry : pnuint32;
 nameSpace : pnuint32;
 parentDirEntry : pnuint32;
 parentDOSDirEntry : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server conneciton handle.

dirHandle

(IN) Specifies the one byte directory handle.

volumeNum

(OUT) Points to the volume number of the directory handle.

directoryEntry

File Service Group

File System: Functions 374

(OUT) Points to the directory entry number in the name space
associated with the dirHandle parameter.

DOSDirectoryEntry

(OUT) Points to the directory entry number in the DOS name space.

nameSpace

(OUT) Points to the name space associated with the directoryEntry and
parentDirEntry parameters.

parentDirEntry

(OUT) Points to the parent directory entry number of the directory
handle in the name space associated with the dirHandle parameter.

parentDOSDirEntry

(OUT) Points to the parent directory entry number of the directory
handle in the DOS name space.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

Remarks

NWGetDirectoryEntryNumber returns the volume number, directory
entry numbers, parent directory entry numbers in the DOS name space,
and the name space associated with the directory handle.

One way to create the directory handle is to call the
NWAllocTempNSDirHandle2 function. If you specify a long directory
name, the created directory handle will be associated with the LONG
name space. If a DOS directory name is specified, the created directory
handle will be associated with the DOS name space.

The nameSpace parameter can have the following values:

0 NW_NS_DOS

1 NW_NS_MAC

2 NW_NS_NFS

3 NW_NS_FTAM

4 NW_NS_LONG

File Service Group

File System: Functions 375

NCP Calls

87 31 Get File Information

See Also

NWAllocTempNSDirHandle2

File Service Group

File System: Functions 376

NWGetDirectoryHandlePath

Returns the path name of the directory associated with the given directory
handle

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWGetDirectoryHandlePath (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 dirPath);

Pascal Syntax

#include <nwdirect.inc>

Function NWGetDirectoryHandlePath
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 dirPath : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle for the directory whose path is to be
reported.

dirPath

(OUT) Points to the directory path name associated with the dirHandle
parameter.

Return Values

These are common return values; see Return Values for more

File Service Group

File System: Functions 377

information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
A1

DIRECTORY_IO_ERROR

Remarks

NWGetDirectoryHandlePath allows a client to retrieve the full directory
path of the directory indexed by the dirHandle parameter. The string
accessed by the dirPath parameter contains a path name in the following
format:

Volume Name:Directory\Subdirectory\....

The string accessed by the dirPath parameter does not contain the name of
the server. Its maximum length is 255 bytes.

Under NETX, if an invalid connection handle is passed to the conn
parameter, NWGetDirectoryHandlePath will return 0x0000. An error
will never be returned by NETX since NETX always chooses a default
connection handle if the connection handle cannot be resolved.

NETX tries to resolve the connection ID through the preferred server
first. If a preferred server does not exist, the request is directed to the
default server (or the server implied by the default drive). If the default
drive is mapped to a local drive, the shell directs the request to the
primary server as the lowest connection priority.

NCP Calls

0x2222 22 01 Get Directory Path

See Also

NWAllocTemporaryDirectoryHandle, NWDeallocateDirectoryHandle

File Service Group

File System: Functions 378

NWGetDirSpaceInfo

Returns information on space usage for a volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWGetDirSpaceInfo (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 nuint16 volNum,
 DIR_SPACE_INFO N_FAR *spaceInfo);

Pascal Syntax

#include <nwdirect.inc>

Function NWGetDirSpaceInfo
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 volNum : nuint16;
 Var spaceInfo : DIR_SPACE_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle (nuint16).

dirHandle

(IN) Specifies the directory handle associated with the desired
directory path (0 if volume information is to be returned).

volNum

(IN) Specifies the volume number to return space information for (0 if
directory information is to be returned).

spaceInfo

(OUT) Points to the DIR_SPACE_INFO structure.

File Service Group

File System: Functions 379

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

Remarks

If the dirHandle parameter is zero, NWGetDirSpaceInfo returns the
volume information to the DIR_SPACE_INFO structure.

The purgeableBlocks parameter is set to 0 if the dirHandle parameter
contains a nonzero value.

The availableBlocks field is the only field that returns information when
disk space restrictions are in effect. Tthe rest of the structure fields
contain volume wide information. If disk space restrictions are not in
effect, the availableBlocks field will contain the number of blocks available
for use on the entire volume.

NCP Calls

0x2222 22 44 Get Volume Purge Information

0x2222 22 45 Get Dir Info

File Service Group

File System: Functions 380

NWGetDirSpaceLimitList

Determines the actual space limitations for a directory

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWGetDirSpaceLimitList (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnuint8 returnBuf);

Pascal Syntax

#include <nwdirect.inc>

Function NWGetDirSpaceLimitList
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 returnBuf : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle pointing to the desired directory.

returnBuf

(OUT) Points to a 512-byte buffer containing the returned space list.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

File Service Group

File System: Functions 381

Remarks

To find the actual amount of space available to a directory, scan all of the
current fields and use the smallest one. If no entries are returned, no space
restrictions exist for the specified directory.

NOTE: All restrictions are returned in units of 4K blocks.

The NW_LIMIT_LIST structure will be used to return space list
information. The NW_LIMIT_LIST structure is pointed to by the
returnBuf parameter.

NCP Calls

None

File Service Group

File System: Functions 382

NWGetDiskIOsPending

Returns the number of pending disk IOs the file server has at the specified
point in time

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <nwfile.h>

int NWGetDiskIOsPending (
 void);

Return Values

Returns the number of pending disk IOs the file server has upon
successful completion.

Remarks

The value returned by NWGetDiskIOsPending is the same as the value
for "Current disk requests" as reported by the MONITOR.NLM file.

File Service Group

File System: Functions 383

NWGetEffectiveRights

Returns effective rights for the specified directory

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdentry.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWGetEffectiveRights (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 pnuint16 effectiveRights);

Pascal Syntax

#include <nwdentry.inc>

Function NWGetEffectiveRights
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 effectiveRights : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle associated with the
directory path for which the effective rights are desired (0 if thepath
parameter points to the complete path, including the volume name).

path

(IN) Points to the absolute path (or a path relative to the dirHandle
parameter) of the directory whose effective rights mask is being
returned.

effectiveRights

File Service Group

File System: Functions 384

(OUT) Points to the effective rights mask for the directory.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
A1

DIRECTORY_IO_ERROR

0x89
FD

BAD_STATION_NUMBER

0x89
FF

Failure

Remarks

To determine the effective rights of the requesting workstation,
NWGetEffectiveRights performs a logical AND between the maximum
rights mask of the directory and the current trustee rights of the
workstation.

The current trustee rights are obtained by performing a logical OR
between a trustee access mask and the trustee access mask of any object
to which the process is security equivalent.

The current trustee rights can be explicitly listed in the directory or
inherited from the parent directory. The maximum rights masks of parent
directories do not affect inherited trustee rights.

The effectiveRights parameter returned to the client indicates which of the
eight possible directory rights the client has in the targeted directory. An
effectiveRights parameter of zero indicates the client has no rights in the
target directory.

File Service Group

File System: Functions 385

The maximum rights mask bits are defined in the table below:

C
Valu
e

Pasca
l
Valu
e

Value Description

0x00
01

$000
1

TR_READ

0x00
02

$000
2

TR_WRITE

0x00
08

$000
8

TR_CREATE

0x00
10

$001
0

TR_DELETE

0x00
10

$002
0

TR_OWNERSHIP

0x00
40

$004
0

TR_FILE_SCAN

0x00
80

$008
0

TR_MODIFY

For 3.x-4.x servers, NWGetEffectiveRights works on files as well as
directories. For 2.x servers, NWGetEffectiveRights works only on paths.

See Displaying effective rights: Example.

NCP Calls

0x2222 22 3 Get Effective Directory Rights

0x2222 22 42 Get Effective Rights

0x2222 23 17 Get File Server Information

0x2222 87 29 Get Effective Directory Rights

File Service Group

File System: Functions 386

NWGetExtendedFileAttributes2

Returns the NetWare extended file attributes for the specified file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include<nwfile.h>
or
#include<nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWGetExtendedFileAttributes2 (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 pnuint8 extAttrs);

Pascal Syntax

#include<nwfile.inc>

Function NWGetExtendedFileAttributes2
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 extAttrs : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle of the new root directory.

path

(IN) Points to the string containing the name and path of the new
directory.

extAttrs

(OUT) Points to the extended attributes of the file.

File Service Group

File System: Functions 387

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
88

INVALID_FILE_HANDLE

0x89
89

NO_SEARCH_PRIVILEGES

0x89
93

NO_READ_RRIVILEGES

0x89
94

NO_WRITE_PRIVILEGES_OR_READONLY

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
A1

DIRECTORY_IO_ERROR

0x89
FD

BAD_STATION_NUMBER

0x89
FF

NO_FILES_FOUND_ERROR

Remarks

NWGetExtendedFileAttributes2 requires Search rights to the directory
where the file resides.

The path parameter can specify the complete path name or a path relative
to the current working directory. For example, if the complete path name
is SYS:ACCOUNT/DOMEST/TARGET.DAT and the directory handle
mapping is SYS:ACCOUNT, the path parameter could be the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT or
DOMEST/TARGET.DAT

File Service Group

File System: Functions 388

The information accessed by the extAttrs parameter is interpreted as
follows:

Bit
s

Function

0-2 Search mode bits

4 Transaction bit

5 Index bit

6 Read audit bit

7 Write audit bit

NCP Calls

0x2222 23 15 Scan File Information

See Also

NWSetExtendedFileAttributes2

File Service Group

File System: Functions 389

NWGetFileConnectionID

Returns the connection handle of the server owning the specified file handle

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWGetFileConnectionID (
 NWFILE_HANDLE fileHandle,
 NWCONN_HANDLE N_FAR *conn);

Pascal Syntax

#include <nwfile.inc>

Function NWGetFileConnectionID
 (fileHandle : NWFILE_HANDLE;
 Var conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

fileHandle

(IN) Specifies the file handle.

conn

(OUT) Points to the connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
FD

UNKNOWN_REQUEST

File Service Group

File System: Functions 390

Remarks

The server connection handle identifies a specific NetWare server to
workstation connection.

NWGetFileConnectionID only works with VLMs loaded; it will not
work with NETX. If NETX is loaded, UNKNOWN_REQUEST will be
returned.

NCP Calls

None

File Service Group

File System: Functions 391

NWGetFileDirEntryNumber

Returns file information for a specified file under DOS and the name space
associated with the specified file handle

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY (NWCCODE) NWGetFileDirEntryNumber (
 NWFILE_HANDLE fileHandle,
 pnuint32 volumeNum,
 pnuint32 directoryEntry,
 pnuint32 DOSDirectoryEntry,
 pnuint32 nameSpace,
 pnuint32 dataStream,
 pnuint32 parentDirEntry,
 pnuint32 parentDOSDirEntry);

Pascal Syntax

Function NWGetFileDirEntryNumber
 (fileHandle : NWFILE_HANDLE;
 volumeNum : pnuint32;
 directoryEntry : pnuint32;
 DOSDirectoryEntry : pnuint32;
 nameSpace : pnuint32;
 dataStream : pnuint32;
 parentDirEntry : pnuint32;
 parentDOSDirEntry : pnuint32
) : NWCCODE;

Parameters

fileHandle

(IN) Specifies the file handle.

volumeNum

(OUT) Points to the volume number of the file handle.

directoryEntry

(OUT) Points to the directory entry number in the name space
associated with the fileHandle parameter.

File Service Group

File System: Functions 392

DOSDirectoryEntry

(OUT) Points to the directory entry number in the DOS name space.

nameSpace

(OUT) Points to the name space associated with the directoryEntry and
parentDirEntry parameters.

dataStream

(OUT) Points to the data stream number if the name space is
NW_NS_MAC:

1 Data fork

0 Resource fork and anything else

parentDirEntry

(OUT) Points to the parent directory entry number of the file handle in
the name space associated with the fileHandle parameter.

parentDOSDirEntry

(OUT) Points to the parent directory entry number of the file handle in
the DOS name space.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x00
06

INVALID_HANDLE

0x88
01

INVALID_CONNECTION

0x89
88

INVALID_FILE_HANDLE

Remarks

NWGetFileDirEntryNumber returns the volume number, directory
entry numbers, parent directory entry numbers in the DOS name space,
and the name space associated with the file handle.

One way to create the file handle is to call the NWOpenNSEntry
function. If you specify a long file name, the created file handle will be
associated with the LONG name space. If a DOS file name is specified,
the created file handle will be associated with the DOS name space.

The nameSpace parameter can have the following values:

File Service Group

File System: Functions 393

0 NW_NS_DOS

1 NW_NS_MAC

2 NW_NS_NFS

3 NW_NS_FTAM

4 NW_NS_LONG

NCP Calls

87 31 Get File Information

See Also

NWOpenNSEntry

File Service Group

File System: Functions 394

NWGetSparseFileBitMap

Returns a bit map showing which blocks in a sparse file contain data

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY (NWCCODE)NWGetSparseFileBitMap (
 NWCONN_HANDLE conn,
 nuint32 fileHandle,
 nint16 flag,
 nuint32 offset,
 pnuint32 blockSize,
 pnuint8 bitMap);

Pascal Syntax

#include <nwfile.inc>

Function NWGetSparseFileBitMap
 (conn : NWCONN_HANDLE;
 fileHandle : NWFILE_HANDLE;
 flag : nint16;
 offset : nuint32;
 blockSize : pnuint32;
 bitMap : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

fileHandle

(IN) Specifies the 4-byte OS or NetWare file handle. If a NetWare file
handle is used, a connection handle must be passed.

flag

(IN) Specifies whether the fileHandle parameter contains an OS or
NetWare handle.

offset

File Service Group

File System: Functions 395

(IN) Specifies the starting offset of the bit map in bytes.

blockSize

(OUT) Points to the size of the allocation block.

bitMap

(OUT) Points to a 512-byte array to receive the bit map (1 bit for each
block).

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
88

INVALID_FILE_HANDLE

Remarks

NWGetSparseFileBitMap contains one bit for each block in the sparse
file. A one (1) indicates there is data in the block; a zero (0) indicates there
isn't any data in the block.

Use the conn parameter when NETX is running or the fileHandle
parameter contains a NetWare handle (otherwise ignored).

If the flag parameter is 0, the fileHandle parameter contains an OS (DOS or
OS/2) file handle. If the flag parameter is nonzero, the fileHandle
parameter contains a 4-byte NetWare handle.

The bitMap parameter must point to an array of 512 bytes.

NCP Calls

0x2222 85 Get Sparse File Data Block Bit Map

File Service Group

File System: Functions 396

NWIntEraseFiles

Deletes NetWare files from the server

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include<nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWIntEraseFiles (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint8 searchAttrs,
 nuint16 augmentFlag);

Parameters

conn

(IN) Specifies the NetWare server connection handle containing the
file to erase.

dirHandle

(IN) Specifies the directory handle of the file to be erased (0 if the path
parameter contains the complete path including the volume name).

path

(IN) Points to the string containing the file path (including the file
name) of the file to be erased.

searchAttrs

(IN) Specifies the search attributes.

augmentFlag

(IN) Specifies if wildcards are augmented:

 0 = wildcards are not augmented

nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values for more
information.

File Service Group

File System: Functions 397

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
8A

NO_DELETE_PRIVILEGES

0x89
8D

SOME_FILES_AFFECTED_IN_USE

0x89
8E

NO_FILES_AFFECTED_IN_USE

0x89
8F

SOME_FILES_AFFECTED_READ_ONLY

0x89
90

NO_FILES_AFFECTED_READ_ONLY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
FF

NO_FILES_FOUND_ERROR

Remarks

The searchAttrs parameter includes system and/or hidden files. If only
the system bit is set in the searchAttrs parameter, all files are affected
except hidden files. If only the hidden bit is set, all files are affected
except system files. When neither bit is set (0x00), only files that are not
designated either hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file
attribute is set.

Search attributes to use in finding a file follow:

0x00 none
0x02 FA_HIDDEN
0x04 FA_SYSTEM
0x06 both

The path parameter can specify either a complete path name or a path
relative to the current working directory. For example, if the complete
path name is SYS:ACCOUNT/DOMEST/TARGET.DAT and the
directory handle mapping is SYS:ACCOUNT, the value of the path
parameter could be either of the following:

File Service Group

File System: Functions 398

SYS:ACCOUNT/DOMEST/TARGET.DAT or DOMEST/TARGET.DAT

The path parameter can point to wildcards in the file name only. Wildcard
matching uses the method defined by the application when it passes a
wildcard character.

The client must have file deletion privileges in the target directory or
NWIntEraseFiles will fail.

If a file has the immediate purge attribute set, the file cannot be
recovered.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 68 Erase File

0x2222 87 08 Delete A File Or Subdirectory

See Also

NWPurgeDeletedFile, NWPurgeErasedFiles, NWRecoverDeletedFile,
NWRenameFile

File Service Group

File System: Functions 399

NWIntFileSearchContinue

Iteratively retrieves all directory entries matching the searchPath parameter
in the DOS name space

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include<nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWIntFileSearchContinue (
 NWCONN_HANDLE conn,
 nuint8 volNum,
 nuint16 dirID,
 nuint16 searchContext,
 nuint8 searchAttr,
 pnstr8 searchPath,
 pnuint8 retBuf,
 nuint16 augmentFlag);

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number returned by the initialize function.

dirID

(IN) Specifies the directory ID returned by the initialize function.

searchContext

(IN) Specifies the sequence number returned by the
NWIntFileSearchInitialize function.

searchAttr

(IN) Specifies the attributes to apply to the search.

searchPath

(IN) Points to the path (file name, directory name, or wildcard).

retBuf

(OUT) Points to the information returned by the server.

augmentFlag

File Service Group

File System: Functions 400

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented

nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
FF

NO_FILES_FOUND_ERROR

Remarks

NWIntFileSearchContinue returns two different search structures
depending on whether the match is a directory or a file. The application
is responsible for determining the type of match, or for limiting the
search to files or directories only. The two search structures are
SEARCH_FILE_INFO and SEARCH_DIR_INFO.

On the first iteration, use the sequence number returned by the
NWIntFileSearchInitialize function. For subsequent iterations, use the
iterHnd field from the SEARCH_FILE_INFO or SEARCH_DIR_INFO
structure.

Valid search attributes follow:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x10 $10 FA_DIRECTORY

If other values are used for search attributes, each will be treated as

File Service Group

File System: Functions 401

FA_NORMAL.

NCP Calls

0x2222 63 File Search Continue

File Service Group

File System: Functions 402

NWIntFileSearchInitialize

Searches for files on a server

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWIntFileSearchInitialize (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 pnuint8 volNum,
 pnuint16 dirID,
 pnuint16 iterHnd,
 pnuint8 accessRights,
 nuint16 augmentFlag);

Pascal Syntax

#include <nwfile.inc>

Function NWIntFileSearchInitialize
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 volNum : pnuint8;
 dirID : pnuint16;
 iterhandle : pnuint16;
 accessRights : pnuint8;
 augmentFlag : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the base directory handle to search.

path

(IN) Points to the path (relative to the dirHandle parameter) on which to

File Service Group

File System: Functions 403

initialize the search.

volNum

(OUT) Points to the corresponding volume number.

dirID

(OUT) Points to the directory ID corresponding to the specified path.

iterHnd

(OUT) Points to a sequence number to be used in calling the
NWIntFileSearchContinue function (initially -1).

accessRights

(OUT) Points to the access rights of the workstation to the specified
directory.

augmentFlag

(IN) Is reserved (pass in zero).

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

Remarks

A value of 0 should be passed to the dirHandle parameter if the directory
handle is not known. In the absence of the directory handle, the path
parameter needs to specify the volume as well.

NCP Calls

0x2222 62 File Search Initialize

See Also

File Service Group

File System: Functions 404

NWIntFileSearchContinue

File Service Group

File System: Functions 405

NWIntMoveDirEntry

Moves or renames a directory entry (file or directory) on the same server
(same volume) in the DOS name space

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdentry.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWIntMoveDirEntry (
 NWCONN_HANDLE conn,
 nuint8 searchAttrs,
 NWDIR_HANDLE srcDirHandle,
 pnstr8 srcPath,
 NWDIR_HANDLE dstDirHandle,
 pnstr8 dstPath,
 nuint16 augmentFlag);

Pascal Syntax

#include <nwdentry.inc>

Function NWIntMoveDirEntry
 (conn : NWCONN_HANDLE;
 searchAttrs : nuint8;
 srcDirHandle : NWDIR_HANDLE;
 srcPath : pnstr8;
 dstDirHandle : NWDIR_HANDLE;
 dstPath : pnstr8;
 augmentFlag : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

searchAttrs

(IN) Specifies the attributes to use in searching for the source entries.

srcDirHandle

(IN) Specifies the directory handle for the source directory (not
optional, cannot be zero).

File Service Group

File System: Functions 406

srcPath

(IN) Points to the source path (wildcards are allowed).

dstDirHandle

(IN) Specifies the NetWare directory handle for the destination
directory.

dstPath

(IN) Points to the path name to use for the destination entry.

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented

nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
87

WILD_CARDS_IN_CREATE_FILE_NAME

0x89
8B

NO_RENAME_PRIVILEGES

0x89
8D

SOME_FILES_AFFECTED_IN_USE

0x89
8E

NO_FILES_AFFECTED_IN_USE "All files in use"

0x89
8F

SOME_FILES_AFFECTED_READ_ONLY

0x89
90

NO_FILES_AFFECTED_READ_ONLY "Read-only access to
volume"

0x89
91

SOME_FILES_RENAMED_NAME_EXISTS

0x89
92

NO_FILES_RENAMED_NAME_EXISTS

0x89
9A

RENAMING_ACROSS_VOLUMES

0x89
9B

BAD_DIRECTORY_HANDLE

File Service Group

File System: Functions 407

0x89
9C

INVALID_PATH

0x89
A4

ERR_RENAME_DIR_INVALID

0x89
FF

NO_FILES_FOUND_ERROR

Remarks

To call NWIntMoveDirEntry, you must have file modification privileges
in both the source and the target directories.

The specified paths are relative to the specified directory handles.
NetWare 3.11 and above accepts paths relative to the directory handle, as
well as full paths that include the volume. If full names are used, be
careful that the maximum request length is not exceeded. Path names
larger than 255 are not supported.

The searchAttrs parameter specifies the kind of entry to look for (hidden,
system, etc.). If only the system bit is set, all files are affected except
hidden files. If only the hidden bit is set, all files are affected except
system files. When neither bit is set (0x00), only files that are not
designated either hidden or system are affected.

For NetWare 2.x, NWIntMoveDirEntry only works on files.

The searchAttrs parameter can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY

0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED

0x80 $80 FA_SHAREABLE

NOTE: A file is designated hidden or system if its corresponding file
attribute is set.

The advantage of calling NWIntMoveDirEntry over DOS, OS/2, or other

File Service Group

File System: Functions 408

functions is its speed and efficiency. Since the move is within the server,
the entry in the file system is simply deleted from the source and inserted
in the destination. Moving directory entries occurs only on the file system
level. There is no physical transfer of data between the source and the
destination.

NOTE: NWIntMoveDirEntry will move files within the same volume
only. If you attempt to move a file across different volumes,
RENAMING_ACROSS_VOLUMES will be returned.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 69 Rename File

0x2222 87 04 Rename Or Move A File Or Subdirectory

File Service Group

File System: Functions 409

NWIntScanDirectoryInformation2

Returns directory information for a directory specified by the connection
handle, directory handle, and directory path

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWIntScanDirectoryInformation2 (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 srchPath,
 pnuint8 sequence,
 pnstr8 dirName,
 pnuint32 dirDateTime,
 pnuint32 ownerID,
 pnuint8 rightsMask,
 nuint16 augmentFlag);

Pascal Syntax

#include <nwdirect.inc>

Function NWIntScanDirectoryInformation2
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 searchPath : pnstr8;
 sequence : pnuint8;
 dirName : pnstr8;
 dirDateTime : pnuint32;
 ownerID : pnuint32;
 rightsMask : pnuint8;
 augmentFlag : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle for the directory being

File Service Group

File System: Functions 410

scanned.

srchPath

(IN) Points to an absolute directory path with a maximum length of
255 (or a path relative to the directory handle) and a search pattern
(optional).

sequence

(IN/OUT) Points to a 9-byte sequence number to be used for
subsequent calls (the first 4 bytes should be 0xFF initially).

dirName

(OUT) Points to the directory name found (256 bytes, optional).

dirDateTime

(OUT) Points to the creation date and time of the directory (4 bytes,
optional) in the DOS date and time format.

ownerID

(OUT) Points to the object ID of the owner for the directory (optional).

rightsMask

(OUT) Points to the maximum rights mask for the directory found
(optional).

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented

nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
FF

NO_FILES_FOUND_ERROR

File Service Group

File System: Functions 411

Remarks

All parameter fields must be filled. However, NULL may be substituted
in parameters where no information is desired.

The dirHandle parameter can be zero if the srchPath parameter points to
the complete path, including the volume name.

The string accessed by the srchPath parameter can include wildcard
characters. If wildcards are used, only the directory information for the
first matching directory is returned.

The dirName parameter is invalid when getting volume information for
NetWare 2.2 servers.

The dirDateTime parameter does not point to valid information on 2.x
servers and does not point to valid information for the root directory
(volume) on 2.2 servers. Set the dirDateTime parameter to zero when
getting volume information for 2.2 servers. For volumes, 2.x servers do
not return a directory name, and the dirDateTime parameter always
points to zero.

The rightsMask parameter can have the following values:

0x00 = TA_NONE
0x01 = TA_READ
0x02 = TA_WRITE
0x04 = TA_OPEN
0x08 = TA_CREATE
0x10 = TA_DELETE
0x20 = TA_OWNERSHIP
0x40 = TA_SEARCH
0x80 = TA_MODIFY
0xFB = TA_ALL

NOTE: TA_OPEN is obsolete in NetWare 3.x and above.

NCP Calls

0x2222 22 01 Get Directory Path

0x2222 22 02 Scan Directory Information

0x2222 23 17 Get File Server Information

0x2222 87 02 Initialize Search

0x2222 87 03 Search For File Or Subdirectory

0x2222 87 06 Obtain File Or Subdirectory Information

See Also

NWParseNetWarePath

File Service Group

File System: Functions 412

NWIntScanDirEntryInfo

Obtains information about NetWare 3.x and 4.x directory entries (files or
directories) in the DOS name space

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdentry.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWIntScanDirEntryInfo (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 nuint16 attrs,
 pnuint32 iterHandle,
 pnuint8 searchPattern,
 NWENTRY_INFO N_FAR *entryInfo,
 nuint16 augmentFlag);

Pascal Syntax

#include <nwdentry.inc>

Function NWIntScanDirEntryInfo
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 attrs : nuint16;
 iterHandle : pnuint32;
 searchPattern : pnuint8;
 Var entryInfo : NWENTRY_INFO;
 augmentFlag : nuint16
) : NWCCODE ;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare DOS directory handle indexing the
directory to scan (not optional, cannot be 0).

attrs

(IN) Specifies the attributes to be used for the scan.

File Service Group

File System: Functions 413

iterHandle

(IN/OUT) Points to an nuint32 buffer to receive the search sequence
from the server.

searchPattern

(IN) Points to the name of the entry for which to scan (wildcards are
allowed).

entryInfo

(OUT) Points to the NWENTRY_INFO structure (zeroed out initially).

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented

nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
89

NO_SEARCH_PRIVILEGES

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
FF

NO_FILES_FOUND_ERROR

Remarks

NWIntScanDirEntryInfo can only be called with non-augmented
wildcards if the augmentFlag parameter is set to 0. For example, *.* will
match anything with a period, while * will match any string.

NWIntScanDirEntryInfo will support augmented wildcard characters if
the augmentFlag parameter is set to 1 or if the high-order bits have been
manually set. For example, * will now match zero or more characters up

File Service Group

File System: Functions 414

to a period or an end-of-string. See the explanation under "wildcard
characters" in the Glossary.

On the first call, the iterHandle parameter should point to 0xFFFFFFFF.
After that, the server manages the information. All scanning is complete
when the server returns 0x89FF.

The searchPattern parameter cannot point to any path elements and the
dirHandle parameter must index the complete path.

NWIntScanDirEntryInfo can also be used to scan for information about
other directories, including the root directory. In this mode, the dirHandle
parameter needs to index the root or a directory, and the searchPattern
parameter needs to point to NULL.

NWIntScanDirEntryInfo works with the DOS name space only. Path
and file names must be upper cased. To scan using alternate name
spaces, convert the path to a DOS name space by calling either the
NWGetNSPath or NWScanNSEntryInfo function. You can also scan the
Macintosh name space by calling the NWAFPScanFileInformation
function.

The attrs parameter can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x10 $10 FA_DIRECTORY

The NWENTRY_INFO structure should be initialized to 0 before
NWIntScanDirEntryInfo is called for the first time.

NCP Calls

0x2222 22 01 Get Directory Path

0x2222 22 30 Scan A Directory

0x2222 22 31 Get Directory Entry

See Also

NWAFPScanFileInformation, NWGetNSInfo, NWIntScanExtendedInfo
, NWScanNSEntryInfo

File Service Group

File System: Functions 415

NWIntScanExtendedInfo

Scans a directory for the extended file information

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdentry.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWIntScanExtendedInfo (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 nuint8 attrs,
 pnuint32 iterHandle,
 pnstr8 searchPattern,
 NW_EXT_FILE_INFO N_FAR *entryInfo,
 nuint16 augmentFlag);

Pascal Syntax

#include <nwdentry.inc>

Function NWIntScanExtendedInfo
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 attrs : nuint8;
 iterHandle : pnuint32;
 searchPattern : pnstr8;
 Var entryInfo : NW_EXT_FILE_INFO;
 augmentFlag : nuint16
) : NWCCODE ;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle for the directory to be
scanned.

attrs

(IN) Specifies the search attributes.

iterHandle

File Service Group

File System: Functions 416

(IN/OUT) Points to the search sequence number (-1 initially).

searchPattern

(IN) Points to the pattern for which to search (no wildcards are
allowed).

entryInfo

(OUT) Points to the NW_EXT_FILE_INFO structure containing the
extended file information.

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented

nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
89

NO_SEARCH_PRIVILEGES

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
FF

NO_FILES_FOUND_ERROR

Remarks

NWIntScanExtendedInfo works only on files, not on directories.

All scanning is complete when the server returns 0x89FF.

NWIntScanExtendedInfo is synonymous with the
NWIntScanDirEntryInfo function and uses an extension of the
information structure.

The iterHandle parameter should point to 0xFFFFFFFF for the first call.

File Service Group

File System: Functions 417

The iterHandle parameter should point to 0xFFFFFFFF for the first call.

The attrs parameter is used to include system and/or hidden files. If only
the system bit is set in the attrs parameter, all files are affected except
hidden files. If only the hidden bit is set, all files are affected except
system files. When neither bit is set (0x00), only files designated either
hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file
attribute is set.

The attrs parameter can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x10 $10 FA_DIRECTORY

The extended file information contains the information returned by the
NWIntScanDirEntryInfo function plus the sizes of the data and resource
forks. NWIntScanExtendedInfo also returns the physical size of a file.

NOTE: In the case of sparse files, the logical size may be much larger
than the physical size.

NCP Calls

0x2222 22 40 Scan Directory Disk Space

See Also

NWIntScanDirEntryInfo, NWScanNSEntryInfo

File Service Group

File System: Functions 418

NWIntScanFileInformation2

Scans the specified directory for the specified file (or directory) and returns
the associated directory entry information in the DOS name space

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWIntScanFileInformation2 (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 filePattern,
 nuint8 searchAttrs,
 pnuint8 iterHandle,
 NW_FILE_INFO2 N_FAR *info,
 nuint16 augmentFlag);

Pascal Syntax

#include <nwfile.inc>

Function NWIntScanFileInformation2
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 filePattern : pnstr8;
 searchAttrs : nuint8;
 iterHandle : pnuint8;
 Var info : NW_FILE_INFO2;
 augmentFlag : nuint16;
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle relative to the filePattern
parameter (or 0 if the filePattern parameter points to the complete path,
including the volume name).

filePattern

File Service Group

File System: Functions 419

(IN) Points to the string containing the file name or wildcard pattern to
use in the search.

searchAttrs

(IN) Specifies the attributes to use for searching.

iterHandle

(IN/OUT) Inputs a pointer to the sequence number (set the first 4
bytes to 0xFF initially). Outputs a pointer to the 9-byte sequence
number to be used for subsequent iterations.

info

(OUT) Points to the NW_FILE_INFO2 structure containing the file
information.

augmentFlag

(IN) Specifies if wildcards are augmented:

0 = wildcards are not augmented

nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
89

NO_SEARCH_PRIVILEGES

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
FF

NO_FILES_FOUND_ERROR

Remarks

The searchAttrs parameter includes system and/or hidden files. If only
the system bit is set in the searchAttrs parameter, all files are affected
except hidden files. If only the hidden bit is set, all files are affected
except system files. When neither bit is set (0x00), only files that are not

File Service Group

File System: Functions 420

designated either hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file
attribute is set.

The searchAttrs parameter can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x10 $10 FA_DIRECTORY

The iterHandle parameter points to a 9-byte identifier the server uses as an
index for searching. In the first call to NWIntScanFileInformation2, the
first 4 bytes of the number need to be set to 0xFF accomplished by
typecasting the pointer to an nuint32, and assigning -1, or 0xFFFFFFFF to
it. Every time NWIntScanFileInformation2 is called, the sequence
number for the next iteration is returned.

NCP Calls

0x2222 23 15 Scan File Information

0x2222 23 17 Get File Server Information

0x2222 87 02 Initialize Search

0x2222 87 03 Search For File Or Subdirectory

File Service Group

File System: Functions 421

NWIntScanForTrustees

Scans a directory entry or file for trustees under the specified directory
handle and path

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdentry.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWIntScanForTrustees (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 pnuint32 iterHandle,
 pnuint16 numOfEntries,
 NWET_INFO N_FAR *entryTrusteeInfo,
 nuint16 augmentFlag);

Pascal Syntax

#include <nwdentry.inc>

Function NWIntScanForTrustees
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 iterHandle : pnuint32;
 numOfEntries : pnuint16;
 Var entryTrusteeInfo : NWET_INFO;
 augmentFlag : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle pointing to the directory
or file to scan.

path

(IN) Points to an absolute directory or file path (if the dirHandle

File Service Group

File System: Functions 422

parameter is not specified) or one relative to the dirHandle parameter
(an absolute path must not be more than 255 bytes long).

iterHandle

(IN/OUT) Points to the server maintained sequence number (set to 0
initially).

numOfEntries

(OUT) Points to the buffer to receive the number of entries returned by
NWIntScanForTrustees.

entryTrusteeInfo

(OUT) Points to the NWNET_INFO structure.

augmentFlag

(IN) Specifies if wildcards are augmented:

 0 = wildcards are not augmented

nonzero = wildcards are augmented

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
9C

NO_MORE_TRUSTEES

Remarks

For 3.x-4.x servers, NWIntScanForTrustees works for both files and
directories. For 2.x servers, NWIntScanForTrustees works only for
directories.

Directories can have any number of bindery objects as trustees. Trustees
are returned in groups of 20 TRUSTEE_INFO structures. To obtain a
complete list, set the sequence parameter to 0L for the initial call.
NWIntScanForTrustees

File Service Group

File System: Functions 423

do loop) until it returns 0x899C (NO_MORE_TRUSTEES). Because
0x899C also indicates INVALID_PATH, ensure the dirHandle/path
parameter combination is correct.

Due to subtle differences in the operation of 2.x and 3.x servers, trustees
may remain after an iteration, even though not all 20 positions are filled.
If a position is not filled, the objectID parameter is set to 0L. Check the
objectID parameter before printing each value in the objectRights
parameter.

Both the dirHandle and path parameters must be in the default name
space.

The default name space is the name space that matches the OS and the
loaded name spaces on that volume. For example, Windows95 on a
volume with OS/2 (LONG) name space will set OS/2 (LONG) name
space as the default name space.

The dirHandle parameter can be zero if the path parameter points to the
complete path, including the volume name. The path parameter can point
to wildcard characters. However, only the first matching directory is
scanned (as typical of 2.x servers).

NOTE: Call the NWAllocTemporaryDirectoryHandle function with
the path parameter to check for a valid path.

The NWET_INFO structure receives trustee information. However, only
the TRUSTEE_INFO structure is valid for servers 3.x and later. The first
three fields, entryName, creationDateAndTime, and ownerID are valid only
for 2.x servers. The sequenceNumber field should always be ignored.

NCP Calls

0x2222 22 12 Scan Directory For Trustees

0x2222 22 38 Scan File Or Directory For Extended Trustees

0x2222 23 17 Get File Server Information

0x2222 87 05 Scan File Or Subdirectory For Trustees

File Service Group

File System: Functions 424

NWModifyMaximumRightsMask

Modifies the maximum rights mask of a directory

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include<nwdirect.h>
or
#include<nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWModifyMaximumRightsMask (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint8 revokeRightsMask,
 nuint8 grantRightsMask);

Pascal Syntax

#include<nwdirect.inc>

Function NWModifyMaximumRightsMask
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 revokeRightsMask : nuint8;
 grantRightsMask : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle for the directory whose maximum
rights mask is being modified (or 0 if the path parameter points to the
complete path, including the volume name).

path

(IN) Points to the absolute directory path (or a path relative to the
directory handle) of the directory whose maximum rights mask is
being modified.

revokeRightsMask

File Service Group

File System: Functions 425

(IN) Specifies the rights being revoked.

grantRightsMask

(IN) Specifies the rights being granted.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
8C

N0_MODIFY_PRIVILEGES

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
A1

DIRECTORY_IO_ERROR

0x89
FD

BAD_STATION_NUMBER

0x89
FF

Failure

Remarks

To modify the maximum rights mask for a directory, the requesting
workstation must have parental rights to the directory.

The maximum rights mask follows:

Hex Bit Definition

0x01 TA_READ

0x02 TA_WRITE

0x08 TA_CREATE

0x10 TA_DELETE

File Service Group

File System: Functions 426

0x20 TA_OWNERSHIP

0x40 TA_SEARCH

0x80 TA_MODIFY

The rights specified by the revokeRightsMask parameter are deleted from
the maximum rights mask for the directory, and the rights specified by
the grantRightsMask parameter are added.

The maximum rights mask can be completely reset by setting the
revokeRightsMask parameter to 0xFF and then setting the grantRightsMask
parameter to the desired maximum rights mask. Maximum rights affect
the specified directory only and are not inherited by subdirectories.

NCP Calls

 0x2222 22 04 Modify Maximum Rights Mask

0x2222 23 17 Get File Server Information

0x2222 87 07 Modify File or SubDirectory DOS Information

See Also

NWGetEffectiveRights

File Service Group

File System: Functions 427

NWMoveDirEntry (obsolete 6/96)

Moves or renames a directory entry (file or directory) on the same volume of
a server but is now obsolete. Call the NWIntMoveDirEntry function
instead.

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdentry.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWMoveDirEntry
 (NWCONN_HANDLE conn,
 nuint8 searchAttr,
 NWDIR_HANDLE srcDirHandle,
 pnstr8 srcPath,
 NWDIR_HANDLE dstDirHandle,
 pnstr8 dstPath);

Parameters

conn

(IN) Specifies the NetWare server connection handle.

searchAttr

(IN) Specifies the attributes to use in searching for the source entries.

srcDirHandle

(IN) Specifies the directory handle for the source directory (not
optional, cannot be 0).

srcPath

(IN) Points to the source path (can include wildcards).

dstDirHandle

(IN) Specifies the NetWare directory handle for the destination
directory.

dstPath

(IN) Points to the path name to use for the destination entry.

Return Values

These are common return values; see Return Values for more

File Service Group

File System: Functions 428

information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

Remarks

For NetWare 2.2, NWMoveDirEntry (obsolete 6/96) works only on files.
The source directory (where the file resides) and the target directory
(where the renamed file will be placed) do not need to be on the same
volume.

To call NWMoveDirEntry (obsolete 6/96), the client must have file
modification privileges in both the source and the target directories.

The specified paths are relative to the specified directory handles.
NetWare 3.11 and above accept paths relative to the directory handle, as
well as full paths that include the volume.

The searchAttr parameter specifies the kind of entry to look for (hidden,
system, etc.). If only the system bit is set in the searchAttr parameter, all
files are affected except hidden files. If only the hidden bit is set, all files
are affected except system files. When neither bit is set (0x00), only files
that are not designated either hidden or system are affected.

The searchAttr parameter can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY

0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED

0x80 $80 FA_SHAREABLE

NOTE: A file is designated hidden or system if its corresponding file
attribute is set.

File Service Group

File System: Functions 429

The advantage of calling NWMoveDirEntry (obsolete 6/96) over DOS,
OS/2, or other functions is its speed and efficiency. Since the move is
within the server, the entry in the file system is simply deleted from the
source and inserted in the destination. Directory entries move only on the
file system level. There is no physical transfer of data between the source
and the destination.

NCP Calls

0x2222 69 Rename File

0x2222 87 04 Rename Or Move A File Or Subdirectory

File Service Group

File System: Functions 430

NWParseConfig

Parses a NET.CFG file

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: OS/2

Service: File System

Syntax

#include <nwconfig.h>
#include <nwerrors.h>
or
#include <nwcalls.h>

int N_API NWParseConfig (
 PCHAR configFile,
 PCHAR sectionName,
 UINT sectionInstance,
 UINT grammarTableSize,
 GrammarTableStruct N_FAR *grammarTable,
 SetTableStruct N_FAR *setTable);

Parameters

configFile

(IN) Points to an array containing the name of the NET.CFG file.

sectionName

(IN) Points to an array containing the name of the NET.CFG section.
For example, for theLink Support Layer™ (LSL™) section, it would be
LINK SUPPORT.

sectionInstance

(IN) Specifies the occurrence number of the section (generally 0 for the
first one).

grammarTableSize

(IN) Specifies the number of GrammarTableStruct structures you are
passing into NWParseConfig in the grammarTable parameter.

grammarTable

(OUT) Points to the GrammarTableStruct structure containing the
grammar for which you are parsing.

setTable

(OUT) Points to an array of SetTableStruct structures.

Return Values

File Service Group

File System: Functions 431

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Remarks

The following constants are defined as follows:

8 MAX_PARAMETERS
 32 MAX_SECTION_NAME_SIZE
 80 MAX_VALUE_SIZE
 20 MAX_SET_ELEMENTS

Placing any of the types of values and optional types, except
T_OPTIONAL, in the paramType field of the TypeDefaultStruct structure
will cause NWParseConfig to try matching that value after the keyword.

For example, in the NETWARE Requester section of NET.CFG, one
keyword is PREFERRED SERVER which is of type T_STRING. The
parser will look for this keyword and then interpret the rest of the line as
a string. If the type is T_OPTIONAL, you should place a default value in
the defaultValue field of the TypeDefaultStruct structure to ensure a
default value will be returned in the case of a missing value.

If the type is one of T_SET##, the setTable parameter should contain valid
information to assist the parser, otherwise it should be NULL. A set is a
list of values the value may contain.

The types of values and default values of optional types follow:

80h T_OPTIONAL
01h T_NUMBER
02h T_INDEX
03h T_STRING
04h T_HEX_STRING
05h T_HEX_NUMBER
06h T_LONG_NUMBER
07h T_LONG_HEX

equ 10h T_SET_1
equ 11h T_SET_2
equ 12h T_SET_3
equ 13h T_SET_4
equ 14h T_SET_5
equ 15h T_SET_6
equ 16h T_SET_7
equ 17h T_SET_8
equ 18h T_SET_9
equ 19h T_SET_10

File Service Group

File System: Functions 432

equ 1Ah T_SET_11
equ 1Bh T_SET_12
equ 1Ch T_SET_13
equ 1Dh T_SET_14
equ 1Eh T_SET_15
equ 1Fh T_SET_16

NCP Calls

None

File Service Group

File System: Functions 433

NWRenameDirectory

Renames a NetWare directory

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWRenameDirectory (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 oldName,
 pnstr8 newName);

Pascal Syntax

#include <nwdirect.inc>

Function NWRenameDirectory
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 oldName : pnstr8;
 newName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle for the directory being deleted (or 0
if the oldName parameter points to the complete path, including the
volume name).

oldName

(IN) Points to the string containing the name of the directory to be
renamed.

newName

(IN) Points to the string containing the new directory name.

Return Values

File Service Group

File System: Functions 434

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x88
36

NWE_PARAM_INVALID

0x89
80

FILE_IN_USE_ERROR

0x89
8B

NO_RENAME_PRIVILEGES

0x89
92

NO_FILES_RENAMED_NAME_EXISTS

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
9E

INVALID_FILENAME

0x89
A1

DIRECTORY_IO_ERROR

0x89
FD

BAD_STATION_NUMBER

0x89
FF

Failure

Remarks

The newName parameter should only include the new name of the
directory without listing the volume or directory path. Otherwise,
NWRenameDirectory will return NWE_PARAM_INVALID.

NCP Calls

0x2222 22 15 Rename Directory

0x2222 23 17 Get File Server Information

File Service Group

File System: Functions 435

0x2222 87 04 Rename Or Move A File Or Subdirectory

0x2222 87 22 Generate Directory Base and Volume Number

See Also

NWCreateDirectory, NWDeleteDirectory

File Service Group

File System: Functions 436

NWRenameFile

Allows a client to rename a file

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWRenameFile (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE oldDirHandle,
 pnstr8 oldFileName,
 nuint8 searchAttrs,
 NWDIR_HANDLE newDirHandle,
 pnstr8 newFileName);

Pascal Syntax

#include <nwfile.inc>

Function NWRenameFile
 (conn : NWCONN_HANDLE;
 oldDirHandle : NWDIR_HANDLE;
 oldFileName : pnstr8;
 searchAttrs : nuint8;
 newDirHandle : NWDIR_HANDLE;
 newFileName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle containing the
file.

oldDirHandle

(IN) Specifies the directory handle containing the file (or 0 if the
oldFileName parameter points to the complete path, including the
volume name).

oldFileName

(IN) Points to a string containing the original name of the file being
renamed.

File Service Group

File System: Functions 437

searchAttrs

(IN) Specifies the attributes to use in searching for the specified file.

newDirHandle

(IN) Specifies the new directory handle to contain the specified file.

newFileName

(IN) Points to a string containing the new name of the file.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
87

WILD_CARDS_IN_CREATE_FILE_NAME or
CREATE_FILENAME_ERROR

0x89
8B

NO_RENAME_PRIVILEGES

0x89
8D

SOME_FILES_AFFECTED_IN_USE

0x89
8E

NO_FILES_AFFECTED_IN_USE

0x89
8F

SOME_FILES_AFFECTED_READ_ONLY

0x89
90

NO_FILES_AFFECTED_READ_ONLY

0x89
91

SOME_FILES_RENAMED_NAME_EXISTS

0x89
92

NO_FILES_RENAMED_NAME_EXISTS

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9A

RENAMING_ACROSS_VOLUMES

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

File Service Group

File System: Functions 438

0x89
A1

DIRECTORY_IO_ERROR

0x89
FD

BAD_STATION_NUMBER

0x89
FF

NO_FILES_FOUND_ERROR

Remarks

The source directory (where the file resides) and the target directory
(where the renamed file is to be deposited) do not need to be the same
directory. However, the two files must reside on the same server.
NWRenameFile cannot move a file from one server to another or from
one volume to another.

The searchAttrs parameter is used to include system and/or hidden files.
If only the system bit is set in the searchAttrs parameter, all files are
affected except hidden files. If only the hidden bit is set, all files are
affected except system files. When neither bit is set (0x00), only files that
are not designated either hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file
attribute is set.

The searchAttrs parameter can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY

0x20 $20 FA_NEEDS_ARCHIVED

0x80 $80 FA_SHAREABLE

Since the path length is restricted to 256 bytes, applications must call the
NWAllocTemporaryDirectoryHandle function to allocate the dirHandle
parameter for path lengths greater than 256 bytes.

NCP Calls

File Service Group

File System: Functions 439

0x2222 23 17 Get File Server Information

0x2222 69 Rename File

0x2222 87 04 Rename Or Move A File Or Subdirectory

See Also

NWAllocTemporaryDirectoryHandle, NWPurgeErasedFiles

File Service Group

File System: Functions 440

NWRestoreDirectoryHandle

Restores a directory handle from its saved state

NetWare Server: 2.2

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWRestoreDirectoryHandle (
 NWCONN_HANDLE conn,
 pnstr8 saveBuffer,
 NWDIR_HANDLE N_FAR *newDirHandle,
 pnuint8 rightsMask);

Pascal Syntax

#include <nwdirect.inc>

Function NWRestoreDirectoryHandle
 (conn : NWCONN_HANDLE;
 saveBuffer : pnstr8;
 Var newDirHandle : NWDIR_HANDLE;
 rightsMask : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

saveBuffer

(IN) Points to a 14-byte buffer in which theNWSaveDirectoryHandle
function saved the directory handle information.

newDirHandle

(OUT) Points to the directory handle to be restored.

rightsMask

(OUT) Points to the rights mask for the directory to which the restored
handle points.

Return Values

File Service Group

File System: Functions 441

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
9B

BAD_DIRECTORY_HANDLE

NCP Calls

0x2222 22 24 Restore An Extracted Base Handle

File Service Group

File System: Functions 442

NWSaveDirectoryHandle

Saves the information necessary to later restore a directory handle

NetWare Server: 2.2

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSaveDirectoryHandle (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 saveBuffer);

Pascal Syntax

#include <nwdirect.inc>

Function NWSaveDirectoryHandle
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 saveBuffer : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle that is to be saved.

saveBuffer

(OUT) Points to a 14-byte buffer in which the directory handle
information is to be saved.

Return Values

These are common return values; see Return Values for more
information.

0x00 SUCCESSFUL

File Service Group

File System: Functions 443

00

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

NCP Calls

0x2222 22 23 Extract A Base Handle

File Service Group

File System: Functions 444

NWScanConnectionsUsingFile

Scans all connections using a specified file

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanConnectionsUsingFile (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 filePath,
 pnint16 iterHandle,
 CONN_USING_FILE N_FAR *fileUse,
 CONNS_USING_FILE N_FAR *fileUsed);

Pascal Syntax

#include <nwfile.inc>

Function NWScanConnectionsUsingFile
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 filePath : pnstr8;
 iterhandle : pnint16;
 Var fileUse : CONN_USING_FILE;
 Var fileUsed : CONNS_USING_FILE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired
directory path.

filePath

(IN) Points to a full file path (or a path relative to dirHandle) specifying
the file to be checked (wildcards are not allowed).

iterHnd

File Service Group

File System: Functions 445

(IN/OUT) Points to the next record to be scanned (0 initially).

fileUse

(OUT) Points to the CONN_USING_FILE structure.

fileUsed

(OUT) Points to the CONNS_USING_FILE structure.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x88
FF

NWE_REQUESTER_FAILURE: Scan Completed

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
A8

ERR_ACCESS_DENIED

0x89
C6

NO_CONSOLE_PRIVILEGES

Remarks

You must have console operator rights to call
NWScanConnectionsUsingFile.

Upon each subsequent call, the number of the next record to be scanned
is returned in the iterHnd parameter. This value should not be changed
during the scan. NWScanConnectionsUsingFile returns 0xFFFFFFFF
upon completion.

If no connections are using the specified file, the structure returned by
the fileUsed parameter will contain zeroes. Check the connCount
parameter in the returned structure to see the number of connections
actually using the file.

File Service Group

File System: Functions 446

If the fileUse parameter is NULL, the records are returned in the fileUsed
parameter in groups, instead of one at a time.

NCP Calls

0x2222 23 17 Get File Server Information

 0x2222 23 220 Get Connections Using A File (2.x)

0x2222 23 236 Get Connections Using A File (3.x-4.x)

0x2222 23 244 Convert Path To Dir Entry

File Service Group

File System: Functions 447

NWScanDirectoryForTrustees2

Scans a directory for trustees using the specified path and directory handle

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanDirectoryForTrustees2 (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 srchPath,
 pnuint32 iterHandle,
 pnstr8 dirName,
 pnuint32 dirDateTime,
 pnuint32 ownerID,
 TRUSTEE_INFO N_FAR *trusteeList);

Pascal Syntax

#include <nwdirect.inc>

Function NWScanDirectoryForTrustees2
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 searchPath : pnstr8;
 iterHandle : pnuint32;
 dirName : pnstr8;
 dirDateTime : pnuint32;
 ownerID : pnuint32;
 Var trusteeList : TRUSTEE_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle for the directory being
scanned (0 if the srchPath parameter points to the complete path,
including the volume name).

srchPath

File Service Group

File System: Functions 448

srchPath

(IN) Points to an absolute directory path (or a path relative to the
directory handle) and a search pattern.

iterHandle

(IN/OUT) Points to the sequence number to be used for subsequent
calls (0 initially).

dirName

(OUT) Points to the directory name found (optional, up to 256 bytes).

dirDateTime

(OUT) Points to the creation date and time of the directory (optional).

ownerID

(OUT) Points to the bindery object ID of the directory owner
(optional).

trusteeList

(OUT) Points to an array of 20 TRUSTEE_INFO structures.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
8C

N0_MODIFY_PRIVILEGES

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

NO_MORE_TRUSTEES

Remarks

The srchPath parameter can include wildcard characters.

Directories can have any number of Bindery objects as trustees. The
directory trustees are stored and retrieved in groups on the server. To

File Service Group

File System: Functions 449

obtain a complete list, use the iterHandle parameter.

NWScanDirectoryForTrustees2 increments the value referenced by the
iterHandle parameter to the next appropriate value. For subsequent calls,
pass in the new value of the iterHandle parameter.

Trustees are returned in groups of 20 TRUSTEE_INFO structures. Due to
subtle differences in the operation of 2.x and 3.x servers, trustees may
remain after an iteration, even though not all 20 positions are filled. If a
position is not filled, the ownerID parameter points to a value of 0L.

NWScanDirectoryForTrustees2 should be called until it returns 0x899C
(NO_MORE_TRUSTEES). Because 0x899C also means INVALID_PATH,
ensure the dirHandle/pbstrSrchPath parameter combination is correct.

NULL can be substituted for all optional items. However, all parameter
positions must be filled.

NCP Calls

0x2222 22 1 Get Directory Path

0x2222 22 2 Scan Directory Information

0x2222 22 12 Scan Directory For Trustees

0x2222 22 38 Trustees Scan Ext

0x2222 23 17 Get File Server Information

0x2222 87 02 Initialize Search

0x2222 87 03 Search For File or Subdirectory

0x2222 87 05 Scan File Or Subdirectory For Trustees

0x2222 87 06 Obtain File or Subdirectory Information

File Service Group

File System: Functions 450

NWScanDirectoryInformation2 (obsolete 6/96)

Returns directory information for a directory specified by the connection
handle, directory handle, and directory path but is now obsolete. Call the
NWIntScanDirectoryInformation2 function instead.

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanDirectoryInformation2
 (NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 srchPath,
 pnuint8 sequence,
 pnstr8 dirName,
 pnuint32 dirDateTime,
 pnuint32 ownerID,
 pnuint8 rightsMask);

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle for the directory being
scanned (0 if the srchPath parameter points to the complete path,
including the volume name).

srchPath

(IN) Points to an absolute directory path (or a path relative to the
directory handle) and a search pattern (optional, wildcards can be
used).

sequence

(IN/OUT) Points to a 9-byte sequence number to be used for
subsequent calls (the first 4 bytes should be 0xFF initially).

dirName

(OUT) Points to the directory name found (256 bytes, optional).

dirDateTime

(OUT) Points to the creation date and time of the directory (4 bytes,

File Service Group

File System: Functions 451

optional).

ownerID

(OUT) Points to the bindery object ID of the directory owner
(optional).

rightsMask

(OUT) Points to the maximum rights mask for the directory found
(optional).

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
FF

NO_FILES_FOUND_ERROR

Remarks

Under NETX, if an invalid connection handle is passed to the conn
parameter, NWScanDirectoryInformation2 (obsolete 6/96) will return
0x0000. NETX will pick a default connection handle if the connection
handle cannot be resolved.

All parameter fields must be filled. However, NULL may be substituted
in parameters where no information is desired.

If wildcards are used in the srchPath parameter, only the directory
information for the first matching directory is returned.

The dirName parameter is ignored when returning volume information
for NetWare 2.2 servers.

The dirDateTime parameter does not point to valid information on 2.x
servers and does not point to valid information for the root directory
(volume) on 2.2 servers. Set the dirDateTime parameter to zero when

File Service Group

File System: Functions 452

getting volume information for 2.2 servers. For volumes, 2.x servers do
not return a directory name, and the dirDateTime parameter should
always point to zero.

The rightsMask parameter points to the maximum rights mask of the
subdirectory. The bits in the maximum rights mask are defined as
follows:

0x00 = TA_NONE
0x01 = TA_READ
0x02 = TA_WRITE
0x04 = TA_OPEN
0x08 = TA_CREATE
0x10 = TA_DELETE
0x20 = TA_OWNERSHIP
0x40 = TA_SEARCH
0x80 = TA_MODIFY
0xFB = TA_ALL

NOTE: TA_OPEN is obsolete in 3.x and above.

NCP Calls

0x2222 22 1 Get Directory Path

0x2222 22 02 Scan Directory Information

0x2222 23 17 Get File Server Information

0x2222 87 02 Initialize Search

0x2222 87 03 Search For File Or Subdirectory

0x2222 87 06 Obtain File Or Subdirectory Information

See Also

NWParseNetWarePath

File Service Group

File System: Functions 453

NWScanDirEntryInfo (obsolete 6/96)

Obtains information about 3.x and 4.x directory entries (files or directories)
but is now obsolete. Call NWIntScanDirEntryInfo instead.

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdentry.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanDirEntryInfo
 (NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 nuint16 attrs,
 pnuint32 iterHandle,
 pnuint8 searchPattern,
 NWENTRY_INFO N_FAR *entryInfo);

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle indexing the directory to
scan (not optional, cannot be 0).

attrs

(IN) Specifies the attributes to be used for the scan.

iterHandle

(IN/OUT) Points to an nuint32 buffer to receive the search sequence
from the server (-1 initially).

searchPattern

(IN) Points to the name of the entry for which to scan (wildcards are
allowed).

entryInfo

(OUT) Points to the NWENTRY_INFO structure.

Return Values

These are common return values; see Return Values for more

File Service Group

File System: Functions 454

information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
89

NO_SEARCH_PRIVILEGES

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
FF

Failure

Remarks

NWScanDirEntryInfo (obsolete 6/96) will not support NetWare
augmented wildcard characters unless you have manually set the
high-order bits. For example, using non-augmented wildcards, *.* will
match any name with a period, while * will match any string. See the
explanation under "wildcard characters" in the Glossary.

The server manages the information after NWScanDirEntryInfo
(obsolete 6/96) is called the first time. All scanning is complete when the
server returns 0x89FF.

The searchPattern parameter cannot point to any path elements and the
dirHandle parameter must index the complete path.

On the first call, the iterHandle parameter should point to 0xFFFFFFFF.
After that, the server manages the information. All scanning is complete
when the server returns 0x89FF.

NWScanDirEntryInfo (obsolete 6/96) can also be used to scan for
information about other directories, including the root directory. In this
mode, the dirHandle parameter needs to index the root or a directory. The
searchPattern parameter needs to point to a NULL value.

NWScanDirEntryInfo (obsolete 6/96) works with DOS name spaces
only. To scan using alternate name spaces, convert the path to DOS name
space by calling either the NWGetNSPath or NWScanNSEntryInfo
function.

NWScanDirEntryInfo (obsolete 6/96) works for servers 3.11 and above
only.

File Service Group

File System: Functions 455

The attrs parameter can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00
00

$000
0

SA_NORMAL

0x00
02

$000
2

SA_HIDDEN

0x00
04

$000
4

SA_SYSTEM

0x80
00

$800
6

SA_ALL

The NWENTRY_INFO structure should be initialized to 0 before
NWScanDirEntryInfo (obsolete 6/96) is called the first time.

NCP Calls

0x2222 22 01 Get Directory Path

0x2222 22 30 Scan A Directory

0x2222 22 31 Get Directory Entry

See Also

NWGetNSInfo, NWIntScanExtendedInfo, NWScanNSEntryInfo

File Service Group

File System: Functions 456

NWScanExtendedInfo (obsolete 6/96)

Scans a directory for the extended file information but is now obsolete. Call
NWIntScanExtendedInfo instead.

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdentry.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanExtendedInfo
 (NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 nuint8 attrs,
 pnuint32 iterHandle,
 pnstr8 searchPattern,
 NW_EXT_FILE_INFO N_FAR *entryInfo);

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle for the directory to be
scanned.

attrs

(IN) Specifies the search attributes.

iterHandle

(IN) Points to the search sequence number (-1 initially).

searchPattern

(IN) Points to the pattern for which to search (no wildcards are
allowed).

entryInfo

(OUT) Points to the NW_EXT_FILE_INFO structure containing the
extended file information.

Return Values

These are common return values; see Return Values for more

File Service Group

File System: Functions 457

information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

Remarks

NWScanExtendedInfo (obsolete 6/96) works only on files, not on
directories.

The iterHandle parameter should point to 0xFFFFFFFF for the first call.

The attrs parameter is used to include system and/or hidden files. If only
the system bit is set in the attrs parameter, all files are affected except
hidden files. If only the hidden bit is set, all files are affected except
system files. When neither bit is set (0x00), only files designated either
hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file
attribute is set.

The attrs parameter can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY

0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED

0x80 $80 FA_SHAREABLE

File Service Group

File System: Functions 458

NOTE: In the case of sparse files, the logical size may be much larger
than the physical size.

NCP Calls

0x2222 22 40 Scan Directory Disk Space

See Also

NWScanNSEntryInfo

File Service Group

File System: Functions 459

NWScanFileInformation2 (obsolete 6/96)

Scans the specified directory for the specified file (or directory) and returns
the associated directory entry information but is now obsolete. Call
NWIntScanFileInformation2 instead.

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanFileInformation2
 (NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle
 pnstr8 filePattern,
 nuint8 searchAttrs,
 pnuint8 iterHandle,
 NW_FILE_INFO2 N_FAR *info);

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle relative to the filePattern
parameter (0 if the filePattern parameter points to the complete path,
including the volume name).

filePattern

(IN) Points to the string containing the file name or wildcard pattern to
use in the search.

searchAttrs

(IN) Specifies the attributes to use for searching.

iterHandle

(IN/OUT) Inputs a pointer to the sequence number (the first 4 bytes
should be 0xff initially). Outputs a pointer to the 9-byte sequence
number to be used for subsequent iteration.

info

(OUT) Points to the NW_FILE_INFO2 structure containing the file
information.

File Service Group

File System: Functions 460

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

Remarks

The searchAttrs parameter includes system and/or hidden files. If only
the system bit is set in the searchAttrs parameter, all files are affected
except hidden files. If only the hidden bit is set, all files are affected
except system files. When neither bit is set (0x00), only files that are not
designated either hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file
attribute is set.

The searchAttrs parameter can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY

0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED

0x80 $80 FA_SHAREABLE

File Service Group

File System: Functions 461

Typecast the iterHandle parameter to nuint32, and assign -1, or
0xFFFFFFFF to it. Every time NWScanFileInformation2 (obsolete 6/96)
is called, the sequence number for the next iteration is returned.

NCP Calls

0x2222 23 15 Scan File Information

File Service Group

File System: Functions 462

NWScanOpenFilesByConn2

Scans information about the files opened by a specified connection

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanOpenFilesByConn2 (
 NWCONN_HANDLE conn,
 NWCONN_NUM connNum,
 pnint16 iterHandle,
 OPEN_FILE_CONN_CTRL N_FAR *openCtrl,
 OPEN_FILE_CONN N_FAR *openFile);

Pascal Syntax

#include <nwfile.inc>

Function NWScanOpenFilesByConn2
 (conn : NWCONN_HANDLE;
 connNum : NWCONN_NUM;
 iterHandle : pnint16;
 Var openCtrl : OPEN_FILE_CONN_CTRL;
 Var openFile : OPEN_FILE_CONN
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

connNum

(IN) Specifies the connection number of the logged-in object to be
scanned.

iterHandle

(IN/OUT) Points to the next record to be scanned (0 initially).

openCtrl

(OUT) Points to the OPEN_FILE_CONN_CTRL structure.

openFile

(OUT) Points to the OPEN_FILE_CONN structure.

File Service Group

File System: Functions 463

(OUT) Points to the OPEN_FILE_CONN structure.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x88
FF

Scan Completed

0x89
FD

BAD_STATION_NUMBER

Remarks

For 2.x and 3.x, you must have console operator rights to call
NWScanOpenFilesByConn2 or NO_CONSOLE_PRIVILEGES will be
returned.

For 4.x, you can call NWScanOpenFilesByConn2 to return information
about the connection without needing console operator privileges. To
return information about other connection numbers, you must have
console rights. A client with console privileges can pass any valid
connection number to NWScanOpenFilesByConn2 and receive
information about that connection.

Upon each subsequent call, the iterHandle parameter returns the number
of the next record to be scanned and points to 0xFFFFFFFF upon
completion. It should not be changed during the scan.

The OPEN_FILE_CONN_CTRL structure is used internally and should
not be written to.

The parent and forkCount fields in the OPEN_FILE_CONN structure are
not set by 2.x and are filled with 0xFF. In 2.x, the nameSpace field is
always set to 0.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 219 Get Connection's Open Files (2.x)

0x2222 23 235 Get Connection's Open Files (3.x-4.x)

See Also

File Service Group

File System: Functions 464

NWGetPathFromDirectoryEntry, NWGetPathFromDirectoryBase

File Service Group

File System: Functions 465

NWSetCompressedFileLengths

Sets the uncompressed and compressed lengths of a file

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <nwfile.h>

int NWSetCompressedFileLengths (
 int handle,
 LONG uncompressedLength,
 LONG compressedLength;

Parameters

handle

(IN) Specifies the handle of the file for which to set the lengths.

uncompressedLength

(IN) Specifies the length of the file in an uncompressed state.

compressedLength

(IN) Specifies the length of the file after being compressed.

Return Values

0x0
0

Success

0xF
F

Failure

Remarks

NWSetCompressedFileLengths sets the compressed and uncompressed
lengths of a file.

NWSetCompressedFileLengths is useful for restoring directory entry
information about files that have previously been backed up.

File Service Group

File System: Functions 466

The uncompressedLength parameter is the length normally seen in normal
directory listings.

See Also

NWGetCompressedFileLengths

File Service Group

File System: Functions 467

NWSetCompressedFileSize

Attempts to set the logical file size for a compressed file

NetWare Server: 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSetCompressedFileSize (
 NWCONN_HANDLE conn,
 nuint32 fileHandle,
 nuint32 reqFileSize,
 pnuint32 resFileSize);

Pascal Syntax

#include <nwfile.inc>

Function NWSetCompressedFileSize
 (conn : NWCONN_HANDLE;
 fileHandle : nuint32;
 reqFileSize : nuint32;
 resFileSize : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the connection handle of the associated NetWare server.

fileHandle

(IN) Specifies an OS or NetWare file handle.

reqFileSize

(IN) Specifies the requested file size.

resFileSize

(OUT) Points to the size actually assigned by the OS.

Return Values

These are common return values; see Return Values for more
information.

File Service Group

File System: Functions 468

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
88

INVALID_FILE_HANDLE

0x89
A8

ERR_ACCESS_DENIED

Remarks

The logical file size is the true size of the file as reported by the client
operating systems. When a file is compressed, it shrinks in physical size.
However, its logical size should remain the same. In cases where the
client forces the creation of a compressed file (by opening a file in
compressed mode), the NetWare OS gets the actual size of the file by
calling NWSetCompressedFileSize.

If the fileHandle parameter contains a NetWare handle, the conn
parameter contains the connection handle of the associated server. If
NETX is running and a DOS file handle is passed, the conn parameter
must also contain a valid connection ID. In all other circumstances, the
conn parameter is ignored.

NCP Calls

0x2222 90 12 Set Compressed File Size

File Service Group

File System: Functions 469

NWSetDirectoryHandlePath

Sets the target directory handle for the specified directory handle and path

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSetDirectoryHandlePath (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE sourceDirHandle,
 pnstr8 dirPath,
 NWDIR_HANDLE destDirHandle);

Pascal Syntax

#include <nwdirect.inc>

Function NWSetDirectoryHandlePath
 (conn : NWCONN_HANDLE;
 sourceDirHandle : NWDIR_HANDLE;
 dirPath : pnstr8;
 destDirHandle : NWDIR_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

sourceDirHandle

(IN) Specifies the source directory handle (index number) identifying
the volume or directory on a NetWare server being reassigned (1-255).

dirPath

(IN) Points to the source directory path (optional).

destDirHandle

(IN) Specifies the target directory handle (index number) to become
the new directory handle for the specified directory.

Return Values

File Service Group

File System: Functions 470

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
A1

DIRECTORY_IO_ERROR

0x89
FA

TEMP_REMAP_ERROR

0x89
FD

BAD_STATION_NUMBER

0x89
FF

Failure

Remarks

If NWSetDirectoryHandlePath fails, the destDirHandle parameter
remains unchanged.

In cases where multiple NetWare servers are being used, the
sourceDirHandle and destDirHandle paramteters must have the same
server connection handle identifier.

NWSetDirectoryHandlePath assigns the destDirHandle parameter to a
directory path defined by combining the sourceDirHandle parameter and
the string accessed by the dirPath parameter.

A NetWare server maintains a Directory Handle Table for each
workstation that is logged in.

The destDirHandle parameter is another index number from the Directory
Handle Table for the NetWare server.

The dirPath parameter can identify a full or partial directory path. A full
directory path defines a volume or a directory on a given NetWare server
in the format VOLUME:DIRECTORY/.../DIRECTORY. A partial

File Service Group

File System: Functions 471

directory path specifies at least a directory and one or more parent
directories.

Applications frequently combine a directory handle and a directory path
to specify a target directory. For example, if the specified directory
handle points to SYS: and the specified directory path is
PUBLIC/WORDP, the specified directory is SYS:PUBLIC/WORDP.

When an application defines a target directory using only a directory
handle, the application must set the dirPath parameter to a NULL string.
When an application defines a directory using only a directory path, the
application must set the sourceDirHandle parameter to zero.

NCP Calls

0x2222 22 00 Set Directory Handle

0x2222 23 17 Get File Server Information

0x2222 87 09 Set Short Directory Handle

See Also

NWGetDirectoryHandlePath

File Service Group

File System: Functions 472

NWSetDirectoryInformation

Changes information about a directory including the creation date and time,
owner object ID, and maximum rights mask

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSetDirectoryInformation (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint32 dirDateTime,
 nuint32 ownerID,
 nuint8 rightsMask);

Pascal Syntax

#include <nwdirect.inc>

Function NWSetDirectoryInformation
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 dirDateTime : nuint32;
 ownerID : nuint32;
 rightsMask : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle (index number from
1-255) pointing to the directory, partial directory, or volume whose
information is being set (0 if the path parameter points to the complete
path, including the volume name).

path

(IN) Points to the directory path of the directory being changed.

File Service Group

File System: Functions 473

dirDateTime

(IN) Specifies the new creation date and time.

ownerID

(IN) Specifies the bindery object ID of the owner who created the
directory.

rightsMask

(IN) Specifies the new maximum rights mask for the directory.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
8C

N0_MODIFY_PRIVILEGES

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
A1

DIRECTORY_IO_ERROR

0x89
F0

WILD_CARD_NOT_ALLOWED

0x89
FF

Failure, NO_FILES_FOUND_ERROR

Remarks

NWSetDirectoryInformation defines the target directory by passing a
directory handle and a directory path.

NOTE: Volume information for 2.x servers cannot be modified. The
dirDateTime and ownerID parameters cannot be set for volumes on 2.x
servers.

File Service Group

File System: Functions 474

A NetWare server maintains a Directory Handle Table for each logged in
workstation.

The path parameter cannot contain wild card characters or
NWSetDirectoryInformation will return
WILD_CARD_NOT_ALLOWED.

The path parameter can identify a full or partial directory path. A full
directory path defines a volume or a directory on a given NetWare server
in the format VOLUME:DIRECTORY/.../DIRECTORY. A partial
directory path specifies at least a directory, and possibly one or more
parent directories.

Applications frequently combine a directory handle and a directory path
to specify a target directory. For example, if the specified directory
handle points to SYS: and the specified directory path is
PUBLIC/WORDP, the specified directory is SYS:PUBLIC/WORDP.

The dirDateTime parameter appears in standard DOS format. The first two
bytes contain the year (7 bits), month (4 bits), and day (5 bits) fields, and
the second two bytes contain the hour (5 bits), minute (6 bits), and second
(5 bits) fields.

NWSetDirectoryInformation sets the date and time in ascending order
(byte 1, byte 2, byte 3, byte 4). The date and time values are defined as
follows:

Type Value

Year 0=1980, 1=1981, ..., 119=2099

Mont
h

1 to 12

Day 1 to 31

Hour 0 to 23

Minu
te

0 to 59

Seco
nd

0 to 29 (in units of 2 seconds)

The rightsMask parameter contains the maximum rights mask for the
subdirectory. The bits in the maximum rights mask are defined as
follows:

0x00 = TA_NONE
0x01 = TA_READ
0x02 = TA_WRITE
0x04 = TA_OPEN
0x08 = TA_CREATE
0x10 = TA_DELETE

File Service Group

File System: Functions 475

0x20 = TA_OWNERSHIP
0x40 = TA_SEARCH
0x80 = TA_MODIFY
0xFB = TA_ALL

NOTE: TA_OPEN is obsolete in version 3.x and above.

To change information for a directory, the requesting workstation must
have parental and modify rights to the directory's parent. Only a
workstation with SUPERVISOR rights can change the owner of a
directory.

NCP Calls

0x2222 22 25 Set Directory Information

0x2222 23 17 Get File Server Information

0x2222 87 07 Modify File Or Subdirectory DOS Information

See Also

NWParseNetWarePath

File Service Group

File System: Functions 476

NWSetDirEntryInfo

Changes information about a directory entry (file or directory)

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdentry.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSetDirEntryInfo (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 nuint8 searchAttrs,
 nuint32 iterHandle,
 nuint32 changeBits,
 NWENTRY_INFO N_FAR *newEntryInfo);

Pascal Syntax

#include <nwdentry.inc>

Function NWSetDirEntryInfo
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 searchAttrs : nuint8;
 iterHandle : nuint32;
 changeBits : nuint32;
 Var newEntryInfo : NWENTRY_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle.

searchAttrs

(IN) Specifies the search attribute to use in searching for the directory
entry.

iterHandle

(IN) Is currently unused and ignored.

File Service Group

File System: Functions 477

changeBits

(IN) Specifies the set of bits to indicate which attributes to change.

newEntryInfo

(IN) Points to the NWENTRY_INFO structure.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

Remarks

NWSetDirEntryInfo only works with 3.11 and above servers.

For files, the dirHandle parameter must point to parent directory. For
directories, it should follow the same conventions as for the
NWIntScanDirEntryInfo function.

The searchAttrs parameter specifies the kind of entry to look for (hidden,
system, etc.). For example, if only the system bit is set in the searchAttrs
parameter, all files except hidden files are affected. If only the hidden bit
is set, all files except system files are affected. If neither bit is set (0x00),
only files not designated either hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file
attribute is set.

The searchAttrs parameter can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

File Service Group

File System: Functions 478

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x10 $10 FA_DIRECTORY

The bit definition for the changeBits parameter follows:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00
01L

$000
1

MModifyNameBit

0x00
02L

$000
2

MFileAttributesBit

0x00
04L

$000
4

MCreateDateBit

0x00
08L

$000
8

MCreateTimeBit

0x00
10L

$001
0

MOwnerIDBit

0x00
20L

$002
0

MLastArchivedDateBit

0x00
40L

$004
0

MLastArchivedTimeBit

0x00
80L

$008
0

MLastArchivedIDBit

0x01
00L

$010
0

MLastUpdatedDateBit

0x02
00L

$020
0

MLastUpdatedTimeBit

0x04
00L

$040
0

MLastUpdatedIDBit

0x08
00L

$080
0

MLastAccessedDateBit

0x10
00L

$100
0

MInheritedRightsMaskBit

0x20
00L

$200
0

MMaximumSpaceBit

The NWENTRY_INFO structure must be initialized to 0 before calling the
NWIntScanDirEntryInfo function.

File Service Group

File System: Functions 479

To change information for a directory, the requesting workstation must
have access control and modify rights. Only a workstation with
SUPERVISOR rights can change the owner of a directory. The
lastModifyDateAndTime field in the NWDIR_INFO structure cannot be
changed for volumes. Otherwise, the last modified date and time will be
set to the current date and time.

For files, the dirHandle parameter must point to the parent directory. The
nameLength and name fields in the NWENTRY_INFO structure must
contain the specific file information.

For directories, if the dirHandle parameter points to the parent directory,
the nameLength and name fields in the NWENTRY_INFO structure must
contain the specific directory information.

For directories, if the dirHandle parameter points to the specific directory
itself, the nameLength field must be set to 0.

For each name space, the dirHandle parameter and the nameSpace, name
and nameLength fields must be synchronized to indicate the correct name
space.

NCP Calls

0x2222 22 37 Set Directory Entry Information

0x2222 23 17 Get File Server Information

0x2222 87 07 Modify File Or Subdirectory DOS Information

See Also

NWIntScanDirEntryInfo, NWSetNSEntryDOSInfo

File Service Group

File System: Functions 480

NWSetExtendedFileAttributes2

Sets the extended attributes of a file

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSetExtendedFileAttributes2 (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint8 extAttrs);

Pascal Syntax

#include <nwfile.inc>

Function NWSetExtendedFileAttributes2
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 extAttrs : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the connection handle.

dirHandle

(IN) Specifies the directory handle of the root directory of the new
directory.

path

(IN) Points to the string containing the name and path of the new
directory.

extAttrs

(IN) Specifies the extended attributes for the file.

Return Values

File Service Group

File System: Functions 481

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
8C

N0_MODIFY_PRIVILEGES

0x89
8D

SOME_FILES_AFFECTED_IN_USE

0x89
8E

NO_FILES_AFFECTED_IN_USE

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
A1

DIRECTORY_IO_ERROR

0x89
FD

BAD_STATION_NUMBER

0x89
FF

Failure, NO_FILES_FOUND_ERROR

Remarks

NWSetExtendedFileAttributes2 requires Search rights to the directory
where the file resides.

The path parameter can specify either the complete path name for a file or
a path relative to the current working directory.

For example, if the complete path name is
SYS:ACCOUNT/DOMEST/TARGET.DAT and the directory handle
mapping is SYS:ACCOUNT, the path parameter could point to either of
the following:

SYS:/ACCOUNT/DOMEST/TARGET.DAT or DOMEST/TARGET.DAT

The bit map for the extAttrs parameter follows:

File Service Group

File System: Functions 482

Bits Function

0-2 Search mode bits

4 Transaction bit

5 Index bit (2.x only)

6 Read audit bit (not yet implemented)

7 Write audit bit (not yet implemented)

Setting the transaction bit prompts TTS™ to track all Writes to the file
during a transaction. A transaction file cannot be deleted or renamed
until the transaction bit is turned off by calling
NWSetExtendedFileAttributes2.

Setting the index bit prompts NetWare to index the File Allocation Tables
for the file, thereby reducing the time required to access files. Files larger
than 2MB should have this bit set.

NCP Calls

0x2222 79 Set File Extended Attribute

See Also

NWGetExtendedFileAttributes2

File Service Group

File System: Functions 483

NWSetDirSpaceLimit

Specifies a space limit (in 4 KB blocks) on a particular subdirectory

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwdirect.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSetDirSpaceLimit (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 nuint32 spaceLimit);

Pascal Syntax

#include <nwdirect.inc>

Function NWSetDirSpaceLimit
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 spaceLimit : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the NetWare directory handle pointing to the directory
to scan.

spaceLimit

(IN) Specifies the number of 4K blocks needed to limit the directory
space.

Return Values

These are common return values; see Return Values for more
information.

File Service Group

File System: Functions 484

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
01

ERR_INSUFFICIENT_SPACE

0x89
8C

N0_MODIFY_PRIVILEGES

0x89
BF

INVALID_NAME_SPACE

Remarks

If the space limit is set to 0, space limit restrictions are lifted. If the
restriction is 0xFFFFFFFF, the space limit on the directory is set to 0.

NCP Calls

 0x2222 22 36 Set Directory Disk Space Restrictions

File Service Group

File System: Functions 485

NWSetFileAttributes

Modifies a file's original attributes

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSetFileAttributes (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 fileName,
 nuint8 searchAttrs,
 nuint8 newAttrs);

Pascal Syntax

#include <nwfile.inc>

Function NWSetFileAttributes
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 fileName : pnstr8;
 searchAttrs : nuint8;
 newAttrs : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle containing the
file.

dirHandle

(IN) Specifies the NetWare directory handle (0 if the fileName
parameter points to the complete path, including the volume name).

fileName

(IN) Points to the string containing a path name, relative to dirHandle.

searchAttrs

(IN) Specifies the attributes to use in searching for a file.

newAttrs

File Service Group

File System: Functions 486

(IN) Specifies the new attributes to be applied to the file designated by
the dirHandle and pbstrFileName parameters.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
8C

N0_MODIFY_PRIVILEGES

0x89
8D

SOME_FILES_AFFECTED_IN_USE

0x89
8E

NO_FILES_AFFECTED_IN_USE

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
A1

DIRECTORY_IO_ERROR

0x89
FD

BAD_STATION_NUMBER

0x89
FF

Failure, NO_FILES_FOUND_ERROR

Remarks

The fileName parameter can specify either a complete path name or a path
relative to the current working directory. For example, if the complete
path name is SYS:ACCOUNT/DOMEST/TARGET.DAT and the
directory handle mapping is SYS:ACCOUNT, the fileName parameter
could point to either of the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT or
DOMEST/TARGET.DAT

File Service Group

File System: Functions 487

The searchAttrs parameter includes system and/or hidden files. If only
the system bit is set in the searchAttrs parameter, all files are affected
except hidden files. If only the hidden bit is set, all files are affected
except system files. When neither bit is set (0x00), only files that are not
designated either hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file
attribute is set.

The searchAttrs parameter can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY

0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED

0x80 $80 FA_SHAREABLE

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 70 Set File Attributes

0x2222 87 07 Modify File Or Subdirectory DOS Information

See Also

NWGetExtendedFileAttributes2, NWIntScanFileInformation2,
NWSetFileInformation2

File Service Group

File System: Functions 488

NWSetFileInformation2

Updates file information

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: File System

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSetFileInformation2
 (NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 fileName,
 nuint8 searchAttrs,
 NW_FILE_INFO2 N_FAR *info);

Pascal Syntax

#include <nwfile.inc>

Function NWSetFileInformation2
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 fileName : pnstr8;
 searchAttrs : nuint8;
 Var info : NW_FILE_INFO2
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle containing the
file to be modified.

dirHandle

(IN) Specifies the NetWare directory handle (0 if the fileName
parameter points to the complete path, including the volume name).

fileName

(IN) Points to the name of the file to modify.

searchAttrs

(IN) Specifies the search attributes.

info

File Service Group

File System: Functions 489

(IN) Points to the NW_FILE_INFO2 structure.

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x88
01

INVALID_CONNECTION

0x89
88

INVALID_FILE_HANDLE

0x89
8C

N0_MODIFY_PRIVILEGES

0x89
8E

NO_FILES_AFFECTED_IN_USE

0x89
94

NO_WRITE_PRIVILEGES_OR_READONLY

0x89
96

SERVER_OUT_OF_MEMORY

0x89
98

VOLUME_DOES_NOT_EXIST

0x89
9B

BAD_DIRECTORY_HANDLE

0x89
9C

INVALID_PATH

0x89
A1

DIRECTORY_IO_ERROR

0x89
A2

READ_FILE_WITH_RECORD_LOCKED

0x89
FC

NO_SUCH_OBJECT

0x89
FD

BAD_STATION_NUMBER

0x89
FE

DIRECTORY_LOCKED

0x89
FF

Failure, NO_FILES_FOUND_ERROR

Remarks

File Service Group

File System: Functions 490

NWSetFileInformation2 handles long names (up to 256 bytes).

NWSetFileInformation2 sets the file information defined by the
NW_FILE_INFO2 structure.

The fileName parameter can specify either a complete path name or a path
relative to the current working directory. For example, if the complete
path name is SYS:ACCOUNT/DOMEST/TARGET.DAT, and the
directory handle mapping is SYS:ACCOUNT, the fileName parameter
could be either of the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT or
DOMEST/TARGET.DAT

The searchAttrs parameter is used to include system and/or hidden files.
If only the system bit is set in the searchAttrs parameter, all files are
affected except hidden files. If only the hidden bit is set, all files are
affected except system files. When neither bit is set (0x00), only files that
are not designated hidden or system are affected.

NOTE: A file is designated hidden or system if its corresponding file
attribute is set.

The searchAttrs parameter can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY

0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED

0x80 $80 FA_SHAREABLE

NCP Calls

0x2222 23 16 Set File Information

0x2222 23 17 Get File Server Information

0x2222 87 07 Modify File Or Subdirectory DOS Information

See Also

File Service Group

File System: Functions 491

NWGetExtendedFileAttributes2, NWIntScanFileInformation2,
NWSetFileAttributes,

File Service Group

File System: Functions 492

NWSetNetWareErrorMode

Sets the NetWare error handling mode for the requesting workstation

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, Windows 3.1

Service: File System

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSetNetWareErrorMode (
 nuint8 errorMode,
 pnuint8 prevMode);

Pascal Syntax

#include <nwmisc.inc>

Function NWSetNetWareErrorMode
 (errorMode : nuint8;
 prevMode : pnuint8
) : NWCCODE;

Parameters

errorMode

(IN) Specifies the error mode.

prevMode

(OUT) Points to the previous error mode (optional).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Remarks

NWSetNetWareErrorMode fails when VLM.EXE is running.

File Service Group

File System: Functions 493

The errorMode parameter can contain of the following three values (the
default value is 0):

0 User intervention is required for NetWare file I/O critical errors.

1 Specific error code is returned to the calling program from the
NetWare Shell for all NetWare file I/O errors.

2 DOS error code is returned to the calling program from the
NetWare Shell for all NetWare file I/O errors.

NCP Calls

None

File Service Group

File System: Functions 494

NWVolumeIsCDROM

Determines whether a given volume is a CDROM volume

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

Platform: NLM

SMP Aware: Yes

Service: File System

Syntax

#include <nwdir.h>

int NWVolumeIsCDROM (
 LONG volumeNumber,
 LONG *isCDROM;

Parameters

volumeNumber

(IN) Specifies the number of the volume to be queried.

isCDROM

(OUT) Points to either TRUE or FALSE, indicating whether the volume
is a CDROM volume.

Return Values

0 ESUCCESS

0xFF
FF

Failure---NWErrno is set with the appropriate error code.

Remarks

NWIsVolumeCDROM allows the caller to determine whether a give
volume is a CDROM volume.

The NWSetCompressedFileLengths function fails if CDROM.NLM is not
loaded of if the queried volume is not mounted.

See Also

NWGetExtendedVolumeInfo

File Service Group

File System: Functions 495

NWGetExtendedVolumeInfo, NWGetVolumeName

File Service Group

File System: Functions 496

opendir

Opens a directory for reading with the readdir function

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <dirent.h>

DIR *opendir (
 const char *pathname);

Parameters

pathname

(IN) Can be either relative to the current working directory or it can be
an absolute path name.

Return Values

Returns a pointer to a structure (required for subsequent calls to the
readdir function) containing the file names matching the pattern
specified by the pathname parameter.

Returns NULL if the path name is not valid or if there are no files
matching the path name. If an error occurs, errno and NetWareErrno are
set.

Remarks

The last part of the path name can contain the characters `?' and `*' for
matching multiple files.

More than one directory can be read at the same time using the opendir,
readdir, and closedir functions.

opendir calls the malloc function to allocate memory for a DIR structure.
The closedir function frees the memory.

NOTE: Information about the first file or directory matching the
specified path name is not placed in the DIR structure until after the first
call to the readdir function.

File Service Group

File System: Functions 497

The SetCurrentNameSpace function sets the name space that is used for
parsing the path input to opendir.

Beginning with Release 9 of NW SDK, opendir returns long names in the
d_name field of the dirent structure if the target namespace is previously
set (by calling the SetTargetNameSpace function) to something other
than DOS. You must compile with the dirent.h file included with Release
9 or later and link with the new nwpre.obj and is valid only when calling
opendir to the local server.

NOTE: The position in the old structure of the d_name field has been
assumed by the new d_nameDOS field to ensure backward
compatibility, and d_name has been moved to the end of the structure.
The new code puts the DOS name space name at the d_nameDOS offset
so old code will still work. This can all be done with relative ease
because CLIB allocates the memory for this structure.

See Also

closedir, readdir

File Service Group

File System: Functions 498

PurgeErasedFile

Permanently deletes a file that has been marked for deletion

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.x, 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <nwfile.h>

int PurgeErasedFile (
 char *pathname,
 long sequenceNumber);

Parameters

pathname

(IN) Specifies the string containing either the absolute path (including
the volume name) or the relative path name of the file to purge
(maximum 255 characters, including the NULL terminator).

sequenceNumber

(IN) Identifies which version of the specified file to purge.

Return Values

0 0x0
0

ESUCCESS

NetWare
Error

UNSUCCESSFUL

Remarks

An application marks a file for deletion with the remove or unlink
function. However, the server does not permanently delete a file until the
server needs the disk space occupied by the file marked for deletion. A
file marked for deletion with the remove or unlink functions can be
recovered by calling the SalvageErasedFile function.

PurgeErasedFile permanently deletes a file marked for deletion. It frees

File Service Group

File System: Functions 499

the disk space that the deleted file occupied. A file deleted with
PurgeErasedFile cannot be recovered.

NOTE: The sequenceNumber parameter must be obtained from the
ScanErasedFiles function. The current connection must have Delete
rights to the file.

There is no need to call the ScanErasedFiles function to get a sequence
number on remote 286 servers. PurgeErasedFile can be called without
regard to the validity of the path name or sequence number on 286
servers. 286 servers do not retain files that have been marked for deletion
but not yet purged. PurgeErasedFile purges all files that have been
deleted recently (since the last file system operation.

The SetCurrentNameSpace function sets the name space that is used for
parsing the path input to PurgeErasedFile.

NOTE: PurgeErasedFile currently works only in the DOS name space.
However, you can purge a file in other name spaces in the following
way. Call the SetCurrentNameSpace function to change to the DOS
name space and then call the ScanErasedFiles function to get the DOS
names of the files you want to purge. These are returned in the structure
that the ScanErasedFiles function uses. You can then purge the files,
supplying their DOS names as specified by the pathname parameter.

See Also

SalvageErasedFile , ScanErasedFiles

File Service Group

File System: Functions 500

readdir

Obtains information about the next matching file

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <dirent.h>

DIR *readdir (
 DIR *dirP);

Parameters

dirP

(IN/OUT) Specifies the structure to receive information about the next
matching file.

Return Values

Returns a pointer to an object of the DIR structure type containing
information about the next matching file or directory.

If an error occurs, such as when there are no more matching file names,
NULL is returned and errno and NWErrno are set. (Unless NULL is
returned, ignore values in errno and NWErrno.)

Remarks

readdir can be called repeatedly to obtain the list of file and directory
names contained in the directory specified by the path name given to the
opendir function.

The closedir function must be called to close the directory and free the
memory allocated by the opendir function.

NOTE: The date and time fields are not in the DOS date/time format.
It is easily put in the DOS format by swapping the high word with the
low word.

Beginning with Release 9 of the NW SDK, readdir returns long names in
the d_name field of the dirent structure if the target namespace is

File Service Group

File System: Functions 501

previously set (by calling the SetTargetNameSpace function) to
something other than DOS. You must compile with the dirent.h file
included with Release 9 or later and link with the new nwpre.obj and is
valid only when calling readdir on the local server.

NOTE: The position in the old structure of the d_name field has been
assumed by the new d_nameDOS field to ensure backward
compatibility, and the d_name field has been moved to the end of the
structure. The new code puts the DOS name space name at the
d_nameDOS field offset so old code will still work. This can all be done
with relative ease because CLIB allocates the memory.

See Using readdir(): Example.

See Also

closedir, opendir

File Service Group

File System: Functions 502

remove

Deletes a specified file

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

SMP Aware: Yes

Service: File System

Syntax

#include <stdio.h>
#include <unistd.h>

int remove (
 const char *filename);

Parameters

filename

(IN) Specifies the string containing the full or relative path of the file to
be deleted (maximum 255 characters, including the NULL terminator).

Return Values

Returns a value of 0 if successful, nonzero otherwise. When an error has
occurred, errno contains a value indicating the type of error that has been
detected.

Remarks

remove also works on the DOS partition.

remove causes a file to be marked for deletion. A file marked for deletion
is not actually erased until the space it occupies is needed by another file.
The current connection must have Delete rights to the file.

Wildcard specifiers are allowed for the filename parameter.

The SalvageErasedFile function can be used to salvage a file that has
been marked for deletion but not yet purged.

The SetCurrentNameSpace function sets the name space which is used
for parsing the path input to remove.

NOTE: For NetWare versions before 4.x, remove only works with DOS

File Service Group

File System: Functions 503

name space for remote servers.

See Also

PurgeErasedFile, SalvageErasedFile , unlink

File Service Group

File System: Functions 504

rename

Renames a specified file

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

SMP Aware: Yes

Service: File System

Syntax

#include <stdio.h>
#include <unistd.h>

int rename (
 const char *old,
 const char *new);

Parameters

old

(IN) Points to a string containing the full or relative path of the name
of the file to be renamed (maximum 255 characters, including the
NULL terminator).

new

(IN) Points to a string containing the full or relative path of the new
file name to replace the old file name (maximum 255 characters,
including the NULL terminator).

Return Values

Returns a value of 0 if successful, nonzero otherwise.

Remarks

rename also works on the DOS partition.

Wildcard specifiers are allowed for the old and new parameters.

rename can also rename directories. However, if a wildcard is specified,
only matching files (not directories) are renamed.

The current connection number must have Modify privileges. If a
wildcard is specified, the current connection must also have See File
rights. To move a file, the current connection must have Delete and Read

File Service Group

File System: Functions 505

rights for the file to be moved and Create rights in the destination.

To move a directory requires Delete rights to the directory to be moved
and Create in the destination. The above-mentioned rights are also
required for all directories and files in the subdirectory tree. Additionally,
Create, See File, and Read rights are required to move deleted files;
without these rights, deleted files are purged.

NOTE: rename only works with DOS name space. However, the
NWSetNameSpaceEntryName function can rename files in other name
spaces.

See Also

FileServerFileCopy , NWGetNameSpaceEntryName,
NWSetNameSpaceEntryName

File Service Group

File System: Functions 506

rmdir

Removes (deletes) the specified directory

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <unistd.h>

int rmdir (
 const char *pathname);

Parameters

pathname

(IN) Specifies either the absolute or relative directory path containing
the directory to delete.

Return Values

Returns a value of 0 if successful, nonzero otherwise. If an error occurs,
errno and NetWareErrno are set.

Remarks

rmdir also works on the DOS partition.

The directory must not contain any files or directories.

The SetCurrentNameSpace function sets the name space which is used
for parsing the path input to rmdir.

NOTE: For NetWare versions before 4.x, rmdir only works with DOS
name space for remote servers.

See Also

chdir, getcwd, mkdir

File Service Group

File System: Functions 507

SalvageErasedFile

Salvages a file that has been marked for deletion

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.x, 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <nwfile.h>

int SalvageErasedFile (
 char *pathname,
 long sequenceNumber,
 char *newFileName);

Parameters

pathname

(IN) Specifies the string containing the path name of the erased file to
be salvaged (maximum 255 characters, including the NULL
terminator).

sequenceNumber

(IN) Specifies which version of the specified file to restore.

newFileName

(IN) Points to a NULL-terminated string containing the name to give
the erased file when it is restored (maximum 13 characters, including
the NULL terminator).

See Salvaging Files: Example.

Return Values

0 0x0
0

ESUCCESS

NetWare
Error

UNSUCCESSFUL

Remarks

File Service Group

File System: Functions 508

A file marked for deletion with the remove or unlink function can be
recovered by calling the SalvageErasedFile function.

The pathname parameter can be an absolute path with a volume name, or
it can be relative to the current working directory. In a NetWare 2.x
environment, only the volume name should be passed in the path, not
the full path name.

The sequenceNumber parameter is obtained from the ScanErasedFiles
function.

The newFileName parameter can be from 1 to 8 characters long and can
also include an extension of from 1 to 3 characters. All letters must be
uppercase and the string must be NULL-terminated.

The current connection must have Create rights in the specified directory.

The SetCurrentNameSpace function sets the name space that is used for
parsing the path input to rmdir.

NOTE: rmdir currently works only in the DOS name space. However,
you can salvage a file in other name spaces in the following way. Call
the SetCurrentNameSpace function to change to the DOS name space.
Then call the ScanErasedFiles function to get the DOS names of the files
you want to salvage. The DOS names are returned in the structure that
the ScanErasedFiles function uses. You can then salvage the files,
supplying their DOS names to the pathname parameter. After you have
salvaged the files, they still have directory entries in the other name
spaces that are loaded just as they did before they were deleted.

See Also

PurgeErasedFile, ScanErasedFiles

File Service Group

File System: Functions 509

ScanErasedFiles

Returns information about deleted files

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <nwfile.h>

int ScanErasedFiles (
 char *pathname,
 long *nextEntryNumber,
 DIR *deletedFileInfo);

Parameters

pathname

(IN) Specifies the string containing the path specification of the
directory to view (maximum 255 characters, including the NULL
terminator).

nextEntryNumber

(IN/OUT) Points to the entry number of the next file (-1 initially).

deletedFileInfo

(OUT) Points to the DIR structure.

Return Values

0 0x00 ESUCCESS

NetWare Error UNSUCCESSFUL

Remarks

ScanErasedFiles can be called repeatedly to obtain the list of file names
contained in the directory specified by the pathname parameter. Files
marked for deletion can be scanned to obtain information about who
deleted the files and when they were deleted.

File Service Group

File System: Functions 510

The pathname parameter can be an absolute path with a volume name or
it can be relative to the current working directory. Do not include a
wildcard character at the end of the path. In the following example, the
erased files in the DIR1 directory on the SYS volume are scanned:

SYS:DIR1

The nextEntryNumber parameter returns an entry number for the next
matching file name.

The deletedFileInfo parameter contains information about the matching file
name.

The current connection must have See File rights in the specified
directory.

The SetCurrentNameSpace function sets the name space that is used for
parsing the path input to ScanErasedFiles.

NOTE: ScanErasedFiles currently works only in the DOS name space.
However, you can scan erased files for another name space. Call the
SetCurrentNameSpace function to change to the DOS name space.
Then call ScanErasedFiles, supplying a DOS path name.

ScanErasedFiles returns DOS names for the files that have been erased.
You can then use those names to either salvage the files by calling the
SalvageErasedFile function or purge them by calling the
PurgeErasedFile function.

See Also

PurgeErasedFile, SalvageErasedFile

File Service Group

File System: Functions 511

SetExtendedFileAttributes

Sets the extended attributes byte for a file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <nwfile.h>

int SetExtendedFileAttributes (
 char *filePath,
 BYTE extendedFileAttributes);

Parameters

filePath

(IN) Specifies the string containing the relative or absolute (including
the volume name) path specification of the file whose extended
attributes are being changed (maximum 255 characters, including the
NULL terminator).

extendedFileAttributes

(IN) Specifies the new extended attributes for the file.

Return Values

0 0x0
0

ESUCCESS

25
4

0xF
E

ERR_INCORRECT_ACCESS_PRIVILEGES

25
5

0xF
F

ERR_NO_FILES_FOUND

Remarks

SetExtendedFileAttributes sets the extended file attributes for a file by
passing a file path and an extended file attributes byte. The current
connection must have Modify rights to the file.

File Service Group

File System: Functions 512

SetExtendedFileAttributes overwrites the first byte of the existing file
attributes with the value in the extendedFileAttributes parameter. The byte
definition follows:

If the Transaction bit is set in the extendedFileAttributes parameter byte,
TTS tracks all writes to the file during a transaction. A transaction file
cannot be deleted or renamed until the transaction bit is turned off by
calling SetExtendedFileAttributes.

NOTE: Do not confuse the first attributes byte with true extended
attributes, which can be manipulated by calling the Extended Attribute
functions.

The SetCurrentNameSpace function sets the name space which is used
for parsing the path input to SetExtendedFileAttributes.

NOTE: For NetWare versions before 4.x, SetExtendedFileAttributes
only works with DOS name space for remote servers.

See Also

GetExtendedFileAttributes

File Service Group

File System: Functions 513

SetFileInfo

Sets file information for a file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.x, 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <nwfile.h>

int SetFileInfo (
 char *filePath,
 BYTE searchAttributes,
 LONG fileAttributes,
 char *creationDateAndTime,
 char *lastAccessDate,
 char *lastUpdateDateAndTime,
 char *lastArchiveDateAndTime,
 LONG fileOwnerID);

Parameters

filePath

(IN) Points to the string containing the path specification of the file to
be changed (maximum 255 characters, including the NULL
terminator).

searchAttributes

(IN) Specifies the type of the file for which to set file information.

fileAttributes

(IN) Specifies the file attributes to be assigned to the file.

creationDateAndTime

(IN) Points to the creation date and time to be assigned to the file (DOS
format, 4 bytes).

lastAccessDate

(IN) Points to the last access date to be assigned to the file (DOS
format, bytes 1 and 2).

lastUpdateDateAndTime

(IN) Points to the last update date and time to be assigned to the file
(DOS format, 4 bytes).

File Service Group

File System: Functions 514

lastArchiveDateAndTime

(IN) Points to the last archived date and time to be assigned to the file
(DOS format, 4 bytes).

fileOwnerID

(IN) Specifies the unique object ID to be assigned as the new owner.

Return Values

0 0x0
0

ESUCCESS

NetWare
Error

UNSUCCESSFUL

Remarks

SetFileInfo sets file information by passing the file path, the search
attributes byte, and specific file information. File information includes
file attributes, extended file attributes, creation date and time, last access
date, last update date and time, file owner, and last archived date and
time.

SetFileInfo requires that the requesting workstation have Supervisor
rights to the file(s) being modified.

The filePath parameter can specify an absolute or a relative path. An
absolute file path appears in the following format:

volume: directory1\...\directory\file name

A relative file path includes a file name and (optionally) one or more
antecedent directory names.

A file name can be from 1 to 8 characters long and can include a 1- to
3-character extension. All letters must be upper case. The last item in the
filePath parameter must be a valid file name specification. No wildcard
specifiers are allowed.

The searchAttributes parameter can have the following values:

0x
00

Normal files

0x
02

Normal and hidden files

0x
04

Normal and system files

File Service Group

File System: Functions 515

0x
06

Normal, hidden, and system files

SetFileInfo can assign file attributes to a specified file by passing a new
value in the fileAttributes parameter. The following bits are defined for
byte 0:

The following bits are defined for byte 1, the extended attributes byte:

In NetWare 3.0 and above, you can set four file attributes in byte 2, bits 0,
1, 2, and 4. In NetWare 4.x, you can set bit 7:

File Service Group

File System: Functions 516

NetWare 4.x also allows you to set file attributes in an additional byte,
byte 3:

The creationDateAndTime, lastUpdateDateAndTime, and
lastArchiveDateAndTime parameters occupy bytes 0, 1, 2, and 3.

The application can change the owner of the file by passing the object ID
number of the new owner in the fileOwnerID parameter.

The SetCurrentNameSpace function sets the name space which is used
for parsing the path input to SetFileInfo.

See Also

NWSetDirEntryInfo, readdir

File Service Group

File System: Functions 517

SetReaddirAttribute

Sets the attributes that are to be used when searching for files and
directories by calling the readdir function

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <nwfile.h>

int SetReaddirAttribute (
 DIR *dirP,
 unsigned long newAttribute);

Parameters

dirP

(IN) Points to the DIR structure obtained by calling opendir or readdir.

newAttribute

(IN) Specifies the new attribute.

Return Values

Returns a value of 0 if successful, nonzero otherwise.

Remarks

SetReaddirAttribute can be called any time after the DIR structure has
been obtained from the opendir function. The modified search attributes
are in effect for calling the readdir function.

The following search attributes are defined:

_A_NORM
AL

Normal file; read/write permitted

_A_RDON
LY

Read-only file

_A_HIDDE
N

Hidden file

File Service Group

File System: Functions 518

_A_SYSTE
M

System file

_A_VOLID Volume ID entry

_A_SUBDI
R

Subdirectory

_A_ARCH Archive file

See Also

closedir, opendir, readdir

File Service Group

File System: Functions 519

_splitpath

Splits a full path name into four components consisting of a server/volume
name, directory path, file name, and file name extension

Local Servers: blocking

Remote Servers: N/A

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <nwdir.h>

void _splitpath (
 const char *path,
 char *drive,
 char *dir,
 char *fname,
 char *ext);

Parameters

path

(IN) Specifies the string containing the full path name to split.

drive

(OUT) Points to the server/volume name or drive letter.

dir

(OUT) Points to the directory path.

fname

(OUT) Points to the base name of the file without an extension.

ext

(OUT) Points to the file name extension, including the leading period.

Return Values

None

Remarks

_splitpath returns the drive letter in the drive parameter. If you pass it a
NetWare path, _splitpath returns the NetWare server/volume in the
drive parameter.

File Service Group

File System: Functions 520

The drive, dir, fname, and ext parameters are not filled in if they are NULL.
For each component of the full path name that is not present, its
corresponding buffer is set to an empty string.

See Using _makepath and _splitpath: Example.

See Also

_makepath

File Service Group

File System: Functions 521

stat (Function)

Retrieves the status of a specified file or directory

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <stat.h>

int stat (
 const char *path,
 struct stat *statblk);

Parameters

path

(IN) Points to a string containing the path of the directory or file for
which status is to be obtained (maximum 255 characters, including the
NULL terminator).

statblk

(OUT) Points to the stat (Structure) containing information about the
file.

Return Values

Returns a value of 0 when the information is successfully obtained.
Otherwise, a value of -1 is returned and errno is set to indicate the type of
error that occurred.

Remarks

stat (Function) returns information in the stat (Structure) located at the
address indicated by the statblk parameter.

The SYS\STAT.H header file contains definitions for the stat (Structure)
and describes the contents of the fields.

The time and date in the stat (Structure) are in calendar format.

Beginning with Release 9 of the NW SDK, stat (Function) returns long
names in the d_name field of the stat (Structure) if the st_name field is set to

File Service Group

File System: Functions 522

something other than DOS. You must compile with the stat.h file
included with Release 9 or later and link with the new nwpre.obj and is
valid only when calling stat (Function) on the local server.

The current connection must have See File rights.

The SetCurrentNameSpace function sets the name space which is used
for parsing the path input to stat (Function).

NOTE: For NetWare versions before 4.x, stat (Function) only works
with DOS name space for remote servers.

See Also

fstat

File Service Group

File System: Functions 523

tmpnam

Generates a unique string for use as a valid temporary file name

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

SMP Aware: Yes

Service: File System

Syntax

#include <stdio.h>
#include <unistd.h>

char *tmpnam (
 char *buffer);

Parameters

buffer

(OUT) Points to the buffer to receive the generated temporary file
name.

Return Values

If you pass a NULL pointer, tmpnam leaves the temporary file name in
an internal static buffer and returns a pointer to that buffer.

Remarks

Be aware that the internal static buffer is modified every time tmpnam is
called, whether or not you pass a NULL pointer. If you want to preserve
the temporary file name currently stored in the internal static buffer, copy
it to another buffer (by calling the strcpy function) before calling tmpnam
again.

If you pass a pointer to your created array, tmpnam leaves the temporary
file name in that array and returns a pointer to it. tmpnam simply returns
the pointer you have supplied. It does no error checking to ensure that
your array is big enough to accommodate the file name. The array should
be at least L_tmpnam characters in length, where L_tmpnam is 13
characters (12 for the DOS 8.3 characters plus one for the NULL
terminator).

See Using tmpnam(): Example.

File Service Group

File System: Functions 524

See Also

access

File Service Group

File System: Functions 525

umask

Sets the file permission mask (part of the thread group context).

Local Servers: blocking

Remote Servers: N/A

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <stat.h>

int umask (
 int permission);

Parameters

permission

(IN) Specifies the file permission mask to be used to update the
permission of the current process.

Return Values

Returns the previous value of the permission parmeter.

Remarks

The file permission mask is used to modify the permission setting of new
files created by the creat, open, or sopen function. If a bit in the mask is
on, the corresponding bit in the requested permission value for the file is
disallowed.

The permission parameter is a constant expression involving the constants
S_IREAD and S_IWRITE as defined in SYS\STAT.H.

S_IWRIT
E

Write permission

S_IREA
D

Read permission

See Also

chmod, creat, open, sopen

File Service Group

File System: Functions 526

unlink

Deletes the specified file

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <unistd.h>

int unlink (
 const char *filename);

Parameters

filename

(IN) Points to a string containing the absolute or relative path of the
file to delete (maximum 255 characters, including the NULL
terminator).

Return Values

Returns a value of 0 if successful, nonzero otherwise. When an error has
occurred, errno contains a value indicating the type of error that has been
detected.

Remarks

unlink also works on the DOS partition.

A file marked for deletion is not actually erased by unlink until the space
it occupies is needed by another file.

Wildcard specifiers are allowed for the filename parameter.

The SalvageErasedFile function can be called to salvage a file that has
been marked for deletion but not yet purged.

The current connection must have Delete rights to the file.

See Using unlink(): Example.

See Also

File Service Group

File System: Functions 527

PurgeErasedFile, remove, SalvageErasedFile

File Service Group

File System: Functions 528

utime

Updates the modification time for the specified file

Local Servers: blocking

Remote Servers: blocking

Platform: NLM

SMP Aware: No

Service: File System

Syntax

#include <sys\utime.h>

int utime (
 const char *filename,
 struct utimbuf *times);

Parameters

filename

(IN) Points to a string containing the name of the file whose
modification time is to be updated (maximum 255 characters,
including the NULL terminator).

times

(IN) Points to the structure containing the modification time.

Return values

Returns a value of 0 when the time was successfully recorded. A value of
-1 indicates an error occurred. If an error occurs, errno is set.

Remarks

If the filename parameter specifies a directory, the modification time and
date are updated and the last accessed date is ignored (since directories
do not have a last accessed date).

If the times parameter is NULL, the current time is used for the update.
Otherwise, the times parameter must point to an object of the struct
utimbuf type.

The modification time is taken from the modtime field in the structure and
the last accessed date is taken from the acctime field.

The current connection must have Modify rights or Write rights to update
the last modification time. It must also have Modify or Read rights to

File Service Group

File System: Functions 529

update the last accessed date.

The SetCurrentNameSpace function sets the name space which is used
for parsing the path input to utime.

NOTE: For NetWare versions before 4.x, utime only works with DOS
name space for remote servers.

File Service Group

File System: Functions 530

File System: Structures

File Service Group

File System: Structures 531

CONN_USING_FILE

Defines file information for a file opened by a connection

Service: File System

Defined In: nwfile.h

Structure

typedef struct {
 NWCONN_NUM connNumber;
 nuint16 taskNumber;
 nuint8 lockType;
 nuint8 accessControl;
 nuint8 lockFlag;
} CONN_USING_FILE;

Pascal Structure

Defined in nwfile.inc

 CONN_USING_FILE = Record
 connNumber : NWCONN_NUM;
 taskNumber : nuint16;
 lockType : nuint8;
 accessControl : nuint8;
 lockFlag : nuint8
 End;

Fields

connNumber

Specifies the logical connection number of a workstation using the file.

taskNumber

Specifies the number of the task which opened the file. A given
connection may have several task numbers associated with the same
file.

lockType

Specifies how the file is locked.

accessControl

Specifies how the file is accessed.

lockFlag

Specifies whether the file is locked.

Remarks

File Service Group

File System: Structures 532

The lockType field can have the following values:

0x01 Locked

0x02 Open shareable

0x04 Logged

0x08 Open Normal

0x40 TTS holding

0x80 Transaction flag set

The accessControl field can have the following values:

0x01 Open for read by this client

0x02 Open for write by this client

0x04 Deny read requests from others

0x08 Deny write requests from others

0x10 File detached

0x20 TTS holding detach

0x40 TTS holding open

The lockFlag field can have the following values:

0x00 Not locked

0xFE Locked by a file lock

0xFF Locked by begin share file set

File Service Group

File System: Structures 533

CONNS_USING_FILE

Returns a list of connections having a specified file open

Service: File System

Defined In: nwfile.h

Structure

typedef struct {
 nuint16 nextRequest;
 nuint16 useCount;
 nuint16 openCount;
 nuint16 openForReadCount;
 nuint16 openForWriteCount;
 nuint16 denyReadCount;
 nuint16 denyWriteCount;
 nuint8 locked;
 nuint8 forkCount;
 nuint16 connCount;
 CONN_USING_FILE connInfo[70];
} CONNS_USING_FILE;

Pascal Structure

Defined in nwfile.inc

CONNS_USING_FILE = Record
 nextRequest : nuint16;
 useCount : nuint16;
 openCount : nuint16;
 openForReadCount : nuint16;
 openForWriteCount : nuint16;
 denyReadCount : nuint16;
 denyWriteCount : nuint16;
 locked : nuint8;
 forkCount : nuint8;
 connCount : nuint16;
 connInfo : Array[0..69] Of CONN_USING_FILE
 End;

Fields

nextRequest

Specifies the sequence in subsequent calls to the
NWScanConnectionsUsingFile function.

useCount

Specifies the number of tasks having the file opened or logged.

File Service Group

File System: Structures 534

openCount

Specifies the number of tasks having opened or logged the file.

openForReadCount

Specifies the number of logical connections having the file open for
reading.

openForWriteCount

Specifies the number of logical connections having the file open for
writing.

denyReadCount

Specifies the number of logical connections having denied other
connections access to the file.

denyWriteCount

Specifies the number of logical connections having denied other
connections read access to the file.

locked

Specifies whether the file is locked exclusively (0=not locked
exclusively).

forkCount

Specifies the number of forks associated with the file.

connCount

Specifies the number of connections using the file.

connInfo

Specifies an array of CONN_USING_FILE structures specifying how
each connection is using the file.

File Service Group

File System: Structures 535

DIR

Holds information about a directory entry

Service: File System

Defined In: dirent.h

Structure

typedef struct dirent {
 unsigned long d_attr;
 unsigned short d_time;
 unsigned short d_date;
 long d_size;
 ino_t d_ino;
 dev_t d_dev;
 unsigned long d_cdatetime;
 unsigned long d_adatetime;
 unsigned long d_bdatetime;
 long d_uid;
 unsigned long d_archivedID;
 unsigned long d_updatedID;
 char d_nameDOS[13];
 unsigned short d_inheritedRightsMask;
 unsigned char d_originatingNameSpace;
 unsigned long d_ddatetime;
 unsigned long d_deletedID;
 char d_name[255+1];

} DIR;

Fields

d_attr

Specifies the attribute as defined in NWFATTR.H.

d_time

Specifies the modification time in DOS format.

d_date

Specifies the modification date in DOS format.

d_size

Specifies the size (files only).

d_ino

Specifies the serial number.

d_dev

Specifies the volume number.

File Service Group

File System: Structures 536

d_cdatetime

Specifies the creation date and time in DOS format.

d_adatetime

Specifies the last access date (files only) in DOS format.

d_bdatetime

Specifies the last archive date and time in DOS format.

d_uid

Specifies the owner ID (object ID).

d_archivedID

Specifies the object ID that last archived the file.

d_updateID

Specifies the object ID that last updated the file.

d_nameDOS

Specifies the DOS name space name.

d_inheritedRightsMask

Specifies the inherited rights mask.

d_originatingNameSpace

Specifies the creating name space.

d_ddatetime

Specifies the date and time the entry was deleted (used by the
ScanErasedFiles function only).

d_deletedID

Specifies the object ID that deleted the file (used by the
ScanErasedFiles function only).

d_name

Specifies the namespace name of the entry.

File Service Group

File System: Structures 537

DIR_SPACE_INFO

Returns directory space information

Service: File System

Defined In: nwdirect.h

Structure

typedef struct {
 nuint32 totalBlocks;
 nuint32 availableBlocks;
 nuint32 purgeableBlocks;
 nuint32 notYetPurgeableBlocks;
 nuint32 totalDirEntries;
 nuint32 availableDirEntries;
 nuint32 reserved;
 nuint8 sectorsPerBlock;
 nuint8 volLen;
 nuint8 volName[NW_MAX_VOLUME_NAME_LEN];
} DIR_SPACE_INFO;

Pascal Structure

Defined in nwdirect.inc

 DIR_SPACE_INFO = Record
 totalBlocks : nuint32;
 availableBlocks : nuint32;
 purgeableBlocks : nuint32;
 notYetPurgeableBlocks : nuint32;
 totalDirEntries : nuint32;
 availableDirEntries : nuint32;
 reserved : nuint32;
 sectorsPerBlock : nuint8;
 volLen : nuint8;
 volName : Array[0..NW_MAX_VOLUME_NAME_LEN-1] Of nuint8
 End;

Fields

totalBlocks

Specifies the total blocks in the directory.

availableBlocks

Specifies the number of available blocks.

purgeableBlocks

Specifies the number of recoverable blocks recovered by purging (0 if

File Service Group

File System: Structures 538

the NWGetDirSpaceInfo function is called with a directory handle of
0).

notYetPurgeableBlocks

Specifies the number of blocks not yet purgeable (0 if the
NWGetDirSpaceInfo function is called with a directory handle of 0).

totalDirEntries

Specifies the number of entries in the directory.

availableDirEntries

Specifies the number of available entries remaining.

reserved

Is reserved.

sectorsPerBlock

Specifies the number of sectors per block.

volLen

Specifies the length of the volName field.

volName

Specifies the name of the volume.

File Service Group

File System: Structures 539

GrammarTableStruct

Service: File System

Defined In: nwconfig.h

Structure

typedef struct {
 int keywordCode;
 char N_FAR *keyword;
 void (N_FAR *function)(PARAMETER_TABLE_TYPE N_FAR *);
 TypeDefaultStruct typeDefault[MAX_PARAMETERS];
} GrammarTableStruct;

Fields

keywordCode

Specifies the message number for the keyword in the MSG file.

keyword

Points to a character array containing the name of the key word being
searched for within the net.cfg section (in the Link Support Section,
keywords could be BUFFERS or MAX STACKS).

function

Specifies the function to be called when a match is found.

typeDefault

Specifies the array containing the types of values and default values of
optional types in which you are interested.

Remarks

The function specified by the function field is called with one parameter.
The parameter is a pointer to the PARAMETER_TABLE_TYPE structure
which should be cast to the value you expect to receive.

The typeDefault field can have the following values:

01h T_NUMBER

02h T_INDEX

03h T_STRING

04h T_HEX_STRING

05h T_HEX_NUMBER

06h T_LONG_NUMBER

07h T_LONG_HEX

10h T_SET_1

11h T_SET_2

File Service Group

File System: Structures 540

12h T_SET_3

13h T_SET_4

14h T_SET_5

15h T_SET_6

16h T_SET_7

17h T_SET_8

18h T_SET_9

19h T_SET_10

80h T_OPTIONAL

1Ah T_SET_11

1Bh T_SET_12

1Ch T_SET_13

1Dh T_SET_14

1Eh T_SET_15

1Fh T_SET_16

File Service Group

File System: Structures 541

ModifyStructure

Holds information used in changing a directory entry

Service: File System

Defined In: nwdir.h

Structure

typedef struct {
 BYTE *MModifyName;
 LONG MFileAttributes;
 LONG MFileAttributesMask;
 WORD MCreateDate;
 WORD MCreateTime;
 LONG MOwnerID;
 WORD MLastArchivedDate;
 WORD MLastArchivedTime;
 LONG MLastArchivedID;
 WORD MLastUpdatedDate;
 WORD MLastUpdatedTime;
 LONG MLastUpdatedID;
 WORD MLastAccessedDate;
 WORD MInheritanceGrantMask;
 WORD MInheritanceRevokeMask;
 int MMaximumSpace;
 LONG MLastUpdatedInSeconds;
} ModifyStructure;

Fields

MModifyName

Specifies the new directory name.

MFileAttributes

Specifies new file attributes.

MFileAttributesMask

Specifies new file attribute mask.

MCreateDate

Specifies new creation date.

MCreateTime

Specifies new creation time

MOwnerID

Specifies new owner ID.

MLastArchivedDate

File Service Group

File System: Structures 542

Specifies the last archived date.

MLastArchivedTime

Specifies the last archived time.

MLastArchivedID

Specifies the last archived ID.

MLastUpdatedDate

Specifies the last updated date.

MLastUpdatedTime

Specifies the last updated time.

MLastUpdatedID

Specifies the last updated ID.

MLastAccessedDate

Specifies the last accessed date.

MInheritanceGrantMask

Specifies the inheritance grant mask.

MInheritanceRevokeMask

Specifies in heritance revoke mask.

MMaximumSpace

Specifies the maximum space.

MLastUpdatedInSeconds

Specifies the last update in seconds.

File Service Group

File System: Structures 543

NW_EXT_FILE_INFO

Returns extended file information

Service: File System

Defined In: nwdentry.h

Structure

typedef struct {
 nuint32 sequence;
 nuint32 parent;
 nuint32 attributes;
 nuint8 uniqueID;
 nuint8 flags;
 nuint8 nameSpace;
 nuint8 nameLength;
 nuint8 name[12];
 nuint32 creationDateAndTime;
 nuint32 ownerID;
 nuint32 lastArchiveDateAndTime;
 nuint32 lastArchiverID;
 nuint32 updateDateAndTime;
 nuint32 lastUpdatorID;
 nuint32 dataForkSize;
 nuint32 dataForkFirstFAT;
 nuint32 nextTrusteeEntry;
 nuint8 reserved[36];
 nuint16 inheritedRightsMask;
 nuint16 lastAccessDate;
 nuint32 deletedFileTime;
 nuint32 deletedDateAndTime;
 nuint32 deletorID;
 nuint8 reserved2[16];
 nuint32 otherForkSize[2];
} NW_EXT_FILE_INFO;

Pascal Structure

 NW_EXT_FILE_INFO = Record
 sequence : nuint32;
 parent : nuint32;
 attributes : nuint32;
 uniqueID : nuint8;
 flags : nuint8;
 nameSpace : nuint8;
 nameLength : nuint8;
 name : Array[0..11] Of nuint8;
 creationDateAndTime : nuint32;
 ownerID : nuint32;

File Service Group

File System: Structures 544

 lastArchiveDateAndTime : nuint32;
 lastArchiverID : nuint32;
 updateDateAndTime : nuint32;
 lastUpdatorID : nuint32;
 dataForkSize : nuint32;
 dataForkFirstFAT : nuint32;
 nextTrusteeEntry : nuint32;
 reserved : Array[0..35] Of nuint8;
 inheritedRightsMask : nuint16;
 lastAccessDate : nuint16;
 deletedFileTime : nuint32;
 deletedDateAndTime : nuint32;
 deletorID : nuint32;
 reserved2 : Array[0..15] Of nuint8;
 otherForkSize : Array[0..1] Of nuint32
 End;

Fields

sequence

Specifies the sequence for iteratively scanning entries (-1 initially).

parent

Specifies the directory entry ID of parent directory.

attributes

Specifies the attributes of the entry.

uniqueID

Specifies the unique entry ID.

flags

Is reserved.

nameSpace

Specifies the name space creating the entry.

nameLength

Specifies the maximum number of characters in the name.

name

Specifies the entry name.

creationDateAndTime

Specifies when the entry was created.

ownerID

Specifies the object ID of the owner.

lastArchiveDateAndTime

Specifies when the entry was last archived.

lastArchiverID

File Service Group

File System: Structures 545

Specifies the ID of the object last archiving the entry.

updateDateAndTime

Specifies the date and time when the entry was last modified.

lastUpdatorID

Specifies the ID of the object that last modified the entry.

dataForkSize

Specifies the number of bytes in the file.

dataForkFirstFAT

nextTrusteeEntry

Specifies the next trustee of the entry.

reserved

Is reserved.

inheritedRightsMask

Specifies the Inherited Rights Mask for the entry.

lastAccessDate

Specifies the date when the entry was last accessed.

deletedFileTime

Specifies the time when the file was deleted.

deletedDateAndTime

Specifies the date and time when the entry was deleted.

deletorID

Specifies the ID of the object deleting the entry.

reserved2

Is reserved.

otherForkSize

Remarks

The attributes field can have the following values:

C Value Pascal
Value

Value Name

0x0000000
0L

$0000000
0

A_NORMAL

0x0000000
1L

$0000000
1

A_READ_ONLY

0x0000000
2L

$0000000
2

A_HIDDEN

File Service Group

File System: Structures 546

0x0000000
4L

$0000000
4

A_SYSTEM

0x0000000
8L

$0000000
8

A_EXECUTE_ONLY

0x0000001
0L

$0000001
0

A_DIRECTORY

0x0000002
0L

$0000002
0

A_NEEDS_ARCHIVED

0x0000008
0L

$0000008
0

A_SHAREABLE

0x0000100
0L

$0000010
0

A_TRANSACTIONAL

0x0000200
0L

$0000020
0

A_INDEXED

0x0000400
0L

$0000040
0

A_READ_AUDIT

0x0000800
0L

$0000080
0

A_WRITE_AUDIT

0x0001000
0L

$0000100
0

A_IMMEDIATE_PURGE

0x0002000
0L

$0000200
0

A_RENAME_INHIBIT

0x0004000
0L

$0000400
0

A_DELETE_INHIBIT

0x0008000
0L

$0000800
0

A_COPY_INHIBIT

0x0040000
0L

$0040000
0

A_FILE_MIGRATED

0x0080000
0L

$0080000
0

A_DONT_MIGRATE

0x0200000
0L

$0200000
0

A_IMMEDIATE_COMPRESS

0x0400000
0L

$0400000
0

A_FILE_COMPRESSED

0x0800000
0L

$0800000
0

A_DONT_COMPRESS

0x2000000
0L

$2000000
0

A_CANT_COMPRESS

The nameSpace field can have the following values:

0 NW_NS_DOS

1 NW_NS_MAC

File Service Group

File System: Structures 547

2 NW_NS_NFS

3 NW_NS_FTAM

4 NW_NS_OS2

4 NW_NS_LONG

The inheritedRightsMask field can have the following values:

C
Value

Pasca
l
Valu
e

Value Description

0x000
0

$000
0

TR_NONE

0x000
1

$000
1

TR_READ

0x000
2

$000
2

TR_WRITE

0x000
4

$000
4

TR_OPEN

0x000
4

$000
4

TR_DIRECTORY

0x000
8

$000
8

TR_CREATE

0x001
0

$001
0

TR_DELETE

0x001
0

$001
0

TR_ERASE

0x001
0

$002
0

TR_OWNERSHIP

0x002
0

$002
0

TR_ACCESS_CTRL

0x004
0

$004
0

TR_FILE_SCAN

0x004
0

$004
0

TR_SEARCH

0x004
0

$004
0

TR_FILE_ACCESS

0x008
0

$008
0

TR_MODIFY

0x01F
B

$01F
B

TR_ALL

0x010
0

$010
0

TR_SUPERVISOR

0x00F $00F TR_NORMAL

File Service Group

File System: Structures 548

B B

File Service Group

File System: Structures 549

NW_FILE_INFO2

Holds file information

Service: File System

Defined In: nwfile.h

Structure

typedef struct {
 nuint8 fileAttributes;
 nuint8 extendedFileAttributes;
 nuint32 fileSize;
 nuint16 creationDate;
 nuint16 lastAccessDate;
 nuint32 lastUpdateDateAndTime;
 nuint32 fileOwnerID;
 nuint32 lastArchiveDateAndTime;
 nstr8 fileName[260];
} NW_FILE_INFO2;

Pascal Structure

Defined in nwfile.inc

NW_FILE_INFO2 = Record
 fileAttributes : nuint8;
 extendedFileAttributes : nuint8;
 fileSize : nuint32;
 creationDate : nuint16;
 lastAccessDate : nuint16;
 lastUpdateDateAndTime : nuint32;
 fileOwnerID : nuint32;
 lastArchiveDateAndTime : nuint32;
 fileName : Array[0..259] Of nstr8
 End;

Fields

fileAttributes

Specifies the following file attributes.

extendedFileAttributes

Specifies the following file extended attributes:

fileSize

Specifies the size of the file.

creationDate

Specifies when the file was created.

File Service Group

File System: Structures 550

Specifies when the file was created.

lastAccessDate

Specifies when the file was last accessed.

lastUpdateDateAndTime

Specifies when the file was last updated.

fileOwnerID

Specifies the object ID of the owner.

lastArchiveDateAndTime

Specifies when the file was last archived.

fileName

Specifies the name of the file (long names are supported).

Remarks

The fileAttributes field can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY

0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED

0x80 $80 FA_SHAREABLE

The extendedFileAttributes field can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x10 $10 FA_TRANSACTIONAL

0x20 $20 FA_INDEXED

0x40 $40 FA_READ_AUDIT

0x80 $80 FA_WRITE_AUDIT

File Service Group

File System: Structures 551

NW_LIMIT_LIST

Returns disk space information about the restrictions along the directory
path

Service: File System

Defined In: nwdirect.h

Structure

typedef struct {
 nuint8 numEntries;
 struct {
 nuint8 level;
 nuint32 max;
 nuint32 current;
 } list[102];
} NW_LIMIT_LIST

Pascal Structure

Defined in nwdirect.inc

 NW_LIMIT_LIST = Record
 numEntries : nuint8;
 list : Array[0..101] Of listTag;
 End;
 listTag = Record
 level : nuint8;
 max : nuint32;
 current : nuint32
 End;

Fields

numEntries

Specifies the number of entries returned in the structure.

level

Specifies the distance from the directory to the root for each entry.

max

Specifies the maximum amount of space assigned to a directory for
each entry.

current

Specifies the amount of space assigned to a directory minus the
amount of space used by a directory and its subdirectories for each
entry.

File Service Group

File System: Structures 552

Remarks

If the max field for a directory is 0x7FFFFFFF, there is no restriction for
the entry. If the max field is greater than 0x7FFFFFFF, the limit is zero.
The same is true for the current field. The max and current fields are
allowed to be negative so a valid space-in-use value may be calculated.

The space-in-use value can be calculated by subtracting the value of the
current field from the value of the max field.

File Service Group

File System: Structures 553

NWDIR_INFO

Defines entry information for directories

Service: File System

Defined In: nwdentry.h

Structure

typedef struct {
 nuint32 lastModifyDateAndTime;
 nuint32 nextTrusteeEntry;
 nuint8 reserved[48];
 nuint32 maximumSpace;
 nuint16 inheritedRightsMask;
 nuint8 reserved2[14];
 nuint32 volObjectID;
 nuint8 reserved3[8];
} NWDIR_INFO;

Pascal Structure

 NWDIR_INFO = Record
 lastModifyDateAndTime : nuint32;
 nextTrusteeEntry : nuint32;
 reserved : Array[0..47] Of nuint8;
 maximumSpace : nuint32;
 inheritedRightsMask : nuint16;
 reserved2 : Array[0..13] Of nuint8;
 volObjectID : nuint32;
 reserved3 : Array[0..7] Of nuint8
 End;

Fields

lastModifyDateAndTime

Specifies when the directory was last updated.

nextTrusteeEntry

Specifies the next trustee entry in the subdirectory.

reserved

Is reserved.

maximumSpace

Specifies the maximum space available in the subdirectory.

inheritedRightsMask

Specifies the Inherited Rights Mask.

File Service Group

File System: Structures 554

reserved2

Is reserved.

volObjectID

Specifies the volume object ID.

reserved3

Is reserved.

Remarks

The inheritedRightsMask field can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Description

0x00
00

$000
0

TR_NONE

0x00
01

$000
1

TR_READ

0x00
02

$000
2

TR_WRITE

0x00
04

$000
4

TR_OPEN

0x00
04

$000
4

TR_DIRECTORY

0x00
08

$000
8

TR_CREATE

0x00
10

$001
0

TR_DELETE

0x00
10

$001
0

TR_ERASE

0x00
20

$002
0

TR_OWNERSHIP

0x00
20

$002
0

TR_ACCESS_CTRL

0x00
40

$004
0

TR_FILE_SCAN

0x00
40

$004
0

TR_SEARCH

0x00
40

$004
0

TR_FILE_ACCESS

0x00
80

$008
0

TR_MODIFY

File Service Group

File System: Structures 555

80 0

0x01
FB

$01F
B

TR_ALL

0x01
00

$010
0

TR_SUPERVISOR

0x00
FB

$00F
B

TR_NORMAL

File Service Group

File System: Structures 556

NWENTRY_INFO

Defines directory entry information

Service: File System

Defined In: nwdentry.h

Structure

typedef struct {
 nuint32 sequence;
 nuint32 parent;
 nuint32 attributes;
 nuint8 uniqueID;
 nuint8 flags;
 nuint8 nameSpace;
 nuint8 nameLength;
 nuint8 name[12];
 nuint32 creationDateAndTime;
 nuint32 ownerID;
 nuint32 lastArchiveDateAndTime;
 nuint32 lastArchiverID;
 union {
 NWFILE_INFO file;
 NWDIR_INFO dir;
 } info;
} NWENTRY_INFO;

Pascal Structure

Defined in nwdentry.inc

 NWENTRY_INFO = Record
 sequence : nuint32;
 parent : nuint32;
 attributes : nuint32;
 uniqueID : nuint8;
 flags : nuint8;
 nameSpace : nuint8;
 nameLength : nuint8;
 name : Array[0..11] Of nuint8;
 creationDateAndTime : nuint32;
 ownerID : nuint32;
 lastArchiveDateAndTime : nuint32;
 lastArchiverID : nuint32;
 dir : NWDIR_INFO
 End;

Fields

File Service Group

File System: Structures 557

sequence

Specifies the sequence for iteratively scanning entries (-1 initially).

parent

Specifies the directory handle to parent directory.

attributes

Specifies the entry attributes.

uniqueID

Specifies the unique entry ID.

flags

Is reserved.

nameSpace

Specifies the name space creating the entry.

nameLength

Specifies the length of the name field.

name

Specifies the entry name.

creationDateAndTime

Specifies when the entry was created.

ownerID

Specifies the object ID of the owner.

lastArchiveDateAndTime

Specifies when the entry was last archived.

lastArchiverID

Specifies the ID of the object last archiving the entry.

Remarks

The attributes field can have the following values:

C Value Pascal
Value

Value Name

0x000000
00L

$000000
00

A_NORMAL

0x000000
01L

$000000
01

A_READ_ONLY

0x000000
02L

$000000
02

A_HIDDEN

0x000000 $000000 A_SYSTEM

File Service Group

File System: Structures 558

04L 04

0x000000
08L

$000000
08

A_EXECUTE_ONLY

0x000000
10L

$000000
10

A_DIRECTORY

0x000000
20L

$000000
20

A_NEEDS_ARCHIVED

0x000000
80L

$000000
80

A_SHAREABLE

0x000010
00L

$000010
00

A_TRANSACTIONAL

0x000020
00L

$000020
00

A_INDEXED

0x000040
00L

$000040
00

A_READ_AUDIT

0x000080
00L

$000080
00

A_WRITE_AUDIT

0x000100
00L

$000100
00

A_IMMEDIATE_PURGE

0x000200
00L

$000200
00

A_RENAME_INHIBIT

0x000400
00L

$000400
00

A_DELETE_INHIBIT

0x000800
00L

$000800
00

A_COPY_INHIBIT

0x004000
00L

$004000
00

A_FILE_MIGRATED

0x008000
00L

$008000
00

A_DONT_MIGRATE

0x020000
00L

$020000
00

A_IMMEDIATE_COMPRESS

0x040000
00L

$040000
00

A_FILE_COMPRESSED

0x080000
00L

$080000
00

A_DONT_COMPRESS

0x200000
00L

$200000
00

A_CANT_COMPRESS

The nameSpace field can have the following values:

0 NW_NS_DOS

1 NW_NS_MAC

2 NW_NS_NFS

3 NW_NS_FTAM

File Service Group

File System: Structures 559

3 NW_NS_FTAM

4 NW_NS_OS2

4 NW_NS_LONG

File Service Group

File System: Structures 560

NWET_INFO

Returns directory entry trustee information

Service: File System

Defined In: nwdentry.h

Structure

typedef struct {
 nstr8 entryName[16];
 nuint32 creationDateAndTime;
 nuint32 ownerID;
 nuint32 sequenceNumber;
 TRUSTEE_INFO trusteeList[20];
} NWET_INFO;

Pascal Structure

Defined in nwdentry.inc

NWET_INFO = Record
 entryName : Array[0..15] Of nstr8;
 creationDateAndTime : nuint32;
 ownerID : nuint32;
 sequenceNumber : nuint32;
 trusteeList : Array[0..19] Of TRUSTEE_INFO
 End;

Fields

entryName

Specifies the name of the entry (directory or file).

creationDateAndTime

Specifies the date and time when the entry was created.

ownerID

Specifies the ID of the owner for the entry.

sequenceNumber

Specifies the sequence for iteratively scanning entries.

trusteeList

Specifies an array of up to 20 TRUSTEE_INFO structures.

File Service Group

File System: Structures 561

NWFILE_INFO

Defines entry information for files

Service: File System

Defined In: nwdentry.h

Structure

typedef struct {
 nuint32 updateDateAndTime;
 nuint32 updatorID;
 nuint32 fileSize;
 nuint8 reserved[44];
 nuint16 inheritedRightsMask;
 nuint16 lastAccessDate;
 nuint8 reserved2[28];
} NWFILE_INFO;

Pascal Structure

Defined in nwdentry.inc

 NWFILE_INFO = Record
 updateDateAndTime : nuint32;
 updatorID : nuint32;
 fileSize : nuint32;
 reserved : Array[0..43] Of nuint8;
 inheritedRightsMask : nuint16;
 lastAccessDate : nuint16;
 reserved2 : Array[0..27] Of nuint8
 End;

Fields

updateDateAndTime

Specifies when the file was last updated.

updatorID

Specifies the ID of the object that last updated the file.

fileSize

Specifies the size of the file.

reserved

Is reserved.

inheritedRightsMask

Specifies the Inherited Rights Mask for the file.

File Service Group

File System: Structures 562

lastAccessDate

Specifies when the file was last accessed

reserved2

Is reserved.

Remarks

The inheritedRightsMask field can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Description

0x00
00

$000
0

TR_NONE

0x00
01

$000
1

TR_READ

0x00
02

$000
2

TR_WRITE

0x00
04

$000
4

TR_OPEN

0x00
04

$000
4

TR_DIRECTORY

0x00
08

$000
8

TR_CREATE

0x00
10

$001
0

TR_DELETE

0x00
10

$001
0

TR_ERASE

0x00
20

$002
0

TR_OWNERSHIP

0x00
20

$002
0

TR_ACCESS_CTRL

0x00
40

$004
0

TR_FILE_SCAN

0x00
40

$004
0

TR_SEARCH

0x00
40

$004
0

TR_FILE_ACCESS

0x00
80

$008
0

TR_MODIFY

0x01
FB

$01F
B

TR_ALL

File Service Group

File System: Structures 563

0x01
00

$010
0

TR_SUPERVISOR

0x00
FB

$00F
B

TR_NORMAL

File Service Group

File System: Structures 564

OPEN_FILE_CONN

Returns information about the open files for a connection

Service: File System

Defined In: nwfile.h

Structure

typedef struct {
 nuint16 taskNumber;
 nuint8 lockType;
 nuint8 accessControl;
 nuint8 lockFlag;
 nuint8 volNumber;
 nuint32 parent;
 nuint32 dirEntry;
 nuint8 forkCount;
 nuint8 nameSpace;
 nuint8 nameLen;
 nstr8 fileName[255];
} OPEN_FILE_CONN;

Pascal Structure

Defined in nwfile.inc

 OPEN_FILE_CONN = Record
 taskNumber : nuint16;
 lockType : nuint8;
 accessControl : nuint8;
 lockFlag : nuint8;
 volNumber : nuint8;
 parent : nuint32;
 dirEntry : nuint32;
 forkCount : nuint8;
 nameSpace : nuint8;
 nameLen : nuint8;
 fileName : Array[0..254] Of nstr8
 End;

Fields

taskNumber

Specifies the number of the task which has this file opened (each file
can have multiple task numbers).

lockType

Specifies how the file is locked.

File Service Group

File System: Structures 565

accessControl

Specifies how the file is being accessed.

lockFlag

Specifies whether the file is locked.

volNumber

Specifies the volume number (SYS is always 0).

parent

Specifies the ID number for the parent directory.

dirEntry

Specifies the directory entry number.

forkCount

Specifies the number of forks associated with the file.

nameSpace

Specifies the name space creating the file.

nameLen

Specifies the number of bytes in the filename.

fileName

Specifies the name of file (long names are supported).

Remarks

The first four fields contain information similar to their counterparts in
the CONN_USING_FILE structure. The remaining fields identify the file
and its name space.

The lockType field can have the following values:

0x01 Locked

0x02 Open shareable

0x04 Logged

0x08 Open Normal

0x40 TTS holding

0x80 Transaction flag set

The accessControl field can have the following values:

0x01 Open for read by this client

0x02 Open for write by this client

0x04 Deny read requests from others

0x08 Deny write requests from others

0x10 File detached

0x20 TTS holding detach

0x40 TTS holding open

File Service Group

File System: Structures 566

The lockFlag field can have the following values:

0x00 Not locked

0xFE Locked by a file lock

0xFF Locked by begin share file set

The nameSpace field can have the following values:

0 NW_NS_DOS

1 NW_NS_MAC

2 NW_NS_NFS

3 NW_NS_FTAM

4 NW_NS_OS2

4 NW_NS_LONG

File Service Group

File System: Structures 567

OPEN_FILE_CONN_CTRL

Returns a list of files a specified connection has open

Service: File System

Defined In: nwfile.h

Structure

typedef struct {
 nuint16 nextRequest;
 nuint16 openCount;
 nuint8 buffer[512];
 nuint16 curRecord;
} OPEN_FILE_CONN_CTRL;

Pascal Structure

Defined in nwfile.inc

OPEN_FILE_CONN_CTRL = Record
 nextRequest : nuint16;
 openCount : nuint16;
 buffer : Array[0..511] Of nuint8;
 curRecord : nuint16
 End;

Fields

nextRequest

Specifies an iterator.

openCount

Specifies the number of OPEN_FILE_CONN structures contained in
the buffer field.

buffer

Specifies the returnedOPEN_FILE_CONN structure.

curRecord

Specifies the offset in the buffer field of the next record to return and is
used internally by the NWScanOpenFilesByConn2 function to track
the next record to return in the OPEN_FILE_CONN structure.

File Service Group

File System: Structures 568

PARAMETER_TABLE_TYPE

Service: File System

Defined In: nwconfig.h

Structure

typedef union {
 char N_FAR *string;
 unsigned int number;
 unsigned long longNumber;
} PARMETER_TABLE_TYPE;

Fields

string

number

longNumber

File Service Group

File System: Structures 569

SEARCH_DIR_INFO

Service: File System

Defined In: nwfile.h

Structure

typedef struct {
 nuint16 sequenceNumber;
 nuint16 reserved1;
 nstr8 directoryName[15];
 nuint8 directoryAttributes;
 nuint8 directoryAccessRights;
 nuint16 createDate;
 nuint16 createTime;
 nuint32 owningObjectID:
 nuint16 reserved2;
 nuint16 directoryStamp;
} SEARCH_DIR_INFO;

Pascal Structure

Defined in nwfile.inc

SEARCH_DIR_INFO = Record
 sequenceNumber : nuint16;
 reserved1 : nuint16;
 directoryName : Array[0..14] Of nstr8;
 directoryAttributes : nuint8;
 directoryAccessRights : nuint8;
 createDate : nuint16;
 createTime : nuint16;
 owningObjectID : nuint32;
 reserved2 : nuint16;
 directoryStamp : nuint16
 End;

Fields

sequenceNumber

Is reserved.

reserved1

Is reserved.

directoryName

Specifies the short name of the directory.

directoryAttributes

File Service Group

File System: Structures 570

Specifies the attributes for the directory.

directoryAccessRights

Specifies the access rights.

createDate

Specifies the time the directory was created.

createTime

Specifies the date the directory was created.

owningObjectID

Specifies the ID of the object owning the directory.

reserved2

Is reserved.

directoryStamp

Specifies 0xD1D1 when returned.

Remarks

The directoryAttributes field can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x10 $10 FA_DIRECTORY

FA_DIRECTORY will always be in the bit mask for a directory.

The directoryAccessRights field can have the following values:

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 TA_NONE

0x01 $01 TA_READ

0x02 $02 TA_WRITE

0x04 $04 TA_OPEN Obsolete in 3.x and above.

File Service Group

File System: Structures 571

0x08 $08 TA_CREATE

0x10 $10 TA_DELETE

0x20 $20 TA_OWNERSHIP

0x40 $40 TA_SEARCH

0x80 $80 TA_MODIFY

0xFB $FB TA_ALL

File Service Group

File System: Structures 572

SEARCH_FILE_INFO

Service: File System

Defined In: nwfile.h

Structure

typedef struct {
 nuint16 sequenceNumber;
 nuint16 reserved;
 nstr8 fileName[15];
 nuint8 fileAttributes;
 nuint8 fileMode;
 nuint32 fileLength;
 nuint16 createDate;
 nuint16 accessDate;
 nuint16 updateDate;
 nuint16 updateTime;
} SEARCH_FILE_INFO;

Pascal Structure

SEARCH_FILE_INFO = Record
 sequenceNumber : nuint16;
 reserved : nuint16;
 fileName : Array[0..14] Of nstr8;
 fileAttributes : nuint8;
 fileMode : nuint8;
 fileLength : nuint32;
 createDate : nuint16;
 accessDate : nuint16;
 updateDate : nuint16;
 updateTime : nuint16
 End;

Fields

sequenceNumber

Is reserved.

reserved

Is reserved.

fileName

Specifies the short name of the file.

fileAttributes

Specifies the attributes for the file.

File Service Group

File System: Structures 573

fileMode

Specifies the access rights.

fileLength

Specifies the size of the file in bytes.

createDate

Specifies the date when the file was created.

accessDate

Specifies the date when the file was last accessed.

updateDate

Specifies the date when the file was last modified.

updateTime

Specifies the time when the file was last modified.

Remarks

The fileAttributes field can have the following values (may be ORed):

C
Valu
e

Pasca
l
Valu
e

Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY

0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED

0x80 $80 FA_SHAREABLE

The fileMode field can have the following values:

0x01 Open for read by this client

0x02 Open for write by this client

0x04 Deny read requests from others

0x08 Deny write requests from others

0x10 File detached

0x20 TTS holding detach

0x40 TTS holding open

File Service Group

File System: Structures 574

SetTableStruct

Service: File System

Defined In: nwconfig.h

Structure

typedef struct {
 int numberOfElements;
 int *elementCode;
 char N_FAR *N_FAR *elementName;
 int N_FAR *elementValue;
} SetTableStruct;

Fields

numberOfElements

Specifies the number of set elements for which the parser should look.

elementCode

Is reserved.

elementName

Points to a character array containing the string for which to look.

elementValue

Points to an array of integers.

Remarks

The corresponding entry which is matched by the elementName field will
be used as the value for the elementValue field.

File Service Group

File System: Structures 575

stat (Structure)

Holds information about the status of a file or directory

Service: File System

Defined In: sys\stat.h

Structure

struct stat {
 dev_t st_dev;
 ino_t st_ino;
 unsigned short st_mode;
 short st_nlink;
 unsigned long st_uid;
 short st_gid;
 dev_t st_rdev;
 off_t st_size;
 time_t st_atime;
 time_t st_mtime;
 time_t st_ctime;
 time_t st_btime;
 unsigned long st_attr;
 unsigned long st_archievedID;
 unsigned long st_updatedID;
 unsigned short st_inheritedRightsMask;
 unsigned char st_originatingNameSpace;
 unsigned char st_name[255+1];
 size_t st_blksize;
 size_t st_blocks;
 unsigned int st_flags;
 unsigned long st_spare[4];
};

Fields

st_dev

Specifies the volume number.

st_ino

Specifies the directory entry of the st_name.

st_mode

Specifies the emulated file mode.

st_nlink

Specifies the count of hard links (always 1).

d_ino

Specifies the object ID of the owner.

File Service Group

File System: Structures 576

st_gid

Specifies the group ID (always 0).

st_rdev

Specifies the device type (always 0).

off_t

Specifies the total file size (files only).

st_atime

Specifies the last access date (files only) in calendar time (seconds
since the Jan.1, 1970 (UTC)).

st_mtime

Specifies the last modify date and time in calendar time.

st_ctime

POSIX: Specifies the last status change time in calendar time.

st_attr

Specifies the file attribute as defined in NWFATTR.H.

st_archivedID

Specifies the user/object ID of the last archive.

st_updatedID

Specifies the user/object ID of the last update.

st_inheritiedRightsMask

Specifies the NDS inherited rights mask.

st_originatingNameSpace

Specifies the namespace of creation.

st_name

Specifies the target namespace.

st_blksize

Specifies the block size for allocation (files only).

st_blocks

Specifies the count of blocks allocated to the file.

st_flags

Specifies user-defined flags.

st_name

Is reserved.

File Service Group

File System: Structures 577

TRUSTEE_INFO

Contains a directory trustee with the object rights

Service: File System

Defined In: nwdirect.h

Structure

typedef struct {
 nuint32 objectID;
 nuint16 objectRights;
} TRUSTEE_INFO;

Pascal Structure

 TRUSTEE_INFO = Record
 objectID : nuint32;
 objectRights : nuint16
 End;

Fields

objectID

Specifies the ID of the object.

objectRights

Specifies the rights the object has on a directory.

File Service Group

File System: Structures 578

TypeDefaultStruct

Service: File System

Defined In: nwconfig.h

Structure

typedef struct {
 int paramType;
 long defaultValue;
} TypeDefaultStruct;

Fields

paramType

defaultValue

File Service Group

File System: Structures 579

VOLUME_STATS

Holds volume information

Service: File System

Defined In: nwdir.h

Structure

typedef struct tagVOLUME_STATS {
 long systemElapsedTime;
 BYTE volumeNumber;
 BYTE logicalDriveNumber;
 WORD sectorsPerBlock;
 long startingBlock;
 WORD totalBlocks;
 WORD availableBlocks;
 WORD totalDirectorySlots;
 WORD availableDirecotrySlots;
 WORD maxDirectorySlotsUsed;
 BYTE isHashing;
 BYTE isRemovable;
 BYTE isMounted;
 char volumeName[17];
 LONG purgableBlocks;
 LONG notyetPurgableBlocks;
} VOLUME_STATS;

Defined In

nwdir.h

Fields

systemElapsedTime

Specifies the time in seconds since the system was brought up.

volumeNumber

Specifies the volume number (same as the Volume Table number for
the server).

logicalDriveNumber

Specifies the logical drive number.

sectorsPerBlock

Specifies the number of 512-byte sectors in a block for the volume.

startingBlock

Specifies the starting block of the volume.

File Service Group

File System: Structures 580

totalBlocks

Specifies the total number of blocks in the volume.

availableBlocks

Specifies the number of available blocks on the volume.

totalDirectorySlots

Specifies the total number of directory slots on the volume.

availableDirectorySlots

Specifies the number of available directory slots on the volume.

maxDirectorySlotsUsed

Specifies the maximum number of directory slots used on the volume.

isHashing

Specifies whether the volume is hashing.

isRemovable

Specifies whether the volume is removable (always non-zero for
NetWare 3.x and 4.x):

non-zero Volume can be removed

0x00 Volume cannot be removed

isMounted

Specifies whether the volume is mounted.

volumeName

Specifies the volume name (2-15 characters plus the NULL
terminator).

purgableBlocks

Specifies the number of purgeable blocks

notYetPurgableBlocks

Specifies the number of blocks not yet purgeable.

Remarks

The volumeName field cannot contain spaces or the following characters:

* Asterisk

? Question mark

: Colon

Slash

Backslash

File Service Group

File System: Structures 581

VOLUME_INFO

Contains volume information

Service: File System

Defined In: nwdir.h

Structure

typedef struct tagVOLUME_INFO {
 long systemElapsedTime;
 BYTE volumeNumber;
 BYTE logicalDriveNumber;
 WORD sectorsPerBlock;
 short startingBlock;
 LONG totalBlocks;
 LONG availableBlocks;
 LONG totalDirectorySlots;
 LONG availableDirecotrySlots;
 BYTE isHashing;
 BYTE isRemovable;
 BYTE isMounted;
 char volumeName[17];
 LONG purgableBlocks;
 LONG notyetPurgableBlocks;
} VOLUME_INFO;

Fields

systemElapsedTime

Specifies the time in seconds since the system was brought up.

volumeNumber

Specifies the volume number (same as the Volume Table number).

logicalDriveNumber

Specifies the logical drive number.

sectorsPerBlock

Specifies the number of 512-byte sectors in a block for the volume.

startingBlock

Specifies the starting block of the volume.

totalBlocks

Specifies the total number of blocks in the volume.

availableBlocks

Specifies the number of available blocks on the volume.

totalDirectorySlots

File Service Group

File System: Structures 582

Specifies the total number of directory slots on the volume.

availableDirectorySlots

Specifies the number of available directory slots on the volume.

isHashing

Specifies whether the volume is hashing.

isRemovable

Specifies whether the volume is removable (always non-zero for
NetWare 3.x and 4.x):

non-zero Volume can be removed

0x00 Volume cannot be removed

isMounted

Specifies whether the volume is mounted.

volumeName

Specifies the volume name (2-15 characters plus the NULL
terminator).

purgableBlocks

Specifies the number of purgeable blocks

notYetPurgableBlocks

Specifies the number of blocks not yet purgeable.

Remarks

The volumeName field cannot contain spaces or the following characters:

* Asterisk

? Question mark

: Colon

Slash

Backslash

File Service Group

File System: Structures 583

File System Monitoring

File Service Group

 584

File System Monitoring: Guides

File System Monitoring: General Guide

File System Monitoring Introduction

Registering for Callback

Potential Uses

Writing a File System Monitor NLM

File System Monitoring Functions

Additional Links

File System Monitoring: Functions

File System Monitoring: Structures

Parent Topic:

File Overview

File System Monitoring: Task Guide

Writing a File System Monitor NLM

Additional Links

File System Monitoring: Functions

File System Monitoring: Structures

Parent Topic:

File System Monitoring: Guides

File System Monitoring: Concept Guide

File System Monitoring Introduction

Registering for Callback

Pre-Execution and Post-Execution Monitoring

File Service Group

File System Monitoring: Guides 585

The Monitoring Function

Pre-Execution Callbacks

Post-Execution Callbacks

Callback Structures

Potential Uses

Hot Backup

Version Control

File System Monitoring Functions

Additional Links

File System Monitoring: Functions

File System Monitoring: Structures

Parent Topic:

File System Monitoring: Guides

Registering for Callback

The NetWare® OS transfers control to your NLM™ whenever it receives a
request from any of its clients for a function that you have registered for
monitoring. Control is transferred to a function in your NLM that has
restrictions imposed on it by the NetWare OS.

This "callback function" is required to have parameters that the OS is
expecting and can fill out. Your NLM or a system administrator can then use
the information passed to the callback function by the OS to decide what
action to take, if any, before or after the request is filled.

It's as if, when you call NWAddFSMonitorHook, your NLM is given a
window through which the NetWare OS looks at every request for a file
system function that you have registered for monitoring. Your NLM can
then test each one against a selected set of conditions, such as the presence
of a virus. In the event your NLM detects something suspicious, it can alter
or fail the request or make a record of it for the system administrator to act
upon later.

Pre-Execution and Post-Execution Monitoring

The Monitoring Function

Callback Structures

Parent Topic:

File Service Group

File System Monitoring: Guides 586

File System Monitoring: Guides

The Monitoring Function

What your monitoring function returns depends on whether it is a
pre-execution callback or a post-execution callback (see "Pre-Execution and
Post-Execution Monitoring").

Pre-Execution Callbacks

Post-Execution Callbacks

Parent Topic:

Registering for Callback

Potential Uses

Novell® originally created File System Monitoring to fill a demand for a
virus detection/protection hook. Because viruses can infect mission-critical
files, this is a vitally important use of the service, but not the only one. File
System Monitoring could also be used for any other network service that
relies on monitoring file system requests. A couple of these are hot backup
and version control.

Hot Backup

Version Control

Parent Topic:

File System Monitoring: Guides

File Service Group

File System Monitoring: Guides 587

File System Monitoring: Tasks

Writing a File System Monitor NLM

The four steps below are the essential parts of writing a file system monitor
NLM™. They are taken from the example NLM, FSHOOK.C, in the
EXAMPLES directory.

1. Create your callback functions.

int openFileCallBackFunc(OpenFileCallBackStruct *ofcbs)
 static int cnt = 0;
 char user[48];
 int ccode;
 WORD objType;
 long objID;
 BYTE loginTime[7];
 LONG pc;
 BYTE ps[255];
 BYTE volName[16];
 LONG prevThreadGroupID;
 prevThreadGroupID = SetThreadGroupID(mainThreadGroupID);
 ccode = GetConnectionInformation(ofcbs->connection, user,
 &objType,&objID, loginTime);
 if (ccode != 0)
 return 0xFF;
 printf("%dth OPEN request. by %s (connNum %d), ", ++cnt, user,
 ofcbs->connection);
 FEMapVolumeNumberToName(ofcbs->volume, volName);
 for (pc = 1; pc <= volName[0]; pc++)
 putchar(volName[pc]);
 putchar(':');
 FEMapVolumeAndDirectoryToPath(ofcbs->volume,
 ofcbs->dirBase, ps, &pc);
 if (ps[0])
 printNetWareStr(pc, ps);
 printNetWareStr(ofcbs->pathComponentCount, ofcbs->pathString);
 putchar('\n');
 SetThreadGroupID(prevThreadGroupID);
 return 0;
}

Registering your callback functions tells the OS to transfer control to
your NLM whenever a specified file system event is triggered. These
callback functions can be thought of as "windows" to the file system,
which are opened by calling NWAddFSMonitorHook.

File Service Group

File System Monitoring: Tasks 588

which are opened by calling NWAddFSMonitorHook.

The example callback function above, openFileCallBackFunc, receives
the OpenFileCallBackStruct pointer and prints out some of its field
values for informational purposes. These structures are defined in the
NWFSHOOK.H file. For example, the structure returned when the OS
opens a file (defined in NWFSHOOK.H) is shown below:

typedef struct {
 LONG connection;
 LONG task;
 LONG volume;
 LONG dirBase;
 BYTE *pathString;
 LONG pathComponentCount;
 LONG nameSpace;
 LONG attributeMatchbits;
 LONG requestedAccessRights;
 LONG dataStreamNumber;
} OpenFileCallBackStruct;

2. Begin monitoring.

 ccode = NWAddFSMonitorHook(FSHOOK_PRE_OPENFILE,
 openFileCallBackFunc, &preOpenFileHandle);
 if (ccode != 0)
 {
 printf("nwaddfsmonitorhook error. ccode: %#x, hook: openFile\n",
 ccode);
 }

By calling NWAddFSMonitorHook, register your callback functions
and start monitoring. In this case, the openFileCallBackFunc has been
registered to be called back after the OS executes the file opening
function (by specifying FSHOOK_POST_OPENFILE).

3. Wait for callbacks from the OS.

while (1)
 ThreadSwitchWithDelay(1000); //sleep forever.....until unloaded

Provide a mechanism, like sleeping forever (above), for keeping the
NLM inactive but loaded and ready to respond to a callback from the
OS.

4. Stop monitoring.

void ExitandRemoveMonitorHooks()
{
 NWRemoveFSMonitorHook(FSHOOK_PRE_OPENFILE, openFileCallBackFunc);
}

Deregister the callback by calling NWRemoveFSMonitorHook.

Parent Topic:

File Service Group

File System Monitoring: Tasks 589

File System Monitoring: Guides

File Service Group

File System Monitoring: Tasks 590

File System Monitoring: Concepts

Callback Structures

The following table summarizes the structures returned by file system
monitoring callbacks. Descriptions of all structures can be found in File
System Monitoring: Structures.

Table auto. File System Monitoring Callback Structures

Callback (before and after OS
Execution)

Structure returned by
Callback

FSHOOK_PRE_ERASEFILE

FSHOOK_POST_ERASEFILE

EraseFileCallBackStruct

FSHOOK_PRE_OPENFILE

FSHOOK_POST_OPENFILE

OpenFileCallBackStruct

FSHOOK_PRE_CREATEFILE

FSHOOK_POST_CREATEFILE

CreateFileCallBackStruct

FSHOOK_PRE_CREATE_OPENFILE

FSHOOK_POST_CREATE_OPENFIL
E

CreateAndOpenCallBackStru
ct

FSHOOK_PRE_RENAME_OR_MOVE

FSHOOK_POST_RENAME_OR_MOV
E

RenameMoveEntryCallBackSt
ruct

FSHOOK_PRE_CLOSEFILE

FSHOOK_POST_CLOSEFILE

CloseFileCallBackStruct

FSHOOK_PRE_CREATEDIR

FSHOOK_POST_CREATEDIR

CreateDirCallBackStruct

FSHOOK_PRE_DELETEDIR

FSHOOK_POST_DELETEDIR

DeleteDirCallBackStruct

FSHOOK_PRE_MODIFY_DIRENTRY

FSHOOK_POST_MODIFY_DIRENTR
Y

ModifyDirEntryCallBackStru
ct

FSHOOK_PRE_SALVAGE_DELETED

FSHOOK_POST_SALVAGE_DELETE
D

SalvageDeletedCallBackStruc
t

FSHOOK_PRE_PURGE_DELETED

FSHOOK_POST_PURGE_DELETED

PurgeDeletedCallBackStruct

File Service Group

File System Monitoring: Concepts 591

FSHOOK_PRE_RENAME_NS_ENTR
Y

FSHOOK_POST_RENAME_NS_ENT
RY

RenameNSEntryCallBackStru
ct

FSHOOK_PRE_GEN_
SALVAGE_DELETED

FSHOOK_POST_GEN_
SALVAGE_DELETED

GenericSalvageDeletedCBStr
uct

FSHOOK_PRE_GEN_PURGE_DELET
ED

FSHOOK_POST_GEN_PURGE_DELE
TED

GenericPurgeDeletedCBStruc
t

FSHOOK_PRE_GEN_OPEN_CREATE

FSHOOK_POST_GEN_OPEN_CREA
TE

GenericOpenCreateCBStruct

FSHOOK_PRE_GEN_RENAME

FSHOOK_POST_GEN_RENAME

GenericRenameCBStruct

FSHOOK_PRE_GEN_ERASEFILE

FSHOOK_POST_GEN_ERASEFILE

GenericEraseFileCBStruct

FSHOOK_PRE_GEN_MODIFY_
DOS_INFO

FSHOOK_POST_GEN_MODIFY_DOS
_INFO

GenericModifyDOSInfoCBStr
uct

FSHOOK_PRE_GEN_MODIFY_NS_I
NFO

FSHOOK_POST_GEN_MODIFY_NS_
INFO

GenericModifyNSInfoCBStru
ct

Parent Topic:

Registering for Callback

Related Topics:

Pre-Execution and Post-Execution Monitoring

The Monitoring Function

File System Monitoring Functions

Function Purpose

NWAddFSMonitorHook Begin monitoring the file system

NWRemoveFSMonitorH
ook

Stop monitoring the file system

File Service Group

File System Monitoring: Concepts 592

Parent Topic:

File System Monitoring: Guides

File System Monitoring Introduction

File System Monitoring allows your NLM™ application to "hook" the file
system functions that correspond to the list below. Before any of these
functions that your NLM has registered for callback are executed by the
NetWare® OS, your NLM has the option of changing it, failing it, or simply
making a record of its execution.

file erasing

file opening

file creating

file creating/opening

file renaming/moving

file closing

directory creating

directory deleting

directory entry modification

salvaging

purging

name space entry renaming

generic salvaging

generic purging

generic opening/creating

generic renaming

generic file erasing

generic DOS information modification

generic name space information modification

Parent Topic:

File Service Group

File System Monitoring: Concepts 593

File System Monitoring: Guides

Hot Backup

A hot backup NLM™ could register functions that create and modify files,
putting the results in a special log file. Then, from time to time, it could back
up all the new material to a specified medium. This would eliminate the
need for humanly-executed backup.

Parent Topic:

Potential Uses

Related Topics:

Version Control

Post-Execution Callbacks

If you are registering a post-execution function, it should return 2
parameters, a pointer to the structure returned for the OS function and a
completion code indicating whether or not the OS function completed
successfully.

NOTE: The post-execution callback function must not sleep, because
the fields in the return structure are subject to change.

Parent Topic:

The Monitoring Function

Related Topics:

Pre-Execution Callbacks

Pre-Execution and Post-Execution Monitoring

When registering a callback function, you specify in the callBackNumber
parameter whether the callback is made before or after the OS executes the
function. Possible values for the callBackNumber include both a "pre" and
"post" version for every OS function that can be monitored. The "pre"
versions callback to your function before the OS function executes, whereas
the "post" versions callback to your function after the OS function executes.
If the callback occurs before the OS executes the function, your NLM™ can
fail that function. Call NWAddFSMonitorHook once for each function you
want to be monitored.

The name space entry changing hooks and all generic hooks are used for
monitoring functions called from other than DOS clients. These non-DOS

File Service Group

File System Monitoring: Concepts 594

hooks are supported only on NetWare® versions 3.12 and higher, while the
remaining hooks are also supported on version 3.11. The following table
lists the values for callBackNumber for each OS function.

Table auto. Values for callBackNumber

OS
Function
to
Monitor

Callback before OS
Execution

Callback after OS Execution

file
erasing

FSHOOK_PRE_ERASEFIL
E

FSHOOK_POST_ERASEFIL
E

file
opening

FSHOOK_PRE_OPENFILE FSHOOK_POST_OPENFILE

file
creating

FSHOOK_PRE_CREATEFI
LE

FSHOOK_POST_CREATEFI
LE

file
creating/
opening

FSHOOK_PRE_CREATE_
OPENFILE

FSHOOK_POST_CREATE_
OPENFILE

file
renaming
/moving

FSHOOK_PRE_RENAME_
OR_MOVE

FSHOOK_POST_RENAME_
OR_MOVE

file
closing

FSHOOK_PRE_CLOSEFIL
E

FSHOOK_POST_CLOSEFIL
E

directory
creating

FSHOOK_PRE_CREATED
IR

FSHOOK_POST_CREATEDI
R

directory
deleting

FSHOOK_PRE_DELETEDI
R

FSHOOK_POST_DELETEDI
R

directory
entry
modificati
on

FSHOOK_PRE_MODIFY_
DIRENTRY

FSHOOK_POST_MODIFY_
DIRENTRY

salvaging FSHOOK_PRE_SALVAGE
_DELETED

FSHOOK_POST_SALVAGE
_DELETED

purging FSHOOK_PRE_PURGE_D
ELETED

FSHOOK_POST_PURGE_D
ELETED

name
space
entry
renaming

FSHOOK_PRE_RENAME_
NS_ENTRY

FSHOOK_POST_RENAME_
NS_ENTRY

generic
salvaging

FSHOOK_PRE_GEN_
SALVAGE_DELETED

FSHOOK_POST_GEN_
SALVAGE_DELETED

generic
purging

FSHOOK_PRE_GEN_PUR
GE_DELETED

FSHOOK_POST_GEN_PUR
GE_DELETED

generic
opening/

FSHOOK_PRE_GEN_OPE
N_CREATE

FSHOOK_POST_GEN_OPE
N_CREATE

File Service Group

File System Monitoring: Concepts 595

creating

generic
renaming

FSHOOK_PRE_GEN_REN
AME

FSHOOK_POST_GEN_REN
AME

generic
file
erasing

FSHOOK_PRE_GEN_ERA
SEFILE

FSHOOK_POST_GEN_ERA
SEFILE

generic
DOS
informati
on
modificati
on

FSHOOK_PRE_GEN_MO
DIFY_ DOS_INFO

FSHOOK_POST_GEN_MOD
IFY_DOS_INFO

generic
name
space
informati
on
modificati
on

FSHOOK_PRE_GEN_MO
DIFY_NS_INFO

FSHOOK_POST_GEN_MOD
IFY_NS_INFO

Parent Topic:

Registering for Callback

Pre-Execution Callbacks

If you are registering a pre-execution function, it should return one
parameter, a pointer to the structure returned for the OS function you are
monitoring.

In the case of pre-execution callbacks, you have the option of failing the OS
function and returning an error. If your NLM™ decides to fail a request, it
should return one of the OS's standard error codes (see NITERROR.H).

Parent Topic:

The Monitoring Function

Related Topics:

Post-Execution Callbacks

Version Control

Likewise, a version control NLM™ could keep a record of .obj files that have
been created or modified and store a copy of the last one, along with all
pertinent information, in a specified place.

File Service Group

File System Monitoring: Concepts 596

Parent Topic:

Potential Uses

Related Topics:

Hot Backup

File Service Group

File System Monitoring: Concepts 597

File System Monitoring: Functions

File Service Group

File System Monitoring: Functions 598

NWAddFSMonitorHook

Allows the application to monitor ("hook") various OS file system routines

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: File System Monitoring

Syntax

#include <nwfshook.h>

LONG NWAddFSMonitorHook (
 LONG callBackNumber,
 void *callBackFunc,
 LONG *callBackHandle);

Parameters

callBackNumber

(IN) Specifies which type of OS file system routine you want to hook.

callBackFunc

(IN) Points to the function that you want the OS to call (pass control to)
when the hooked file system routine is going to be or has been called
by a client or any NLM™ application on the local server.

callBackHandle

(OUT) Receives a handle that identifies the file system monitor hook.
This handle is passed to NWRemoveFSMonitorHook when removing
the hook.

Return Values

This function returns 0 if the OS routine corresponding to the
callBackNumber was successfully "hooked." NetWare® errors are returned
if the OS routine was not hooked.

Remarks

The callBackNumber parameter specifies the OS file system routine that
you want to hook, and whether the callBackFunc is called before (a "pre
OS call hook") or after (a "post OS call hook") the OS routine executes. The
last eight sets of hooks (FSHOOK_PRE/POST_RENAME_NS_ENTRY
and all generics) are used for tracking routines called from other than
DOS clients (note that non-DOS hooks are available for use only with

File Service Group

File System Monitoring: Functions 599

NetWare versions 3.12 and higher.) Hooks cannot be ORed, so you must
call NWAddFSMonitorHook once for each routine you want to be
monitored. Values for callBackNumber and the OS routines that they hook
are defined in nwfshook.h and listed below:

OS Routine to
Monitor

Callback before/after OS Execution NetWare
Version

file erasing FSHOOK_PRE_ERASEFILE

FSHOOK_POST_ERASEFILE

3.11 and
higher

file opening FSHOOK_PRE_OPENFILE

FSHOOK_POST_OPENFILE

3.11 and
higher

file creating FSHOOK_PRE_CREATEFILE

FSHOOK_POST_CREATEFILE

3.11 and
higher

file
creating/openin
g

FSHOOK_PRE_CREATE_OPENFILE

FSHOOK_POST_CREATE_OPENFI
LE

3.11 and
higher

file
renaming/movin
g

FSHOOK_PRE_RENAME_OR_MOV
E

FSHOOK_POST_RENAME_OR_MO
VE

3.11 and
higher

file closing FSHOOK_PRE_CLOSEFILE

FSHOOK_POST_CLOSEFILE

3.11 and
higher

directory
creating

FSHOOK_PRE_CREATEDIR

FSHOOK_POST_CREATEDIR

3.11 and
higher

directory
deleting

FSHOOK_PRE_DELETEDIR

FSHOOK_POST_DELETEDIR

3.11 and
higher

directory entry
modification

FSHOOK_PRE_MODIFY_DIRENTR
Y

FSHOOK_POST_MODIFY_DIRENT
RY

3.11 and
higher

salvaging FSHOOK_PRE_SALVAGE_DELETE
D

FSHOOK_POST_SALVAGE_DELET
ED

3.11 and
higher

purging FSHOOK_PRE_PURGE_DELETED

FSHOOK_POST_PURGE_DELETED

3.11 and
higher

name space entry
renaming

FSHOOK_PRE_RENAME_NS_ENT
RY

FSHOOK_POST_RENAME_NS_EN
TRY

3.12, 4.x

generic salvaging FSHOOK_PRE_GEN_SALVAGE_DE
LETED

FSHOOK_POST_GEN_SALVAGE_

3.12, 4.x

File Service Group

File System Monitoring: Functions 600

DELETED

generic purging FSHOOK_PRE_GEN_PURGE_DELE
TED

FSHOOK_POST_GEN_PURGE_DEL
ETED

3.12, 4.x

generic
opening/creatin
g

FSHOOK_PRE_GEN_OPEN_CREAT
E

FSHOOK_POST_GEN_OPEN_CRE
ATE

3.12, 4.x

generic renaming FSHOOK_PRE_GEN_RENAME

FSHOOK_POST_GEN_RENAME

3.12, 4.x

generic file
erasing

FSHOOK_PRE_GEN_ERASEFILE

FSHOOK_POST_GEN_ERASEFILE

3.12, 4.x

generic DOS
information
modification

FSHOOK_PRE_GEN_MODIFY_DOS
_INFO

FSHOOK_POST_GEN_MODIFY_D
OS_INFO

3.12, 4.x

generic name
space
information
modification

FSHOOK_PRE_GEN_MODIFY_NS_
INFO

FSHOOK_POST_GEN_MODIFY_NS
_INFO

3.12, 4.x

The callBackFunc parameter points to the callback function you have
created. The number of parameters you should declare in callBackFunc
varies depending on when the OS calls back the function.

The first parameter for both types of callback function is a pointer to the
structure returned by the OS for the OS file system routine that is being
monitored (for example, if you are monitoring file opens, the OS would
return an OpenFileCallBackStruct). These callback structures are defined
in nwfshook.h.

If you have specified a pre OS call back hook, this is the only parameter
for the callBackFunc. If you have specified a post OS call back hook, the
callBackFunc receives a second parameter, a pointer to a LONG value
which is the completion code of the OS routine that you have hooked.
The following illustrates what these functions would look like if you are
monitoring file opens:

int PreCallBackFunc (OpenFileCallBackStruct const *structure);

void PostCallBackFunc (OpenFileCallBackStruct const *structure, LONG *ccode);

Definitions of the structures returned by the callback function are
described in File System Monitoring: Structures.

NOTE: If you specify a post OS call back hook, your callback function
must not go to sleep, because the values in the callback structure can
change before your thread wakes up again.

File Service Group

File System Monitoring: Functions 601

See Also

NWRemoveFSMonitorHook

File Service Group

File System Monitoring: Functions 602

NWRemoveFSMonitorHook

Removes a "hook" that is monitoring an OS file system routine

Local Servers: blocking

Remote Servers: N/A

Classification: 4.x

SMP Aware: No

Service: File System Monitoring

Syntax

#include <nwfshook.h>

LONG NWRemoveFSMonitorHook (
 LONG callBackNumber,
 LONG callBackHandle);

Parameters

callBackNumber

(IN) Specifies the OS file system routine that you want to remove a
hook from. See NWAddFSMonitorHook for possible values for this
parameter.

callBackHandle

(IN) Specifies the handle that was returned when the hook was added
by calling NWAddFSMonitorHook.

Return Values

This function returns 0 if the hook corresponding to callBackNumber was
successfully removed. NetWare errors are returned if the OS routine was
not successfully "unhooked."

Remarks

This function removes monitoring hooks from OS file system routines.

See Also

NWAddFSMonitorHook

File Service Group

File System Monitoring: Functions 603

File System Monitoring: Structures

File Service Group

File System Monitoring: Structures 604

CloseFileCallBackStruct

Contains information about a close file operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG task;
 LONG fileHandle;
} CloseFileCallBackStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

fileHandle

Contains the NetWare file handle of the file.

File Service Group

File System Monitoring: Structures 605

CreateDirCallBackStruct

Contains information about a create directory operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG volume;
 LONG dirBase;
 BYTE *pathString;
 LONG pathComponentCount;
 LONG nameSpace;
 LONG directoryAccessMask;
} CreateDirCallBackStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

File Service Group

File System Monitoring: Structures 606

3 FTAM

4 OS2

5 NT

directoryAccessMask

Contains a bit mask by which the directory is to be accessed
subsequently. This is the same bit mask used by
ModifyInheritedRightsMask, shown in the following figure:

File Service Group

File System Monitoring: Structures 607

CreateFileCallBackStruct

Contains information about a create file operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG task;
 LONG volume;
 LONG dirBase;
 BYTE *pathString;
 LONG pathComponentCount;
 LONG nameSpace;
 LONG createAttributeBits;
 LONG createFlagBits;
 LONG dataStreamNumber;
} CreateFileCallBackStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

File Service Group

File System Monitoring: Structures 608

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

createAttributeBits

Contains the file attributes that the file is to have when it is created.

createFlagBits

Contains flags that can be set to allow more flexibility in the create
operation. These bits are listed in the following table.

Bit Meaning

DELETE_FILE_ON_CREATE_BIT If the file already exists, it
is deleted. This allows the
file to be created again.

NO_RIGHTS_CHECK_ON_OPEN_B
IT

The user's rights to the file
are not checked when the
file is opened.

NO_RIGHTS_CHECK_ON_CREATE
_BIT

The user's rights to the file
are not checked when the
file is created.

FILE_WRITE_THROUGH_BIT When a file write is
performed, the write
function does not return
until the data is actually
written to the disk.

ENABLE_IO_ON_COMPRESSED_D
ATA_BIT

Any subsequent I/O on
this entry is compressed

LEAVE_FILE_COMPRESSED_DAT
A_BIT

After all I/O has been
done, leave this file
compressed

dataStreamNumber

Contains a number identifying the data stream type of the file or
directory. The possible data streams are listed in the following table.

Number Type

0 Primary Data Stream (corresponds to DOS)

File Service Group

File System Monitoring: Structures 609

1 Macintosh Resource Fork

2 FTAM Extra Data Fork

File Service Group

File System Monitoring: Structures 610

CreateAndOpenCallBackStruct

Contains information about a create/open operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG task;
 LONG volume;
 LONG dirBase;
 BYTE *pathString;
 LONG pathComponentCount;
 LONG nameSpace;
 LONG createAttributeBits;
 LONG requestedAccessRights;
 LONG createFlagBits;
 LONG dataStreamNumber;
} CreateAndOpenCallBackStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

File Service Group

File System Monitoring: Structures 611

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

createAttributeBits

Contains the file attributes that the file is to have when it is created.

requestedAccessRights

Indicates how the entry is to be opened, such as Read Only, Read
Write, Compatibility mode, and so on. The bits in this mask are
defined in the following figure.

createFlagBits

Contains flags that can be set to allow more flexibility in the create
operation. These bits are listed in the following table.

Bit Meaning

DELETE_FILE_ON_CREATE_BIT If the file already exists, it
is deleted. This allows the
file to be created again.

NO_RIGHTS_CHECK_ON_OPEN_B
IT

The user's rights to the file
are not checked when the

File Service Group

File System Monitoring: Structures 612

file is opened.

NO_RIGHTS_CHECK_ON_CREATE
_BIT

The user's rights to the file
are not checked when the
file is created.

FILE_WRITE_THROUGH_BIT When a file write is
performed, the write
function does not return
until the data is actually
written to the disk.

ENABLE_IO_ON_COMPRESSED_D
ATA_BIT

Any subsequent I/O on
this entry is compressed

LEAVE_FILE_COMPRESSED_DAT
A_BIT

After all I/O has been
done, leave this file
compressed

dataStreamNumber

Contains a number identifying the data stream type of the file or
directory. The possible data streams are listed in the following table.

Number Type

0 Primary Data Stream (corresponds to DOS)

1 Macintosh Resource Fork

2 FTAM Extra Data Fork

File Service Group

File System Monitoring: Structures 613

DeleteDirCallBackStruct

Contains information about a delete directory operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG volume;
 LONG dirBase;
 BYTE *pathString;
 LONG pathComponentCount;
 LONG nameSpace;
} DeleteDirCallBackStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

File Service Group

File System Monitoring: Structures 614

4 OS2

5 NT

File Service Group

File System Monitoring: Structures 615

EraseFileCallBackStruct

Contains information about an erase file operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG task;
 LONG volume;
 LONG dirBase;
 BYTE *pathString;
 LONG pathComponentCount;
 LONG nameSpace;
 LONG attributeMatchBits;
} EraseFileCallBackStruct;

Defined In

nwfshook

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

Value Name Space

0 DOS

File Service Group

File System Monitoring: Structures 616

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

attributeMatchBits

Contains a bit mask of the file attributes that are affected by this
operation. That is, entries that have file attributes matching this bit
mask are affected. The first byte of the file attributes mask is shown in
the following figure. For more about the file attributes mask, see File
Attributes.

File Service Group

File System Monitoring: Structures 617

GenericEraseFileCBStruct

Contains information about a generic erase file operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG task;
 LONG volume;
 LONG pathComponentCount;
 LONG dirBase;
 BYTE *pathString;
 LONG nameSpace;
 LONG searchAttributes;
} GenericEraseFileCBStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

Value Name Space

0 DOS

File Service Group

File System Monitoring: Structures 618

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

searchAttributes

Contains a bit mask of the file attributes that are affected by this
operation. That is, entries that have file attributes matching this bit
mask are affected.

File Service Group

File System Monitoring: Structures 619

GenericModifyDOSInfoCBStruct

Contains information about a generic modify DOS information operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG task;
 LONG volume;
 LONG pathComponentCount;
 LONG dirBase;
 BYTE *pathString;
 LONG nameSpace;
 LONG searchAttributes;
 LONG modifyMask;
 void *modifyInfo;
 } GenericModifyDOSInfoCBStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

File Service Group

File System Monitoring: Structures 620

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

searchAttributes

Contains field contains a bit mask of the file attributes that are affected
by this operation. That is, entries that have file attributes matching this
bit mask are affected.

modifyMask

Contains a bit mask that defines the items to be modified by this
operation, see the following figure.

modifyInfo

File Service Group

File System Monitoring: Structures 621

Contains the data that is to replace the old data for this entry.

File Service Group

File System Monitoring: Structures 622

GenericModifyNSInfoCBStruct

Contains information about a generic modify name space information
operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG task;
 LONG dataLength;
 LONG srcNameSpace;
 LONG dstNameSpace;
 LONG volume;
 LONG dirBase;
 LONG modifyMask;
 void *modifyInfo;
 } GenericModifyNSInfoCBStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

dataLength

Contains the size of the data in the modifyInfo field.

srcNameSpace

Contains the name space of the source. Currently defined name spaces
are listed in the following table.

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

File Service Group

File System Monitoring: Structures 623

5 NT

dstNameSpace

Contains the name space of the destination (see above).

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

modifyMask

Contains a bit mask that defines the items to be modified by this
operation (see the following figure). Note that this bit mask differs
slightly from the modify mask for the generic modify DOS
information structure, in that it does not contain the "Last modified"
bit.

modifyInfo

Contains the data that is to replace the old data for this entry.

File Service Group

File System Monitoring: Structures 624

GenericOpenCreateCBStruct

Contains information about a generic open/create operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG task;
 LONG volume;
 LONG pathComponentCount;
 LONG dirBase;
 BYTE *pathString;
 LONG nameSpace;
 LONG dataStreamNumber;
 LONG openCreateFlags;
 LONG searchAttributes;
 LONG createAttributes;
 LONG requestedAccessRights;
 LONG returnInfoMask;
 LONG *fileHandle;
 BYTE *openCreateAction;
} GenericOpenCreateCBStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

pathComponentCount

Contains the number of components in the path.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

nameSpace

File Service Group

File System Monitoring: Structures 625

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

dataStreamNumber

Contains a number identifying the data stream type of the file or
directory. The possible data streams are listed in the following table.

Number Type

0 Primary Data Stream (corresponds to DOS)

1 Macintosh Resource Fork

2 FTAM Extra Data Fork

openCreateFlags

Contains the operation requested, such as opening a file, creating a
file, and so on. The possible values are listed in the following table.

Value Meaning

0x01 Open

0x02 Truncate

0x08 Create

searchAttributes

Contains a bit mask of the file attributes that are affected by this
operation. That is, entries that have file attributes matching this bit
mask are affected.

createAttributes

Contains the attributes that are to be set when the entry is created.

requestedAccessRights

Indicates how the entry is to be opened, such as Read Only, Read
Write, Compatibility mode, and so on. The bits in this mask are

File Service Group

File System Monitoring: Structures 626

defined in the following figure.

returnInfoMask

Contains a bit mask defining the information that is requested for this
operation. This bit mask is shown in the following figure.

File Service Group

File System Monitoring: Structures 627

fileHandle

Contains the NetWare file handle of the entry to be created.

openCreateAction

Contains the results of the requested action (see the following table).

Value Meaning

0x01 Opened

0x02 Created

0x04 Truncated

0x08 Compressed (for NetWare 4.0 servers only)

0xFF Bad action

File Service Group

File System Monitoring: Structures 628

GenericPurgeDeletedCBStruct

Contains information about a generic purge deleted operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG nameSpace;
 LONG sequence;
 LONG volume;
 LONG dirBase;
} GenericPurgeDeletedCBStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

sequence

Contains the NetWare-internal number that was generated while
scanning for deleted files.

volume

Contains the number of the volume that the directory entry is on.

dirBase

File Service Group

File System Monitoring: Structures 629

Contains the directory base (directory number) of the file or directory.

File Service Group

File System Monitoring: Structures 630

GenericRenameCBStruct

Contains information about a generic rename operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG task;
 LONG nameSpace;
 LONG renameFlag;
 LONG searchAttributes;
 LONG srcVolume;
 LONG srcPathComponentCount;
 LONG srcDirBase;
 BYTE *srcPathString;
 LONG dstVolume;
 LONG dstPathComponentCount;
 LONG dstDirBase;
 BYTE *dstPathString;
} GenericRenameCBStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

File Service Group

File System Monitoring: Structures 631

5 NT

renameFlag

Contains values defining rename options, as listed in the following
table.

Value Meaning

0x01 Allow renames to myself (same name)

0x02 Rename incompatibility mode

0x04 Only change name in the entry for the specified name
space

searchAttributes

Contains field contains a bit mask of the file attributes that are affected
by this operation. That is, entries that have file attributes matching this
bit mask are affected.

srcVolume

Contains the volume number of the entry to be renamed.

srcPathComponentCount

Contains the number of path components for the source path.

srcDirBase

Contains the source directory base.

srcPathString

Contains the path string of the source.

dstVolume

Contains the volume number of the renamed entry.

dstPathComponentCount

Contains the number of path components for the destination path.

dstDirBase

Contains the destination directory base.

dstPathString

Contains the path string of the destination.

File Service Group

File System Monitoring: Structures 632

GenericSalvageDeletedCBStruct

Contains information about a generic salvage deleted operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG nameSpace;
 LONG sequence;
 LONG volume;
 LONG dirBase;
 BYTE *newName;
} GenericSalvageDeletedCBStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

sequence

Contains the NetWare-internal number that was generated while
scanning for deleted files.

volume

Contains the number of the volume that the directory entry is on.

File Service Group

File System Monitoring: Structures 633

dirBase

Contains the directory base (directory number) of the file or directory.

newName

Contains the new name of the file or directory.

File Service Group

File System Monitoring: Structures 634

ModifyDirEntryCallBackStruct

Contains information about a modify directory operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG task;
 LONG volume;
 LONG dirBase;
 BYTE *pathString;
 LONG pathComponentCount;
 LONG nameSpace;
 LONG attributeMatchBits;
 LONG targetNameSpace;
 struct ModifyStructure *modifyVector;
 LONG modifyBits;
 LONG allowWildCardsFlag;
} ModifyDirEntryCallBackStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

File Service Group

File System Monitoring: Structures 635

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

attributeMatchBits

Contains a bit mask of the file attributes that are affected by this
operation. That is, entries that have file attributes matching this bit
mask are affected. The first byte of the file attributes mask is shown in
the following figure. For more about the file attributes mask, see File
Attributes.

targetNameSpace

Contains the name space of the entry that is to be changed (see the
values for nameSpace, above).

modifyVector

Contains the modify vector used in the operation. See the discussion of
ModifyStructure.

modifyBits

Contains the modify bits used in the operation. The modify bits are
defined in NWDIR.H and have the following values:

 MModifyNameBit 1

File Service Group

File System Monitoring: Structures 636

 MFileAttributesBit 2
 MCreateDateBit 4
 MCreateTimeBit 8
 MOwnerIDBit 0x10
 MLastArchivedDateBit 0x20
 MLastArchivedTimeBit 0x40
 MLastArchivedIDBit 0x80
 MLastUpdatedDateBit 0x100
 MLastUpdatedTimeBit 0x200
 MLastUpdatedIDBit 0x400
 MLastAccessedDateBit 0x800
 MInheritanceRestrictionMaskBit 0x1000
 MMaximumSpaceBit 0x2000
 MLastUpdatedInSecondsBit 0x4000

allowWildcardsFlag

Indicates whether wildcards are allowed in the pathname:

Nonzero = Wildcards allowed

0 = No wildcards allowed.

File Service Group

File System Monitoring: Structures 637

OpenFileCallBackStruct

Contains information about an open file operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG task;
 LONG volume;
 LONG dirBase;
 BYTE *pathString;
 LONG pathComponentCount;
 LONG nameSpace;
 LONG attributeMatchBits;
 LONG requestedAccessRights;
 LONG dataStreamNumber;
} OpenFileCallBackStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

File Service Group

File System Monitoring: Structures 638

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

attributeMatchBits

Contains a bit mask of the file attributes that are affected by this
operation. That is, entries that have file attributes matching this bit
mask are affected. The first byte of the file attributes mask is shown in
the following figure. For more about the file attributes mask, see File
Attributes.

requestedAccessRights

Indicates how the entry is to be opened, such as Read Only, Read
Write, Compatibility mode, and so on. The bits in this mask are
defined in the following figure.

File Service Group

File System Monitoring: Structures 639

dataStreamNumber

Contains a number identifying the data stream type of the file or
directory. The possible data streams are listed in the following table.

Number Type

0 Primary Data Stream (corresponds to DOS)

1 Macintosh Resource Fork

2 FTAM Extra Data Fork

File Service Group

File System Monitoring: Structures 640

PurgeDeletedCallBackStruct

Contains information about a purge deleted operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG volume;
 LONG dirBase;
 LONG toBePurgedDirBase;
 LONG nameSpace;
} PurgeDeletedCallBackStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the directory from
which the entry is to be purged.

toBePurgedDirBase

Contains the directory base (number) that was generated while
scanning for deleted files.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

File Service Group

File System Monitoring: Structures 641

5 NT

File Service Group

File System Monitoring: Structures 642

RenameMoveEntryCallBackStruct

Contains information about a rename or move operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG task;
 LONG volume;
 LONG dirBase;
 BYTE *pathString;
 LONG pathComponentCount;
 LONG nameSpace;
 LONG attributeMatchBits;
 LONG subDirsOnlyFlag;
 LONG newDirBase;
 BYTE *newPathString;
 LONG originalNewCount;
 LONG compatibilityFlag;
 LONG allowRenamesToMyselfFlag;
} RenameMoveEntryCallBackStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

File Service Group

File System Monitoring: Structures 643

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

attributeMatchBits

Contains a bit mask of the file attributes that are affected by this
operation. That is, entries that have file attributes matching this bit
mask are affected. The first byte of the file attributes mask is shown in
the following figure. For more about the file attributes mask, see File
Attributes.

subDirsOnlyFlag

Contains a value that indicates whether this operation is being done
on a subdirectory. If the value is TRUE, the operation is being done on
a subdirectory.

newDirBase

Contains the new directory base for the entry.

newPathString

originalNewCount

File Service Group

File System Monitoring: Structures 644

Contains the path count for the new path string.

compatibilityFlag

Indicates whether DOS 3.x locking compatability is to be used. If the
value is TRUE, locking compatibility is to be used.

allowRenamesToMyselfFlag

Indicates whether this entry could be renamed to itself. If the value is
TRUE, the entry can be renamed to itself.

File Service Group

File System Monitoring: Structures 645

RenameNSEntryCallBackStruct

Contains information about a rename name space entry operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG task;
 LONG volume;
 LONG dirBase;
 BYTE *pathString;
 LONG pathComponentCount;
 LONG nameSpace;
 LONG matchBits;
 BYTE *newName;
} RenameNSEntryCallBackStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

task

Contains the task number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (directory number) of the file or directory.

pathString

Contains the NetWare-internal path string of the file or directory.

pathComponentCount

Contains the number of components in the path.

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

Value Name Space

File Service Group

File System Monitoring: Structures 646

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

matchBits

Contains a bit mask of the file attributes that are affected by this
operation. That is, entries that have file attributes matching this bit
mask are affected. The first byte of the file attributes mask is shown in
the following figure. For more about the file attributes mask, see File
Attributes.

newName

Contains the new name of the name space entry.

File Service Group

File System Monitoring: Structures 647

SalvageDeletedCallBackStruct

Contains information about a salvage deleted operation

Service: File System Monitoring

Structure

typedef struct {
 LONG connection;
 LONG volume;
 LONG dirBase;
 LONG toBeSalvagedDirBase;
 LONG nameSpace;
 BYTE *newName;
} SalvageDeletedCallBackStruct;

Defined In

nwfshook.h

Fields

connection

Contains the connection number of the entity requesting the operation.

volume

Contains the number of the volume that the directory entry is on.

dirBase

Contains the directory base (number) in which the entry is to be
recovered to.

toBeSalvagedDirBase

Contains the directory base (number) that was generated while
scanning for deleted files. This number is not the directory base that
the file would be salvaged to (see dirBase, above).

nameSpace

Contains the name space of the file or directory. Currently defined
name spaces are listed in the following table.

Value Name Space

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

File Service Group

File System Monitoring: Structures 648

4 OS2

5 NT

newName

Contains the name that the entry is to have after it is salvaged.

File Service Group

File System Monitoring: Structures 649

Media Manager

File Service Group

 650

Media Manager: Guides

Media Manager: Task Guide

Using Media Manager Partition Functions

Media Manager: Tasks

Media Manager: Concepts

Media Manager: Functions

Media Manager: Structures

Parent Topic:

Media Manager: Guides

Media Manager: Concept Guide

Introduction

Media Manager Introduction

Media Manager Architecture

Media Manager Database Concepts

Media Manager Queue Management

General

Design Goals

Future Design Improvements

Action Codes

Completion Codes

Storage Access Control Action Codes

Storage Access Control Action Codes (0x0000 - 0x001F)

Action Code: Activate/Deactivate (physical media) (0x0003)

Action Code: Format (0x0000)

File Service Group

Media Manager: Guides 651

Action Code: Insert/Remove (physical media or magazine) (0x0006)

Action Code: Label/Unlabel (physical media) (0x0009)

Action Code: Load/Unload Magazine (0x000D)

Action Code: Lock/Unlock (physical media) (0x0007)

Action Code: Mount/Dismount (physical device) (0x0004)

Action Code: Move (physical media or magazine) (0x0008)

Action Code: Scan For New Devices (adapter) (0x000A)

Action Code: Select/Unselect (physical media) (0x0005)

Action Code: Tape Control (0x0001)

Storage Access I/O Action Codes

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Locate Data Blocks (0x002B)

Action Code: Multiple File Mark (0x0027)

Action Code: Multiple Set Mark (0x0029)

Action Code: Position Media (0x002D)

Action Code: Random Read (0x0020)

Action Code: Random Write (0x0021)

Action Code: Random Write Once (0x0022)

Action Code: Reset Queue (0x0025)

Action Code: Select Partition (0x002C)

Action Code: Sequential Read (0x0023)

Action Code: Sequential Write (0x0024)

Action Code: Single File Mark (0x0026)

Action Code: Single Set Mark (0x0028)

Action Code: Space Data Blocks (0x002A)

Reserved (0x002E - 0x003F)

Code Definitions

Function/Completion Code Definitions

Alert Reasons

File Service Group

Media Manager: Guides 652

Alert Types

Application Alert Codes

Attribute IDs

Attribute Types

Cartridge Types

Console (Human Jukebox) Definitions

Final Completion Codes

Format Types

Identification Types

Initial Completion Codes

Error Codes

Media Types

Message Actions

Notify Event Bits

Object Status Bits

Object Types

Reservation Modes

Resource Tag Allocation Signatures

Functions

Access Functions

Human Jukebox Functions

Identification Functions

Information Functions

Notification Functions

Object Support Functions

Partition Management Functions

Reservation Functions

Vendor Pass-Through Functions

Media Manager: Tasks

File Service Group

Media Manager: Guides 653

Media Manager: Concepts

Media Manager: Functions

Media Manager: Structures

Parent Topic:

Media Manager: Guides

Function/Completion Code Definitions

This appendix contains the public Media Manager definition statements
listed alphabetically by type.

Alert Reasons

Alert Types

Application Alert Codes

Attribute IDs

Attribute Types

Cartridge Types

Console (Human Jukebox) Definitions

Final Completion Codes

Format Types

Identification Types

Initial Completion Codes

Error Codes

Media Types

Message Actions

Notify Event Bits

Object Status Bits

Object Types

Reservation Modes

Resource Tag Allocation Signatures

Parent Topic:

File Service Group

Media Manager: Guides 654

Media Manager: Guides

Media Manager Introduction

The Media Manager is a library of interface functions that work with the
NetWare® 3.12 and 4.x OS that allow it to support many different kinds of
storage devices. As a replacement to the Disk Application Interface (DAI)
Specification, the Media Manager provides a more robust and
comprehensive interface to storage applications and/or loadable file
systems. The Media Manager interface also provides API facilities to
interface with server administrators who may need to manipulate and
control removable storage media.

This section discusses these aspects of Media Manager:

Media Manager Architecture

Media Manager Database Concepts

Media Manager Queue Management

Parent Topic:

Media Manager: Guides

Storage Access Control Action Codes (0x0000 -
0x001F)

Storage access action codes are divided into two mutually exclusive
categories: Control action codes (this section) and I/O action codes (see "
Storage Access I/O Action Codes (0x0020 - 0xFFFF)"). Control action codes
typically modify the state of media objects. Consequently, these action
codes must be performed serially. Also, the type of control action code
available depends upon the type of the target object.

Information returned from the Control action codes comes back to the
application in one of two ways, depending on whether the action code
request was issued from a blocking or nonblocking function. The following
table summarizes the return parameter and completion code return values
for blocking and nonblocking functions:

Table auto. Comparison of Return Values for Blocking and Nonblocking Functions

Action Code Return Parameter Completion Code

Requesting the action from
a nonblocking function (for
example, MM_Object_IO)

Value returned in
the
returnParameter

Value returned in
the completionCode
field of the App.'s

File Service Group

Media Manager: Guides 655

field of the App.'s
CallBackFunction

CallBackFunction

Requesting the action from
a blocking function (for
example,
MM_Object_Blocking_IO
)

 Value returned in
the LONG *
returnParameter
field of the
blocking function,
etc.

Value returned as
the LONG return
value of the blocking
function.

Action Code: Activate/Deactivate (physical media) (0x0003)

Action Code: Format (0x0000)

Action Code: Insert/Remove (physical media or magazine) (0x0006)

Action Code: Label/Unlabel (physical media) (0x0009)

Action Code: Load/Unload Magazine (0x000D)

Action Code: Lock/Unlock (physical media) (0x0007)

Action Code: Mount/Dismount (physical device) (0x0004)

Action Code: Move (physical media or magazine) (0x0008)

Action Code: Scan For New Devices (adapter) (0x000A)

Action Code: Select/Unselect (physical media) (0x0005)

Action Code: Tape Control (0x0001)

Parent Topic:

Media Manager: Guides

Storage Access I/O Action Codes (0x0020 -
0xFFFF)

I/O action codes (described in this chapter) facilitate the movement of data
to and from the media. Applications may issue multiple I/O requests
concurrently. The I/O action codes that are available at any one time
depend on the capabilities of the target media.

Information returned from the I/O action codes comes back to the
application in one of two ways, depending on whether the action request
was issued from a blocking or nonblocking function. See the table in the "
Storage Access Control Action Codes (0x0000 - 0x001F)" section for a
summary of the Return Parameter and Completion Code return values for
blocking and nonblocking functions.

Action Code: Locate Data Blocks (0x002B)

File Service Group

Media Manager: Guides 656

Action Code: Multiple File Mark (0x0027)

Action Code: Multiple Set Mark (0x0029)

Action Code: Position Media (0x002D)

Action Code: Random Read (0x0020)

Action Code: Random Write (0x0021)

Action Code: Random Write Once (0x0022)

Action Code: Reset Queue (0x0025)

Action Code: Select Partition (0x002C)

Action Code: Sequential Read (0x0023)

Action Code: Sequential Write (0x0024)

Action Code: Single File Mark (0x0026)

Action Code: Single Set Mark (0x0028)

Action Code: Space Data Blocks (0x002A)

Reserved (0x002E - 0x003F)

Parent Topic:

Media Manager: Guides

File Service Group

Media Manager: Guides 657

Media Manager: Tasks

Using Media Manager Partition Functions

Before an application developer can successfully use the Partition functions,
a basic understanding of the Media Manager object database hierarchy is
required. At the top of the Media Manager's object hierarchy is the Adapter
Object. For every nonremovable device (i.e., a device that can contain only
one piece of media, e.g., a hard disk) the Media Manager automatically
creates a Media Object. The following figure shows an example of how, by
starting from the two Media Objects (one of which is not shown), the
Partition API is used to build a single Mirror Object. The file system will
then perform I/O to the Mirror Object. Following is a sample sequence of
events that properly use the Partition functions.

Figure 7. Media Manager Object Relationships to Physical Sectors

File Service Group

Media Manager: Tasks 658

1. Create a Partition Object

Each Media Object is divided into partitions using the standard IBM PC
hard disk format. This scheme allows up to four partitions per media.
NetWare®, however, currently allows only one NetWare partition per
media. Use MM_InitializePartitionTable and MM_CreatePartition
function calls to create two Partition Objects (IDs 10 and 11 in the above
figure). MM_InitializePartitionTable is only needed if the Partition
Table contains an other than IBM PC partition table and partition table
signature, or the Partition Table does not currently exist (e.g. new
media). The function MM_CreatePartition will verify the validity of the
partition table before creating a Partition Object. The function
MM_DeletePartition will remove the NetWare partition from the
media and delete the Partition Object from the database.

If other than NetWare (e.g., DOS) partitions exist they will also be
children of the media object, as is shown in the above figure.
Application developers should verify that they create the following
objects on the NetWare partition only.This can be verified by using
MM_Return_Object_Specific_Info for the partition object and
checking the partitionType parameter in the PartitonInfoDef structure
returned by this function. Currently, only the lower BYTE of this LONG
parameter is important.

2. Create a HotFix Object

HotFix Objects are created as children to previously created Partition
Object using MM_CreateHotFix . These become the next objects (IDs 12
and 13 in the above figure) in the database. This step allocates space to
be used for the HotFix area. This is currently a required step.

3. Create a Mirror Object

Mirror Objects (IDs 14 and 15 in the above figure) are created as
children to the previously created HotFix Objects using
MM_CreateMirror. This step allocates space to be used for the mirror
process. This step is required even if mirroring will not be performed.

4. Group Mirror Objects into a Mirror Group (Optional)

If no mirroring will be performed, there is no need to continue.
However, to mirror the objects one Mirror Object (ID 15 in the above
figure) must be "mirrored" to another Mirror Object (ID 14 in the above
figure). This is done with MM_AddMirrorObjectToMirrorGroup.

IMPORTANT: It is highly recommended that this function be
used only on empty Mirror Objects. Performing this operation on
Mirror Objects containing information can (and most likely will)
cause data corruption.

The Mirror Object identified by mirrorObjectID (the first parameter) is

File Service Group

Media Manager: Tasks 659

added to the "mirror group" identified by mirrorGroupObjectID (the
second parameter). For newly created Mirror Groups a call to
MM_ForceMirrorGroupInSync is recommended at this time to prevent
mirroring of random data that may exist in the mirrorGroupObjectID
area. Also, for newly created Mirror Groups the mirroring direction
(what gets mirrored to what) is somewhat arbitrary. However, if the
application is mirroring Mirror Objects where one object contains data
(see Important above), the direction is critical. Information from the
Mirror Object mirrorObjectID will be overwritten with information from
Mirror Object mirrorGroupObjectID. This process deletes the Mirror
Object mirrorObjectID from Media Manager's database. Following the
example in the above figure, the Mirror Object with ID = 15 will be
deleted from Media Manager's database by calling
MM_AddMirrorObjectToMirrorGroup. Any further operations to that
object are performed by operations to the Mirror Object ID=14. This is
why the parameter passed to MM_DelPartitionFromMirrorGroup
identifies a Partition Object as that is the only way to identify the object
to be removed from the mirror group.

Parent Topic:

Media Manager: Guides

File Service Group

Media Manager: Tasks 660

Media Manager: Concepts

Access Functions

After the application learns all the details about the storage devices, and sets
up the proper safeguards (by using notification and reservation functions),
the application may then access the storage media. Using the I/O and
Control functions available with Media Manager, the application can read,
write, activate, deactivate, label, unlabel, etc. After completion of any
function, the Media Manager will call the application's "call back" function
to post completion of the event.

Also, a special "Abort Function" exists that applications can call if they have
initiated a function and then need to abort it before it finishes. This facility
allows applications to complete tasks without waiting for unnecessary
request call backs. The Access Functions and the associated Application
Function are:

MM_Abort_Function

MM_Check_For_Pending_Aborts

MM_Object_Blocking_IO

MM_Object_IO CallBackFunction (Application Function)

MM_Special_Object_Blocking_IO

Parent Topic:

Media Manager: Guides

Action Code: Activate/Deactivate (physical media)
(0x0003)

Description:

The purpose of this action code is to bring the media on-line or off-line. If
the media is removable, action code 0x0003 will mount or dismount the
media in the device. This call is valid for both device and media objects.

Parameters:

handle

The handle of the media or device object to be mounted or

File Service Group

Media Manager: Concepts 661

dismounted.

actionCode

0x0003 (Activate/Deactivate request)

parameter1

This parameter indicates the operation to perform:

0 activate

1 deactivate

parameter2

Reserved. Must be set to 0.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access Control Action Codes (0x0000 - 0x001F)

Action Code: Format (0x0000)

Description:

This action code formats writeable media. It implies to the Media Manager
that the media is new media. The media ID is implied by the object handle
used.

Parameters:

handle

The handle of the object related to the logical media being formatted.

actionCode

0x0000---format request

parameter1

This parameter indicates the operation to perform:

0 quick format (re-format)

1 security erase (complete format)

File Service Group

Media Manager: Concepts 662

parameter2

Reserved. Must be set to 0.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access Control Action Codes (0x0000 - 0x001F)

Action Code: Insert/Remove (physical media or
magazine) (0x0006)

Description:

The purpose of this action code is to move media or magazine objects in and
out of removable devices and changers. This action code generates console
alerts.

Parameters:

handle

The handle of the device.

actionCode

0x0006---insert/remove media or magazine request

parameter1

This parameter indicates the operation to perform:

0 insert

1 remove

parameter2

Contains the object ID of the media or magazine object to be inserted.
A "-1" specifies new media should be inserted.

parameter3

Specifies the correct mail (exchange) slot in a media changer when
there is more than one slot in the changer. This parameter should be 0
when there is only one mail slot, or if the device is a stand-alone
device.

File Service Group

Media Manager: Concepts 663

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access Control Action Codes (0x0000 - 0x001F)

Action Code: Label/Unlabel (physical media)
(0x0009)

Description:

The label action code causes the Media Manager to either stamp or remove
identification information on activated media. The database is updated to
reflect the correct identity of the media. The media ID is derived from the
object handle passed.

Parameters:

handle

The handle of an object related to the media being labeled.

actionCode

0x0009---stamp request

parameter1

This parameter indicates the operation to perform:

0 label media

1 unlabel media

parameter2

This parameter is the Novell® assigned number of the identification
action code used to label the information on the media.

parameter3

Reserved. Must be set to 0.

bufferLen

The number of bytes in the label name.

LabelName

Pointer to a null-terminated length preceded string. The total bytes in

File Service Group

Media Manager: Concepts 664

the name must not exceed 64, including the length byte and the null
terminator byte.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access Control Action Codes (0x0000 - 0x001F)

Action Code: Load/Unload Magazine (0x000D)

Description:

The purpose of this action code is to load or unload a media magazine in a
device.

Parameters:

handle

The handle of device with a magazine loaded.

actionCode

0x000D---load/unload media or magazine request

parameter1

This parameter indicates the operation to perform:

0 load magazine

1 unload magazine

parameter2

Reserved. Must be set to 0.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access Control Action Codes (0x0000 - 0x001F)

File Service Group

Media Manager: Concepts 665

Action Code: Locate Data Blocks (0x002B)

Description:

This action code locates specific data blocks and returns location
information.

Parameters:

handle

The handle of an object identifying the media.

actionCode

0x002B---locate data blocks

parameter1

This parameter indicates the operation to perform:

0 - return location information

1 - go to specified location

parameter2

Reserved. Must be set to 0.

parameter3

Reserved. Must be set to 0.

bufferLen

This parameter indicates the size of the buffer where location
information is to be copied or accessed. The buffer must be of
sufficient length to accommodate the location information.

buffer

If return location information is specified, this parameter points to a
buffer where the location information is copied; otherwise, it contains
the location information needed to locate the data block.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Lock/Unlock (physical media)
(0x0007)

Description:

File Service Group

Media Manager: Concepts 666

The purpose of this action code is to lock media that has been loaded in a
device. Once locked, the media cannot be manually ejected from the device
by the operator via the use of the front panel eject switch (if the device is so
equipped).

Parameters:

handle

The handle of a media or magazine object.

actionCode

0x0007---lock/unlock media or magazine request

parameter1

This parameter indicates the operation to perform:

0 lock media selection

1 unlock media selection

parameter2

Reserved. Must be set to 0.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access Control Action Codes (0x0000 - 0x001F)

Action Code: Mount/Dismount (physical device)
(0x0004)

Description:

The purpose of this action code is to bring the media inside a physical
device on-line or off-line. The mount/dismount action code assumes that
the media is present. This operation will identify or verify the media in the
device.

NOTE: This action code will not return until all notifications have
been started; however, it will not wait for the notifications to complete
before returning.

File Service Group

Media Manager: Concepts 667

before returning.

Parameters:

handle

The handle of the media or device object to be mounted or
dismounted.

actionCode

0x0004---mount/dismount request

parameter1

This parameter indicates the operation to perform:

0 mount

1 dismount

parameter2

Reserved. Must be set to 0.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access Control Action Codes (0x0000 - 0x001F)

Action Code: Move (physical media or magazine)
(0x0008)

Description:

The purpose of this action code is to move physical media or magazine
objects inside a media changer.

NOTE: The source location is implied by the media or magazine
object.

Parameters:

handle

The handle of a media or magazine object.

File Service Group

Media Manager: Concepts 668

actionCode

0x0008---Move media or magazine request

parameter1

This parameter is the object ID of the media inside a media changer.

parameter2

The slot number of an empty slot or device in a media changer.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access Control Action Codes (0x0000 - 0x001F)

Action Code: Multiple File Mark (0x0027)

Description:

This action code performs the writing and locating of multiple, contiguous
file marks.

Parameters:

handle

The handle of an object identifying the media

actionCode

0x0027---multiple file marks

parameter1

This parameter indicates the operation to perform:

0 - write multiple file marks.

1 - space forward for multiple file marks.

2 - space backward for multiple file marks.

parameter2

This parameter indicates the number of consecutive file marks to be
written to or spaced over.

File Service Group

Media Manager: Concepts 669

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Multiple Set Mark (0x0029)

Description:

This action code performs the writing and locating of multiple, contiguous
set marks.

Parameters:

handle

The handle of an object identifying the media

actionCode

0x0029---multiple set marks

parameter1

This parameter indicates the operation to perform:

0 - write multiple set marks

1 - space forward for multiple set marks.

2 - space backward for multiple set marks.

parameter2

This parameter indicates the number of consecutive set marks to be
written to or spaced over.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

File Service Group

Media Manager: Concepts 670

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Position Media (0x002D)

Description:

This action code provides support to position sequential media devices.

Parameters:

handle

The handle of an object identifying the media

actionCode

0x002D---sequential media

parameter1

This parameter indicates the operation to perform:

1 rewind media.

2 go to end of recorded media (logical end of media).

parameter2

Reserved. Must be set to 0

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Random Read (0x0020)

File Service Group

Media Manager: Concepts 671

Description:

This action code performs random read I/O from the device.

Parameters:

handle

The handle of an object related to the media being read.

actionCode

0x0020---read request

parameter1

This parameter specifies the number of units to be read.

parameter2

This parameter specifies the logical unit number of the beginning unit.

parameter3

Reserved. Must be set to 0.

bufferLen

This parameter is the size of the buffer (i.e. the number of units * the
unit size).

buffer

This parameter points to a buffer in memory were the data is to be
read.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Random Write (0x0021)

Description:

This action code writes to any part of the media in a device.

Parameters:

handle

The handle of an object related to the media being written.

actionCode

0x0021---write request

parameter1

This parameter specifies the number of units to be written.

File Service Group

Media Manager: Concepts 672

parameter2

This parameter specifies the logical unit number of the beginning unit.

parameter3

Reserved. Must be set to 0.

bufferLen

This parameter is the size of the buffer (i.e. the number of units * the
unit size).

buffer

This parameter points to a buffer in memory were the data is written
from.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Random Write Once (0x0022)

Description:

This action code performs one write to any part of the media in a device.

Parameters:

handle

The handle of an object related to the media being written.

actionCode

0x0022---write once request

parameter1

This parameter specifies the number of units to be written.

parameter2

This parameter specifies the logical unit number of the beginning unit.

parameter3

Reserved. Must be set to 0.

bufferLen

This parameter is the size of the buffer (i.e. the number of units * the
unit size)

buffer

This parameter points to a buffer in memory were the data is written

File Service Group

Media Manager: Concepts 673

from.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Reset Queue (0x0025)

Description:

This action code resets the end of tape status in the device so that data can be
written. Once the driver detects an early warning signal, it rejects any write
commands until it receives a Reset Queue command from the application.
After receiving the Reset Queue command, the driver will write only once
before it needs to receive another Reset Queue. This call insures that the
driver will at least write one more request before running out of tape.

This action code also restarts the queue for the device under the NWPA
architecture.

Parameters:

handle

The handle of an object related to the media to be reset.

actionCode

0x0025---reset queue

parameter1

Reserved. Must be set to 0.

parameter2

Reserved. Must be set to 0.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

Not used.

File Service Group

Media Manager: Concepts 674

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Scan For New Devices (adapter)
(0x000A)

Description:

This action code causes the device driver to look for new devices that might
have come on-line.

Parameters:

handle

The handle of an adapter object.

actionCode

0x000A---scan for new devices request

parameter1

Reserved. Must be set to 0.

parameter2

Reserved. Must be set to 0.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access Control Action Codes (0x0000 - 0x001F)

Action Code: Select Partition (0x002C)

Description:

This action code selects a tape partition and positions the media at the
beginning or end of the tape partition depending on parameter 1.

File Service Group

Media Manager: Concepts 675

Parameters:

handle

The handle of an object identifying the media

actionCode

0x002C---select partition

parameter1

This parameter indicates the operation to perform:

1 rewind/select tape partition.

2 go to end of file/select tape partition.

parameter2

This parameter indicates the tape partition to be selected.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Select/Unselect (physical media)
(0x0005)

Description:

The purpose of this action code is to select or unselect an individual media
from a media magazine to be inserted into the device. It assumes that the
magazine is loaded in a device.

NOTE: A selection of a media implies that the previously selected
media is no longer selected.

Parameters:

handle

The handle of the device, magazine or media object to be dismounted.

actionCode

File Service Group

Media Manager: Concepts 676

0x0005---select/unselect

parameter1

This parameter indicates the operation to perform:

0 select

1 unselect

parameter2

The slot number of the slot containing the media to be moved
("selected") into a device, or the slot number of an empty slot in the
magazine where the media will go when it is moved ("unselected")
from the device.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access Control Action Codes (0x0000 - 0x001F)

Action Code: Sequential Read (0x0023)

Description:

This action code reads sequential data from tape.

Parameters:

handle

The handle of the object representing the media to be read.

actionCode

0x0023---read request

parameter1

This parameter specifies the number of units to be read, where units
refers to what was formerly called sectors on fixed media.

parameter2

Reserved. Must be set to 0.

parameter3

File Service Group

Media Manager: Concepts 677

Reserved. Must be set to 0.

bufferLen

This parameter is the size of the buffer (i.e. the number of units * the
unit size) in bytes. The "number of units" (parameter1) cannot exceed
the maximum number of units as prescribed in the blockSize returned
in a GenericInfoDef structure. unitSize is also returned in a
GenericInfoDef structure.

buffer

Points to a buffer in memory where the data is to be read.

Return Values:

returnParameter

The number of units read. (See the table in Storage Access Control
Action Codes (0x0000 - 0x001F) for more specific information.)

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Sequential Write (0x0024)

This action code performs sequential write I/O to the device.

Parameters:

handle

The handle of an object related to the media being written.

actionCode

0x0024---write request

parameter1

This parameter specifies the number of units to be written.

parameter2

Reserved. Must be set to 0.

parameter3

Reserved. Must be set to 0.

bufferLen

This parameter is the size of the buffer (i.e. the number of units * the
unit size).

buffer

This parameter points to a buffer in memory where the data is written
from.

Return Values:

File Service Group

Media Manager: Concepts 678

returnParameter

The number of units written. (See the table in Storage Access Control
Action Codes (0x0000 - 0x001F) for more specific information.)

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Single File Mark (0x0026)

Description:

This action code performs the writing and locating of single file marks.

Parameters:

handle

The handle of an object identifying the media.

actionCode

0x0026---single file mark

parameter1

This parameter indicates the operation to perform:

0 - write single file mark

1 - space forward single file marks

2 - space backwards single file marks

parameter2

If a space action code was requested, this parameter indicates how
many file marks to space over.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

If a "space" setting (1 or 2) was selected in parameter1, the number of
file marks spaced over is returned in this field (see the table in Storage
Access Control Action Codes (0x0000 - 0x001F) for more information.)

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

File Service Group

Media Manager: Concepts 679

Action Code: Single Set Mark (0x0028)

Description:

This action code performs the writing and locating of single set marks.

Parameters:

handle

The handle of an object identifying the media.

actionCode

0x0028---single set mark

parameter1

This parameter indicates the operation to perform:

0 - write single set mark

1 - space forward single set marks

2 - space backward for single set marks

parameter2

If a space action code was requested, this parameter indicates how
many set marks to space over.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

If a "space" setting (1 or 2) was selected by parameter1, the number of
set marks spaced over is returned in this field (see the table in Storage
Access Control Action Codes (0x0000 - 0x001F) for more information.)

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Space Data Blocks (0x002A)

Description:

This action code spaces over data blocks.

File Service Group

Media Manager: Concepts 680

Parameters:

handle

The handle of an object identifying the media.

actionCode

0x002A---space data blocks

parameter1

This parameter indicates the direction of the space:

1 - space forward for multiple data blocks.

2 - space backward for multiple data blocks.

parameter2

This parameter indicates the number of data blocks to be spaced over.

parameter3

Reserved. Must be set to 0.

bufferLen

Must be set to 0.

buffer

Must be set to 0.

Return Values:

returnParameter

The parameter should return the actual number of data blocks spaced
over (see the table in Storage Access Control Action Codes (0x0000 -
0x001F) for more information.)

Parent Topic:

Storage Access I/O Action Codes (0x0020 - 0xFFFF)

Action Code: Tape Control (0x0001)

Description:

Provides additional action codes to manage tapes. Use various
combinations of parameters to create tape partitions, retention, and perform
two kinds of erase partition operations. (Note: the partitions referred to here
are not NetWare® partitions.)

Both erase action codes take place from the current position to the end of the
tape partition. They do not imply a rewind of tape media.

At the end of the retention operation, the current tape partition is
undefined. Select another partition (See Action Code: Select Partition
(0x002C)) before continuing.

File Service Group

Media Manager: Concepts 681

Parameters:

handle

The handle of the device received from MM_Reserve_Object.

actionCode

0x0001---tape operation request

parameter1

This parameter indicates the operation to perform:

0 quick erase (re-format)

1 security erase (zero out all blocks)

2 create tape partition

3 retention

parameter2

Indicates the number of tape partitions to create.(only used if
Parameter 1 = create tape partition).

parameter3

Reserved. Must be set to 0.

bufferLen

Byte count of buffer array; equals (Parameter 2) * 4.

buffer

Pointer to array of LONGs, where each LONG indicates the size of
each tape partition in megabytes. A "-1" in an array location indicates
the tape partition should take the remainder of the tape. The last
partition should always have a "-1".

NOTE: Partition 0 is always the last partition on the tape and
will be the first LONG in this array of LONGS.

Return Values:

returnParameter

Not used.

Parent Topic:

Storage Access Control Action Codes (0x0000 - 0x001F)

Action Codes

These are control and I/O action codes that applications employ to
communicate with the storage device. The control action codes (see Storage
Access Control Action Codes (0x0000 - 0x001F)) generally perform tasks
that do not require the movement of data to and from the device. The I/O
action codes (see Storage Access I/O Action Codes (0x0020 - 0xFFFF))
perform writes, reads, resets, and positioning operations.

File Service Group

Media Manager: Concepts 682

Control Action Codes

Activate/Deactivate
Format
Insert/Remove
Label/Unlabel
Load/Unload Magazine
Lock/Unlock
Mount/Dismount
Move
Scan For New Devices
Select/Unselect
Tape Control

I/O Action Codes

Locate Data Blocks
Multiple File Mark
Multiple Set Mark
Position Media
Random Read
Random Write
Random Write Once
Reset Queue
Select Partition
Sequential Read
Sequential Write
Single File Mark
Single Set Mark
Space Data Blocks

Parent Topic:

Media Manager: Guides

Alert Reasons

Used by the AlertFunction defined in MM_Reserve_Object.

#define ALERT_HOTFIX_ERROR 0x00000000
#define ALERT_DRIVER_UNLOAD 0x00000001
#define ALERT_DEVICE_FAILURE 0x00000002
#define ALERT_PROGRAM_CONTROL 0x00000003
#define ALERT_MEDIA_DISMOUNT 0x00000004
#define ALERT_MEDIA_EJECT 0x00000005
#define ALERT_SERVER_DOWN 0x00000006
#define ALERT_SERVER_FAILURE 0x00000007
#define ALERT_MEDIA_LOAD 0x00000008
#define ALERT_MEDIA_MOUNT 0x00000009
#define ALERT_DRIVER_LOAD 0x0000000A
#define ALERT_LOST_SOFTWARE_FAULT_TOLERANCE 0x0000000B

File Service Group

Media Manager: Concepts 683

#define ALERT_INTERNAL_OBJECT_DELETE 0x0000000C
#define ALERT_MAGAZINE_LOAD 0x0000000D
#define ALERT_MAGAZINE_UNLOAD 0x0000000E
#define ALERT_DEVICE_GOING_TO_BE_REMOVED 0x0000000F
#define ALERT_CHECK_DEVICE 0x00000010
#define ALERT_CONFIGURATION_CHANGE 0x00000011
#define ALERT_APPLICATION_UNREGISTER 0x00000012
#define ALERT_DAI_EMULATION 0x00000013
#define ALERT_LOST_HARDWARE_FAULT_TOLERANCE 0x00000014
#define ALERT_INTERNAL_OBJECT_CREATE 0x00000015
#define ALERT_INTERNAL_MANAGER_REMOVE 0x00000016
#define ALERT_DEVICE_GOING_TO_BE_DEACTIVATED 0x00000017
#define ALERT_DEVICE_END_OF_MEDIA 0x00000018
#define ALERT_MEDIA_INSERTED 0x00000019
#define ALERT_UNKNOWN_DEVICE_ALERT 0x0000001A
#define ALERT_UNKNOWN_ADAPTER_ALERT 0x0000001B
#define ALERT_BASE_FILTER_REMOVED 0x0000001C

Parent Topic:

Function/Completion Code Definitions

Alert Types

Used by the AlertFunction defined in MM_Reserve_Object.

#define ALERT_MESSAGE 0x00000001
#define ALERT_ACTIVATE 0x00000002
#define ALERT_DEACTIVATE 0x00000003
#define ALERT_DELETE 0x00000004
#define ALERT_PARENT_MESSAGE 0x00000005
#define ALERT_PARENT_ACTIVATE 0x00000006
#define ALERT_PARENT_DEACTIVATE 0x00000007
#define ALERT_PARENT_DELETE 0x00000008

Parent Topic:

Function/Completion Code Definitions

Application Alert Codes

Used by MM_Set_Unload_Semaphore.

#define GOING_TO_BE_DEACTIVATED 0x0001
#define OBJECT_BEING_DEACTIVATED 0x0002
#define OBJECT_SIZE_CHANGED 0x0003
#define OBJECT_BEING_ACTIVATED 0x0004
#define OBJECT_BEING_DELETED 0x0005
#define OBJECT_LOST_FAULT_TOLERANCE 0x0006

File Service Group

Media Manager: Concepts 684

Parent Topic:

Function/Completion Code Definitions

Attribute IDs

Used in MM_Return_Object_Attribute, MM_Return_Objects_Attributes,
and MM_Set_Object_Attribute.

MM_LABEL = 42414C05
MM_CARTRIDGE_TYPE = 5241430E
MM_UNIT_SIZE = 494E5509
MM_BLOCK_SIZE = 4F4C420A
MM_CAPACITY = 50414308
MM_PREFERRED_SIZE = 4552500E
MM_NAME = 4D414E04
MM_TYPE = 50595404
MM_SLOT_NUMBER = 4F4C530B
MM_REMOVABLE = 4D455209
MM_READ_ONLY = 41455209
MM_MIRROR_COUNT = 52494D0C
MM_MIRROR_OPERATIONAL = 52494D12
MM_MIRROR_INSYNCH = 52494D0E
MM_MIRROR_GROUP_PRESENT = 52494D14
MM_MIRROR_ORPHAN = 52494D0D
MM_REMIRROR_STATUS = 4D45520F
MM_REMIRROR_PERCENT = 4D455210
MM_PARTITION_TYPE = 5241500E
MM_PARTITION_OFFSET = 52415010
MM_PARTITIONER_TYPE = 52415010
MM_HOTFIX_SIZE = 544F480B
MM_HOTFIX_AVAILABLE = 544F4810
MM_HOTFIX_BLOCKS = 544F480D
MM_HOTFIX_SYSTEM_BLOCKS = 544F4814
MM_RAW_DEVICE_NAME = 5741520F
MM_HEADS = 41454805
MM_SECTORS = 43455307
MM_CYLINDERS = 4C594309
MM_LUN = 4E554C03
MM_CONTROLLER = 4E4F430A
MM_CARD = 52414304
MM_DRIVER = 49524406
MM_DRIVER_NAME = 4952440B
MM_SLOT = 4F4C5304
MM_PORT = 524F5004
MM_MEMORY = 4D454D06
MM_INTERRUPT = 544E4909
MM_DMA = 414D4403 /* Attribute IDs (Continued) */
MM_TAPE_POSITION_SIZE = 50415412
MM_TAPE_MEDIA_TYPE = 5041540F
MM_TAPE_WRITE_FORMAT = 50415411

File Service Group

Media Manager: Concepts 685

MM_TAPE_WRITE_FORMAT = 50415411
MM_TAPE_READ_FORMAT = 50415410
MM_MINIMUM_BLOCK_SIZE = 4E494D12
MM_MAXIMUM_BLOCK_SIZE = 58414D12
MM_MAXIMUM_NUMBER_OF_PARTITIONS = 58414D1C
MM_MAXIMUM_PARTITION_SIZE = 58414D16
MM_DATA_COMPRESSION_INFO = 54414415

Parent Topic:

Function/Completion Code Definitions

Attribute Types

Used by AttributeInfoDef structure

MM_STRING 1 /* Byte length preceded and null terminated string */
MM_BYTE 2
MM_WORD 3
MM_LONG 4
MM_OTHER 5/* The attribute size field in the AttributeInfoDef structu

Parent Topic:

Function/Completion Code Definitions

Cartridge Types

Used in GenericInfoDef

0x00 Fixed Media
0x01 5.25 inch Floppy
0x02 3.5 inch Floppy
0x03 5.25 inch Optical
0x04 3.5 inch Optical
0x05 .5 inch Tape
0x06 .25 inch Tape
0x07 8 mm Tape
0x08 4 mm Tape
0x09 Bernoulli Disk

Parent Topic:

Function/Completion Code Definitions

Completion Codes

With the current version of the Media Manager and Partition Management
functions, any nonzero completion code is a fatal error for that function.

File Service Group

Media Manager: Concepts 686

Also, the MM_FAILURE completion code (0x0A) returned by each of these
functions is a generic code which indicates that, for some reason, the
function failed to perform the desired operation. In future versions of
NetWare®, the Media Manager functions will provide more detailed fault
isolation information through the use of additional completion codes. This
will assist the application developer in providing more fault-tolerant
applications.

Parent Topic:

Media Manager: Guides

Console (Human Jukebox) Definitions

Used by Human Jukebox functions.

#define HJ_INSERT_MESSAGE 0
#define HJ_EJECT_MESSAGE 1
#define HJ_ACK_MESSAGE 2
#define HJ_NACK_MESSAGE 3
#define HJ_ERROR 4

Parent Topic:

Function/Completion Code Definitions

Design Goals

The following are goals that relate to the design of the Media Manager.

Better User Interface for Storage Management

The Media Manager provides a better user interface for server
administrators and operators. The "Human Jukebox" functions give
developers greater information and control over storage resources. With
applications developed using the "Human Jukebox" interface,
administrators can control the movement of changer media, mount and
dismount media at a device level, specify media labels, and assign storage
resources to specific applications.

Media Manager serves as an OS layer that insulates NLM™ applications
from device driver details, as shown in the following figure.

Figure 8. Media Manager as Insulation between NLM Applications and Device
Drivers

File Service Group

Media Manager: Concepts 687

Storage Access Interface

File Service Group

Media Manager: Concepts 688

The Media Manager provides a new storage access interface that allows
applications to use all storage resources available on the system. The
interface is common for all types of storage objects. It supports database
queries, storage resource reservation, and storage access functions.

Media Format Independence

The Media Manager is media format independent and makes no
assumptions about the layout of information on the media. It integrates
application support functions to label, unlabel, and identify media.

Backward and Forward Compatibility

The Media Manager assumes all responsibilities associated with NetWare®
3.12 and 4.x compatibility issues. The following list represents areas of the
OS that the Media Manager has addressed:

DAI

The Media Manager is a replacement for current DAI functionality.
The Media Manager will emulate existing DAI interfaces so that
current DAI-based applications can operate unmodified in the new
environment. All newly developed applications should use the Media
Manager interface exclusively. Any existing DAI-based applications
should be updated to support the Media Manager functions defined in
this document in place of the DAI interface.

International Language Support

The Media Manager is enabled using Novell® internal localization
guidelines. All international language modules are fully compatible
with the Media Manager.

System Fault Tolerance (SFT™) III

The Media Manager and driver interfaces will be fully compatible
with SFT III™ server products. The functions defined in the DAI are
also conducive to mirrored server operation.

NetWare C Library Interface (CLIB)

The Media Manager is compatible with new CLIB functions and will
be compatible with future changes to the library.

Memory Protection

The Media Manager kernel and API functions are all compatible with
the memory protection features that are new to the NetWare 4.x server
environment.

New Storage Technology Integration

The Media Manager provides a driver interface that allows media changers
to be integrated into the server. NetWare's new NetWare Peripheral

File Service Group

Media Manager: Concepts 689

Architecture (NWPA) allows flexibility in separating the functions of the
host adapter from individual device behaviors. This allows rapid
integration of new storage technologies into the server. The current Device
Driver specification (recently updated for NetWare 3.12 and 4.x) will
continue to be supported, however.

Network Administrator Management

The Media Manager is instrumented for the NetWare Management
architecture. Network management utilities and the "Human Jukebox"
interface allow network administrators to obtain the state of Media Manager
objects and manipulate the various storage resources.

Parent Topic:

Media Manager: Guides

Error Codes

(These are return codes for non-I/O functions.)

#define MM_OK 0x00
#define MM_INVALID_OBJECT 0x01
#define MM_INVALID_APPLICATION 0x02
#define MM_INVALID_RESOURCETAG 0x03
#define MM_MEMORY_ALLOCATION_ERROR 0x04
#define MM_INVALID_MODE 0x05
#define MM_RESERVATION_CONFLICT 0x06
#define MM_PARAMETER_ERROR 0x07
#define MM_OBJECT_NOT_FOUND 0x08
#define MM_ATTRIBUTE_NOT_SETABLE 0x09
#define MM_FAILURE 0x0A
#define MM_NOT_ABORTED 0x0B
#define MM_IO_ERROR 0x0C

Parent Topic:

Function/Completion Code Definitions

Final Completion Codes

Used by MM_Object_IO

NOTE: Two words are returned for each of these codes. The upper
word is the return code from the adapter driver (not defined here). This
list contains the lower word of the return code. The application must
mask off the upper word to check for the following completion codes.

File Service Group

Media Manager: Concepts 690

#define FUNCTION_OK 0x00
#define FUNCTION_CORRECTED_MEDIA_ERROR 0x10
#define FUNCTION_MEDIA_ERROR 0x11
#define FUNCTION_DEVICE_ERROR 0x12
#define FUNCTION_ADAPTER_ERROR 0x13
#define FUNCTION_NOT_SUPPORTED_BY_DEVICE 0x14
#define FUNCTION_NOT_SUPPORTED_BY_DRIVER 0x15
#define FUNCTION_PARAMETER_ERROR 0x16
#define FUNCTION_MEDIA_NOT_PRESENT 0x17
#define FUNCTION_MEDIA_CHANGED 0x18
#define FUNCTION_PREVIOUSLY_WRITTEN 0x19
#define FUNCTION_MEDIA_NOT_FORMATED 0x1A
#define FUNCTION_BLANK_MEDIA 0x1B
#define FUNCTION_END_OF_MEDIA 0x1C /* or end of partition */
#define FUNCTION_FILE_MARK_DETECTED 0x1D
#define FUNCTION_SET_MARK_DETECTED 0x1E
#define FUNCTION_WRITE_PROTECTED 0x1F
#define FUNCTION_OK_EARLY_WARNING 0x20
#define FUNCTION_BEGINNING_OF_MEDIA 0x21
#define FUNCTION_MEDIA_NOT_FOUND 0x22
#define FUNCTION_MEDIA_NOT_REMOVED 0x23
#define FUNCTION_UNKNOWN_COMPLETION 0x24
#define FUNCTION_DATA_MISSING 0x25
#define FUNCTION_HOTFIX_ERROR 0x26
#define FUNCTION_HOTFIX_UPDATE_ERROR 0x27
#define FUNCTION_IO_ERROR 0x28
#define FUNCTION_CHANGER_SOURCE_EMPTY 0x29
#define FUNCTION_CHANGER_DEST_FULL 0x2A
#define FUNCTION_CHANGER_JAMMED 0x2B
#define FUNCTION_MAGAZINE_NOT_PRESENT 0x2D
#define FUNCTION_MAGAZINE_SOURCE_EMPTY 0x2E
#define FUNCTION_MAGAZINE_DEST_FULL 0x2F
#define FUNCTION_MAGAZINE_JAMMED 0x30
#define FUNCTION_ABORT_CAUSED_BY_PRIOR_ERROR 0x31
#define FUNCTION_CHANGER_ERROR 0x32
#define FUNCTION_MAGAZINE_ERROR 0x33
#define FUNCTION_BLOCK_SIZE_ERROR 0x34
#define FUNCTION_COMPRESSED_DATA 0x35

Parent Topic:

Function/Completion Code Definitions

Format Types

(Retrieved by use of Attribute IDs)

1/4 Inch

QIC-24 0x00000001
QIC-120 0x00000002

File Service Group

Media Manager: Concepts 691

QIC-120 0x00000002
QIC-150 0x00000004
QIC-320 0x00000008
QIC-525 0x00000010
QIC-1350 0x00000020
QIC-2100C 0x00000040
QIC-1000 0x00000080

1/2 Inch

X3B5/87-099 0x00000001
X3B5/86-199 0x00000002
HI-TC1 0x00000004
HI-TC2 0x00000008
X3.193-1990 0x00000010
X3B5/91-174 0x00000020
X3B5/91-227 0x00000040
X3.266-199x 0x00000080
X3B5/94-354 0x00000100

8 mm

X3.202-1991 0x00000001
ECMA TC17 0x00000002
EXABYTE-8500/05 0x00000004

DAT

DDS 0x00000001
Data DAT 0x00000002
DDS2 0x00000004

Parent Topic:

Function/Completion Code Definitions

Future Design Improvements

The following are features planned to be designed into future versions of
the Media Manager interface, but are not part of this version of the Media
Manager specification.

Static Database of Managed Objects

The static database will allow the Media Manager to keep information
statically on disk about on-line media, off-line media, devices, and changers.
This database will then be used to restore a server's storage configuration
when a server is restarted.

On-demand Mounting

The Media Manager interface will allow a group of media to appear on-line

File Service Group

Media Manager: Concepts 692

with the Media Manager although the group of media might be off-line.
This feature will therefore automatically mount and dismount individual
pieces of media on demand.

Directory Services Integration

Integrating Media Manager functionality with Directory Services requires
more research. A possible application may be storing information about
certain storage resources in the global directory. Where duplicate copies of
static data exist, such as CD-ROM, the directory could show where the most
convenient copy exits.

Parent Topic:

Media Manager: Guides

Human Jukebox Functions

The current suite of Human Jukebox functions consists of one API function
and one function that the application writes to handle operator messages at
the console. Both functions are optional. The human jukebox interface is
used by the Media Manager to communicate with the console operator. The
operator can be prompted to insert or remove media from a particular
storage device and therefore become part of the storage management
system as a "human jukebox."The application's optional function would
provide its own screen, screen prompts and I/O to the operator. If the
application does not provide this function, the Media Manager prompts the
console operator on the system default server console screen. The Human
Jukebox functions are:

HJ_Media_Request

HJ_Media_Request_Ack

Parent Topic:

Media Manager: Guides

Identification Functions

Applications often need to identify storage media with a customized token
or label. Using labels, application developers often implement more
complex functionality than would be available through the device itself.
Using Media Manager's identification functions, applications can label,
unlabel, and otherwise identify storage media to provide enhanced
functionality. Through the reservation functions mentioned above, an
application lets the Media Manager know about its functions that will

File Service Group

Media Manager: Concepts 693

handle labeling, unlabeling, etc. of the media. The Identification functions
and the associated Application functions are:

MM_Register_Identification_Routines

IdentifyFunction (Application Function)

LabelFunction (Application Function)

UnlabelFunction (Application Function)

MM_Unregister_Identification_Routines

Note that the three functions to be provided by the application are specified
as part of MM_Register_Identification_Routines .

NOTE: Developers using these functions should see Format Types for
the appropriate data format type to support. If a new format type
definition is needed, please contact Novell Labs™ at Novell®, Inc., 122
E. 1700 South, Provo, UT. USA 84601.

Parent Topic:

Media Manager: Guides

Identification Types

Used by MediaInfoDef and MM_Register_Identification_Routines

#define UNIDENTIFIABLE_MEDIA 0x00000001
#define HIGH_SIERRA_CDROM_MEDIA 0x00000002
#define ISO_CDROM_MEDIA 0x00000003
#define NETWARE_FILE_SYSTEM_MEDIA 0x00000005
#define INTERNAL_IDENTIFY_TYPE 0x00000007
#define MEDIA_TYPE_SMS 0x00000008
#define MEDIA_TYPE_SIDF 0x00000009
#define MEDIA_TYPE_BLANK 0x0000000A
#define MEDIA_TYPE_ERROR 0x0000000B
#define FORMAT_MEDIA 0x0000
#define TAPE_CONTROL 0x0001
(reserved) 0x0002
#define ACTIVATE_FUNCTIONS 0x0003
#define MOUNT_FUNCTIONS 0x0004
#define SELECT_FUNCTIONS 0x0005
#define LOAD_FUNCTIONS 0x0006

Parent Topic:

Function/Completion Code Definitions

Information Functions

File Service Group

Media Manager: Concepts 694

The information functions give applications the ability to find the details of
various storage devices. Because Media Manager has a generalized
architecture to support many types of devices, the detailed information
needed to communicate with the device drivers is not known in advance.

After searching for the types of devices already registered with the Media
Manager, an application (such as Novell's SBACKUP), would continue
querying the database for generic information that all objects would have.
This information includes number of children, number of siblings, and
number of parents. More detailed information would include object IDs of
all the related objects in the database. All this information is kept by the
application while the server and the application are running. The
Information functions are:

MM_Find_Object_Type

MM_Return_Object_Attribute

MM_Return_Object_Generic_Info

MM_Return_Object_Mapping_Info

MM_Return_Object_Specific_Info

MM_Return_Object_Table_Size

MM_Return_Objects_Attributes

MM_Set_Object_Attribute

Parent Topic:

Media Manager: Guides

Initial Completion Codes

These return codes are for the I/O function MM_Object_IO.

#define MESSAGE_PROCESSED 0x00
#define MESSAGE_DATA_MISSING 0x01
#define MESSAGE_POSTPONE 0x02
#define MESSAGE_ABORTED 0x03
#define MESSAGE_INVALID_PARAMETERS 0x04
#define MESSAGE_OBJECT_NOT_ACTIVE 0x05
#define MESSAGE_INVALID_OBJECT 0x06
#define MESSAGE_FUNCTION_NOT_SUPPORTED 0x07
#define MESSAGE_INVALID_MODE 0x08
#define MESSAGE_ABORTED_CLEAN 0x0A

Parent Topic:

File Service Group

Media Manager: Concepts 695

Function/Completion Code Definitions

Media Manager Architecture

The NetWare® server architecture before 3.12 used a device manager only
designed for the needs of the internal NetWare file system. Although it
provided simple device level services, it did not support new storage
technologies such as media changers and CD-ROM magazines or "jukebox"
devices. NetWare 3.12 and 4.x OS use the Media Manager to provide a
richer API set for applications to access storage media.

The main features of the Media Manager architecture include:

An interface to control and manage changers and removable devices.

Providing media identification services to storage applications.

Standard media insertion/ejection services via the "Human" jukebox.

Resource assignment and administrative services.

Object oriented design for easy maintenance and expansion.

The architecture of the Media Manager provides a foundation for more
sophisticated file systems and storage applications. The Media Manager is a
critical component of the future loadable file system architecture.

Parent Topic:

Media Manager Introduction

Media Manager Database Concepts

The Media Manager maintains a database of storage objects in memory.
These objects are used to represent several types of devices. Novell® may in
the future create and manage new classes of storage objects. Currently, the
object IDs that Media Manager uses to represent these objects are dynamic
(and reusable), but this may change in future implementations of the Media
Manager.

Storage objects are linked together to form storage dependencies. A storage
dependency exists when an object has no value unless physically or
logically combined with another object. For example, a function call request
to read a tape makes no sense unless the tape drive is activated and the tape
inserted in the drive. So, in the Media Manager database, the tape drive's
associated Device Object (Removable) is a "parent" of the tape's associated
Media Object (Removable). Objects are said to be a child of an object on
which it depends as shown in the following figure. An object's siblings are
the group of objects having the same parent.

File Service Group

Media Manager: Concepts 696

Figure 9. The Media Manager Database

Adapter Object

The Adapter Object represents a host adapter card that supports physical
devices. The Media Manager adds an Adapter Object to the database when
an adapter driver (for example, a Host Adapter Module in the NWPA
architecture) registers with the Media Manager. An Adapter Object does not
have any parents, but it may have Changer or Device Objects as children.

Changer Object

The Changer Object represents a random access media movement device in
a media changer (or "jukebox"). In a standard configuration, a jukebox
would also have one or more Device Objects representing the media drives
contained in it. These drives would be identified separately in the database,

File Service Group

Media Manager: Concepts 697

usually as siblings to the Changer Object. The Media Manager adds a
Changer Object to the database when a changer device driver first registers
with the Media Manager. A Changer Object is always a child of an Adapter
Object. It may have Slot and Magazine Objects as children.

Device Objects

A Device Object is always the child of an Adapter Object. A Device Object
may be a parent of Magazine Objects or Media Objects. The two types of
Device Objects are Removable and Fixed.

Remov
able

The Device Object (Removable) is used to represent
removable media devices, such as Magneto-Optical (MO)
drives, CD-ROM drives, and tape drives. When a removable
device driver first registers with the Media Manager, the
Media Manager adds a Device Object (Removable) to the
database.

Fixed The Device Object (Fixed) is used to represent fixed
(nonremovable) media devices, such as hard drives. When a
fixed device driver first registers with the Media Manager,
the Media Manager adds a Device Object to the database.

Slot Object

A Slot Object corresponds to a single media storage slot in a changer. Slot
Objects are added to the database when a changer's device driver registers
with the Media Manager. A Slot Object can be the child of either a Changer
Object or a Magazine Object. A Slot Object (Mail) is a special type of Slot
Object that represents the import/export elements in a media changer.

Magazine Object

The Magazine Object represents a set of media contained in a single
cartridge or magazine. A CD-ROM magazine, for example, often contains 6
to 12 CD-ROM disks at once. Automated CD-ROM or MO jukeboxes may
contain even larger numbers of disks. When a device driver reports a media
magazine in a device, the Media Manager adds a Magazine Object to the
database. A Magazine Object may stand alone or it may be the child of
either a Removable Device or Changer Object. It may also be the parent of
Slot or Media Objects. Each piece of media in a magazine would be a Media
Object child of the Magazine Object.

Media Objects

Applications can label, unlabel, and identify Media Objects in the database
independent of the physical medium. A Media Object may stand alone, or it

File Service Group

Media Manager: Concepts 698

may be a child of a Device or Magazine Object. It may also be a parent to a
Partition Object. The two types of Media Objects are Removable and Fixed.

Remova
ble

A Media Object (Removable) represents physical pieces of
removable media such as tapes, disk cartridges, MO disks
or CD-ROMs.

Fixed A Media Object (Fixed) corresponds to fixed
(nonremovable) media on the system. Objects of this type
can be created dynamically when detected in magazines,
devices or changers, or they can be added to the database
by an application's use of MM_Create_Media_Object.

Partition Object

NetWare® divides storage media into logical sections for ease of
management. The Partition Object represents one of these logical sections of
a physical media. Partition Objects can only be children of a Media Object
and may be a parent to a Hot Fix™ Object.

Hot Fix Object

The Hot Fix Object represents the physical location of the Hot Fix area on a
NetWare volume. Hot Fix Objects can only be children of a Partition Object
and may be a parent to a Mirror Object.

Mirror Object

Disk mirroring is a fault tolerant feature that used to require its own
interface to implement. Now, as an object in the Media Manager database,
the Mirror Object is used to represent a physical device that will receive the
same input as a primary storage device. Mirror Objects can only exist as a
child of a Hot Fix Object.

Parent Topic:

Media Manager Introduction

Media Manager Queue Management

This section applies only to media devices, such as tape drives, which are
sequentially accessed. Upon any error or exception condition (e.g., reaching
End of Media, File Mark detected while reading, etc.), the device driver
freezes the queue. This allows the application to decide whether to proceed

File Service Group

Media Manager: Concepts 699

with the currently queued operations by unfreezing the queue thus
allowing the queued requests to proceed normally, or to abort them. The
first case might occur in an application which is restoring multiple sessions
from a single media when one session might end with a File Mark but the
application wants to continue reading the requests for the second session
(which are beyond the File Mark.) In the second case the application might
abort the pending request so the media doesn't go beyond the File Mark.

The frozen queue only affects I/O action codes (described in Storage Access
I/O Action Codes (0x0020 - 0xFFFF)). Control action codes (described in
Storage Access Control Action Codes (0x0000 - 0x001F)), such as
Mount/Dismount, Lock/Unlock etc., can still be issued since they are
issued one at a time on a priority basis (that is, bypassing frozen queues and
pending I/Os). If the device has been deactivated because of a fatal error no
further I/Os can be issued until the device is reactivated at which time the
queue is automatically unfrozen.

In either case the queue must be unfrozen by the application. Even if the
application is finished with the device, it should unfreeze the queue for
future use by it or another application. The queue is unfrozen by issuing the
I/O action code Reset Queue (action code number 0x25). This action code is
described in Action Code: Reset Queue (0x0025).

Parent Topic:

Media Manager Introduction

Media Types

Used in GenericInfoDef

0x00 direct-access device (magnetic disk)
0x01 sequential-access device (magnetic tape)
0x02 printer device
0x03 processor device
0x04 write once device (some optical disks)
 /* Media Types (Continued) */
0x05 CD-ROM device
0x06 scanner device
0x07 optical memory device (some optical disks)
0x08 medium changer device (jukeboxes)
0x09 (Reserved)
0x0A-0x0B defined by ASC IT8 (Graphic Arts Pre-Press)
0x0C-0x1E Reserved
0x1F unknown or no device type
0xFFCall CDM_Inquiry() function (See NWPA Functional
 Specification) for every type of device

Parent Topic:

Function/Completion Code Definitions

File Service Group

Media Manager: Concepts 700

Message Actions

#define LOCK_FUNCTIONS 0x0007
#define MOVE_FUNCTIONS 0x0008
#define STAMP_FUNCTIONS 0x0009
#define SCAN_FUNCTIONS 0x000A
#define CHECK_FUNCTIONS 0x000B
#define IDENTIFY_FUNCTIONS 0x000C
#define LOAD_MAGAZINE_FUNCTIONS 0x000D
#define CHANGER_INVENTORY_FUNCTIONS 0x000E
#define RAW_INSERT_FUNCTION 0x001B
#define RAW_CHANGER_FUNCTION 0x001C
#define RAW_MAGAZINE_FUNCTION 0x001D
#define RANDOM_READ 0x0020
#define RANDOM_WRITE 0x0021
#define RANDOM_WRITE_ONCE 0x0022
#define SEQUENTIAL_READ 0x0023
#define SEQUENTIAL_WRITE 0x0024
#define RESET_QUEUE 0x0025
#define SINGLE_FILE_MARKS 0x0026
#define MULTIPLE_FILE_MARKS 0x0027
#define SINGLE_SET_MARKS 0x0028
#define MULTIPLE_SET_MARKS 0x0029
#define SPACE_DATA_BLOCKS 0x002A
#define LOCATE_DATA_BLOCKS 0x002B
#define PARTITION_SUPPORT 0x002C
#define SEQUENTIAL_SUPPORT 0x002D
#define DEVICE_GENERIC_IOCTL 0x003E

Parent Topic:

Function/Completion Code Definitions

Notification Functions

The Media Manager has the ability to alert an application when the device
environment changes. The Media Manager can alert the application only if
the Media Manager has the address of the application's custom-built notify
function. First, the application must register the name and location of its
own notify function with the Media Manager. As part of the registration
process, the application provides the Media Manager with a list of
environment changes the application is interested in. The Media Manager
will then use this notification function to notify the application if a selected
environment change occurs. Using this information, the application can then
respond correctly to the change. The Notification Functions and the
associated Application function are:

MM_Register_Notify_Routine

File Service Group

Media Manager: Concepts 701

NotifyFunction (Application Function)

MM_Unregister_Notify_Routine

Parent Topic:

Media Manager: Guides

Notify Event Bits

Used in MM_Register_Notify_Routine.

#define NOTIFY_OBJECT_CREATION 0x0001
#define NOTIFY_OBJECT_DELETION 0x0002
#define NOTIFY_OBJECT_ACTIVATED 0x0004
#define NOTIFY_OBJECT_DEACTIVATED 0x0008
#define NOTIFY_OBJECT_RESERVATION 0x0010
#define NOTIFY_OBJECT_UNRESERVATION 0x0020
#define NOTIFY_OBJECT_PRECREATION 0x0040
#define NOTIFY_OBJECT_PREDELETION 0x0080
#define NOTIFY_OBJECT_ATTRIBUTE_CHANGE 0x0100

Parent Topic:

Function/Completion Code Definitions

Object Status Bits

Used in the DeviceInfoDef structure.

#define OBJECT_ACTIVATED 0x00000001
#define OBJECT_CREATED 0x00000002
#define OBJECT_ASSIGNABLE 0x00000004
#define OBJECT_ASSIGNED 0x00000008
#define OBJECT_RESERVED 0x00000010
#define OBJECT_BEING_IDENTIFIED 0x00000020
#define OBJECT_MAGAZINE_LOADED 0x00000040
#define OBJECT_FAILURE 0x00000080
#define OBJECT_REMOVABLE 0x00000100
#define OBJECT_READ_ONLY 0x00000200
#define OBJECT_INFO_VALID 0x00000400
#define OBJECT_IN_DEVICE 0x00010000
#define OBJECT_ACCEPTS_MAGAZINES 0x00020000
#define OBJECT_IS_IN_A_CHANGER 0x00040000
#define OBJECT_LOADABLE 0x00080000
#define OBJECT_DEVICE_LOCK 0x01000000
#define OBJECT_CHANGER_LOCK 0x02000000
#define OBJECT_REMIRRORING 0x04000000
#define OBJECT_SELECTED 0x08000000

File Service Group

Media Manager: Concepts 702

Parent Topic:

Function/Completion Code Definitions

Object Support Functions

These functions are used to manage objects in the Media Manager database.
Object Support Functions are:

MM_Create_Media_Object

MM_Delete_Media_Object

MM_Rename_Object

Parent Topic:

Media Manager: Guides

Object Types

Used by MM_Find_Object_Type.

#define ADAPTER_OBJECT 0
#define CHANGER_OBJECT 1
#define DEVICE_OBJECT 2
/* (reserved) 3 */
#define MEDIA_OBJECT 4
#define PARTITION_OBJECT 5
#define SLOT_OBJECT 6
#define HOTFIX_OBJECT 7
#define MIRROR_OBJECT 8
#define PARITY_OBJECT 9
#define SEGMENT_OBJECT 10
#define VOLUME_OBJECT 11
#define CLONE_OBJECT 12
/* (reserved) 13 */
#define MAGAZINE_OBJECT 14
#define VIRTUAL_DEVICE_OBJECT 15
#define UNKNOWN_OBJECT 0xFFFF

Parent Topic:

Function/Completion Code Definitions

Partition Management Functions

This set of functions provides a way for applications to create, delete and

File Service Group

Media Manager: Concepts 703

manage Partition, Hot Fix, and Mirror Objects.

MM_CreateHotFix

MM_CreateMirror

MM_CreatePartition

MM_DeleteHotFix

MM_DeleteMirror

MM_DeletePartition

MM_DelPartitionFromMirrorGroup

MM_ForceMirrorGroupInSync

MM_InitializePartitionTable

MM_RemirrorGroup

MM_ReturnMirrorInfo

MM_ReturnPartitionTableInfo

Parent Topic:

Media Manager: Guides

Related Topics:

Using Media Manager Partition Functions

Reservation Functions

When several applications access the same pool of storage devices,
contention is inevitable. Therefore, Media Manager is equipped with a suite
of functions that allows applications to reserve an object for its own use. The
reservation is done only when needed, and not for the duration of program
execution. The Reservation functions and the associated Application
functions are:

MM_Register_Application

ConsoleFunction (Application Function)

MM_Release_Object

MM_Release_Unload_Semaphore

MM_Reserve_Object

AlertFunction (Application Function)

File Service Group

Media Manager: Concepts 704

MM_Set_Unload_Semaphore

MM_Unregister_Application

Parent Topic:

Media Manager: Guides

Reservation Modes

Used by MM_Reserve_Object

#define MODE_IO 0
#define MODE_CONTROL 1
#define MODE_RESERVED 7

Parent Topic:

Function/Completion Code Definitions

Resource Tag Allocation Signatures

#define MMApplicationSignature0x50424D4D
 /* 'PAMM' (see MM_Register_Application)*/
#define MMNotifySignature0x4F4E4D4D
 /* 'ONMM' (see MM_Register_Notify_Routine) */
#define MMIdentifySignature0x44494D4D
 /* 'DIMM' (see MM_Register_Identification_Routines)*/

Parent Topic:

Function/Completion Code Definitions

Vendor Pass-Through Functions

This set of functions provide applications the ability to communicate
directly with a device or an adapter. Possible uses include passing
proprietary information to devices during hardware configuration (for
example, during RAID system configuration), or receiving diagnostic
information from a device or adapter during operation. These functions are
described in the NetWare Peripheral Architecture Functional Specification and
Developer's Guide (also available from Novell Labs™), since they are part of
that architecture.

Parent Topic:

Media Manager: Guides

File Service Group

Media Manager: Concepts 705

Media Manager: Functions

File Service Group

Media Manager: Functions 706

HJ_Media_Request

Prompts the operator at the console to insert or remove media from a device

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG HJ_Media_Request(
 struct *InsertRequestDef minfo,
 LONG requestCode,
 LONG uniqueID);

Parameters

minfo

(IN) Pointer passed to the ConsoleFunction that the application
registers via MM_Register_Application.

requestCode

(IN) Defined in the ConsoleFunction sample specification under
MM_Register_Application.

uniqueID

(IN) Passed to and from the ConsoleFunction registered in
MM_Register_Application.

Return Values

HJ_ERROR

Media count in the InsertRequestDef structure was either < 0 or > 1024,
or the media number was not -1.

NOTE: The maximum allowed media count limit of 1024 is
currently set in the Media Manager, however, this will be changed
in a future release. See Function/Completion Code Definitions for
additional completion codes.

File Service Group

Media Manager: Functions 707

HJ_Media_Request_Ack

Acknowledges an outstanding media request

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG HJ_Media_Request_Ack (
 struct InsertRequestDef *minfo,
 LONG ackCode,
 LONG uniqueID)

Parameters

minfo

(IN) Pointer passed to the ConsoleFunction that the application
registers via MM_Register_Application.

ackCode

(IN) HJ_ACK_MESSAGE HJ_NACK_MESSAGE

uniqueID

(IN) Passed to and from the ConsoleFunction registered in
MM_Register_Application

Return Values

MM_OK

Function completed successfully

Remarks

The application's ConsoleFunction (see MM_Register_Application) calls
this function to acknowledge an outstanding media request.

File Service Group

Media Manager: Functions 708

MM_Abort_Function

Attempts to abort a currently active request

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Abort_Function(
 LONG osRequestHandle)

Parameters

osRequestHandle

(IN) This parameter is the request handle filled in by MM_Object_IO.
It identifies the request to abort.

Return Values

MM_OK

Function completed successfully

MM_PARAMETER_ERROR

osRequestHandle was set incorrectly.

Remarks

This is a nonblocking function. It attempts to abort a currently active
request. The callback function will still be called even with an "abort"
status.

File Service Group

Media Manager: Functions 709

MM_AddMirrorObjectToMirrorGroup

Adds an unreserved Mirror Object to a mirror group

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <partapi.h>

LONG MM_AddMirrorObjectToMirrorGroup(
 LONG mirrorObjectID,
 LONG mirrorGroupObjectID);

Parameters

mirrorObjectID

(IN) The Media Manager object ID of the unreserved Mirror Object to
be added to the mirror group.

mirrorGroupObjectID

(IN) The Media Manager object ID of the unreserved mirror group to
which the Mirror Object will be added.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

Either mirrorObjectID or mirrorGroupObjectID is invalid (not in the
database or not a Mirror Object) or the Mirror Objects they refer to do
not have either a Hot Fix Object for a parent or a Partition Object for a
grandparent.

MM_INVALID_MODE

The object was not active.

MM_RESERVATION_CONFLICT

The Mirror Objects selected were reserved. This function requires that
the mirror objects be unreserved.

MM_PARAMETER_ERROR

One or more parameters passed is not what was expected.

MM_FAILURE

The function failed to add the Mirror Object to the group.

File Service Group

Media Manager: Functions 710

The function failed to add the Mirror Object to the group.

Remarks

This function adds an unreserved Mirror Object identified by the object
ID mirrorObjectID to the mirror group identified by the object handle
mirrorGroupObjectID to create a single Mirror Object. The old Mirror
Object associated with the mirrorObjectID will be removed from the
Media Manager's database and will no longer be accessible.

IMPORTANT: This means that any existing data associated with the
Mirror Object mirrorObjectID will also be overwritten after this function
is used. For details, please refer to Partition API Usage in this
addendum.

NOTE: Between 1 and 8 mirror objects can be part of a mirror group.

File Service Group

Media Manager: Functions 711

MM_Check_For_Pending_Aborts

Checks for abort requests that have been issued, but not completed because
the driver still has data to flush

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Check_For_Pending_Aborts(void);

Return Values

0

No pending aborts; the driver can release memory associated with
allocated requests.

nonzero

The pending number of aborts

File Service Group

Media Manager: Functions 712

MM_Create_Media_Object

Identifies function to add the newly identified objects to the Media Manager
database

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Create_Media_Object(
 LONG objectID,
 struct MediaInfoDef *mediaInfo);

Parameters

objectID

(IN) This parameter is the internal handle passed to the Identification
Function, identifying the device with the media.

Note: Use this function to add unidentified new media objects to the
database by passing a -1 as the object ID. New objects could represent
media in external storage cabinets that need to be inserted by console
operators. See the Human Jukebox APIs)

mediaInfo

(IN) This parameter points to a MediaInfoDef structure containing
information about the media.

Return Values

MM_OK

No pending aborts; the driver can release memory associated with
allocated requests.

MM_MEMORY_ALLOCATION_ERROR

Memory allocation failed.

MM_PARAMETER_ERROR

objectID was not in the database or was not set to -1.

Remarks

This function is a nonblocking function. It checks for abort requests that

File Service Group

Media Manager: Functions 713

have been issued, but not completed because the driver still has data to
flush.

File Service Group

Media Manager: Functions 714

MM_CreateHotFix

Creates a redirection area for a partition

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <partapi.h>

LONG MM_CreateHotFix(
 LONG partitionObjectHandle,
 LONG dataSize,
 LONG *newHotFixObjectID);

Parameters

partitionObjectHandle

(IN) The Media Manager object handle of the reserved Partition Object
where the Hot Fix area will be created.

dataSize

(IN) The number of sectors to be contained in the usable data portion
of the Hot Fix Object.

newHotFixObjectID

(OUT) A pointer to the Media Manager object ID of the Hot Fix object
created by this function.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

partitionObjectHandle was invalid

MM_INVALID_MODE

The object was not active.

MM_RESERVATION_CONFLICT

The Partition Object was not reserved by the application prior to the
request.

MM_PARAMETER_ERROR

One or more parameters passed is not what was expected.

File Service Group

Media Manager: Functions 715

MM_FAILURE

The function failed to create a Hot Fix Object .

Remarks

This function creates a redirection area for the partition selected. If one
already exists, it will first be deleted. A Hot Fix object is also created in
the Media Manager database by this function.

NOTE: 1. Currently the maximum size for the redirection area is 120
megabytes. Any request for a redirection size greater than that amount
will be truncated at 120 megabytes. However, the size of the data
portion of the partition will contain the requested size.

2. The data size of a currently defined Hot Fix object can be found by
reading the capacity field in the Media Manager structure
GenericInfoDef for the Hot Fix object.

File Service Group

Media Manager: Functions 716

MM_CreateMirror

Creates a Mirror area on the selected Partition Object

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <partapi.h>

LONG MM_CreateMirror(
 LONG partitionObjectHandle,
 LONG *newMirrorObjectID);

Parameters

partitionObjectHandle

(IN) The Media Manager object handle for the reserved Partition
Object.

newMirrorObjectID

(IN) A pointer to the Media Manager object ID for the newly created
Mirror Object.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

partitionObjectHandle was invalid (not in the database) or the child of
the Partition Object selected was not a Hot Fix Object

MM_INVALID_MODE

The object was not reserved in the proper mode (i.e., I/O vs. Control)
for this operation.

MM_RESERVATION_CONFLICT

The Partition Object was not reserved by the application prior to the
request.

MM_PARAMETER_ERROR

One or more parameters passed is not what was expected.

MM_FAILURE

The function failed to create a Mirror Object.

File Service Group

Media Manager: Functions 717

Remarks

This function creates a Mirror area on the selected Partition Object. A
Mirror Object is also added to the Media Manager database.

File Service Group

Media Manager: Functions 718

MM_CreatePartition

Finds the first available physical partition on a disk and allocates it to
NetWare

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <partapi.h>

LONG MM_MM_CreatePartition(
 LONG deviceObjectHandle,
 LONG partitionType,
 LONG startingSector,
 LONG numberOfSectors,
 LONG *newPartitionObjectID);

Parameters

Note:The parameters areaStart and alignment listed below are defined in
the function MM_ReturnPartitionTableInfo and are returned from that
function

deviceObjectHandle

(IN) The Media Manager object handle of the reserved Device Object.

partitionType

(IN) The identification type for the partition to be created.
NETWARE_PARTITION_386 is the only type presently supported by
this function.

startingSector

(IN) The beginning absolute sector number for the new logical
partition. If this is the first partition it must be equal to areaStart. If this
is not the first partition this must be a multiple of alignment. See Note
above.

numberOfSectors

(IN) The number of sectors to be assigned to the new logical partition.
This must be calculated so that the ending sector (the startingSector
plus the numberOfSectors) is a multiple of alignment. See Note above

newPartitionObjectID

(OUT) The pointer to the Media Manager object ID of the newly
created Partition Object.

File Service Group

Media Manager: Functions 719

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

The object was not active.

MM_INVALID_MODE

The object was not reserved in the proper mode (i.e., I/O vs. Control)
for this operation.

MM_RESERVATION_CONFLICT

The selected Device Object wWas not reserved by the application prior
to the request

MM_PARAMETER_ERROR

partitionType was not set to NETWARE_PARTITION_386 or one or
more parameters passed is not what was expected.

MM_FAILURE

The function failed to create a partition.

Remarks

This function finds the first available physical partition on a disk and
allocates it to NetWare using NetWare's assigned number. A Partition
Object is added to the Media Manager database as a result of this
function being called.

NOTE: The NetWare file system does not currently support more than
one NetWare partition at a time per physical device.

File Service Group

Media Manager: Functions 720

MM_Delete_Media_Object

Deletes a media or magazine object

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Delete_Media_Object(
 LONG objectNumber);

Parameters

objectNumber

(IN) Specifies the media object to be deleted.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

objectNumber is attached to something (i.e., media is in a device).

MM_PARAMETER_ERROR

objectID was not in the database or was not set to -1.

Remarks

This function deletes a media or magazine object. It can only delete
media or magazine objects that are not attached. If a magazine object is
specified, all media objects within the magazine are also deleted.

File Service Group

Media Manager: Functions 721

MM_DeleteHotFix

Removes the Hot Fix information from a Partition Object

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <partapi.h>

LONG MM_DeleteHotFix(
 LONG hotFixObjectID);

Parameters

hotFixObjectID

(IN) The Media Manager object ID of the Hot Fix object to be deleted.
You must first reserve the obect before deleting.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

hotFixObjectID was invalid (not in the database) or the Hot Fix Object's
parent was not a Partition Object

MM_RESERVATION_CONFLICT

The Hot Fix Object was already reserved at the time of the call.

MM_PARAMETER_ERROR

One or more parameters passed is not what was expected.

MM_FAILURE

The function failed to delete the Hot Fix area. For this function, this
could be caused by the Hot Fix object still having child objects. All
child objects of the Hot Fix object must be deleted prior to deleting the
Hot Fix object.

Remarks

This function removes the Hot Fix information from a Partition Object.
The related Hot Fix Object is also deleted from the Media Manager object
database.

File Service Group

Media Manager: Functions 722

MM_DeleteMirror

Removes the mirror information from a Partition Object

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <partapi.h>

LONG MM_DeleteMirror(
 LONG mirrorObjectID);

Parameters

mirrorObjectID

(IN) The Media Manager object ID for the unreserved Mirror Object to
be deleted.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

mirrorObjectID was invalid (not in the database) or the Mirror Object
selected did not have either a Hot Fix Object for a parent or a Partition
Object for a grandparent.

MM_RESERVATION_CONFLICT

The Mirror Object was already reserved at the time of the call.

MM_FAILURE

The function failed to delete the Mirror Object.

Remarks

This function removes the mirror information from a Partition Object. The
related Mirror Object is also deleted from the Media Manager object
database.

File Service Group

Media Manager: Functions 723

MM_DeletePartition

Deletes the NetWare partition on a device object

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <partapi.h>

LONG MM_DeletePartition(
 LONG partitionObjectID,
 LONG partitionType,
 LONG startingSector,
 LONG numberOfSectors);

Parameters

partitionObjectID

(IN) The Media Manager object handle of an unreserved Partition
Object to be deleted.

partitionType

(IN) This is currently not used and must be set to -1.

startingSector

(IN) The beginning absolute sector number for the logical partition to
be deleted.

numberOfSectors

(IN) The number of sectors in the partition object to be deleted. Note:If
either the startingSector or numberOfSectors parameters is incorrect for
the partition requested, this function will fail to delete the partition.
Since this function is destructive, these parameters are used to verifiy
that the partition requested matches the partition that is on the media
before deleting the partition.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

partitionObjectID was invalid.

MM_RESERVATION_CONFLICT

The Partition Object was reserved prior to the request.

File Service Group

Media Manager: Functions 724

MM_PARAMETER_ERROR

partitionType was not set to -1 or one or more parameters passed is not
what was expected.

MM_FAILURE

The function failed to delete the partition. For this function, this could
be caused by the Partition object still having child objects. All child
objects of this partition must be deleted prior to deleting the Partition
object.

Remarks

This function will delete the NetWare partition on the device object
specified by zeroing out the partition entry. It will also delete the related
Partition Object from the Media Manager database.

File Service Group

Media Manager: Functions 725

MM_DelPartitionFromMirrorGroup

Removes a selected mirrored partition from the mirror group it is currently
in

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_DelPartitionFromMirrorGroup(
 LONG partitionObjectID);

Parameters

partitionObjectID

(IN) The Media Manager object ID of the unreserved Partition Object
that is to be removed from its current mirror group.

partitionType

(IN) This is currently not used and must be set to -1

startingSector

(IN) The beginning absolute sector number for the logical partition to
be deleted.

numberOfSectors

(IN) The number of sectors in the partition object to be deleted. Note:
If either the startingSector or numberOfSectors parameters is incorrect for
the partition requested, this function will fail to delete the partition.
Since this function is destructive, these parameters are used to verifiy
that the partition requested matches the partition that is on the media
before deleting the partition.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

partitionObjectID was invalid.

MM_RESERVATION_CONFLICT

The Partition Object was reserved prior to the request.

MM_PARAMETER_ERROR

File Service Group

Media Manager: Functions 726

partitionType was not set to -1 or one or more parameters passed is not
what was expected.

MM_FAILURE

The function failed to remove the Partition Object from its current
mirror group.

Remarks

This function removes a selected mirrored partition from the mirror
group it is currently in. A new out of sync mirror object will be created for
the partition. This new mirror object may or may not have a different
Object ID than it did before it was added to the mirror group. The
Partition Objects that make up a mirror group can be determined by
using the information returned by MM_Return_Object_MappingInfo.
See the functional specification for details of that function.

IMPORTANT: An application must not perform this function on a
partition which is part of a mirror group that is not currenly in sync
unless it is sure that the partition to be removed contains the "out of
sync" data.

File Service Group

Media Manager: Functions 727

MM_Find_Object_Type

Searches the database for specific object types

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Find_Object_Type
 LONG type,
 LONG *nextIndicator);

Parameters

type

(IN) This is the class of object to be located in the database. See
Function/Completion Code Definitions for the list of valid object
types.

nextIndicator

(OUT) This is used to traverse through the Media Manager database. It
contains an initial value of -1. During the search, nextIndicator
contains the value of the last object ID searched for (see type above).

Return Values

MM_OK

Function completed successfully.

MM_OBJECT_NOT_FOUND

No type class objects were found in the database.

MM_PARAMETER_ERROR

objectID was not in the database or was not set to -1.

Remarks

This function allows applications to search the database for specific object
types such as adapters, changers, media, partitions, etc. When
MM_Reserve_Object is called to reserve an object, then
MM_Reserve_Object is passed the object ID received by calling this
function.

File Service Group

Media Manager: Functions 728

MM_ForceMirrorGroupInSync

Changes the status of a mirror group to synchronized

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <partapi.h>

LONG MM_ForceMirrorGroupInSync(
 LONG mirrorGroupObjectID);

Parameters

mirrorGroupObjectID

(IN) The Media Manager object ID of the mirror group to be declared
synchronized.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

mirrorGroupObjectID was invalid (not in the database or not a Mirror
Object) or it did not have either a Hot Fix Object as a parent or a
Partition Object for a grandparent.

MM_FAILURE

The function failed to declare the mirror group synchronized.

Remarks

This function changes the status of a mirror group to synchronized.
Currently, this function only affects the first two mirrored partitions in a
mirror group, even though the group may have up to eight partitions in
it.

NOTE: This function DOES NOT synchronize a mirrored partition.
This function is used when a mirror group is created and is known to be
empty to prevent the synchronizing process from mirroring any random
data on a new volume. If an existing mirrored partition needs to be
synchronized, use the MM_RemirrorGroup function. For a detailed
discussion of the safe use of this function, see Partition API Usage in this
addendum.

File Service Group

Media Manager: Functions 729

MM_InitializePartitionTable

Clears the partition table and makes it ready for its first partition to be
defined

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_InitializePartitionTable(
 LONG deviceObjectHandle);

Parameters

deviceObjectHandle

(IN) The Media Manager object handle of a reserved Device Object.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

deviceObjectHandle was invalid

MM_INVALID_MODE

The object was not active.

MM_RESERVATION_CONFLICT

The Device Object was not reserved by the application prior to the
request.

MM_FAILURE

The function failed to initialize the partition table.

Remarks

This function clears the partition table and makes it ready for its first
partition to be defined. (In the IBM partitioning scheme this will NULL
sector 0 of the media, leaving the partition signature [0xAA55]).

NOTE: This function will deactivate Partition Objects which are child
objects of the device. It will also remove the associated Partition Objects
from the Media Manager database.

File Service Group

Media Manager: Functions 730

MM_Object_Blocking_IO

Issues I/O requests to an object

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Object_Blocking_IO(
 LONG *returnParameter,
 LONG osReserveHandle,
 LONG actionCode,
 LONG parameter1,
 LONG parameter2,
 LONG parameter3,
 LONG bufferLength,
 void *buffer);

Parameters

returnParameter

(IN) This parameter points to a 4-byte location where returned
information is copied (only if the return was successful).

osReserveHandle

(IN) This parameter is the objectHandle returned via
MM_Reserve_Object. It specifies the target object for the I/O request.

actionCode

(IN) This parameter indicates which Control or I/O action code is to be
performed (see Chapter 3 or Chapter 4 respectively).

parameters 1,2,3

(IN) The meaning of these parameters depends upon the action code
specified (see Chapter 3, Chapter 4).

bufferLength

(IN) This parameter specifies the length of the buffer.

buffer

(IN) This parameter points to data or control buffers passed to the
device. The buffer size is specified by bufferLength.

Return Values

File Service Group

Media Manager: Functions 731

MESSAGE_PROCESSED

Function completed successfully.

MESSAGE_DATA_MISSING

MESSAGE_POSTPONE

The operation failed because of memory allocation errors; you should
retry the operation later

MESSAGE_ABORTED

MESSAGE_INVALID_PARAMETERS

osReserveHandle was not found in the database.

MESSAGE_OBJECT_NOT_ACTIVE

MESSAGE_INVALID_OBJECT

MESSAGE_FUNCTION_NOT_SUPPORTED

MESSAGE_INVALID_MODE

The mode for this object was not set to IO or Control Mode when it
was reserved.

MESSAGE_ABORTED_CLEAN

Remarks

A blocking function. It issues I/O requests to the object specified by the
object handle and returns when the action completes

File Service Group

Media Manager: Functions 732

MM_Object_IO

Issues I/O requests to an object

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Object_IO (
 LONG *osRequestHandle
 LONG requestHandle,
 LONG osReserveHandle,
 LONG actionCode,
 LONG parameter1,
 LONG parameter2,
 LONG parameter3,
 LONG bufferLength,
 void *buffer,
 void (*callBackFunction));

Parameters

osRequestHandle

 (OUT) Points to a 4-byte location where the Media Manager will copy
the request handle associated with this request.

requestHandle

 (IN) The meaning of this parameter is specific to the application. It is
passed when MM_Object_IO calls CallBackFunction.

osReserveHandle

(IN) The reserve handle returned via MM_Reserve_Object. It
specifies the target object for the I/O request.

actionCode

(IN) Indicates which Control or I/O action code is to be performed.

parameters 1,2,3

(IN) The meaning of these parameters depends upon the action code
specified (see Chapter 3, Chapter 4).

bufferLength

(IN) Specifies the length of the buffer.

buffer

(IN and OUT) Points to data or control buffers passed to the device.

File Service Group

Media Manager: Functions 733

The buffer size is specified by bufferLength.

callBackFunction

(IN) Points to a call back function that is called by the Media Manager
at interrupt time to post final completion of the I/0 function.

#include <nwmediam.h>

void CallBackFunction(
 LONG osRequestHandle,
 LONG requestHandle,
 LONG returnParameter,
 LONG completionCode)

CallBackFunction This is an interrupt time function passed to the Media
Manager when MM_Object_IO() is called. It is called by the Media
Manager when an I/O request is completed. The requestHandle
contains an application specified value that is normally used to identify
the request. The meaning of the completion code depends upon the class
of I/O request issued.

osRequestHandle

(IN) The OS request handle returned when MM_Object_IO was
called.

requestHandle

(IN) The application request handle passed to the Media Manager
when MM_Object_IO was called. Typically, applications use it to
identify a request.

returnParameter

(IN) A 4-byte return value for the function (where applicable).

completionCode

(IN) Final Completion Code (received by application from device
drivers) see Function/Completion Code Definitions.

Return Values

Initial Completion Codes (received by the application from the Media
Manager): MESSAGE_PROCESSED

Function completed successfully.

MESSAGE_POSTPONE

The operation failed because of memory allocation errors; you should
retry the operation later

MESSAGE_INVALID_PARAMETERS

osReserveHandle was not found in the database.

MESSAGE_INVALID_MODE

The mode for this object was not set to IO or Control Mode when it

File Service Group

Media Manager: Functions 734

was reserved.

Remarks

is a process nonblocking function that cannot be called at interrupt time.
It issues I/O requests to the object specified by the osReserveHandle. It
returns immediately with an intermediate completion code. If it is not
successful (nonzero value returned), the CallBackFunction is NOT
called. If successful (zero value), the final completion code will be posted
when CallBackFunction is called. Note: CallBackFunction may be called
prior to the return of MM_Object_IO. Applications can call
MM_Abort_Function to abort the request issued by MM_Object_IO
before MM_Object_IO calls CallBackFunction to post completion.

File Service Group

Media Manager: Functions 735

MM_Register_Application

Registers an application with theMedia Manager

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Register_Application (
 LONG *osApplicationHandle,
 LONG applicationHandle,
 BYTE *name,
 LONG (*newAssignmentFunction),
 LONG (*consoleFunction),
 LONG resourceTag);

Parameters

osApplicationHandle

(OUT) This parameter points to a four-byte location where the Media
Manager copies the OS application handle if the registration is
successful. This is used to reserve resources.

applicationHandle

(IN) The value of this parameter is specific to the application.

name

(IN) This parameter is used to register the name of the application. It is
a 64-byte (max) length-preceded ASCII string (First byte holds the
length and the next 63 bytes hold the name). The function will fail
with a parameter error unless this field holds a length-preceded string.

newAssignmentFunction

(IN) Is currently zero (0).

consoleFunction

(IN)

#include <nwmediam.h>

LONG ConsoleFunction(
 struct MediaRequestDef *min
 LONG uniqueID,
 LONG functionCode)

ConsoleFunction This optional function is called by the OS to handle all

File Service Group

Media Manager: Functions 736

physical media movement operations. The ConsoleFunction is registered
with the OS through MM_Register_Application. Note: The structure
MediaRequestDef applies to magazines and changers.

minfo

(IN) Points to the MediaRequestDef structure.

uniqueID

(IN) This parameter is used to identify an outstanding request. It is
passed back from HJ_Media_Request_Ack.

functionCode

(IN) This has two types of values returned:

1) Messages that can only be returned when there is a new request:
HJ_INSERT_MESSAGE and HJ_EJECT_MESSAGE

2) Messages returned when there is an existing request:
HJ_ACK_MESSAGE and HJ_NACK_MESSAGE

Completion Codes:

Screen Not Active = 0 can switch to default console screen

Screen Active = -1 (non zero); do not switch to default console
screen

resourcetag

(IN) Resource tag obtained by calling the OS function
AllocateResourceTag with MMApplicationsSignature (0x50424D4D)
as the signature parameter.

Return Values

MM_OK

Function completed successfully.

MM_PARAMETER_ERROR

The resource tag type identified by resourceTag was not set to
MMApplicationsSignature and/or name[0] was greater than 64.

File Service Group

Media Manager: Functions 737

MM_Register_Identification_Routines

MM_Register_Identification_Routines registers functions that write label
information on storage media with the Media Manager

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Register_Identification_Routines(
 LONG *osIdentifyHandle,
 LONG identifyHandle,
 LONG (*identifyFunction),
 LONG (*unlabelFunction),
 LONG (*labelFunction),
 LONG identificationType,
 BYTE *identifierName,
 LONG resourceTag);

Parameters

osIdentifyHandle

(OUT) This parameter is the osIdentifyHandle returned by
MM_Register_Notifiy_Routine .

identifyHandle

(IN) This parameter is the Novell assigned media identification type
used to distinguish between identification functions.

identifyFunction

(IN) This parameter points to a function that can be called by the
Media Manager to identify media on the system.

#include <nwmediam.h>

LONG IdentifyFunction(
 LONG objectID)

IdentifyFunction Identifies mounted media for the Media Manager. The
application's IdentifyFunction should use the Media Manager access
function MM_Special_Object_Blocking_IO to read from the media. If
the IdentifyFunction succeeds in reading from the media, it should then
call the Media Manger support function MM_Create_Media_Object to
register the media with the OS.

File Service Group

Media Manager: Functions 738

objectID

(IN) The object ID of the mounted device containing the identified
media

0

The function identified the media successfully.

nonzero

The function could not identify the media.

unlabelFunction

This parameter points to an optional function that can be called by the
Media Manager to remove identification information from a piece of
media. Enter a "0" in this field if your application does not support an
unlabel operation.

#include <nwmediam.h>

 LONG UnlabelFunction(
 LONG objectID)

UnlabelFunction This function removes identification information from
the media. Use the function MM_Special_Object_Blocking_IO to write to
the media.

objectID

(IN) The object ID of the mounted media containing the media being
unlabeled.

0

Function completed successfully.

nonzero

Function did not complete successfully.

labelFunction

This parameter points to an optional function that can be called by the
Media Manager to label a piece of media with identification
information. Enter a "0" in this field if your application does not
support a label operation.

#include <nwmediam.h>

LONG LabelFunction(
 LONG objectID,
 struct mediaInfo *mediaInfo
)

LabelFunction This function labels media with specific identification

File Service Group

Media Manager: Functions 739

information. The application's LabelFunction should use the Media
Manager access function MM_Special_Object_Blocking_IO to read
from the media.If the LabelFunction succeeds in reading from the media,
it should call the Media Manager support function
MM_Create_Media_Object to register the media with the OS.

objectID

(IN) The object ID of the mounted media that contains the media being
identified.

mediaInfo

(IN) Points to a structure containing information about the media.

0

Function completed successfully.

nonzero

Function did not complete successfully.

identificationType

(IN) Novell assigned identification type.

identifierName

(IN) 64-byte (max) length preceded ASCII string.

resourceTag

(IN) The resource tag is obtained by calling the OS function
AllocateResourceTag with MMIdentifySignature (0x44494D4D)
as the Media Manager resource signature.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_RESOURCETAG

The resource tag identified by resourceTag was not
MMIdentifySignature.

MM_PARAMETER_ERROR

identifierName[0] was greater than 64

Remarks

Applications may provide functions that write label information on
storage media. MM_Register_Identification_Routines registers those
functions with the Media Manager. Specifications for each function are
given here, along with a description of the corresponding parameters.

File Service Group

Media Manager: Functions 740

MM_Register_Notify_Routine

Registers a notification function with the Media Manager

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Register_Notify_Routine(
 LONG *osNotifyHandle,
 LONG notifyHandle,
 LONG (*notifyFunction),
 LONG objectType,
 LONG eventMask,
 LONG resourceTag);

Parameters

osNotifyHandle

(OUT) 4-byte pointer to where the OS copies the notifyHandle.

notifyHandle

(IN) 4-byte value defined by the application to identify this notify
function.

notifyFunction

(IN) Specifies a blocking function that the Media Manager calls when
specified objects are added or removed from the database.

#include <nwmediam.h>

void NotifyFunction(
 LONG osNotifyHandle,
 LONG notifyHandle,
 LONG objectID,
 LONG objectType,
 LONG eventType)

osNotifyHandle

(IN) The osNotifyHandle returned by MM_Register_Notify_Routine.

notifyHandle

(IN) The notifyHandle passed to the Media Manager when
MM_Register_Notify_Routine was called. It is normally used to
identify the object with the application.

File Service Group

Media Manager: Functions 741

objectID

(IN) The ID of the object generating the notification. It is a 4-byte
hexadecimal number that identifies the object in the Media Manager
database.

objectType

(IN) The objectType of the object generating the notification (See
Function/Completion Code Definitions).

eventType

(IN) Indicates the type of event that generated the notification. (See
Notify Event Bits in Function/Completion Code Definitions.)

objectType

(IN) Indicates the object Type of object to notify about.

eventMask

(IN) Indicates the type of event that will trigger notification.

resourceTag

(IN) Resource tag obtained by calling the OS function
AllocateResourceTag using MMNotifySignature (0x4F4E4D4D) as
the signature parameter.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_RESOURCETAG

The resource tag identified by resourceTag was not
MMIdentifySignature.

MM_MEMORY_ALLOCATION_ERROR

Memory allocation failed.

Remarks

Registers a notification function with the Media Manager. The
application's notification function will be called when alerts are sent from
the system.

NOTE: These notifications will be started in order (i.e., creation, then
activation, etc.), but subsequent notifications will not wait for previous
notifications to complete before starting (e.g., activation may be called
before creation has completed, or reservation may be called before
either creation or activation is completed. See the note on the
Mount/Dismount function).

File Service Group

Media Manager: Functions 742

MM_Release_Object

 Releases a "lock" on an object that was previously reserved by
MM_Reserve_Object

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Release_Object(
 LONG osReserveHandle,
 LONG reserveHandle);

Parameters

osReserveHandle

 The OS reserve handle returned by MM_Reserve_Object.

reserveHandle

The reserve handle supplied by the application in
MM_Reserve_Object.

Return Values

MM_OK

Function completed successfully.

MM_PARAMETER_ERROR

osReserveHandle was invalid

MM_MEMORY_ALLOCATION_ERROR

Memory allocation failed.

Remarks

The function releases a "lock" on an object that was previously reserved
by MM_Reserve_Object. Objects can be automatically released on
certain alerts or a driver unload operation.

File Service Group

Media Manager: Functions 743

MM_Release_Unload_Semaphore

Releases the semaphore on a database object after the object has been
successfully removed

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Release_Unload_Semaphore(
 LONG currentInstance);

Parameters

currentInstance

Uniquely identifies the "release" semaphore command with the correct
"set" semaphore command

Return Values

0

Function completed successfully.

-1

Error; invalid current instance (not in correct context)

Remarks

Releases the semaphore on a database object after the object has been
successfully removed. It is called from the application's Alert function.
MM_Set_Unload_Semaphore describes this process.

File Service Group

Media Manager: Functions 744

MM_Rename_Object

Changes an object's name in the database

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Rename_Object(
 LONG objectID,
 BYTE *name);

Parameters

objectID

The ID of the object to be renamed. It is a 4-byte hexadecimal number
that identifies the object in the Media Manager database.

name

The 64-byte (max) length-preceded ASCII string that holds the
identifying name of the database object. (Byte [0] holds the length and
bytes [1] to [63] hold the ASCII string).

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

objectID was not found in the database.

MM_MEMORY_ALLOCATION_ERROR

Memory allocation failed.

MM_PARAMETER_ERROR

name[0] was greater than 64

Remarks

changes an object's name in the database. It can only change the name
that exists as an ASCII string in the name field of the GenericInfoDef
structure. This function does not change the label field of the
MediaInfoDef structure. The label field can only be changed by
MM_Create_Media_Object or by an identification function registered

File Service Group

Media Manager: Functions 745

via MM_Register_Identification_Routines

File Service Group

Media Manager: Functions 746

MM_Reserve_Object

Reserves an object for exclusive use by the application

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Reserve_Object(
 LONG *osReserveHandle,
 LONG reserveHandle,
 LONG objectID,
 LONG reserveMode,
 LONG osApplicationHandle,
 LONG (*AlertFunction));

Parameters

osReserveHandle

Points to the handle used as the objectID in all functions where the
object needs to be reserved before the function can operate, such as
MM_Object_IO and MM_Object_Blocking_IO.

reserveHandle

The value of this parameter is specified by the application and is
passed as a parameter when AlertFunction is called.

objectID

The ID of the object to be reserved. It is a 4-byte hexadecimal number
that identifies the object in the Media Manager database.

reserveMode

Selects I/O, control or reserved functions: MODE_IO
MODE_CONTROL MODE_RESERVED

osApplicationHandle

 Handle returned from MM_Register_Application.

AlertFunction

Points to a nonblocking interrupt time function that Media Manager
can call when changes to object status occur (see sample
AlertFunction below).

#include <nwmediam.h>

void AlertFunction(

File Service Group

Media Manager: Functions 747

 LONG osReserveHandle,
 LONG reserveHandle,
 LONG alertType,
 LONG alertReason)

AlertFunction This is an interrupt time function passed to the Media
Manager when MM_Reserve_Object is called. It is called by the Media
Manager as a nonblocking call to inform the application of alerts related
to the reserved object. The parameters alertType and alertReason indicate
what kind of event has occurred on the object (see Function/Completion
Code Definitions).

osReserveHandle

 The OS reserve handle returned by MM_Reserve_Object.

reserveHandle

The reserve handle passed to the Media Manager when
MM_Reserve_Object was called. It is normally used to identify the
object with the application.

alertType

Contains a 4-byte alert code that indicates the type of alert. See Alert
Types for this list.

alertReason

Contains a 4-byte code that explains the reason for the alert message.
See Alert Reasons for the list of alert reasons.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

objectID was not found in the database.

MM_MEMORY_ALLOCATION_ERROR

Memory allocation failed.

MM_INVALID_APPLICATION

osApplicationHandle was invalid.

MM_INVALID_MODE

Mode selected was not IO mode, control mode or reserved mode or
object was not activated.

MM_RESERVATION_CONFLICT

Object is already reserved.

Remarks

File Service Group

Media Manager: Functions 748

This function reserves an object for exclusive use by the application. The
object must be reserved in a mode specified by the reserveMode
parameter. Only action codes matching the reserved mode will be
allowed to be performed. If another mode is needed by an application, it
may re-reserve the object in the desired mode. It is not necessary for the
application to call MM_Release_Object before reserving the object in
the new mode. When the application is finished with an object, however,
a call should be made to MM_Release_Object . This will release the
object so that other applications may use it.

File Service Group

Media Manager: Functions 749

MM_RemirrorGroup

Sets the mirror group status to unsynchronized

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <partapi.h>

LONG MM_RemirrorGroup(
 LONG mirrorGroupObjectID,
 LONG modeFlags);

Parameters

mirrorGroupObjectID

(IN) The Media Manager object ID of the mirror group to be
synchronized.

modeFlags

(IN) Must be set to 0. In the future, this parameter will be used to select
different synchronization modes.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

mirrorGroupObjectID was invalid (not in the database or not a Mirror
Object) or it did not have either a Hot Fix Object as a parent or a
Partition Object for a grandparent.

MM_PARAMETER ERROR

modeFlags was not set to 0 or mirrorGroupObjectID was invalid.

MM_FAILURE

The function failed to declare the mirror group unsynchronized.

Remarks

This function sets the mirror group status to unsynchronized, which
starts the synchronization process. Currently, this function only affects
the first two mirrored partitions in a mirror group, even though the
group may have up to eight partitions in it.

File Service Group

Media Manager: Functions 750

MM_Return_Object_Attribute

Returns a specific attribute of an object

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Return_Object_Attribute(
 LONG objectID,
 LONG attributeID,
 LONG length,
 void *info);

Parameters

objectID

This is the ID of the object whose attribute will be returned. The ID is a
4-byte hexadecimal number that identifies the object in the Media
Manager database.

attributeID

This specifies the ID of the attribute to be returned. The attribute IDs
are listed in Attribute IDs.

length

This specifies the size of the buffer in which object attribute will be
returned.

info

This points to a structure where object specific information (such as the
object's attributes) will be copied. The format of this structure depends
upon the object class and application type (see Media Manager:
Structures).

Return Values

MM_OK

Function completed successfully.

MM_PARAMETER_ERROR

objectID was not found in database.

Remarks

File Service Group

Media Manager: Functions 751

Returns a specific attribute of an object. The attributes of an object
depend upon the object type.

File Service Group

Media Manager: Functions 752

MM_Return_Object_Generic_Info

Returns generic information about an object

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Return_Object_Generic_Info(
 LONG objectID,
 struct GenericInfoDef *info);

Parameters

objectID

This is the ID of the object for which generic information will be
returned. It is a 4-byte hexadecimal number that identifies the object in
the Media Manager database.

info

This is a pointer to a GenericInfoDef structure that is passed to the
application. This structure receives generic information about a
database object.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

objectID was not found in the database.

Remarks

This function returns generic information about an object. Generic
information includes a label, an object identification type (see "Database
Concepts" in Chapter 1), and an identifying time stamp. Use
MM_Return_Object_Table_Size to find out the maximum number of
objects in the database.

File Service Group

Media Manager: Functions 753

MM_Return_Object_Mapping_Info

Returns the object IDs of parent, sibling, and child objects related to the
object associated with an object

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Return_Object_Mapping_Info(
 LONG objectID,
 LONG mappingInfoLength,
 LONG *mappingInfo);

Parameters

objectID

This is the ID of the object about which mapping information will be
returned. It is a 4-byte hexadecimal number that identifies the object in
the Media Manager database.

mappingInfoLength

This indicates the size in bytes of the buffer where the mapping
information is to be copied. The size must be calculated by adding one
LONG for each parent, child, and sibling to the minimum size of struct
MappingInfo (3 LONGs). The number of parents, siblings, and
children is reported by the GenericInfoDef structure which is
returned from a call to MM_Return_Object_Generic_Info.

mappingInfo

This points to a MappingInfo structure that contains the mapping
information.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

objectID was not found in the database.

MM_PARAMETER_ERROR

The mappingInfoLength buffer is not large enough for the requested
information.

File Service Group

Media Manager: Functions 754

Remarks

Returns the object IDs of parent, sibling, and child objects related to the
object associated with the objectID parameter. Call this function to find
out device dependencies of certain objects in the database.

File Service Group

Media Manager: Functions 755

MM_Return_Object_Specific_Info

Returns additional information about an object

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Return_Object_Specific_Info (
 LONG objectID,
 LONG infoLength,
 void *info);

Parameters

objectID

This is the ID of the object about which additional information will be
returned. It is a 4-byte hexadecimal number that identifies the object in
the Media Manager database.

infoLength

This indicates the size of the buffer where the information is to be
copied.

info

This points to a structure where object specific information will be
copied. The format of this structure depends upon the object class and
application type (see Media Manager: Structures).

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

objectID was not found in the database.

MM_PARAMETER_ERROR

buffer of size infoLength is not large enough for the requested
information.

Remarks

This function returns additional information about an object. The format

File Service Group

Media Manager: Functions 756

and size of the information depend upon the object's type. Before using
this call, a call to MM_Return_Object_Generic_Info is required to
determine the amount of memory that needs to be allocated.

File Service Group

Media Manager: Functions 757

MM_Return_Object_Table_Size

Returns the maximum number of objects in the current database

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Return_Object_Table_Size (void);

Return Values

Returns a number reporting the number of objects in the current
database.

File Service Group

Media Manager: Functions 758

MM_Return_Objects_Attributes

This function returns an object's attributes for an object identified by passing
the objectID and the attributeID. This function then returns an
AttributeInfoDef structure containing information about an object's
attributes.

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Return_Objects_Attributes(
 LONG objectID,
 LONG attributeID,
 struct AttributeInfoDef *info);

Parameters

objectID

This is the ID of the object whose specific attributes will be returned.
The objectID is a 4-byte hexadecimal number that identifies the object
in the Media Manager database.

attributeID

This is the ID of the attribute for which specific attribute information
will be returned. The attribute ID is the first four bytes (swapped) of
the attribute name. (See Function/Completion Code Definitions.)

info

This points to an AttributeInfoDef structure containing information
about an object's attributes.

Return Values

MM_OK

Function completed successfully.

MM_PARAMETER_ERROR

buffer of size infoLength is not large enough for the requested
information.

Remarks

This function returns the maximum number of objects in the current

File Service Group

Media Manager: Functions 759

database. The state of the database is dynamic. Use this function to
"bounds check" the database whenever the number of objects in the
database is needed to be known.

File Service Group

Media Manager: Functions 760

MM_ReturnMirrorInfo

Returns mirror information for a selected mirror group

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <partapi.h>

LONG MM_ReturnMirrorInfo(
 LONG mirrorObjectID,
 struct MM_MirrorInfoStruct *info);

Parameters

mirrorGroupObjectID

(IN) The Media Manager object ID of the mirror object for which
mirror information is requested. This object does not have to be
reserved by the application prior to this call.

info

(IN) The pointer to the MM_MirrorInfoStruct structure.

Return Values

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

mirrorObjectID was invalid (not in the database or not a Mirror Object)
or it did not have either a Hot Fix Object as a parent or a Partition
Object for a grandparent.

MM_PARAMETER ERROR

One or more parameters passed is not what was expected.

MM_FAILURE

The function failed to return the mirror information requested.

File Service Group

Media Manager: Functions 761

MM_ReturnPartitionTableInfo

Returns partition information for a selected Device Object

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <partapi.h>

LONG MM_ReturnPartitionTableInfo(
 LONG deviceObjectHandle,
 LONG *partitionTableStatus,
 LONG *alignment,
 LONG *areaStart,
 LONG *areaLength,
 LONG *partitionCount,
 struct MM_PartitionInfoStruct *partitionInfo);

Parameters

deviceObjectHandle

(IN) The Media Manager object handle of a reserved Device Object.

partitionTableStatus

(IN) See Media Manager: Structures for examples of this status.

alignment

(IN) Number of sectors per cylinder (i.e., number of Heads * number
of Sectors per Track).

areaStart

(IN) The beginning sector number where the first partition will be
placed.

areaLength

(IN) The number of useable sectors on the media.

partitionCount

(IN) Number of partition elements on the media.

partitionInfo

(IN) See MM_PartitionInfoStruct for structure definition. Memory
must be allocated for 8 structure elements. Caution: Memory will be
overwritten if this is not accounted for properly.

Return Values

File Service Group

Media Manager: Functions 762

MM_OK

Function completed successfully.

MM_INVALID_OBJECT

deviceObjectHandle was invalid.

MM_INVALID_MODE

The object was not active.

MM_RESERVATION CONFLICT

The Device Object was not reserved by the application prior to the
request

MM_PARAMETER ERROR

One or more parameters passed is not what was expected.

MM_FAILURE

The function failed to return the partition table information requested.

MM_IO_ERROR

The I/O request to the selected device failed.

File Service Group

Media Manager: Functions 763

MM_Set_Object_Attribute

Sets an object's attributes

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Set_Object_Attribute(
 LONG objectHandle,
 LONG attributeID,
 LONG length,
 void *info);

Parameters

objectHandle

 This is the ID of the object for which an attribute will be set.

attributeID

This is the ID of the attribute to be set. The attribute ID is the first four
bytes (swapped) of the attribute name. See Attribute IDs for a list.

length

This is the size of the buffer containing object attribute information.

info

This points to a structure that contains object specific information
(such as the object's attributes). The format of this structure depends
upon the object class and application type (see Media Manager:
Structures).

Return Values

MM_OK

Function completed successfully.

MM_MEMORY_ALLOCATION_ERROR

Memory allocation failed.

MM_PARAMETER_ERROR

objectHandle was not found in the database or attributeID, length,
and/or info were not set to useable values.

File Service Group

Media Manager: Functions 764

Remarks

This function sets an object's attributes to a desired value. The attributes
that may be set for an object depend on the object's type.

File Service Group

Media Manager: Functions 765

MM_Set_Unload_Semaphore

Postpones the deactivation of a device after receiving a driver deactivation
alert

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Set_Unload_Semaphore(
 LONG *currentInstance);

Parameters

currentInstance

Returned by the OS to uniquely identify the current semaphore (in
cases where there are nested semaphores)

Return Values

0

Function completed successfully.

-1

Out of context

Remarks

Two of the application alerts defined in Function/Completion Code
Definitions are used to indicate unload/deactivate conditions. Either the
OS issued a driver unload request (GOING_TO_BE_DEACTIVATED), or
an application issued a deactivate command (
OBJECT_BEING_DEACTIVATED).

The MM_Set_Unload_Semaphore function allows the application to
postpone the deactivation of the device after receiving one of these alerts
until the application has been able to flush tables and buffers.

Example sequence of events:

1. The OS alerts the application with one of the above alert messages
(0x0001, or 0x0002).

2. The application calls MM_Set_Unload_Semaphore.

File Service Group

Media Manager: Functions 766

3. The application spawns a process (or wakes up an existing process) to
flush buffers.

4. The spawned process calls MM_Release_Unload_Semaphore after
completing clean up.

This sequence of events coordinates the unloading of the driver with
applications that depend on the devices that are to be deactivated.

The application cannot call this function from anywhere outside the
context of the alert, but it can call this function several times from the
same alert function. Be sure to call the "remove" function as many times
as the "set" function is called.

File Service Group

Media Manager: Functions 767

MM_Special_Object_Blocking_IO

This is a blocking function. It issues I/O requests to the object specified by
objectID and returns when the action code is complete. This call is only valid
during media identification and labeling.

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Special_Object_Blocking_IO(
 LONG *returnParameter,
 LONG objectID,
 LONG actionCode,
 LONG parameter1,
 LONG parameter2,
 LONG parameter3,
 LONG bufferLength,
 void *buffer);

Parameters

returnParameter

 This parameter points to a 4 byte location for the information.

objectID

This parameter is the object ID of a device with mounted media.

actionCode

This parameter indicates which action code is to be performed. (See
Chapter 3 and Chapter 4).

parameter 1,2,3

The meaning of these parameters depends upon the action code
specified. (See Chapter 3 and Chapter 4).

bufferLength

This parameter specifies the length of the buffer.

buffer

This parameter points to data or control buffers passed to the device.
The buffer size is specified by bufferLength.

Return Values

File Service Group

Media Manager: Functions 768

MESSAGE_PROCESSED

Function completed successfully.

MESSAGE_POSTPONE

The operation failed because of memory allocation errors; you should
retry the operation later.

MESSAGE_INVALID_PARAMETERS

osReserveHandle was not found in the database.

MESSAGE_ABORTED_CLEAN

Remarks

The MM_Set_Unload_Semaphore function allows the application to
postpone the deactivation of the device after receiving one of these alerts
until the application has been able to flush tables and buffers.

File Service Group

Media Manager: Functions 769

MM_Unregister_Application

Deletes an application registration from the Media Manager

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Unregister_Application (
 LONG osApplicationHandle,
 LONG applicationHandle);

Parameters

osApplicationHandle

 This parameter is the same OS application handle passed to
MM_Register_Application on a successful registration.

applicationHandle

 This parameter is the application handle that was passed to
MM_Register_Application.

Return Values

MM_OK

Function completed successfully.

MM_PARAMETER_ERROR

osApplicationHandle and/or applicationHandle were invalid.

File Service Group

Media Manager: Functions 770

MM_Unregister_Identification_Routines

Unregisters identification functions from the Media Manager

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Unregister_Identification_Routines(
 LONG osidentifyHandle,
 LONG identifyHandle);

Parameters

osidentifyHandle

The osIdentifyHandle returned by
MM_Register_Identification_Routines.

identifyHandle

The Novell assigned media format type used to distinguish between
identification functions.

Return Values

MM_OK

Function completed successfully.

MM_PARAMETER_ERROR

osApplicationHandle and/or applicationHandle were invalid.

File Service Group

Media Manager: Functions 771

MM_Unregister_Notify_Routine

Unregisters a notification function from the Media Manager

Classification: 3.12, 4,x

SMP Aware: No

Service: Media Manager

Syntax

#include <nwmediam.h>

LONG MM_Unregister_Notify_Routine(
 LONG osNotifyHandle,
 LONG notifyHandle);

Parameters

osNotifyHandle

The osNotifyHandle returned by MM_Register_Notify_Routine.

notifyHandle

The notifyHandle passed to MM_Register_Notify_Routine.

Return Values

MM_OK

Function completed successfully.

MM_PARAMETER_ERROR

osNotifyHandle and/or notifyHandle had invalid values.

File Service Group

Media Manager: Functions 772

Media Manager: Structures

File Service Group

Media Manager: Structures 773

AdapterInfoDef

Contains information about an adapter object

Service: Media Manager

Defined In: nwmediam.h

Structure

struct AdapterInfoDef
{
 BYTE systemType;
 BYTE processorNumber;
 WORD uniqueTag;
 LONG systemNumber;
 LONG devices[32];
 struct IOConfigurationStructure configInfo;
 BYTE driverName[36];
 BYTE systemName[64];
 LONG numberOfDevices;
 LONG reserved[7];
};

Fields

systemType

Contains the driver type assigned by Novell.

processorNumber

Contains the server number for SFT III.

uniqueTag

devices

Contains the object IDs of dependent devices or changers.

configInfo

Contains I/O port information such as share flags, DMA address, and
port address.

driverName

Contains the name of the NLM as a length-preceded,
NULL-terminated string.

systemName

Contains the system name as a length-preceded ASCII string.

numberOfDevices

Contains the number of devices attached to this adapter.

reserved

File Service Group

Media Manager: Structures 774

Reserved by Novell.

Remarks

Returned by MM_Return_Object_Specific_Info.

File Service Group

Media Manager: Structures 775

AttributeInfoDef

Contains information about an attribute of an object

Service: Media Manager

Defined In: nwmediam.h

Structure

struct AttributeInfoDef
{
 BYTE name[64];
 WORD attributeType;
 WORD settableFlag;
 LONG nextAttributeID;
 LONG attributeSize;
};

Fields

name

Contains the name of the attribute type as a length-preceded,
NULL-terminated string.

attributeType

Contains the attribute type (see Attribute Types).

settableFlag

Indicates whether the attribute can be set with
MM_Set_Object_Attribute:

0 = Cannot be set using MM_Set_Object_Attribute

1 = Can be set using MM_Set_Object_Attribute

nextAttributeID

Contains the ID of the next available object attribute.

attributeSize

Contains the size of attributeType.

Remarks

Used by MM_Return_Objects_Attributes .

File Service Group

Media Manager: Structures 776

ChangerInfoDef

Contains information about a changer

Service: Media Manager

Defined In: nwmediam.h

Structure

Not at Run-Time

struct ChangerInfoDef
{
 LONG numberOfDevices;
 LONG numberOfSlots;
 LONG numberOfMailSlots;
 LONG reserved[8];
 LONG slotMappingTable[1];
};

At Run-Time

struct ChangerInfoDef
{
 LONG numberOfDevices;
 LONG numberOfSlots;
 LONG numberOfMailSlots;
 LONG reserved[8];
 LONG deviceObjectID[numberOfDevices];
 LONG slotObjectID[numberOfSlots];
 LONG mailSlotsObjectID[numberOfMailslots];

};

Fields

numberOfDevices

Contains the number of devices in the changer.

numberOfSlots

Contains the total number of slots available for media.

numberOfMailSlots

Contains the number of slots where operators insert and remove
media.

reserved

Reserved by Novell.

slotMappingTable

deviceObjectID

File Service Group

Media Manager: Structures 777

Contains arrays of object.

slotObjectID

Contains IDs of each type.

mailSlotsObjectID

Contains IDs of objects in the changer.

Remarks

This structure is prototyped in MM.H as shown in the first structure
definition below because the numberOfDevices, numberOfSlots, and
numberOfMailslots parameters are not known before run time. At
run-time, the second definition of the structure will apply.This structure
is returned by MM_Return_Object_Specific_Info when the application
requests information about an autochanger object. The parameters
numberOfDevices, numberOfSlots, and numberOfMailSlots are mutually
exclusive of each other.

File Service Group

Media Manager: Structures 778

DeviceInfoDef

Contains information about device objects.

Service: Media Manager

Defined In: nwmediam.h

Structure

struct DeviceInfoDef
{
 LONG status;
 BYTE controllerNumber;
 BYTE driveNumber;
 BYTE cardNumber;
 BYTE systemType;
 BYTE accessFlags;
 BYTE type;
 BYTE blockSize;
 BYTE sectorSize;
 BYTE heads;
 BYTE sectors;
 WORD cylinders;
 LONG capacity;
 LONG mmAdapterNumber;
 LONG mmMediaNumber;
 BYTE rawName[40];
 LONG reserved[8];
};

Fields

status

Contains Media Manager object status. The bits represent activated,
loaded, and so on.

controllerNumber

Contains the ID of the adapter board.

driveNumber

Contains the device number assigned by the driver.

cardNumber

Contains the card number assigned by the driver.

systemType

Contains the driver type.

accessFlags

Indicates such access information as removable, read-only, write

File Service Group

Media Manager: Structures 779

sequential, dual port, HotFixInhibit or MirrorInhibit.

type

blockSize

Contains the size of group of sectors to be transferred at once (in
bytes).

sectorSize

Contains the requested size for sectors (in bytes). The default is 512
bytes.

heads

Parameter 1 for device objects.

sectors

Parameter 2 for device objects.

cylinders

Parameter 3 for device objects.

capacity

Contains the total capacity of the device in sectors.

mmAdapterNumber

Contains the Media Manager object ID for the adapter board.

mmMediaNumber

Contains the Media Manager object ID for the media in the device.

rawName

Contains the device name passed from the driver.

reserved

Reserved by Novell.

Remarks

Returned by MM_Return_Object_Specific_Info.

File Service Group

Media Manager: Structures 780

GenericInfoDef

Contains information about a fixed device object

Service: Media Manager

Defined In: nwmediam.h

Structure

struct GenericInfoDef
{
 struct MediaInfoDef mediaInfo;
 LONG mediaType;
 LONG cartridgeType;
 LONG unitSize;
 LONG blockSize;
 LONG capacity;
 LONG preferredUnitSize;
 BYTE name[64];
 LONG type;
 LONG status;
 LONG functionMask;
 LONG controlMask;
 LONG parentCount;
 LONG siblingCount;
 LONG childCount;
 LONG specificInfoSize;
 LONG objectUniqueID;
 LONG mediaSlot;
}

Fields

mediaInfo

Identifies media.

mediaType

Identifies the media type (CD-ROM, changer disk, and so on).

cartridgeType

Contains the cartridge or magazine type that the device can use.

unitSize

Contains the number of bytes per sector.

blockSize

Contains the maximum number of sectors the driver can handle per
I/O request.

capacity

File Service Group

Media Manager: Structures 781

Contains the maximum number of sectors on the device.

preferredUnitSize

Contains the data unit size preferred by the device (up to 1 K for
formatted devices).

name

Contains the name as a length-preceded ASCII string.

type

Contains the database object type (that is, mirror, partition, magazine,
and so on).

functionMask

Contains a bitmap of the functions supported by the device (20h -
2Fh).

controlMask

Contains the Media Manager function (0 - 1F).

parentCount

Contains the number of objects that the device depends on (usually
one).

siblingCount

Contains the number of objects with common dependencies.

childCount

Contains the number of objects that depend on the device.

specificInfoSize

Contains the size of data structures to be returned.

objectUniqueID

Contains the object ID for this instance of GenericInfoDef.

mediaSlot

Identifies which slot the media occupies.

Remarks

Returned by MM_Return_Object_Generic_Info.

File Service Group

Media Manager: Structures 782

HotFixInfoDef

Contains information about a Hot Fix object

Service: Media Manager

Defined In: nwmediam.h

Structure

struct HotFixInfoDef
{
 LONG hotFixOffset;
 LONG hotFixIdentifier;
 LONG numberOfTotalBlocks;
 LONG numberOfUsedBlocks;
 LONG numberOfAvailableBlocks;
 LONG numberOfSystemBlocks;
 LONG reserved[8];
};

Fields

hotFixOffset

Contains the offset of data (Hot Fix begins at 0000h).

hotFixIdentifier

Contains the unique identifier created when the partition undergoes
Hot Fix.

numberOfTotalBlocks

Contains the total number of 4 K blocks available in the Hot Fix area.

numberOfUsedBlocks

Contains the number of 4 K blocks that contain redirected data.

numberOfAvailableBlocks

Contains the number of blocks in the Hot Fix area that are not
allocated.

numberOfSystemBlocks

Contains the number of blocks used for internal Hot Fix tables and bad
blocks.

reserved

Reserved by Novell.

Remarks

Returned by MM_Return_Object_Specific_Info.

File Service Group

Media Manager: Structures 783

InsertRequestDef

Used for handling requests from an application driver for a particular piece
of media within a changer

Service: Media Manager

Defined In: nwmediam.h

Structure

struct InsertRequestDef
{
 LONG deviceNumber;
 LONG mailSlot;
 LONG mediaNumber;
 LONG mediaCount;
};

Fields

deviceNumber

Contains the number of the device in the media changer that media
move in or out of.

mailSlot

Identifies the slot in the media changer where operators insert and
remove media.

mediaNumber

Contains the slot number.

mediaCount

Contains the number of media in the media changer.

File Service Group

Media Manager: Structures 784

MagazineInfoDef

Contains information about a magazine object

Service: Media Manager

Defined In: nwmediam.h

Structure

struct MagazineInfoDef
{
 LONG numberOfSlots;
 LONG reserved[8];
 LONG slotMappingTable[numberOfSlots];
};

Fields

numberOfSlots

Contains the number of slots in the magazine plus one (for the device).

reserved

Reserved by Novell.

slotMappingTable

Contains a byte table of all slots. The following indicates status:

0 = empty

non-zero = has media

slotMappingTable[0] is the location that indicates the media status for
the device, and slotMappingTable[1] through slotMappingTable[
numberOfSlots] represent all the slots of the magazine.

Remarks

Returned by MM_Return_Object_Specific_Info.

File Service Group

Media Manager: Structures 785

MappingInfo

Service: Media Manager

Defined In: nwmediam.h

Structure

struct MappingInfo
{
 LONG parentCount;
 LONG siblingCount;
 LONG childCount;
 LONG parentObjectID[parentCount];
 LONG siblingObjectIDs[siblingCount];
 LONG childObjectIDs[childCount];
};

Fields

parentCount

Contains the number of objects that the object depends on.

siblingCount

Contains the number of objects that depend on the parent of an object.

childCount

Contains the number of objects that depend on this device.

parentObjectID

Contains an array of parent object IDs.

siblingObjectIDs

Contains an array of sibling object IDs.

childObjectIDs

Contains an array of child object IDs.

Remarks

This structure is not prototyped in MM.H because the parentCount,
siblingCount, and childCount parameters are not known before run time.
MappingInfo is used to hold the information returned by
MM_Return_Object_Mapping_Info. The minimum possible size of this
structure is the first three LONGs shown, which would occur if there are
no parents, siblings, or children. For any existing object, siblingCount will
always be at least 1, since each object is its own sibling.

NOTE: If the device is a magazine, this structure will list one child.
That child will be the magazine object. To obtain the list of media

File Service Group

Media Manager: Structures 786

associated with this magazine, call
MM_Return_Object_Mapping_Info for this magazine object.

File Service Group

Media Manager: Structures 787

MediaInfoDef

Identifies a physical media item

Service: Media Manager

Defined In: nwmediam.h

Structure

struct MediaInfoDef
{
 BYTE label[64];
 LONG identificationType;
 LONG identificationTimeStamp;
};

Fields

label

Contains an ASCII string that identifies the media.

identificationType

Contains the number assigned to the media by Novell.

identificationTimeStamp

Contains the UNIX timestamp.

Remarks

This structure is used to identify or create a physical media item in
MM_Create_Media_Object. MediaInfoDef is also passed when labeling
new media. It is filled in when registering ID functions.

File Service Group

Media Manager: Structures 788

MediaRequestDef

Used for handling requests from an application driver for a particular piece
of media within a changer

Service: Media Manager

Defined In: nwmediam.h

Structure

struct MediaRequestDef
{
 LONG deviceNumber;
 LONG mailSlot;
 LONG mediaNumber;
 LONG mediaCount;
};

Fields

deviceNumber

Contains the object ID of the device within the media changer that
media moves in and out of.

mailSlot

Contains the slot number (slot ID) of the slot in the media changer
where operators insert and remove media.

mediaNumber

Contains the slot number (object ID).

mediaCount

Contains the total number of media in the media changer.

File Service Group

Media Manager: Structures 789

MirrorInfoDef

Contains information about a mirror object

Service: Media Manager

Defined In: nwmediam.h

Structure

struct MirrorInfoDef
{
 LONG mirrorCount;
 LONG mirrorIdentifier;
 LONG mirrorMembers[8];
 BYTE mirrorSyncFlags[8];
 LONG reserved[8];
};

Fields

mirrorCount

Contains the number of partitions in the mirror group.

mirrorIdentifier

Contains the unique number assigned when the mirror group was
created.

mirrorMembers

Contains the object IDs of Hot Fix objects in the mirror group.

mirrorSyncFlags

Indicates partitions that have current data:

0 = old data

nonzero = current data

reserved

Reserved by Novell.

Remarks

Returned by MM_Return_Object_Specific_Info.

File Service Group

Media Manager: Structures 790

MM_MirrorInfoStruct

Contains information about a mirror group

Service: Media Manager

Defined In: nwpartapi.h

Structure

struct MM_MirrorInfoStruct
{
 WORD status;
 WORD mirrorcount;
 LONG mirroridentifier;
 LONG mirrormembers[16];
 LONG mirrorpercentage;
 LONG reserved[7];
};

Fields

status

Contains an OR of bits listed in the "Remarks" section below.

mirrorcount

Specifies the number of partitions including this one in the mirror
group.

mirroridentifier

Specifies the partition number of the original partition in the mirror
group.

mirrormembers

Contains an array of the partitions that make up this mirror group.

remirrorpercentage

Specifies the percentage of the partition that is mirrored (range = 0 -
99)

reserved

Reserved by Novell.

Remarks

The status field is an OR of the following bits:

Constant Hex
Value

Meaning

File Service Group

Media Manager: Structures 791

MIRRORGROUPINSYNC
H

0x01 The mirror group is in sync.

MIRRORGROUPALLHER
E

0x02 All parts of the mirror are
present.

MIRRORGROUPOPERATI
ONAL

0x04 The mirror group is operational.

IAMINSYNCH 0x10 Any partition in the group is in
sync.

MIRRORGROUPBEINGRE
MIRRORED

0x40 The mirror group is being
remirrored.

File Service Group

Media Manager: Structures 792

MM_PartitionInfoStruct

Contains information about a media partition

Service: Media Manager

Defined In: nwpartapi.h

Structure

struct MM_PartitionInfoStruct
{
 BYTE partitionName[32];
 LONG beginningSector;
 LONG numberOfSectors;
 LONG objectID;
 LONG bootFlag;
};

Fields

partitionName

Specifies the type of partition as an ASCII string (for example
"NetWare Partition").

beginningSector

Specifies the beginning sector number of the physical partition.

numberOfSectors

Specifies the number of sectors in the physical partition.

objectID

Specifies the Media Manager ObjectID of a defined partition for this
physical partition, if any (-1 means none).

bootFlag

Specifies the boot flag of the partition entry.

Remarks

Used in MM_ReturnPartitionTableInfo .

File Service Group

Media Manager: Structures 793

PartitionInfoDef

Contains information about a partition object

Service: Media Manager

Defined In: nwmediam.h

Structure

struct PartitionInfoDef
{
 LONG partitionerType;
 LONG partitionType;
 LONG partitionOffset;
 LONG partitionSize;
 LONG reserved[8];
};

Fields

partitionerType

Indicates the partition scheme (that is, DOS, IBM, and so on).

partitionType

Indicates the partition type. Only the lower byte is important.

partitionOffset

Contains the beginning sector number of the partition.

partitionSize

Contains the number of sectors in the partition. The default is 512 KB.

reserved

Reserved by Novell.

Remarks

Returned by MM_Return_Object_Specific_Info.

File Service Group

Media Manager: Structures 794

Name Space

File Service Group

 795

Name Space: Guides

Name Space: Task Guide

Accessing Huge Name Space Information

Accessing Name Space Data Streams

Additional Links

Name Space: Functions

Name Space: Structures

Parent Topic:

Name Space: Guides

Name Space: Concept Guide

Name Space Introduction

Name Space Naming Conventions

Primary Name Space Entry Information

Name Space Specific Information

Name Space Entry Bit Masks

Name Space Bit Mask

DOS Name Space Bit Mask

General Name Space Functions

General Name Space Functions

Primary Name Space Entry Information Functions

Name Space Specific Information Functions

Additional Links

Name Space: Functions

Name Space: Structures

File Service Group

Name Space: Guides 796

Parent Topic:

Name Space: Guides

Name Space Specific Information

Name space specific information is maintained by the NLM that
implements the name space. Much of this information may not be accessible
as primary information. For example, huge data information is name space
specific and must be returned by special requests

Consequently, Name Space includes specialized functions for accessing
name space specific information. This approach requires a detailed
understanding of the particular name space and the entry information it
maintains.

Name space specific information is accessed by calling NWReadNSInfo
and NWWriteNSInfo. Both functions refer to the entry using a NetWare®
entry index, which is maintained as NW_IDX. To initialize NW_IDX, call
NWGetDirectoryBase and pass both a DOS directory entry (handle/path)
and the target name space.

Name Space Entry Bit Masks

Name Space Bit Mask

DOS Name Space Bit Mask

Accessing Huge Name Space Information

Parent Topic:

Name Space: Guides

File Service Group

Name Space: Guides 797

Name Space: Tasks

Accessing Huge Name Space Information

The huge information bit mask indicates large data items (between 256 and
65,535 bytes) associated with a name space entry. Call
NWReadExtendedNSInfo and NWWriteExtendedNSInfo to access huge
information. An operation on huge data must include the huge information
bit mask for the name space, the length of the huge data, and a huge state
information variable. This last value is maintained by the server and is used
to coordinate the transmission of huge data.

Parent Topic:

Name Space Specific Information

Accessing Name Space Data Streams

Call NWOpenNSEntry to open or create a data stream for a name space
entry. Opening a data stream returns a file handle you can use for
read/write operations. Currently, NetWare® defines three data streams:

0 DOS

1 MAC

2 FTAM

You can open an existing data stream for reading and writing through the
DOS name space, or you can create a new data stream within a specified
name space. When an entry has more than one data stream, as is the case for
Macintosh files, specify which stream to open.

When creating a data stream, specify the open/create mode. Possible modes
include creating the file, replacing the file, opening the file, or doing
nothing. (A directory can only be opened.) You can also specify the entry's
attributes and the access rights under which the entry is opened. File entries
and directory entries have their own respective attributes; specify them
accordingly.

The following access rights can be defined for an open data stream:

0001h = AR_READ

0002h = AR_WRITE

0004h = AR_DENY_READ

0008h = AR_DENY_WRITE

File Service Group

Name Space: Tasks 798

0010h = AR_COMPATIBILITY

0040h = AR_WRITE_THROUGH

0100h = AR_OPEN_COMPRESSED

AR_READ gives you exclusive access to the data stream.

The AR_OPEN_COMPRESSED structure is available only on NetWare
servers running NetWare 4.0™ and above. It allows a data stream to be
opened in a compressed state. (Normally, the server decompresses a
compressed data stream as it transmits the data to a client.)

Parent Topic:

Name Space: Guides

File Service Group

Name Space: Tasks 799

Name Space: Concepts

Attribute Values

The following are attribute values:

C Value Pascal
Value

Value Name

0x00000000
L

$00000000 A_NORMAL

0x00000001
L

$00000001 A_READ_ONLY

0x00000002
L

$00000002 A_HIDDEN

0x00000004
L

$00000004 A_SYSTEM

0x00000008
L

$00000008 A_EXECUTE_ONLY

0x00000010
L

$00000010 A_DIRECTORY

0x00000020
L

$00000020 A_NEEDS_ARCHIVED

0x00000080
L

$00000080 A_SHAREABLE

0x00001000
L

$00001000 A_TRANSACTIONAL

0x00002000
L

$00002000 A_INDEXED

0x00004000
L

$00004000 A_READ_AUDIT

0x00008000
L

$00008000 A_WRITE_AUDIT

0x00010000
L

$00010000 A_IMMEDIATE_PURGE

0x00020000
L

$00020000 A_RENAME_INHIBIT

0x00040000
L

$00040000 A_DELETE_INHIBIT

File Service Group

Name Space: Concepts 800

0x00080000
L

$00080000 A_COPY_INHIBIT

0x00400000
L

$00400000 A_FILE_MIGRATED

0x00800000
L

$00800000 A_DONT_MIGRATE

0x02000000
L

$02000000 A_IMMEDIATE_COMPRESS

0x04000000
L

$04000000 A_FILE_COMPRESSED

0x08000000
L

$08000000 A_DONT_COMPRESS

0x20000000
L

$20000000 A_CANT_COMPRESS

DOS Name Space Bit Mask

The interpretation of the name space bit mask depends on which name
space you are querying. For example, the DOS name space defines the
following bits:

Bit Definition Type Order

0 Modify
Name[13]

nuint
8

1 File Attributes nuint
32

Lo-Hi

2 Create Date nuint
16

Lo-Hi

3 Create Time nuint
16

Lo-Hi

4 Owner ID nuint
32

Hi-Lo

5 Archive Date nuint
16

Lo-Hi

6 Archive Time nuint
16

Lo-Hi

7 Archive ID nuint
32

Hi-Lo

8 Modify Date nuint
16

Lo-Hi

File Service Group

Name Space: Concepts 801

9 Modify Time nuint
16

Lo-Hi

10 Modify ID nuint
32

Hi-Lo

11 Last Accessed
Date

nuint
16

Lo-Hi

12 Inheritance
Rights

nuint
32

Lo-Hi

13 Maximum
Space

nuint
32

Lo-Hi

14-
31

Reserved

Under DOS, bit 0 represents the modify name. This is generally the case in
other name spaces also. The modify name is read-only; don't attempt to
modify it.

Parent Topic:

Name Space Specific Information

General Name Space Functions

These functions return general information concerning name spaces.

Function Comment

NWGetNSLoadedList Returns a list of numerals identifying the
name spaces loaded on a particular volume.

NWGetOwningName
Space

Returns the name space that created the
specified directory entry.

NWGetNSPath Returns the full path for an entry in a
specified name space. (For name spaces that
use long names, a complete entry path could
potentially require a very large amount of
space.)

NWNSGetDefaultNS Returns the default name space.

Parent Topic:

Name Space: Guides

Name Space Entry Bit Masks

File Service Group

Name Space: Concepts 802

NetWare® uses a generic mechanism to represent the format of name space
specific entry information. Query the NetWare server by calling
NWGetNSInfo to find the format for a particular name space.
NWGetNSInfo returns a set of bit masks as NW_NS_INFO. The structure
indicates the size and arrangement of name space specific information.

Parent Topic:

Name Space Specific Information

Name Space Bit Mask

NSInfoBitMask in NW_NS_INFO indicates all valid data items for an entry in
the name space. NWGetNSInfo initializes the bit masks for a specific name
space and computes the value of NSInfoBitMask.

NSInfoBitMask is derived by combining the fixed and reserved masks
through a logical OR operation.

After NW_NS_INFO is initialized, use it in subsequent calls to
NWReadNSInfo and NWWriteNSInfo to read or modify name space
specific entry information.

Parent Topic:

Name Space Specific Information

Name Space Introduction

NetWare® name spaces are implemented as NetWare Loadable Module™ (
NLM™) applications. Name Spaces allow NetWare 3.11 and above servers
to store files in formats compatible with a workstation's local file system. For
example, installing the Macintosh* name space allows Macintosh
workstations to use Macintosh file conventions when working with network
files. Although NetWare's primary name space is DOS, NetWare also
supports name spaces for OS/2, Macintosh, NFS*, and FTAM files.

After the NLM is loaded on a server, support for the name space must be
enabled on a volume-by-volume basis. Name space entry information can
include the entry's name, its attributes, significant dates and times, the
owner ID, and so on.

Name Space provides a generic interface to name space entries and
associated data streams. However, Name Space isn't the only method for
accessing entries in a particular name space. DOS and OS/2 entries can be
accessed through File, and Macintosh files can be accessed through AFP.

Name Space provides access to three types of data: primary data, which is
the data that is available no matter which name space you are using;

File Service Group

Name Space: Concepts 803

specific data, which is the data specific to the name space you are using, and
the actual file data.

Parent Topic:

Name Space: Guides

Name Space Naming Conventions

NetWare® currently supports five name spaces. They are identified by
numeric values.

0 DOS

1 MAC

2 NFS

3 FTAM

4 OS/2

4 Long

Each name space has its own conventions for naming entries:

DOS names can have up to eight upper-case characters followed by a
period and up to three more upper-case characters.

Macintosh names can be up to 32 characters long including all upper and
lower case printable characters, with the exception of the colon (:).

NFS names can be up to 256 mixed-case characters long.

FTAM names can be up to 256 lower-case characters long.

OS/2 and Long names can be up to 255 mixed-case characters long.
Name Space Services make OS/2 and Long names look like and follow
the same rules as HPFS names.

DOS names remain the same in an OS/2 environment. NetWare uses a
shortening algorithm to convert OS/2 names for use in a DOS environment.
To avoid ambiguous names, this algorithm may designate a DOS filename
that doesn't match the first eight characters of the OS/2 name.

Parent Topic:

Name Space: Guides

Name Space Specific Information Functions

These functions deal with name-space specific information.

Function Comment

File Service Group

Name Space: Concepts 804

NWGetDirectoryBase Obtains a directory base for a name space
entry.

NWGetNSInfo Returns the information format for a name
space.

NWNSGetMiscInfo Obtains miscellaneous information for a
name space entry.

NWReadExtendedNS
Info

Reads huge information for an entry.

NWReadNSInfo Reads name space-specific information for an
entry.

NWWriteExtendedNS
Info

Modifies huge information for an entry.

NWWriteNSInfo Modifies name space-specific information for
an entry.

Parent Topic:

Name Space: Guides

Primary Name Space Entry Information

As the primary NetWare® name space, the DOS name space performs a
special role in the NetWare file system. All entries are represented in the
DOS name space no matter what name space actually "owns" them.
Consequently, if you create an entry in a name space other than DOS, you
can still access the primary entry information from the DOS name space.

This primary NetWare information is extended beyond DOS to
accommodate Macintosh data, including information such as the number of
data streams (forks) and extended attributes (Finder information).

In addition to letting you read an entry's primary information in the DOS
name space, Name Space Services enable you to read and modify this
information in the name space that the entry was created in. The primary
information in the owning name space varies little from what appears in the
DOS name space. However, it does include the file's long name, which isn't
available in the DOS name space.

Primary name space information includes the following items:

Entry name

Entry attributes

Space allocation

Data stream sizes

File Service Group

Name Space: Concepts 805

Dates and time of events

Inherited rights mask

Extended attribute data

Reference ID

Volume Number

NW_ENTRY_INFO contains primary name space information. The
structure is filled in by NWGetNSInfo or NWScanNSEntryInfo. Requests
for primary name space information are accompanied by a return
information mask, which allows you to specify which portions of
NW_ENTRY_INFO you want filled in. The following table shows which
fields in NW_ENTRY_INFO are affected by bit flags in the return
information mask.

Table auto. Return Information Mask Values

Value Flag Fields

0x0001L IM_ENTRY_NAME nameLength

entryName

0x0002L IM_SPACE_ALLOCATE
D

spaceAlloc

0x0004L IM_ATTRIBUTES attributes

flags

0x0008L IM_SIZE dataStreamSize

0x0010L IM_TOTAL_SIZE totalStreamSize

0x0020L IM_EA EADataSize

EAKeyCount

EAKeySize

0x0040L IM_ARCHIVE archiveTime

archiveDate

archiveID

0x0080L IM_MODIFY modifyTime

modifyDate

modifierID

lastAccessDate

0x0100L IM_CREATION creationTime

creationDate

creatorID

0x0200L IM_OWNING_NAMESP
ACE

NSCreator

0x0400L IM_DIRECTORY dirEntNum

DosDirNum

File Service Group

Name Space: Concepts 806

volNumber

0x0800L IM_RIGHTS inheritedRightsMask

Parent Topic:

Name Space: Guides

Primary Name Space Entry Information Functions

These functions deal with primary entry information for a name space.

Function Comment

NWAllocTempNSDirHa
ndle2

Allocates a directory handle in a name
space for the specified entry. The new
directory handle doesn't need to be in the
same name space as the original entry.

NWDeleteNSEntry Erases the specified files from the file
server.

NWGetLongName Reads an entry's name in the specified
name space.

NWGetNSEntryInfo Returns primary information for a name
space entry.

NWNSRename Renames a name space entry. Under
NetWare® 4.x, this function can rename
an entry in a specific name space without
affecting the name in other name spaces.

NWOpenCreateNSEntry Creates a name space entry.

NWOpenDataStream Opens or creates a data stream and returns
a file handle to it.

NWOpenNSEntry Opens a name space entry.

NWScanNSEntryInfo Performs a file scan operation returning
primary information for files matching the
search mask.

NWSetLongName Renames a name space entry.

NWSetNSEntryDOSInfo Modifies the DOS information associated
with an entry.

Parent Topic:

Name Space: Guides

File Service Group

Name Space: Concepts 807

Name Space: Functions

File Service Group

Name Space: Functions 808

GetDataStreamName

Returns information about data streams

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Name Space

Syntax

#include <nwfile.h>

int GetDataStreamName (
 int volume,
 BYTE dataStream,
 char *dataStreamName,
 int *numberOfDataStreams);

Parameters

volume

(IN) Specifies the number of the volume for which the data stream
name is desired.

dataStream

(IN) Specifies the number of the data stream whose name is desired.

dataStreamName

(OUT) Receives the ASCII name of the data stream.

numberOfDataStreams

(OUT) Receives the number of data streams supported by the server.

Return Values

This function returns TRUE if the name space that defines the specified
data stream is loaded on the volume. It returns FALSE if support is not
loaded. If the data stream does not exist, this function returns a value of
-1.

Remarks

The name of the specified data stream is returned, as well as the total
number of data streams available. The function return also indicates
whether the specified data stream has support on the volume.

File Service Group

Name Space: Functions 809

The dataStream parameter is a data stream number. The defined data
streams follow:

0 Primary Data Stream (corresponds to DOS)

1 Macintosh Resource Fork

2 FTAM Extra Data Fork

File Service Group

Name Space: Functions 810

GetNameSpaceName

Returns the name of a specified name space and the number of name spaces
currently supported by NetWare

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Name Space

Syntax

#include <nwfile.h>

int GetNameSpaceName (
 int volume,
 LONG nameSpace,
 char *name,
 int *numberOfNameSpace);

Parameters

volume

(IN) Specifies the volume for which name space information is
desired.

nameSpace

(IN) Specifies the number of the name space whose name is desired.

name

(OUT) Receives the name of the name space in ASCIIZ string (buffer
length should be 32 bytes).

numberOfNameSpace

(OUT) Receives the number of name spaces currently supported by
NetWare.

Return Values

-1 Specified name space does not exist.

0 Name space driver is not loaded.

1 Name space driver is loaded but is not supported on the specified
volume.

2 Name space driver is loaded and supported on the specified
volume.

File Service Group

Name Space: Functions 811

Remarks

The five name spaces that are currently available are:

0 DOS

1 MACINTOSH

2 NFS

3 FTAM

4 OS2

5 NT

See Also

FEGetOriginatingNameSpace, SetCurrentNameSpace,
SetTargetNameSpace

File Service Group

Name Space: Functions 812

NWAllocTempNSDirHandle (obsolete 12/96)

Assigns a temporary directory handle for dirHandle/path in the same name
space as dirHandle/path but is now obsolete. Call
NWAllocTempNSDirHandle2 instead.

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>);

NWCCODE N_API NWAllocTempNSDirHandle (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 pnstr8 path,
 nuint8 nameSpc,
 nuint8 N_FAR *newDirHandle);

Pascal Syntax

#include <nwnamspc.inc>

Function NWAllocTempNSDirHandle
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 path : pnstr8;
 nameSpc : nuint8;
 Var newDirHandle : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare™ server connection handle through which
to attach.

dirHandle

(IN) Specifies the directory handle associated with the desired
directory path.

path

(IN) Points to an absolute path, (or relative if dirHandle is non-zero),
with which newDirHandle is to be associated.

nameSpc

File Service Group

Name Space: Functions 813

(IN) Specifies the name space of dirHandle/path.

newDirHandle

(OUT) Points to the new directory handle.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89BF INVALID_NAME_SPACE

Remarks

To allocate dirHandle in a different name space, call
NWAllocTempNSDirHandle2. In order for
NWAllocTempNSDirHandle (obsolete 12/96) to perform properly it is
required that the specified name space be loaded on the server being
accessed. For example, if an OS/2 workstation calls
NWAllocTempNSDirHandle (obsolete 12/96) with the nameSpace
parameter set to OS/2, the newNameSpace parameter set to DOS, and the
server being accessed does not have the OS/2 name space loaded,
NWAllocTempNSDirHandle (obsolete 12/96) will not work.

To allocate OS/2, dirHandle/path must use the OS/2 format.

The directory handles allocated by NWAllocTempNSDirHandle
(obsolete 12/96) are automatically deallocated when the task terminates
or by calling NWDeallocateDirectoryHandle.

NCP Calls

0x2222 87 12 Allocate Short Directory Handle

See Also

NWAllocTempNSDirHandle2, NWDeallocateDirectoryHandle

File Service Group

Name Space: Functions 814

NWAllocTempNSDirHandle2

Assigns a temporary directory handle in the specified name space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWAllocTempNSDirHandle2 (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 pnstr8 path,
 nuint8 nameSpc,
 pnuint8 newDirHandle,
 nuint8 newNameSpace);

Pascal Syntax

#include <nwnamspc.inc>

Function NWAllocTempNSDirHandle2
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 path : pnstr8;
 namSpc : nuint8;
 newDirHandle : pnuint8;
 newNameSpace : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle through which to
attach.

dirHandle

(IN) Specifies the directory handle associated with the desired
directory path.

path

(IN) Points to an absolute path, (or relative if dirHandle is non-zero),

File Service Group

Name Space: Functions 815

with which dirHandle is to be associated.

namSpc

(IN) Specifies the name space of the dirHandle/path combination.

newDirHandle

(OUT) Points to the new directory handle.

newNameSpc

(IN) Specifies the name space to be used for the new directory handle.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89BF INVALID_NAME_SPACE

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 87 06 Obtain File or Subdirectory Information

0x2222 87 12 Allocate Short Directory Handle

File Service Group

Name Space: Functions 816

NWDeleteNSEntry

Erases the specified files from the file server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWDeleteNSEntry (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 fileName,
 nuint8 nameSpace,
 nuint16 searchAttr);

Pascal Syntax

#include <nwnamspc.inc>

Function NWDeleteNSEntry
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 fileName : pnstr8;
 nameSpace : nuint8;
 searchAttr : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare connection handle.

dirHandle

(IN) Specifies the directory handle on which files to be deleted
currently reside.

fileName

(IN) Points to an absolute path (or relative if dirHandle is non-zero) that
cannot exceed 255 characters in length.

nameSpace

File Service Group

Name Space: Functions 817

(IN) Specifies the name space of dirHandle/filePath.

searchAttr

(IN) Specifies the file attributes to use in finding the file.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x898A NO_DELETE_PRIVILEGES

0x898D SOME_FILES_AFFECTED_IN_USE

0x898E NO_FILES_AFFECTED_IN_USE

0x898F SOME_FILES_AFFECTED_READ_ONLY

0x8990 NO_FILES_AFFECTED_READ_ONLY

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR

Remarks

 dirHandle must exist in the designated name space.

If a file has the immediate purge attribute set, the file cannot be
recovered.

NCP Calls

0x2222 68 Erase File

0x2222 87 08 Delete A File Or Subdirectory

See Also

NWIntEraseFiles, NWOpenCreateNSEntry, NWPurgeErasedFiles,
NWRecoverDeletedFile

File Service Group

Name Space: Functions 818

NWGetDirectoryBase

Retrieves information used in further calls to the name space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetDirectoryBase (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 pnstr8 path,
 nuint8 dstNamSpc,
 NW_IDX N_FAR *idxStruct);

Pascal Syntax

#include <nwnamspc.inc>

Function NWGetDirectoryBase
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 path : pnstr8;
 dstNamSpc : nuint8;
 Var idxStruct : NW_IDX
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory to
search.

path

(IN) Points to a valid DOS path (pointing to a directory or a file).

dstNamSpc

(IN) Specifies the destination name space.

File Service Group

Name Space: Functions 819

idxStruct

(OUT) Points to NW_IDX.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89BF INVALID_NAME_SPACE

Remarks

The path parameter must be upper case if the dirHandle parameter
contains a DOS name space directory handle.

The path and dirHandle parameters must match the dstNamSpc parameter.

NetWare uses the idxStruct parameter as an index to quickly locate a
directory entry (file or directory). It is required as a calling parameter to
other functions and should not be modified by the application.

NCP Calls

0x2222 22 3 Get Directory Effective Rights

0x2222 22 19 Allocate Temporary Directory Handle

0x2222 22 20 Free Directory Handle

0x2222 23 15 Scan Files

0x2222 23 17 Get File Server Information

0x2222 68 File Erase

0x2222 87 2 Scan First

0x2222 87 3 Scan Next

0x2222 87 8 Delete Entry

0x2222 87 12 Allocate Directory Handle

0x2222 87 22 Generate Directory Base And Volume Number

See Also

NWNSGetMiscInfo, NWReadExtendedNSInfo, NWReadNSInfo ,
NWWriteExtendedNSInfo

File Service Group

Name Space: Functions 820

File Service Group

Name Space: Functions 821

NWGetHugeNSInfo

Gets extended (huge) NS information for the entry specified by volNum,
nameSpace and dirBase

Local Servers: blocking

Remote Servers: blocking

Classification: 3.12, 4.x

SMP Aware: No

Service: Name Space

Syntax

#include <nwfile.h>

int NWGetHugeNSInfo (
 BYTE volNum,
 BYTE nameSpace,
 LONG dirBase,
 LONG hugeInfoMask,
 BYTE *hugeStateInfo,
 BYTE *hugeData,
 LONG *hugeDataLen,
 BYTE *nextHugeStateInfo);

Parameters

volNum

(IN) Volume number for which huge NS information is to be obtained.

nameSpace

(IN) Name space for which huge information is being returned.

dirBase

(IN) Directory base (or number) for the entry for which information is
being obtained.

hugeInfoMask

(IN) Bit map that indicates which types of information the user wants
returned. (Corresponds to the extendedBitMask in the NW_NS_INFO
struct that can be retrieved by calling NWQueryNSInfoFormat.)

hugeStateInfo

(IN) The first time calling this function, this should be set to zeroes. On
succeeding calls, the nextHugeStateInfo should be passed in this
parameter.

hugeData

(OUT) Data returned as specified in the hugeInfoMask.

File Service Group

Name Space: Functions 822

hugeDataLen

(OUT) Length of the huge data the name space returned.

nextHugeStateInfo

(OUT) Huge state information that should be passed in on the next call
to this function. It is zero-filled when reading is done.

Return Values

ESuccess or NetWare errors

Remarks

This function retrieves extended NS information for nameSpace and
returns it in hugeData.

See Also

NWGetDirBaseFromPath, NWQueryNSInfoFormat,
NWSetHugeNSInfo

File Service Group

Name Space: Functions 823

NWGetLongName

Retrieves a file name for dstNamSpace

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetLongName (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 pnstr8 path,
 nuint8 srcNamSpc,
 nuint8 dstNamSpc,
 pnstr8 longName);

Pascal Syntax

#include <nwnamspc.inc>

Function NWGetLongName
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 path : pnstr8;
 srcNamSpc : nuint8;
 dstNamSpc : nuint8;
 longName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory to
scan.

path

(IN) Points to a valid path.

File Service Group

Name Space: Functions 824

srcNamSpc

(IN) Specifies the name space referred to by dirHandle/path.

dstNamSpc

(IN) Specifies the name space for the return name.

longName

(OUT) Points to a buffer returning the corresponding name space's
name (up to 256 bytes).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

Remarks

For OS/2, the dirHandle/path combination must be in the same name
space as srcNamSpc.

path can either be a fully specified path (vol:path), or it can be relative to
dirHandle.

longName includes only the name of the last component in the path.
NWGetLongName does not translate the entire path to a new name in
the designated name space.

The name returned is the same name returned by NWGetNSEntryInfo.

NCP Calls

0x2222 87 06 Obtain File or Subdirectory Information

See Also

NWGetNSEntryInfo, NWGetNSPath, NWSetLongName

File Service Group

Name Space: Functions 825

NWGetNameSpaceEntryName

Returns the name of a file or directory in the specified name space

Local Servers: blocking

Remote Servers: blocking

Classification: 3.12, 4.x

SMP Aware: No

Service: Name Space

Syntax

#include <nwfile.h>

int NWGetNameSpaceEntryName (
 BYTE *path,
 LONG nameSpace,
 LONG maxNameBufferlength,
 BYTE *nameSpaceEntryName);

Parameters

path

(IN) Specifies the path to the file system entry to get a name space
entry name.

nameSpace

(IN) Specifies the name space to get the file or directory name for.

maxNameBufferLength

(IN) Specifies the maximum length of a name that can be stored in the
buffer specified by nameSpaceEntryName.

nameSpaceEntryName

(IN) Points to a buffer in which to store the name.

Return Values

ESuccess or NetWare errors

Remarks

If you know the name of a file or directory in one name space---DOS,
Macintosh, NFS---you can find out its name in other name spaces by
calling NWGetNameSpaceEntryName.

See Also

File Service Group

Name Space: Functions 826

NWSetNameSpaceEntryName

File Service Group

Name Space: Functions 827

NWGetNSEntryInfo

Returns name space entry information for the entry referred to by the
dirHandle and path combination

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNSEntryInfo (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint8 srcNamSpc,
 nuint8 dstNamSpc,
 nuint16 searchAttrs,
 nuint32 retInfoMask,
 NW_ENTRY_INFO N_FAR *entryInfo);

Pascal Syntax

#include <nwnamspc.inc>

Function NWGetNSEntryInfo
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 path : pnstr8;
 srcNamSpc : nuint8;
 dstNamSpc : nuint8;
 searchAttrs : nuint16;
 retInfoMask : nuint32;
 Var entryInfo : NW_ENTRY_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired name

File Service Group

Name Space: Functions 828

space (optional).

path

(IN) Points to the valid DOS path (pointing to a directory or file).

srcNamSpc

(IN) Specifies the name space of dirHandle/path.

dstNamSpc

(IN) Specifies the name space for the return information.

searchAttrs

(IN) Specifies the search attributes to use.

retInfoMask

(IN) Specifies the information to return.

entryInfo

(OUT) Points to NW_ENTRY_INFO. Only fields related to retInfoMask
are valid.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89BF INVALID_NAME_SPACE

0x89FF Bad Parameter---no constant

Remarks

dirHandle can be zero if path contains the complete path, including the
volume name. dirHandle and/or path contains the entry name according to
srcNamSpc. This information is returned for dstNamSpc.

searchAttrs values follow:

C
Value

Pasca
l
Value

Value Name Value Description

File Service Group

Name Space: Functions 829

0x000
0

$00 TA_NONE Specifies no Reads or Writes are
allowed.

0x000
1

$01 TA_READ Specifies file Reads are allowed.

0x000
2

$02 TA_WRITE Specifies file Writes are allowed.

0x000
8

$08 TA_CREATE Specifies files can be created.

0x001
0

$10 TA_DELETE Specifies files can be deleted.

0x002
0

$20 TA_OWNERS
HIP

Specifies subdirectories can be
created or deleted and trustee rights
granted or revoked.

0x004
0

$40 TA_SEARCH Specifies the directory can be
searched.

0x008
0

$80 TA_MODIFY Specifies file attributes can be
modified.

0x00F
B

$FB TA_ALL Specifies the trustee has all the above
rights to the directory.

To request information from a server, a client sets the appropriate bit or
bits of retInfoMask and sends a request packet to the server.

NCP Calls

 0x2222 87 06 Obtain File Or Subdirectory Information

See Also

NWGetOwningNameSpace, NWGetLongName

File Service Group

Name Space: Functions 830

NWGetNSFileDirEntryNumber

Returns file information for a specified file under DOS and the name space
associated with the specified file handle

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY (NWCCODE) NWGetNSFileDirEntryNumber (
 NWFILE_HANDLE fileHandle,
 nuint8 nameSpace,
 pnuint32 volumeNum,
 pnuint32 directoryEntry,
 pnuint32 dataStream);

Pascal Syntax

Function NWGetNSFileDirEntryNumber
 (fileHandle : NWFILE_HANDLE;
 nameSpace : nuint8;
 volumeNum : pnuint32;
 directoryEntry : pnuint32;
 dataStream : pnuint32;
) : NWCCODE;

Parameters

fileHandle

(IN) Specifies the file handle.

nameSpace

(IN) Specifies the name space associated with the directoryEntry
parameter.

volumeNum

(OUT) Points to the volume number of the file handle.

directoryEntry

(OUT) Points to the directory entry number in the name space
associated with the nameSpace parameter.

dataStream

(OUT) Points to the data stream number if the name space is

File Service Group

Name Space: Functions 831

(OUT) Points to the data stream number if the name space is
NW_NS_MAC:

1 Data fork

0 Resource fork and anything else

Return Values

These are common return values; see Return Values for more
information.

0x00
00

SUCCESSFUL

0x00
06

INVALID_HANDLE

0x88
01

INVALID_CONNECTION

0x89
88

INVALID_FILE_HANDLE

Remarks

NWGetNSFileDirEntryNumber returns the volume number and
directory entry numbers in the name space specified by the nameSpace
parameter.

Call the NWGetFileDirEntryNumber function to return the parent
directory number. The NWGetFileDirEntryNumber allows you to
specify the name space in which to return the parent directory number.

One way to create the file handle is to call the NWOpenNSEntry
function. If you specify a long file name, the created file handle will be
associated with the LONG name space. If a DOS file name is specified,
the created file handle will be associated with the DOS name space.

The nameSpace parameter can have the following values:

0 NW_NS_DOS

1 NW_NS_MAC

2 NW_NS_NFS

3 NW_NS_FTAM

4 NW_NS_LONG

NCP Calls

87 31 Get File Information

See Also

File Service Group

Name Space: Functions 832

NWOpenNSEntry

File Service Group

Name Space: Functions 833

NWGetNSInfo

Returns the NW_NS_INFO structure to be used in reading and writing
information to the name space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNSInfo (
 NWCONN_HANDLE conn,
 NW_IDX N_FAR *idxStruct,
 NW_NS_INFO N_FAR *NSInfo);

Pascal Syntax

#include <nwnamspc.inc>

Function NWGetNSInfo
 (conn : NWCONN_HANDLE;
 Var idxStruct : NW_IDX;
 Var NSInfo : NW_NS_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

idxStruct

(IN) Points to the NW_IDX structure.

NSInfo

(OUT) Points to the NW_NS_INFO structure.

Return Values

These are common return values; see Return Values for more
information.

File Service Group

Name Space: Functions 834

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Remarks

NW_IDX is returned by NWNSGetMiscInfo or NWGetDirectoryBase.
The dstNameSpace parameter in each function obtains the Name Space
information.

NSInfo is returned for the destination name space in idxStruct.

NCP Calls

 0x2222 87 23 Query NS Information Format

See Also

NWGetDirectoryBase, NWNSGetMiscInfo, NWReadExtendedNSInfo,
NWReadNSInfo, NWWriteExtendedNSInfo, NWWriteNSInfo

File Service Group

Name Space: Functions 835

NWGetNSInfo (NLM)

Returns specific NS information for the entry specified by the volNum,
nameSpace and dirBase parameters

Local Servers: blocking

Remote Servers: blocking

Classification: 3.12, 4.x

SMP Aware: No

Service: Name Space

Syntax

#include <nwfile.h>

int NWGetNSInfo (
 BYTE volNum,
 BYTE srcNameSpace,
 BYTE dstNameSpace,
 LONG dirBase,
 LONG nsInfoMask,
 BYTE *nsSpecificInfo);

Parameters

volNum

(IN) Volume number for which information is to be returned.

srcNameSpace

(IN) Name space that corresponds with the dirBase being passed.

dstNameSpace

(IN) Name space in which the information is to be returned.

dirBase

(IN) Directory base (or number) for the entry for which information is
being retrieved.

nsInfoMask

(IN) Bit map that indicates which types of information the user wants
returned in the data parameter.

nsSpecificInfo

(OUT) Data that was asked for as indicated in the nsInfoMask.

Return Values

ESuccess or NetWare errors

File Service Group

Name Space: Functions 836

Remarks

If the current name space is NFS, a value of 2 (for NFS) would be passed
to the srcNameSpace parameter. However, if the returned information
should be in the Macintosh name space format, a value of 1 would be
passed to the dstNameSpace parameter.

See DOS Name Space Bit Mask.

See Also

NWGetDirBaseFromPath, NWQueryNSInfoFormat, NWSetNSInfo

File Service Group

Name Space: Functions 837

NWGetNSLoadedList

Retrieves a list of the name spaces loaded for the specified volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNSLoadedList (
 NWCONN_HANDLE conn,
 nuint8 volNum,
 nuint8 maxListLen,
 pnuint8 NSLoadedList,
 pnuint8 actualListLen);

Pascal Syntax

#include <nwnamspc.inc>

Function NWGetNSLoadedList
 (conn : NWCONN_HANDLE;
 volNum : nuint8;
 maxListLen : nuint8;
 NSLoadedList : pnuint8;
 actualListLen : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number to obtain the list from.

maxListLen

(IN) Specifies the size of NSLoadedList (in bytes).

NSLoadedList

(OUT) Points to a buffer (maxListLen bytes).

actualListLen

File Service Group

Name Space: Functions 838

actualListLen

(OUT) Points to the number of name spaces loaded (in bytes).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Remarks

NSLoadedList contains a nuint8 entry for every name space loaded on the
server. The buffer for NSLoadedList should be at least 5 bytes long (
maxListLen should also be at least 5 bytes).

NCP Calls

0x2222 87 24 Get Name Spaces Loaded List From Volume Number

File Service Group

Name Space: Functions 839

NWGetNSLoadedList (NLM)

Retrieves a list of the name spaces that are loaded on the specified volume

Local Servers: blocking

Remote Servers: blocking

Classification: 3.12, 4.x

SMP Aware: No

Service: Name Space

Syntax

#include <nwfile.h>

int NWGetNSLoadedList (
 BYTE volNum,
 WORD loadListSize,
 BYTE *NSLoadedList,
 WORD *returnListSize);

Parameters

volNum

(IN) Volume number for which to get the list of loaded name spaces.

loadListSize

(IN) Size (in bytes) of the NSLoadedList buffer being passed.

NSLoadedList

(OUT) Pointer to a buffer to hold the loaded name spaces.

returnListSize

(OUT) Pointer to the number of name spaces loaded.

Return Values

ESuccess or NetWare errors

Remarks

The NSLoadedList contains a BYTE entry for every name space that is
loaded on the volume. The buffer for NSLoadedList needs to be at least
MAX_NAMESPACES bytes long (therefore, loadListSize needs to be at
least MAX_NAMESPACES). In the case where there are more name
spaces loaded than there is space available in the NSLoadedList buffer,
returnListSize contains the number of name spaces loaded.

See Also

File Service Group

Name Space: Functions 840

NWQueryNSInfoFormat

File Service Group

Name Space: Functions 841

NWGetNSPath

Returns the full NetWare path for the desired name space associated with
the specified path

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetNSPath (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 nuint16 fileFlag,
 nuint8 srcNamSpc,
 nuint8 dstNamSpc,
 NW_NS_PATH N_FAR *NSPath);

Pascal Syntax

#include <nwnamspc.inc>

Function NWGetNSPath
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 fileFlag : nuint16;
 srcNamSpc : nuint8;
 dstNamSpc : nuint8;
 Var NSPath : NW_NS_PATH
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired name
space.

fileFlag

(IN) Specifies whether the source path ends with a file or a directory

File Service Group

Name Space: Functions 842

name:

0 = directory name
1 = file name

srcNamSpc

(IN) Specifies the name space used for srcPath in NSPath.

dstNamSpc

(IN) Specifies the name space for the return path.

NSPath

(IN/OUT) Points to NW_NS_PATH.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

Remarks

A full path includes the volume name. For example:

volume:path\path

If the fileFlag parameter is set to 0 (indicating a directory name is being
passed) and a file name is passed, INVALID_PARAMETER will be
returned. The same error will be returned if the fileFlag parameter is set to
1 (indicating a file name is being passed) and a directory name is passed.

On NetWare server versions 3.12 and before, NWGetNSPath will return
INVALID_PATH when used to return the full path of a root file.

NCP Calls

0x2222 87 28 Get Full Path String

File Service Group

Name Space: Functions 843

NWGetOwningNameSpace

Returns the owning name space for the specified directory or file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetOwningNameSpace (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 pnstr8 path,
 pnuint8 namSpc);

Pascal Syntax

#include <nwnamspc.inc>

Function NWGetOwningNameSpace
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 path : pnstr8;
 namSpc : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory to
search.

path

(IN) Points to a valid NetWare path (pointing to a directory or file).

namSpc

(OUT) Points to the owning name space.

File Service Group

Name Space: Functions 844

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

Remarks

The owning name space is defined as the name space under which the
entry (file or directory) was created.

Both the dirHandle and path parameters must be in the default name
space.

The default name space is the name space that matches the OS and the
loaded name spaces on that volume. For example, Windows95 on a
volume with OS/2 (LONG) name space will set OS/2 (LONG) name
space as the default name space.

NCP Calls

0x2222 87 06 Obtain File or Subdirectory Information

File Service Group

Name Space: Functions 845

NWIsLNSSupportedOnVolume

Queries the NetWare server and returns a nonzero if the OS/2 name space
is supported on the target volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWIsLNSSupportedOnVolume (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path);

Pascal Syntax

#include <nwmisc.inc>

Function NWIsLNSSupportedOnVolume
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the volume whose
status is being checked.

path

(IN) Points to the absolute directory path (or a path relative to the
directory handle) associated with the volume whose status is being
checked.

Return Values

File Service Group

Name Space: Functions 846

These are common return values; see Return Values for more
information.

0x0000 OS/2 name space not supported on volume

nonzero OS/2 name space supported on volume

Remarks

NWIsLNSSupportedOnVolume is called in OS/2 to determine whether
DOS names or HPFS names should be used in paths.

In DOS and Windows, 0x0000 will always be returned.

In OS/2, if a nonzero value is returned, use HPFS names when calling
NWCalls. On 3.11 servers and above, NWCalls expect HPFS names to be
used on all volumes having the OS/2 name space loaded.

In OS/2, if the dirHandle or path parameters are invalid, 0x0000 will
always be returned. Therefore, make sure the dirHandle and path
parameters are valid before calling NWIsLNSSupportedOnVolume.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 234 Get Connection's Task Information

File Service Group

Name Space: Functions 847

NWNSGetDefaultNS

Returns the default name space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWNSGetDefaultNS (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 pnuint8 pbuDefaultNameSpace);

Pascal Syntax

#include <nwnamspc.inc>

Function NWNSGetDefaultNS
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 pbuDefaultNameSpace : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory for
which to return the default name space.

path

(IN) Points to a valid NetWare path (pointing to a directory or a file).

pbuDefaultNameSpace

(OUT) Points to the default name space.

File Service Group

Name Space: Functions 848

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8836 INVALID_PARAMETER

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x89FF BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

Remarks

Both the dirHandle and path parameters must be in the default name
space.

The default name space is the name space that matches the OS and the
loaded name spaces on that volume. For example, Windows95 on a
volume with OS/2 (LONG) name space will set OS/2 (LONG) name
space as the default name space.

NCP Calls

0x2222 22 5 Get Volume Number

0x2222 22 21 Get Volume Info With Handle

0x2222 87 24 Get Name Spaces Loaded List From Volume Number

See Also

NWGetVolumeInfoWithHandle, NWGetVolumeNumber

File Service Group

Name Space: Functions 849

NWNSGetMiscInfo

Retrieves information to be used in further calls to the name space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWNSGetMiscInfo (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 pnstr8 path,
 nuint8 dstNameSpace,
 NW_IDX N_FAR *idxStruct);

Pascal Syntax

#include <nwnamspc.inc>

Function NWNSGetMiscInfo
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 path : pnstr8;
 dstNameSpace : nuint8;
 Var idxStruct : NW_IDX
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory to
search.

path

(IN) Points to a valid NetWare path (pointing to a directory or a file).

dstNameSpace

(IN) Specifies the destination name space.

File Service Group

Name Space: Functions 850

idxStruct

(OUT) Points to NW_IDX.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89BF INVALID_NAME_SPACE

Remarks

dirHandle/path should match dstNameSpace.

Both the dirHandle and path parameters must be in the default name
space.

The default name space is the name space that matches the OS and the
loaded name spaces on that volume. For example, Windows95 on a
volume with OS/2 (LONG) name space will set OS/2 (LONG) name
space as the default name space.

NetWare uses NW_IDX as an index to quickly locate a directory entry
(file or directory). NW_IDX is required as a parameter for other functions
and should not be modified by the application.

NCP Calls

0x2222 87 06 Obtain File or Subdirectory Information

See Also

NWGetDirectoryBase

File Service Group

Name Space: Functions 851

NWNSRename

Renames an entry in the specified name space, given a path specifying the
entry name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWNSRename (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 nuint8 namSpc,
 pnstr8 oldName,
 nuint16 oldType,
 pnstr8 newName,
 nuint8 renameFlag);

Pascal Syntax

#include <nwnamspc.inc>

Function NWNSRename
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 namSpc : nuint8;
 oldName : pnstr8;
 oldType : nuint16;
 newName : pnstr8;
 renameFlag : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle of the parent directory.

namSpc

File Service Group

Name Space: Functions 852

(IN) Specifies the name space of oldName.

oldName

(IN) Points to the name of the directory or file to rename.

oldType

(IN) Specifies the type of oldName.

newName

(IN) Points to the new name (256 bytes maximum).

renameFlag

(IN) Specifies whether name conversion should be done; ignored for
NetWare 3.11 and below.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x899E INVALID_FILENAME

Remarks

A transaction file cannot be deleted or renamed.

dirHandle must point to the parent directory.

oldName and newName must be valid names containing only one
component. dirHandle will specify the path.

oldType can be one of the following values:

C
Value

Pasca
l
Value

Value Name

0x800
0

$0800 NW_TYPE_FILE

0x001
0

$0010 NW_TYPE_SUBDIR

File Service Group

Name Space: Functions 853

renameFlag can be one of the following:

C
Value

Pasca
l
Value

Value Name

0x03 $03 NW_NAME_CONVERT

0x04 $04 NW_NO_NAME_CONVERT

The default operation for NWNSRename is to rename the file in all name
spaces, report an error if renaming a file as itself, and do nothing with the
file compatibility mode. When NW_NAME_CONVERT is passed in the
renameFlag parameter, renaming the file to the same name will not report
an error and compatibility mode will be set for that file. If
NW_NO_NAME_CONVERT is passed in renameFlag, the new name is
changed only in the specified name space. When renaming is done the
shortening algorithm is used for the DOS and/or MAC name spaces
when necessary.

AFP directory and file names (long names) contain 1-31 characters. A
long name is a Pascal string preceded by one byte which specifies the
length of the name. Long names can contain any ASCII character
between 1 and 255 except the colon (:) but cannot be terminated by a
NULL character (character 0).

The NetWare server automatically generates DOS-style file names (short
names) for all AFP directories, as well as for created files and accessed
files. The NetWare server maintains both the long name and the short
name for each AFP directory and file.

NetWare uses the following conventions to convert AFP names to DOS
names:

If a long name containing no periods is converted to a short name, the
first eight valid DOS characters of the long name are used:

Long Name: THIS IS A NAME
Short Name: THISISAN

If a long name contains a period within the first nine valid DOS
characters, the first eight characters before the period and the first
three characters after the last period are used:

Long Name: THIS.IS.A.NAME
Short Name: THIS.NAM

If an application creates in the same directory two files whose initial 8
short name characters are the same, the NetWare server replaces the
last character of the second file's short name with an ascending

File Service Group

Name Space: Functions 854

decimal integer guaranteeing its uniqueness:

Example 1

Long Name: THIS IS THE FIRST FILE
Short Name: THISISTH
Long Name: THIS IS THE SECOND FILE
Short Name: THISIST1

Example 2

Long Name: THIS IS A 1 TIME OFFER
Short Name: THISISA1
Long Name: THIS IS A 1 TIME DEAL
Short Name: THISISA2

NOTE: If the first file in Example 1 is subsequently deleted, a third file
whose DOS name would have been identical to the first and second
names is created in that directory. The third name is identical to the
deleted first name and will not be appended with a decimal integer.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 87 04 Rename Or Move A File Or Subdirectory

See Also

NWGetLongName

File Service Group

Name Space: Functions 855

NWOpenCreateNSEntry

Opens a file in the specified name space or creates and then opens a file if it
does not already exist

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWOpenCreateNSEntry (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 nuint8 namSpc,
 pnstr8 path,
 NW_NS_OPENCREATE N_FAR *NSOpenCreate,
 NWFILE_HANDLE N_FAR *fileHandle);

Pascal Syntax

#include <nwnamspc.inc>

Function NWOpenCreateNSEntry
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 namSpc : nuint8;
 path : pnstr8;
 Var NSOpenCreate : NW_NS_OPENCREATE;
 Var fileHandle : NWFILE_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare connection handle.

dirHandle

(IN) Specifies the directory handle on which to open/create the
specified file.

namSpc

(IN) Specifies the name space of dirHandle/path.

File Service Group

Name Space: Functions 856

path

(IN) Points to an absolute path, (or relative if dirHandle is nonzero).

NSOpenCreate

(IN/OUT) Points to NW_NS_OPENCREATE containing information
needed to create the entry on input. Points to NW_NS_OPENCREATE
containing the results of a successful open/create upon output

fileHandle

(OUT) Points to the NWFILE_HANDLE. When you are creating
subdirectories, fileHandle returns zero.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8980 ERR_LOCK_FAIL

0x8981 NO_MORE_FILE_HANDLES

0x8982 NO_OPEN_PRIVILEGES

0x8994 NO_WRITE_PRIVILEGES_OR_READONLY

0x8996 SERVER_OUT_OF_MEMORY

0x8998 SERVER_DOES_NOT_EXIST

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89FD BAD_STATION_NUMBER

0x89FF Failure

NCP Calls

0x2222 23 17 Get File Server Info

0x2222 66 File Close

0x2222 87 1 Open/Create Entry

0x2222 87 30 Open/Create File or Subdirectory

See Also

NWDeleteNSEntry

File Service Group

Name Space: Functions 857

NWOpenDataStream

Opens a data stream associated with any supported name space on the
server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWOpenDataStream (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 pnstr8 fileName,
 nuint16 dataStream,
 nuint16 attrs,
 nuint16 accessMode,
 pnuint32 NWHandle,
 NWFILE_HANDLE N_FAR *fileHandle);

Pascal Syntax

#include <nwnamspc.inc>

Function NWOpenDataStream
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 fileName : pnstr8;
 dataStream : nuint16;
 attrs : nuint16;
 accessMode : nuint16;
 NWHandle : pnuint32;
 Var fileHandle : NWFILE_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory

File Service Group

Name Space: Functions 858

containing the file.

fileName

(IN) Points to the name of the file containing the data stream.

dataStream

(IN) Specifies the data stream number if the name space is Mac OS:

0 =Resource Fork

1=Data Fork

For DOS, always pass 0.

attrs

(IN) Specifies the attributes to use in searching for the file to open.

accessMode

(IN) Specifies the rights to use in opening the file.

NWHandle

(OUT) Points to a 4-byte NetWare handle to dataStream (optional).

fileHandle

(OUT) Points to a file handle.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x8980 ERR_LOCK_FAIL

0x8982 NO_OPEN_PRIVILEGES

0x8990 NO_FILES_AFFECTED_READ_ONLY

0x89BE INVALID_DATA_STREAM

0x89FF NO_FILES_FOUND_ERROR

Remarks

NWOpenDataStream also obtains a NetWare file handle to a data
stream.

File Service Group

Name Space: Functions 859

Three data streams are defined for NetWare:

NW_DS_DOS 0

NW_DS_MAC 1

NW_DS_FTAM 2

All name spaces can access their main data stream through the DOS data
stream. For example, the Macintosh data fork can be accessed through
this data stream. However, it would be impractical to access the data for
the DOS data stream through NWOpenDataStream since that stream is
available through the open functions for the particular client OS.

These constants identify trustee access rights for opening a a directory
with NWOpenDataStream.

C
Value

Pasca
l
Value

Value Name Value Description

0x00 $00 TA_NONE Specifies no Reads or Writes are
allowed.

0x01 $01 TA_READ Specifies file Reads are allowed.

0x02 $02 TA_WRITE Specifies file Writes are allowed.

0x08 $08 TA_CREATE Specifies files can be created.

0x10 $10 TA_DELETE Specifies files can be deleted.

0x20 $20 TA_OWNERS
HIP

Specifies subdirectories can be
created or deleted and trustee rights
granted or revoked.

0x40 $40 TA_SEARCH Specifies the directory can be
searched.

0x80 $80 TA_MODIFY Specifies file attributes can be
modified.

0xFB $FB TA_ALL Specifies the trustee has all the above
rights to the directory.

attrs definitions follow:

C
Value

Pasca
l
Value

Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

File Service Group

Name Space: Functions 860

0x08 $08 FA_EXECUTE_ONLY

0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED

0x80 $80 FA_SHAREABLE

accessMode definitions follow:

C
Value

Pasca
l
Value

Value Name

0x000
1

$0001 AR_READ

0x000
2

$0002 AR_WRITE

0x000
1

$0001 AR_READ_ONLY

0x000
2

$0002 AR_WRITE_ONLY

0x000
4

$0004 AR_DENY_READ

0x000
8

$0008 AR_DENY_WRITE

0x001
0

$0010 AR_COMPATABILITY

0x004
0

$0040 AR_WRITE_THROUGH

0x010
0

$0100 AR_OPEN_COMPRESSED

For DOS, the NetWare shell currently offers a function to get a DOS
handle from a NetWare handle.

NCP Calls

0x2222 22 49 Open Data Stream

0x2222 66 File Close

0x2222 87 06 Obtain File or Subdirectory Information

See Also

NWAFPOpenFileFork, NWConvertHandle

File Service Group

Name Space: Functions 861

NWOpenNSEntry

Opens or creates a file or creates a subdirectory with a given owning name
space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWOpenNSEntry (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 nuint8 namSpc,
 nuint8 dataStream,
 pnstr8 path,
 NW_NS_OPENCREATE N_FAR *NSOpen,
 NWFILE_HANDLE N_FAR *fileHandle);

Pascal Syntax

#include <nwnamspc.inc>

Function NWOpenNSEntry
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 namSpc : nuint8;
 dataStream : nuint8;
 path : pnstr8;
 Var NSOpen : NW_NS_OPEN;
 Var fileHandle : NWFILE_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory in
which to create the file.

File Service Group

Name Space: Functions 862

namSpc

(IN) Specifies the name space for the file creation.

dataStream

(IN) Specifies the data stream number if the name space is Mac OS:

0 =Resource Fork

1=Data Fork

For DOS, always pass 0.

path

(IN) Points to the name to use in creating the file. Optionally contains a
volume:path specification.

NSOpen

(IN/OUT) Points to NW_NS_OPENCREATE containing the
information needed to open the entry. Results of a successful open are
also returned in NW_NS_OPENCREATE.

fileHandle

(OUT) Points to the OS file handle; it returns zero if you are creating
subdirectories.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

Remarks

dirHandle can be zero if the path contains the complete path, including
the volume name. (dirHandle/path should match namSpc.)

OC_MODE_ constants used in openCreateMode are listed below:

C
Value

Pasca
l
Value

Value Name

0x01 $01 OC_MODE_OPEN

File Service Group

Name Space: Functions 863

0x02 $02 OC_MODE_TRUNCATE

0x02 $02 OC_MODE_REPLACE

0x08 $08 OC_MODE_CREATE

SA_ constants used in searchAttributes are listed below:

C
Value

Pasca
l
Value

Value Name

0x000
0

$0000 SA_NORMAL

0x000
2

$0002 SA_HIDDEN

0x000
4

$0004 SA_SYSTEM

0x001
0

$0010 SA_SUBDIR_ONLY

0x800
0

$8000 SA_SUBDIR_FILES

0x800
6

$8006 SA_ALL

AR_ constants used in desiredAccessRights are listed below:

C
Value

Pasca
l
Value

Value Name

0x000
1

$0001 AR_READ

0x000
2

$0002 AR_WRITE

0x000
1

$0001 AR_READ_ONLY

0x000
2

$0002 AR_WRITE_ONLY

0x000
4

$0004 AR_DENY_READ

0x000
8

$0008 AR_DENY_WRITE

0x001
0

$0010 AR_COMPATABILITY

File Service Group

Name Space: Functions 864

0x004
0

$0040 AR_WRITE_THROUGH

0x010
0

$0100 AR_OPEN_COMPRESSED

OC_ACTION_ constants used in openCreateAction are listed below:

C
Value

Pasca
l
Value

Value Name

0x01 $01 OC_ACTION_NONE

0x01 $01 OC_ACTION_OPEN

0x02 $02 OC_ACTION_CREATE

0x04 $04 OC_ACTION_TRUNCATE

0x04 $04 OC_ACTION_REPLACE

The file handle returned is appropriate for the platform the API is written
for. This file handle may be used for access to the attribute value through
standard file I/O with the handle. This includes closing the file as well as
reading and writing to the file.

For Windows, call _lread, _lwrite, _lclose, and _lseek rather than calling
the standard file I/O functions. Calling standard file I/O functions in
Windows returns unexpected results.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 66 File Close

0x2222 87 01 Open Create File Or Subdirectory

0x2222 87 30 Open/Create File Or Subdirectory

File Service Group

Name Space: Functions 865

NWQueryNSInfoFormat

Returns the NW_NS_INFO structure to be used in getting and setting name
space information

Local Servers: blocking

Remote Servers: blocking

Classification: 3.12, 4.x

SMP Aware: No

Service: Name Space

Syntax

#include <nwfile.h>

int NWQueryNSInfoFormat (
 BYTE nameSpace,
 BYTE volNum,
 NW_NS_INFO *nsInfo);

Parameters

nameSpace

(IN) Specifies the name space to return information for.

volNum

(IN) Specifies the volume number to return information for.

nsInfo

(OUT) Points to an NW_NS_INFO structure.

Return Values

ESuccess or NetWare errors

Remarks

The nsInfo parameter points to an NW_NS_INFO structure. This structure
is defined in nwfile.h as follows:

 typedef struct
 {
 LONG nsInfoBitMask;
 LONG fixedBitMask;
 LONG reservedBitMask;
 LONG extendedBitMask;
 WORD fixedBitsDefined;
 WORD reservedBitsDefined;

File Service Group

Name Space: Functions 866

 WORD extendedBitsDefined;
 LONG fieldsLenTable[32];
 BYTE hugeStateInfo[16];
 LONG hugeDataLength;
 } NW_NS_INFO;

See Also

NWGetNSInfo (NLM), NWSetNSInfo

File Service Group

Name Space: Functions 867

NWReadExtendedNSInfo

Reads the extended (huge) name space information for the specified name
space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWReadExtendedNSInfo (
 NWCONN_HANDLE conn,
 NW_IDX N_FAR *idxStruct,
 NW_NS_INFO N_FAR *NSInfo,
 pnuint8 data);

Pascal Syntax

#include <nwnamspc.inc>

Function NWReadExtendedNSInfo
 (conn : NWCONN_HANDLE;
 Var idxStruct : NW_IDX;
 Var NSInfo : NW_NS_INFO;
 data : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

idxStruct

(IN) Points to NW_IDX returned from NWNSGetMiscInfo.

NSInfo

(IN) Points to NW_NS_INFO returned from NWGetNSInfo.

data

(OUT) Points to a buffer containing the data from the name space.

File Service Group

Name Space: Functions 868

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Remarks

If extendedBitMask is set in NW_NS_INFO, NWReadExtendedNSInfo
should be used to read the extended information. extendedBitMask
contains a Read-only information field that should be preserved. The
application must not manipulate extendedBitMask; it must not be zero.

dstNameSpace and dstDirBase of NW_IDX are used to determine the target
name space of NWReadExtendedNSInfo.

NCP Calls

0x2222 87 26 Get Huge NS Information

See Also

NWGetDirectoryBase, NWGetNSInfo, NWNSGetMiscInfo,
NWWriteExtendedNSInfo

File Service Group

Name Space: Functions 869

NWReadNSInfo

Reads name space information from the designated name space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWReadNSInfo (
 NWCONN_HANDLE conn,
 NW_IDX N_FAR *idxStruct,
 NW_NS_INFO N_FAR *NSInfo,
 pnuint8 data);

Pascal Syntax

#include <nwnamspc.inc>

Function NWReadNSInfo
 (conn : NWCONN_HANDLE;
 Var idxStruct : NW_IDX;
 Var NSInfo : NW_NS_INFO;
 data : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

idxStruct

(IN) Points to NW_IDX returned from NWNSGetMiscInfo.

NSInfo

(IN) Points to NW_NS_INFO returned from NWGetNSInfo.

data

(OUT) Points to a 512-byte buffer receiving data from the name space.

Return Values

File Service Group

Name Space: Functions 870

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Remarks

NSInfoBitMask bit definitions follow:

C
Value

Pasca
l
Value

Value Name

0x0002
L

$0002 DM_ATTRIBUTES

0x0004
L

$0004 DM_CREATE_DATE

0x0008
L

$0008 DM_CREATE_TIME

0x0010
L

$0010 DM_CREATOR_ID

0x0020
L

$0020 DM_ARCHIVE_DATE

0x0040
L

$0040 DM_ARCHIVE_TIME

0x0080
L

$0080 DM_ARCHIVER_ID

0x0100
L

$0100 DM_MODIFY_DATE

0x0200
L

$0200 DM_MODIFY_TIME

0x0400
L

$0400 DM_MODIFIER_ID

0x0800
L

$0800 DM_LAST_ACCESS_DATE

0x1000
L

$1000 DM_INHERITED_RIGHTS_MASK

0x2000
L

$2000 DM_MAXIMUM_SPACE

File Service Group

Name Space: Functions 871

NCP Calls

0x2222 87 19 Get NS Information

See Also

NWGetNSEntryInfo, NWWriteNSInfo

File Service Group

Name Space: Functions 872

NWScanNSEntryInfo

Obtains directory entry information using a specific name space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWScanNSEntryInfo (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 nuint8 namSpc,
 nuint16 attrs,
 SEARCH_SEQUENCE N_FAR *sequence,
 pnstr8 srchPattern,
 nuint32 retInfoMask,
 NW_ENTRY_INFO N_FAR *entryInfo);

Pascal Syntax

#include <nwnamspc.inc>

Function NWScanNSEntryInfo
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 namSpc : nuint8;
 attrs : nuint16;
 Var sequence : SEARCH_SEQUENCE;
 searchPattern : pnstr8;
 retInfoMask : nuint32;
 Var entryInfo : NW_ENTRY_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the directory to
scan. Must point to the parent directory.

File Service Group

Name Space: Functions 873

namSpc

(IN) Specifies the name space of dirHandle.

attr

(IN) Specifies the attributes to be used for the scan.

sequence

(IN/OUT) Points to SEARCH_SEQUENCE.

srchPattern

(IN) Points to the name of the entry for which to scan (wildcards are
allowed).

retInfoMask

(IN) Specifies the information to return.

entryInfo

(OUT) Points to NW_ENTRY_INFO.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

Remarks

NWScanNSEntryInfo can be used iteratively with wild cards. On the
first call, searchDirNumber in the SEARCH_SEQUENCE structure should
be set to -1. After that, the server manages the information.

retInfoMask is used to determine which fields of NW_ENTRY_INFO to
return. nameLength and entryName are always returned in
NWScanNSEntryInfo.

To request information from a server, a client sets the appropriate bit or
bits of retInfoMask and sends a request packet to the server. retInfoMask
values follow:

C Value Pascal
Value

Value Name

File Service Group

Name Space: Functions 874

0x0001L $0001 IM_NAME

0x0001L $0001 IM_ENTRY_NAME

0x0002L $0002 IM_SPACE_ALLOCATED

0x0004L $0004 IM_ATTRIBUTES

0x0008L $0008 IM_SIZE

0x0010L $0010 IM_TOTAL_SIZE

0x0020L $0020 IM_EA

0x0040L $0040 IM_ARCHIVE

0x0080L $0080 IM_MODIFY

0x0100L $0100 IM_CREATION

0x0200L $0200 IM_OWNING_NAMESPACE

0x0400L $0400 IM_DIRECTORY

0x0800L $0800 IM_RIGHTS

0x0FEDL $0FED IM_ALMOST_ALL

0x0FFFL $0FFF IM_ALL

0x1000L $1000 IM_REFERENCE_ID

0x2000L $2000 IM_NS_ATTRIBUTES

0x4000L $4000 IM_DATASTREAM_SIZES

0x8000000
0L

$800000
00

IM_COMPRESSED_INFO

0x8000000
0L

$800000
00

IM_NS_SPECIFIC_INFO

Possible attr values follow:

C
Value

Pasca
l
Value

Value Name

0x00 $00 FA_NORMAL

0x01 $01 FA_READ_ONLY

0x02 $02 FA_HIDDEN

0x04 $04 FA_SYSTEM

0x08 $08 FA_EXECUTE_ONLY

0x10 $10 FA_DIRECTORY

0x20 $20 FA_NEEDS_ARCHIVED

0x80 $80 FA_SHAREABLE

File Service Group

Name Space: Functions 875

NCP Calls

0x2222 87 02 Initialize Search

0x2222 87 03 Search For File Or Subdirectory

See Also

NWGetNSEntryInfo

File Service Group

Name Space: Functions 876

NWSetHugeNSInfo

Sets extended (huge) NS information for the entry specified by volNum,
nameSpace, and dirBase

Local Servers: blocking

Remote Servers: blocking

Classification: 3.12, 4.x

SMP Aware: No

Service: Name Space

Syntax

#include <nwfile.h>

int NWSetHugeNSInfo (
 BYTE volNum,
 BYTE nameSpace,
 LONG dirBase,
 LONG hugeInfoMask,
 BYTE *hugeStateInfo,
 LONG *hugeDataLen,
 BYTE *hugeData,
 BYTE *nextHugeStateInfo,
 LONG *hugeDataUsed);

Parameters

volNum

(IN) Volume number for which to set huge NS information.

nameSpace

(IN) Name space for which to set huge information.

dirBase

(IN) Directory base (or number) for the entry for which to set
information.

hugeInfoMask

(IN) Bit map that indicates which types of information is being set.

hugeStateInfo

(IN) Information that helps the name space transfer the data across the
wire. The hugeStateInfo is information that was returned by a previous
call to NWGetHugeNSInfo.

hugeDataLen

(IN) Length of the huge data to be set.

hugeData

File Service Group

Name Space: Functions 877

(IN) Data to be set as specified in the hugeInfoMask.

nextHugeStateInfo

(OUT) Huge state information that should be passed in on the next call
to this function should all the information not fit in one packet.

hugeDataUsed

(OUT) Number of bytes that were actually set by the name space.

Return Values

ESuccess or NetWare errors

Remarks

This function sets extended NS information for an entry in the specified
name space.

See Also

NWGetDirBaseFromPath, NWGetHugeNSInfo,
NWQueryNSInfoFormat

File Service Group

Name Space: Functions 878

NWSetLongName

Renames an entry in the specified name space, given a path specifying the
entry name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSetLongName (
 NWCONN_HANDLE conn,
 nuint8 dirHandle,
 nuint8 namSpc,
 pnstr8 dstPath,
 nuint16 dstType,
 pnstr8 longName);

Pascal Syntax

#include <nwnamspc.inc>

Function NWSetLongName
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 namSpc : nuint8;
 dstPath : pnstr8;
 dstType : nuint16;
 longName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle of the parent directory.

namSpc

(IN) Specifies the name space of dstPath.

File Service Group

Name Space: Functions 879

dstPath

(IN) Points to the name of the directory or file to rename.

dstType

(IN) Specifies the directory or file type that dstPath points to.

longName

(IN) Points to the new name (256 bytes maximum).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x899E INVALID_FILENAME

Remarks

dirHandle must point to the parent directory.

dstPath and longName must be valid names containing only one
component. dirHandle will specify the path where the one component is
located.

dstType can take on the following values:

C
Value

Pasca
l
Value

Value Name

0x800
0

$0800 NW_TYPE_FILE

0x001
0

$0010 NW_TYPE_SUBDIR

Resetting a filename in one name space resets the name in all name
spaces. The shortening algorithm is used for the DOS and/or Macintosh
name spaces, if appropriate.

AFP directory and file names (long names) contain from 1 to 31

File Service Group

Name Space: Functions 880

characters. A long name is a Pascal string preceded by one byte which
specifies the length of the name. Long names can contain any ASCII
character between 1 and 255 except the colon (:) but cannot be terminated
by a NULL character (character 0). NetWare servers automatically
generate DOS-style file names (short names) for all AFP directories, as
well as for created files and accessed files. NetWare servers maintain
both the long name and the short name for each AFP directory and file.

NetWare uses the following conventions to convert AFP names to DOS
names:

If a long name containing no periods is converted to a short name, the
first eight valid DOS characters of the long name are used:

Long Name: THIS IS A NAME
Short Name: THISISAN

If a long name contains a period within the first nine valid DOS
characters, the first eight characters before the period and the first
three characters after the last period are used:

Long Name: THIS.IS.A.NAME
Short Name: THIS.NAM

Note that periods preceding file names are dropped:

long name: this.is.name
short name: this.name

If an application creates two files with identical short names (initial
eight characters) in the same directory, the NetWare server replaces
the last character of the second file's short name with an ascending
decimal integer that will guarantee its uniqueness:

Example 1

Long Name: THIS IS THE FIRST FILE
Short Name: THISISTH
Long Name: THIS IS THE SECOND FILE
Short Name: THISIST1

Example 2

Long Name: THIS IS A 1 TIME OFFER
Short Name: THISISA1
Long Name: THIS IS A 1 TIME DEAL
Short Name: THISISA2

NOTE: If the first file in example 1 is subsequently deleted, a third file
whose DOS name would have been identical to the first and second
names is created in that directory. The third name is identical to the
deleted first name and will not be appended with a decimal integer.

NCP Calls

File Service Group

Name Space: Functions 881

0x2222 23 17 Get File Server Information

0x2222 87 04 Rename Or Move A File Or Subdirectory

See Also

NWGetLongName

File Service Group

Name Space: Functions 882

NWSetNameSpaceEntryName

Sets the name of a file or directory in the specified name space

Local Servers: blocking

Remote Servers: blocking

Classification: 3.12, 4.x

SMP Aware: No

Service: Name Space

Syntax

#include <nwfile.h>

int NWSetNameSpaceEntryName (
 BYTE *path,
 LONG nameSpace,
 BYTE *nameSpaceEntryName);

Parameters

path

(IN) Specifies the path of the file system entry to set a name space
entry name for.

nameSpace

(IN) Specifies the name space to set the file or directory name for.

nameSpaceEntryName

(IN) Points to an ASCIIZ string that specifies the new file or directory
name in the specified name space.

Return Values

ESuccess or NetWare errors

Remarks

This function sets the file system entry's name in the specified name
space only. The naming change is not reflected in the other name space
entries.

See Also

NWSetNameSpaceEntryName

Example

File Service Group

Name Space: Functions 883

See the example for NWGetNameSpaceEntryName.

File Service Group

Name Space: Functions 884

NWSetNSEntryDOSInfo

Modifies information in one name space using a path from another name
space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSetNSEntryDOSInfo (
 (NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint8 namSpc,
 nuint16 searchAttrs,
 nuint32 modifyDOSMask,
 MODIFY_DOS_INFO N_FAR *dosInfo);

Pascal Syntax

#include <nwnamspc.inc>

Function NWSetNSEntryDOSInfo
 (conn : NWCONN_HANDLE;
 dirHandle : nuint8;
 path : pnstr8;
 namSpc : nuint8;
 searchAttrs : nuint16;
 modifyDOSMask : nuint32;
 Var dosInfo : MODIFY_DOS_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle of the parent directory.

path

File Service Group

Name Space: Functions 885

(IN) Points to the path.

namSpc

(IN) Specifies the name space of dirHandle and path.

searchAttrs

(IN) Specifies the search attributes to use.

modifyDOSMask

(IN) Specifies the information to return.

dosInfo

(IN) Points to MODIFY_DOS_INFO containing the information
specified by luModifyDOSMask.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x89FF NO_FILES_FOUND_ERROR

Remarks

suSrchAttr can have the following values:

C
Value

Pasca
l
Value

Value Name

0x000
2

$0002 SA_HIDDEN

0x000
4

$0004 SA_SYSTEM

0x001
0

$0010 SA_SUBDIR_ONLY

0x800
0

$8000 SA_SUBDIR_FILES

luModifyDOSMask can have the following values:

C
Value

Pasca
l
Value

Value Name

File Service Group

Name Space: Functions 886

Value

0x0002
L

$0002 DM_ATTRIBUTES

0x0004
L

$0004 DM_CREATE_DATE

0x0008
L

$0008 DM_CREATE_TIME

0x0010
L

$0010 DM_CREATOR_ID

0x0020
L

$0020 DM_ARCHIVE_DATE

0x0040
L

$0040 DM_ARCHIVE_TIME

0x0080
L

$0080 DM_ARCHIVER_ID

0x0100
L

$0100 DM_MODIFY_DATE

0x0200
L

$0200 DM_MODIFY_TIME

0x0400
L

$0400 DM_MODIFIER_ID; cannot be set for subdirectories

0x0800
L

$0800 DM_LAST_ACCESS_DATE; cannot be set for
subdirectories

0x1000
L

$1000 DM_INHERITED_RIGHTS_MASK

0x2000
L

$2000 DM_MAXIMUM_SPACE

DM_MODIFIER_ID and DM_LAST_ACCESS_DATE cannot be used
when the suSrchAttr parameter contains SA_SUBDIR_ONLY. The server
masks off DM_MODIFIER_ID and DM_LAST_ACCESS_DATE on
subdirectories. If the resultant mask is 0x0000, the server will return
NO_FILES_FOUND_ERROR indicating DM_MODIFIER_ID and
DM_LAST_ACCESS_DATE were not set. If the resultant mask still
contains a return value other than SUCCESSFUL,
NWSetNSEntryDOSInfo will set the remaining bits and return
SUCCESSFUL even though DM_MODIFIER_ID and
DM_LAST_ACCESS_DATE were not set.

NCP Calls

0x2222 87 07 Modify File or Subdirectory DOS Information

File Service Group

Name Space: Functions 887

NWSetNSInfo

Sets specific NS information for a directory entry specified by volNum,
nameSpace, and dirBase

Local Servers: blocking

Remote Servers: blocking

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Name Space

Syntax

#include <nwfile.h>

int NWSetNSInfo (
 BYTE volNum,
 BYTE srcNameSpace,
 BYTE dstNameSpace,
 LONG dirBase,
 LONG nsInfoMask,
 LONG nsSpecificInfoLen,
 BYTE *nsSpecificInfo);

Parameters

volNum

(IN) The volume number for which information is being set.

srcNameSpace

(IN) Name space that corresponds with the dirBase being passed. (The
name space currently being worked with is the default.)

dstNameSpace

(IN) Name space to which information is being set.

dirBase

(IN) Directory base (or number) for the entry on which information is
being set.

nsInfoMask

(IN) Bit map that indicates which types of information the user is
setting in the data parameter.

nsSpecificInfoLen

(IN) Length of the data being set.

nsSpecificInfo

(IN) Data that is being set as indicated in the nsInfoMask.

File Service Group

Name Space: Functions 888

Return Values

ESuccess or NetWare errors

Remarks

If the current name space is NFS, a value of 2 (for NFS) would be passed
as srcNameSpace. If, however, the returned information should be in
another format, for example OS/2, a value of 4 (for OS/2) would be
passed as the dstNameSpace.

See DOS Name Space Bit Mask.

See Also

NWGetDirBaseFromPath, NWGetNSInfo (NLM),
NWQueryNSInfoFormat

File Service Group

Name Space: Functions 889

NWWriteExtendedNSInfo

Writes the extended (huge) name space information for the specified name
space

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWWriteExtendedNSInfo (
 NWCONN_HANDLE conn,
 NW_IDX N_FAR *idxStruct,
 NW_NS_INFO N_FAR *NSInfo,
 pnuint8 data);

Pascal Syntax

#include <nwnamspc.inc>

Function NWWriteExtendedNSInfo
 (conn : NWCONN_HANDLE;
 Var idxStruct : NW_IDX;
 Var NSInfo : NW_NS_INFO;
 data : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

idxStruct

(IN) Points to NW_IDX returned by NWNSGetMiscInfo.

NSInfo

(IN) Points to NW_NS_INFO returned by NWGetNSInfo.

data

(IN) Points to a buffer containing the data to be written to the name
space.

File Service Group

Name Space: Functions 890

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x898C NO_MODIFY_PRIVILEGES

Remarks

dstNameSpace and dstDirBase in NW_IDX are used to determine what
entry to use for the Write.

extendedBitMask in NW_NS_INFO is a read-only information field that
should be preserved from NWReadExtendedNSInfo.

NCP Calls

0x2222 87 27 Set Huge NS Information

See Also

NWGetDirectoryBase, NWGetNSInfo, NWNSGetMiscInfo,
NWReadExtendedNSInfo, NWWriteExtendedNSInfo

File Service Group

Name Space: Functions 891

NWWriteNSInfo

Sets the specific name space information

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Name Space

Syntax

#include <nwnamspc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWWriteNSInfo (
 NWCONN_HANDLE conn,
 NW_IDX N_FAR *idxStruct,
 NW_NS_INFO N_FAR *NSInfo,
 pnuint8 data);

Pascal Syntax

#include <nwnamspc.inc>

Function NWWriteNSInfo
 (conn : NWCONN_HANDLE;
 Var idxStruct : NW_IDX;
 Var NSInfo : NW_NS_INFO;
 data : pnuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

idxStruct

(IN) Points to NW_IDX returned by NWNSGetMiscInfo.

NSInfo

(IN) Points to NW_NS_INFO returned by NWGetNSInfo.

data

(IN) Points to a 512-byte buffer containing the data to be written to the
name space.

File Service Group

Name Space: Functions 892

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Remarks

For name spaces other than DOS, NWWriteNSInfo is passed to the
appropriate name space NLM on the server. For name space 0 (DOS), the
server processes the request.

The actual format of the data is determined by the NLM on the server.
Unless format for the data on the server is known, NWWriteNSInfo
should not be used.

Avoid setting the first field of the name space information. This is
generally the name and is intended to be read-only. To rename a file, call
NWSetLongName.

NCP Calls

0x2222 87 25 Set NS Information

See Also

NWGetDirectoryBase, NWGetNSInfo, NWNSGetMiscInfo,
NWReadNSInfo

File Service Group

Name Space: Functions 893

SetCurrentNameSpace

Sets the name space that is to be used for parsing paths that are input to
server functions

Local Servers: blocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Name Space

Syntax

#include <nwfile.h>

BYTE SetCurrentNameSpace (
 BYTE newNameSpace);

Parameters

newNameSpace

(IN) Specifies the new name space.

Return Values

This function returns the old name space if successful. If the specified
name space is not valid or is not supported on the current working
volume (CWV) and current working directory (CWD), this function
returns error code 255.

Remarks

The SetCurrentNameSpace function sets the name space to be used by
the current thread group for parsing paths. This name space is used by
this thread group for paths input to subsequent calls to functions from
the NetWare API (until changed by another call to this function).

SetTargetNameSpace sets the name space for output from subsequent
calls to functions from the NetWare API.

See Also

FEGetOriginatingNameSpace, GetNameSpaceName,
SetTargetNameSpace

Example

File Service Group

Name Space: Functions 894

SetCurrentNameSpace

#include <nwfile.h>
BYTE oldNameSpace;
BYTE newNameSpace;
oldNameSpace = SetCurrentNameSpace (newNameSpace);

File Service Group

Name Space: Functions 895

SetTargetNameSpace

Sets the target name space that is to be returned by any following server
functions

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Name Space

Syntax

#include <nwfile.h>

BYTE SetTargetNameSpace (
 BYTE newNameSpace);

Parameters

newNameSpace

(IN) Specifies the new name space that is to become the target name
space.

Return Values

This function returns the old target name space.

Remarks

SetTargetNameSpace sets the target name space to be used by the
current thread group. This name space is used by this thread group for
paths output from all subsequent NetWare API functions.

SetCurrentNameSpace sets the name space for input to subsequent calls
to functions from the NetWare API.

See Also

FEGetOriginatingNameSpace, SetCurrentNameSpace

File Service Group

Name Space: Functions 896

Name Space: Structures

File Service Group

Name Space: Structures 897

MODIFY_DOS_INFO

Defines the parameters for modifying an entry's DOS name space
information

Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct
{
 nuint32 attributes;
 nuint16 createDate;
 nuint16 createTime;
 nuint32 creatorID;
 nuint16 modifyDate;
 nuint16 modifyTime;
 nuint32 modifierID;
 nuint16 archiveDate;
 nuint16 archiveTime;
 nuint32 archiverID;
 nuint16 lastAccessDate;
 nuint16 inheritanceGrantMask;
 nuint16 inheritanceRevokeMask;
 nuint32 maximumSpace;
} MODIFY_DOS_INFO;

Pascal Structure

Defined in nwnamspc.inc

 MODIFY_DOS_INFO = Record
 attributes : nuint32;
 createDate : nuint16;
 createTime : nuint16;
 creatorID : nuint32;
 modifyDate : nuint16;
 modifyTime : nuint16;
 modifierID : nuint32;
 archiveDate : nuint16;
 archiveTime : nuint16;
 archiverID : nuint32;
 lastAccessDate : nuint16;
 inheritanceGrantMask : nuint16;
 inheritanceRevokeMask : nuint16;
 maximumSpace : nuint32
 End;

File Service Group

Name Space: Structures 898

Fields

attributes

Specifies the attributes to the value (see Attribute Values).

createDate

Specifies the creation date.

createTime

Specifies the creation time.

creatorID

Specifies the creator to the specified ID.

modifyDate

Specifies the date the entry was last modified.

modifyTime

Specifies the time the entry was last modified.

modifierID

Specifies the modifier to the specified ID.

archiveDate

Specifies the date the entry was last archived.

archiveTime

Specifies the time the entry was last archived.

archiverID

Specifies the archiver to the specified ID.

lastAccessDate

Specifies the date the entry was last accessed.

inheritanceGrantMask

Specifies the following TA constants:

C
Value

Pasca
l
Value

Value Name Value Description

0x00 $00 TA_NONE Specifies no Reads or Writes
are allowed.

0x01 $01 TA_READ Specifies file Reads are
allowed.

0x02 $02 TA_WRITE Specifies file Writes are
allowed.

0x08 $08 TA_CREATE Specifies files can be created.

0x10 $10 TA_DELETE Specifies files can be deleted.

0x20 $20 TA_OWNERSHI Specifies subdirectories can be

File Service Group

Name Space: Structures 899

P created or deleted and trustee
rights granted or revoked.

0x40 $40 TA_SEARCH Specifies the directory can be
searched.

0x80 $80 TA_MODIFY Specifies file attributes can be
modified.

0xFB $FB TA_ALL Specifies the trustee has all
the above rights to the
directory.

inheritanceRevokeMask

Specifies the following TA constants:

C
Value

Pasca
l
Value

Value Name Value Description

0x00 $00 TA_NONE Specifies no Reads or Writes
are allowed.

0x01 $01 TA_READ Specifies file Reads are
allowed.

0x02 $02 TA_WRITE Specifies file Writes are
allowed.

0x08 $08 TA_CREATE Specifies files can be created.

0x10 $10 TA_DELETE Specifies files can be deleted.

0x20 $20 TA_OWNERSHI
P

Specifies subdirectories can be
created or deleted and trustee
rights granted or revoked.

0x40 $40 TA_SEARCH Specifies the directory can be
searched.

0x80 $80 TA_MODIFY Specifies file attributes can be
modified.

0xFB $FB TA_ALL Specifies the trustee has all
the above rights to the
directory.

maximumSpace

File Service Group

Name Space: Structures 900

NW_ENTRY_INFO

Holds standard name space information for an entry

Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct
{
 nuint32 spaceAlloc;
 nuint32 attributes;
 nuint16 flags;
 nuint32 dataStreamSize;
 nuint32 totalStreamSize;
 nuint16 numberOfStreams;
 nuint16 creationTime;
 nuint16 creationDate;
 nuint32 creatorID;
 nuint16 modifyTime;
 nuint16 modifyDate;
 nuint32 modifierID;
 nuint16 lastAccessDate;
 nuint16 archiveTime;
 nuint16 archiveDate;
 nuint32 archiverID;
 nuint16 inheritedRightsMask;
 nuint32 dirEntNum;
 nuint32 DosDirNum;
 nuint32 volNumber;
 nuint32 EADataSize;
 nuint32 EAKeyCount;
 nuint32 EAKeySize;
 nuint32 NSCreator;
 nuint8 nameLength;
 nstr8 entryName[256];
} NW_ENTRY_INFO;

Pascal Structure

Defined in nwnamspc.inc

 NW_ENTRY_INFO = Record
 spaceAlloc : nuint32;
 attributes : nuint32;
 flags : nuint16;
 dataStreamSize : nuint32;
 totalStreamSize : nuint32;
 numberOfStreams : nuint16;

File Service Group

Name Space: Structures 901

 creationTime : nuint16;
 creationDate : nuint16;
 creatorID : nuint32;
 modifyTime : nuint16;
 modifyDate : nuint16;
 modifierID : nuint32;
 lastAccessDate : nuint16;
 archiveTime : nuint16;
 archiveDate : nuint16;
 archiverID : nuint32;
 inheritedRightsMask : nuint16;
 dirEntNum : nuint32;
 DosDirNum : nuint32;
 volNumber : nuint32;
 EADataSize : nuint32;
 EAKeyCount : nuint32;
 EAKeySize : nuint32;
 NSCreator : nuint32;
 nameLength : nuint8;
 entryName : Array[0..255] Of nstr8
 End;

Fields

spaceAlloc

Specifies the space allocated to the datastream. IM_SPACE_ALLOC in
returnEntryInfo mask.

attributes

Specifies the entry's attributes (see Attribute Values).

flags

Specifies data used internally.

dataStreamSize

Specifies the size of the datastream. IM_SIZE in returnEntryInfo mask.

totalStreamSize

Specifies the total size of streams associated with the entry.
IM_TOTAL_SIZE in returnEntryInfo mask.

numberOfStreams

Specifies the number of streams associated with the entry.

creationTime

Specifies when the entry was created. IM_CREATION in
returnEntryInfo mask.

creationDate

Specifies the date the entry was created (2 bytes). From the least
significant byte to the most significant byte, 5 bits contains the day, 4
bits contains the month, and 7 bits contains the year.

File Service Group

Name Space: Structures 902

creatorID

Specifies the object creating the entry.

modifyTime

Specifies the time the entry was last modified. IM_MODIFY in
returnEntryInfo mask (2 bytes). From the least significant byte to the
most significant byte, 5 bits contains the second, 6 bits contains the
minute, and 5 bits contains the hour.

modifyDate

Specifies the date the entry was last modified (2 bytes). From the least
significant byte to the most significant byte, 5 bits contains the day, 4
bits contains the month, and 7 bits contains the year.

modifierID

Specifies the ID of the object that last modified the entry.

lastAccessDate

Specifies the date the entry was last accessed (2 bytes). From the least
significant byte to the most significant byte, 5 bits contains the day, 4
bits contains the month, and 7 bits contains the year.

archiveTime

Specifies the time the entry was last archived (2 bytes). IM_ARCHIVE
in returnEntryInfo mask. From the least significant byte to the most
significant byte, 5 bits contains the second, 6 bits contains the minute,
and 5 bits contains the hour.

archiveDate

Specifies the date the entry was last archived (2 bytes). From the least
significant byte to the most significant byte, 5 bits contains the day, 4
bits contains the month, and 7 bits contains the year.

archiverID

Specifies the ID of the object last archiving he entry.

inheritedRightsMask

Specifies the entry's inherited rights mask. IM_RIGHTS in
returnEntryInfo mask. A mask of the following:

C
Value

Pasca
l
Value

Value Name Value Description

0x00 $00 TA_NONE Specifies no Reads or Writes
are allowed.

0x01 $01 TA_READ Specifies file Reads are
allowed.

0x02 $02 TA_WRITE Specifies file Writes are
allowed.

0x08 $08 TA_CREATE Specifies files can be created.

File Service Group

Name Space: Structures 903

0x10 $10 TA_DELETE Specifies files can be deleted.

0x20 $20 TA_OWNERSHI
P

Specifies subdirectories can be
created or deleted and trustee
rights granted or revoked.

0x40 $40 TA_SEARCH Specifies the directory can be
searched.

0x80 $80 TA_MODIFY Specifies file attributes can be
modified.

0xFB $FB TA_ALL Specifies the trustee has all
the above rights to the
directory.

dirEntNum

Specifies the directory entry number. IM_DIRECTORY in
returnEntryInfo mask.

DosDirNum

Specifies the DOS directory entry number.

volNumber

Specifies the number of the volume that contains the entry.

EADataSize

Specifies the data size of the entry's extended attribute. IM_EA in
returnEntryInfo mask.

EAKeyCount

Specifies the key count for the entry's extended attribute.

EAKeySize

Specifies the size of the entry's extended attribute key.

NSCreator

Specifies the name space the entry was originally created in.
IM_OWNING_NAMESPACE in returnEntryInfo mask. Returns one of
the following:

0 NW_NS_DOS

1 NW_NS_MAC

2 NW_NS_NFS

3 NW_NS_FTAM

4 NW_NS_OS2

4 NW_NS_LONG

nameLength

Specifies the length of the entry's name. IM_NAME in returnEntryInfo
mask.

entryName

File Service Group

Name Space: Structures 904

Specifies the entry's name.

File Service Group

Name Space: Structures 905

NW_IDX

Receives the directory base for an entry in a specified name space

Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct
{
 nuint8 volNumber;
 nuint8 srcNameSpace;
 nuint32 srcDirBase;
 nuint8 dstNameSpace;
 nuint32 dstDirBase;
} NW_IDX;

Pascal Structure

Defined in nwnamspc.inc

 NW_IDX = Record
 volNumber : nuint8;
 srcNameSpace : nuint8;
 srcDirBase : nuint32;
 dstNameSpace : nuint8;
 dstDirBase : nuint32
 End;

Fields

volNumber

Specifies the volume number.

srcNameSpace

Specifies the name space of source:

0 NW_NS_DOS

1 NW_NS_MAC

2 NW_NS_NFS

3 NW_NS_FTAM

4 NW_NS_OS2

4 NW_NS_LONG

srcDirBase

Specifies the directroy base of source.

dstNameSpace

File Service Group

Name Space: Structures 906

Specifies the name space changing to:

0 NW_NS_DOS

1 NW_NS_MAC

2 NW_NS_NFS

3 NW_NS_FTAM

4 NW_NS_OS2

4 NW_NS_LONG

dstDirBase

Specifies the directory base of the entry in the new name space.

File Service Group

Name Space: Structures 907

NW_NS_INFO

Handles the information bit masks used to read name space-specific
information

Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct
{
 nuint32 NSInfoBitMask;
 nuint32 fixedBitMask;
 nuint32 reservedBitMask;
 nuint32 extendedBitMask;
 nuint16 fixedBitsDefined;
 nuint16 reservedBitDefined;
 nuint16 extendedBitsDefined;
 nuint32 fieldsLenTable[32];
 nuint8 hugeStateInfo[16];
 nuint32 hugeDataLength;
} NW_NS_INFO;

Pascal Structure

Defined in nwnamspc.inc

 NW_NS_INFO = Record
 NSInfoBitMask : nuint32;
 fixedBitMask : nuint32;
 reservedBitMask : nuint32;
 extendedBitMask : nuint32;
 fixedBitsDefined : nuint16;
 reservedBitsDefined : nuint16;
 extendedBitsDefined : nuint16;
 fieldsLenTable : Array[0..31] Of nuint32;
 hugeStateInfo : Array[0..15] Of nuint8;
 hugeDataLength : nuint32
 End;

Fields

NSInfoBitMask

Specifies a bit mask with the following definitions:

C Value Pascal Value Value Name

0x0002L $0002 DM_ATTRIBUTES

File Service Group

Name Space: Structures 908

0x0004L $0004 DM_CREATE_DATE

0x0008L $0008 DM_CREATE_TIME

0x0010L $0010 DM_CREATOR_ID

0x0020L $0020 DM_ARCHIVE_DATE

0x0040L $0040 DM_ARCHIVE_TIME

0x0080L $0080 DM_ARCHIVER_ID

0x0100L $0100 DM_MODIFY_DATE

0x0200L $0200 DM_MODIFY_TIME

0x0400L $0400 DM_MODIFIER_ID

0x0800L $0800 DM_LAST_ACCESS_DATE

0x1000L $1000 DM_INHERITED_RIGHTS_MASK

0x2000L $2000 DM_MAXIMUM_SPACE

fixedBitMask

Specifies a bit mask representing fixed (sized) information.

reservedBitMask

Specifies a bit mask representing information stored as a
length-preceded array. The first byte indicates the length.

extendedBitMask

Specifies a bit mask representing information stored as a
length-preceded string with the first 2 bytes indicating the length.

fixedBitsDefined

Receives value indicating how many bits are defined within
fixedBitMask.

reservedBitDefined

Receives value indicating how many bits are defined within
reservedBitMask.

extendedBitsDefined

Receives value indicating how many bits are defined within
extendedBitMask.

fieldsLenTable

Contains the length of the information relative to any of the three bit
masks.Receives value indicating how many bits are defined within
reservedBitMask.

hugeStateInfo

hugeDataLength

File Service Group

Name Space: Structures 909

NW_NS_OPEN

is defined to be the same as the NW_NS_OPENCREATE structure

Service: Name Space

Defined In: nwnamspc.h

Remarks

The NW_NS_OPEN structure is defined to be the same as the
NW_NS_OPENCREATE structure.

File Service Group

Name Space: Structures 910

NW_NS_OPENCREATE

Defines the parameters for opening/creating a datastream in a specified
name space

Service: Name Space

Defined In: nwnamspc.h

Structure

typdef struct
{
 nuint8 openCreateMode;
 nuint16 searchAttributes;
 nuint32 reserved;
 nuint32 createAttributes;
 nuint16 accessRights;
 nuint32 NetWareHandle;
 nuint8 openCreateAction;
} NW_NS_OPENCREATE

Pascal Structure

Defined in nwnamspc.inc

 NW_NS_OPENCREATE = Record
 openCreateMode : nuint8;
 searchAttributes : nuint16;
 reserved : nuint32;
 createAttributes : nuint32;
 accessRights : nuint16;
 NetWareHandle : nuint32;
 openCreateAction : nuint8
 End;

Fields

openCreateMode

Specifies whether to create, replace, or open an entry (directories can
only be created). Open/Create modes use the OC_MODE_ constants
listed below:

C Value Pascal Value Value Name

0x01 $01 OC_MODE_OPEN

0x02 $02 OC_MODE_TRUNCATE

0x02 $02 OC_MODE_REPLACE

File Service Group

Name Space: Structures 911

0x08 $08 OC_MODE_CREATE

searchAttributes

Specifies the attributes to use in the search. Uses the SA_ constants
listed below:

C Value Pascal Value Value Name

0x0000 $0000 SA_NORMAL

0x0002 $0002 SA_HIDDEN

0x0004 $0004 SA_SYSTEM

0x0010 $0010 SA_SUBDIR_ONLY

0x8000 $8000 SA_SUBDIR_FILES

0x8006 $8006 SA_ALL

reserved

createAttributes

Specifies the attributes to set in the DOS name space (see Attribute
Values).

accessRights

Specifies the desired access rights.

NWHandle

Specifies a four-byte NetWare handle.

openCreateAction

Specifies the result of a successful open/create. Uses the
OC_ACTION_ constants listed below:

C Value Pascal Value Value Name

0x01 $01 OC_ACTION_NONE

0x01 $01 OC_ACTION_OPEN

0x02 $02 OC_ACTION_CREATE

0x04 $04 OC_ACTION_TRUNCATE

0x04 $04 OC_ACTION_REPLACE

Remarks

To create a file, the accessRights field is used as an access rights mask and
must be set to AR_READ and/or AR_WRITE. If neither are used, the
NW_NS_OPENCREATE structure sets both. Use the AR constants listed

File Service Group

Name Space: Structures 912

below:

C Value Pascal Value Value Name

0x0001 $0001 AR_READ

0x0002 $0002 AR_WRITE

0x0001 $0001 AR_READ_ONLY

0x0002 $0002 AR_WRITE_ONLY

0x0004 $0004 AR_DENY_READ

0x0008 $0008 AR_DENY_WRITE

0x0010 $0010 AR_COMPATABILITY

0x0040 $0040 AR_WRITE_THROUGH

0x0100 $0100 AR_OPEN_COMPRESSED

To create a directory, the accessRights field is used as an inherited rights
mask and has the following bits:

Bit
Num
ber

Bit Definition

0 Read Existing File Bit

1 Write Existing File Bit

2 Old Open Existing File Bit

3 Create New Entry Bit

4 Delete Existing Bit

5 Change Access Control Bit

6 See Files Bit

7 Modify Entry Bit

8 Supervisor Privileges Bit

9-15 not set

File Service Group

Name Space: Structures 913

NW_NS_PATH

Defines parameters for returning an entry's path with in a specified name
space

Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct
{
 pnstr8 srcPath;
 pnstr8 dstPath;
 nuint16 dstPathSize;
} NW_NS_PATH;

Pascal Structure

Defined in nwnamspc.inc

 NW_NS_PATH = Record
 srcPath : pnstr8;
 dstPath : pnstr8;
 dstPathSize : nuint16
 End;

Fields

srcPath

Points to a valid path.

dstPath

Points to a buffer to receive the full name space path.

dstPathSize

Specifies the length of new path buffer. The new path buffer should be
long enough to hold the longest path possible for destNameSpace plus 2
extra bytes for working space.

File Service Group

Name Space: Structures 914

SEARCH_SEQUENCE

Defines information for managing a search operation across multiple
requests

Service: Name Space

Defined In: nwnamspc.h

Structure

typedef struct
{
 nuint8 volNumber;
 nuint32 dirNumber;
 nuint32 searchDirNumber;
} SEARCH_SEQUENCE;

Pascal Structure

Defined in nwnamspc.inc

 SEARCH_SEQUENCE = Record
 volNumber : nuint8;
 dirNumber : nuint32;
 searchDirNumber : nuint32
 End;

Fields

volNumber

Specifies the volme number.

dirNumber

Specifies the directory entry number for the directory.

searchDirNumber

Specifies the directory number to search. Set to a 0xFFFFFFFF on the
first call. After that, searchDirNumber is managed internally.

File Service Group

Name Space: Structures 915

NetWare STREAMS

File Service Group

 916

NetWare STREAMS: Guides

NetWare STREAMS: Concept Guide

NetWare STREAMS Introduction

NetWare STREAMS Functions

Additional Link

NetWare STREAMS: Functions

Parent Topic:

File Overview

File Service Group

NetWare STREAMS: Guides 917

NetWare STREAMS: Concepts

NetWare STREAMS Functions

Function Purpose

getmsg Retrieves the contents of a message.

ioctl Performs a variety of control functions on
a STREAM. See Ioctl Read\Write Client:
Example.

poll Monitors input and output on a set of file
handles that reference open STREAMs.

putmsg Creates a message.

Parent Topic:

NetWare STREAMS: Guides

NetWare STREAMS Introduction

NetWare® STREAMS is derived from UNIX System V™ Release 3.2.

A message format has been defined to simplify the design of service
interfaces using NetWare STREAMS. The NetWare STREAMS functions
enable user processes to create STREAMS messages and send them to
neighboring kernel modules and drivers or receive the contents of such
messages from kernel modules and drivers. These functions preserve
message boundaries and provide separate buffers for the control and data
parts of a message.

Parent Topic:

NetWare STREAMS: Guides

File Service Group

NetWare STREAMS: Concepts 918

NetWare STREAMS: Functions

File Service Group

NetWare STREAMS: Functions 919

getmsg

Retrieves the contents of a message

Local Servers: blocking

Remote Servers: N/A

Classification: UNIX*

SMP Aware: No

Service: NetWare STREAMS

Syntax

#include <stropts.h>

int getmsg (
 int handle,
 struct strbuf *ctlptr,
 struct strbuf *dataptr,
 int *flags);

Parameters

handle

(IN) Specifies a file handle.

ctlptr

(OUT) Points to the structure containing the control part of the
message.

dataptr

(OUT) Points to the structure containing the data part of the message.

flags

(IN) Specifies the priority of the message.

Return Values

Upon successful completion, a nonnegative value is returned. A value of
0 indicates that a full message was read successfully. A return value of
MORECTL indicates that more control information is waiting for
retrieval. A return value of MOREDATA indicates that more data is
waiting for retrieval. A return value of MORECTLMOREDATA indicates
that both types of information are waiting for retrieval. Subsequent
getmsg calls retrieve the remainder of the message.

Remarks

The getmsg function retrieves the contents of a message located at the

File Service Group

NetWare STREAMS: Functions 920

stream-head read queue from a Stream file and places the contents into
user-specified buffer(s). The message must contain either a data part, a
control part, or both. The data and control parts of the message are placed
into separate buffers. The semantics of each part is defined by the Stream
module that generated the message.

The handle argument specifies a file handle referencing an open Stream.
The ctlptr and dataptr arguments each point to a strbuf structure which
contains the following members:

 int maxlen; /* maximum buffer length */
 int len; /* length of data */
 char *buf; /* ptr to buffer */

where buf points to a buffer in which the data and control information is
to be placed, and maxlen indicates the maximum number of bytes this
buffer can hold. On return, len contains the number of bytes of data or
control information actually received, or is 0 if there is a zero-length
control or data part, or is -1 if no data or control information is present in
the message.

By default, getmsg processes the first priority or nonpriority message
available on the stream-head read queue. However, a user can choose to
retrieve only priority messages by setting flags to RS_HIPRI. In this case,
getmsg only processes the next message if it is a priority message.

If O_NDELAY has not been set, getmsg blocks until a message of the type
(or types) specified by flags is available on the stream-head read queue. If
O_NDELAY has been set and a message of the specified type is not
present on the read queue, getmsg fails and sets errno to EAGAIN.

If a hangup occurs on the Stream from which messages are to be
retrieved, getmsg continues to operate normally, as described above,
until the stream-head read queue is empty. Thereafter, it returns a value
of 0 in the len field of the ctlptr and dataptr arguments.

The getmsg function fails if one or more of the following is true:

AGAIN The O_NDELAY flag is set and no messages are available.

EBADF The handle argument is not a valid file handle open for
reading.

EBADM
SG

Queued message to be read is not valid for getmsg.

EFAULT The ctlptr, dataptr, or flags argument points to a location
outside the allocated address space.

EINTR A signal was caught during the getmsg call.

EINVAL An illegal value was specified in flags, or the Stream
referenced by handle is linked under a multiplexer.

ENOSTR A Stream is not associated with handle.

File Service Group

NetWare STREAMS: Functions 921

The getmsg function can also fail if a Stream error message had been
received at the stream-head before the call to getmsg. The error returned
is the value contained in the Stream error message.

See Also

putmsg, read, write

File Service Group

NetWare STREAMS: Functions 922

putmsg

Creates a message

Local Servers: blocking

Remote Servers: N/A

Classification: UNIX

SMP Aware: No

Service: NetWare STREAMS

Syntax

#include <stropts.h>

int putmsg (
 int handle,
 struct strbuf *ctlptr,
 struct strbuf *dataptr,
 int flags);

Parameters

handle

(IN) Specifies a file handle.

ctlptr

(OUT) Points to the structure containing the control part of the
message.

dataptr

(OUT) Points to the structure containing the data part of the message.

flags

(IN) Specifies the priority of the message.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value
of -1 is returned, and errno is set to indicate the error.

Remarks

The putmsg function creates a message from user-specified buffers and
sends the message to a Stream file. The message can contain a data part, a
control part, or both. The data and control parts to be sent are
distinguished by placement in separate buffers. The semantics of each
part is defined by the Stream module that receives the message.

File Service Group

NetWare STREAMS: Functions 923

The handle argument specifies a file handle referencing an open Stream.
The ctlptr and dataptr arguments each point to a strbuf structure which
contains the following members:

 int maxlen; /* maximum buffer length */
 int len; /* length of data */
 char *buf; /* ptr to buffer */

The buf field is a pointer to a buffer describing the control part (if any) to
be included in the message. The buf field points to the buffer where the
control information resides, and the len field indicates the number of
bytes to be sent. The maxlen field is not used in putmsg. Similarly, dataptr
specifies the data (if any) to be included in the message.

To send the data part of the message, dataptr must be nonNULL and the
len field of dataptr must have a value of 0 or greater. To send the control
part of a message, the corresponding values must be set for ctlptr. No
data (control) part is sent if either dataptr (ctlptr) is NULL or the len field
of dataptr (ctlptr) is set to -1.

If a control part is specified, and flags is set to RS_HIPRI, a priority
message is sent. If flags is set to 0, a nonpriority message is sent. If no
control part is specified, and flags is set to RS_HIPRI, putmsg fails and sets
errno to EINVAL. If no control part and no data part are specified, and
flags is set to 0, no message is sent, and 0 is returned.

For nonpriority messages, putmsg blocks if the Stream write queue is full
due to internal flow control conditions. For priority messages, putmsg
does not block on this condition. For nonpriority messages, putmsg does
not block when the write queue is full and O_NDELAY is set. Instead, it
fails and sets errno to EAGAIN.

The putmsg function also blocks, unless prevented by lack of internal
resources, waiting for the availability of message blocks in the Stream,
regardless of priority or whether O_NDELAY has been specified. No
partial message is sent.

The putmsg function fails if one or more of the following is true:

EAGAI
N

A nonpriority message was specified, the O_NDELAY flag
is set, and the stream write queue is full due to internal
flow control conditions.

EAGAI
N

Buffers could not be allocated for the message that was to be
created.

EBADF The handle argument is not a valid file handle open for
writing.

EFAULT The ctlptr, dataptr, or flags parameter points to a location
outside the allocated address space.

EINTR A signal was caught during the putmsg call.

EINVAL An undefined value was specified in flags, or flags is set to

File Service Group

NetWare STREAMS: Functions 924

RS_HIPRI and no control part was supplied.

EINVAL The Stream referenced by handle is linked below a
multiplexer.

ENOSTR A Stream is not associated with handle.

ENXIO A hangup condition was generated downstream for the
specified Stream.

ERANG
E

The size of the data part of the message does not fall within
the range specified by the maximum and minimum packet
sizes of the topmost Stream module. This value is also
returned if the control part of the message is larger than the
maximum configured size of the control part of a message,
or if the data part of the message is larger than the
maximum configured size of the data part of a message.

The putmsg function can also fail if a Stream error message had been
received at the stream-head before the call to putmsg. The error returned
is the value contained in the Stream error message.

See Also

getmsg

File Service Group

NetWare STREAMS: Functions 925

Operating System I/O

File Service Group

 926

Operating System I/O: Guides

Operating System I/O: Concept Guide

Operating System I/O Introduction

Operating System I/O File Paths

Operating System I/O Functions

Additional Link

Operating System I/O: Functions

Parent Topic:

File Overview

File Service Group

Operating System I/O: Guides 927

Operating System I/O: Concepts

File Permission Conversion

When a file is created during the operation of creat, open, or sopen, the
permission parameter can be specified as S_IWRITE (writeable), S_IREAD
(readable) or S_IWRITE | S_IREAD (writeable and readable). 0 also allows
both writing and reading.

Files created with the S_IWRITE option can be written to, modified, and
deleted by any object having such rights to the file. Files created with
S_IREAD are created as read-only. S_IREAD is converted to directory
attributes that prohibit writing, renaming, deletion, copying, or the ability to
migrate or compress, as listed in File System Directory Entry Attributes.

Operating System I/O File Paths

When specifying a file to an Operating System I/O function, the file paths
include the following conditions:

The file paths do not have drive letters.

File path drive letters are not used inNLM™ applications.

File paths can contain volume names.

Any volumes mounted on the server may be referenced by the NLM.
Volume names are from 2 to 15 characters long.

 The syntax for a file path that includes a volume name is as follows:

volume: directory\...\directory\filename

Each thread group in an NLM has its own current working directory
(CWD). If a relative path is specified, it is assumed to be relative to the
thread group's CWD. When a thread group is started, the initial value of the
CWD is "SYS:" (root directory on the SYS volume). The only exception to this
is when the (CLIB_OPT) parameters are specified when the NLM is loaded
(see Using the LOAD Command in NLM Development: Concepts). These
parameters change the CWD for the initial thread group.

NOTE: The maximum number of file handles that can be open at once
for NetWare® 4.x is 1700.

NLM applications can open a given file more than once. The file handle and

File Service Group

Operating System I/O: Concepts 928

NLM applications can open a given file more than once. The file handle and
task information for subsequent opens depend on the circumstances of the
open, as follows:

If a file is opened more than once by a particular thread, using the same
connection and task, then the same file handle is returned. A count of the
number of times a file is opened with a particular handle is associated
with each handle. A handle remains usable as long as its open count is
greater than zero.

If a file is opened more than once by different threads or by the same
thread but with a different connection or task (than a previous connection
or task with which the file was opened), then a different handle is
returned. Closing one handle for a given file has no effect on any other
handles to that file.

If a file is opened more than once with the same connection and task but
with different threads, then the second (and subsequent) open is done
with a newly allocated task number. The task number is automatically
allocated on the current connection by open (or sopen or creat). The
current task number is not affected.

I/O redirection on first-level files and file handles is supported only for
NetWare 4.x (see dup and dup2). Redirection of second-level files is
supported for all NetWare versions. Second-level files include those opened
with fopen, fdopen, or freopen (see Stream I/O: Guides).

Text mode for first-level file handles is not supported. Only binary mode is
supported. (In binary mode, data is transmitted unchanged. In text mode,
carriage-return/line-feed pairs are translated to line feeds on input, and line
feeds are translated to carriage-return/line-feed pairs on output.)

The following handles are predefined and always available:

STDIN (0)---Input from the current screen

STDOUT (1)---Output to the current screen

STDERR (2)---Output to the current screen

Parent Topic:

Operating System I/O: Guides

Operating System I/O Functions

Function Purpose

chsize Changes the file size.

close Closes a file, stream, or BSD socket.

creat Creates and opens a file or stream.

File Service Group

Operating System I/O: Concepts 929

dup Returns a file handle that refers to the same open file as
handle. Supported only for the NetWare® 4.x OS.

dup2 Forces file handle handle2 to reference the same open
file as handle Supported only for NetWare 4.x.

eof Determines if the end of the file has been reached for a
specified file.

fcntl Provides control over open files.

filelength Returns the number of bytes in an open file.

fstat Obtains information about an open file.

isatty Tests whether the specified handle refers to a screen or
not.

lock Locks a portion of a file.

lseek Sets the current file position.

open Opens a file, stream, or socket.

read Reads data from a file, stream, or socket.

sopen Opens a file, stream, or socket for shared access.

tell Determines the current file position.

unlock Unlocks a previously locked portion of a file.

write Writes data to a file, stream, or socket.

Parent Topic:

Operating System I/O: Guides

Operating System I/O Introduction

Operating system I/O functions perform nonbuffered I/O operations. The
functions in this section reference files using a file handle that is returned
when a file is opened. The file handle is passed to the other functions. Files
opened at the OS level (with the open, sopen, and creat functions), or
opened at the stream level (see Stream I/O: Guides) and referenced with
the fileno function are called first-level open files.

NOTE: As used in this chapter, streams are standard files and are not
to be confused with NetWare® STREAMS.

For more information about NetWare STREAMS functions, see
NetWare STREAMS: Guides.

NOTE: Operating System I/O provides functions for NLM
development.

Parent Topic:

File Service Group

Operating System I/O: Concepts 930

Operating System I/O: Guides

File Service Group

Operating System I/O: Concepts 931

Operating System I/O: Functions

File Service Group

Operating System I/O: Functions 932

chsize

Changes the file size

Local Servers: blocking

Remote Servers: blocking

Classification: Other

SMP Aware: No

Service: Operating System I/O

Syntax

#include <unistd.h>

int chsize (
 int handle,
 LONG size);

Parameters

handle

(IN) Specifies a file handle.

size

(IN) Specifies the file size.

Return Values

chsize returns a value of 0 if successful. It returns a value of -1 if an error
occurs.

If an error occurs, errno is set to:

4 EBADF Bad file number.

6 EACCE
S

Permission denied.

12 ENOSP
C

No space left on device.

If chsize does not complete successfully, NetWareErrno is set.

Remarks

The chsize function changes the size of the file associated with the file
handle. It can truncate or extend the file, depending on the value of size

File Service Group

Operating System I/O: Functions 933

compared to the file's original size.

The mode in which the file was opened must allow writing.

If chsize extends the file, it appends NULL characters (\0). If it truncates
the file, all data beyond the new end-of-file indicator is lost.

See Also

eof, filelength

File Service Group

Operating System I/O: Functions 934

close

Closes a file or stream

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

SMP Aware: No

Service: Operating System I/O

Syntax

#include <unistd.h>

int close (
 int handle);

Parameters

handle

(IN) Specifies a file handle.

Return Values

When an error occurs while closing the file, a value of -1 is returned.
Otherwise, a value of 0 is returned.

If an error occurs, errno is set to:

4 EBAD
F

Bad file number.

If the function does not complete successfully, NetWareErrno is set.

Remarks

This function also works on the DOS partition.

The handle value is the file handle returned by a successful execution of
the open, sopen, or creat function. After a file is closed, the file handle is
no longer valid and should not be reused.

UNIX STREAMS: If a Stream file is closed and the calling process had
previously registered to receive a SIGPOLL signal for events associated with
that file, the calling process is unregistered for events associated with the
file.

File Service Group

Operating System I/O: Functions 935

The last close for a Stream causes the Stream associated with handle to be
dismantled.

If O_NDELAY is not set and no signals have been posted for the
Stream, the close function waits up to 15 seconds for each module and
driver and for any output to drain before dismantling the Stream.

If the O_NDELAY flag is set or if there are any pending signals, the
close function does not wait for output to drain and dismantles the
Stream immediately.

See Also

creat, dup, dup2, open, sopen

File Service Group

Operating System I/O: Functions 936

creat

Creates and opens a file or stream

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

SMP Aware: No

Service: Operating System I/O

Syntax

#include <fcntl.h>

int creat (
 const char *filename,
 int permission);

Parameters

filename

(IN) Specifies the name of the file to be created.

permission

(IN) Specifies the access permissions for the file.

Return Values

When an error occurs while creating the file, a value of -1 is returned.
Otherwise, an integer (not equal to -1), known as the file handle, is
returned to be used with the other functions that operate on the file.

When an error occurs, errno can be set to:

1 ENONE
NT

No such file.

6 EACCES Permission denied.

9 EINVAL Invalid argument.

When an error occurs, NetWareErrno is set to:

15
2

(0x98) ERR_INVALID_VOLUM
E

15 (0x9C ERR_INVALID_PATH

File Service Group

Operating System I/O: Functions 937

6)

19
1

(0xBF
)

ERR_INVALID_NAME_
SPACE

On remote servers when
using a non-DOS name
space.

Remarks

This function also works on the DOS partition.

This function allows for as many open files as there is available memory.
The filename parameter supplies the name of the file to be created. If the
file exists (the current connection must have Write rights), it is truncated
to contain no data and the preceding permission setting is unchanged.

If the file does not exist, it is created with access permission given by the
permission parameter.

The access permission for the file is specified as a combination of bits
(defined in the SYS\STAT.H header file):

S_IWRIT
E

The file is writeable.

S_IREA
D

The file is readable.

The permission parameter can be specified as S_IWRITE, S_IREAD or
S_IWRITE|S_IREAD. Specifiying 0 also makes a file both writeable and
readable. File Permission Conversion provides further information about
these options.

The current connection must have Create rights to create a new file or
have Read/Write rights to write to a file that already exists.

On remote servers running NetWare 2.x, this function does not take
partial paths.

See Also

dup, dup2, open, sopen

Example

creat

#include <stddef.h>
#include <fcntl.h>

File Service Group

Operating System I/O: Functions 938

#include <errno.h>
#include <string.h>

main()
{
 int fh;
 if((fh = creat("name",0)) == -1)
 printf ("creat() error\n");
 else
 close (fh);

File Service Group

Operating System I/O: Functions 939

dup

Returns a file handle that refers to the same open file as handle (supported
only for NetWare 4.0 and above)

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: POSIX

SMP Aware: No

Service: Operating System I/O

Syntax

#include <unistd.h>

int dup (
 int handle);

Parameters

handle

(IN) The file handle that is to be duplicated.

Return Values

When an error occurs, a value of -1 is returned. Otherwise, the return
value is a nonnegative integer that is the file handle.

If an error occurs, errno can be set to:

4 EBADF Bad file number

1
1

EMFIL
E

Too many open files

Remarks

The dup function duplicates a file handle by returning a file handle that
refers to the same open file as handle. Since both handles reference the
same file, either handle can be used for operations on the file.

NOTE: For an example of how to reverse the effect of redirecting stdin,
see the example for fdopen.

See Also

File Service Group

Operating System I/O: Functions 940

close, creat, dup2, eof, fdopen, filelength, fileno, fstat, ftell, isatty, lseek,
open, read, sopen, write

File Service Group

Operating System I/O: Functions 941

dup2

Forces the file handle to reference the same open file as the handle
parameter (supported only for NetWare 4.0 and above)

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: POSIX

SMP Aware: No

Service: Operating System I/O

Syntax

#include <unistd.h>

int dup2 (
 int handle,
 int handle2);

Parameters

handle

(IN) Specifies the file handle to be duplicated.

handle2

(IN) Specifies the file handle to be forced to reference the same file as
the handle parameter.

Return Values

When an error occurs, a value of -1 is returned. Otherwise, the return
value is a nonnegative integer that is the file handle.

If an error occurs, errno can be set to:

4 EBADF Bad file number

1
1

EMFIL
E

Too many open files

Remarks

The handle parameter must be a handle to a file that is already open. If
handle2 references a file that is already open, that file is closed before
handle2 is forced to reference the file for handle.

File Service Group

Operating System I/O: Functions 942

See Also

close, creat, dup, eof, filelength, fileno, fstat, ftell, isatty, lseek, open, read,
sopen, write

File Service Group

Operating System I/O: Functions 943

eof

Determines if the end of the file has been reached for a specified file

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: POSIX

SMP Aware: No

Service: Operating System I/O

Syntax

#include <unistd.h>

int eof (
 int handle);

Parameters

handle

(IN) Specifies a file handle.

Return Values

eof returns a value of 1 if the current file position is at the end of the file.
If the current file position is not at the end, a value of 0 is returned. If an
error is detected, a value of -1 is returned.

If an error occurs, errno is set to:

4 EBAD
F

Bad file number.

If eof does not complete successfully, NetWareErrno is set.

Remarks

The eof function determines if the end of the file has been reached for the
file whose file handle is given by handle. Because the current file position
is set following an input operation, eof can be called to detect the end of
the file before an input operation beyond the end of the file is attempted.

See Also

dup, dup2, read

File Service Group

Operating System I/O: Functions 944

fcntl

Controls file handles

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: POSIX

SMP Aware: No

Service: Operating System I/O

Syntax

#include <fcntl.h>

int fcntl (
 int handle,
 int cmd,
 int arg);

Parameters

handle

(IN) Specifies a file handle to be operated on by cmd.

cmd

(IN) Specifies one of two commands to act on the specified file handle.

arg

(IN/OUT) Receives the handle status flags.

Return Values

Upon successful completion of the F_GETFL command, fcntl returns the
current value of the requested flag. Otherwise, a value of -1 is returned
and errno indicates the error.

4 EBADF The specified file handle is not a valid one.

9 EINVAL Either cmd or val is not supported.

35 EWOULDBL
OCK

Either no data is available to a read call or a
write operaton is in a blocking mode.

Remarks

The fcntl function provides for file control over file handles. The handle
parameter is a file handle to be operated on by cmd. The cmd parameter

File Service Group

Operating System I/O: Functions 945

includes either the F_GETFL or the F_SETFL commands described below:

F_GETF
L

Get handle status flags.

F_SETFL Set handle status flags.

Flags are passed in the arg parameter. The FNDELAY flag is defined for
the F_GETFL and F_SETFL commands. It establishes a nonblocking I/O
mode; if no data is available to a read call or if a write operation is in a
blocking mode, the call returns a value of -1 with the error
EWOULDBLOCK.

See Also

ioctl

File Service Group

Operating System I/O: Functions 946

filelength

Returns the number of bytes in an open file

Local Servers: blocking

Remote Servers: blocking

Classification: Other

SMP Aware: No

Service: Operating System I/O

Syntax

#include <fcntl.h>

LONG filelength (
 int handle);

Parameters

handle

(IN) Specifies a file handle.

Return Values

filelength returns a value of -1 if an error occurs.

If an error occurs, errno can be set to:

4 EBAD
F

Bad file number.

If filelength does not complete successfully, NetWareErrno is set.

Remarks

The filelength function returns the number of bytes in the opened file
indicated by the file handle.

See Also

dup, dup2, eof, lseek, tell

Example

File Service Group

Operating System I/O: Functions 947

filelength

#include <fcntl.h>

LONG length;
int handle;
length = filelength (handle);

File Service Group

Operating System I/O: Functions 948

fstat

Obtains information about an open file

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

SMP Aware: No

Service: Operating System I/O

Syntax

#include <sys\stat.h>

int fstat (
 int handle,
 struct stat *statblk);

Parameters

handle

(IN) Specifies a file handle.

statblk

(OUT) Receives a pointer to the address of the structure stat.

Return Values

fstat returns a value of 0 when the information is obtained successfully.
Otherwise, a value of -1 is returned.

If an error occurs, errno is set to:

4 EBAD
F

Bad file number.

If fstat does not complete successfully, NetWareErrno is set.

Remarks

The fstat function obtains information about an open file whose file
handle is handle. This information is placed in the structure located at the
address indicated by the statblk parameter.

The SYS\STAT.H header file contains definitions for stat (Structure) and
describes the contents of the fields within that structure.

File Service Group

Operating System I/O: Functions 949

See Also

dup, dup2, open, stat (Function)

Example

fstat

#include <stdio.h>
#include <nwtypes.h>
#include <fcntl.h>
#include <sys\types.h>
#include <sys\stat.h>

main()
{
 int handle;
 struct stat buf;
 handle = open ("test.dat",O_RDONLY | O_BINARY,0);
 if(handle == -1)
 {
 printf ("could not open file");
 exit (0);
 }
 if(fstat (handle,&buf) == -1)
 printf ("fstat error\r\n");
 close(handle);
 printf ("st_dev = %x\r\n",buf.st_dev);
 printf ("st_ino = %x\r\n",buf.st_ino);
 printf ("st_mode = %x\r\n",buf.st_mode);
 printf ("st_nlink = %x\r\n",buf.st_nlink);
 printf ("st_uid = %x\r\n",buf.st_uid);
 printf ("st_gid = %x\r\n",buf.st_gid);
 printf ("st_rdev = %x\r\n",buf.st_rdev);
 printf ("st_size = %x\r\n",buf.st_size);
 printf ("st_atime = %x\r\n",buf.st_atime);
 printf ("st_mtime = %x\r\n",buf.st_mtime);
 printf ("st_ctime = %x\r\n",buf.st_ctime);
 printf ("st_btime = %x\r\n",buf.st_btime);
 printf ("st_attr = %x\r\n",buf.st_attr);
 printf ("st_archivedID = %x\r\n",buf.st_archivedID);
 printf ("st_updatedID = %x\r\n",buf.st_updatedID);
 printf ("st_inheritedRightsMask = %x\r\n",buf.st_inheritedRightsMask);
 printf ("st_originatingNameSpace = %c\r\n",buf.st_originatingNameSpace);
 printf ("st_name = %s\r\n",buf.st_name);
/*----------------- new fields starting in v. 4.11 ----------------*/
 printf ("st_name2 = %s\r\n",buf.st_name2);
 printf ("st_blksize = %x\r\n",buf.st_blksize);
 printf ("st_blocks = %x\r\n",buf.st_blocks);
 printf ("st_flags = %x\r\n",buf.st_flags);

File Service Group

Operating System I/O: Functions 950

 printf ("st_flags = %x\r\n",buf.st_flags);
}

File Service Group

Operating System I/O: Functions 951

ioctl

Performs a variety of control functions on a STREAMS, BSD Socket, and
pipe file descriptors

Local Servers: blocking

Remote Servers: N/A

Classification: UNIX nonstandard

NetWare Server: 3.12, 4.x, 5.0

SMP Aware: No

Service: Operating System I/O

Syntax

#include <sys/ioctl.h>
#include <stropts.h>

int ioctl (
 int filedes,
 int command,
 void *arg);

Parameters

filedes

(IN) Specifies a descriptor returned from the open, pipe, sopen, socket,
etc. functions.

command

(IN) Specifies the control function to be performed.

arg

(IN/OUT) Specifies an additional argument to be used or points to an
argument returned by ioctl (depending on the control function
performed).

Return Values

Upon successful completion, the value returned depends upon the
control function (command argument) but must be a nonnegative
integer. Otherwise, errno indicates the occurring error.

Remarks

For Stream files, ioctl performs the following control operations:

FIOGETNBI Description pending.

File Service Group

Operating System I/O: Functions 952

O

FIONBIO Description pending.

FIOREAD Description pending.

I_FDINSERT Creates a message from user-specified buffers, adds
information about another Stream and sends the
message downstream. The message contains a control
part and an optional data part. On failure, errno is set.

I_FIND Compares the names of all modules currently present
in the Stream to the name pointed to by the arg
parameter, and returns a value of 1 if the named
module is present in the Stream. It returns a value of 0
if the named module is not present. On failure, errno is
set.

I_FLUSH Flushes all input and/or output queues, depending on
the value of the arg parameter :

FLSHR Flush read queues.

FLUSH
W

Flush write queues.

FLUSH
RW

Flush read and write queues.

I_GETSIG Returns the events for which the calling process is
currently registered to be sent a SIGPOLL signal. The
events are returned as a bitmask pointed to by the arg
parameter, where the events are those specified in the
description of I_SETSIG. On failure, errno is set.

I_GRDOPT Returns the current read mode setting in an int pointed
to by the arg parameter. On failure, errno is set.

I_LINK Connects two Streams, where the filedes parameter
contains the file descriptor of the Stream connected to
the multiplexing driver, and the arg parameter is the
file descriptor of the Stream connected to another
driver. The Stream designated by the arg parameter is
connected below the multiplexing driver. I_LINK
requires the multiplexing driver to send an
acknowledgment message to the stream-head
regarding the linking operation. It returns a
multiplexer ID number (an identifier used to
disconnect the multiplexer) on success, and a value of
-1 on failure. On failure, errno is set.

I_LOOK Retrieves the name of the module just below the
stream-head of the Stream pointed to by the filedes
parameter, and places it in a NULL-terminated
character string pointed to by the arg parameter. On
failure, errno is set.

I_NREAD Counts the number of data bytes in data blocks in the
first message on the stream-head read queue, and

File Service Group

Operating System I/O: Functions 953

places this value in the location pointed to by the arg
parameter. The return value for the command is the
number of messages on the stream-head read queue.
On failure, errno is set.

For a pipe file, counts the number of data bytes left to
read on the descriptor before the read function blocks.

I_NWRITE Counts the number of data bytes that may be written
on a pipe descriptor before the write function blocks.
Similar to I_NREAD. For example, err=ioctl(pipeFD,
I_NWRITE, &pending);.

I_PEEK Allows a user to retrieve the information in the first
message on the stream-head read queue without
taking the message off the queue. The arg parameter
points to a strpeek structure. I_PEEK returns a value of
1 if a message was retrieved, and returns a value of 0 if
no message was found on the stream-head read queue.

I_POP Removes the module just below the stream-head of the
Stream pointed to by the filedes parameter. The arg
parameter should be 0 in an I_POP request. On failure,
errno is set.

I_PUSH Pushes the module whose name is pointed to by the arg
parameter onto the top of the current Stream, just
below the stream-head. It then calls the open routine of
the newly pushed module. On failure, errno is set.

I_RECVFD Retrieves the file descriptor associated with the
message sent by an I_SENDFD ioctl over a stream
pipe. The arg parameter points to a data buffer large
enough to hold the strrecvfd structure. If the message at
the stream-head is a message sent by an I_SEND
descriptor, a new user file descriptor is allocated for the
file pointer contained in the message. The new file
descriptor is placed in the fd field of the strrecvfd
structure. The structure is copied into the user data
buffer pointed to by the arg parameter. On failure, errno
is set.

I_SENDFD Requests the Stream associated with the file descriptor
to send a message, containing a file pointer, to the
stream-head at the other end of a stream pipe. The arg
parameter must point to a file descriptor. I_SENDFD
converts the arg parameter into the corresponding
system file pointer. It allocates a message block and
inserts the file pointer in the block. The user ID and
group ID associated with the sending process are also
inserted. This message is placed directly on the read
queue for the stream-head at the other end of the
stream pipe to which it is connected. On failure, errno is
set.

I_SETBUF Exchanges the buffer currently underlying the pipe for
one of a different size. The pipe becomes empty and

File Service Group

Operating System I/O: Functions 954

cleared with respect to data read or written. For
example, err=ioctl(pipeFD, I_SETBUF, 8192);.

I_SETSIG Informs the stream-head that the user wants the kernel
to issue the SIGPOLL signal when a particular event
has occurred on the Stream associated with the filedes
parameter. I_SETSIG supports an asynchronous
processing capability in STREAMS. The value of the
arg parameter is a bitmask that specifies the events for
which the user should be signaled. It is the bitwise OR
of any combination of the following constants:

S_INPU
T

Nonpriority message has arrived.

S_HIPR
I

Priority message is present.

S_OUT
PUT

The write queue is no longer full. There is
room for sending (or writing) data
downstream.

S_MSG Stream signal message containing the
SIGPOLL signal has reached the front of the
stream-head read queue. On failure, errno is
set.

I_SRDOPT Sets the read mode using the arg parameter. Legal
values for the arg parameter are:

RNOR
M

Byte-stream mode (the default)

RMSG
D

Message-discard mode

RMSG
N

Message-nondiscard mode

I_STR Constructs an internal Stream ioctl message from the
data pointed to by the arg parameter and sends that
message downstream. I_STR blocks until the system
responds with either a positive or negative
acknowledgment message or until the request times
out after some period of time. If the request fails, errno
is set.

I_UNLINK Disconnects the two Streams specified by the filedes and
arg parameters. The filedes parameter is the file
descriptor of the Stream connected to the multiplexing
driver. The descriptor must correspond to the Stream
on which the ioctl I_LINK command was issued to link
the Stream below the multiplexing driver. The arg
parameter is the multiplexer ID number that was
returned by the I_LINK call. If the arg parameter is -1,
all Streams which were linked to the filedes parameter
are disconnected. As in I_LINK, it requires the
multiplexing driver to acknowledge the unlink. On
failure, errno is set.

File Service Group

Operating System I/O: Functions 955

IP_INBOUN
D_IF

Description pending.

IP_OUTBOU
ND_IF

Description pending.

SIOCATMA
RK

Description pending.

SIOCDGRA
MSIZE

Description pending.

See Ioctl Read\Write Client: Example.

See Also

pipe, poll, putmsg, open, read, socket, write

File Service Group

Operating System I/O: Functions 956

isatty

Tests whether the specified handle refers to a screen

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: POSIX

SMP Aware: No

Service: Operating System I/O

Syntax

#include <unistd.h>

int isatty (
 int handle);

Parameters

handle

(IN) Specifies a file handle.

Return Values

isattyn returns a value of 0 if the device or file is not a character device;
otherwise, a nonzero is returned.

If an error occurs, errno can be set to:

4 EBAD
F

Bad file number.

Remarks

The isatty function tests if the opened file or device referenced by the file
handle is a character device (namely, the console).

See Also

dup, dup2, open

File Service Group

Operating System I/O: Functions 957

lock

Locks a portion of a file

Local Servers: blocking

Remote Servers: blocking

Classification: Other

SMP Aware: No

Service: Operating System I/O

Syntax

#include <nwfile.h>

int lock (
 int handle,
 LONG offset,
 LONG length);

Parameters

handle

(IN) Specifies a file handle.

offset

(IN) Specifies the starting byte that is to be locked.

length

(IN) Specifies the amount of data (in bytes) to be locked.

Return Values

Returns a value of 0 if successful, and a value of -1 when an error occurs.

If an error occurs, errno is set to:

4 EBAD
F

Bad file number.

Remarks

lock locks the amount of data specified by the length parameter in the file
specified by the handle parameter, starting at the byte specified by the
offset parameter in the file.

lock prevents other open handles from reading or writing into the locked

File Service Group

Operating System I/O: Functions 958

region until an unlock has been done for this locked region of the file. All
locked regions of a file must be unlocked before a file is closed.

See Also

open, sopen, unlock

File Service Group

Operating System I/O: Functions 959

lseek

Sets the current file position

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: POSIX

SMP Aware: No

Service: Operating System I/O

Syntax

#include <unistd.h>

LONG lseek (
 int handle,
 LONG offset,
 int origin);

Parameters

handle

(IN) Specifies a file handle.

offset

(IN) Specifies the relative offset from a file position.

origin

(IN) Specifies the seek starting point.

Return Values

lseek returns a value of -1 when an error occurs. Otherwise, the new
current file position is returned in a system-dependent manner. A value
of 0 indicates the start of a file.

If an error occurs, errno is set to:

4 EBAD
F

Bad file number.

If lseek does not complete successfully, NetWareErrno is set.

Remarks

The file is referenced using the specified file handle.

File Service Group

Operating System I/O: Functions 960

The value of the offset parameter is used as a relative offset from a file
position determined by the value of the origin parameter. An absolute
offset can be from 0 to 232. It must be unsigned long, which cannot be
negative.

The new file position is determined in a manner dependent upon the
value of the origin parameter, which can have one of three possible values
(defined in the STDIO.H header file):

SEEK_SE
T

The new file position is computed relative to the start of
the file.

SEEK_CU
R

The new file position is computed relative to the current
file position.

SEEK_EN
D

The new file position is computed relative to the end of the
file.

The files's position can be set to a position outside of the bounds of the
file.

See Also

close, creat, dup, dup2, eof, filelength, fileno, fstat, isatty, open, read,
sopen, tell, write

Example

lseek

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>

main()
{
 int fh;
 if((fh = open ("test.dat",O_RDWR | O_CREAT | O_TRUNC,0)) < 0)
 {
 printf ("could not open file\r\n");
 exit(0);
 }
 write (fh,"1234567890",10);
 if(lseek (fh,1,SEEK_SET) < 0)
 {
 printf ("error on seek 1\r\n");

File Service Group

Operating System I/O: Functions 961

 goto end;
 }
 write (fh,"a",1);
 if(lseek(fh,-2,SEEK_END) < 0)
 {
 printf ("error on seek 2\r\n");
 goto end;
 }
 write (fh,"b",1);
 if(lseek (fh,-5,SEEK_CUR) < 0)
 {
 printf ("error on seek 3\r\n");
 goto end;
 }
 write (fh,"c",1);
 end:
 close (fh);
 getch ();
}

File Service Group

Operating System I/O: Functions 962

open

Opens a file or stream

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

SMP Aware: No

Service: Operating System I/O

Syntax

#include <fcntl.h>

int open (
 const char *path,
 int oflag,
 ...);

Parameters

path

(IN) Specifies the name of the file to open.

oflag

(IN) Specifies the access mode.

Return Values

When an error occurs while opening the file, a value of -1 is returned.
Otherwise, an integer (not equal to -1), known as the file handle, is
returned to be used with the other functions that operate on the file.

If an error occurs, errno can be set to:

1 ENONE
NT

No such file.

6 EACCES Permission denied.

9 EINVAL Invalid argument.

When an error occurs, NetWareErrno is set to:

108 (0x6C
)

ERR_BAD_ACCESS

File Service Group

Operating System I/O: Functions 963

152 (0x98) ERR_INVALID_VOLUME

156 (0x9C
)

ERR_INVALID_PATH

Remarks

This function also works on the DOS partition.

This function allows for as many open files as there is available memory.
The path parameter supplies the name of the file to be opened. The file is
accessed according to the access mode specified by the oflag parameter.

The access mode is established as a combination of the bits defined in the
FCNTL.H header file. The following bits can be set:

O_RDONL
Y

Permits the file to be only read.

O_WRONL
Y

Permits the file to be only written.

O_RDWR Permits the file to be both read and written.

O_APPEN
D

Causes each record that is written to be written at the end
of the file.

O_CREAT Has no effect when the file indicated by the filename
parameter already exists; otherwise, the file is created.

O_TRUNC Causes the file to be truncated to contain no data when
the file exists; has no effect when the file does not exist.
O_TRUNC must be ORed with write access to truncate a
file:

O_TRUNC | O_RDWR

O_TRUNC | O_WRONLY

O_BINARY Causes the data to be transmitted unchanged. (Text
mode for first-level handles is not supported. In text
mode, carriage- return/line-feed pairs are translated to
line feeds on input, and line feeds are translated to
carriage-return/line-feed pairs on output.)

O_CREAT must be specified when the file does not exist and it is to be
written.

An optional third parameter, int permission, is used when the file is to be
created (O_CREAT is specified) to set file permissions. File permissions
are set according to the value contained in the permission parameter. The
access permissions for the file is specified as a combination of bits
(defined in the SYS\STAT.H header file).

File Service Group

Operating System I/O: Functions 964

S_IWRIT
E

The file is writeable.

S_IREA
D

The file is readable.

The permission parameter can be specified as S_IWRITE, S_IREAD or
S_IWRITE|S_IREAD. Specifiying 0 also makes a file both writeable and
readable. File Permission Conversion provides further information about
these options.

On remote servers running NetWare 2.x, this function does not take
partial paths.

UNIX Streams: When opening a Stream file, access must be constructed
from O_NDELAY and either O_RDONLY, O_WRONLY, or O_RDWR.
Other flag values are not applicable to Stream devices and have no effect on
them. The value of O_NDELAY affects the operation of Stream drivers and
certain function calls (read, getmsg, putmsg, and write). For drivers, the
implementation of O_NDELAY is device-specific. Each Stream device
driver can treat this option differently.

SetCurrentNameSpace sets the name space which is used for parsing the
path input to this function.

See Also

close, creat, dup, dup2, eof, filelength, fileno, fstat, isatty, lseek, read,
sopen, tell, write

Example

open

#include <stddef.h>
#include <fcntl.h>
#include <errno.h>

main()
{
 int fh,size;
 char buffer[] = {"a text record to be written\n" };
 fh = open ("test.dat",O_WRONLY | O_CREAT | O_TRUNC,0);
 printf ("handle: %d\n\r",fh);
 if(fh == EFAILURE)
 {
 printf ("could not open file\r\n");
 goto end;
 }

File Service Group

Operating System I/O: Functions 965

 printf ("%d\n\r",tell(fh));
 size = write (fh,buffer,sizeof(buffer));
 if(size < 29)
 {
 printf ("could not write to file\r\n");
 goto end;
 }
 printf ("%d\r\n",tell(fh));
 close (fh);
 end:
 printf ("%d\r\n",errno);
 getch ();
}

File Service Group

Operating System I/O: Functions 966

pipe

Local Servers: blocking

Remote Servers: N/A

Classification: UNIX nonstandard

NetWare Server: 3.12, 4.x, 5.0

SMP Aware: No

Service: Operating System I/O

Syntax

#include <sys/ioctl.h>
#include <stropts.h>

int pipe (
 ,
 ,
);

Parameters

Return Values

Upon successful completion, the value returned depends upon the
control function (command argument) but must be a nonnegative
integer. Otherwise, errno indicates the occurring error.

Remarks

See Also

ioctl, poll, putmsg, open, read, socket, write

File Service Group

Operating System I/O: Functions 967

read

Reads data from a file or stream

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

SMP Aware: No

Service: Operating System I/O

Syntax

#include <unistd.h>

LONG read (
 int handle,
 char *buffer,
 LONG len);

Parameters

handle

(IN) Specifies a file handle.

buffer

(OUT) Points to a buffer to receive the data.

len

(IN) Specifies the number of bytes to read.

Return Values

read returns the number of bytes of data transmitted from the file to the
buffer. Normally, this is the number given by the len parameter. When
the end-of- file is encountered before the read completes, the return value
is less than the number of bytes requested.

A value of -1 is returned when an input/output error is detected. If an
error occurs, errno can be set to:

4 EBAD
F

Bad file number.

If read does not complete successfully, NetWareErrno is set.

Remarks

File Service Group

Operating System I/O: Functions 968

This function also works on the DOS partition.

The read function returns the number of bytes of data transmitted from
the file to the buffer.

The handle value is returned by the open, sopen, creat, or fileno function.
The access mode must have included either O_RDONLY or O_RDWR
when the open or sopen function was invoked. The data is read starting
at the current file position for the file in question. This file position can be
determined with the tell function and can be set with the lseek function.

UNIX STREAMS

A read from a Stream file can operate in three different modes:
byte-stream mode, message-nondiscard mode, and message-discard
mode. The default is byte-stream mode. This can be changed using the
I_SRDOPT ioctl request, and can be tested with the I_GRDOPT ioctl. In
byte-stream mode, the read function retrieves data from the Stream until
it has received nbyte bytes, or until there is no more data to be retrieved.
Byte-stream mode ignores message boundaries.

In Stream message-nondiscard mode, the read function retrieves data
until it has read nbytes bytes or until it reaches a message boundary. If the
read function does not retrieve all the data in the message, the remaining
data are placed on the Stream, and can be retrieved by the next read or
getmsg call. Message-discard mode also retrieves data until it has
retrieved nbyte bytes or it reaches a message boundary. However, unread
data remaining in a message after the read function returns are discarded
and are not available for a subsequent read or getmsg.

When reading from a Stream file, handling of zero-byte messages is
determined by the current read mode setting. In byte-stream mode, the
read function accepts data until it has read nbyte bytes, or until there is no
more data to read or until a zero-byte message block is encountered. The
read function returns the number of bytes read and places the zero-byte
message back on the Stream to be retrieved by the next read or getmsg. In
the two other modes, a zero-message returns a value of 0 and the
message is removed from the Stream. When a zero-byte message is read
as the first message on a Stream, a value of 0 is returned regardless of the
read mode.

A read from a Stream file can only process data messages. It cannot
process any type of protocol message and fails if a protocol message is
encountered at the stream head.

A read from a Stream file also fails if an error message is received at the
stream head. In this case, errno is set to the value returned in the error
message. If a hangup occurs on the Stream being read, the read function
continues to operate normally until the stream head read queue is empty.
Thereafter, it returns 0.

See Also

File Service Group

Operating System I/O: Functions 969

close, creat, dup, dup2, eof, filelength, fileno, fstat, isatty, lseek, open,
sopen, tell, write

Example

read

#include <errno.h>
#include <fcntl.h>
#include <unistd.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <dirent.h>
#include <nwconio.h>

#define BUFFER_SIZE 512

main()
{
 int handle, rc, i, ch = 0;
 char buffer[BUFFER_SIZE];
 handle = open ("test.dat", O_RDONLY, 0);
 if (handle < 0)
 {
 printf ("\r%s\r\n\n",strerror(errno));
 exit (0);
 }
 while (1)
 {
 if ((rc = read (handle, buffer, BUFFER_SIZE)) <= 0)
 {
 lseek (handle,0,SEEK_SET);
 rc = 0;
 }
 for (i = 0; i < rc; i++)
 {
 putchar (buffer[i]);
 if (kbhit ())
 {
 if ((ch = getch()) == 0x03)
 {
 printf ("^C");
 close (handle);
 exit (0);
 }
 else if(ch == 'l')
 {
 printf ("\r\n\n***** lock %s\r\n\n",
 lock (handle,1,10) ? "failed" : "succeeded");

File Service Group

Operating System I/O: Functions 970

 getch ();
 }
 else if(ch == 'u')
 {
 printf ("\r\n\n***** unlock %s\r\n\n",
 unlock(handle,1,10) ? "failed" : "succeeded");
 getch ();
 }
 else getch (); /* Pause*/
 }
 }
 }
}

File Service Group

Operating System I/O: Functions 971

setmode

Sets, at the operating system level, the translation mode to the specified
value

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: Other

SMP Aware: No

Service: Operating System I/O

Syntax

#include <fcntl.h>

int setmode (
 int handle,
 int mode);

Parameters

handle

(IN) Specifies a file handle.

mode

(IN) Specifies the translation mode.

Return Values

If successful, the setmode function returns the previous mode that was set
for the file. Otherwise, a value of -1 is returned. When an error has
occurred, the global variable errno contains a value indicating the type of
error that has been detected.

Remarks

The setmode function sets the translation mode to be the value of mode
for the file whose file handle is given by handle. The mode parameter can
contain the following value:

O_BINARY---Data is read or written unchanged.

See Also

close, creat, eof, filelength, fileno, fstat, isatty, lseek, open, read, sopen,
tell, write

File Service Group

Operating System I/O: Functions 972

sopen

Opens a file or stream for shared access

Local Servers: blocking

Remote Servers: blocking

Classification: Other

SMP Aware: No

Service: Operating System I/O

Syntax

#include <fcntl.h>

int sopen (
 const char *filename,
 int access,
 int share,
 int permission);

Parameters

filename

(IN) Specifies the name of the file to open.

access

(IN) Specifies the access mode.

share

(IN) Specifies the sharing mode of the file.

permission

(IN) Specifies the file permissions.

Return Values

When an error occurs while opening the file, a value of -1 is returned.
Otherwise, an integer (not equal to -1), known as the file handle, is
returned to be used with the other functions that operate on the file.

When an error occurs, errno is set to:

1 ENOEN
T

No such file.

6 EACCES
S

Permission denied.

9 EINVAL Invalid argument.

File Service Group

Operating System I/O: Functions 973

When an error occurs, NetWareErrno is set to:

10
7

(0x6B) ERR_BAD_SHFLAG

10
8

(0x6C
)

ERR_BAD_ACCESS

15
2

(0x98) ERR_INVALID_VOLUME

15
6

(0x9C
)

ERR_INVALID_PATH

NOTE: A problem was introduced in the 4.01d version of clib.nlm. It
manifests itself when sopen is called multiple times by the same thread.

In clib.nlm versions prior to 4.01d, a valid file handle will be returned
from sopen when a file is opened multiple times by the same thread. In
the 4.01d version of clib.nlm (and later versions) an error occurs and
returns -1 while errno is set to EINUSE.

Beginning with version 4.10d (notice this is 4.1 and not 4.01) PTR
2/1/95, you can pass the NWSH_PRE_401D_COMPAT bit (found in
share.h) in as part of the share flags passed to sopen to get functionality
of clib versions prior to 4.01d (if you have experienced problems with
multiple threads opening the same file multiple times).

As an alternative to the above work around, you can pass in a
CLIB_OPT switch on the command line of the .nlm you are using.
CLIB_OPT/U86414 will provide the same functionality as passing in
the share flags with the additional bits ORed in. This is only available
on clib.nlm version 4.10d PTF.

Remarks

This function also works on the DOS partition.

The name of the file to be opened is given by the filename parameter. The
file is accessed according to the access mode specified by the access
parameter.

The access mode is established as a combination of the bits defined in the
FCNTL.H header file.

The following bits can be set:

O_RDON
LY

Permits the file to be only read.

File Service Group

Operating System I/O: Functions 974

O_WRON
LY

Permits the file to be only written.

O_RDWR Permits the file to be both read and written.

O_APPE
ND

Causes each record that is written to be written at the end
of the file.

O_CREAT Has no effect when the file indicated by the filename
parameter already exists; otherwise, the file is created.

O_TRUN
C

Causes the file to be truncated to contain no data when the
file exists; has no effect when the file does not exist.
O_TRUNC must be ORed with write access to truncate a
file:

O_TRUNC | O_RDWR

O_TRUNC | O_WRONY

O_BINAR
Y

Causes the data to be transmitted unchanged. (Text mode
for first-level handles is not supported. In text mode,
carriage- return/line-feed pairs are translated to line feeds
on input, and line feeds are translated to
carriage-return/line-feed pairs on output.)

O_CREAT must be specified when the file does not exist and it is to be
written.

When the file is to be created (O_CREAT is specified), the file
permissions are set according to the value contained in the permission
parameter.

The access permissions for the file is specified as a combination of bits
(defined in the SYS\STAT.H header file).

S_IWRIT
E

The file is writeable.

S_IREA
D

The file is readable.

The permission parameter can be specified as S_IWRITE, S_IREAD or
S_IWRITE|S_IREAD. Specifiying 0 also makes a file both writeable and
readable. File Permission Conversion provides further information about
these options.

The shared access for the file is established by the combination of bits set
in the share parameter where the following values are defined in
NWSHARE.H.

SH_COMP Sets compatibility mode.

File Service Group

Operating System I/O: Functions 975

AT

SH_DENY
RW

Prevents read or write access to the file.

SH_DENY
WR

Prevents write access of the file.

SH_DENY
RD

Prevents read access to the file.

SH_DENY
NO

Permits both read and write access to the file.

NOTE: If a new file is created by this function, the share flag is
ignored.

See Also

close, dup, dup2, open

Example

sopen

#include <errno.h>
#include <fcntl.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <dirent.h>
#include <nwbindrv.h>
#include <nwshare.h>

#define BUFFER_SIZE 512

main()
{
 int handle, rc, i, ch = 0;
 char buffer[BUFFER_SIZE];
 errno = 0;
 printf ("Login %s\r\n\n", LoginToFileServer("supervisor",
 OT_USER,"\x0") ? "Failed" : "Succeeded");
 handle = sopen ("test.c", O_RDWR, SH_DENYNO, 0);
 if (handle == -1)
 {
 printf ("\r%s\r\n\n",strerror(errno));
 exit (0);
 }
 printf ("\r\n\n***** lock %s\r\n\n",lock(handle,1,10) ?
 "Failed" : "Succeeded");
 printf ("%s\r\n",strerror(errno));

File Service Group

Operating System I/O: Functions 976

 printf ("%s\r\n",strerror(errno));
 printf ("NWerror %d\r\n",NetWareErrno);
 getch ();
 printf ("\r\n\n***** unlock %s\r\n\n",unlock(handle,1,10) ?
 "Failed" : "Succeeded");
 printf ("%s\r\n",strerror(errno));
 printf ("NWerror %d\r\n", NetWareErrno);
 Logout ();
}

File Service Group

Operating System I/O: Functions 977

tell

Determines the current file position

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: Other

SMP Aware: No

Service: Operating System I/O

Syntax

#include <fcntl.h>

LONG tell (
 int handle);

Parameters

handle

(IN) Specifies a file handle.

Return Values

When an error occurs, a value of -1 is returned. Otherwise, the current
file position is returned in a system-dependent manner. A value of 0
indicates the start of the file.

If an error occurs, errno is set to:

4 EBAD
F

Bad file number.

Remarks

The handle value is the file handle returned by a successful execution of
the open, sopen, creat, or fileno function. This function can be used in
conjunction with lseek to reset the current file position.

See Also

close, creat, eof, filelength, fileno, fstat, ftell, isatty, lseek, open, read,
sopen, write

Example

File Service Group

Operating System I/O: Functions 978

tell

#include <fcntl.h>

LONG position;
int handle;
position = tell (handle);

File Service Group

Operating System I/O: Functions 979

unlock

Unlocks a region of previously locked data in a file

Local Servers: blocking

Remote Servers: blocking

Classification: Other

SMP Aware: No

Service: Operating System I/O

Syntax

#include <fcntl.h>

int unlock (
 int handle,
 LONG offset,
 LONG length);

Parameters

handle

(IN) Specifies a file handle.

offset

(IN) Specifies the starting byte.

length

(IN) Specifies the amount of data (in bytes).

Return Values

unlock returns a value of 0 if successful and a value of -1 when an error
occurs.

If an error occurs, errno can be set to:

4 EBADF Bad file number.

1
9

EWRNGK
ND

The region was not locked.

If unlock does not complete successfully, NetWareErrno is set.

Remarks

The unlock function unlocks the region of the file previously locked with

File Service Group

Operating System I/O: Functions 980

the lock function that specified the same offset as the call to unlock. If the
file does not have a locked region starting at offset, the unlock function
returns a value of -1 and sets errno to EWRNGKND. All locked regions of
a file should be unlocked before a file is closed.

See Also

dup, dup2, lock, open, sopen

File Service Group

Operating System I/O: Functions 981

write

Writes data (blocks even if writing to the screen)

Local Servers: blocking

Remote Servers: blocking

Classification: POSIX

SMP Aware: No

Service: Operating System I/O

Syntax

#include <unistd.h>

LONG write (
 int handle,
 char *buffer,
 LONG len);

Parameters

handle

(IN) Specifies a file handle.

buffer

(IN) Point to the address at which to start transmitting data.

len

(IN) Specifies the number of bytes transmitted.

Return Values

write returns the number of bytes of data transmitted to the file. When
there is no error, this is the number given by the len parameter. In the case
of an error, such as there being no space available to contain the file data,
the return value is less than the number of bytes transmitted. A value of
-1 is returned in the case of output errors.

If an error occurs, errno can be set to:

4 EBAD
F

Bad file number.

If write does not complete successfully, NetWareErrno is set.

Remarks

File Service Group

Operating System I/O: Functions 982

This function also works on the DOS partition.

The handle value is returned by open, sopen, or creat. The access mode
must have included either O_WRONLY or O_RDWR when open or
sopen was invoked. The data is written to the file at the end when the file
was opened with O_APPEND included as part of the access mode;
otherwise, it is written at the current file position for the file in question.
This file position can be determined with tell and can be set with lseek.

UNIX Streams

For Stream files, the operation of write is determined by the values of the
minimum and maximum n-byte range (packet size) accepted by the
Stream. These values are contained in the topmost Stream module.
Unless the user pushes the topmost module, these values cannot be set or
tested from user level.

If n-byte falls within the packet size range, n-byte bytes are written.

If n-byte does not fall within the range and the minimum packet size
value is zero, write breaks the buffer into maximum packet size
segments prior to sending the data downstream (the last segment can
contain less than the maximum packet size).

If nbyte does not fall within the range and the minimum value is
nonzero, write fails with errno set to ERANGE. Writing a zero-length
buffer (n-byte is 0) sends zero bytes with zero bytes returned.

For Stream files, if O_NDELAY is not set and the Stream cannot accept
data (the stream write queue is full due to internal flow control
conditions), write blocks until data can be accepted. O_NDELAY
prevents a process from blocking due to flow control conditions. If
O_NDELAY is set and the Stream cannot accept data, write fails. If
O_NDELAY is set and part of the buffer has been written when a
condition in which the Stream cannot accept additional data occurs, write
terminates and returns the number of bytes written.

See Also

close, creat, dup, dup2, eof, filelength, fileno, fstat, isatty, lseek, open,
read, sopen, tell

Example

write

#include <stddef.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>

File Service Group

Operating System I/O: Functions 983

main()
{
 int fh,size;
 char buffer[] = { "NLM test file" };
 size = strlen(buffer);
 errno = 0;
 if((fh = creat ("test.dt1",0)) != -1)
 {
 printf ("open 1: %s\r\n",strerror(errno));
 }
 else
 {
 if(write (fh,buffer,size) < size)
 printf ("write 1: %s\r\n",strerror(errno));
 printf ("file length 1: %d\r\n",filelength(fh));
 if(close (fh) < 0)
 printf ("close 1: %s\r\n",strerror(errno));
 }
 if((fh = creat ("test.dt2",0)) != -1)
 {
 printf ("open 2: %s\r\n",strerror(errno));
 }
 else
 {
 if(write (fh,buffer,size) < size)
 printf ("write 2: %s\r\n",strerror(errno));
 printf ("file length 2: %d\r\n",filelength(fh));
 if(close (fh) < 0)
 printf ("close 2: %s\r\n",strerror(errno));
 }
 if((fh = creat ("test.dt3",0)) != -1)
 {
 printf ("open 3: %s\r\n",strerror(errno));
 }
 else
 {
 if(write (fh,buffer,size) < size)
 printf ("write 3: %s\r\n",strerror(errno));
 printf ("file length 3: %d\r\n",filelength(fh));
 if(close (fh) < 0)
 printf ("close 3: %s\r\n",strerror(errno));
 }
 printf ("\r\n exit: %s\r\n",strerror(errno));
 getch ();
}

File Service Group

Operating System I/O: Functions 984

Path and Drive

File Service Group

 985

Path and Drive: Guides

Path and Drive: Task Guide

Mapping Network Drives

Mapping a Network Drive: Example

Listing Network Drives

Additional Links

Path and Drive: Functions

Parent Topic:

Path and Drive: Guides

Path and Drive: Concept Guide

Path and Drive Introduction

Network Drive Mappings

Mapping Network Drives: Example

Listing Network Drives: Example

Network Drive Functions

Additional Links

Path and Drive: Functions

Parent Topic:

Path and Drive: Guides

File Service Group

Path and Drive: Guides 986

Path and Drive: Tasks

Listing Network Drives

The following steps allow you to determine if the specified drive is a
NetWare® drive.

1. Initialize the client libraries by calling NWCallsInit.

2. For each of the drives, 1 through 26, call NWGetDriveStatus and
check the status parameter to determine if the drive is a NetWare
drive.

Listing Network Drives: Example

Parent Topic:

Path and Drive: Guides

Mapping Network Drives

This task allows you to associate a NetWare® path with a client's drive.

1. Determine the path to be mapped to and the drive letter that is to be
associated with the path.

2. Call NWGetDriveStatus to determine if the specified drive is
available as a network drive.

3. Call NWParsePath to determine if a connection exists to the server
specified in the path.

4. If a connection does not exist to the specified server, establish a
connection.

5. Remove the server name from the path by calling
NWStripServerOffPath.

6. Map the drive by calling NWSetDriveBase.

Mapping a Network Drive: Example

Parent Topic:

Path and Drive: Guides

File Service Group

Path and Drive: Tasks 987

Path and Drive: Examples

Listing Network Drives: Example

The following code lists a station's network drives. The program loops
through the 26 drives calling NWGetDriveStatus to find those mapped to
the network. The program doesn't check the additional six drives available
under Netx.

Listing Network Drives for a Workstation

#include <stdio.h>
#include <stdlib.h>
#include <nwdpath.h>
#include <nwmisc.h>

void main(void)
{
 NWCCODE ccode;
 nuint16 status;
 nstr8 rootPath[304];
 nstr8 relPath[304];
 nuint16 drive;

 ccode = NWCallsInit(NULL, NULL);
 if(ccode)
 exit(1);

 for(drive = 1; drive <= 26; drive++)
 {
 ccode = NWGetDriveStatus(drive, NW_FORMAT_SERVER_VOLUME,
 &status, NULL, rootPath,
 relPath, NULL);
 if(ccode != NW_INVALID_DRIVE)
 {
 if(ccode)
 {
 puts("Unable to get drive mappings.\n");
 exit(1);
 }
 if(status & NW_NETWARE_DRIVE)
 {
 printf("Drive %c: = %s \\", drive + '@',
 rootPath);
 puts(relPath);
 }

File Service Group

Path and Drive: Examples 988

 }
 }
}

Parent Topic:

Path and Drive: Guides

Mapping Network Drives: Example

The following code calls NWSetDriveBase to map a network drive.
Command line parameters correspond to the drive letter and directory path
(including a server name). NWGetDriveStatus determines whether the
drive is eligible. NWParsePath determines whether a connection exists to
the specified server.

Notice that if there is no connection to the server and Directory Services is
available, the code attempts to establish an authenticated connection.

The volume path is obtained by calling NWStripServerOffPath, which
must be passed separately to NWSetDriveBase. Before mapping the drive,
the program checks whether the associated connection has been
authenticated. Errors are returned if the connection hasn't been
authenticated either through Directory Services or bindery login.

Mapping a Network Drive

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <nwnet.h>
#include <nwlocale.h>
#include <nwdpath.h>
#include <nwmisc.h>
#include <nwserver.h>
#include <nwerror.h>
#include <nwdsasa.h>
#include <nwndscon.h>
#include <unicode.h>

void main(int argc, char *argv[])
{
 NWDS_Session_Key_T sessionKey;
 NWCONN_HANDLE conn;
 NWCCODE ccode, DSIsAvailable;
 nuint16 driveNum, status;
 LCONV lconvInfo;
 char N_FAR *countryPtr;
 nstr8 serverName[50], driveLetter;
 nstr8 *volumePath;

File Service Group

Path and Drive: Examples 989

 if(argc < 2)
 {
 printf("Usage: MAP <driveLetter> <directoryPath>\n");
 printf("Example: MAP K DSSERVER1/SYS:\n");
 exit(1);
 }
 ccode = NWCallsInit(NULL, NULL);
 if(ccode)
 exit(1);

 driveLetter = (char)toupper(argv[1][0]);
 driveNum = driveLetter - '@';

 ccode = NWGetDriveStatus(driveNum, 0, &status, NULL, NULL, NULL, NULL);
 if(ccode)
 {
 if(ccode == NW_INVALID_DRIVE)
 printf("%c is an invalid drive.\n", driveLetter);
 else
 printf("Unable to find drive status.\n");
 exit(1);
 }
 if(status != NW_UNMAPPED_DRIVE)
 {
 printf("Drive %c is in use.\n", driveLetter);
 exit(1);
 }

 ccode = NWParsePath(strupr(argv[2]), serverName, &conn, NULL, NULL);
 if((ccode == NO_CONNECTION_TO_SERVER))
 {
 DSIsAvailable = NWIsDSAuthenticated();
 if (!DSIsAvailable)
 {
 printf("You are not logged into %s\n", serverName);
 exit(1);
 }
 else
 {
 ccode = NWAttachToFileServer(serverName, 0, &conn);
 if(ccode)
 {
 printf("Could not attach to file server %s\n",
 serverName);
 exit(1);
 }
 /* Set up locale information */
 countryPtr = NWLsetlocale(LC_ALL, "");
 if(countryPtr == NULL)
 {
 printf("NWLsetlocale failed.\n");
 exit(1);

File Service Group

Path and Drive: Examples 990

 exit(1);
 }
 /* Initialize the LCONV structure to the locale information */
 NWLlocaleconv(&lconvInfo);

 ccode = NWInitUnicodeTables(lconvInfo.country_id,
 lconvInfo.code_page);
 if (ccode)
 exit(1);

 ccode = NWDSAuthenticate(conn, 0L, &sessionKey);
 if(ccode)
 {
 printf("Error authenticating to server\n");
 NWFreeUnicodeTables();
 exit(1);
 }
 NWFreeUnicodeTables();
 }
 }
 volumePath = NWStripServerOffPath((pnstr8)argv[2], NULL);
 ccode = NWSetDriveBase(driveNum, conn, 0, volumePath, 0);
 if(ccode)
 {
 printf("Error. Drive not mapped\n");
 exit(1);
 }
 printf("Drive %c: = %s\n", driveLetter, volumePath);
}

Parent Topic:

Path and Drive: Guides

File Service Group

Path and Drive: Examples 991

Path and Drive: Concepts

Network Drive Functions

These functions map network drives, return drive information, perform
parsing on path strings, and access the Netx search drive vector. It is
possible that a specific client supports only a subset of these functions. See
Path and Drive: Functions for details on client support.

Function Comment

NWDeleteDriveBase Deletes a network drive mapping.

NWGetDriveInformation Returns information about the specified
drive.

NWGetDriveStatus Returns the status of the specified drive
and, optionally, the associated connection
and its path in various formats.

NWGetFirstDrive Returns the first non-local drive.

NWGetPathFromDirector
yEntry

Returns the path name from an entry in a
NetWare® server's directory entry table.
This function is for NetWare 2.2.

NWGetSearchDriveVecto
r

Returns the shell's search drive vector. If
the Requester is running at the
workstation, netx.vlm must be loaded for
this call to succeed.

NWParseNetWarePath Parses a path and returns the connection
handle, directory handle, and new path to
be used by subsequent NetWare requests.

NWParsePath Parses a path string.

NWSetDriveBase Maps the target drive to the specified
directory path.

NWSetInitDrive Sets the initial drive on the specified
NetWare server. This function is for an
OS/2 workstation.

NWSetSearchDriveVector Sets the shell's search drive vector. If the
Requester is running at the workstation,
netx.vlm must be loaded for this function
to succeed.

NWStripServerOffPath Parses a server or volume path, copies the
server name to the buffer specified by

File Service Group

Path and Drive: Concepts 992

server, and returns a pointer to the
volume path.

Parent Topic:

Path and Drive: Guides

Network Drive Mappings

An OS/2 or DOS Requester workstation can have up to 26 network drive
mappings. The first 26 drives are named alphabetically A through Z. The
drives are identified numerically (1 = A, 2 = B, etc.).

Parent Topic:

Path and Drive: Guides

Related Topics:

Mapping Network Drives

Mapping a Network Drive: Example

Path and Drive Introduction

Path and Drive services control the workstation's relationship to the
network. Specifically, they configure the workstation environment by
managing network drive mappings. However, these services don't
formulate requests for NetWare® servers.

Path and Drive services include functions that manage network drive
mappings. The following are the most commonly used.

 NWGetDriveStatus returns information about a drive mapping.

 NWSetDriveBase sets a drive mapping.

 NWDeleteDriveBase deletes a drive mapping.

For a complete list of related functions, see Network Drive Functions.

When working with drive mappings, you must express all path parameters
in a manner consistent with the local name space. For example, all DOS file
path parameters must be in upper case.

Parent Topic:

Path and Drive: Guides

File Service Group

Path and Drive: Concepts 993

Path and Drive: Functions

File Service Group

Path and Drive: Functions 994

ConvertNameToFullPath

Converts a path to an absolute path specification that includes a volume
specification

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 2.x, 3.x, 4.x

Platform: NLM

SMP Aware: Yes

Service: Path and Drive

Syntax

#include <stdlib.h>
#include <nwdir.h>

int ConvertNameToFullPath (
 char *partialPath,
 char *fullPath);

Parameters

partialPath

(IN) Specifies a string containing the partial path that is to be
converted to a complete path.

fullPath

(OUT) Specifies the buffer where the complete path is to be returned
(maximum 255 characters).

Return Values

0 (0x00) ESUCCESS: Only fails if the partialPath parameter is not
valid.

22
(0x16)

EBADHNDL

Remarks

ConvertNameToFullPath accepts a filename, or any relative or absolute
path, and returns the absolute path (including a volume specification).

Call ConvertNameToFullPath when a user is entering a filename (which
may or may not be entered as a full path specification) and you want a

File Service Group

Path and Drive: Functions 995

full path specification to open the file.

ConvertNameToFullPath uses ParsePath to construct the fullPath
parameter string.

See Also

ConvertNameToVolumePath, ParsePath, and File System

File Service Group

Path and Drive: Functions 996

ConvertNameToVolumePath

Converts a path to an absolute path specification that does not include the
volume specification

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 2.x, 3.x, 4.x

Platform: NLM

SMP Aware: Yes

Service: Path and Drive

Syntax

#include <nwdir.h>

int ConvertNameToVolumePath (
 char *fileName,
 char *path);

Parameters

fileName

(IN) Specifies the name of the file that is to be converted to a complete
path from the volume.

path

(OUT) Specifies the buffer where the complete path is to be returned
(maximum 255 characters).

Return Values

0 (0x00) ESUCCESS

22 (0x16) EBADHNDL

Remarks

ConvertNameToVolumePath accepts a filename, or any relative or
absolute path, and returns the absolute path (not including a volume
specification). The volume name is not included in the path.

Call ConvertNameToVolumePath when a user is entering a filename
(which may or may not be entered as a full path specification) and you
want a full path specification to open the file.

File Service Group

Path and Drive: Functions 997

See Also

ConvertNameToFullPath, and File System

File Service Group

Path and Drive: Functions 998

NWDeleteDriveBase

Deletes a network drive mapping

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWDeleteDriveBase (
 nuint16 driveNum,
 nuint16 driveScope);

Pascal Syntax

#include <nwdpath.inc>

Function NWDeleteDriveBase
 (driveNum : nuint16;
 driveScope : nuint16
) : NWCCODE;

Parameters

driveNum

(IN) Specifies the drive number whose mapping is being deleted (A=1,
B=2, . . .).

driveScope

Reserved for Novell® use only; must be 0.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8804 BAD_DRIVE_BASE

0x8836 INVALID_PARAMETER

0x883C NOT_MY_RESOURCE

0x8875 INVALID_DRIVE_NUM

File Service Group

Path and Drive: Functions 999

0x89FF INVALID_DRIVE_NUMBER

Remarks

If driveNum is zero (0), the current drive will be deleted if it belongs to the
NetWare® OS.

Most operating systems will determine if the path is valid before
NWDeleteDriveBase returns.

Under DOS and Windows 3.1, 0x0001 Invalid Function will be returned
if the path is not valid and NETX is not loaded. If NETX is loaded, 0x8804
BAD_DRIVE_BASE will be returned.

Under Windows95, 0x0003 Path Not Found will be returned if the path is
invalid.

Under Windows NT, INVALID_PARAMETER will be returned if an
unmapped drive is being referenced. INVALID_DRIVE_NUM will be
returned if an invalid drive number is being used.

Under NLM, INVALID_SHELL_CALL is always returned.

NCP Calls

None

See Also

NWSetDriveBase

File Service Group

Path and Drive: Functions 1000

NWGetDirBaseFromPath

Gets a volume number, a directory base for the specified name space, and a
directory base for the DOS name space entry

Local Servers: blocking

Remote Servers: blocking

Platform: NLM

Classification: 3.12, 4.x

SMP Aware: No

Service: Name Space

Syntax

#include <nwfile.h>

N_EXTERN_LIBRARY(NWCCODE)NWGetDirBaseFromPath (
 char *path,
 BYTE nameSpace,
 LONG *volNum,
 LONG *NSDirBase,
 LONG *DOSDirBase);

Parameters

path

(IN) Specifies the directory path to generate a directory base (number)
for.

nameSpace

(IN) Specifies the name space to generate the directory base (number)
for.

volNum

(OUT) Receives the volume number that corresponds with path.

NSDirBase

(OUT) Receives a directory index for the specified name space.

DOSDirBase

(OUT) Receives a directory index for the DOS name space of the entry.

Return Values

If successful, this function returns zero. Otherwise, it returns a nonzero
error code.

Remarks

File Service Group

Path and Drive: Functions 1001

This function gets a volume number, a directory base for the specified
name space, and a directory base for the DOS name space for the entry.

File Service Group

Path and Drive: Functions 1002

NWGetDriveInformation

Returns information about the specified drive

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWGetDriveInformation (
 nuint16 driveNum,
 nuint16 mode,
 NWCONN_HANDLE N_FAR *conn,
 NWDIR_HANDLE N_FAR *dirHandle,
 pnuint16 driveScope,
 pnstr8 dirPath);

Pascal Syntax

#include <nwdpath.inc>

Function NWGetDriveInformation
 (driveNum : nuint16;
 mode : nuint16;
 Var conn : NWCONN_HANDLE;
 Var dirHandle : NWDIR_HANDLE;
 driveScope : pnuint16;
 dirPath : pnstr8
) : NWCCODE;

Parameters

driveNum

(IN) Specifies the drive number for which to get the status (A=1, B=2,
C=3, . . .); pass 0 for current drive.

mode

Currently unused.

conn

(OUT) Points to the connection ID of the server the drive is currently
mapped to.

dirHandle

File Service Group

Path and Drive: Functions 1003

(OUT) Points to the directory handle associated with the specified
drive.

driveScope

(OUT) Points to the drive scope (currently returns GLOBAL).

dirPath

(OUT) Points to the current directory of the specified drive.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x000F DOS_INVALID_DRIVE

0x883C NOT_MY_RESOURCE

0x89FF INVALID_DRIVE_NUMBER

Remarks

If driveNum is 0, information about the current drive is returned.

Under OS/2, NWGetDriveInformation calls the NetWare IFS to retrieve
information and then return it. INVALID_DRIVE_NUMBER is returned
if driveNum is greater than 26. NOT_MY_RESOURCE is returned if the
specified drive is not a NetWare drive.

DOS_INVALID_DRIVE is returned if the drive is not defined.

Under DOS, several Shell functions are called to determine the current
drive, the connection ID, the directory handle, and the path.
INVALID_DRIVE_NUMBER is returned if driveNum is greater than 31.
NOT_MY_RESOURCE is returned if the specified drive is not a NetWare
drive.

If VLMs are running, dirHandle returns 0. VLMs do not associate a
directory handle with a mapped drive, no directory handle can be
returned. For example, if NETX version 3.32 is running,
NWGetDriveInformation will return a valid dirHandle (non-zero) and a
valid dirPath. If VLM version 1.20 is running, NWGetDriveInformation
returns a dirHandle of zero and a valid dirPath (the same dirPath returned
when NETX was running).

Under Windows NT, a dirHandle will not be returned. Under all other
platforms, if dirHandle does not point to NULL, a dirHandle will be
returned if NETX support is available. Otherwise,
NWGetDriveInformation will return NWE_REQUESTER_FAILURE
(0x88FF).

File Service Group

Path and Drive: Functions 1004

Under NLM, INVALID_SHELL_CALL is always returned.

NCP Calls

None

See Also

NWGetFirstDrive

File Service Group

Path and Drive: Functions 1005

NWGetDriveStatus

Returns the status of the specified drive and, optionally, the associated
connection and its path in various formats

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWGetDriveStatus (
 nuint16 driveNum,
 nuint16 pathFormat,
 pnuint16 status,
 NWCONN_HANDLE N_FAR *conn,
 pnstr8 rootPath,
 pnstr8 relPath,
 pnstr8 fullPath);

Pascal Syntax

#include <nwdpath.inc>

Function NWGetDriveStatus
 (driveNum : nuint16;
 pathFormat : nuint16;
 status : pnuint16;
 Var conn : NWCONN_HANDLE;
 rootPath : pnstr8;
 relPath : pnstr8;
 fullPath : pnstr8
) : NWCCODE;

Parameters

driveNum

(IN) Specifies the drive number for which to get the status (A=1, B=2,
C=3, . . .); pass 0 for current drive.

pathFormat

(IN) Specifies the desired format for the return paths.

status

(OUT) Points to a bit mask indicating if the drive is local and/or

File Service Group

Path and Drive: Functions 1006

networked.

conn

(OUT) Points to the connection handle of the path driveNum is mapped
to, if any (optional).

rootPath

(OUT) Points to the base path driveNum is mapped to (optional).

relPath

(OUT) Points to the path (relative to the rootPath parameter) to which
the drive number is mapped (optional).

fullPath

(OUT) Points to the full path of driveNum, if it is a network drive
(optional).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x000F NW_INVALID_DRIVE

0x8800 Unknown Error Occurred; Unable to Complete Request

0x883C NOT_MY_RESOURCE

Remarks

Currently, NWGetDriveStatus returns the status of local drives, but does
not return path strings for these paths to prevent critical errors from
occurring on removable drives. (May change with future releases.)

pathFormat expects one of the following four constants:

NW_FORMAT_NETWARE 0
NW_FORMAT_SERVER_VOLUME 1
NW_FORMAT_DRIVE 2
NW_FORMAT_UNC 3

For the NetWare, Server Volume, and UNC constants, the value of the
fullPath parameter will equal the value of the rootPath parameter, plus a
backslash character (`\'), plus the value of the relPath parameter. For the
Drive constant, the value of the fullPath parameter will equal the value of
the rootPath parameter plus the value of the relPath parameter (without
adding a backslash character).

The following tables explain what will be returned in each of the path
output parameters for each of the pathFormat constants.

File Service Group

Path and Drive: Functions 1007

Assume you are in dir2 and drive letter Q is root mapped to the
following:

server\volume:dir1

rootPath relPat
h

fullPath

NetW
are

volume:dir1 dir2 volume:dir1\dir2

Server
Volu
me

server\volum
e:dir1

dir2 server\volume:dir1\dir2

Drive Q:\ dir2 Q:\dir1\dir2

UNC \\server\vol
ume\dir1

dir2 \\server\volume\dir1\dir2

Assume you are in dir1\dir2 and drive letter Q is root mapped to the
following:

server\volume:

rootPath relPat
h

fullPath

NetW
are

volume: dir1\d
ir2

volume:\dir1\dir2

Server
Volu
me

server\volum
e:

dir1\d
ir2

server\volume:\dir1\dir2

Drive Q:\ dir1\d
ir2

Q:\dir1\dir2

UNC \\server\vol
ume

dir1\d
ir2

\\server\volume\dir1\dir2

status returns a bit mask indicating if a drive is a local and/or networked
drive:

C
Value

Pasca
l
Value

Value Name

0x000
0

$0000 NW_UNMAPPED_DRIVE

File Service Group

Path and Drive: Functions 1008

0x000
0

$0000 NW_FREE_DRIVE

0x040
0

$0400 NW_CDROM_DRIVE

0x080
0

$0800 NW_LOCAL_FREE_DRIVE

0x100
0

$1000 NW_LOCAL_DRIVE

0x200
0

$2000 NW_NETWORK_DRIVE

0x400
0

$4000 NW_PNW_DRIVE

0x800
0

$8000 NW_NETWARE_DRIVE

NW_LOCAL_DRIVE indicates the specified drive letter is lower than the
first networked drive which usually defaults to F: and is set in the net.cfg
file.

Under NLM, INVALID_SHELL_CALL is always returned.

NCP Calls

None

See Also

NWGetFirstDrive

File Service Group

Path and Drive: Functions 1009

NWGetFirstDrive

Returns the first non-local drive

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWGetFirstDrive (
 pnuint16 firstDrive);

Pascal Syntax

#include <nwdpath.inc>

Function NWGetFirstDrive
 (firstDrive : pnuint16
) : NWCCODE;

Parameters

firstDrive

(OUT) Points to the first non-local drive (A=1, B=2, C=3. . .).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x000F Unknown error occurred

Remarks

If an unknown error occurs while obtaining drive information,
NWGetFirstDrive returns 0x000F; this is very rare.

Under NLM, INVALID_SHELL_CALL is always returned.

File Service Group

Path and Drive: Functions 1010

NCP Calls

None

See Also

NWGetDriveStatus

File Service Group

Path and Drive: Functions 1011

NWGetPathFromDirectoryBase

Returns the path name from an entry in the directory entry table for a
NetWare server

NetWare Server: 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY (NWCCODE) NWGetPathFromDirectoryBase (
 NWCONN_HANDLE conn,
 nuint8 volNum,
 nuint32 dirBase,
 nuint8 namSpc,
 pnuint8 len,
 pnstr8 pathName);

Pascal Syntax

#include <nwdpath.inc>

Function NWGetPathFromDirectoryBase
 (conn : NWCONN_HANDLE;
 volNum : nuint8;
 dirBase : nuint32;
 namSpc : nuint8
 len : pnuint8;
 pathName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number.

dirBase

(IN) Specifies the directory entry number in the name space specified
by the namSpc parameter.

namSpc

File Service Group

Path and Drive: Functions 1012

(IN) Specifies the name space used by the directory entry number.

len

(OUT) Points to the path length and specifies how much of the buffer
pointed to by the pathName parameter was used.

pathName

(OUT) Points to the buffer containing the path name (at least 256
characters).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x899C INVALID_PATH

Remarks

NWGetPathFromDirectoryBase maps a directory entry number to a
path under a specified name space. The path is returned as a group of
components. Each directory, subdirectory, or file in the path is
considered to be a component. Each component is length preceeded and
followed by the next component. The path is NULL-terminated.

The namSpc parameter can have the following values:

0 NW_NS_DOS

1 NW_NS_MAC

2 NW_NS_NFS

3 NW_NS_FTAM

4 NW_NS_LONG

You must allocate memory for the buffer pointed to by the pathName
parameter.

NCP Calls

0x2222 23 243 Map Directory Number to Path

See Also

NWGetPathFromDirectoryEntry

File Service Group

Path and Drive: Functions 1013

NWGetPathFromDirectoryEntry

Returns the path name from an entry in a NetWare server's directory entry
table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWGetPathFromDirectoryEntry (
 NWCONN_HANDLE conn,
 nuint8 volNum,
 nuint16 dirEntry,
 pnuint8 len,
 pnstr8 pathName);

Pascal Syntax

#include <nwdpath.inc>

Function NWGetPathFromDirectoryEntry
 (conn : NWCONN_HANDLE;
 volNum : nuint8;
 dirEntry : nuint16;
 len : pnuint8;
 pathName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number.

dirEntry

(IN) Specifies the directory entry number.

len

(OUT) Points to the path length and specifies how much of the buffer

File Service Group

Path and Drive: Functions 1014

pointed to by the pathName parameter was used.

pathName

(OUT) Points to the buffer containing the path name (at least 256
characters).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

NCP Calls

0x2222 22 26 Get Path Name Of A Volume---Directory Number Pair

See Also

NWScanOpenFilesByConn2

File Service Group

Path and Drive: Functions 1015

NWGetSearchDriveVector

Returns the shell's search drive vector

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, Windows 3.1, Windows NT, Windows95

Service: Path and Drive

Syntax

#include<nwcaldef.h>
#include<nwdpath.h>
or
#include<nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWGetSearchDriveVector (
 pnstr8 vectorBuffer);

Pascal Syntax

Function NWGetSearchDriveVector
 (vectorBuffer : pnstr8
) : NWCCODE;

Parameters

vectorBuffer

(OUT) Points to a 16-byte buffer receiving the search drive vectors.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8811 INVALID_SHELL_CALL

0x89FF NWE_REQUESTER_FAILURE

Remarks

NWGetSearchDriveVector will only return a drive vector if either
NETX.COM or NETX.EXE is running. Otherwise,
NWGetSearchDriveVector returns 0xFF in vectorBuffer.

Each byte of the vector is a drive handle. The vector list is terminated by a

File Service Group

Path and Drive: Functions 1016

byte (0xFF).

Under NLM, INVALID_SHELL_CALL is always returned.

NCP Calls

None

File Service Group

Path and Drive: Functions 1017

NWParseNetWarePath

Parses a path and returns the connection handle, directory handle, and new
path to be used by subsequent NetWare requests

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Path and Drive

Syntax

#include<nwdpath.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWParseNetWarePath (
 pnstr8 path,
 NWCONN_HANDLE N_FAR *conn,
 NWDIR_HANDLE N_FAR *dirHandle,
 pnstr8 newPath);

Pascal Syntax

#include <nwdpath.inc>

Function NWParseNetWarePath
 (path : pnstr8;
 Var conn : NWCONN_HANDLE;
 Var dirHandle : NWDIR_HANDLE;
 newPath : pnstr8
) : NWCCODE;

Parameters

path

(IN) Points to the path being parsed in capital letters.

conn

(OUT) Points to the NetWare server connection handle.

dirHandle

(OUT) Points to the directory handle.

newPath

(OUT) Points to the new path, relative to the directory handle; this
parameter should be a buffer of at least 256 characters.

File Service Group

Path and Drive: Functions 1018

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x880F NO_CONNECTION_TO_SERVER

0x883C NOT_MY_RESOURCE

Remarks

NWParseNetWarePath does not check the validity of any volume or
directory names in the path string.

path must be in capital letters or calling NWParseNetWarePath will fail.

If the path to be parsed is relative to the current directory,
NWParseNetWarePath assumes the current drive and path so a complete
path specification is returned. If the path is on a local drive,
NWParseNetWarePath returns NOT_MY_RESOURCE. If the path
specifies a NetWare server name and there are no connections to that
NetWare server, NO_CONNECTION_TO_SERVER is returned.

Under OS/2, NWParseNetWarePath returns a directory handle and a
path relative to it.

Under DOS, NWParseNetWarePath returns zero (0) for the directory
handle and a volume:path.

NWParseNetWarePath returns a connection handle under OS/2 and
DOS.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWParsePath

File Service Group

Path and Drive: Functions 1019

NWParsePath

Parses a path string

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Path and Drive

Syntax

#include<nwdpath.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWParsePath (
 pnstr8 path,
 pnstr8 serverName,
 NWCONN_HANDLE N_FAR *conn,
 pnstr8 volName,
 pnstr8 dirPath);

Pascal Syntax

#include <nwdpath.inc>

Function NWParsePath
 (path : pnstr8;
 serverName : pnstr8;
 Var conn : NWCONN_HANDLE;
 volName : pnstr8;
 dirPath : pnstr8
) : NWCCODE;

Parameters

path

(IN) Points to the path to be parsed.

serverName

(OUT) Points to the server name (48 characters, optional).

conn

(OUT) Points to the connection handle of the server (optional).

volName

(OUT) Points to the volume name (17 characters, optional).

dirPath

File Service Group

Path and Drive: Functions 1020

dirPath

(OUT) Points to the directory portion of the path; this parameter
should be a buffer of at least 256 characters.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x880F NO_CONNECTION_TO_SERVER

Remarks

If the path to be parsed is relative to the current directory, NWParsePath
assumes the current drive and path so a complete path specification is
returned.

IF k: is the current drive
AND \dir1 is the current directory on k:
AND dir2 is a directory in dir1
THEN calling NWParsePath with path pointing to "dir2" will cause dirPath

If the path to be parsed contains a map rooted drive, dirPath will be set to
the complete directory path from the volume level.

IF k:is map rooted to server1/sys:dir1\
AND dir2 is a directory in dir1
THEN calling NWParsePath with path pointing to "k:dir2" will cause dirPath

If the path to be parsed is relative to the current directory, the entire
directory path will be returned, without a preceding `\' character.

IF k: is mapped to server1/sys:
AND the current directory path for k: is dir1
AND dir2 is a directory in dir1
THEN calling NWParsePath with path pointing to "k:dir2" will cause dirPath

If the path to be parsed is on the root directory, dirPath will return with a
preceding `\' character even if one is not included in the call. This is the
only case that will return a preceding `\' character.

IF k: is mapped to server1/sys:
AND the current directory path on k: is the root
AND dir1 is a directory on the root
THEN calling NWParsePath with path pointing to "k:dir1" will cause dirPath
 local drives and mapped drives.

serverName, conn, volName, and dirPath are optional. Substitute NULL if no

File Service Group

Path and Drive: Functions 1021

returns are desired. However, all parameter positions must be filled.

If the path is on a local drive, return information is placed in the return
parameters as follows:

serverName zero-length string
conn 0
volName drive letter
dirPath directories from drive letter

NWParsePath does not guarantee the path actually exists.

If the path specifies a NetWare server name and there are no connections
to that NetWare server, NO_CONNECTION_TO_SERVER is returned.
The path specification can be any of the following:

Specificati
on

Function

drive:path Drive letter is used to determine the network
information, if any.

vol:path Volume and path will be assumed to be relative to the
default server.

server
vol:path

Information is copied to the associated return buffers
and, if requested, the connection handle is obtained
using the server name.

path Current drive is used to determine all the information.

If a map rooted drive is used, dirPath will be set to the complete directory
path from the volume level.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWParseNetWarePath

File Service Group

Path and Drive: Functions 1022

NWSetDriveBase

Maps the target drive to the specified directory path

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSetDriveBase (
 nuint16 driveNum,
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 dirPath,
 nuint16 driveScope);

Pascal Syntax

#include <nwdpath.inc>

Function NWSetDriveBase
 (driveNum : nuint16;
 conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 dirPath : pnstr8;
 driveScope : nuint16
) : NWCCODE;

Parameters

driveNum

(IN) Specifies the drive number of the drive being mapped (0=current,
1=A, 2=B,. . .).

conn

(IN) Specifies the NetWare server connection handle to which the
drive is mapped.

dirHandle

(IN) Specifies the directory handle associated with dirPath.

dirPath

(IN) Points to the directory path the drive will be mapped to. dirPath is
relative to dirHandle, unless dirHandle is 0.

File Service Group

Path and Drive: Functions 1023

driveScope

Reserved for Novell use only; must be 0.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x0055 Duplicate Device (DOS, Windows 3.1): The specified drive
is already mapped and VLM (rather than NETX) is loaded

0x8801 INVALID_CONNECTION

0x8802 DRIVE_IN_USE (Windows NT): The drive number is
already mapped

0x8803 DRIVE_CANNOT_MAP

0x883C NOT_MY_RESOURCE: Trying to map a local drive

0x8875 INVALID_DRIVE_NUM

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89FF INVALID_DRIVE_NUMBER (Windows NT): An invalid
drive number is being used

Remarks

If the specified drive number is zero, the current drive will be remapped
to the specified path. For other drive numbers, if the target drive is
already mapped, the mapping must be deleted by calling
NWDeleteDriveBase before calling NWSetDriveBase. Under DOS and
Windows 3.1 with NETX loaded and under OS/2, the drive will be
mapped correctly even if it is already mapped.

Under DOS, when using the NETX shell, NWSetDriveBase can be used
to map the temporary drives from 26 to 31. Temporary drives cannot be
mapped by calling NWSetDriveBase if the VLM redirector is running.

OS/2 does not allow local drives to be mapped.

Under all platforms, CD-ROM drives cannot be mapped.

The file server name should not be specified in the dirPath parameter.
Specify the file server name in the conn parameter. Under NETX.EXE, the
server name can be parsed, but VLMs do not parse out the server name.

Under NLM, INVALID_SHELL_CALL is always returned.

File Service Group

Path and Drive: Functions 1024

Under NLM, INVALID_SHELL_CALL is always returned.

NCP Calls

None

See Also

NWDeleteDriveBase, NWGetDriveStatus

File Service Group

Path and Drive: Functions 1025

NWSetInitDrive

Sets the initial drive on the specified NetWare server

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSetInitDrive (
 NWCONN_HANDLE conn);

Pascal Syntax

#include <nwdpath.inc>

Function NWSetInitDrive
 (conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle on which to set
the initial drive.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Remarks

NWSetInitDrive is used under OS/2 to set the mapping for drive L, the
OS/2 drive containing the system login for attaching to a server.

NWSetInitDrive can be called from all platforms; however, it will only

File Service Group

Path and Drive: Functions 1026

set the correct drive mapping under OS/2. When called from all other
platforms, NWSetInitDrive returns SUCCESSFUL without setting the
correct drive mapping.

Under NLM, INVALID_SHELL_CALL is always returned.

NCP Calls

None

File Service Group

Path and Drive: Functions 1027

NWSetSearchDriveVector

Sets the Shell's search drive vector

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, OS/2, Windows 3.1, Windows NT, Windows95

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSetSearchDriveVector (
 pnstr8 vectorBuffer);

Pascal Syntax

#include <nwdpath.inc>

Function NWSetSearchDriveVector
 (vectorBuffer : pnstr8
) : NWCCODE;

Parameters

vectorBuffer

(IN) Points to the vector buffer.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8811 INVALID_SHELL_CALL

0x89FF NWE_REQUESTER_FAILURE

Remarks

NWSetSearchDriveVector will only return a drive vector if either
NETX.COM or NETX.EXE is running. Otherwise,
NWSetSearchDriveVector returns 0xFF in vectorBuffer.

File Service Group

Path and Drive: Functions 1028

Each element of the vector is a drive handle. The vector list is terminated
by a byte (0xFF).

Under NLM, INVALID_SHELL_CALL is always returned.

Under Windows NT, NWSetSearchDriveVector immediately returns
INVALID_SHELL_CALL.

NCP Calls

None

File Service Group

Path and Drive: Functions 1029

NWStripServerOffPath

Parses a server or volume path, copies the server name to the buffer
specified by server, and returns a pointer to the volume path

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Path and Drive

Syntax

#include <nwdpath.h>
or
#include <nwcalls.h>
N_EXTERN_LIBRARY(pnstr8)NWStripServerOffPath (
 pnstr8 path,
 pnstr8 server);

Pascal Syntax

#include <nwdpath.inc>

Function NWStripServerOffPath
 (path : pnstr8;
 server : pnstr8
) : pnstr8;

Parameters

path

(IN) Points to a string containing a server volume path.

server

(OUT) Points to a 48-character buffer for the server name (optional).

Return Values

These are common return values; see Return Values for more
information.

0x0000 path passed in was NULL

characte
r pointer

pointer to the volume path

NCP Calls

File Service Group

Path and Drive: Functions 1030

None

See Also

NWParsePath, NWParseNetWarePath

File Service Group

Path and Drive: Functions 1031

ParsePath

Separates a full path into server, volume, and directory specifications

Local Servers: nonblocking

Remote Servers: blocking

NetWare Server: 2.x, 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: Path and Drive

Syntax

#include <stdlib.h>
#include <nwdir.h>

int ParsePath (
 char *path,
 char *server,
 char *volume,
 char *directories);

Parameters

path

(IN) Points to the string containing the path to be parsed and can
include a server name (255 character maximum).

server

(OUT) Points to the buffer in which to return the server name (48
character maximum).

volume

(OUT) Points to the buffer in which to return the volume name (16
character maximum).

directories

(OUT) Points to the buffer in which to return the directory
specification (255 character maximum).

Return Values

0 (0x00) ESUCCESS: Fails if an invalid path is passed.

22 (0x16) EBADHNDL

File Service Group

Path and Drive: Functions 1032

Remarks

ParsePath parses the given path and separates it into server, volume, and
directory specifications. Even if the path is not complete (or it is relative to
the current working directory), ParsePath returns the complete path
specification.

Strings for the server, volume, and directories parameters are always
converted to uppercase characters.

See Also

StripFileServerFromPath

File Service Group

Path and Drive: Functions 1033

SetWildcardTranslationMode

Specifies whether wildcard translation is to take place when parsing
pathnames and filenames

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 2.x, 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: Path and Drive

Syntax

#include <nwdir.h>

BYTE SetWildcardTranslationMode (
 BYTE newMode);

Parameters

newMode

(IN) Specifies the new translation mode (TRUE or FALSE).

Return Values

Returns the old translation mode.

Remarks

SetWildcardTranslationMode enables (TRUE) or disables (FALSE)
translation of the following wildcards when parsing path and filenames:

* asterisk

? question mark

. period

When translation is enabled, the high-order bit is changed for all
wildcard characters that are parsed in any subsequent file or directory
service function. If the high-order bit is 0, it is set to a value of 1. If the
high-order bit is 1, it is set to 0.

NetWare uses its own set of rules to interpret wildcards in pathnames. If
the high-order bit of a wildcard character is a 1, NetWare interprets that
character as a DOS wildcard (this is called an augmented wildcard) and
uses DOS rules for interpretation of that wildcard.

File Service Group

Path and Drive: Functions 1034

StripFileServerFromPath

Removes the name of the server from a full path specification

Local Servers: nonblocking

Remote Servers: N/A

NetWare Server: 2.x, 3.x, 4.x

Platform: NLM

SMP Aware: No

Service: Path and Drive

Syntax

#include <stdlib.h>
#include <nwdir.h>

char *StripFileServerFromPath (
 char *path,
 char *server);

Parameters

path

(IN) Points to the string containing the path from which to remove the
server name.

server

(OUT) Points to the buffer in which to place the stripped server name
(48 character maximum).

Return Values

Returns a pointer to a path specification stripped of the server name.

Remarks

StripFileServerFromPath removes the name of the server from a path
specification. If the path parameter does not include a server specification,
StripFileServerFromPath returns the original path. If the path parameter
does include a server specification, the returned value begins with the
volume specification.

See Also

ParsePath

File Service Group

Path and Drive: Functions 1035

Stream I/O

File Service Group

 1036

Stream I/O: Guides

Stream I/O: Concept Guide

Stream I/O Introduction

Stream I/O Functions

Additional Link

Stream I/O: Functions

Parent Topic:

File Overview

File Service Group

Stream I/O: Guides 1037

Stream I/O: Concepts

Stream I/O Functions

Function Purpose

clearerr Clears end-of-file error indicators for a stream.

fclose Closes a stream file.

fcloseall Closes all open stream files except stdin, stdout, and
stderr.

fdopen Associates a stream with a file handle that represents
an open file or device.

feof Tests the end-of-file indicator for a stream.

ferror Tests the error indicator for a stream.

fflush Flushes the output buffer of a stream.

fgetc Returns the next character from the input stream.

fgetchar Returns the next character from the input stream
pointed to by stdin.

fgetpos Retrieves the current position of a stream.

fgets Gets a string of characters from a stream and stores
them in an array.

fileno Returns the file handle for a stream.

flushall Clears all buffers associated with input streams and
writes any buffers associated with output streams.

fopen Opens a file and associates a stream with it.

fprintf Writes output to a stream under format control.

fputc Writes a character to the output stream.

fputs Writes a string to an output stream.

fread Reads data from a stream.

freopen Opens a file and associates a previously opened
stream with it.

fscanf Scans input from a stream under format control.

fseek Changes the read/write position of a stream.

fsetpos Sets the current position of a stream.

ftell Returns the current read/write position of a stream.

File Service Group

Stream I/O: Concepts 1038

fwrite Writes elements to a stream.

getc Gets the next character from a stream.

getchar Gets the next character from stdin.

gets Gets a string from a stream and stores it in an array.

printf Writes output to the stream designated by stdout.

putc Writes a character to an output stream.

putchar Writes a character to an output stream.

puts Writes a specified character string to an output stream
and appends a newline character to the output.

rewind Sets the stream position indicator to the beginning of
the file.

scanf Scans input from a stream.

setbuf Associates a buffer with a stream after the stream is
open and before it has been read or written to.

setvbuf Associates a buffer with a stream after the stream is
open and before it has been read or written to.

tmpfile Creates a temporary binary file.

ungetc Pushes a character back onto the specified input
stream.

vfprintf Writes output to a stream under format control.

vfscanf Scans input from a stream under format control.

vprintf Writes output to a stream under format control.

vscanf Scans input from the stream designated by stdin.

Parent Topic:

Stream I/O: Guides

Stream I/O Introduction

NOTE: The streams discussed here are standard files, not to be
confused with UNIX STREAMS or STREAMS.

Developed by USL®, the UNIX based STREAMS facility, or mechanism,
is a collection of system calls, kernel resources, and kernel utility
routines. The STREAMS mechanism creates, uses, and dismantles a
Stream, which is a full-duplex processing and data transfer path
between a driver in kernel space and a process in user space; a
STREAM consists of three basic components: a stream head, stream
modules (protocol stacks), and a stream driver. For more information
about STREAMS functions, see NetWare STREAMS: Guides.

File Service Group

Stream I/O: Concepts 1039

Stream I/O functions can be used for "standard" read and write file
operations. Data can be transmitted as characters, strings, or blocks of
memory.

A stream is the name given to a second-level file that has been opened for
data transmission. When a stream is opened, a pointer to a FILE structure is
returned. This pointer is used to reference the stream when other functions
are subsequently invoked.

Parent Topic:

Stream I/O: Guides

File Service Group

Stream I/O: Concepts 1040

Stream I/O: Functions

File Service Group

Stream I/O: Functions 1041

clearerr

Clears the end-of-file and error indicators for a stream (function or macro)

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: Yes

Service: Stream I/O

Syntax

#include <stdio.h>

void clearerr (
 FILE *fp);

Parameters

fp

(IN) Points to the file to be cleared.

Return Values

None

Remarks

The clearerr function or macro clears the end-of-file and error indicators
for the file pointed to by fp. These indicators are cleared only when the
file is opened or by an explicit call to the clearerr or rewind functions.

See Also

feof, ferror, perror

Example

clearerr

#include <stdio.h>

main ()
{
 FILE *fp;
 int c;

File Service Group

Stream I/O: Functions 1042

 fp=fopen("testfile", "wt");
 if (ferror (fp))
 { /* If error,*/
 clearerr (fp); /* clear the error */
 fputc (c, fp); /* and retry it */
 }
}

File Service Group

Stream I/O: Functions 1043

fclose

Closes a stream file

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int fclose (
 FILE *fp);

Parameters

fp

(IN) Points to the file to close.

Return Values

The fclose function returns a value of 0 if the file was successfully closed
or nonzero if any errors were detected. When an error has occurred, errno
is set.

Remarks

This function also works on the DOS partition.

The fclose function closes the file pointed to by fp. If there is unwritten
buffered data for the file, it is written before the file is closed. Unread
buffered data is discarded. If the associated buffer was automatically
allocated, it is deallocated.

See Also

fcloseall, fdopen, fopen, freopen

File Service Group

Stream I/O: Functions 1044

fcloseall

Closes all open stream files except stdin, stdout and stderr

Local Servers: blocking

Remote Servers: blocking

Classification: Other

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int fcloseall (void);

Return Values

The fcloseall function returns the number of files that were closed, if no
errors were encountered. When an error occurs, EOF is returned.

Remarks

The fcloseall function closes all open stream files except stdin, stdout,
and stderr. Files closed includes files created (and not yet closed) by
fdopen, fopen, and freopen.

See Also

fclose, fdopen, fopen, freopen

Example

fcloseall

#include <stdio.h>

main ()
{
 printf ("The number of files closed is %d\n", fcloseall ());
}

File Service Group

Stream I/O: Functions 1045

fdopen

Associates a stream with a file handle that represents an open file or device

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: Other

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

FILE *fdopen (
 int handle,
 const char *mode);

Parameters

handle

(IN) Specifies a file handle.

mode

(IN) Specifies a file mode.

Return Values

The fdopen function returns a pointer to the object controlling the stream.
This pointer must be passed as a parameter to subsequent functions for
performing operations on the file. If the open operation fails, fdopen
returns a NULL pointer. When an error has occurred, errno is set.

Remarks

The fdopen function associates a stream with the file handle, handle,
which represents an opened file or device. The handle was returned by a
creat or open function. The open mode, mode, must match the mode with
which the file or device was originally opened.

If mode does not match the access flags used in opening the file originally,
errno will be set to EINVAL and fdopen will fail. This includes the mode
accesses read, write, append, and binary. See argument oflag for function
open.

The fdopen function opens the file whose name is the string pointed to by
filename, and associates a stream with it. The argument mode points to a
string beginning with one of the following sequences:

File Service Group

Stream I/O: Functions 1046

r Opens file for reading.

w Creates file for writing, or truncates to zero length; uses default
file translation.

a Appends; opens or creates text file for writing at end-of-file; uses
default file translation.

rb Opens binary file for reading.

rt Opens text file for reading.

wb Creates binary file for writing, or truncates to zero length.

wt Creates text file for writing, or truncates to zero length.

ab Appends; opens or creates binary file for writing at end-of-file.

at Appends; opens or creates text file for writing at end-of-file.

r+ Opens file for update (reading and/or writing); uses default file
translation.

w+ Creates file for update, or truncates to zero length; uses default
file translation.

a+ Appends; opens or creates file for update, writing at end-of-file;
uses default file translation.

r+
b

Opens binary file for update (reading and/or writing).

r+t Opens text file for update (reading and/or writing).

w+
b

Creates binary file for update, or truncates to zero length.

w+
t

Creates text file for update, or truncates to zero length.

a+
b

Appends; opens or creates binary file for update, writing at
end-of-file.

a+t Appends; opens or creates text file for update, writing at
end-of-file.

rb
+

Opens binary file for update (reading and/or writing).

rt+ Opens text file for update (reading and/or writing).

wb
+

Creates binary file for update, or truncates to zero length.

wt
+

Creates text file for update, or truncates to zero length.

ab
+

Appends; opens or creates binary file for update, writing at
end-of-file.

at+ Appends; opens or creates text file for update, writing at
end-of-file.

File Service Group

Stream I/O: Functions 1047

See Also

fopen, freopen, open, sopen

Example

fdopen

This example shows how to reverse the effects of redirecting stdin.

#include <stdio.h>
int func (char *filepath)
{
 int fd, stdin_fd;
 char line[512];
 FILE *fp;

 stdin_fd = fileno(stdin); /*save descriptor for 'stdin' */
 fd = dup(stdin_fd);

 if (fd == -1)
 return -1; /* failed to duplicate input descriptor */

 /* use the duplicated descriptor to redirect input... */
 fp = fdopen (fd, "r");

 if (!fp)
 return -2; /* failed to open duplicated descriptor */

 stdin = freopen (filepath, "r", fp);

 if (!stdin)
 return -3; /* failed to redirect stream input */

 /* use redirected stream (example)... */
 while (gets(line))
 printf("%s\n", line);

 /* UNDO: now undo the dffects of redirecting input... */
 fclose(stdin);

 stdin = fdopen(stdin_fd, "r");

 if (!stdin)
 return -4; /* failed to reestablish 'stdin' */

 return 0;
}

If stdin is redirected by a console command such as

File Service Group

Stream I/O: Functions 1048

LOAD NLM-NAME /(CLIB_OPT)/<filename>

you can likewise return the standard input to the keyboard by using the
statements following the "UNDO" comment in the example.

File Service Group

Stream I/O: Functions 1049

feof

Tests the end-of-file indicator for a stream (function or macro)

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

SMP Aware: Yes

Service: Stream I/O

Syntax

#include <stdio.h>

int feof (
 FILE *fp);

Parameters

fp

(IN) Points to the file to be tested.

Return Values

feof returns nonzero if the EOF indicator is set for fp.

Remarks

The feof function or macro tests the end-of-file indicator for the file
pointed to by fp. Because this indicator is set when an input operation
attempts to read past the end of the file, feof detects the end of the file
only after an attempt is made to read beyond the end of the file. Thus, if a
file contains 10 lines, feof does not detect the end of the file after the tenth
line is read; it detects the end of the file once the program attempts to
read more data.

See Also

clearerr, ferror, fopen, freopen, read

Example

feof

#include <stdio.h>

File Service Group

Stream I/O: Functions 1050

main ()
{
 FILE *fp;
 char buffer[100];
 fgets (buffer, sizeof (buffer), fp);
 while (! feof (fp))
 {
 process_record (buffer);
 fgets (buffer, sizeof (buffer), fp);
 }
}

File Service Group

Stream I/O: Functions 1051

ferror

Tests the error indicator for a stream (function or macro)

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

SMP Aware: Yes

Service: Stream I/O

Syntax

#include <stdio.h>

int ferror (
 FILE *fp);

Parameters

fp

(IN) Points to to the file to be tested.

Return Values

ferror returns nonzero if the error indicator is set for fp.

Remarks

The ferror function or macro tests the error indicator for the file pointed to
by fp.

See Also

clearerr, feof, strerror

Example

ferror

#include <stdio.h>

main ()
{
 FILE *fp;
 int c;
 c = fgetc (fp);

File Service Group

Stream I/O: Functions 1052

 if (ferror (fp))
 { /* if end-of-file */
 fclose (fp); /* close the file */
 c = EOF;
 }
}

File Service Group

Stream I/O: Functions 1053

fflush

Flushes the output buffer of a stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int fflush (
 FILE *fp);

Parameters

fp

(IN) Points to the file to be flushed.

Return Values

The fflush function returns nonzero if a write error occurs, and returns
zero otherwise. If an error occurs, errno is set.

Remarks

If the file pointed to by fp is open for output or update, the fflush
function causes any unwritten data to be written to the file. If the file
pointed to by fp is open for input or update, the fflush function undoes
the effect of any preceding ungetc operation on the stream. If the value of
fp is NULL, all open files are flushed.

See Also

fgetc, fgets, flushall, fopen, getc, gets, setbuf, setvbuf, ungetc

File Service Group

Stream I/O: Functions 1054

fgetc

Returns the next character from the input stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int fgetc (
 FILE *fp);

Parameters

fp

(IN) Points to the file.

Return Values

The fgetc function returns the next character from the input stream
pointed to by fp. If the stream is at end-of-file, the EOF indicator is set and
fgetc returns EOF. If a read error occurs, the error indicator is set and
fgetc returns EOF. If an error occurs, errno is set.

Remarks

The fgetc function gets the next character from the file designated by fp.
The character is signed.

See Also

fgets, fopen, getc, gets, ungetc

Example

fgetc

#include <stdio.h>

main ()
{

File Service Group

Stream I/O: Functions 1055

 FILE *fp;
 int c;
 fp = fopen ("data.fil", "r");
 while ((c = fgetc (fp)) != EOF)
 putchar (c);
 fclose (fp);
}

File Service Group

Stream I/O: Functions 1056

fgetchar

Equivalent to fgetc with the argument stdin (implemented for NetWare®
3.11 and above)

Local Servers: blocking

Remote Servers: blocking

Classification: Other

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int fgetchar (void);

Return Values

The fgetchar function returns the next character from the input stream
pointed to by stdin. If the stream is at end-of-file, the EOF indicator is set
and fgetchar returns EOF. If a read error occurs, the error indicator is set
and fgetchar returns EOF. When an error has occurred, the global
variable errno contains a value indicating the type of error detected.

Remarks

The fgetchar function is equivalent to fgetc with the argument stdin.

See Also

fgetc, getc, getchar

Example

fgetchar

#include <stdio.h>

main()
{
 int c;
 while((c = fgetchar()) != EOF)
 putchar(c);
}

File Service Group

Stream I/O: Functions 1057

fgetpos

Stores the current position of a stream in an object

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int fgetpos (
 FILE *fp,
 fpos_t *pos);

Parameters

fp

(IN) Points to the file.

pos

(OUT) Points to the object into which the position of the file is stored.

Return Values

The fgetpos function returns a value of 0 if successful. Otherwise, the
fgetpos function returns a nonzero value. If an error occurs, errno is set.

Remarks

The fgetpos function stores the current position of the file pointed to by fp
in the object pointed to by pos. The value stored is usable by the fsetpos
function for repositioning the file to the position it had at the time of the
call to fgetpos.

See Also

fopen, fseek, fsetpos, ftell

Example

fgetpos

#include <stdio.h>

File Service Group

Stream I/O: Functions 1058

#include <stdio.h>

main ()
{
 int completionCode;
 FILE *fp;
 fpos_t position;
 completionCode = fgetpos (fp, &position);
 completionCode = fsetpos (fp, &position);
}

File Service Group

Stream I/O: Functions 1059

fgets

Gets a string of characters from a stream and stores them in an array

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

char *fgets (
 char *buf,
 size_t n,
 FILE *fp);

Parameters

buf

(OUT) Points to the array into which the characters are to be stored.

n

(IN) Specifies the number of characters to read.

fp

(IN) Points to the file to be read.

Return Values

The fgets function returns buf if successful. NULL is returned if
end-of-file is encountered or if a read error occurs. If an error occurs, errno
is set.

Remarks

The fgets function gets a string of characters from the file designated by fp
and stores them in the array pointed to by buf. The fgets function stops
reading characters when end-of-file is reached, or when a newline
character is read, or when n-1 characters have been read, whichever
comes first. The newline character is not discarded. A NULL character is
placed immediately after the last character read into the array.

The gets function is similar to fgets except that it operates with stdin; it
has no size argument, and it replaces a newline character with the NULL
character.

File Service Group

Stream I/O: Functions 1060

See Also

fgetc, fopen, getc, gets

Example

fgets

#include <stdio.h>

main ()
{
 FILE *fp;
 char buffer[80];
 fp = fopen ("data.fil", "r");
 while (fgets (buffer, 80, fp) != NULL)
 fputs (buffer, stdout);
 fclose (fp);
}

File Service Group

Stream I/O: Functions 1061

fileno

Returns the file handle for a stream (function or macro)

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: Other

SMP Aware: Yes

Service: Stream I/O

Syntax

#include <stdio.h>

int fileno (
 FILE *fp);

Parameters

fp

(IN) Points to a stream opened with a previous call to fopen or fdopen.

Return Values

fileno returns the file handle designated by the fp parameter.

If an error occurs, errno is set to:

4 EBAD
F

Bad file number.

If fileno does not complete successfully, NetWareErrno is set.

Remarks

The returned file handle can be used to access the stream with any of the
functions that take a handle.

There are two versions of fileno in the NetWare API:

The fileno macro in STDIO.H does not do any error checking against a
bad file pointer.

The fileno function checks the handle passed in. If you want to use
this function and are including STDIO.H, place a sequence such as the
following in your code:

File Service Group

Stream I/O: Functions 1062

 #ifdef fileno
 #undef fileno
 #endif

See Also

close, creat, eof, filelength, fdopen, fopen, fstat, isatty, lseek, open, read,
sopen, tell, write

File Service Group

Stream I/O: Functions 1063

flushall

Clears all buffers associated with input streams and writes any buffers
associated with output streams

Local Servers: blocking

Remote Servers: blocking

Classification: Other

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int flushall (void);

Return Values

The flushall function returns the number of open streams. If an output
error occurs while writing to a file, errno is set.

Remarks

The flushall function clears all buffers associated with input streams and
writes any buffers associated with output streams. A subsequent read
operation on an input file causes new data to be read from the associated
file or device.

flushall is equivalent to calling the fflush function for all open stream
files.

See Also

fflush, fopen

Example

flushall

#include <stdio.h>

main ()
{
 printf ("The number of open files is %d\n", flushall ());
}

File Service Group

Stream I/O: Functions 1064

fopen

Opens a file and associates a stream with it

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

FILE *fopen (
 const char *filename,
 const char *mode);

Parameters

filename

(IN) Points to the name of the file to be opened.

mode

(IN) Points to the file mode.

Return Values

The fopen function returns a pointer to the object controlling the stream.
This pointer must be passed as a parameter to subsequent functions for
performing operations on the file. If the open operation fails, fopen
returns NULL. If an error occurs, errno is set.

Remarks

This function also works on the DOS partition.

The fopen function opens the file whose name is the string pointed to by
filename, and associates a stream with it. The argument mode points to a
string beginning with one of the following sequences:

r Opens file for reading; uses default file translation

w Creates file for writing, or truncates to zero length; uses default
file translation.

a Appends; opens or creates text file for writing at end-of-file; uses
default file translation.

File Service Group

Stream I/O: Functions 1065

rb Opens binary file for reading.

rt Opens text file for reading.

wb Creates binary file for writing, or truncates to zero length.

wt Creates text file for writing, or truncates to zero length.

ab Appends; opens or creates binary file for writing at end-of-file.

at Appends; opens or creates text file for writing at end-of-file.

r+ Opens file for update (reading and/or writing); uses default file
translation.

w+ Creates file for update, or truncates to zero length; uses default
file translation.

a+ Appends; opens or creates file for update, writing at end-of-file;
uses default file translation.

r+
b

Opens binary file for update (reading and/or writing).

r+t Opens text file for update (reading and/or writing).

w+
b

Creates binary file for update, or truncates to zero length.

w+
t

Creates text file for update, or truncates to zero length.

a+
b

Appends; opens or creates binary file for update, writing at
end-of-file.

a+t Appends; opens or creates text file for update, writing at
end-of-file.

rb
+

Opens binary file for update (reading and/or writing).

rt+ Opens text file for update (reading and/or writing).

wb
+

Creates binary file for update, or truncates to zero length.

wt
+

Creates text file for update, or truncates to zero length.

ab
+

Appends; opens or creates binary file for update, writing at
end-of-file.

at+ Appends; opens or creates text file for update, writing at
end-of-file.

Opening a file with read mode (r as the first character in the mode
argument) fails if the file does not exist or if it cannot be read. Opening a
file with append mode (a as the first character in the mode argument)
causes all subsequent writes to the file to be forced to the current
end-of-file, regardless of previous calls to the fseek function. When a file
is opened with update mode (+ as the second or third character of the
mode argument), both input and output can be performed on the

File Service Group

Stream I/O: Functions 1066

associated stream.

NOTE: For an example of how to reverse the effect of redirecting stdin,
see the example for fdopen.

See Also

fclose, fcloseall, fdopen, freopen

Example

fopen

#include <stdio.h>

main ()
{
 char filename[13];
 FILE *fp;
 strcpy (filename, "REPORTAA.DAT");
 fp = fopen (filename, "r");
}

File Service Group

Stream I/O: Functions 1067

fprintf

Writes output to a stream under format control

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int fprintf (
 FILE *fp,
 const char *format,
 ...);

Parameters

fp

(IN) Points to the file to be written to.

format

(IN) Points to the format control string.

Return Values

The fprintf function returns the number of characters written or a
negative value if an output error occurred. If an error occurs, errno is set.

Remarks

The fprintf function writes output to the file pointed to by fp under
control of the argument format. The format string is described under the
description of the printf function.

See Also

printf, sprintf, vfprintf

Example

fprintf

#include <stdio.h>

File Service Group

Stream I/O: Functions 1068

#include <stdio.h>

main ()
{
 char *weekday = {"Saturday"};
 char *month = {"April"};
 fprintf (stdout, "%s, %s %d, %d\n", weekday, month, 18, 1991);
}

produces the following:

Saturday, April 18, 1991

File Service Group

Stream I/O: Functions 1069

fputc

Writes a character to the output stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int fputc (
 int c,
 FILE *fp);

Parameters

c

(IN) Specifies the character to be written.

fp

(IN) Points to the output stream.

Return Values

The fputc function returns the character written. If a write error occurs,
the error indicator is set and fputc returns EOF. If an error occurs, errno is
set.

Remarks

The fputc function writes the character specified by the argument c to the
output stream designated by fp.

See Also

fclose, fgetc, fopen, fputs, putc, puts

Example

fputc

#include <stdio.h>

File Service Group

Stream I/O: Functions 1070

main ()
{
 FILE *fp;
 int c;
 fp = fopen ("data.fil", "r");
 while ((c = fgetc (fp)) != EOF)
 fputc (c, stdout);
 fclose (fp);
}

File Service Group

Stream I/O: Functions 1071

fputs

Writes a character string to the output stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int fputs (
 const char *buf,
 FILE *fp);

Parameters

buf

(IN) Points to the character string to be written.

fp

(IN) Points to the file

Return Values

The fputs function returns nonzero if an error occurs; otherwise, it returns
a value of 0. If an error occurs, errno is set.

Remarks

The fputs function writes the character string pointed to by buf to the file
designated by fp. The terminating NULL character is not written.

See Also

fopen, fputc, putc, puts

Example

fputs

#include <stdio.h>

main ()

File Service Group

Stream I/O: Functions 1072

main ()
{
 FILE *fp;
 char buffer [80];
 fp = fopen ("data.fil", "r");
 while (fgets (buffer, 80, fp)) != NULL)
 fputs (buffer, stdout);
 fclose (fp);
}

File Service Group

Stream I/O: Functions 1073

fread

Reads data from a stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

size_t fread (
 void *buf,
 size_t elsize,
 size_t nelem,
 FILE *fp);

Parameters

buf

(OUT) Points to the location to receive data.

elsize

(IN) Specifies the size (in bytes) of each element.

nelem

(IN) Specifies the number of elements.

fp

(IN) Points to the file to be read.

Return Values

The fread function returns the number of complete elements successfully
read. This value can be less than the requested number of elements.

Call feof and ferror to determine whether the end of the file was
encountered, or if an input/output error has occurred. If an error occurs,
errno is set.

Remarks

This function also works on the DOS partition.

The fread function reads nelem elements of elsize bytes each from the file
specified by fp.

File Service Group

Stream I/O: Functions 1074

See Also

feof, ferror, fopen, read

Example

fread

The following example reads a simple student record containing binary
data. The student record is described by the struct student_data declaration.

#include <stdio.h>

struct student_data
{
 int student_id;
 unsigned char marks [10];
};

int read_data (FILE *fp, struct student_data *p)
{
 return (fread (p, sizeof (*p), 1, fp));
}

File Service Group

Stream I/O: Functions 1075

freopen

Opens a file and associates a stream with it

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

FILE *freopen (
 const char *filename,
 const char *mode,
 FILE *fp);

Parameters

filename

(IN) Points to the name of the file to be opened.

mode

(IN) Points to the file mode.

fp

(IN) Points to the file structure.

Return Values

The freopen function returns a pointer to the object controlling the
stream. This pointer must be passed as a parameter to subsequent
functions for performing operations on the file. If the open operation
fails, freopen returns NULL. If an error occurs, errno is set.

Remarks

The stream located by the fp pointer is closed. The freopen function opens
the file whose name is the string pointed to by filename, and associates a
stream with it. The stream information is placed in the structure located
by the fp pointer.

The argument mode is described in the description of the fopen function.

NOTE: For an example of how to reverse the effect of redirecting stdin,
see the example for fdopen.

File Service Group

Stream I/O: Functions 1076

See Also

fdopen, fopen

Example

freopen

#include <stdio.h>
main ()

{
 FILE *fp;
 fp = freopen ("report.dat", "r", stdin);
}

File Service Group

Stream I/O: Functions 1077

fscanf

Scans input from a stream under format control

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int fscanf (
 FILE *fp,
 const char *format,
 ...);

Parameters

fp

(IN) Points to the file.

format

(IN) Points to the format control string.

Return Values

The fscanf function returns EOF when the scanning is terminated by
reaching the end of the input stream. Otherwise, it returns the number of
input arguments for which values were successfully scanned and stored.
If a file input error occurs, errno is set.

Remarks

The fscanf function scans input from the file designated by fp under
control of the argument format. Following the format string is a list of
addresses to receive values. The format string is described under the
description of the scanf function.

See Also

scanf, sscanf

Example

File Service Group

Stream I/O: Functions 1078

fscanf

To scan a date in the form "Saturday April 18 1991":

#include <stdio.h>

main ()
{
 int day, year;
 char weekday[10], month[12];
 FILE *in_data;
 in_data = fopen ("mydates.dat", "r");
 fscanf (in data, "%s %s %d %d", weekday, month, &day, &year);
}

File Service Group

Stream I/O: Functions 1079

fseek

Changes the read/write position of a stream

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int fseek (
 FILE *fp,
 long int offset,
 int where);

Parameters

fp

(IN) Points to the file.

offset

(IN) Specifies the file position to seek.

where

(IN) Specifies the relative file position.

Return Values

The fseek function returns a value of 0 if successful, nonzero otherwise. If
an error occurs, errno is set.

Remarks

The fseek function changes the read/write position of the file specified
by fp. This position defines the character to be read or written on the next
I/O operation on the file. The argument fp is a file pointer returned by
fopen or freopen. The argument offset is the position to seek, relative to
one of three positions specified by the argument where. Allowable values
for the where parameter are:

SEEK_SE
T

Relative to beginning of file; the offset must be positive.

SEEK_CU Relative to the current position in the file.

File Service Group

Stream I/O: Functions 1080

R

SEEK_EN
D

Relative to the end of the file.

The fseek function clears the end-of-file indicator and undoes any effects
of the ungetc function on the same file.

Call ftell to obtain the current position in the file before changing it.
Restore the position by using the value returned by ftell in a subsequent
call to fseek with the where parameter set to SEEK_SET.

See Also

fgetpos, fopen, fsetpos, ftell

Example

fseek

You can determine the size of a file by means of the following example,
which saves and restores the current position of the file.

#include <stdio.h>

long int filesize (FILE *fp)
{
 long int save_pos, size_of_file;
 save_pos = ftell (fp);
 fseek (fp, 0L, SEEK_END);
 size_of_file = ftell (fp);
 fseek (fp, save_pos, SEEK_SET);
 return (size_of_file);
}

File Service Group

Stream I/O: Functions 1081

fsetpos

Positions a stream according to the value of an object

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int fsetpos (
 FILE *fp,
 const fpos_t *pos);

Parameters

fp

(IN) Points to the file.

pos

(IN) Points to the object that specifies the new file position.

Return Values

The fsetpos function returns a value of 0 if successful; otherwise, the
fsetpos function returns a nonzero value. If an error occurs, errno is set.

Remarks

The fsetpos function positions the file pointed to by fp according to the
value of the object pointed to by pos, which shall be a value returned by
an earlier call to the fgetpos function on the same file.

See Also

fgetpos, fopen, fseek, ftell

Example

fsetpos

#include <stdio.h>

File Service Group

Stream I/O: Functions 1082

main ()
{
 FILE *fp;
 fpos_t position;
 fgetpos (fp, &position);
 fsetpos (fp, &position);
}

File Service Group

Stream I/O: Functions 1083

ftell

Returns the current read/write position of a stream

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

long int ftell (
 FILE *fp);

Parameters

fp

(IN) Points to the file.

Return Values

The ftell function returns the current read/write position of the file
specified by fp. When an error is detected, a value of -1 is returned. If an
error occurs, errno is set.

Remarks

The ftell function returns the current read/write position of the file
specified by fp. This position defines the character to be read or written by
the next I/O operation on the file. You can use the value returned by ftell
in a subsequent call to fseek in order to set the file to the same position.

See Also

fgetpos, fopen, fseek, fsetpos

Example

ftell

You can determine the size of a file by using the following example, which
saves and restores the current position of the file.

#include <stdio.h>

File Service Group

Stream I/O: Functions 1084

#include <stdio.h>

long int filesize (FILE *fp)

{
 long int save_pos, size_of_file;
 save_pos = ftell (fp);
 fseek (fp, 0L, SEEK_END);
 size_of_file = ftell (fp);
 fseek (fp, save_pos, SEEK_SET);
 return (size_of_file);
}

File Service Group

Stream I/O: Functions 1085

fwrite

Writes elements to a stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

size_t fwrite (
 const void *buf,
 size_t elsize,
 size_t nelem,
 FILE *fp);

Parameters

buf

(IN) Points to the buffer containing the data to write.

elsize

(IN) Specifies the size (in bytes) of each element.

nelem

(IN) Specifies the number of elements.

fp

(IN) Points to the file.

Return Values

This function also works on the DOS partition.

The fwrite function returns the number of complete elements that are
successfully written. This value is less than the requested number of
elements only if a write error occurs.

Remarks

The fwrite function writes nelem elements of elsize bytes each to the file
specified by fp.

See Also

File Service Group

Stream I/O: Functions 1086

ferror, fopen

Example

fwrite

The following example writes a simple student record containing binary
data.

#include <stdio.h>

struct student_data
{
 int student_id;
 unsigned char marks[10];
};

int write_data (FILE *fp, struct student_data *p)
{
 return (fwrite (p, sizeof (*p), 1, fp));
}

File Service Group

Stream I/O: Functions 1087

getc

Gets the next character from a stream (function or macro)

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int getc (
 FILE *fp);

Parameters

fp

(IN) Points to the file.

Return Values

The getc function or macro returns the next character from the input
stream pointed to by fp. If the stream is at end-of-file, the EOF indicator is
set and getc returns EOF. If a read error occurs, the error indicator is set
and getc returns EOF. If an error occurs, errno is set.

Remarks

The getc function or macro gets the next character from the file
designated by fp. The character is returned as an int value.

The getc function is equivalent to fgetc, except that it can be implemented
as a macro.

See Also

fgetc, fgets, fopen, gets, ungetc

Example

getc

#include <stdio.h>

File Service Group

Stream I/O: Functions 1088

main ()
{
 FILE *fp;
 int c;
 fp = fopen ("data.fil", "r");
 while ((c = getc (fp)) != EOF)
 putchar (c);
 fclose (fp);
}

File Service Group

Stream I/O: Functions 1089

getchar

Equivalent to getc with the argument stdin (function or macro)

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int getchar (void);

Return Values

The getchar function or macro returns the next character from the input
stream pointed to by stdin. If the stream is at end-of-file, the EOF
indicator is set and getchar returns EOF. If a read error occurs, the error
indicator is set and getchar returns EOF. If an error occurs, errno is set.

Remarks

The getchar function or macro is equivalent to getc with the argument
stdin.

See Also

getc

Example

getchar

#include <stdio.h>

main ()
{
 FILE *fp;
 int c;
 fp = freopen ("data.fil", "r", stdin);
 while ((c = getchar ()) != EOF)
 putchar (c);
 fclose (fp);
}

File Service Group

Stream I/O: Functions 1090

gets

Gets a string of characters from stdin and stores them in an array

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

char *gets (
 char *buf);

Parameters

buf

(OUT) Points to the array into which the characters are to be stored.

Return Values

The gets function returns buf if successful. It returns NULL if a read error
occurs.

Remarks

The gets function gets a string of characters from the file designated by
stdin and stores them in the array pointed to by buf until a newline
character is read. Any newline character is discarded, and a NULL
character is placed immediately after the last character read into the
array.

It is recommended that fgets be used instead of gets because data beyond
the array buf is destroyed if a newline character is not read from the input
stream stdin before the end of the array buf is reached.

See Also

fgetc, fgets, fopen, getc, ungetc

Example

gets

File Service Group

Stream I/O: Functions 1091

#include <stdio.h>

main ()
{
 char buffer[80];
 while (gets (buffer)) != NULL)
 puts (buffer);
}

File Service Group

Stream I/O: Functions 1092

printf

Writes formatted output to a specified file designated by stdout

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: Yes

Service: Stream I/O

Syntax

#include <stdio.h>

int printf (
 const char *format,
 ...);

Parameters

format

(IN) Points to the format control string.

Return Values

The printf function returns the number of characters written, or it returns
a negative value if an output error occurred. If an error occurs, errno is
set.

Remarks

The printf function writes output to the file designated by stdout under
control of the argument format.

Format Control String

The format control string consists of ordinary characters, which are
written exactly as they occur in the format string, and of conversion
specifiers, which cause argument values to be written as they are
encountered during the processing of the format string. An ordinary
character in the format string is any character, other than a percent (%)
character, that is not part of a conversion specifier. A conversion specifier
is a sequence of characters in the format string. The conversion specifier
begins with a % and is followed, in sequence, by the following:

Zero or more format control flags, which can modify the final effect of
the format directive.

File Service Group

Stream I/O: Functions 1093

An optional decimal integer, or an asterisk character (*), which
specifies a minimum field width to be reserved for the formatted item.

An optional precision specification in the form of a period character (.)
followed by an optional decimal integer or an asterisk character (*).

An optional type-length specification. It can be any one of the
following characters:

h l L N F

A character that specifies the type of conversion to be performed. It can
be any one of the following characters:

c d e E f F g G i n o p s u x X

The valid format control flags are:

- The formatted item is left-justified within the field; normally, items
are right-justified.

A signed, positive object always starts with a plus (+) character;
normally, only negative items begin with a sign.

"
"

A signed, positive object always starts with a space character; if
both + and - are specified, + overrides -.

An alternate conversion form is used:

For o (unsigned octal) conversions, the precision is incremented so
that the first digit is 0.

For x or X (unsigned hexadecimal) conversions, a nonzero value is
prepended with 0x or 0X, respectively.

For e, E, f, g, or G (any floating-point) conversions, the result
always contains a decimal-point character, even if no digits follow
it; normally, a decimal- point character appears in the result only if
there is a digit to follow it.

In addition to the preceding, for g or G conversions, trailing zeros
are not removed from the result.

If no field width is specified, or if the value that is given is less than the
number of characters in the converted value (subject to any precision
value), a field of sufficient width to contain the converted value is used. If
the converted value has fewer characters than are specified by the field
width, the value is padded on the left (or right, subject to the
left-justification flag) with spaces or zero characters (0). If the field width
begins with a zero, the value is padded with zeros; otherwise, the value is
padded with spaces. If the field width is *, a value of type int from the
argument list is used (before a precision argument or a conversion
argument) as the minimum field width. A negative field width value is
interpreted as a left- justification flag, followed by a positive field width.

File Service Group

Stream I/O: Functions 1094

As with the field width specifier, a precision specifier of * causes a value
of type int from the argument list to be used as the precision specifier. If
no precision value is given, a precision of 0 is used. The precision value
affects the following conversions:

For d, i, o, u, x, and X (integer) conversions, the precision specifies the
minimum number of digits to appear.

For e, E, and f (fixed-precision, floating-point) conversions, the
precision specifies the number of digits to appear after the
decimal-point character.

For g and G (variable-precision, floating-point) conversions, the
precision specifies the maximum number of significant digits to
appear.

For s (string) conversions, the precision specifies the maximum
number of characters to appear.

A type length specifier affects the conversion as follows:

h Causes a d, i, o, u, x, or X (integer) conversion to process a short int
or unsigned short int argument; note that although the argument
can have been promoted as part of the function call, the value is
converted to the smaller type before it is converted.

It causes an n (converted length assignment) operation to assign
the converted length to an object of type unsigned short int.

l Causes a d, i, o, u, x, or X (integer) conversion to process a long int
or unsigned long int argument.

It causes an n (converted length assignment) operation to assign
the converted length to an object of type unsigned long int.

F Causes the pointer associated with n, p, or s conversions to be
treated as a far pointer.

L Causes an e, E, f, g, or G (double) conversion to process a long
double argument.

N Causes the pointer associated with n, p, or s conversions to be
treated as a near pointer.

The valid conversion type specifiers are:

c An argument of type int is converted to a value of type char and
the corresponding ASCII character code is written to the output
stream.

d, i An argument of type int is converted to a signed decimal
notation and written to the output stream. The default precision
is 1, but if more digits are required, leading zeros are added.

 e, E An argument of type double is converted to a decimal notation

File Service Group

Stream I/O: Functions 1095

 e, E An argument of type double is converted to a decimal notation
in the form [-]d.ddde[+|-]ddd similar to FORTRAN
exponential (E) notation. The leading sign appears (subject to
the format control flags) only if the argument is negative. If the
argument is nonzero, the digit before the decimalpoint
character is nonzero. The precision is used as the number of
digits following the decimalpoint character. If the precision is
not specified, a default precision of 6 is used. If the precision is
0, the decimalpoint character is suppressed. The value is
rounded to the appropriate number of digits. For E conversions,
the exponent begins with the character E rather than e. The
exponent sign and a three-digit number (that indicates the
power of ten by which the decimal fraction is multiplied) are
always produced.

f An argument of type double is converted to a decimal notation
in the form [-]ddd.ddd similar to FORTRAN fixed-point (F)
notation. The leading sign appears (subject to the format control
flags) only if the argument is negative. The precision is used as
the number of digits following the decimalpoint character. If the
precision is not specified, a default precision of 6 is used. If the
precision is 0, the decimalpoint character is suppressed,
otherwise, at least one digit is produced before the
decimal-point character. The value is rounded to the
appropriate number of digits.

g, G An argument of type double is converted using either the f or e
(or E, for a G conversion) style of conversion depending on the
value of the argument. In either case, the precision specifies the
number of significant digits that are contained in the result. The
e style conversion is used only if the exponent from such a
conversion would be less than -4 or greater than the precision.
Trailing zeros are removed from the result and a decimal-point
character only appears if it is followed by a digit.

n The number of characters that have been written to the output
stream is assigned to the integer pointed to by the argument. No
output is produced.

o An argument of type int is converted to an unsigned octal
notation and written to the output stream. The default precision
is 1, but if more digits are required, leading zeros are added.

p, P An argument of type void * is converted to a value of type int
and the value is formatted as for a hexadecimal (x) conversion.

s Characters from the string specified by an argument of type
char *, up to, but not including, the terminating NULL character
(\0), are written to the output stream. If a precision is specified,
no more than that many characters are written.

S Characters from a length-preceded string are written to the
output stream. If a precision is specified, no more than that
many characters are written.

u An argument of type int is converted to an unsigned decimal
notation and written to the output stream. The default precision

File Service Group

Stream I/O: Functions 1096

is 1, but if more digits are required, leading zeros are added.

x, X An argument of type int is converted to an unsigned
hexadecimal notation and written to the output stream. The
default precision is 1, but if more digits are required, leading
zeros are added. Hexadecimal notation uses digits (0 through 9)
and characters (a through f or A through F) for x or X
conversions respectively, as the hexadecimal digits. Subject to
the alternate-form control flag, 0x or 0X is affixed to the output.

Any other conversion type specifier character, including another percent
(%) character, is written to the output stream with no special
interpretation.

The arguments must correspond with the conversion type specifiers, left
to right in the string; otherwise, indeterminate results occur.

For example, a specifier of the form %8.*f defines a field to be at least 8
characters wide and gets the next argument for the precision to be used in
the conversion.

The output from

printf ("f1 = %8.4f f2 = %10.2E x = %#08x i = %d",
 23.45, 3141.5926, 0x1db, -1);

would be

f1 = 23.4500 f2 = 3.14E+003 x = 0x0001db i = -1

See Also

fprintf, sprintf, vfprintf

Example

printf

#include <stdio.h>

main ()
{
 char *weekday, *month;
 int day, year;
 weekday = "Saturday";
 month = "April";
 day = 18;
 year = 1991;
 printf ("%s, %s %d, %d\n", weekday, month, day, year);
}

File Service Group

Stream I/O: Functions 1097

produces the following:

Saturday, April 18, 1991

File Service Group

Stream I/O: Functions 1098

putc

Writes a character to the output stream (function or macro)

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int putc (
 int c,
 FILE *fp);

Parameters

c

(IN) Specifies the character to be written.

fp

(IN) Points to the file.

Return Values

The putc function or macro returns the character written. If a write error
occurs, the error indicator is set and putc returns EOF.

Remarks

The putc function is equivalent to fputc, except that it can be
implemented as a macro. The putc function or macro writes the character
specified by the argument c to the output stream designated by fp.

See Also

ferror, fopen, fputs, puts

Example

putc

#include <stdio.h>

File Service Group

Stream I/O: Functions 1099

main ()
{
 FILE *fp;
 int c;
 fp = fopen ("data.fil", "r");
 while ((c = fgetc(fp)) != EOF)
 putc (c, stdout);
 fclose (fp);
}

File Service Group

Stream I/O: Functions 1100

putchar

Writes a character to the output stream (function or macro)

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int putchar (
 int c);

Parameters

c

(IN) Specifies the character to be written.

Return Values

This function or macro returns the character written. If a write error
occurs, the error indicator is set and putchar returns EOF. If an error
occurs, errno is set.

Remarks

The putchar function or macro writes the character specified by the
argument c to the output stream stdout.

The function is equivalent to:

 fputc (c, stdout);

See Also

fputc, fputs

Example

putchar

#include <stdio.h>

File Service Group

Stream I/O: Functions 1101

main ()
{
 FILE *fp;
 int c;
 fp = fopen ("data.fil", "r");
 c = fgetc (fp);
 while (c != EOF)
 {
 putchar (c);
 c = fgetc (fp);
 };
 fclose (fp);
}

File Service Group

Stream I/O: Functions 1102

puts

Writes a specified character string to the output stream and appends a
newline character to the output

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int puts (
 const char *buf);

Parameters

buf

(IN) Points to the character string.

Return Values

The puts function returns a nonzero value if an error occurs; otherwise, it
returns a value of 0. If an error occurs, errno is set.

Remarks

The puts function writes the character string pointed to by buf to the
output stream designated by stdout and appends a newline character to
the output. The terminating NULL character is not written.

See Also

fputs, putc

Example

puts

#include <stdio.h>

main ()
{

File Service Group

Stream I/O: Functions 1103

 FILE *fp;
 char buffer[80];
 fp = freopen ("data.fil", "r", stdin);
 while (gets (buffer) != NULL)
 puts (buffer);
 fclose (fp);
}

File Service Group

Stream I/O: Functions 1104

rewind

Sets the file position indicator to the beginning of the file

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: Yes

Service: Stream I/O

Syntax

#include <stdio.h>

void rewind (
 FILE *fp);

Parameters

fp

(IN) Points to the file.

Return Values

None

Remarks

The rewind function sets the file position indicator for the stream
indicated by fp to the beginning of the file. It is equivalent to:

 fseek(fp, 0L, SEEK_SET);

except that the error indicator for the stream is cleared.

See Also

clearerr, fopen

Example

rewind

#include <stdio.h>

FILE *fp;

File Service Group

Stream I/O: Functions 1105

if ((fp = fopen ("program.asm", "r")) != NULL)
{
 assemble_pass (1);
 rewind (fp);
 assemble_pass (2);
 fclose (fp);
}

File Service Group

Stream I/O: Functions 1106

scanf

Scans input from a stream

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: Yes

Service: Stream I/O

Syntax

#include <stdio.h>

int scanf (
 const char *format,
 ...);

Parameters

format

(IN) Points to the format control string.

Return Values

The scanf function returns EOF when the scanning is terminated by
reaching the end of the input stream. Otherwise, the number of input
arguments for which values were successfully scanned and stored is
returned.

Remarks

The scanf function scans input from the file designated by stdin under
control of the argument format. Following the format string is the list of
addresses of items to receive values.

Format Control String

The format control string consists of zero or more format directives that
specify acceptable input file data. Subsequent arguments are pointers to
various types of objects that are assigned values as the format string is
processed.

A format directive can be a sequence of one or more white-space
characters, an ordinary character, or a conversion specifier. An ordinary
character in the format string is any character, other than a white-space
character or the percent (%) character, that is not part of a conversion
specifier. A conversion specifier is a sequence of characters in the format

File Service Group

Stream I/O: Functions 1107

string, which begins with a % and is followed, in sequence, by the
following:

An optional assignment suppression indicator: the asterisk character
(*)

An optional decimal integer that specifies the maximum field width to
be scanned for the conversion

An optional pointer type specification: one of N or F

An optional type length specification: one of h, l or L

A character that specifies the type of conversion to be performed. It can
be any one of the following characters:

c d e f g i o n p s u x

As each format directive in the format string is processed, the directive
can successfully complete, fail because of a lack of input data, or fail
because of a matching error as defined by the particular directive. If
end-of-file is encountered on the input data before any characters that
match the current directive have been processed (other than leading
white-space where permitted), the directive fails for lack of data. If
end-of-file occurs after a matching character has been processed, the
directive is completed (unless a matching error occurs), and the function
returns without processing the next directive. If a directive fails because
of an input character mismatch, the character is left unread in the input
stream. Trailing white-space characters, including newline characters, are
not read unless matched by a directive. When a format directive fails, or
the end of the format string is encountered, the scanning is completed
and the function returns.

When one or more white-space characters---space, horizontal tab (\t),
vertical tab (\v), form feed (\f), carriage return (\r), newline or line feed
(\n)---occur in the format string, input data up to the first
nonwhite-space character is read, or until no more data remains. If no
white-space characters are found in the input data, the scanning is
complete and the function returns.

An ordinary character in the format string is expected to match the same
character in the input stream.

A conversion specifier in the format string is processed as follows:

For conversion types other than [, c, and n, leading white-space
characters are skipped.

For conversion types other than n, all input characters, up to any
specified maximum field length, that can be matched by the
conversion type are read and converted to the appropriate type of
value; the character immediately following the last character to be

File Service Group

Stream I/O: Functions 1108

matched is left unread; if no characters are matched, the format
directive fails.

Unless the assignment suppression indicator (*) was specified, the
result of the conversion is assigned to the object pointed to by the next
unused argument (if assignment suppression was specified, no
argument is skipped); the arguments must correspond in number,
type, and order to the conversion specifiers in the format string.

A pointer type specification is used to indicate the type of pointer used to
locate the next argument to be scanned:

F Points to a far pointer.

N Points to a near pointer.

The pointer type defaults to that used for data in the memory model for
which the program has been compiled.

A type length specifier affects the conversion as follows:

h Causes a d, i, o, u, or x (integer) conversion to assign the converted
value to an object of type short int or unsigned short int.

It causes an n (read length assignment) operation to assign the
number of characters that have been read to an object of type
unsigned short int.

l Causes a d, i, o, u, or x (integer) conversion to assign the converted
value to an object of type long int or unsigned long int.

It causes an n (read length assignment) operation to assign the
number of characters that have been read to an object of type
unsigned long int.

It causes an e, f, or g (floatingpoint) conversion to assign the
converted value to an object of type double.

L Causes an e, f, or g (floatingpoint) conversion to assign the
converted value to an object of type long double.

The valid conversion type specifiers are:

c Any sequence of characters in the input stream of the length
specified by the field width, or a single character if no field
width is specified, is matched. The argument is assumed to
point to the first element of a character array of sufficient size
to contain the sequence, without a terminating NULL
character (\0). For a single-character assignment, a pointer to a
single object of type char is sufficient.

File Service Group

Stream I/O: Functions 1109

d A decimal integer, consisting of an optional sign, followed by
one or more decimal digits, is matched. The argument is
assumed to point to an object of type int.

e, f, g A floating-point number, consisting of an optional sign (+ or -),
followed by one or more decimal digits, optionally containing
a decimal-point character, followed by an optional exponent
of the form e or E, an optional sign, and one or more decimal
digits, is matched. The exponent, if present, specifies the
power of ten by which the decimal fraction is multiplied. The
argument is assumed to point to an object of type float.

i An optional sign, followed by an octal, decimal, or
hexadecimal constant is matched. An octal constant consists of
zero and zero or more octal digits. A decimal constant consists
of a nonzero decimal digit and zero or more decimal digits. A
hexadecimal constant consists of the characters 0x or 0X
followed by one or more (upper- or lowercase) hexadecimal
digits. The argument is assumed to point to an object of type
int.

n No input data is processed. Instead, the number of characters
that have already been read is assigned to the object of type
unsigned int that is pointed to by the argument. The number
of items that have been scanned and assigned (the return
value) is not affected by the n conversion type specifier.

o An octal integer, consisting of an optional sign, followed by
one or more (zero or nonzero) octal digits, is matched. The
argument is assumed to point to an object of type int.

p A hexadecimal integer, as described for x conversions below,
is matched. The converted value is further converted to a
value of type void* and then assigned to the object pointed to
by the argument.

s A sequence of nonwhite-space characters is matched. The
argument is assumed to point to the first element of a
character array of sufficient size to contain the sequence and a
terminating NULL character, which is added by the
conversion operation.

u An unsigned decimal integer, consisting of one or more
decimal digits, is matched. The argument is assumed to point
to an object of type unsigned int.

x A hexadecimal integer, consisting of an optional sign,
followed by an optional prefix 0x or 0X, followed by one or
more (uppercase or lowercase) hexadecimal digits, is matched.
The argument is assumed to point to an object of type int.

[c1c2
...]

 A sequence of characters, consisting of any of the characters
c1, c2, ... called the scanset, in any order, is matched. c1 cannot
be the caret character (^). If c1 is], that character is considered
to be part of the scanset and a second] is required to end the
format directive. The argument is assumed to point to the first
element of a character array of sufficient size to contain the
sequence and a terminating NULL character, which is added

File Service Group

Stream I/O: Functions 1110

sequence and a terminating NULL character, which is added
by the conversion operation.

[^c1c2
...]

 A sequence of characters, consisting of any of the characters
other than the characters between the ^ and], is matched. As
with the preceding conversion, if c1 is], it is considered to be
part of the scanset and a second] ends the format directive.
The argument is assumed to point to the first element of a
character array of sufficient size to contain the sequence and a
terminating NULL character, which is added by the
conversion operation.

A conversion type specifier of % is treated as a single ordinary character
that matches a single % character in the input data. A conversion type
specifier other than those listed above causes scanning to terminate the
function to return.

The line

 scanf ("%s%*f%3hx%d", name, &hexnum, &decnum)

with input

 some_string 34.555e-3 abc1234

copies some_string into the array name, skip 34.555e-3, assign 0xabc to
hexnum and 1234 to decnum. The return value is 3.

The line

char fmt[100];
 strcpy (fmt, "%[abcdefghijklmnopqrstuvwxyz");
 strcat (fmt,"[ABCDEFGHIJKLMNOPQRSTUVWZ]%*2s%[W\n]");
 scanf (fmt, string1, string2)

with input

 They may look alike, but they don't perform alike.

assigns

 "They may look alike"

to string1, skip the comma and the space, and assign

 " but they don't perform alike.".

to string2. (The %*2s only matches the ","; the next blank terminates that
field.)

See Also

fscanf, sscanf

File Service Group

Stream I/O: Functions 1111

Example

scanf

To scan a date in the form "Saturday April 18 1991":

#include <stdio.h>
int day, year;
char weekday[10], month[12];
scanf ("%s %s %d %d", weekday, month, &day, &year);

File Service Group

Stream I/O: Functions 1112

setbuf

Associates a buffer with a file after the file is open and before it has been
read or written to

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

SMP Aware: Yes

Service: Stream I/O

Syntax

#include <stdio.h>

void setbuf (
 FILE *fp,
 char *buffer);

Parameters

fp

(IN) Points to the file.

buffer

(IN) Points to the buffer.

Return Values

The setbuf function returns no value.

Remarks

The setbuf function can be used to associate a buffer with the file
designated by fp. If this function is used, it must be called after the file has
been opened and before it has been read or written. If the argument
buffer is NULL, then all input/ output for the file pointed to by fp is
completely unbuffered. If the argument buffer is not NULL, then it must
point to an array that is at least BUFSIZ characters in length, and all
input/output is fully buffered. BUFSIZ is a constant defined in STDIO.H.

See Also

fopen, setvbuf

Example

File Service Group

Stream I/O: Functions 1113

setbuf

#include <stdio.h>

main ()
{
 char *buffer;
 FILE *fp;
 fp = fopen ("data.fil", "r");
 buffer = malloc (BUFSIZ);
 setbuf (fp, buffer);
 fclose(fp);
}

File Service Group

Stream I/O: Functions 1114

setvbuf

Associates a buffer with a file after the file is open and before it has been
read or written to

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int setvbuf (
 FILE *fp,
 char *buf,
 int mode,
 size_t size);

Parameters

fp

(IN) Points to the file.

buf

(IN) Points to the buffer.

mode

(IN) Specifies the file mode that determines how to buffer the file.

size

(IN) Specifies the size of the array.

Return Values

The setvbuf function returns a value of 0 on success, or a nonzero value if
an invalid value is given for mode or size.

Remarks

The setvbuf function can be used to associate a buffer with the file
designated by fp. If this function is used, it must be called after the file has
been opened and before it has been read or written. The argument mode
determines how the file pointed to by fp is to be buffered, as follows:

File Service Group

Stream I/O: Functions 1115

_IOFBF Causes input/output to be fully buffered.

_IOLBF Causes output to be line buffered (the buffer is flushed when
a newline character is written, when the buffer is full, or
when input is requested).

_IONB
F

Causes input/output to be completely unbuffered.

If the argument buf is not NULL, the array to which it points is used
instead of an automatically allocated buffer. The argument size specifies
the size of the array.

See Also

fopen, setbuf

Example

setvbuf

#include <stdio.h>

main ()
{
 char *buf;
 FILE *fp;
 fp = fopen ("data.fil", "r");
 buf = malloc (1024);
 setvbuf (fp, buf, _IOFBF, 1024);
 fclose(fp);
}

File Service Group

Stream I/O: Functions 1116

tmpfile

Creates a temporary binary file

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: Yes

Service: Stream I/O

Syntax

#include <stdio.h>

FILE *tmpfile (void);

Return Values

The tmpfile function returns a pointer to the stream of the file that it
created. If the file cannot be created, the tmpfile function returns NULL.
If an error occurs, errno is set.

Remarks

The tmpfile function creates a temporary binary file that is automatically
removed when it is closed or at program termination. The file is opened
for update.

See Also

fopen, freopen, tmpnam

Example

tmpfile

#include <stdio.h>

main ()
{
 static FILE *TempFile;
 TempFile = tmpfile ();
}

File Service Group

Stream I/O: Functions 1117

ungetc

Pushes a character back onto the specified input stream

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>

int ungetc (
 int c,
 FILE *fp);

Parameters

c

(IN) Specifies the character to be pushed back onto the specified input
stream.

fp

(IN) Specifies the input stream.

Return Values

The ungetc function returns the character pushed back.

Remarks

The ungetc function pushes the character specified by c back onto the
input stream specified by fp. This character is returned by the next read
from the stream. Only the last character returned in this way is
remembered.

The ungetc function clears the EOF indicator, unless the value of c is EOF.

See Also

fopengetc

File Service Group

Stream I/O: Functions 1118

vfprintf

Writes output to a stream under format control

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdarg.h>
#include <stdio.h>

int vfprintf (
 FILE *fp,
 const char *format,
 va_list arg);

Parameters

fp

(IN) Points to to the file.

format

(IN) Points to to the format control string.

arg

(IN) Specifies a variable argument.

Return Values

The vfprintf function returns the number of characters written or a
negative value if an output error occurred. If an error occurs, errno is set.

Remarks

The vfprintf function writes output to the file pointed to by fp under
control of the argument format. The format string is described under the
description for printf. The vfprintf function is equivalent to fprintf, with
the variable argument list replaced with arg, which has been initialized
by the va_start macro.

See Also

fprintf, printf, sprintf, va_arg, va_end, va_start

File Service Group

Stream I/O: Functions 1119

Example

vfprintf

#include <stdarg.h>
#include <stdio.h>

extern FILE *LogFile;

void errmsg /* A GENERAL ERROR ROUTINE */
(char *format, ...)
{
 va_list arglist;
 va_start (arglist, format);
 vfprintf (stderr, format, arglist);
 va_end (arglist);
 if (LogFile != NULL)
 {
 va_start (arglist, format);
 vfprintf (LogFile, format, arglist);
 va_end (arglist);
 }
}

File Service Group

Stream I/O: Functions 1120

vfscanf

Scans input from a stream under format control

Local Servers: blocking

Remote Servers: blocking

Classification: Other

SMP Aware: No

Service: Stream I/O

Syntax

#include <stdio.h>
#include <stdarg.h>

int vfscanf (
 FILE *fp,
 const char *format,
 va_list arg);

Parameters

fp

(IN) Points to the file.

format

(IN) Points to the format control string.

arg

(OUT) Specifies a variable argument.

Return Values

The vfscanf function returns EOF when the scanning is terminated by
reaching the end of the input stream. Otherwise, the number of input
arguments for which values were successfully scanned and stored is
returned. If a file input error occurs, errno is set.

Remarks

The vfscanf function scans input from the file designated by fp under
control of the argument format. The format list is described with the scanf
function.

The vfscanf function is equivalent to the fscanf function, with a variable
argument list replaced with arg, which has been initialized using the
va_start macro.

File Service Group

Stream I/O: Functions 1121

See Also

fscanf, scanf, sscanf, va_arg, va_end, va_start

Example

vfscanf

#include <stdio.h>

#include <stdarg.h>
main ()
{
 auto va_list arglist;
 va_start (arglist, arg);
 vfprintf (fp, format, arglist);
 va_end (arglist);
}

File Service Group

Stream I/O: Functions 1122

vprintf

Writes output to stdout under format control

Local Servers: blocking

Remote Servers: blocking

Classification: ANSI

SMP Aware: Yes

Service: Stream I/O

Syntax

#include <stdarg.h>
#include <stdio.h>

int vprintf (
 const char *format,
 va_list arg);

Parameters

format

(IN) Points to to the format control string.

arg

(IN) Specifies a variable argument.

Return Values

The vprintf function returns the number of characters written or a
negative value if an output error occurred. If an error occurs, errno is set.

Remarks

The vprintf function writes output to the file stdout under control of the
argument format. The format string is described under the description for
printf. The vprintf function is equivalent to printf, with the variable
argument list replaced with arg, which has been initialized by the
va_start macro.

See Also

fprintf, printf, sprintf, va_arg, va_end, va_start

Example

vprintf

File Service Group

Stream I/O: Functions 1123

vprintf

The following shows the use of vprintf in a general error message routine.

#include <stdarg.h>
#include <stdio.h>

void errmsg (char *format, ...)
{
 va_list arglist;
 printf ("Error: ");
 va_start (arglist, format);
 vprintf (format, arglist);
 va_end (arglist);
}

File Service Group

Stream I/O: Functions 1124

vscanf

Scans input from the stream designated by stdin

Local Servers: blocking

Remote Servers: blocking

Classification: Other

SMP Aware: Yes

Service: Stream I/O

Syntax

#include <stdio.h>
#include <stdarg.h>

int vscanf (
 const char *format,
 va_list arg);

Parameters

format

(IN) Points to to the format control string.

arg

(OUT) Specifies a variable argument.

Return Values

The vscanf function returns EOF when the scanning is terminated by
reaching the end of the input stream. Otherwise, the number of input
arguments for which values were successfully scanned and stored is
returned.

Remarks

The vscanf function scans input from the file designated by stdin under
control of the argument format. The format list is described with the scanf
function.

The vscanf function is equivalent to the scanf function, with a variable
argument list replaced with arg, which has been initialized using the
va_start macro

See Also

fscanf, scanf, sscanf, va_arg, va_end, va_start

File Service Group

Stream I/O: Functions 1125

Example

vscanf

#include <stdio.h>
#include <stdarg.h>

void find (char *format, char *arg, ...)
{
 va_list arglist;
 va_start (arglist, arg);
 vscanf (format, arglist);
 va_end (arglist);
}

File Service Group

Stream I/O: Functions 1126

Synchronization

File Service Group

 1127

Synchronization: Guides

Synchronization: Task Guide

Locking Data and Files

Logging Files

Clearing Logged Files

Locking Files

Releasing Locked Files

Additional Links

Synchronization: Functions

Synchronization: Structures

Parent Topic:

Synchronization: Guides

Synchronization: Concept Guide

Synchronization Introduction

Types of Data Locks

File Locks

Physical Record Locks

Logical Record Locks

Semaphores

Functions

Synchronization Scan Functions

File Locking Functions

Logical Record Locking Functions

Physical Record Locking Functions

File Service Group

Synchronization: Guides 1128

Semaphore Functions

Additional Links

Synchronization: Functions

Synchronization: Structures

Parent Topic:

Synchronization: Guides

Types of Data Locks

NetWare® supports three types of data locks:

File Locks

Physical Record Locks

Logical Record Locks

Parent Topic:

Synchronization: Guides

File Service Group

Synchronization: Guides 1129

Synchronization: Tasks

Clearing Logged Files

Files remain in the file log table until you clear them.

NWClearFileLock2 clears a single file from the log table.

NWClearFileLockSet clears all files from the log table.

If a file is locked when you ask the server to clear it from the table, the
server releases the lock and clears the file. The server also closes the file if it's
open.

Parent Topic:

Synchronization: Guides

Related Topics:

Logging Files

Releasing Locked Files

Locking Data and Files

This section outlines steps for locking data. Locking procedures are built
around the file log table. The NetWare® server maintains a log table for
each connection task. (In multi-tasking environments, one task's log table is
not affected by another's.)

To lock one or more files, log the files into the table and then request a file
lock. If the server can't lock all the files, the operation fails and none of the
files are locked. This method protects your application from entering
deadlock with another application, a situation in which each application is
waiting for the other to release a partially locked set of files.

The following steps explain file locking, but the basic steps are the same for
locking files, physical records, or logical records.

1. Call NWLogFileLock2 for each file you intend to lock. This will log
each file into the log file. The timeOut parameter controls the
duration of the server's efforts.

2. After you have logged all files that you intend to lock, call
NWLockFileLockSet. This will lock all the files at once. Again, a

File Service Group

Synchronization: Tasks 1130

timeout value controls the duration of the server's efforts.

3. Use the files you have locked.

4. Release the locks on the files you have locked. To release individual
locks, call NWReleaseFileLock2 for each file. To release the entire set
of files, call NWReleaseFileLockSet.

5. Clear the files from the file log table. To clear individual files, call
NWClearFileLock2 for each file. To clear the entire set of files, call
NWClearFileLockSet.

NOTE: If a file is locked when you ask the server to clear it from
the log table, the server releases the lock and clears the file. The
server also closes the file if it's open.

Logging Files

Locking Files

Releasing Locked Files

Clearing Logged Files

Parent Topic:

Synchronization: Guides

Locking Files

After you have logged all the files you intend to lock, call
NWLockFileLockSet. This function locks all the files at once. The value of
the timeOut parameter controls the duration of the server's efforts.

To lock one or more files, log the files into the table and then request a file
lock. If the server can't lock all the files, the operation fails and none of the
files are locked. This method protects your application from entering
deadlock with another application, a situation in which each application is
waiting for the other to release a partially locked set of files.

Parent Topic:

Synchronization: Guides

Related Topics:

Logging Files

Logging Files

Locking procedures are built around the file log table. The NetWare® server

File Service Group

Synchronization: Tasks 1131

maintains a log table for each connection task. (In multi-tasking
environments, one task's log table is not affected by another's.)

Call NWLogFileLock2 to log files in the log table. Call this function for each
file you intend to lock. The timeOutLimit parameter lets you control the
amount of time the server spends attempting to lock the file. You can also
have the server enter the file into the table without attempting to lock it.

Parent Topic:

Synchronization: Guides

Related Topics:

Locking Files

Releasing Locked Files

Files remain locked until you specifically ask the server to release them. You
can release a file lock on an individual file or on an entire set of locked files:

NWReleaseFileLock2 releases a lock on a single file.

NWReleaseFileLockSet releases the lock on a set of files.

Parent Topic:

Synchronization: Guides

Related Topics:

Locking Files

Clearing Logged Files

File Service Group

Synchronization: Tasks 1132

Synchronization: Concepts

File Locking Functions

These functions manage file locks.

Function Comment

NWClearFileLock2 Unlocks the specified file and removes it from
the log table.

NWClearFileLockS
et

Unlocks and removes all files logged in the log
table.

NWLockFileLockS
et

Locks all files logged in the log table.

NWLogFileLock2 Logs the specified file in the log table.

NWReleaseFileLoc
k2

Unlocks the specified file but doesn't remove it
from the log table.

NWReleaseFileLoc
kSet

Unlocks all logged files but doesn't remove them
from the log table.

Parent Topic:

Synchronization: Guides

File Locks

File locks control access to an entire file or several files at the same time.
Once locked, a file can't be accessed by another connection.

Parent Topic:

Types of Data Locks

Related Topics:

Physical Record Locks

Logical Record Locks

Logical Record Locking Functions

File Service Group

Synchronization: Concepts 1133

These functions manage logical record locks.

Function Comment

NWClearLogicalRecord Unlocks the specified logical record and
removes it from the log table.

NWClearLogicalRecordS
et

Unlocks and then removes all logical
records logged in the log table.

NWLogLogicalRecord Logs the specified logical record in the log
table.

NWLockLogicalRecordS
et

Locks all logical records logged in the log
table.

NWReleaseLogicalRecor
d

Unlocks the specified logical record but
doesn't remove it from the log table.

NWReleaseLogicalRecor
dSet

Unlocks all log logical records but doesn't
remove them from the log table.

Parent Topic:

Synchronization: Guides

Logical Record Locks

Logical record locks control access to a logical record name. You define
logical record names for the purposes of your application. By associating the
logical record with a specific file or physical record you can coordinate
access to data within your application.

The NetWare® server only reports the status of the logical record. It's up to
your application to enforce restrictions implied by a logical record. The
server doesn't prevent applications from accessing physical data you have
associated with the logical record. For this reason, we recommend you don't
rely on file or physical record locks when using logical record locks.

Parent Topic:

Types of Data Locks

Related Topics:

File Locks

Physical Record Locks

Physical Record Locking Functions

File Service Group

Synchronization: Concepts 1134

These functions manage physical record locks.

Function Comment

NWClearPhysicalRecord Unlocks the specified physical record and
removes it from the log table.

NWClearPhysicalRecordS
et

Unlocks all logged physical records and
removes them from the log table.

NWLockPhysicalRecordS
et

Unlocks and removes all physical records
from the log table.

NWLogPhysicalRecord Logs a physical record in the log table.

NWReleasePhysicalRecor
d

Unlocks the specified physical record but
doesn't remove it from the log table.

NWReleasePhysicalRecor
dSet

Unlocks all logged physical records but
doesn't remove them from the log table.

Parent Topic:

Synchronization: Guides

Physical Record Locks

Physical record locks control access to byte ranges within a file. To lock a
physical record, specify a starting offset within the file and the length of the
record in bytes. Only the byte range is locked; the rest of the file remains
free. Physical record locks can be exclusive or shareable.

Parent Topic:

Types of Data Locks

Related Topics:

Logical Record Locks

File Locks

Semaphores

Like a logical record lock, a semaphore is used to control access to data
stored on the NetWare® server. As with logical records, you are responsible
for defining and enforcing any restrictions associated with a semaphore. A
common use for semaphores is to limit the number of users who can access
a network application.

File Service Group

Synchronization: Concepts 1135

Unlike a logical record, a semaphore allows you to configure the number of
applications that can access the data. You can scan for the semaphores that a
connection has open, as well as scan for the connections that have opened a
semaphore.

To set up a semaphore, call NWOpenSemaphore. This function takes the
name of the semaphore and an initial semaphore value. The initial value is
zero based and indicates the number of applications that can access the
semaphore. For example, if the initial value is 4, five applications can access
the semaphore (one of which is the application that opened the semaphore).

After the semaphore is open, applications needing access to the resource
associated with the semaphore must call NWWaitOnSemaphore. This
function decrements the semaphore. If the resulting value is zero or greater,
the function returns successfully. In that case, the resource is considered
available. If the semaphore reaches a negative value, the application must
wait until the semaphore returns to zero before accessing the resource.

When an application finishes using the protected resource, it calls
NWCloseSemaphore. This function decrements the semaphore's open
count by one. The semaphore is deleted by the last process to call this
function.

Parent Topic:

Synchronization: Guides

Semaphore Functions

These functions manage semaphores.

Function Comment

NWCloseSemapho
re

Closes a semaphore and decrements the open
count.

NWExamineSemap
hore

Returns the semaphore value and the number of
workstations that have the semaphore open.

NWOpenSemapho
re

Creates and initializes a named semaphore to
the specified value.

NWSignalSemaph
ore

Increments the semaphore value by one.

NWWaitOnSemap
hore

Allows the application to queue up for access to
the resource associated with a semaphore.

Parent Topic:

Synchronization: Guides

File Service Group

Synchronization: Concepts 1136

Synchronization Introduction

Synchronization provides developers with the ability to lock users out of a
file while it is being accessed by someone else. Synchronization is essential
to assuring data integrity on the network, where many users can access the
same data simultaneously. Data locks are the basis for controlling file access.

NetWare® also supports semaphores for controlling access to files.
However, semaphores can be applied to other resources as well, and so
aren't exclusively a file synchronization mechanism.

In addition to locking data, you can scan for information about locks and
semaphores such as a list of locks associated with a specified connection or a
list of connections locking a specified file.

NOTE: NetWare 3.11 introduced numerous new NCP requests for file
locking and semaphore management. Synchronization takes advantage
of the new requests whenever possible.

Parent Topic:

Synchronization: Guides

Synchronization Scan Functions

These functions scan for synchronization information in association with
workstation connections.

Function Comment

NWScanLogicalLocksByCo
nn

Scans for all logical record locks on a
specified connection.

NWScanLogicalLocksByNa
me

Scans for all record locks on a specified
logical name.

NWScanPhysicalLocksByC
onnFile

Scans for all physical record locks on a
specified connection for a specified file.

NWScanPhysicalLocksByFi
le

Scans for all record locks on a specific
physical file.

NWScanSemaphoresByCon
n

Scans information about the
semaphores that a specified connection
has open.

NWScanSemaphoresByNa
me

Scans information about a semaphore
by name.

Parent Topic:

Synchronization: Guides

File Service Group

Synchronization: Concepts 1137

Synchronization: Functions

File Service Group

Synchronization: Functions 1138

NWClearFileLock2

Unlocks the specified file and removes it from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWClearFileLock2 (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path);

Pascal Syntax

#include <nwfile.inc>

Function NWClearFileLock2
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle of the directory containing the
locked file.

path

(IN) Points to the string containing the name and path of the locked
file.

Return Values

These are common return values; see Return Values for more
information.

File Service Group

Synchronization: Functions 1139

G0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89A1 DIRECTORY_IO_ERROR

0x89FD BAD_STATION_NUMBER

0x89FF LOCK_ERROR

Remarks

To avoid deadlock, a workstation must request those resources it needs to
lock by making an entry in the File Log Table at the NetWare server.
Once the log table is complete, the application attempts to lock those
records. Locking works only if all records in the table are available. If
some of the logged resources cannot be locked, the lock fails and none of
the resources are locked.

2.x servers will also return INVALID_PATH when a bad directory
handle is passed.

If the file is open, NWClearFileLock2 causes it to be closed on the server.
The application should close the associated file on the workstation to
clear the local file handle correctly.

path can specify either a file's complete path name or a path relative to the
current working directory. For example, if a file's complete path name is
SYS:ACCOUNT/DOMEST/TARGET.DAT and the directory handle
mapping is SYS:ACCOUNT, path could point to either of the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT
DOMEST/TARGET.DAT

NCP Calls

0x2222 07 Clear File

See Also

NWClearFileLockSet, NWLogPhysicalRecord, NWLogFileLock2

File Service Group

Synchronization: Functions 1140

NWClearFileLockSet

Unlocks all files logged in the File Log Table and removes them from the log
table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWClearFileLockSet (
 void);

Pascal Syntax

#include <nwfile.inc>

Function NWClearFileLockSet
 : NWCCODE;

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

Remarks

To avoid deadlock, a workstation must request those resources it needs to
lock by making an entry in the File Log Table at the NetWare server.
Once the log table is complete, the application attempts to lock those
records. Locking works only if all records in the table are available. If
some of the logged resources cannot be locked, the lock fails and none of
the resources are locked.

All open files in the task's log table are closed. The file handles on the
workstation itself are not cleared---this should be done by the application

File Service Group

Synchronization: Functions 1141

and any error codes should be ignored. NWClearFileLockSet is ignored
if the associated task on the workstation does not have logged files.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWClearFileLock2, NWLogFileLock2, NWReleaseFileLock2,
NWReleaseFileLockSet

File Service Group

Synchronization: Functions 1142

NWClearLogicalRecord

Unlocks a logical record and removes it from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWClearLogicalRecord (
 NWCONN_HANDLE conn,
 pnstr8 logRecName);

Pascal Syntax

#include <nwfile.inc>

Function NWClearLogicalRecord
 (conn : NWCONN_HANDLE;
 logRecName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle containing the
logical record.

logRecName

(IN) Points to the name of the logical record being cleared (128
characters).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

File Service Group

Synchronization: Functions 1143

0x89FF LOCK_ERROR

Remarks

A logical record is simply a name (a string) registered with the NetWare
server. The name (as with a semaphore) can then be locked or unlocked
by applications and can be used as an inter-application locking
mechanism.

NOTE: Locking or unlocking a logical record does not physically lock
or unlock those resources associated with the logical record; only the
applications using the record know about such an association.

Applications define logical record names. A logical record name
represents a group of files, physical records, structures, etc.
NWLogLogicalRecord or NWLockLogicalRecordSet lock one or more
logical record names, not the actual files, physical records, or structures
associated with each logical record name. Any uncooperative application
can ignore a lock on the logical record name and directly lock physical
files or records. Therefore, applications using logical record locks must
not use other locking techniques simultaneously.

NCP Calls

0x2222 11 Clear Logical Record

See Also

NWClearLogicalRecordSet, NWLockLogicalRecordSet,
NWLogLogicalRecord, NWReleaseLogicalRecord ,
NWReleaseLogicalRecordSet

File Service Group

Synchronization: Functions 1144

NWClearLogicalRecordSet

Unlocks and then removes all of the logical records logged in the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWClearLogicalRecordSet (
 void);

Pascal Syntax

#include <nwfile.inc>

Function NWClearLogicalRecordSet
 : NWCCODE;

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Remarks

A logical record is simply a name (a string) registered with the NetWare
server. The name (as with a semaphore) can then be locked or unlocked
by applications and can be used as an inter-application locking
mechanism.

NOTE: Locking or unlocking a logical record does not physically lock
or unlock those resources associated with the logical record; only the
applications using the record know about such an association.

If the requesting process does not have logged logical records,
NWClearLogicalRecordSet is ignored.

File Service Group

Synchronization: Functions 1145

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWClearLogicalRecord, NWLockLogicalRecordSet,
NWLogLogicalRecord, NWReleaseLogicalRecord ,
NWReleaseLogicalRecordSet

File Service Group

Synchronization: Functions 1146

NWClearPhysicalRecord

Unlocks the specified physical record and removes it from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWClearPhysicalRecord (
 NWFILE_HANDLE fileHandle,
 nuint32 recStartOffset,
 nuint32 recSize);

Pascal Syntax

#include <nwfile.inc>

Function NWClearPhysicalRecord
 (fileHandle : NWFILE_HANDLE;
 recStartOffset : nuint32;
 recSize : nuint32
) : NWCCODE;

Parameters

fileHandle

(IN) Specifies the file handle associated with the file containing the
physical record being cleared.

recStartOffset

(IN) Specifies the offset, from the beginning of the file, at which the
record starts.

recSize

(IN) Specifies the length, in bytes, of the locked record.

Return Values

These are common return values; see Return Values for more
information.

File Service Group

Synchronization: Functions 1147

0x0000 SUCCESSFUL

0x8988 INVALID_FILE_HANDLE

0x89FF LOCK_ERROR

Remarks

NWClearPhysicalRecord locates the physical record within the specified
file by passing the offset in recStartOffset and the length in recSize.

NOTE: Locking or unlocking a logical record does not physically lock
or unlock those resources associated with the logical record; only the
applications using the record know about such an association.

recStartOffset and recSize should match the corresponding parameters in
NWLogPhysicalRecord.

NWClearPhysicalRecord is ignored if the requesting workstation does
not have logged physical records.

NCP Calls

0x2222 30 Sync Clear Physical Record

See Also

NWClearPhysicalRecordSet, NWLockPhysicalRecordSet,
NWLogPhysicalRecord, NWReleasePhysicalRecord,
NWReleasePhysicalRecordSet

File Service Group

Synchronization: Functions 1148

NWClearPhysicalRecordSet

Unlocks and removes all physical records from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWClearPhysicalRecordSet (
 void);

Pascal Syntax

#include <nwfile.inc>

Function NWClearPhysicalRecordSet
 : NWCCODE;

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Remarks

NWClearPhysicalRecordSet is ignored if the requesting workstation
does not have logged or locked physical records.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

File Service Group

Synchronization: Functions 1149

See Also

NWClearPhysicalRecord, NWLockPhysicalRecordSet,
NWLogPhysicalRecord, NWReleasePhysicalRecord,
NWReleasePhysicalRecordSet

File Service Group

Synchronization: Functions 1150

NWCloseSemaphore

Closes a semaphore and decrements the open count of the semaphore,
indicating one less process is holding the semaphore open

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWCloseSemaphore (
 NWCONN_HANDLE conn,
 nuint32 semHandle);

Pascal Syntax

#include <nwsync.h>

Function NWCloseSemaphore
 (conn : NWCONN_HANDLE;
 semHandle : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare® server connection handle.

semHandle

(IN) Specifies the semaphore handle obtained when the semaphore
was opened by NWOpenSemaphore.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

File Service Group

Synchronization: Functions 1151

0x89FF INVALID_SEMAPHORE_HANDLE, LOCK_ERROR

Remarks

If the requesting process is the last process to have this semaphore open,
the semaphore is deleted.

NCP Calls

0x2222 32 4 Close Semaphore

See Also

NWExamineSemaphore, NWOpenSemaphore, NWSignalSemaphore,
NWWaitOnSemaphore

File Service Group

Synchronization: Functions 1152

NWExamineSemaphore

Returns the semaphore value

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWExamineSemaphore (
 NWCONN_HANDLE conn,
 nuint32 semHandle,
 pnint16 semValue,
 pnuint16 semOpenCount);

Pascal Syntax

#include <nwsync.h>

Function NWExamineSemaphore
 (conn : NWCONN_HANDLE;
 semHandle : nuint32;
 semValue : pnint16;
 semOpenCount : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

semHandle

(IN) Specifies the semaphore handle obtained when the semaphore
was opened by NWOpenSemaphore.

semValue

(OUT) Points to the current semaphore value (optional).

semOpenCount

(OUT) Points to the number of stations that currently have this
semaphore open.

File Service Group

Synchronization: Functions 1153

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x89FF LOCK_ERROR

Remarks

A semaphore value greater than 0 indicates the application can access the
associated network resource. A negative value indicates the number of
processes waiting to use the semaphore. If the semaphore value is
negative, the application must either enter a waiting queue by calling
NWWaitOnSemaphore or temporarily abandon its attempt to access the
network resource.

semOpenCount indicates the number of processes holding the semaphore
open. NWOpenSemaphore increments this value. NWCloseSemaphore
decrements this value.

semValue is optional. Use NULL if a return value is not desired.

NCP Calls

0x2222 32 1 Examine Semaphore

See Also

NWCloseSemaphore, NWOpenSemaphore, NWSignalSemaphore,
NWWaitOnSemaphore

File Service Group

Synchronization: Functions 1154

NWLockFileLockSet

Locks files that have been logged by a workstation task in the File Log Table
of a NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include<nwfile.h>
or
#include<nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWLockFileLockSet (
 nuint16 timeOut);

Pascal Syntax

#include <nwfile.inc>

Function NWLockFileLockSet
 (timeOut : nuint16
) : NWCCODE;

Parameters

timeOut

(IN) Specifies the length of time the NetWare server attempts to lock
the record set before timing out.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x89FE TIMEOUT_FAILURE

Remarks

To help avoid deadlock, a workstation task can log file locks in the File

File Service Group

Synchronization: Functions 1155

To help avoid deadlock, a workstation task can log file locks in the File
Log Table of a NetWare server. When the files in the log table are needed,
NWLockFileLockSet can be called.

NWLockFileLockSet will attempt to lock the logged set on all attached
servers. Locks will be attempted by ordering the servers according to
their net node addresses and making the request on each server. If the
request fails at any point, NWLockFileLockSet will automatically release
all locks made to that point.

All files on all servers must be available for NWLockFileLockSet to
complete successfully.

There is no way to determine which server the lock request failed on.

timeOut is the length of time the NetWare server will attempt the
operation before failing. This limit is specified in units of 1/18 second (0 =
no wait).

In DOS and Windows, all access to the network is blocked during any
time out period. For this reason, time outs should be kept to an absolute
minimum---a value of 18 or less. (Even though DOS is mono-tasking, the
application may be running in a DOS box under Windows Enhanced
Mode.)

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWClearFileLock2, NWClearFileLockSet, NWLogFileLock2,
NWReleaseFileLock2, NWReleaseFileLockSet

File Service Group

Synchronization: Functions 1156

NWLockLogicalRecordSet

Locks all logical records logged in the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include<nwfile.h>
or
#include<nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWLockLogicalRecordSet (
 nuint8 lockFlags,
 nuint16 timeOut);

Pascal Syntax

#include <nwfile.inc>

Function NWLockLogicalRecordSet
 (lockFlags : nuint8;
 timeOut : nuint16
) : NWCCODE;

Parameters

lockFlags

(IN) Specifies the lock flags.

timeOut

(IN) Specifies the length of time the NetWare server attempts to lock
the record set before timing out.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x89FE TIMEOUT_FAILURE

File Service Group

Synchronization: Functions 1157

Remarks

Applications define logical record names. A logical record name
represents a group of files, physical records, or data structures.
NWLogLogicalRecord and NWLockLogicalRecordSet affect one or
more logical record names, not the actual files, physical records, or data
structures associated with each logical record name. Any uncooperative
application can ignore a lock on the logical record name and directly lock
physical files or records. Therefore, applications using logical record
locks must not simultaneously use other locking techniques.

To avoid deadlock, request the resources needed to lock by making an
entry in the File Log Table at the NetWare server. Once the log table is
complete, the application attempts to lock those records. The locking
works only if all records in the table are available. If some of the logged
resources cannot be locked, the lock fails and none of the resources are
locked.

A logical record is simply a name (a string) registered with the NetWare
server. The name (as with a semaphore) can then be locked or unlocked
by applications and can be used as an inter-application locking
mechanism.

NOTE: Locking or unlocking a logical record does not physically lock
or unlock those resources associated with the logical record; only the
applications using the record know about such an association.

lockFlags is interpreted as follows:

0x00 Lock record with a shareable lock
0x01 Lock record with an exclusive loc

timeOut is specified in units of 1/18 second (0 = no wait).

In DOS and Windows, all access to the network is blocked during any
timeout period. For this reason, timeouts should be kept to an absolute
minimum---a value of 18 or less. (Even though DOS is mono-tasking, the
application may be running in a DOS box under Windows Enhanced
Mode.)

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWClearLogicalRecord, NWClearLogicalRecordSet,
NWLogLogicalRecord, NWReleaseLogicalRecord ,

File Service Group

Synchronization: Functions 1158

NWReleaseLogicalRecordSet

File Service Group

Synchronization: Functions 1159

NWLockPhysicalRecordSet

Locks all records logged in the physical record log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include<nwfile.h>
or
#include<nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWLockPhysicalRecordSet (
 nuint8 lockFlags,
 nuint16 timeOut);

Pascal Syntax

#include <nwfile.inc>

Function NWLockPhysicalRecordSet
 (lockFlags : nuint8;
 timeOut : nuint16
) : NWCCODE;

Parameters

lockFlags

(IN) Specifies the lock flags.

timeOut

(IN) Specifies the length of time the NetWare server attempts to lock
the record set before timing out.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x89FE TIMEOUT_FAILURE

File Service Group

Synchronization: Functions 1160

Remarks

A physical record lock, as opposed to a logical lock, is the actual lock of a
specified record relative to a physical file. Before a record is locked, it is
also entered in the File Log Table at the NetWare server. Records can be
locked only if all records in the log table are available for locking. This
avoids deadlock.

To avoid deadlock, request those resources needing to be locked by
making an entry in the File Log Table at the NetWare server. Once the
log table is complete, NWLockPhysicalRecordSet attempts to lock those
records. The locking only works if all records in the table are available. If
some of the logged resources cannot be locked, the lock fails and none of
the resources are locked.

timeOut is specified in units of 1/18 second (0 = no wait).

In DOS and Windows, all access to the network is blocked during any
timeout period. For this reason, timeouts should be kept to an absolute
minimum---a value of 18 or less. (Even though DOS is mono-tasking, the
application may be running in a DOS box under Windows Enhanced
Mode.)

lockFlags is interpreted as follows:

0x00 Lock records with exclusive lock
0x02 Lock records with shareable lock

A shareable lock prevents any process, including the one which made the
lock, from writing to the record.

NWLockPhysicalRecordSet cannot lock a record that is already locked
exclusively by another application. If one or more records, identified in
the log table, are already exclusively locked by another application, the
attempt to lock the set fails.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWClearPhysicalRecord, NWClearPhysicalRecordSet,
NWLogPhysicalRecord, NWReleasePhysicalRecord,
NWReleasePhysicalRecordSet

File Service Group

Synchronization: Functions 1161

NWLogFileLock2

Logs the specified file in the File Log Table and locks the file if the lock flag
is set

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include<nwfile.h>
or
#include<nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWLogFileLock2 (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint8 lockFlags,
 nuint16 timeOut);

Pascal Syntax

#include <nwfile.inc>

Function NWLogFileLock2
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 lockFlags : nuint8;
 timeOut : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle in which the file to be logged
resides.

path

(IN) Points to the string containing the path and file name of the file to
be logged.

File Service Group

Synchronization: Functions 1162

lockFlags

(IN) Specifies the lock flags.

timeOut

(IN) Specifies the length of time the NetWare server attempts to log the
specified file before timing out.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x897F ERR_LOCK_WAITING

0x8982 NO_OPEN_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89FE TIMEOUT_FAILURE

0x89FF LOCK_ERROR

Remarks

NWLogFileLock2 logs the specified file for exclusive use by the
workstation. If bit 0 of lockFlags is set, the server immediately attempts to
lock the file.

lockFlags' values are interpreted as follows:

0x00 Log file
0x01 Log and lock the file

When lockFlags is 1, the server attempts to lock the file for the length of
time specified by timeOutLimit.

path can specify either a file's complete path name or a path relative to the
current working directory. For example, if a file's complete path name is
SYS:ACCOUNT/DOMEST/TARGET.DAT and the directory handle
mapping is SYS:ACCOUNT, path could point to either of the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT
DOMEST/TARGET.DAT

timeOut is specified in units of 1/18 second (0 = no wait).

File Service Group

Synchronization: Functions 1163

In DOS and Windows, all access to the network is blocked during any
time out period. For this reason, time outs should be kept to an absolute
minimum---a value of 18 or less. (Even though DOS is mono-tasking, the
application may be running in a DOS box under Windows Enhanced
Mode.)

NWLogFileLock2 cannot lock files already logged and exclusively
locked by other applications. A file can be locked by a client even if the
file does not yet exist. This reserves the file name for use by the client
locking it.

The File Log Table contains data locking information used by a NetWare
server. The NetWare server tracks this information for each workstation
and process. Whenever a file, logical record, or physical record is logged,
information identifying the data being logged is entered in the log table.
Normally, a set of files or records is logged and then locked as a set.
However, a single file or record can also be locked when it is entered in
the table.

When using log tables, a task first logs all of the files or records that are
needed to complete a transaction. The task then attempts to lock the
logged set of files or records. If some of the logged resources cannot be
locked, the lock fails and none of the resources are locked.

NCP Calls

0x2222 03 Log File

0x2222 23 17 Get File Server Information

See Also

NWClearFileLock2, NWClearFileLockSet, NWLockFileLockSet,
NWReleaseFileLock2

File Service Group

Synchronization: Functions 1164

NWLogLogicalRecord

Logs a logical record in a log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include<nwfile.h>
or
#include<nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWLogLogicalRecord (
 NWCONN_HANDLE conn,
 pnstr8 logRecName,
 nuint8 lockFlags,
 nuint16 timeOut);

Pascal Syntax

#include <nwfile.inc>

Function NWLogLogicalRecord
 (conn : NWCONN_HANDLE;
 logRecName : pnstr8;
 lockFlags : nuint8;
 timeOut : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

logRecName

(IN) Points to the name of the logical record being logged (128
characters).

lockFlags

(IN) Specifies the lock flags.

timeOut

(IN) Specifies the length of time the NetWare server attempts to lock
the record before timing out.

File Service Group

Synchronization: Functions 1165

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89FE TIMEOUT_FAILURE

0x89FF LOCK_ERROR

Remarks

A logical record is simply a name (string) registered with the NetWare
server. The name (as with a semaphore) can then be locked or unlocked
by applications and can be used as an inter-application locking
mechanism.

NOTE: Locking or unlocking a logical record does not physically lock
or unlock those resources associated with the logical record; only the
applications using the record know about such an association.

When lockFlags is set to option one or three, the NetWare server attempts
to lock the logical record for the length of time specified by timeOut.
timeOut is specified in 1/18 second units.

lockFlags' values are the following:

0 = Log only
1 = Log and lock exclusive
3 = Log and lock shareable

timeOut is specified in units of 1/18 second (0 = no wait).

In DOS and Windows, all access to the network is blocked during any
time out period. For this reason, time outs should be kept to an absolute
minimum---a value of 18 or less. (Even though DOS is mono-tasking, the
application may be running in a DOS box under Windows Enhanced
Mode.)

Normally, a set of files or records is logged and then locked as a set.
However, a single file or record can also be locked when it is placed in
the log table. The release functions, NWReleaseLogicalRecord and
NWReleaseLogicalRecordSet, are used to unlock a lock (or set of locks).
The clear functions, NWClearLogicalRecord and
NWClearLogicalRecordSet, are used to unlock and remove a lock (or set
of locks) from the log table.

File Service Group

Synchronization: Functions 1166

To avoid deadlock, request those resources needing to be locked by
making an entry in the File Log Table at the NetWare server. Once the
log table is complete, NWLogLogicalRecord attempts to lock those
records. Locking works only if all records in the table are available. If
some of the logged resources cannot be locked, the lock fails and none of
the resources are locked.

NWLogLogicalRecord cannot lock files already logged and exclusively
locked by other applications.

NCP Calls

 0x2222 09 Log Logical Record

See Also

NWClearLogicalRecord, NWClearLogicalRecordSet,
NWLockLogicalRecordSet, NWReleaseLogicalRecord,
NWReleaseLogicalRecordSet

File Service Group

Synchronization: Functions 1167

NWLogPhysicalRecord

Logs a physical record in preparation for a lock

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include<nwfile.h>
or
#include<nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWLogPhysicalRecord (
 NWFILE_HANDLE fileHandle,
 nuint32 recStartOffset,
 nuint32 recLength,
 nuint8 lockFlags,
 nuint16 timeOut);

Pascal Syntax

#include <nwfile.inc>

Function NWLogPhysicalRecord
 (fileHandle : NWFILE_HANDLE;
 recStartOffset : nuint32;
 recLength : nuint32;
 lockFlags : nuint8;
 timeOut : nuint16
) : NWCCODE;

Parameters

fileHandle

(IN) Specifies the file handle of the file whose record is being logged
(must be valid).

recStartOffset

(IN) Specifies the offset into the file where the record being logged
begins.

recLength

(IN) Specifies the length, in bytes, of the record to be logged.

lockFlags

File Service Group

Synchronization: Functions 1168

(IN) Specifies the lock flags.

timeOut

(IN) Specifies the length of time the NetWare server attempts to lock
the record before timing out.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x0006 INVALID_HANDLE

0x8988 INVALID_FILE_HANDLE

0x8996 SERVER_OUT_OF_MEMORY

0x89FD LOCK_COLLISION

0x89FE TIMEOUT_FAILURE

0x89FF LOCK_ERROR

Remarks

The NetWare server attempts to log the record for the length of time
specified by timeOutLimit before returning a time out error. timeOut is
specified in units of 1/18 second (0 = no wait).

lockFlags' values follow:

0 = Log only
1 = Log and lock exclusive
3 = Log and lock shareable

timeOut is specified in units of 1/18 second (0 = no wait).

In DOS and Windows, all access to the network is blocked during any
timeout period. For this reason, timeouts should be kept to an absolute
minimum---a value of 18 or less. (Even though DOS is mono-tasking, the
application may be running in a DOS box under Windows Enhanced
Mode.)

Normally, a set of files or records is logged and then locked as a set.
However, a single file or record can also be locked when it is entered in
the log table.

The release functions, NWReleasePhysicalRecord and
NWReleasePhysicalRecordSet, unlock a lock or set of locks. The clear
functions, NWClearPhysicalRecord and NWClearPhysicalRecordSet,
unlock and remove a lock or set of locks from the log table.

File Service Group

Synchronization: Functions 1169

To avoid deadlock, request those resources needing to be locked by
making an entry in the File Log Table at the NetWare server. Once the
log table is complete, NWLogPhysicalRecord can then lock those records.
The locking works only if all records in the table are available. If some of
the logged resources cannot be locked, the lock fails and none of the
resources are locked.

NWLogPhysicalRecord returns 0x0006 if an invalid file handle is passed
to the fileHandle parameter.

NCP Calls

0x2222 26 Log Physical Record

See Also

NWClearLogicalRecord, NWClearLogicalRecordSet,
NWLockLogicalRecordSet, NWReleaseLogicalRecord,
NWReleaseLogicalRecordSet

File Service Group

Synchronization: Functions 1170

NWOpenSemaphore

Creates and initializes a named semaphore to the indicated value

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWOpenSemaphore (
 NWCONN_HANDLE conn,
 pnstr8 semName,
 nint16 initSemHandle,
 pnuint32 semHandle,
 pnuint16 semOpenCount);

Pascal Syntax

#include <nwsync.h>

Function NWOpenSemaphore
 (conn : NWCONN_HANDLE;
 semName : pnstr8;
 initSemHandle : nint16;
 semHandle : pnuint32;
 semOpenCount : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

semName

(IN) Points to the name of the semaphore to be opened.

initSemHandle

(IN) Specifies the number of tasks that can simultaneously access the
resources to which the semaphore is tied.

semHandle

(OUT) Points to the NetWare semaphore handle.

File Service Group

Synchronization: Functions 1171

semOpenCount

(OUT) Points to the number of stations that currently have this
semaphore open (optional; set to NULL if you do not wish this number
to be returned).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89FF LOCK_ERROR

Remarks

Calling NWOpenSemaphore increments the semOpenCount counter. If
the semaphore exists, initSemHandle is ignored. The handle returned must
be used to access the semaphore. Only the first application to open the
semaphore (and thus create the semaphore) can set the initial value in
initSemHandle.

NWOpenSemaphore is usually called by setting initSemHandle to a value
other than 0. If initSemHandle is set to 0, consider the following items:

Semaphore ownership will not be established until the semaphore is
signaled.

The semaphore cannot be used until it is first signaled by an
application.

Usually semaphore applications loop from waiting on a semaphore to
signaling the semaphore. If initSemHandle is 0, the semaphore must be
signaled from outside the wait/signal loop.

NWWaitOnSemaphore decrements the semaphore value by 1 if it is
greater than 0. If the semaphore value and the timeOutValue parameter
are both 0, a time out failure (LOCK_ERROR) will be returned.

NWSignalSemaphore increments the semaphore value by 1.

NCP Calls

0x2222 32 Open Semaphore

See Also

File Service Group

Synchronization: Functions 1172

NWCloseSemaphore, NWExamineSemaphore, NWSignalSemaphore,
NWWaitOnSemaphore

File Service Group

Synchronization: Functions 1173

NWReleaseFileLock2

Unlocks the specified file but does not remove it from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWReleaseFileLock2 (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path);

Pascal Syntax

#include <nwfile.inc>

Function NWReleaseFileLock2
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle of the new directory's root
directory.

path

(IN) Points to the string containing the name and path of the new
directory.

Return Values

These are common return values; see Return Values for more
information.

File Service Group

Synchronization: Functions 1174

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

Remarks

path can specify either a file's complete path name or a path relative to the
current working directory. For example, if a file's complete path name is
SYS:ACCOUNT/DOMEST/TARGET.DAT and the directory handle
mapping is SYS:ACCOUNT, path could be either of the following:

SYS:ACCOUNT/DOMEST/TARGET.DAT or
DOMEST/TARGET.DAT

2.x servers return INVALID_PATH when a bad directory handle is
passed.

NWReleaseFileLock2 is ignored if the requesting workstation does not
have locked files.

NCP Calls

0x2222 05 Release File

See Also

NWClearFileLock2, NWClearFileLockSet, NWLogFileLock2,
NWReleaseFileLockSet

File Service Group

Synchronization: Functions 1175

NWReleaseFileLockSet

Unlocks all files logged in the log table but does not remove them from the
table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWReleaseFileLockSet (
 void);

Pascal Syntax

#include <nwfile.inc>

Function NWReleaseFileLockSet
 : NWCCODE;

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Remarks

To avoid deadlock, a workstation must request those files it needs to lock;
it does so by making an entry into the File Log Table at the NetWare
server. Once the log table is complete, the application can then lock those
files. The locking works only if all files in the table are available.

NWReleaseFileLockSet is ignored if the requesting workstation does not
have locked files.

NCP Calls

File Service Group

Synchronization: Functions 1176

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWClearFileLock2, NWClearFileLockSet, NWLogFileLock2,
NWReleaseFileLock2

File Service Group

Synchronization: Functions 1177

NWReleaseLogicalRecord

Unlocks a logical record but does not remove it from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWReleaseLogicalRecord (
 NWCONN_HANDLE conn,
 pnstr8 logRecName);

Pascal Syntax

#include <nwfile.inc>

Function NWReleaseLogicalRecord
 (conn : NWCONN_HANDLE;
 logRecName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle containing the
logical record.

logRecName

(IN) Points to the name of the logical record being released (128
characters).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

File Service Group

Synchronization: Functions 1178

0x89FF LOCK_ERROR

Remarks

A logical record is simply a name (a string) registered with the NetWare
server. The name (as with a semaphore) can then be locked or unlocked
by applications and can be used as an inter-application locking
mechanism.

NOTE: Locking or unlocking a logical record does not physically lock
or unlock those resources associated with the logical record; only the
applications using the record know about such an association.

File Log Table contains data locking information used by a NetWare
server. The NetWare server tracks this information for each workstation
and workstation task. Whenever a file, logical record, or physical record
is logged, information identifying the data being logged is placed in the
File Log Table. Normally, a set of files or records is logged and then
locked as a set. However, a single file or record can also be locked when it
is placed in the table.

NWReleaseLogicalRecord is ignored if the requesting workstation has
no records to release.

NCP Calls

 0x2222 12 Release Logical Record

See Also

NWClearLogicalRecord, NWClearLogicalRecordSet,
NWLockLogicalRecordSet, NWReleaseLogicalRecordSet

File Service Group

Synchronization: Functions 1179

NWReleaseLogicalRecordSet

Unlocks all the logical records but does not remove them from the log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWReleaseLogicalRecordSet (
 void);

Pascal Syntax

#include <nwfile.inc>

Function NWReleaseLogicalRecordSet
 : NWCCODE;

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Remarks

A logical record is simply a name (a string) registered with the NetWare
server. The name (as with a semaphore) can then be locked or unlocked
by applications and can be used as an inter-application locking
mechanism.

NOTE: Locking or unlocking a logical record does not physically lock
or unlock those resources associated with the logical record; only the
applications using the record know about such an association.

To avoid deadlock, a workstation is required to request those files it
needs to lock; it does so by making an entry into the File Log Table at the

File Service Group

Synchronization: Functions 1180

NetWare server. Once the log table is complete, the application can then
lock those files. The locking works only if all files in the table are
available.

NWReleaseLogicalRecordSet is ignored if the requesting workstation or
process does not have locked logical records.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWClearLogicalRecord, NWClearLogicalRecordSet,
NWLockLogicalRecordSet, NWLogLogicalRecord,
NWReleaseLogicalRecord

File Service Group

Synchronization: Functions 1181

NWReleasePhysicalRecord

Unlocks the specified physical record currently locked in the log table of the
requesting workstation but does not remove it from the table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWReleasePhysicalRecord (
 NWFILE_HANDLE fileHandle,
 nuint32 recStartOffset,
 nuint32 recSize);

Pascal Syntax

#include <nwfile.inc>

Function NWReleasePhysicalRecord
 (fileHandle : NWFILE_HANDLE;
 recStartOffset : nuint32;
 recSize : nuint32
) : NWCCODE;

Parameters

fileHandle

(IN) Specifies the file handle associated with the file containing the
specified record.

recStartOffset

(IN) Specifies the offset, within the file, where the physical record
begins.

recSize

(IN) Specifies the length, in bytes, of the record being released.

Return Values

These are common return values; see Return Values for more

File Service Group

Synchronization: Functions 1182

information.

0x0000 SUCCESSFUL

0x8988 INVALID_FILE_HANDLE

0x89FF LOCK_ERROR

Remarks

A physical record lock, as opposed to a logical lock, is the actual lock of a
specified record relative to a physical file. When a record is locked, it is
also entered into a log table. Records are allowed to be locked only if all
records in the log table are available for locking. This is done to avoid
deadlock.

NWReleasePhysicalRecord is ignored if the requesting workstation or
process does not have locked physical records.

NCP Calls

0x2222 28 Release Physical Record

See Also

NWClearPhysicalRecord, NWClearPhysicalRecordSet,
NWLockPhysicalRecordSet, NWLogPhysicalRecord,
NWReleasePhysicalRecordSet

File Service Group

Synchronization: Functions 1183

NWReleasePhysicalRecordSet

Unlocks, but does not remove, all records currently logged as physical
records in the requesting workstation's log table

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwfile.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWReleasePhysicalRecordSet (
 void);

Pascal Syntax

#include <nwfile.inc>

Function NWReleasePhysicalRecordSet
 : NWCCODE;

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

Remarks

A physical record lock, as opposed to a logical lock, is the actual lock of a
specified record relative to a physical file. When a record is locked, it is
also entered into a log table. Records are locked only if all records in the
log table are available for locking. This is done to avoid deadlock.

NWReleasePhysicalRecordSet is ignored if the workstation does not
have locked physical records.

NCP Calls

File Service Group

Synchronization: Functions 1184

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWClearPhysicalRecord, NWClearPhysicalRecordSet,
NWLockPhysicalRecordSet, NWLogPhysicalRecord,
NWReleasePhysicalRecord

File Service Group

Synchronization: Functions 1185

NWScanLogicalLocksByConn

Scans for all logical record locks in a specified connection

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanLogicalLocksByConn (
 NWCONN_HANDLE conn,
 NWCONN_NUM connNum,
 pnint16 iterHandle,
 CONN_LOGICAL_LOCK N_FAR *logicalLock,
 CONN_LOGICAL_LOCKS N_FAR *logicalLocks);

Pascal Syntax

#include <nwsync.h>

Function NWScanLogicalLocksByConn
 (conn : NWCONN_HANDLE;
 connNum : NWCONN_NUM;
 iterHandle : pnint16;
 Var logicalLock : CONN_LOGICAL_LOCK;
 Var logicalLocks : CONN_LOGICAL_LOCKS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

connNum

(IN) Specifies the connection number of the logged-in object to be
scanned.

iterHandle

(IN/OUT) Points to the number of the next record to be scanned.

logicalLock

(OUT) Points to CONN_LOGICAL_LOCK (optional).

File Service Group

Synchronization: Functions 1186

logicalLocks

(OUT) Points to CONN_LOGICAL_LOCKS.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FD BAD_STATION_NUMBER

0x88FF Scan Completed

Remarks

The client must have console operator rights to call
NWScanLogicalLocksByConn.

iterHandle should be set to 0 initially. Each subsequent call returns the
number of the next record to be scanned. iterHandle returns -1 upon
completion and should not be changed during the scan.

CONN_LOGICAL_LOCKS is a buffer and should be passed to
subsequent NWScanLogicalLocksByConn calls without modification.

If you pass a non-NULL pointer to logicalLock, CONN_LOGICAL_LOCKS
passes one record at a time to CONN_LOGICAL_LOCK. If you pass a
NULL pointer to logicalLock, CONN_LOGICAL_LOCKS is filled but no
records are passed to CONN_LOGICAL_LOCK.

0x88FF is returned when the last record has been passed to
CONN_LOGICAL_LOCK and NWScanLogicalLocksByConn is called
subsequently.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 223 Get Logical Records By Connection (2.x)

0x2222 23 239 Get Logical Records By Connection (3.x-4.x)

File Service Group

Synchronization: Functions 1187

NWScanLogicalLocksByName

Scans for all record locks in a specified logical name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanLogicalLocksByName (
 NWCONN_HANDLE conn,
 pnstr8 logicalName,
 pnint16 iterHandle,
 LOGICAL_LOCK N_FAR *logicalLock,
 LOGICAL_LOCKS N_FAR *logicalLocks);

Pascal Syntax

#include <nwsync.h>

Function NWScanLogicalLocksByName
 (conn : NWCONN_HANDLE;
 logicalName : pnstr8;
 iterHandle : pnint16;
 Var logicalLock : LOGICAL_LOCK;
 Var logicalLocks : LOGICAL_LOCKS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

logicalName

(IN) Points to the logical lock name to be scanned.

iterHandle

(IN/OUT) Points to the number of the next record to be scanned.

logicalLock

(OUT) Points to LOGICAL_LOCK (optional).

logicalLocks

File Service Group

Synchronization: Functions 1188

logicalLocks

(OUT) Points to LOGICAL_LOCKS.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x88FF Scan Completed

0x8996 SERVER_OUT_OF_MEMORY

0x89C6 NO_CONSOLE_PRIVILEGES

Remarks

iterHandle should be set to 0 initially. Each subsequent call returns the
number of the next record to be scanned. iterHandle returns -1 upon
completion and should not be changed during the scan.

If logicalLock is a NULL pointer, logicalLocks returns the records in groups,
instead of one by one.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 224 Get Logical Record Information (2.x)

0x2222 23 240 Get Logical Record Information (3.x-4.x)

File Service Group

Synchronization: Functions 1189

NWScanPhysicalLocksByConnFile

Scans for all physical record locks by a specified connection on a specified
file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanPhysicalLocksByConnFile (
 NWCONN_HANDLE conn,
 NWCONN_NUM connNum,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint8 dataStream,
 pnint16 iterHandle,
 CONN_PHYSICAL_LOCK N_FAR *lock,
 CONN_PHYSICAL_LOCKS N_FAR *locks);

Pascal Syntax

#include <nwsync.h>

Function NWScanPhysicalLocksByConnFile
 (conn : NWCONN_HANDLE;
 connNum : NWCONN_NUM;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 dataStream : nuint8;
 iterHandle : pnint16;
 Var lock : CONN_PHYSICAL_LOCK;
 Var locks : CONN_PHYSICAL_LOCKS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

connNum

(IN) Specifies the connection number of the logged-in object to be

File Service Group

Synchronization: Functions 1190

scanned.

dirHandle

(IN) Specifies the directory handle associated with the desired
directory path.

path

(IN) Points to a full file path (or a path relative to dirHandle) specifying
the file to be checked. The last item must be a file name.

dataStream

(IN) Specifies the Macintosh name space (for 3.11 and above only) or
set to 0:

0 Resource Fork

1 Data Fork

iterHandle

(IN/OUT) Points to the number of the next record to be scanned (set to
0 initially).

lock

(OUT) Points to the CONN_PHYSICAL_LOCK structure.

locks

(OUT) Points to the CONN_PHYSICAL_LOCKS structure.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x88FF Scan Completed

0x8996 SERVER_OUT_OF_MEMORY

0x89FD BAD_STATION_NUMBER

0x89FF FILE_NAME_ERROR, NO_FILES_FOUND_ERROR

Remarks

For 2.x, path cannot be longer than 14 bytes including the NULL
character.

For 2.x and 3.x, a client must have console operator rights to call
NWScanPhysicalLocksByConnFile or NO_CONSOLE_PRIVILEGES
will be returned.

File Service Group

Synchronization: Functions 1191

For 4.x, a client can call NWScanPhysicalLocksByConnFile to return
information about its connection without needing console operator
privileges. To return information about other connection numbers, you
must have console rights. A client with console privileges can pass any
valid connection number to NWScanPhysicalLocksByConnFile and
receive information about that connection.

iterHandle returns -1 upon completion and must not be changed during
the scan.

If lock is a NULL pointer, locks returns the records in groups, instead of
one by one.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 221 Get Physical Record Locks By Connection And File (2.x)

0x2222 23 237 Get Physical Record Locks By Connection And File (3.x-4.x)

0x2222 23 244 Convert Path To Entry

0x2222 62 Scan First

File Service Group

Synchronization: Functions 1192

NWScanPhysicalLocksByFile

Scans for all record locks in a specified physical file

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanPhysicalLocksByFile (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 path,
 nuint8 dataStream,
 pnint16 iterHandle,
 PHYSICAL_LOCK N_FAR *lock,
 PHYSICAL_LOCKS N_FAR *locks);

Pascal Syntax

#include <nwsync.h>

Function NWScanPhysicalLocksByFile
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 path : pnstr8;
 dataStream : nuint8;
 iterHandle : pnint16;
 Var lock : PHYSICAL_LOCK;
 Var locks : PHYSICAL_LOCKS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

(IN) Specifies the directory handle associated with the desired
directory path.

path

File Service Group

Synchronization: Functions 1193

(IN) Points to a full file path (or a path relative to dirHandle) specifying
the file to be checked.

dataStream

(IN) Specifies the Macintosh name space (for 3.11 and above only) or
set to 0:

0 Resource Fork

1 Data Fork

iterHandle

(IN/OUT) Points to the next record to be scanned; must be set to 0
initially.

lock

(OUT) Points to PHYSICAL_LOCK (optional).

locks

(OUT) Points to PHYSICAL_LOCKS.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x88FF Scan Completed

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FD BAD_STATION_NUMBER

0x89FF NO_FILES_FOUND_ERROR

Remarks

The client must have console operator rights to call
NWScanPhysicalLocksByFile.

iterHandle returns -1 upon completion, and should not be changed during
the scan.

If lock is a NULL pointer, locks returns the records in groups, instead of
one by one.

File Service Group

Synchronization: Functions 1194

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 222 Get Physical Record Locks By File (2.x)

0x2222 23 238 Get Physical Record Locks By File (3.x-4.x)

0x2222 23 244 Convert Path to Entry

File Service Group

Synchronization: Functions 1195

NWScanSemaphoresByConn

Scans information about the semaphores opened by a specified connection

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanSemaphoresByConn (
 NWCONN_HANDLE conn,
 NWCONN_NUM connNum,
 pnint16 iterHandle,
 CONN_SEMAPHORE NWPTR semaphore,
 CONN_SEMAPHORES NWPTR semaphores);

Pascal Syntax

#include <nwsync.h>

Function NWScanSemaphoresByConn
 (conn : NWCONN_HANDLE;
 connNum : NWCONN_NUM;
 iterHandle : pnint16;
 Var semaphore : CONN_SEMAPHORE;
 Var semaphores : CONN_SEMAPHORES
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

connNum

(IN) Specifies the connection number of the logged-in object to be
scanned.

iterHandle

(IN/OUT) Points to the number of the next record to be scanned;
should be set to 0 initially.

semaphore

File Service Group

Synchronization: Functions 1196

(OUT) Points to CONN_SEMAPHORE (optional).

semaphores

(OUT) Points to CONN_SEMAPHORES.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x88FF Scan Completed

0x8996 SERVER_OUT_OF_MEMORY

Remarks

For 2.x and 3.x, you must have console operator privileges to call
NWScanSemaphoresByConn or NO_CONSOLE_PRIVILEGES will be
returned.

For 4.x, a client can call NWScanSemaphoresByConn to return
information about its connection without needing console operator
privileges. To return information about other connection numbers, you
must have console rights. A client with console privileges can pass any
valid connection number to NWScanSemaphoresByConn and receive
information about that connection.

iterHandle returns -1 upon completion, and should not be changed during
the scan.

If semaphore is a NULL pointer, semaphores returns the records in a group,
instead of one by one.

NWScanSemaphoresByConn returns SUCCESSFUL even when
connNum is invalid. Call NWGetFileServerInformation to return the
maxConns supported for the specific file server. Only use connNum in the
range of zero-maxConns.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 225 Get Connection's Semaphores (2.x)

0x2222 23 241 Get Connection's Semaphores (3.x-4.x)

See Also

File Service Group

Synchronization: Functions 1197

NWCCGetConnInfo, NWGetObjectConnectionNumbers

File Service Group

Synchronization: Functions 1198

NWScanSemaphoresByName

Scans information about a semaphore by name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWScanSemaphoresByName (
 NWCONN_HANDLE conn,
 pnstr8 semName,
 pnint16 iterHandle,
 SEMAPHORE N_FAR *semaphore,
 SEMAPHORES N_FAR *semaphores);

Pascal Syntax

#include <nwsync.h>

Function NWScanSemaphoresByName
 (conn : NWCONN_HANDLE;
 semName : pnstr8;
 iterHandle : pnint16;
 Var semaphore : SEMAPHORE;
 Var semaphores : SEMAPHORES
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

semName

(IN) Points to the semaphore name to be scanned.

iterHandle

(IN/OUT) Points to the number of the next record to be scanned;
should be set to 0 initially.

semaphore

(OUT) Points to SEMAPHORE (optional).

File Service Group

Synchronization: Functions 1199

semaphores

(OUT) Points to SEMAPHORES.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x88FF Scan Completed

0x8996 SERVER_OUT_OF_MEMORY

0x89C6 NO_CONSOLE_PRIVILEGES

Remarks

The client must have console operator rights to call
NWScanSemaphoresByName.

iterHandle returns -1 upon completion, and should not be changed during
the scan.

If semaphore is a NULL pointer, semaphores returns the records in groups,
instead of one by one.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 226 Get Semaphore Information (2.x)

0x2222 23 242 Get Semaphore Information (3.x-4.x)

File Service Group

Synchronization: Functions 1200

NWSignalSemaphore

Increments the semaphore value by one

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwsync.h>
or
 #include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWSignalSemaphore (
 NWCONN_HANDLE conn,
 nuint32 semHandle);

Pascal Syntax

#include <nwsync.h>

Function NWSignalSemaphore
 (conn : NWCONN_HANDLE;
 semHandle : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

semHandle

(IN) Specifies the semaphore handle of the semaphore to be signaled
(obtained by calling NWOpenSemaphore).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x89F LOCK_ERROR

File Service Group

Synchronization: Functions 1201

Remarks

If another client is waiting on the semaphore, a successful completion
code is returned to the waiting client.

An application must call NWSignalSemaphore when it finishes
accessing the network resource associated with the semaphore. If
processes are waiting to use the semaphore, the first process in the queue
is released (signaled).

NCP Calls

0x2222 32 3 Signal Semaphore

See Also

NWCloseSemaphore, NWExamineSemaphore, NWOpenSemaphore,
NWWaitOnSemaphore

File Service Group

Synchronization: Functions 1202

NWWaitOnSemaphore

Waits on a semaphore for a specified time

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Synchronization

Syntax

#include <nwsync.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE)NWWaitOnSemaphore (
 NWCONN_HANDLE conn,
 nuint32 semHandle,
 nuint16 timeOutValue);

Pascal Syntax

#include <nwsync.h>

Function NWWaitOnSemaphore
 Function NWWaitOnSemaphore
(conn : NWCONN_HANDLE;
 semHandle : nuint32;
 timeOutValue : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

semHandle

(IN) Specifies the semaphore handle returned by calling
NWOpenSemaphore.

timeOutValue

(IN) Specifies the length of time the application will wait for the
semaphore.

Return Values

These are common return values; see Return Values for more
information.

File Service Group

Synchronization: Functions 1203

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x89FE TIMEOUT_FAILURE

0x89FF LOCK_ERROR

Remarks

NWWaitOnSemaphore decrements the semaphore value counter by 1 if
it is greater than 0. If the semaphore value counter and the timeOutValue
parameter are both 0, a time out failure (LOCK_ERROR) will be
returned. If the value is 0 before the time out expires, Successful is
returned, and the application can access the associated resource.

If the value is <0, NWWaitOnSemaphore queues the application for the
time interval specified in timeOutValue.

timeOutValue indicates how long the NetWare server should wait if the
semaphore value is negative. timeOutValue is specified in units of 1/18
second (0 = no wait). It has no default value.

NCP Calls

None

See Also

NWCloseSemaphore, NWExamineSemaphore, NWOpenSemaphore,
NWSignalSemaphore

File Service Group

Synchronization: Functions 1204

Synchronization: Structures

File Service Group

Synchronization: Structures 1205

CONN_LOGICAL_LOCK

Returns a connection's logical locks

Service: Synchronization

Defined In: nwsync.h

Structure

typedef struct
{
 nuint16 taskNumber;
 nuint8 lockStatus;
 nstr8 logicalName[128];
} CONN_LOGICAL_LOCK;

Pascal Structure

Defined in nwsync.inc

CONN_LOGICAL_LOCK = Record
 taskNumber : nuint16;
 lockStatus : nuint8;
 logicalName : Array[0..127] Of nstr8
 End;

Fields

taskNumber

lockStatus

Indicates a bit mask describing how the file is locked:

0x01 Locked

0x02 Open shareable

0x04 Logged

0x08 Open Normal

0x40 TTS holding

0x80 Transaction flag set

logicalName

File Service Group

Synchronization: Structures 1206

CONN_LOGICAL_LOCKS

Returns a connection's logical lock list

Service: Synchronization

Defined In: nwsync.h

Structure

typedef struct
{
 nuint16 nextRequest;
 nuint16 numRecords;
 nuint8 records[508];
 nuint16 curOffset;
 nuint16 curRecord;
} CONN_LOGICAL_LOCKS;

Pascal Structure

Defined in nwsync.inc

 CONN_LOGICAL_LOCKS = Record
 nextRequest : nuint16;
 numRecords : nuint16;
 records : Array[0..507] Of nuint8;
 curOffset : nuint16;
 curRecord : nuint16
 End;

Fields

nextRequest

numRecords

records

curOffset

curRecord

File Service Group

Synchronization: Structures 1207

CONN_PHYSICAL_LOCK

Returns a connection's physical locks

Service: Synchronization

Defined In: nwsync.h

Structure

typedef struct
{
 nuint16 taskNumber;
 nuint8 lockType;
 nuint32 recordStart;
 nuint32 recordEnd;
} CONN_PHYSICAL_LOCK;

Pascal Structure

Defined in nwsync.inc

CONN_PHYSICAL_LOCK = Record
 taskNumber : nuint16;
 lockType : nuint8;
 recordStart : nuint32;
 recordEnd : nuint32
 End;

Fields

taskNumber

Indicates the number of the task using the file.

lockType

Indicates if the file is locked with the following bits being set:

none Not locked

Bit 0 Locked exclusive

Bit 1 Locked shareable

Bit 2 Logged

Bit 6 Lock held by TTS

recordStart

Indicates the byte offset of where the record begins in the file.

recordEnd

Indicates the byte offset of where the record ends in the file.

File Service Group

Synchronization: Structures 1208

CONN_PHYSICAL_LOCKS

Returns a connection's physical lock list

Service: Synchronization

Defined In: nwsync.h

Structure

typedef struct
{
 nuint16 nextRequest;
 nuint16 numRecords;
 CONN_PHYSICAL_LOCK locks[51];
 nuint16 curRecord;
 nuint8 reserved[22];
} CONN_PHYSICAL_LOCKS;

Pascal Structure

Defined in nwsync.inc

CONN_PHYSICAL_LOCKS = Record
 nextRequest : nuint16;
 numRecords : nuint16;
 locks : Array[0..50] Of CONN_PHYSICAL_LOCK;
 curRecord : nuint16;
 reserved : Array[0..21] Of nuint8
 End;

Fields

nextRequest

Is used internally by NWScanPhysicalLocksByConnFile.

numRecords

Indicates the number of valid PHYSICAL_LOCKs.

locks

curRecord

Indicates the current PHYSICAL_LOCK to return in lock.

reserved

File Service Group

Synchronization: Structures 1209

CONN_SEMAPHORE

Returns semaphore information list

Service: Synchronization

Defined In: nwsync.h

Structure

typedef struct
{
 nuint16 openCount;
 nuint16 semaphoreValue;
 nuint16 taskNumber;
 nstr8 semaphoreName[128];
} CONN_SEMAPHORE;

Pascal Structure

Defined in nwsync.inc

 CONN_SEMAPHORE = Record
 openCount : nuint16;
 semaphoreValue : nuint16;
 taskNumber : nuint16;
 semaphoreName : Array[0..127] Of nstr8
 End;

Fields

openCount

semaphoreValue

taskNumber

semaphoreName

File Service Group

Synchronization: Structures 1210

CONN_SEMAPHORES

Returns a connection's semaphore list

Service: Synchronization

Defined In: nwsync.h

Structure

typedef struct
{
 nuint16 nextRequest;
 nuint16 numRecords;
 nuint8 records[508];
 nuint16 curOffset;
 nuint16 curRecord;
} CONN_SEMAPHORES;

Pascal Structure

Defined in nwsync.inc

 CONN_SEMAPHORES = Record
 nextRequest : nuint16;
 numRecords : nuint16;
 records : Array[0..507] Of nuint8;
 curOffset : nuint16;
 curRecord : nuint16
 End;

Fields

nextRequest

numRecords

records

curOffset

curRecord

File Service Group

Synchronization: Structures 1211

LOGICAL_LOCK

Defines logical lock information

Service: Synchronization

Defined In: nwsync.h

Structure

typedef struct
{
 NWCONN_NUM connNumber;
 nuint16 taskNumber;
 nuint8 lockStatus;
} LOGICAL_LOCK;

Pascal Structure

Defined in nwsync.inc

 LOGICAL_LOCK = Record
 connNumber : NWCONN_NUM;
 taskNumber : nuint16;
 lockStatus : nuint8
 End;

Fields

connNumber

taskNumber

lockStatus

Indicates a bit mask describing how the file is locked:

0x01 Locked

0x02 Open shareable

0x04 Logged

0x08 Open Normal

0x40 TTS holding

0x80 Transaction flag set

File Service Group

Synchronization: Structures 1212

LOGICAL_LOCKS

Returns a list of logical locks

Service: Synchronization

Defined In: nwsync.h

Structure

typedef struct
{
 nuint16 useCount;
 nuint16 shareableLockCount;
 nuint8 locked;
 nuint16 nextRequest;
 nuint16 numRecords;
 LOGICAL_LOCK logicalLock[128];
 nuint16 curRecord;
} LOGICAL_LOCKS;

Pascal Structure

Defined in nwsync.inc

 LOGICAL_LOCKS = Record
 useCount : nuint16;
 shareableLockCount : nuint16;
 locked : nuint8;
 nextRequest : nuint16;
 numRecords : nuint16;
 logicalLock : Array[0..127] Of LOGICAL_LOCK;
 curRecord : nuint16
 End;

Fields

useCount

shareableLockCount

locked

nextRequest

numRecords

logicalLock

curRecord

File Service Group

Synchronization: Structures 1213

PHYSICAL_LOCK

Returns physical lock information

Service: Synchronization

Defined In: nwsync.h

Structure

typedef struct
{
 nuint16 loggedCount;
 nuint16 shareableLockCount;
 nuint32 recordStart;
 nuint32 recordEnd;
 nuint16 connNumber;
 nuint16 taskNumber;
 nuint8 lockType;
} PHYSICAL_LOCK;

Pascal Structure

Defined in nwsync.inc

 PHYSICAL_LOCK = Record
 loggedCount : nuint16;
 shareableLockCount : nuint16;
 recordStart : nuint32;
 recordEnd : nuint32;
 connNumber : nuint16;
 taskNumber : nuint16;
 lockType : nuint8
 End;

Fields

loggedCount

Indicates the number of tasks having the record logged.

shareableLockCount

Indicates the number of tasks having the record locked shareable.

recordStart

Indicates the byte offset of where the record begins in the file.

recordEnd

Indicates the logical connection having the record locked exclusively.

connNumber

File Service Group

Synchronization: Structures 1214

taskNumber

Indicates the task number within the logical connection having the
record locked exclusively.

lockType

Indicates whether the record is locked:

0x00 Not locked

0xFE Locked by a file lock

0xFF Locked by begin share file set

File Service Group

Synchronization: Structures 1215

PHYSICAL_LOCKS

Returns a list of physical locks

Service: Synchronization

Defined In: nwsync.h

Structure

typedef struct
{
 nuint16 nextRequest;
 nuint16 numRecords;
 PHYSICAL_LOCK locks[32];
 nuint16 curRecord;
 nuint8 reserved[8];
} PHYSICAL_LOCKS;

Pascal Structure

Defined in nwsync.inc

 PHYSICAL_LOCKS = Record
 nextRequest : nuint16;
 numRecords : nuint16;
 locks : Array[0..31] Of PHYSICAL_LOCK;
 curRecord : nuint16;
 reserved : Array[0..7] Of nuint8
 End;

Fields

nextRequest

Is internal to NWScanPhysicalLocksByFile

numRecords

Indicates the number of valid PHYSICAL_LOCKs

locks

curRecord

Indicates the current PHYSICAL_LOCK.

reserved

File Service Group

Synchronization: Structures 1216

SEMAPHORE

Returns semaphore information

Service: Synchronization

Defined In: nwsync.h

Structure

typedef struct
{
 NWCONN_NUM connNumber;
 nuint16 taskNumber;
} SEMAPHORE;

Pascal Structure

Defined in nwsync.inc

 SEMAPHORE = Record
 connNumber : NWCONN_NUM;
 taskNumber : nuint16
 End;

Fields

connNumber

taskNumber

File Service Group

Synchronization: Structures 1217

SEMAPHORES

Returns a list of semaphores

Service: Synchronization

Defined In: nwsync.h

Structure

typedef struct
{
 nuint16 nextRequest;
 nuint16 openCount;
 nuint16 semaphoreValue;
 nuint16 semaphoreCount;
 SEMAPHORE semaphores[170];
 nuint16 curRecord;
} SEMAPHORES;

Pascal Structure

 SEMAPHORES = Record
 nextRequest : nuint16;
 openCount : nuint16;
 semaphoreValue : nuint16;
 semaphoreCount : nuint16;
 semaphores : Array[0..169] Of SEMAPHORE;
 curRecord : nuint16
 End;

Fields

nextRequest

openCount

semaphoreValue

semaphoreCount

semaphores

curRecord

File Service Group

Synchronization: Structures 1218

Volume

File Service Group

 1219

Volume: Guides

Volume: Task Guide

Reading Volume Information

Managing Disk Space

Additional Links

Volume: Functions

Volume: Structures

Parent Topic:

Volume: Guides

Volume: Concept Guide

Volume Introduction

Volume Basics

Managing Disk Space: Example

Volume Information Functions

Volume Utilization and Restriction Functions

Additional Links

Volume: Functions

Volume: Structures

Parent Topic:

Volume: Guides

File Service Group

Volume: Guides 1220

Volume: Tasks

Reading Volume Information

NetWare® volume information indicates the amount of space available on a
volume. It includes the block size (number of sectors per block) and the
following totals:

Total blocks available

Total blocks in use

Total directory entries available

Total directory entries in use

It also indicates whether the volume is removable.

Two functions enable you to read volume information, one by means of
volume number and the other by directory handle:

NWGetVolumeInfoWithNumber takes a volume number.

NWGetVolumeInfoWithHandle takes a directory handle.

NWGetVolumeStats returns some additional volume information for
NetWare 2.2 volumes (such as whether the volume is caching). The function
doesn't apply to 3.11 or above.

Similar information is available at the directory level for 3.11 and above
using NWGetDirSpaceInfo. In addition to block and directory entry totals,
this function returns statistics for purgeable blocks.

Parent Topic:

Volume: Guides

Managing Disk Space

With NetWare® 3.11 and above, you can control the total amount of space
available to each object within a volume.

NetWare 3.11 and 4.x servers let you restrict the number of 4 KB blocks
available to a specified object. One function sets disk space restrictions and
two functions read restrictions:

File Service Group

Volume: Tasks 1221

NWSetObjectVolSpaceLimit sets an object's disk space restriction in
blocks. On NetWare 4.x servers, the restriction can range from 0 to
0x08000000. On 3.11 servers, the range is from 0 to 0x40000000.

NWGetObjDiskRestrictions returns the restriction for a specified object.

NWScanVolDiskRestrictions2 can be called iteratively to build a list of
objects that are assigned disk space restrictions.

To remove restrictions for a specific object on a volume, call
NWRemoveObjectDiskRestrictions.

NWGetDiskUtilization returns the number of files, directories, and
blocks an object is using on a volume.

Parent Topic:

Volume: Guides

Related Topics:

Managing Disk Space: Example

File Service Group

Volume: Tasks 1222

Volume: Examples

Managing Disk Space: Example

The following code calls NWGetObjDiskRestrictions to find the space
restriction for a specified user. Command-line parameters supply the
volume and object names. NWParsePath, NWGetVolumeNumber, and
NWGetObjectID return the parameters needed to call
NWGetObjDiskRestrictions.

Finding Space Restrictions

/* ***
 *
 * Name : Finding space restrictions for a user on a volume
 *
 *
 * Abstract : Call NWGetObjDiskRestrictions to find space restriction
 * for a specified user on a volume (supplied via command line).
 * NWParsePath, NWGetVolumeNumber and NWGetObjectID return the
 * parameters needed to call NWGetObjDiskRestrictions.
 *
 *
 * Inputs : Usage: SPACE <server> <volumename> <username>
 *
 * Outputs : restriction information for the user
 *
 * Notes : This example requires the client to be connected to the server
 * passed in as first argument.
 * ***
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <nwnet.h>
#include <nwcalls.h>
#include <nwcaldef.h>
#include <nwdpath.h>
#include <nwclxcon.h>
#ifndef N_PLAT_UNIX
#include <nwdpath.h>
#include <nwvol.h>
#include <nwbindry.h>
#include <nwmisc.h>
#endif
void main(int argc, char *argv[])

File Service Group

Volume: Examples 1223

{
 NWCONN_HANDLE connHandle;
 NWCONN_HANDLE startConnHandle;
 /* buffers for the NWGetObjDiskRestrictions call */
 nuint32 restriction, inUse;
 nuint16 volNumber;
 nuint32 objectID;
 NWCCODE ccode = 0;

 if (argc < 3)
 {
 printf("\nUsage: SPACE server volname username\n");
 exit(1);
 }
 /* argv[1] = server, argv[2] = vol, argv[3] = object name */
 ccode = NWCallsInit(NULL, NULL);
 if(ccode)
 {
 printf("\nNWCallsInit error %x\n", ccode);
 exit(1);

 /* Get the connection handle for this server */
 ccode = NWCCOpenConnByName((NWCONN_HANDLE)&startConnHandle, argv[1],
 NWCC_NAME_FORMAT_NDS, NWCC_OPEN_LICENSED, NULL,
 (unsigned int *)&connHandle);

 /* Get the volume number for this volume */
 ccode = NWGetVolumeNumber(connHandle, argv[2], &volNumber);
 if (ccode)
 {
 printf("\nNWGetVolumeNumber error %X\n", ccode);
 exit(1);
 }
 printf("\nNWGetVolumeNumber shows %d for %s\n", volNumber, argv[2]);

 /* Look up the object id in the bindery. connHandle is the NetWare
 server connection handle to use, argv[2] specifies the object
 name to search for, OT_USER indicates the bindery type of the object
 in the search and objectID is the return */

 ccode = NWGetObjectID(connHandle, argv[3], OT_USER, &objectID);
 if (ccode)
 {
 printf("\nNWGetObjectID error %X\n", ccode);
 exit(1);
 }
 /* Get the disk restrictions on a volume for the specified bindery
 object. The number of 4K blocks the user can use will be returned
 in restrictions, the number of 4K blocks the users is currently
 using will be returned in inUse. */

 ccode = NWGetObjDiskRestrictions(connHandle, volNumber, objectID,

File Service Group

Volume: Examples 1224

 &restriction, &inUse);
 if (ccode)
 {
 printf("\nNWGetObjDiskRestrictions error %X\n", ccode);
 exit(1);
 }

 printf("Disk restrictions for %s on %s/%s:\n", argv[3], argv[1], argv[2]);
/* If the following is true, then the user has no restrictions */

 if (restriction >= 0x40000000L)
 printf(" No disk space restrictions on this user.\n");
 else
 {
 printf(" Limit: %10d K\n", (restriction * 4));
 }
 printf(" In use: %10d K\n", (inUse * 4));
 }
}

Parent Topic:

Volume: Guides

File Service Group

Volume: Examples 1225

Volume: Concepts

Volume Basics

This section explains the basic concepts related to the NetWare® volumes.

A NetWare volume is the highest level in the NetWare directory structure
(the network equivalent of a DOS root directory). Volumes are divided into
blocks made up of sectors. Each sector is 512 bytes. The default block size is
4 KB. (The number of blocks per volume depends on the size of the
volume.)

A server running versions of NetWare before 3.11 can accommodate up to
32 volumes. A server running NetWare 3.11 or above can accommodate up
to 64 volumes.

A NetWare server identifies volumes by name and number. Knowing either
value allows you to find the other.

 NWGetVolumeNumber uses the volume name to return the volume
number.

 NWGetVolumeName uses the volume number to find the volume
name.

Parent Topic:

Volume: Guides

Volume Information Functions

These functions return information about a volume.

Function Header Comment

NWGetVolumeInfoWith
Handle

nwvol.h Returns information for the
volume on which the
specified directory is found.

NWGetVolumeInfoWith
Number

nwvol.h Returns volume information
for the specified volume.

NWGetVolumeName nwvol.h Returns the name of the
volume associated with the
specified volume number.

File Service Group

Volume: Concepts 1226

NWGetVolumeNumber nwvol.h Returns the volume number
based on the NetWare®
server connection ID and
volume name.

NWGetVolumeStats nwvol.h Returns information about a
volume on a 2.2 NetWare
server.

NWGetExtendedVolumeI
nfo

nwvol.h Returns extended
information for the specified
volume.

Parent Topic:

Volume: Guides

Volume Introduction

Volume enables you to manage NetWare® volumes. The principle
operations performed by these functions include:

Returning information about a specified volume

Accessing space restrictions for a specified Bindery object on a specified
volume

Accessing utilization statistics for a specified volume

Although this chapter generally notes the differences between overlapping
functions, developers need to be aware of compatibility issues affecting
specific functions. To verify a function's compatibility, see Volume:
Functions.

For a description of structures and other data definitions that relate to
Volume, see Volume: Structures.

Parent Topic:

Volume: Guides

Volume Utilization and Restriction Functions

These functions access space restrictions and utilization statistics for a
volume.

Function Header Comment

NWGetDiskUtilization nwvol.h Returns disk usage for a

File Service Group

Volume: Concepts 1227

specified bindery object on a
volume.

NWGetObjDiskRestriction
s

nwvol.h Returns the restriction on a
volume for the specified
bindery object.

NWRemoveObjectDiskRes
trictions

nwvol.h Removes all disk restrictions
for the specified object on a
volume.

NWScanVolDiskRestrictio
ns2

nwvol.h Returns a list of bindery
objects and their disk
restrictions on a volume.

NWSetObjectVolSpaceLim
it

nwvol.h Adds a user disk space
restriction to a volume.

Parent Topic:

Volume: Guides

File Service Group

Volume: Concepts 1228

Volume: Functions

File Service Group

Volume: Functions 1229

NWGetDiskUtilization

Allows a client to determine how much physical space the specified object
ID is using on the given volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows*95

Service: Volume

Syntax

#include <nwvol.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWGetDiskUtilization (
 NWCONN_HANDLE conn,
 nuint32 objID,
 nuint8 volNum,
 pnuint16 usedDirectories,
 pnuint16 usedFiles,
 pnuint16 usedBlocks);

Pascal Syntax

#include <nwvol.inc>

Function NWGetDiskUtilization
 (conn : NWCONN_HANDLE;
 objID : nuint32;
 volNum : nuint8;
 usedDirectories : pnuint16;
 usedFiles : pnuint16;
 usedBlocks : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare® server connection handle.

objID

(IN) Specifies the object ID.

volNum

(IN) Specifies the volume number.

File Service Group

Volume: Functions 1230

usedDirectories

(OUT) Points to the number of directories on the volume owned by
objID.

usedFiles

(OUT) Points to the number of files on the volume owned by objID.

usedBlocks

(OUT) Points to the number of physical volume blocks occupied by
files owned by objID.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x89A1 DIRECTORY_IO_ERROR

0x89F2 NO_OBJECT_READ_PRIVILEGE

0x89FC NO_SUCH_OBJECT

Remarks

usedBlocks will return incorrect information for disks larger than 268
megabytes. Call NWGetObjDiskRestrictions to get the disk space being
used by an object.

Clients who are SUPERVISOR equivalent can call
NWGetDiskUtilization for any object. Clients not having SUPERVISOR
rights can call NWGetDiskUtilization only for the object used when
logging in.

Call either NWGetObjectID or NWMapNameToID to get the object ID.

NWGetDiskUtilization will not validate objID. If objID is invalid or does
not exist on the server, NWGetDiskUtilization will return zero (0) for the
disk utilization.

NCP Calls

0x2222 23 14 Get Disk Utilization

0x2222 23 54 Get Object Name

File Service Group

Volume: Functions 1231

See Also

NWGetObjDiskRestrictions

File Service Group

Volume: Functions 1232

NWGetExtendedVolumeInfo

Returns extended volume information

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Volume

Syntax

#include <nwvol.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWGetExtendedVolumeInfo (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 NWVolExtendedInfo N_FAR *volInfo);

Pascal Syntax

#include <nwvol.inc>

Function NWGetExtendedVolumeInfo
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 Var volInfo : NWVolExtendedInfo
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number.

volInfo

(OUT) Points to NWVolExtendedInfo, which receives information.

Return Values

These are common return values; see Return Values for more
information.

File Service Group

Volume: Functions 1233

0x0000 SUCCESSFUL

0x8998 VOLUME_DOES_NOT_EXIST

0x897E NCP_BOUNDARY_CHECK_FAILED

0x89FB NO_SUCH_PROPERTY

Remarks

NWGetExtendedVolumeInfo must be called for a licensed connection or
NO_SUCH_PROPERTY will be returned.

If NWGetExtendedVolumeInfo is called from a 3.x server,
NO_SUCH_PROPERTY will be returned.

Possible volType values are defined below:

0 VINetWare386
1 VINetWare286
2 VINetWare386v30
3 VINetWare386v31

Bit definitions for statusFlag are shown below:

C
Value

Pasca
l
Value

Value Name

0x01 $01 NWSubAllocEnableBit

0x02 $02 NWCompressionEnabledBit

0x04 $04 NWMigrationEnableBit

0x08 $08 NWAuditingEnabledBit

0x10 $10 NWReadOnlyEnableBit

NCP Calls

0x2222 22 51 Get Extended Volume Information

File Service Group

Volume: Functions 1234

NWGetObjDiskRestrictions

Returns the disk restrictions on a volume for the specified object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Volume

Syntax

#include <nwvol.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWGetObjDiskRestrictions (
 NWCONN_HANDLE conn,
 nuint8 volNumber,
 nuint32 objectID,
 pnuint32 restriction,
 pnuint32 inUse);

Pascal Syntax

#include <nwvol.inc>

Function NWGetObjDiskRestrictions
 (conn : NWCONN_HANDLE;
 volNumber : nuint8;
 objectID : nuint32;
 restriction : pnuint32;
 inUse : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNumber

(IN) Specifies the volume number for which to return the restrictions.

objectID

(IN) Specifies the object ID.

restriction

(OUT) Points to the buffer containing the number of blocks the object
can use.

File Service Group

Volume: Functions 1235

inUse

(OUT) Points to the buffer containing the number of blocks the object
is currently using.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

Remarks

The restrictions are returned in units of 4K blocks.

NOTE: If the restriction is greater than 0x40000000 on a 3.1 server or
0x80000000 on a 4.x server, the object has no restrictions.

NCP Calls

0x2222 22 41 Get Object Disk Usage And Restrictions

See Also

NWGetExtendedVolumeInfo, NWSetObjectVolSpaceLimit

File Service Group

Volume: Functions 1236

NWGetVolumeInfoWithHandle

Returns the physical information or data of a server's volumes

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Volume

Syntax

#include <nwvol.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWGetVolumeInfoWithHandle (
 NWCONN_HANDLE conn,
 NWDIR_HANDLE dirHandle,
 pnstr8 volName,
 pnuint16 totalBlocks,
 pnuint16 sectorsPerBlock,
 pnuint16 availableBlocks,
 pnuint16 totalDirEntries,
 pnuint16 availableDirEntries,
 pnuint16 volIsRemovableFlag);

Pascal Syntax

#include <nwvol.inc>

Function NWGetVolumeInfoWithHandle
 (conn : NWCONN_HANDLE;
 dirHandle : NWDIR_HANDLE;
 volName : pnstr8;
 totalBlocks : pnuint16;
 sectorsPerBlock : pnuint16;
 availableBlocks : pnuint16;
 totalDirEntries : pnuint16;
 availableDirEntries : pnuint16;
 volIsRemovableFlag : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

dirHandle

File Service Group

Volume: Functions 1237

(IN) Specifies the directory handle pointing to the directory on the
volume whose information is to be reported.

volName

(OUT) Points to the volume name (optional 17 character buffer
including the terminating NULL).

totalBlocks

(OUT) Points to the total number of blocks on the volume (optional).

sectorsPerBlock

(OUT) Points to the number of sectors per block (optional).

availableBlocks

(OUT) Points to the total number of unused blocks on the volume
(optional).

totalDirEntries

(OUT) Points to the total number of physical directory entries
(optional).

availableDirEntries

(OUT) Points to the number of unused directory entries (optional).

volIsRemovableFlag

(OUT) Points to a flag indicating whether the volume is removable
(optional).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899B BAD_DIRECTORY_HANDLE

0x899C INVALID_PATH

0x89FF HARDWARE_FAILURE

Remarks

NWGetVolumeInfoWithHandle returns a 16-bit number in the
totalBlocks parameter. If the volume size is greater than a 16-bit number
(or 256 megabytes), NWGetDirSpaceInfo should be called.

dirHandle is an index number (1 through 255) pointing to a volume,

File Service Group

Volume: Functions 1238

directory, or subdirectory on the NetWare server. Directory handles are
recorded in the Directory Handle Table maintained by the server for each
logged-in workstation. When a workstation allocates a directory handle,
the NetWare server enters the volume number and directory entry
number for the specified directory into the Directory Handle Table.
Applications running on the workstation can then refer to a directory
using a directory handle, which is actually an index into the Directory
Handle Table.

Since all of the output parameters are optional, substitute NULL for
unwanted information. However, all parameter positions must be filled.

Volumes use logical sector sizes of 512 bytes. If the physical media uses a
different sector size, the server performs appropriate mappings. Volume
space is allocated in groups of sectors called blocks.

sectorsPerBlock indicates how many 512-byte sectors are contained in each
block of the specified volume.

totalDirEntries indicates how many directory entries were allocated for
the specified volume during installation. If this information is
meaningless under a given server's implementation, it is 0xFFFF.

volIsRemovableFlag indicates whether a user can physically remove the
volume from the NetWare server. It returns one of the following values:

0x0000 = not removable/fixed media
non-zero = removable/mountable

With NetWare 4.x and SFTIII, the volume sector size can be changed
from the 512-byte default. If changed, NWGetVolumeInfoWithHandle
may return adjusted data meeting DOS requirements. totalBlocks,
sectorsPerBlock and availableBlocks may be affected. To see the actual field
size, call NWGetExtendedVolumeInfo.

NOTE: Block size can be found by calling
NWGetExtendedVolumeInfo and multiplying sectorSize and
sectorPerCluster.

NCP Calls

0x2222 22 21 Get Volume Info With Handle

See Also

NWGetDirSpaceInfo, NWGetVolumeInfoWithNumber

File Service Group

Volume: Functions 1239

NWGetVolumeInfoWithNumber

Returns information for the specified volume by passing a volume number,
allowing a client to check the physical space available on a volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Volume

Syntax

#include <nwvol.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWGetVolumeInfoWithNumber (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 pnstr8 volName,
 pnuint16 totalBlocks,
 pnuint16 sectorsPerBlock,
 pnuint16 availableBlocks,
 pnuint16 totalDirEntries,
 pnuint16 availableDirEntries,
 pnuint16 volIsRemovableFlag);

Pascal Syntax

#include <nwvol.inc>

Function NWGetVolumeInfoWithNumber
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 volName : pnstr8;
 totalBlocks : pnuint16;
 sectorsPerBlock : pnuint16;
 availableBlocks : pnuint16;
 totalDirEntries : pnuint16;
 availableDirEntries : pnuint16;
 volIsRemovableFlag : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

File Service Group

Volume: Functions 1240

volNum

(IN) Specifies the volume number of the volume for which
information is being obtained.

volName

(OUT) Points to the volume name (optional 17 character buffer
including the terminating NULL).

totalBlocks

(OUT) Points to the total number of blocks on the volume (optional).

sectorsPerBlock

(OUT) Points to the number of sectors per block (optional).

availableBlocks

(OUT) Points to the number of unused blocks on the volume
(optional).

totalDirEntries

(OUT) Points to the total number of physical directory entries
(optional).

availableDirEntries

(OUT) Points to the number of unused directory entries (optional).

volIsRemovableFlag

(OUT) Points to a flag indicating whether the volume is removable
(optional).

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

Remarks

NWGetVolumeInfoWithNumber returns a 16-bit number in the
totalBlocks parameter. If the volume size is greater than a 16-bit number
(or 256 megabytes), NWGetDirSpaceInfo should be called.

volNum identifies the volume name on the NetWare server's Volume
Table.

Volumes use logical sector sizes of 512 bytes. If the physical media uses a
different sector size, the server performs appropriate mappings. Volume

File Service Group

Volume: Functions 1241

space is allocated in groups of sectors called blocks.

sectorsPerBlock indicates the number of 512-byte sectors contained in each
block of the specified volume.

totalDirEntries indicates how many directory entries were allocated for
the specified volume during installation. If this information is
meaningless under a given server's implementation, it is 0xFFFF.

volIsRemovableFlag indicates whether a user can physically remove the
volume from the NetWare server. It returns one of the following values:

0x0000 = not removable/fixed media

non-zero = removable/mountable

Since all of the output parameters are optional, substitute a NULL for
unwanted information. However, all parameter positions must be filled.

With NetWare 4.x and SFTIII, the volume sector size can be changed
from the 512-byte default. If changed, NWGetVolumeInfoWithHandle
may return adjusted data that meets DOS requirements. totalBlocks,
sectorsPerBlock, and availableBlocks may be affected. To see the actual field
size, call NWGetExtendedVolumeInfo.

NOTE: Block size can be found by calling
NWGetExtendedVolumeInfo and multiplying sectorSize and
sectorPerCluster.

NCP Calls

 0x2222 18 Get Volume Info With Number

See Also

NWGetDirSpaceInfo, NWGetVolumeInfoWithHandle

File Service Group

Volume: Functions 1242

NWGetVolumeName

Returns the name of the volume associated with the specified volume
number and NetWare server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Volume

Syntax

#include <nwvol.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWGetVolumeName (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 pnstr8 volName);

Pascal Syntax

#include <nwvol.inc>

Function NWGetVolumeName
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 volName : pnstr8
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number of the volume for which
information is being obtained.

volName

(OUT) Points to the volume name (17 characters including the
terminating NULL).

Return Values

These are common return values; see Return Values for more

File Service Group

Volume: Functions 1243

information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

0x89FF HARDWARE_FAILURE

Remarks

volNum identifies the volume name on the NetWare server's Volume
Table. volNum needs to be between 0 and the maximum allowable
volumes on the server.

NWGetVolumeName can be called to determine all volume numbers
and volume names currently mounted on the specified NetWare server.
Start the scan with volume number 0 and scan upwards until

volName[0]=="\0"

indicating the volume is not mounted.

SUCCESSFUL will be returned for each allowable volume number
whether or not that volume exists on the specified server. For example,
NetWare 3.x and above supports 64 volumes on each server. Calling
NWGetVolumeName on each of the 64 volumes will return
SUCCESSFUL even though the volume is not mounted.

NCP Calls

 0x2222 22 6 Get Volume Name

See Also

NWGetVolumeNumber

File Service Group

Volume: Functions 1244

NWGetVolumeNumber

Returns the volume number based on the NetWare server connection
handle and the volume name

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Volume

Syntax

#include <nwvol.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWGetVolumeNumber (
 NWCONN_HANDLE conn,
 pnstr8 volName,
 pnuint16 volNum);

Pascal Syntax

#include <nwvol.inc>

Function NWGetVolumeNumber
 (conn : NWCONN_HANDLE;
 volName : pnstr8;
 volNum : pnuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volName

(IN) Points to the volume name (17 characters including the
terminating NULL).

volNum

(OUT) Points to the volume number (identifies the volume on the
NetWare server's Volume Table).

Return Values

These are common return values; see Return Values for more

File Service Group

Volume: Functions 1245

information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

NCP Calls

0x2222 22 5 Get Volume Number

See Also

NWGetVolumeName, NWGetVolumeInfoWithNumber

File Service Group

Volume: Functions 1246

NWGetVolumeStats

Returns information about a volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Volume

Syntax

#include <nwvol.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWGetVolumeStats (
 NWCONN_HANDLE conn,
 nuint8 volNum,
 VOL_STATS N_FAR *volInfo);

Pascal Syntax

#include <nwvol.inc>

Function NWGetVolumeStats
 (conn : NWCONN_HANDLE;
 volNum : nuint8;
 Var volInfo : VOL_STATS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number for which information is requested.

volInfo

(OUT) Points to VOL_STATS receiving the volume information.

Return Values

These are common return values; see Return Values for more
information.

File Service Group

Volume: Functions 1247

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

0x899C INVALID_PATH

0x89FF HARDWARE_FAILURE

NCP Calls

0x2222 23 233 Get Volume Information

See Also

NWGetVolumeInfoWithHandle, NWGetVolumeInfoWithNumber

File Service Group

Volume: Functions 1248

NWRemoveObjectDiskRestrictions

Removes any disk restrictions for the specified object, for the specified
volume, on the specified server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Volume

Syntax

#include <nwvol.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWRemoveObjectDiskRestrictions (
 NWCONN_HANDLE conn,
 nuint8 volNum,
 nuint32 objID);

Pascal Syntax

#include <nwvol.inc>

Function NWRemoveObjectDiskRestrictions
 (conn : NWCONN_HANDLE;
 volNum : nuint8;
 objID : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number for which to remove restrictions.

objID

(IN) Specifies the object ID for which to remove restrictions.

Return Values

These are common return values; see Return Values for more
information.

File Service Group

Volume: Functions 1249

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x898C N0_MODIFY_PRIVILEGES

0x8998 VOLUME_DOES_NOT_EXIST

0x89FE NetWare Error (object has no restrictions)

NCP Calls

0x2222 22 34 Remove User Disk Space Restriction

File Service Group

Volume: Functions 1250

NWScanVolDiskRestrictions2

Returns a list of the disk restrictions for a volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Volume

Syntax

#include <nwvol.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWScanVolDiskRestrictions2 (
 NWCONN_HANDLE conn,
 nuint8 volNum,
 pnuint32 iterHnd,
 NWVOL_RESTRICTIONS N_FAR *volInfo);

Pascal Syntax

#include <nwvol.inc>

Function NWScanVolDiskRestrictions2
 (conn : NWCONN_HANDLE;
 volNum : nuint8;
 iterhandle : pnuint32;
 Var volInfo : NWVOL_RESTRICTIONS
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number for which to return the restrictions.

iterHnd

(OUT) Points to the sequence number to use in the search. Initially
must be set to 0.

volInfo

(OUT) Points to NWVOL_RESTRICTIONS.

File Service Group

Volume: Functions 1251

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8998 VOLUME_DOES_NOT_EXIST

Remarks

NWScanVolDiskRestrictions2 replaces NWScanVolDiskRestrictions.
The new function uses a larger structure for the volume restrictions that
allows up to 16 restrictions per volume.

NOTE: Calling NWScanVolDiskRestrictions when you have more
than 12 restrictions per volume causes random failures. For this reason,
we suggest you call NWScanVolDiskRestrictions2 exclusively from
now on.

The information returned in NWVOL_RESTRICTIONS contains the
object restrictions that have been made for the volume. All restrictions
are returned in blocks. If the restriction is greater than 0x40000000 on a
3.1 server or 0x80000000 on a 4.x server, the object has no restrictions.

IMPORTANT: NWScanVolDiskRestrictions2 is called iteratively to
retrieve information on all disk space restrictions. The number of entries
is returned in iterHnd. This value must be added to the previous iterHnd
to obtain the value for the next iterative call.

NCP Calls

0x2222 22 32 Scan Volume's User Disk Restrictions

File Service Group

Volume: Functions 1252

NWSetObjectVolSpaceLimit

Sets an object's disk space limit on a volume

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Volume

Syntax

#include <nwvol.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY(NWCCODE) NWSetObjectVolSpaceLimit (
 NWCONN_HANDLE conn,
 nuint16 volNum,
 nuint32 objID,
 nuint32 restriction);

Pascal Syntax

#include <nwvol.inc>

Function NWSetObjectVolSpaceLimit
 (conn : NWCONN_HANDLE;
 volNum : nuint16;
 objID : nuint32;
 restriction : nuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

volNum

(IN) Specifies the volume number for which to set the space limit.

objID

(IN) Specifies the object ID for which to limit the volume space.

restriction

(IN) Specifies the number of blocks to limit the volume space.

Return Values

File Service Group

Volume: Functions 1253

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x898C N0_MODIFY_PRIVILEGES

0x8996 SERVER_OUT_OF_MEMORY

0x8998 VOLUME_DOES_NOT_EXIST

Remarks

The restrictions are set in units of blocks. The valid space limits range
from 0 to 0x08000000.

NOTE: Block size can be found by calling
NWGetExtendedVolumeInfo and multiplying sectorSize and
sectorPerCluster.

NCP Calls

0x2222 22 33 Add User Disk Space Restriction

File Service Group

Volume: Functions 1254

Volume: Structures

File Service Group

Volume: Structures 1255

NWOBJ_REST

Contains an object ID with the restrictions placed on the object for a certain
volume (to be used with NWVOL_RESTRICTIONS)

Service: Volume

Defined In: nwvol.h

Structure

typedef struct
{
 nuint32 objectID;
 nuint32 restriction;
} NWOBJ_REST;

Pascal Structure

Defined in nwvol.inc

 NWOBJ_REST = Record
 objectID : nuint32;
 restriction : nuint32
 End;

Fields

objectID

Specifies the Directory Services ID for an object.

restriction

Specifies, by the number of blocks, the amount of restriction placed on
the object.

File Service Group

Volume: Structures 1256

NWVolExtendedInfo

 Contains extended information for a volume

Service: Volume

Defined In: nwvol.h and nwvol.inc

Structure

typedef struct {
 nuint32 volType;
 nuint32 statusFlag;
 nuint32 sectorSize;
 nuint32 sectorsPerCluster;
 nuint32 volSizeInClusters;
 nuint32 freeClusters;
 nuint32 subAllocFreeableClusters;
 nuint32 freeableLimboSectors;
 nuint32 nonfreeableLimboSectors;
 nuint32 availSubAllocSectors;
 nuint32 nonuseableSubAllocSectors;
 nuint32 subAllocClusters;
 nuint32 numDataStreams;
 nuint32 numLimboDataStreams;
 nuint32 oldestDelFileAgeInTicks;
 nuint32 numCompressedDataStreams;
 nuint32 numCompressedLimboDataStreams;
 nuint32 numNoncompressibleDataStreams;
 nuint32 precompressedSectors;
 nuint32 compressedSectors;
 nuint32 numMigratedDataStreams;
 nuint32 migratedSectors;
 nuint32 clustersUsedByFAT;
 nuint32 clustersUsedByDirs;
 nuint32 clustersUsedByExtDirs;
 nuint32 totalDirEntries;
 nuint32 unusedDirEntries;
 nuint32 totalExtDirExtants;
 nuint32 unusedExtDirExtants;
 nuint32 extAttrsDefined;
 nuint32 extAttrExtantsUsed;
 nuint32 DirectoryServicesObjectID;
 nuint32 volLastModifiedDateAndTime;
} NWVolExtendedInfo;

Pascal Structure

NWVolExtendedInfo = Record
 volType : nuint32;
 statusFlag : nuint32;

File Service Group

Volume: Structures 1257

 sectorSize : nuint32;
 sectorsPerCluster : nuint32;
 volSizeInClusters : nuint32;
 freeClusters : nuint32;
 subAllocFreeableClusters : nuint32;
 freeableLimboSectors : nuint32;
 nonfreeableLimboSectors : nuint32;
 availSubAllocSectors : nuint32;
 nonuseableSubAllocSectors : nuint32;
 subAllocClusters : nuint32;
 numDataStreams : nuint32;
 numLimboDataStreams : nuint32;
 oldestDelFileAgeInTicks : nuint32;
 numCompressedDataStreams : nuint32;
 numCompressedLimboDataStreams : nuint32;
 numNoncompressibleDataStreams : nuint32;
 precompressedSectors : nuint32;
 compressedSectors : nuint32;
 numMigratedDataStreams : nuint32;
 migratedSectors : nuint32;
 clustersUsedByFAT : nuint32;
 clustersUsedByDirs : nuint32;
 clustersUsedByExtDirs : nuint32;
 totalDirEntries : nuint32;
 unusedDirEntries : nuint32;
 totalExtDirExtants : nuint32;
 unusedExtDirExtants : nuint32;
 extAttrsDefined : nuint32;
 extAttrExtantsUsed : nuint32;
 DirectoryServicesObjectID : nuint32;
 volLastModifiedDateAndTime : nuint32
 End;

Fields

volType

Specifies different volumes that may be supported in the future.

statusFlag

Specifies the options currently available in this volume

C Value Pascal Value Value Name

0x01 $01 NWSubAllocEnableBit

0x02 $02 NWCompressionEnabledBit

0x04 $04 NWMigrationEnableBit

0x08 $08 NWAuditingEnabledBit

0x10 $10 NWReadOnlyEnableBit

File Service Group

Volume: Structures 1258

sectorSize

Specifies the sector size in bytes.

sectorsPerCluster

Specifies the number of sectors per cluster.

volSizeInClusters

Specifies the size, in clusters, of the volume.

freeClusters

Specifies the number of clusters currently free for allocation. This does
not include space currently available from deleted (limbo) files, nor
space that could be reclaimed from the suballocation file system.

subAllocFreeableClusters

Specifies the space that could be reclaimed from the suballocation file
system.

freeableLimboSectors

Specifies the disk space, in clusters, that could be freed from deleted
files.

nonfreeableLimboSectors

Specifies the disk space, in clusters, currently in deleted files, not aged
enough to be classified as FreeableLimboClusters. These will be migrated
to the status of FreeableLimboCluster after time.

availSubAllocSectors

Specifies the space available to the suballocation file system, but not
freeable to return as clusters.

nonuseableSubAllocSectors

Specifies the disk space wasted by the suballocation file system. These
clusters cannot be allocated by the suballocation system or used as
regular clusters.

subAllocClusters

Specifies the disk space being used by the suballocation file system.

numDataStreams

Specifies the number of data streams for real files with data allocated
to them.

numLimboDataStreams

Specifies the number of data streams for deleted files with data
allocated to them.

oldestDelFileAgeInTicks

Specifies the current age of the oldest file in ticks.

numCompressedDataStreams

Specifies the number of data streams for compressed real files.

File Service Group

Volume: Structures 1259

numCompressedLimboDataStreams

Specifies the count of data streams for compressed deleted files.

numNoncompressibleDataStreams

Specifies the data streams found not compressable (real and deleted).

precompressedSectors

Specifies the disk space allocated to all files before they were
compressed (includes "hole" space).

compressedSectors

Specifies the disk space used by all compressed files.

numMigratedDataStreams

Specifies the number of migrated data streams.

migratedSectors

Specifies the migrated disk space (in sectors).

clustersUsedByFAT

Specifies the disk space in clusters used by the FAT table.

clustersUsedByDirs

Specifies the disk space in clusters used by directories.

clustersUsedByExtDirs

Specifies the disk space in clusters used by the extended directory
space.

totalDirEntries

Specifies the total number of directories available on the volume.

unusedDirEntries

Specifies the total directory entries unused on volume.

totalExtDirExtants

Specifies the amount of extended directory space extants (128 bytes
each) available on volume.

unusedExtDirExtants

Specifies the amount of extended directory space extants (128 bytes
each) unused on volume.

extAttrsDefined

Specifies the number of extended attributes defined on volume.

extAttrExtantsUsed

Specifies the number of extended directory extants used by the
extended attributes.

DirectoryServicesObjectID

Specifies the Directory Services ID for volume.

volLastModifiedDateAndTime

Specifies the last time any file or subdirectory within the volume was

File Service Group

Volume: Structures 1260

modified (tracked by the OS).

Remarks

The volType parameter can have the following values:

0 VINetWare386

1 VINetWare286

2 VINetWare386v30

3 VINetWare386v31

File Service Group

Volume: Structures 1261

NWVOL_RESTRICTIONS

Returns a list of objects with space restrictions on a volume

Service: Volume

Defined In: nwvol.h

Structure

typedef struct
{
 nuint8 numberOfEntries;
 struct
 {
 nuint32 objectID;
 nuint32 restriction;
 } resInfo[16];
} NWVOL_RESTRICTIONS;

Pascal Structure

Defined in nwvol.inc

 NWVOL_RESTRICTIONS = Record
 numberOfEntries : nuint8;
 resInfo : Array[0..15] Of RES_INFO;
 End;

 RES_INFO = Record
 objectID : nuint32;
 restriction : nuint32;
 End;

Fields

numberOfEntries

Specifies the number of objects in the list (0-16 objects).

objectID

Specifies the ID of the NDS object.

restriction

Specifies the size, in blocks, of the restriction placed on an object.

File Service Group

Volume: Structures 1262

VOL_STATS

Contains volume statistics

Service: Volume

Defined In: nwvol.h

Structure

typedef struct
{
 nint32 systemElapsedTime;
 nuint8 volumeNumber;
 nuint8 logicalDriveNumber;
 nuint16 sectorsPerBlock;
 nuint16 startingBlock;
 nuint16 totalBlocks;
 nuint16 availableBlocks;
 nuint16 totalDirectorySlots;
 nuint16 availableDirectorySlots;
 nuint16 maxDirectorySlotsUsed;
 nuint8 isHashing;
 nuint8 isCaching;
 nuint8 isRemovable;
 nuint8 isMounted;
 nstr8 volumeName[16];
} VOL_STATS;

Pascal Structure

Defined in nwvol.inc

VOL_STATS = Record
 systemElapsedTime : nint32;
 volumeNumber : nuint8;
 logicalDriveNumber : nuint8;
 sectorsPerBlock : nuint16;
 startingBlock : nuint16;
 totalBlocks : nuint16;
 availableBlocks : nuint16;
 totalDirectorySlots : nuint16;
 availableDirectorySlots : nuint16;
 maxDirectorySlotsUsed : nuint16;
 isHashing : nuint8;
 isCaching : nuint8;
 isRemovable : nuint8;
 isMounted : nuint8;
 volumeName : Array[0..15] Of nstr8
 End;

File Service Group

Volume: Structures 1263

Fields

systemElapsedTime

Specifies how long the server has been up. This value is returned in
ticks (units of approximately 1/18 second) and is used to determine
the amount of time elapsing between consecutive calls. After reaching
a value of 0xFFFFFFFF, the value wraps back to zero.

volumeNumber

Specifies the number of a volume in a volume table on a server. SYS
volume is always zero.

logicalDriveNumber

Specifies the logical drive number of the drive on which the volume
exists.

sectorsPerBlock

Specifies the number of 512-byte sectors contained in each block of the
specified volume. For NetWare 2.x, this is configurable from 1 to 16.
NWU (NetWare for Unix) does not support this field and returns a
zero.

startingBlock

Specifies the number of the first block of the volume.

totalBlocks

Specifies the number of blocks in the specified volume. NWU
(NetWare for Unix) returns the total amount of disk space on the
volume's host file system. All volumes mounted from the same file
system will return the same value.

availableBlocks

Specifies the number of unused blocks in the specified volume. NWU
(NetWare for Unix) returns the total amount of disk space on the host
file system. All volumes mounted from the same file system will
return the same value.

totalDirectorySlots

Specifies the number of directory slots allocated for the specified
volume. NWU (NetWare for Unix) returns the number of files that can
be created to track NetWare file and trustee information.

availableDirectorySlots

Specifies the number of directories that can be created, based on the
differences between the total allowable number of directories and the
number of directories already created. NWU (NetWare for Unix)
returns the number of directories that can be created.

maxDirectorySlotsUsed

Specifies the greatest number of directory slots ever used at one time
on the volume. NWU (NetWare for Unix) does not support this field
and returns a zero.

File Service Group

Volume: Structures 1264

isHashing

Specifies whether the volume is hashing in server memory (0=not
hashing). Only NetWare 2.x servers return a valid value.

isCaching

Specifies whether the volume is caching in server memory (0=volume
not caching). Only NetWare 2.x servers returns a valid value.

isRemovable

Specifies if a user can physically remove the volume from the server
(0=cannot be removed). Only NetWare 3.x and 4.x servers return a
valid value.

isMounted

Specifies whether the volume is physically mounted in the server
(0=volume is not mounted). Only NetWare 3.x and 4.x servers return a
valid value.

volumeName

Specifies the name given to the volume (1 to 16 characters long). It
cannot contain asterisks (*), question marks (?), colons (:), slashes (/),
or backslashes (\). If the name is less than 16 characters, the remaining
characters must be null. NWU (NetWare for Unix) returns the
NetWare name for the volume.

File Service Group

Volume: Structures 1265

Volume Management

File Service Group

 1266

Volume Management: Guides

Volume Management: Concept Guide

Volume Management Introduction

Storage Layers

Device Layer

Partition Layer

Hot Fix Layer

Volume Segment Layer

Volume Layer

Volume Segments

Physical Representation

Logical Representation

Segment Types

Mounting Volumes

Compatibility

Translation Routines

Volume Creation Error Codes

Warning Codes

Segment Status Codes

Additional Links

Volume Management: Functions

Parent Topic:

Volume Management: Guides

Storage Layers

File Service Group

Volume Management: Guides 1267

The NetWare® storage system generally consists of these layers:

Figure 10. NetWare Storage Systems Layers

Device Layer

Partition Layer

Hot Fix Layer

Volume Segment Layer

Volume Layer

Parent Topic:

Volume Management: Guides

Volume Segments

A volume segment has two important aspects: it is a piece of a volume and a
piece of a mirror object. The volume aspect relates to "What disks does this
volume span?", while the mirror object aspect relates to "What volumes are
on this disk?" Volumes and segments can be represented physically or
logically, as explained below.

Physical Representation

Logical Representation

File Service Group

Volume Management: Guides 1268

Segment Types

Parent Topic:

Volume Management: Guides

File Service Group

Volume Management: Guides 1269

Volume Management: Concepts

Compatibility

These functions were written to NetWare® 4.x and NetWare 3.12. These
functions cannot be used with NetWare 3.11 or earlier, or with Personal
NetWare™.

Directory Services and volume control capabilities such as suballocation,
compression, and migration do not exist in NetWare 3.12. As a result,
NWVL_SetOrGetVolumeControlInfo always returns an error on NetWare
3.12. The volumeControlFlags and dsObjectID parameters of
NWVL_CreateANewVolume are NetWare 4.x-specific, and are ignored on
NetWare 3.12.

When creating new volumes on NetWare 4.x, you can get defaults for block
size and the volume control flag by calling
NWVL_GetDefaultBlockSizeAndControlFlags. The suballocation volume
control flag is typically returned as "on"; there seems to be little advantage to
setting it "off." Compression and migration flags have performance vs. disk
space trade-offs; you may want to leave those issues to the user.

After creating a volume object on NetWare 4.x, you should get the Directory
Services ID by calling DSAPI. Because DSAPI depends on DS, and DS
cannot be properly installed without volume SYS being installed first, an
interesting "chicken-and-egg" scenario can result. To solve this, call
NWVL_CreateANewVolume with dsObjectID set to 0; then after DS is
installed, call NWVL_SetOrGetVolumeControlInfo to set the correct ID.

Parent Topic:

Volume Management: Guides

Device Layer

The device, described in Media Manager: Guides, corresponds to the drive,
magazine, or player. The media corresponds to the actual storage medium
in the device.

Parent Topic:

Storage Layers

Related Topics:

Partition Layer

File Service Group

Volume Management: Concepts 1270

Hot Fix Layer

Volume Segment Layer

Volume Layer

Hot Fix Layer

The Hot Fix™ layer is a fault-tolerant layer designed to handle media errors.
Up to 2% of the partition is reserved for redirection (Hot Fix); the remainder
contains the data. If a media error occurs while writing a data block (4 KB
block size), the entire block is redirected to the Hot Fix area, and the original
block in the data area will remain unused. A mirror object is a group of one
or more Hot Fix objects. Each Hot Fix object contains identically redundant
data. Reads can occur from any of them, and writes are directed to all of
them.

Parent Topic:

Storage Layers

Related Topics:

Volume Segment Layer

Volume Layer

Device Layer

Partition Layer

Logical Representation

These two aspects can be thought of as the horizontal and vertical
dimensions of an imaginary grid, as shown in the following figure. The
horizontal dimension represents the volume aspect. An array of volume
names forms the headers to the list, with links to segments across one or
more disks. The volume list head is obtained by calling
NWVL_GetVolumeFirstSegment, then the segment list can be traversed by
calling NWVL_GetNextSegment with the appropriate traversal flag.

Figure 11. Volume Segments, Logical Representation

File Service Group

Volume Management: Concepts 1271

The vertical dimension represents the mirror object. An array of mirror
objects forms the linked list headers, which point to a list of segments within
each mirror object. The partition list head is obtained by calling
NWVL_GetMirrorObjectFirstSegment, then the segment list can be
traversed by calling NWVL_GetNextSegment with the appropriate
traversal flag.

File Service Group

Volume Management: Concepts 1272

Parent Topic:

Volume Segments

Related Topics:

Segment Types

Physical Representation

Mounting Volumes

The NetWare® OS mounts a volume by scanning the disks for the list of
complete volumes. (The API and the NetWare OS use similar code.) Then
the NetWare OS reads the FAT and directory structure into memory,
making the internal volume structure (directories, files, and so on)
accessible to the user.

The NetWare OS itself (NetWare 3.12 and NetWare 4.x) does not mount
individual segments, only complete volumes. Therefore, if a segment is
invalid it is not mountable. Also, the (current) NetWare OS does not mount
more than one volume with the same name, even though (according to the
API) the volumes may be complete, valid, and distinct. (The API
implementation internally uses more than just the name to determine
volume uniqueness.)

Parent Topic:

Volume Management: Guides

Partition Layer

A partition follows the IBM partition table convention, with a maximum of
four physical partitions per drive. INSTALL.NLM currently creates only one
NetWare® partition per drive, although an application can create more,
independent of INSTALL.NLM.

Parent Topic:

Storage Layers

Related Topics:

Hot Fix Layer

Volume Segment Layer

Volume Layer

Device Layer

File Service Group

Volume Management: Concepts 1273

Physical Representation

Most users prefer to think of the physical representation of volume
segments, because typically they create volumes with only one segment,
and one segment per disk. Therefore, for most typical users, a volume
equals a disk. A physical representation of volume segments is shown
below.

Figure 12. Volume Segments, Physical Representation

Parent Topic:

Volume Segments

Related Topics:

Logical Representation

Segment Types

Segment Status Codes

Error Code Description

NWVL_SEGSTAT_READFAIL Excessive read errors occurred.

NWVL_SEGSTAT_BUSY Could not lock the partition.

NWVL_SEGSTAT_READERRORS Read errors occurred.

NWVL_SEGSTAT_UNUSABLE Volume definitions

File Service Group

Volume Management: Concepts 1274

contradictory.

NWVL_SEGSTAT_INCONSISTENT Some volume definitions don't
make sense.

NWVL_SEGSTAT_DUPLICATE_VO
L

Complete, but alternative
volume.

NWVL_SEGSTAT_DUPLICATE_SE
G

Duplicate segments for an
existing volume.

NWVL_SEGSTAT_INCOMPLETE_V
OL

Volume fragment; pieces
missing.

NWVL_SEGSTAT_INCONSISTENT
_VOL

Volume fragment; pieces don't
fit.

Parent Topic:

Volume Management: Guides

Segment Types

Segments are classed as valid, invalid, and free. Valid segments form part of
complete and consistent volumes. Invalid segments are those whose volume
definition is incomplete, corrupted, or extraneous. Unused mirror object
space is classed as a free segment.

The list of segments associated with each volume contains only valid
volume segments. The segment list for each mirror object contains all
segments, including the free and invalid ones. When you write code using
the volume list, remember that the list may not be comprehensive (even
though in normal, error-free conditions it probably is).

Parent Topic:

Volume Segments

Related Topics:

Physical Representation

Logical Representation

Translation Routines

For future compatibility, allowance has been made for 64-bit offsets
(NWVL_QUAD) and Unicode* volume names. Translation routines are
provided to translate between NWVL_QUAD and unsigned 32-bit values.
Additional translation routines are provided for translating between local
and Unicode volume names. For DAI backward-compatibility, translation
routines to go back and forth between mirror object numbers and logical

File Service Group

Volume Management: Concepts 1275

partition numbers.

Parent Topic:

Volume Management: Guides

Volume Creation Error Codes

Error Code Description

NWVLERR_ACCESS_NOT_ALLOW
ED

Shared access does not allow
the attempted operation.

NWVLERR_ALLOC Could not allocate memory.

NWVLERR_API_VERSION Desired API version level is not
supported.

NWVLERR_BUSY NWVL_Start was not called
first, or function already in use.

NWVLERR_CANT_GET_OS_VER Could not get OS server
version.

NWVLERR_CANT_GET_VOLINFO Could not get OS volume
information.

NWVLERR_CANT_REGISTER_EVE
NT

Unable to register for an OS
event.

NWVLERR_CANT_RESET_COMPR Compression is on, cannot turn
it off.

NWVLERR_CANT_RESET_SUBALL
OC

Suballocation is on, cannot turn
it off.

NWVLERR_CREATE_DIR Was not able to create the
volume directory table.

NWVLERR_CREATE_FAT Was not able to create the
volume FAT table.

NWVLERR_DEFREADAFTERWRIT
E

Unable to read-after-write
verify the vol def table.

NWVLERR_DEFREALWRITE Unable to write the vol def
table.

NWVLERR_DEFWRITE Unable to write the vol def
table.

NWVLERR_DEFWRITEVERIFY Unable to pre-read-before
write the vol def table.

NWVLERR_DIR_ALLOC A free directory block could not
be found (the volume may be
full).

NWVLERR_DIR_INCONSISTENT The directory table is

File Service Group

Volume Management: Concepts 1276

inconsistent.

NWVLERR_DIR_READ A directory block could not be
read.

NWVLERR_DIR_REDIR An attempt to redirect a
directory block write failed.

NWVLERR_DIR_WRITE A directory block could not be
written.

NWVLERR_DUPLICATE_SEGMEN
T

The new segment matches an
existing one.

NWVLERR_EXPAND_VOLTABLES Cannot expand OS volume
FAT and directory tables.

NWVLERR_FAIL_DISMOUNT Cannot dismount the volume.

NWVLERR_FAIL_MOUNT Cannot mount the volume.

NWVLERR_FAT_ALLOC A free FAT block could not be
found (the volume may be
full).

NWVLERR_FAT_INCONSISTENT The fat length read is the
incorrect size, or the primary
and mirror fat don't match.

NWVLERR_FAT_READ Unable to read the volume FAT
tables.

NWVLERR_FAT_WRITE Unable to write the volume
FAT/directory tables.

NWVLERR_GET_INFO An attempt to get partition
information failed.

NWVLERR_INTERNAL An unexpected internal error
occurred.

NWVLERR_INVALID_BLOCKSHIF
T

Invalid block shift factor, must
be 3-7.

NWVLERR_INVALID_CALLER NWVL_Start was not called, or
caller ID was not found.

NWVLERR_INVALID_CHARS Name contains one or more
invalid characters. Valid
characters include A-Z, 0-9, @,
#, %, &, (, and).

NWVLERR_INVALID_OFFSET The offset specified cannot be
used.

NWVLERR_INVALID_LOGICAL Invalid logical partition
number.

NWVLERR_INVALID_PARAM A parameter passed to a
function was invalid.

NWVLERR_INVALID_PARTITION An invalid partition object
number was specified.

File Service Group

Volume Management: Concepts 1277

NWVLERR_INVALID_SEGMENT An invalid segment handle
was specified.

NWVLERR_INVALID_VOLUME An invalid volume handle was
specified.

NWVLERR_IS_FREE The specified segment cannot
be a free segment.

NWVLERR_LONG_NAME The volume name cannot be
more than 15 characters.

NWVLERR_MULTIPLE_UNDERSC
ORE

The volume name cannot
contain multiple adjacent
underscores.

NWVLERR_NAME_NOT_NEW This volume name is already
being used.

NWVLERR_NOT_FREE The specified segment must be
a free segment.

NWVLERR_NOT_NETWARE_VOL The volume specified is not a
NetWare® volume.

NWVLERR_NOT_ON_THIS_OS Call not supported on this OS.

NWVLERR_NO_MORE_SEGMENT
S

No more segments found.

NWVLERR_NO_MORE_VOLUMES No more volumes found.

NWVLERR_NO_PARTITIONS No NetWare partitions were
found.

NWVLERR_NO_SEGMENTS No volume segments were
found.

NWVLERR_OVERLAP New volume to create crosses
over other segment boundaries.

NWVLERR_PART_BUSY Could not lock the partition.

NWVLERR_PERIOD_IN_NAME The volume name cannot
contain a period.

NWVLERR_RESERVED_NAME The volume name is a reserved
name.

NWVLERR_SECTORS_BELOW_MI
N

The number of sectors
specified is below the
minimum.

NWVLERR_SECTORS_NOT_NORM
ALIZED

Number of sectors not a
multiple of the block size.

NWVLERR_SHORT_NAME The volume name must be at
least two characters long.

NWVLERR_TOO_MANY_SEGMEN
TS

No additional segments can be
added on this partition.

NWVLERR_TOO_MANY_VOLSEG No additional segments can be
added to this volume.

File Service Group

Volume Management: Concepts 1278

NWVLERR_UNDERSCORE_AT_BE
GOREND

The volume name cannot
contain an underscore at the
beginning or end.

NWVLERR_VOLUME_BUSY Part of the volume was locked.

NWVLERR_VOLUME_MOUNTED The volume was mounted and
should not have been.

NWVLERR_VOLUME_NOT_MOU
NTED

The volume was not mounted
and should have been.

NWVLERR_VOL_BUSY Cannot lock the volume.

Parent Topic:

Volume Management: Guides

Volume Layer

NetWare® volumes consist of groups of one or more volume segments. File
I/O accesses occur at the volume layer.

Parent Topic:

Storage Layers

Related Topics:

Device Layer

Partition Layer

Hot Fix Layer

Volume Segment Layer

Volume Management Introduction

IMPORTANT: This document describes software that is subject to
change. It is the intention of Novell® to keep it as current as possible,
but the user must assume any inherent risk in developing or
maintaining code based on the information in this document. Novell
might discontinue or decline to support any of the software features
described herein.

The Volume Management API is provided in an NLM™ library that runs on
NetWare® 3.12 and NetWare 4.x. These functions perform tasks such as the
following:

Creating NetWare volumes

File Service Group

Volume Management: Concepts 1279

Deleting NetWare volumes

Modifying NetWare volumes

Support to applications that install, back up, and recover NetWare
volumes

IMPORTANT: To use this API, you also need the VOLLIB.NLM
software and the VOLLIB.H header file. To create an application, you
also need a NetWare SDK (with the NTYPES.H include file) and the
Media Manager SDK.

Parent Topic:

Volume Management: Guides

Volume Segment Layer

A volume segment, the fundamental unit of volume disk storage, is like a
subdivision of a logical partition.

Because mirroring is a file system function handled at a lower level than the
volume segment, you can assume that a volume segment will be mirrored if
it is created on a mirrored mirror object (that is, with more than one Hot Fix
object per mirror object). A mirror object may be divided into a maximum of
eight volume segments. A volume may include a total of up to 32 segments
from any of the mirror objects.

IMPORTANT: Eight and 32 are the current static limits. However,
because this may change in the future, you should call the
NWVL_GetSupportedLimits and
NWVL_GetMirrorObjectSupportedLimits functions to get the actual
values, instead of hard-coding these limits into your application.

Parent Topic:

Storage Layers

Related Topics:

Volume Layer

Device Layer

Partition Layer

Hot Fix Layer

Warning Codes

File Service Group

Volume Management: Concepts 1280

Warning Code Description

NWVLWARN_VOLS_NEED_
UPDATE

Some volumes definitions found
were inconsistent.

Parent Topic:

Volume Management: Guides

File Service Group

Volume Management: Concepts 1281

Volume Management: Functions

File Service Group

Volume Management: Functions 1282

NWVL_ChangeSegmentName

Renames a volume segment

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_ChangeSegmentName (
 nuint32 caller,
 nuint32 segmentHandle,
 pnwchar newVolName);

Parameters

caller

(IN) Calling application

segmentHandle

(IN) Handle of volume segment being renamed

newVolName

(IN) Pointer to new Unicode name for segment

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

The new segment name cannot correspond to the name of any volume
currently mounted on the server, or the function fails.

The new segment name need not be unique, but cannot result in a
segment that is identical to another segment in both name and ordinal
volume position. For example, you can use this function sequentially to
rename the segments in a volume, thus creating duplicate new names
after the first segment is renamed. However, the ordinal volume
positions remain different for each of the renamed segments.

File Service Group

Volume Management: Functions 1283

NWVL_ChangeVolumeName

Rename a dismounted volume

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_ChangeVolumeName (
 nuint32 caller,
 nuint32 volumeHandle,
 pnwchar newVolName);

Parameters

caller

(IN) Calling application

volumeHandle

(IN) Handle of volume being renamed

newVolName

(IN) Pointer to new name for volume

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

IMPORTANT: This function does not rename the volume in the
Directory. On a DS server, make sure this step is not forgotten; see
DSAPI for doing this.

File Service Group

Volume Management: Functions 1284

NWVL_ConvertLogicalPartitionToMirrorObject

 Converts the NetWare Disk Application Interface (DAI) logical partition
number to the NetWare Media manager mirror object ID

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_ConvertLogicalPartitionToMirrorObject (
 nuint32 caller,
 nuint32 logicalPartNumber,
 pnuint32 mirrorObjectID);

Parameters

caller

(IN) Calling application

logicalPartNumber

(IN) DAI logical partition number

mirrorObjectID

(OUT) Media manager number for the mirror object

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

IMPORTANT: This function does not automatically initiate a
volume scan.

File Service Group

Volume Management: Functions 1285

NWVL_ConvertMirrorObjectToLogicalPartition

Converts the NetWare Media manager mirror object ID to the NetWare Disk
Application Interface (DAI) logical partition number

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_ConvertMirrorObjectToLogicalPartition (
 nuint32 caller,
 nuint32 mirrorObjectID,
 pnuint32 logicalPartNumber);

Parameters

caller

Calling application

mirrorObjectID

Media manager number for the mirror object

logicalPartNumber

DAI logical partition number

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

IMPORTANT: This function does not automatically initiate a
volume scan.

File Service Group

Volume Management: Functions 1286

NWVL_CreateANewVolume

Creates a new volume

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_CreateANewVolume (
 nuint32 caller,
 pnwchar volumeName,
 nuint32 blockSize,
 nuint32 volControlFlags,
 nuint32 dsObjectID,
 nuint32 mirrorObjectID,
 NWVL_QUAD startingSector,
 NWVL_QUAD sectorsInSegment,
 pnuint32 returnVolHandle);

Parameters

caller

(IN) Calling application

volumeName

(IN) Points to name of volume being created. Volume names must be
at least three characters long and follow standard volume naming
rules.

blockSize

One of the following values:

NWVL_4K_BLOCK3

NWVL_8K_BLOCK4

NWVL_16K_BLOCK5

NWVL_32K_BLOCK6

NWVL_64K_BLOCK7

volControlFlags

(IN) Specifies one of the following values:

NWVL_SUB_ALLOCATION_ENABLED_BIT0x02

NWVL_FILE_COMPRESSION_ENABLED_BIT0x04 File compression
enabled on this volume.

NWVL_DATA_MIGRATION_ENABLED_BIT0x08 Data migration is
allowed on this volume.

File Service Group

Volume Management: Functions 1287

dsObjectID

(IN) Directory Services object ID

mirrorObjectID

(IN) Mirror object number

startingSector

(IN) Offset (zero-relative) to first sector of mirror object

sectorsInSegment

(IN) Number of desired sectors in the new segment

returnVolHandle

(OUT) Handle for newly created volume

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

The available space is rounded down to the nearest whole-block number
of sectors. This function does not create the volume in the Directory, but
will stamp the identifier on the volume once it is created. On a DS server,
make sure this step is not forgotten; see DSAPI for doing this. On a 3.x
server, the volumeControlFlags and dsObjectID parameters are ignored.

File Service Group

Volume Management: Functions 1288

NWVL_DeleteAVolume

Removes a volume and its segments

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_DeleteAVolume (
 nuint32 caller,
 nuint32 volumeHandle);

Parameters

caller

(IN) Calling application

volumeHandle

(IN) Handle for volume being enlarged

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

This function deletes all segments of the volume. The volume must be
dismounted.

File Service Group

Volume Management: Functions 1289

NWVL_DeleteSegment

Deletes a segment, converting it to free space

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_DeleteSegment (
 nuint32 caller,
 nuint32 segmentHandle);

Parameters

caller

(IN) Calling application

segmentHandle

(IN) Handle of segmented being deleted

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

This function is typically needed when separating mirror groups.

File Service Group

Volume Management: Functions 1290

NWVL_DismountVolume

Dismounts a volume, through the NetWare OS

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_DismountVolume(
 nuint32 caller,
 pnwchar volumeName);

Parameters

caller

(IN) Calling application

volumeName

(IN/OUT) Unicode name of volume to dismount

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

IMPORTANT: This function does not automatically initiate a
volume scan.

File Service Group

Volume Management: Functions 1291

NWVL_End

Removes the in-memory volume list and allow a different caller to access
the volume list

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_End(
 nuint32 caller);

Parameters

caller

(IN) Calling application

Return Values

0 if successful; nonzero error code if unsuccessful

File Service Group

Volume Management: Functions 1292

NWVL_EnlargeVolume

Adds space to a volume

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_EnlargeVolume(
 nuint32 caller,
 nuint32 volumeHandle,
 nuint32 mirrorObjectID,
 NWVL_QUAD startingSector,
 NWVL_QUAD sectorsInSegment);

Parameters

caller

(IN) Calling application

volumeHandle

(IN) Handle for volume being enlarged

mirrorObjectID

(IN) Mirror object number

startingSector

(IN) Offset (zero-relative) to first sector

sectorsInSegment

(IN) Number of available sectors per segment

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

The available space is rounded down to the nearest block.

IMPORTANT: The volume may be either mounted or dismounted.
However, if there is more than one volume with the same name, the
volume must be dismounted.

File Service Group

Volume Management: Functions 1293

NWVL_GetDefaultBlockSizeAndControlFlags

Gets the recommended block size and volume optimization flags for a
proposed volume

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_GetDefaultBlockSizeAndControlFlags (
 nuint32 caller,
 NWVL_QUAD numberOfSectors,
 pnuint32 blockSize,
 pnuint32 controlFlags);

Parameters

caller

(IN) Calling application

numberOfSectors

(IN) Number of sectors in volume

blockSize

(OUT) Recommended block size for volume

controlFlags

(OUT) Volume optimization flags for compression, suballocation, or
migration.

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

IMPORTANT: This function does not automatically initiate a
volume scan.

File Service Group

Volume Management: Functions 1294

NWVL_GetMirrorObjectFirstSegment

Returns the first segment of the volume definition table, given the mirror
object number

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_GetMirrorObjectFirstSegment (
 nuint32 caller,
 nuint32 mirrorObjectID,
 pnuint32 firstSegmentHandle);

Parameters

caller

(IN) Calling application

mirrorObjectID

(IN) Media manager number for the mirror object

firstSegHandle

(IN) Mirror object first segment handle

Return Values

0 if successful; nonzero error code if unsuccessful

File Service Group

Volume Management: Functions 1295

NWVL_GetMirrorObjectSupportedLimits

Return a partition's parameter limits for applications

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_GetMirrorObjectSupportedLimits (
 nuint32 caller,
 nuint32 mirrorObjectID,
 pnuint32 maxSegsPerPart,
 pnuint32 minSectorsPerSeg,
 pnuint32 sectorSize);

Parameters

caller

(IN) Calling application

mirrorObjectID

(IN) Media manager number for the mirror object

maxSegsPerPart

(OUT) Maximum number of segments allowed per logical partition

minSectorsPerSeg

(OUT) Minimum number of sectors allowed per segment

sectorSize

(OUT) Bytes per sector

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

The parameter limits are needed by applications for checking and
displaying information to be passed to the NWVL functions for a
particular partition. This function does not automatically initiate a
volume scan.

File Service Group

Volume Management: Functions 1296

NWVL_GetNextSegment

Gets the next volume segment handle

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_GetNextSegment (
 nuint32 caller,
 nuint32 flag,
 pnuint32 nextSegment);

Parameters

caller

(IN) Calling application

flag

(IN) Specifies either NWVL_TRAVERSE_PARTITION_LIST (get the
next segment in the partition) or NWVL_TRAVERSE_VOLUME_LIST
(get the next segment in the volume).

nextSegment

(IN/OUT) On input, specifies the handle returned from
NWVL_GetVolumeFirstSegment or
NWVL_GetMirrorObjectFirstSegment. On output, receives the next
volume segment handle

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

The previous volume segment handle is passed in, and the next handle is
returned. To get information on the segment, call
NWVL_GetSegmentInfo.

File Service Group

Volume Management: Functions 1297

NWVL_GetSegmentInfo

Returns segment, disk, and volume information, given the segment handle

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_GetSegmentInfo (
 nuint32 caller,
 nuint32 segmentHandle,
 NWVL_SegmentInfo *segInfo);

Parameters

caller

(IN) Calling application

segmentHandle

(IN) Handle to segment being queried

*segInfo

(OUT) Information from NWVL_SegmentInfo structure (see
description below)

caller

(IN) Calling application

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

This function uses the NWVL_SegmentInfo structure:

Typedef struct {
 /* General segment information */
 nuint32 type;
 /* NWVL_FREE_SEGMENT, NWVL_VALID_SEGMENT,
 NWVL_INVALID_SEGMENT */
 nuint32 status;/* NWVL_SEGSTAT_READFAIL, etc. */
 /* Segment information associated with the partition. */
 NWVL_QUAD startingDiskSector;
 NWVL_QUAD sectorsInSegment;

File Service Group

Volume Management: Functions 1298

 nuint32 mirrorObjectID;
 /* Segment information associated with the volume. */
 nwchar volumeName[NWVL_VOLNAME_BUFFER_SIZE];
 /* Unicode, undefined if free */
 nuint32 blockSize; /* undefined if free; NWVL_4K_BLOCK,
 etc. */
 nuint32 numberOfSegments;
 /* 1 - maximum sectors per volume; undefined if free */
 nuint32 mySegmentPosition;
 /* 0 through numberOfSegments - 1; undefined if free */
 nuint32 volumeFlags; /* undefined if free */
 NWVL_QUAD blocksInVolume; /* undefined if free */
 nuint32 volumeHandle; /* undefined if free or invalid
 segment */
 nuint32 sectorSize; /* bytes per sector in segment */
 nuint32 flags; /* currently unused */
 nuint32 reserved[4]; /* undefined */
 } NWVL_SegmentInfo;

File Service Group

Volume Management: Functions 1299

NWVL_GetSupportedLimits

Returns a volume's parameter limits for applications

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_GetSupportedLimits(
 nuint32 caller,
 pnuint32 maxVolNameSize,
 pnuint32 quadBits,
 pnuint32 maxSegsPerVol);

Parameters

caller

(IN) Calling application

maxVolNameSizeMax

(OUT) Size of volume name in Unicode characters, including null
character

quadBits

(OUT) Bits in a quad

maxSegsPerVol

(OUT) Maximum number of segments allowed in a volume

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

The parameter limits are needed by applications for checking and
displaying information to be passed to the NWVL functions.

IMPORTANT: This function does not automatically initiate a
volume scan.

File Service Group

Volume Management: Functions 1300

NWVL_GetVolumeFirstSegment

Gets the first segment in a volume

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_GetVolumeFirstSegment(
 nuint32 caller,
 nuint32 volumeHandle,
 pnuint32 firstSegHandle);

Parameters

caller

(IN) Calling application

volumeHandle

(IN) Volume handle

firstSegHandle

(OUT) Volume's first segment handle

Return Values

0 if successful; nonzero error code if unsuccessful

File Service Group

Volume Management: Functions 1301

NWVL_IsVolumeMounted

Asks the NetWare OS whether a specified volume is mounted

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_IsVolumeMounted (
 nuint32 caller,
 pnwchar volumeName,
 pnuint32 mountedFlag);

Parameters

caller

(IN) Calling application

volumeName

(IN) Unicode name of volume to query

mountedFlag

(OUT) Returns TRUE in value if mounted

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

IMPORTANT: This function does not automatically initiate a
volume scan.

File Service Group

Volume Management: Functions 1302

NWVL_LocalToUnicode

Converts a string from the local code page to Unicode* characters

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_LocalToUnicode (
 nuint32 caller,
 pnchar localChars,
 nuint32 maxUniChars,
 pnwchar uniChars);

Parameters

caller

(IN) Calling application

localChars

(IN) Local code page characters

maxUniChars

(IN) Maximum number of Unicode characters

uniChars

(OUT) String converted to Unicode

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

IMPORTANT: This function does not automatically initiate a
volume scan.

File Service Group

Volume Management: Functions 1303

NWVL_MountVolume

Mounts a volume, through the NetWare OS

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_MountVolume(
 nuint32 caller,
 pnwchar volumeName);

Parameters

caller

(IN) Calling application

volumeName

(IN/OUT) Unicode name of volume to mount

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

IMPORTANT: This function does not automatically initiate a
volume scan.

File Service Group

Volume Management: Functions 1304

NWVL_Nuint32ToQuad

Converts a nuint32 value to NWVL_QUAD

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_Nuint32ToQuad (
 nuint32 caller,
 nuint32 value,
 NWVL_QUAD *quadValue);

Parameters

caller

(IN) Calling application

value

(IN) nuint32 value to convert

*quadValue

(OUT) Converted NWVL_QUAD value

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

IMPORTANT: This function does not automatically initiate a
volume scan.

File Service Group

Volume Management: Functions 1305

NWVL_QuadToNuint32

Converts a NWVL_QUAD value to nuint32

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_QuadToNuint32 (
 nuint32 caller,
 NWVL_QUAD quadValue,
 nuint32 *value);

Parameters

caller

(IN) Calling application

quadValue

(IN) NWVL_QUAD value to convert

*value

(OUT) Converted nuint32 value

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

IMPORTANT: This function does not automatically initiate a
volume scan. Sub-allocation units are valid on this volume.

File Service Group

Volume Management: Functions 1306

NWVL_SetOrGetVolumeControlInfo

Sets or queries the flags for optimizing volume management

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_SetOrGetVolumeControlInfo(
 nuint32 caller,
 nuint32 volumeHandle,
 nuint32 action,
 pnuint32 controlFlags,
 pnuint32 dsID);

Parameters

caller

(IN) Calling application

volumeHandle

(IN) Handle of volume:action 0 = Get the flags' values; 1 = Set the
flags' values

controlFlags

(IN/OUT) Set or get volume optimization flags for compression,
suballocation, or migration. Passed or returned depending on action;
can be NULL.

dsID

(IN/OUT) Set or get the volume's Directory Services ID. Passed or
returned depending on the action; can be NULL.

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

The volume may be mounted or dismounted when
NWVL_SetOrGetVolumeControlInfo is called. However, if more than
one volume has the same name, the volume must be dismounted.

IMPORTANT: Once compression and suballocation are turned on,
they cannot be turned off.

File Service Group

Volume Management: Functions 1307

NWVL_Start

Initializes the volume library functions

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_Start(
 nuint32 identity,
 nuint32 majorVersion,
 nuint32 minorVersion,
 nuint32 lockType,
 pnuint32 *returnedCaller);

Parameters

identity

(IN) NLM handle

majorVersion

(IN) NWVL_MAJOR, the API major version number

minorVersion

(IN) NWVL_MINOR, the API major version number

lockType

(IN) Type of lock to use: NWVL_SHARED or NWVL_EXCLUSIVE

returnedCaller

(OUT) Handle to use in subsequent VOLLIB calls

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

NWVL_StartAllows exclusive read-write access for one client at a time,
or shareable read-only access for multiple clients.

File Service Group

Volume Management: Functions 1308

NWVL_UnicodeToLocal

Converts a string from Unicode to the local code page

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_UnicodeToLocal (
 nuint32 caller,
 pnwchar uniChars,
 nuint32 maxLocalChars,
 pnchar localChars);

Parameters

caller

(IN) Calling application

uniChars

(IN) String converted to Unicode

maxUniChars

(IN) Maximum number of Unicode characters

localChars

(OUT) Local code page characters

Return Values

0 if successful; nonzero error code if unsuccessful

Remarks

IMPORTANT: This function does not automatically initiate a
volume scan.

File Service Group

Volume Management: Functions 1309

NWVL_ValidateVolumeName

Returns whether a volume name is valid (acceptable to
NWVL_CreateANewVolume) before creating the volume

Classification: 3.12, 4.x

SMP Aware: No

Service: Volume Management

Syntax

#include <vollib.h>

int NWVL_ValidateVolumeName (
 nuint32 caller,
 pnwchar volName);

Parameters

caller

(IN) Calling application

volName

(IN) Unicode name of volume

Return Values

0 if volume name is valid; nonzero error code if volume name is invalid

File Service Group

Volume Management: Functions 1310

