
Connection
Service Group

Connection Service Group

 1

Connection Overview

Both Connection Services and Connection Number and Task Management
Services provide functions to attach, authenticate, and license to a server.
However, Connection Services are cross-platform functions (server and
client), and Connection Number and Task Management Services are specific
to NLM programming (server only). Use Connection Services whenever
possible to provide optimal portability and functionality.

Connection: Guides

Connection Number and Task Management: Guides

Connection Service Group

 2

Connection

Connection Service Group

 3

Connection: Guides

Connection: Task Guide

Attaching to Servers and Opening Connections

Getting Connection Status

Setting Connection Status

Closing and Clearing Connections

Listing Connection Handles

Manipulating Connection Numbers

Getting Connection Status Information

Examples

Licensing / Unlicensing a connection: Example, Listing connection
numbers: Example, Listing Internetwork Addresses: Example, and ,
Opening a Connection Using a Server Name: Example

Connection: Concept Guide

Connection States

Open/Close Connection Model

Connection Handles Compared to Connection References

Connection Management Support Routines

Open and Close Functions

Connection Information Getting Functions

Connection Parameter Setting Functions

Connection Table Functions

Connection Service Group

Connection: Guides 4

Connection: Tasks

Attaching to Servers and Opening Connections

You need not be concerned with actually attaching to a given server. The
client/library manages these connections; you must simply open a
connection and get a connection handle. The client makes the attachment if
required and maintains a use count on each connection, ensuring that a
connection is not closed if existing connection handles are still active.

The following functions return connection handles:

NWCCOpenConnByAddr creates a service connection using the server
address.

NWCCOpenConnByName resolves the server name to an address, then
creates a service connection.

NWCCOpenConnByRef opens a connection using a connection
reference.

Each of these functions has an openState parameter to specify if the
connection is licensed or unlicensed. openState can have one of the following
values:

NWCC_OPEN_LICENSED

NWCC_OPEN_UNLICENSED

NOTE: Getting a connection handle does not give you rights to a
server as a particular user. You must authenticate to the server as a user
by calling NWLoginToFileServer if logging in to a bindery or
NWDSAuthenticate if logging in to NDS.

Related Topics:

Connection: Guides

Opening a Connection Using a Server Name: Example

Getting Connection Status

The following functions get server connection information:

NWCCGetConnInfo

NWCCGetAllConnInfo

Connection Service Group

Connection: Tasks 5

NWCCGetAllConnInfo

NWCCGetConnAddress

NWCCGetConnRefInfo

NWCCGetAllConnRefInfo

NWCCGetConnRefAddress

All existing workstation connections can be scanned, including matching
information for all existing connections. This is done using
NWCCScanConnRefs.

The following functions retrieve connection information:

NWCCGetPrefServerName

NWCCGetPrimConnRef

Parent Topic:

Connection: Guides

Setting Connection Status

If you don't require a licensed connection, conserve resources by using an
unlicensed connection.

The following functions are used to change the state of authenticated
connections:

NWCCLicenseConn

NWCCUnlicenseConn

The connection is unlicensed only if there are no open handles that
require a licensed connection.

The following functions set connections to special cases:

NWCCMakeConnPermanent

A permanent connection prohibits the client from terminating this
connection even after the application has terminated. Permanence
defined as "not terminating after process is term." can still be closed but
must be accomplished with NWCCSysCloseConnRef.

NWCCSetPrefServerName

NWCCSetPrimConn

Related Topics:

Connection: Guides

Connection Service Group

Connection: Tasks 6

Licensing / Unlicensing a connection: Example

Closing and Clearing Connections

As with opening connections, you need not be concerned with detaching
from a server. The client is responsible for detaching connections
intelligently. The client can keep a connection active for use by the same or
another application. This eliminates the overhead associated with making
an actual attachment.

However, if additional resources are required to open a connection to
another server, the client/library can determine which connections are no
longer needed and which is best to detach. It is very important that every
time a connection is opened it be closed when no longer needed. The
following functions are used to close connections:

NWCCCloseConn

NWCCSysCloseConnRef

NWCCSysCloseConnRef forces a server connection detach (used in
conjunction with NWCCMakeConnPermanent).

IMPORTANT: Use caution when calling
NWCCSysCloseConnRef because other applications on the
workstation might be using the connection.

Parent Topic:

Connection: Guides

Listing Connection Handles

You can obtain a list of allocated connection handles by calling
NWCCScanConnRefs followed by NWCCOpenConnByRef. These
functions take a buffer and buffer size as input and returns an array of
connection handles. Since the Requester allows users to configure the
maximum number of connections, the size of this array can vary. Call
NWCCGetNumConns to find the maximum number of connections
supported.

Other connection handle functions include the following:

 NWCCScanConnRefsfollowed by the NWCCOpenConnByRef

NOTE: Use connection handles only as parameters in Connection
Services functions. They should not be used to access the Connection
Table directly.

Connection Service Group

Connection: Tasks 7

Related Topics:

Connection: Guides

Listing connection numbers: Example

Manipulating Connection Numbers

The server identifies your connection by a connection number, much the
same way the Requester uses connection handles. The connection number is
important to you when you need to view things from the server.

The following functions operate on connection numbers:

NWCCGetConnInfo

NWClearConnectionNumber

NWGetObjectConnectionNumbers

Parent Topic:

Connection: Guides

Getting Connection Status Information

TheNWGetConnectionStatusfunction returns connection information for
either the Requester or NETX, whichever is present. This function takes a
connection handle as input and returns CONNECT_INFO. Among the
information returned is the following:

Connection flags

Session ID

Connection number

Server name, address, and type

Client name and type

The connection flags are a bitmap that describes the status of the connection,
including whether the connection supports NDS and is authenticated.

When calling NWGetConnectionInformation you must be supervisor
equivalent to read from or write to the bindery.

Parent Topic:

Connection: Guides

Connection Service Group

Connection: Tasks 8

Connection: Concepts

Connection States

A workstation can have one of three types of connections to a server:

Attached

Authenticated

Licensed

A workstation that is merely attached to a server is not granted any rights to
access server resources. However, limited access to some things, such as the
login directory or the ability to scan for other server addresses, are available.

After a workstation has attached to a server, it can authenticate the
connection for a specific user. Authentication is the process of securely
identifying the user to the server. After authenticating the connection the
user is granted specific user rights to resources on the server. Directory
Services enables certain aspects of the authentication process to occur
without the user's knowledge.

After the user has an authenticated connection to the Directory tree,
authentication can occur to any server in the tree without requiring a
password. This is known as background authentication.

Licensed connections enable the use of mapping, file system and printing
functions.

Parent Topic:

Connection: Guides

Open/Close Connection Model

The model used to manage all connections is an open/close model. Many
NetWare functions contain a connection handle parameter. Connection
handles should be considered as limited resources: get a connection handle
when you need it and release it when you are done with it.

When you need a connection handle you must open a connection to a
server. A connection handle is returned. The call to open a connection might
or might not establish a connection. If there is no current connection to the
server and a connection is established, a connection handle is returned.

Connection Service Group

Connection: Concepts 9

However, if a connection to the server already exists, a unique connection
handle is returned (and the client/library notes that two connection handles
exist for that server).

NOTE: Do not copy or duplicate connection handles. Also, you cannot
compare connection handles to determine if they are to the same server.

When you are finished using the connection handle, the handle must be
closed. Closing the handle notifies the client/library that this handle is no
longer needed. If other connection handles are open to the same server
(either by this application or by another application on the user's
workstation) the connection is not closed. The client/library notes that one
less connection handle is opened to that server.

 Once a connection handle is closed, it is invalid and cannot be reused. If
you need a connection to the same server again, a new connection handle
must be obtained by opening the connection and getting a new connection
handle. This open/close model for connection handles allows the
workstation client to intelligently manage server connections. You can now
safely close a connection without having to worry if another application
needs the connection.

When a connection to a server is no longer required by the applications on a
user's workstation, the connection might not actually be closed. The
client/library notes that no application is using the connection and it is
made available for use either to connect to the same server or to another
server.

Parent Topic:

Connection: Guides

Connection Handles Compared to Connection
References

Connection references allow you to maintain a reference to a connection
without having a connection handle to the connection. This is useful when
you need to open and close connections frequently. The reference to the
connection makes getting the connection much faster. However, when you
do not have a connection handle, the client/library can close the connection
without your knowledge.

 References are returned by calling NWCCScanConnRefs. The reference
cannot be used in place of the connection handle. However, by calling
NWCCOpenConnByRef, a referenced connection to a server can be opened
and a valid connection handle returned. As long as the client/library does
not close the connection, the new connection can be opened more quickly
than by getting a connection without a reference. Given a connection
handle, a connection reference can be obtained by calling
NWCCGetConnRef.

Connection Service Group

Connection: Concepts 10

Parent Topic:

Connection: Guides

Connection Management Support Routines

The nwconnec.h header declares a group of functions that perform
NETX-style connection operations. These functions rely on bindery-oriented
information (bindery object names and IDs). Using them assures
compatibility with both the NetWare Requester™ and NETX. The functions
do not support Directory Services.

Parent Topic:

Connection: Guides

Open and Close Functions

Function Description

NWCCCloseConn Closes the specified connection.

NWCCLicenseConn Licenses the specified connection.

NWCCOpenConnByAddr Opens a connection using a network
address.

NWCCOpenConnByName Resolves the given name to a network
address then creates a connection to that
address.

NWCCOpenConnByPref Opens an initial connection using the
configured preferred settings.

NWCCOpenConnByRef Opens a connection associated with the
given connection reference.

NWCCSysCloseConnRef Closes and detaches the specified
connection, including the connection
reference and all connection handles for
this connection.

 NWCCUnlicenseConn Unlicenses the specified licensed
connection.

Parent Topic:

Connection: Guides

Connection Information Getting Functions

Connection Service Group

Connection: Concepts 11

Function Comment

NWCCGetAllConnInfo Returns all information for the
specified connection.

NWCCGetAllConnRefInfo Returns all information for a
specified connection reference.

NWCCGetConnAddress Returns the transport address for
the specified connection.

NWCCGetConnAddressLength Returns the length of the
connection address for the
specified connection.

NWCCGetConnInfo Returns information about the
specified connection.

NWCCGetConnRef Returns the connection reference
for the specified connection.

NWCCGetConnRefAddress Returns the transport address for
the specified connection reference.

NWCCGetConnRefAddressLeng
th

Returns the length of the
connection address for the
specified connection reference.

 NWCCGetConnRefInfo Returns the specified information
for a given connection reference.

 NWCCGetPrefServerName Returns the name from the
PREFERRED SERVER parameter.

 NWCCGetPrimConnRef Returns the primary connection
reference.

 NWCCScanConnRefs Returns a connection reference for
each connection on the
workstation.

Parent Topic:

Connection: Guides

Connection Parameter Setting Functions

Function Description

NWCCMakeConnPermanent Keeps the specified connection from
being detached until
NWCCSysCloseConnRef is called.

NWCCSetPrefServerName Sets the PREFERRED SERVER

Connection Service Group

Connection: Concepts 12

parameter of the workstation.

NWCCSetPrimConn Sets the workstation's primary
connection.

Parent Topic:

Connection: Guides

Connection Table Functions

The following functions operate on the Connection Table for either the
NetWare Requester or NETX.

Function Description

NWClearConnectionNumber Logs out of the specified
connection.

NWGetConnectionInformation Returns information about a
logged in object.

NWGetConnectionUsageStats Returns usage statistics for a
specified connection.

NWGetConnListFromObject Returns a list of connection
numbers a specified object has on
a server.

NWGetInetAddr Returns the network address of
the specified connection connNum
on the specified server.

NWGetObjectConnectionNumbe
rs

Returns a list of server connection
numbers for clients logged in with
the specified object name and
type.

Parent Topic:

Connection: Guides

infoType Parameter Values

The infoType parameter indicates the type of data desired with one of the
following values:

HEX Value Minimum Buffer Size:

Connection Service Group

Connection: Concepts 13

Description

0x000
1

NWCC_INFO_AUTHENT_S
TATE

nuint: Returns Authentication
state

0x000
2

NWCC_INFO_BCAST_STAT
E

nuint: Returns Broadcast state

0x000
3

NWCC_INFO_CONN_REF nuint32: Returns connection
reference

0x000
4

NWCC_INFO_TREE_NAME nstr * length of
NW_MAX_TREE_NAME_LE
N(33): Returns NDS tree
name

0x000
5

NWCC_INFO_CONN_NUM
BER

nuint: Returns connection
number

0x000
6

NWCC_INFO_USER_ID nuint32

0x000
7

NWCC_INFO_SERVER_NA
ME

nstr * length of
NW_MAX_SERVER_NAME_
LEN

0x000
8

NWCC_INFO_NDS_STATE nuint

0x000
9

NWCC_INFO_MAX_PACKE
T_SIZE

nuint

0x000
A

NWCC_INFO_LICENSE_ST
ATE

nuint

0x000
B

NWCC_INFO_DISTANCE nuint

0x000
C

NWCC_INFO_SERVER_VER
SION

sizeof NWCCVersion

0x000
D

NWCC_INFO_TRAN_ADDR sizeof NWCCTranAddr

NWCC_INFO_AUTHENT_STATE Values

NWCC_INFO_AUTHENT_STATE can return one of the following values:

C
Value

Pascal
Value

Value Name: Description

0x000
0

$0000 NWCC_AUTHENT_STATE_NONE: Not
authenticated

0x000
1

$0001 NWCC_AUTHENT_STATE_BIND: Bindery
authentication

Connection Service Group

Connection: Concepts 14

0x000
2

$0002 NWCC_AUTHENT_STATE_NDS: NDS
authentication

NWCC_INFO_BCAST_STATE Values

NWCC_INFO_BCAST_STATE can return one of the following:

C
Value

Pascal
Value

Value Name: Description

0x000
0

$0000 NWCC_BCAST_PERMIT_ALL: Permit all
broadcast messages

0x000
1

$0001 NWCC_BCAST_PERMIT_SYSTEM: Permit all
system broadcast messages

0x000
2

$0002 NWCC_BCAST_PERMIT_NONE: Do not permit
any broadcast messages

0x000
3

$0003 NWCC_BCAST_PERMIT_POLL: Permit polling to
see if any broadcast messages are stored on the
server

NWCC_INFO_NDS_STATE Values

NWCC_INFO_NDS_STATE can return one of the following:

C Value Pascal Value Value Name

0x0000 $0000 NWCC_NDS_NOT_CAPABLE: Server
does not support NDS

0x0001 $0001 NWCC_NDS_CAPABLE: Server supports
NDS

NWCC_INFO_LICENSE_STATE Values

NWCC_INFO_LICENSE_STATE can return one of the following:

C Value Pascal Value Value Name: Description

0x0000 $0000 NWCC_NOT_LICENSED: Connection is

Connection Service Group

Connection: Concepts 15

not licensed

0x0001 $0001 NWCC_CONNECTION_LICENSED:
Connection is licensed

0x0002 $0002 NWCC_HANDLE_LICENSED:
Connection is scheduled to be licensed
once it is authenticated

Security Values

The prefSecurityFlags and reqSecurityFlags parameters can point to the
following values which may be ORed together:

0x00000100 NWCC_SECURITY_LEVEL_CHECKSUM

0x00000200 NWCC_SECUR_LEVEL_SIGN_HEADERS

0x00000400 NWCC_SECURITY_LEVEL_SIGN_ALL

0x00000800 NWCC_SECURITY_LEVEL_ENCRYPT

NOTE: NWCC_SECUR_LEVEL_SIGN_HEADERS and
NWCC_SECURITY_LEVEL_SIGN_ALL are exclusive to each other.

Connection Service Group

Connection: Concepts 16

Connection: Functions

Connection Service Group

Connection: Functions 17

NWCCCloseConn

Closes the specified connection

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows* 3.1, Windows NT*, Windows* 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCCloseConn (
 NWCONN_HANDLE connHandle);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCCloseConn
 (connHandle : NWCONN_HANDLE
) : NWRCODE;

Parameters

connHandle

(IN) Specifies the connection handle to be closed.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

0x8
801

NWE_CONN_INVALID

0x8
869

NWE_ACCESS_VIOLATION

0x8
86C

NWE_RESOURCE_LOCK

0x8
872

NWE_INVALID_OWNER

Connection Service Group

Connection: Functions 18

Remarks

NWCCCloseConn is used to close an open connection handle. Calling
NWCCCloseConn has the opposite effect as the three open functions:
NWCCOpenConnByName, NWCCOpenConnByAddr,
NWCCOpenConnByPref, and NWCCOpenConnByRef. After the
connection handle is closed, the handle may not be used again to access
the connection.

Under Windows 95, NWCCCloseConn waits approximately 30 seconds
to allow the connection to be unlicensed and then closes the connection.

NWCCCloseConn clears a clients local connection handle while
NWClearConnectionNumber clears a connection from a file server
connection table.

NCP Calls

To be supplied

See Also

NWCCOpenConnByName, NWCCOpenConnByPref,
NWCCOpenConnByRef, NWClearConnectionNumber

Connection Service Group

Connection: Functions 19

NWCCGetAllConnInfo

Returns all information for the specified connection

NetWare Server: 2.2 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetAllConnInfo (
 NWCONN_HANDLE connHandle,
 nuint connInfoVersion,
 pNWCCConnInfo connInfoBuffer);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCGetAllConnInfo
 (connHandle : NWCONN_HANDLE;
 connInfoVersion : nuint;
 connInfoBuffer : pNWCCConnInfo
) : NWRCODE;

Parameters

connHandle

(IN) Specifies the connection handle for which to return information.

connInfoVersion

(IN) Specifies the connection information version
(NWCC_INFO_VERSION_1 or higher).

connInfoBuffer

(OUT) Points to the NWCCConnInfo structure containing the returned
information.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

Connection Service Group

Connection: Functions 20

0x8
801

NWE_CONN_INVALID

0x8
868

NWE_STRING_TRANSLATION

0x8
869

NWE_ACCESS_VIOLATION

Remarks

The connInfoVersion parameter specifies which version of the
NWCCConnInfo structure will be used.

If connInfoVersion is set to NWCC_INFO_VERSION_2 or higher, the
tranAddr field of the NWCCConnInfo structure must be set to NULL or
initialized.

You must allocate the connInfoBuffer parameter. It will be returned with
all the connection information.

NCP Calls

To be supplied

See Also

NWGetConnectionInformation, NWGetUserInfo

Connection Service Group

Connection: Functions 21

NWCCGetAllConnRefInfo

Returns all information for a specified connection reference

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetAllConnRefInfo (
 nuint32 connRef,
 nuint connInfoVersion,
 pNWCCConnInfo connInfoBuffer);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCGetAllConnRefInfo
 (connRef : nuint32;
 connInfoVersion : nuint;
 connInfoBuffer : pNWCCConnInfo
) : NWRCODE;

Parameters

connRef

(IN) Specifies the connection reference for which information is to be
returned.

connInfoVersion

(IN) Specifies the connection information version
(NWCC_INFO_VERSION_1 or higher).

connInfoBuffer

(OUT) Points to the NWCCConnInfo structure containing the returned
information.

Return Values

These are common return values; see Return Values for more
information.

0x0 SUCCESS

Connection Service Group

Connection: Functions 22

000

0x8
801

NWE_CONN_INVALID

0x8
868

NWE_STRING_TRANSLATION

0x8
869

NWE_ACCESS_VIOLATION

Remarks

The connInfoVersion parameter specifies which version of the
NWCCConnInfo structure will be used.

If the connInfoVersion parameter is set to NWCC_INFO_VERSION_2 or
higher, the tranAddr field of the NWCCConnInfo structure must be set to
NULL or initialized.

You must allocate the connInfoBuffer parameter. It will be returned with
all the connection information.

NCP Calls

To be supplied

See Also

NWGetConnectionInformation, NWGetUserInfo

Connection Service Group

Connection: Functions 23

NWCCGetCLXVersion

Returns the version of the current CLX layer

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWCCGetCLXVersion (
 pnuint8 majorVersion,
 pnuint8 minorVersion,
 pnuint8 revisionLevel,
 pnuint8 betaReleaseLevel);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCGetCLXVersion
 (majorVersion : nuint8;
 minorVersion : nuint8;
 revisionLevel : nuint8;
 betaReleaseLevel : nuint8
);

Parameters

majorVersion

(OUT) Points to the current major version number.

minorVersion

(OUT) Points to the current minor version number.

revisionLevel

(OUT) Points to the current revision level.

betaReleaseLevel

(OUT) Points to the current beta release level.

Return Values

None

NCP Calls

Connection Service Group

Connection: Functions 24

To be supplied

Connection Service Group

Connection: Functions 25

NWCCGetConnAddress

Returns the transport address for the specified connection

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnAddress (
 NWCONN_HANDLE connHandle,
 nuint32 bufferLen,
 pNWCCTranAddr tranAddr);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCGetConnAddress
 (connHandle : NWCONN_HANDLE;
 bufferLen : nuint32;
 tranAddr : pNWCCTranAddr
) : NWRCODE;

Parameters

connHandle

(IN) Specifies the connection handle for which to return the transport
address.

bufferLen

(IN) Specifies the size (in bytes) of the buffer field in the
NWCCTranAddr structure.

tranAddr

(OUT) Points to the NWCCTranAddr structure containing the
transport address.

Return Values

These are common return values; see Return Values for more
information.

0x0 SUCCESS

Connection Service Group

Connection: Functions 26

000

0x8
801

NWE_CONN_INVALID

0x8
867

NWE_INSUFFICIENT_RESOURCES

0x8
868

NWE_STRING_TRANSLATION

0x8
869

NWE_ACCESS_VIOLATION

Remarks

Be sure that the bufferLen parameter is large enough to contain the
returned address. Otherwise, NWCCGetConnAddress will fail and
return NWE_INSUFFICIENT_RESOURCES. Call the
NWCCGetConnAddressLength function to determine the address
length and then allocate enough memory in the buffer for the bufferLen
parameter.

The len field in the NWCCTranAddr structure will contain the address
length upon return.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 27

NWCCGetConnAddressLength

Returns the length of the connection address for the specified connection

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnAddressLength (
 NWCONN_HANDLE connHandle,
 pnuint32 addrLen);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCGetConnAddressLength
 (connRef : nuint32;
 addrLen : pnuint32
) : NWRCODE;

Parameters

connHandle

(IN) Specifies the connection for which to return the connection
address length.

addrLen

(OUT) Points to the length of the connection address.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

0x8
801

NWE_CONN_INVALID

0x8
868

NWE_STRING_TRANSLATION

0x8 NWE_ACCESS_VIOLATION

Connection Service Group

Connection: Functions 28

869

Remarks

NWCCGetConnAddressLength returns the length of the connection
address in bytes. The addrLen parameter should be used to allocate a
buffer to pass into the NWGetConnAddress or NWGetConnRefAddress
function.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 29

NWCCGetConnInfo

Returns information about the specified connection

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnInfo (
 NWCONN_HANDLE connHandle,
 nuint infoType,
 nuint len,
 nptr buffer);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCGetConnInfo
 (connHandle : NWCONN_HANDLE;
 infoType : nuint;
 len : nuint;
 buffer : nptr
) : NWRCODE;

Parameters

connHandle

(IN) Specifies the connection handle for which to return information.

infoType

(IN) Specifies the information to be returned about the connection
specified in the connHandle parameter (length of
NW_MAX_TREE_NAME_LEN).

len

(IN) Specifies the length of the information buffer to be returned.

buffer

(OUT) Points to a buffer containing the returned information.

Return Values

These are common return values; see Return Values for more
information.

Connection Service Group

Connection: Functions 30

0x0
000

SUCCESS

0x8
801

NWE_CONN_INVALID

0x8
868

NWE_STRING_TRANSLATION

0x8
869

NWE_ACCESS_VIOLATION

0x8
86B

NWE_INVALID_LEVEL

Remarks

NWCCGetConnInfo returns a single piece of connection information for
the specified connection. It is important that the size of the buffer
parameter is large enough to contain the requested information.

If the infoType parameter is invalid, NWE_INVALID_LEVEL will be
returned. If the infoType parameter is set to NWCC_INFO_TRAN_ADDR,
NWCCGetConnInfo will use the NWCCTranAddr structure. See
infoType Parameter Values.

See NWCC_INFO_AUTHENT_STATE Values.

See NWCC_INFO_BCAST_STATE Values.

See NWCC_INFO_NDS_STATE Values.

See NWCC_INFO_LICENSE_STATE Values.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 31

NWCCGetConnRef

Returns the connection reference for the specified connection

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnRef (
 NWCONN_HANDLE connHandle,
 pnuint32 connRef);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCGetConnRef
 (connHandle : NWCONN_HANDLE;
 connRef : pnuint32
) : NWRCODE;

Parameters

connHandle

(IN) Specifies the connection handle for which to return the reference.

connRef

(OUT) Points to the connection reference associated with the
connection specified by connHandle.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 32

NWCCGetConnRefAddress

Returns the transport address for the specified connection reference

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnRefAddress (
 nuint32 connRef,
 nuint32 bufferLen,
 pNWCCTranAddr tranAddr);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCGetConnRefAddress
 (connRef : nuint32;
 bufferLen : nuint32;
 tranAddr : pNWCCTranAddr
) : NWRCODE;

Parameters

connRef

(IN) Specifies the connection reference for which to return the
transport address.

bufferLen

(IN) Specifies the size, in bytes, of the structure field buffer of
NWCCTranAddr.

tranAddr

(OUT) Points to the NWCCTranAddr structure containing the address.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

Connection Service Group

Connection: Functions 33

0x8
801

NWE_CONN_INVALID

0x8
867

NWE_INSUFFICIENT_RESOURCES

0x8
868

NWE_STRING_TRANSLATION

0x8
869

NWE_ACCESS_VIOLATION

0x8
86C

NWE_RESOURCE_LOCK

0x8
872

NWE_INVALID_OWNER

Remarks

You need to ensure that bufferLen is large enough to contain the returned
address; otherwise, NWCCGetConnAddress will fail and return
NWE_INSUFFICIENT_RESOURCES. Call
NWCCGetConnAddressLength to determine the address length and
then allocate enough memory in the buffer for bufferLen.

len in NWCCTranAddr will contain the address length upon return.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 34

NWCCGetConnRefAddressLength

Returns the length of the connection address for the specified connection
reference

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnRefAddressLength (
 nuint32 connRef,
 pnuint32 addrLen);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCGetConnRefAddressLength
 (connRef : nuint32;
 addrLen : nuint32
) : NWRCODE;

Parameters

connRef

(IN) Specifies the connection reference for which to return the
connection address length.

addrLen

(OUT) Points to the length of the connection address.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

0x8
801

NWE_CONN_INVALID

0x8
80E

NWE_BUFFER_OVERFLOW

Connection Service Group

Connection: Functions 35

0x8
864

NWE_INVALID_MATCH_DATA

0x8
865

NWE_MATCH_FAILED

0x8
866

NWE_NO_MORE_ENTRIES

0x8
868

NWE_STRING_TRANSLATION

0x8
869

NWE_ACCESS_VIOLATION

0x8
86B

NWE_INVALID_LEVEL

0x8
86C

NWE_RESOURCE_LOCK

Remarks

NWCCGetConnRefAddressLength returns the length of the connection
address in bytes. The addrLen parameter should be used to allocate a
buffer to pass into the NWGetConnAddress or NWGetConnRefAddress
functions.

If the infoType parameter is invalid, NWE_INVALID_LEVEL will be
returned. See infoType Parameter Values.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 36

NWCCGetConnRefInfo

Returns the specified information for a given connection reference

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetConnRefInfo (
 nuint32 connRef,
 nuint infoType,
 nuint len,
 nptr buffer);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCGetConnRefInfo
 (connRef : nuint32;
 infoType : nuint;
 len : nuint;
 buffer : nptr
) : NWRCODE;

Parameters

connRef

(IN) Specifies the connection reference for which to return the
specified information.

infoType

(IN) Specifies the information to be returned about the connection.

len

(IN) Specifies the length of the information buffer to be returned.

buffer

(OUT) Points to a buffer containing the returned information.

Return Values

These are common return values; see Return Values for more
information.

Connection Service Group

Connection: Functions 37

0x0
000

SUCCESS

0x8
801

NWE_CONN_INVALID

0x8
80E

NWE_BUFFER_OVERFLOW

0x8
864

NWE_INVALID_MATCH_DATA

0x8
865

NWE_MATCH_FAILED

0x8
866

NWE_NO_MORE_ENTRIES

0x8
868

NWE_STRING_TRANSLATION

0x8
869

NWE_ACCESS_VIOLATION

0x8
86B

NWE_INVALID_LEVEL

0x8
86C

NWE_RESOURCE_LOCK

Remarks

NWCCGetConnRefInfo returns connection information from the
NWCCConnInfo structure associated with the given connection.
NWCCGetConnRefInfo can either be set to return one field of the
structure or the entire structure itself.

buffer must point to a buffer of the type of information being requested.
(The return type is noted below for cache information.)

If the infoType parameter is invalid, NWE_INVALID_LEVEL will be
returned. See infoType Parameter Values.

If the infoType parameter is set to NWCC_INFO_TRAN_ADDR,
NWCCGetConnRefInfo will use the NWCCTranAddr structure.

See NWCC_INFO_AUTHENT_STATE Values.

See NWCC_INFO_BCAST_STATE Values.

See NWCC_INFO_NDS_STATE Values.

See NWCC_INFO_LICENSE_STATE Values.

NCP Calls

Connection Service Group

Connection: Functions 38

To be supplied

Connection Service Group

Connection: Functions 39

NWCCGetNumConns

Returns the current and maximum number of connections for the requester

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetNumConns (
 pnuint maxConns,
 pnuint publicConns,
 pnuint myPrivateConns);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCGetNumConns
(Var maxConns : nuint;
 Var publicConns : nuint;
 Var myPrivateConns : nuint
) : NWRCODE;

Parameters

maxConns

(OUT) Points to the maximum number of connections allowed with
the requester (-1 for requesters with dynamic connection tables).

publicConns

(OUT) Points to the current number of public connections (optional).

myPrivateConns

(OUT) Points to the current number of private connections owned by
the calling process (optional).

See Listing connection numbers: Example.

Return Values

See Return Values.

NCP Calls

None

Connection Service Group

Connection: Functions 40

None

Connection Service Group

Connection: Functions 41

NWCCGetPrefServerName

Returns the name from the PREFERRED SERVER parameter

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetPrefServerName (
 nuint len,
 pnstr prefServer);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCGetPrefServerName
 (len : nuint;
 prefServer : pnstr
) : NWRCODE;

Parameters

len

(IN) Specifies the length of the preferred server string.

prefServer

(OUT) Points to a string containing the preferred server name.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

Remarks

The prefServer parameter is read from the NET.CFG file and is used by the
requester to determine which server to attempt to connect to when no

Connection Service Group

Connection: Functions 42

other connections are established, such as during the load process of the
requester.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 43

NWCCGetPrimConnRef

Returns the primary connection reference

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetPrimConnRef (
 pnuint32 connRef);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCGetPrimConnRef
 (connRef : pnuint32
) : NWRCODE;

Parameters

connRef

(OUT) Points to the primary connection reference of the workstation.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

Remarks

The primary connection identifies the server to which the user originally
logged in. For NDS, the primary connection reference is the connection
with the writeable replica used during the login process.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 44

NWCCGetSecurityFlags

Returns the configured security flags for the requester

NetWare Server: 4.1x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCGetSecurityFlags (
 pnuint32 enabSecurityFlags,
 pnuint32 prefSecurityFlags,
 pnuint32 reqSecurityFlags);

Pascal Syntax

Function NWCCGetSecurityFlags (
 enabSecurityFlags : pnuint32;
 prefSecurityFlags : pnuint32;
 reqSecurityFlags : pnuint32
) : NWRCODE;

Parameters

enabSecurityFlags

(OUT) Points to the security flags which are enabled and supported by
the requester and specifies the maximum level the requester can
support.

prefSecurityFlags

(OUT) Points to the preferred (but not required) security level.

reqSecurityFlags

(OUT) Points to the required security flags for each connection.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

Connection Service Group

Connection: Functions 45

Remarks

The enabSecurityFlags, prefSecurityFlags, and reqSecurityFlags parameters
can point to the following values which may be ORed together:

0x00000100 NWCC_SECURITY_LEVEL_CHECKSUM

0x00000200 NWCC_SECUR_LEVEL_SIGN_HEADERS

0x00000400 NWCC_SECURITY_LEVEL_SIGN_ALL

0x00000800 NWCC_SECURITY_LEVEL_ENCRYPT

NOTE: NWCC_SECUR_LEVEL_SIGN_HEADERS and
NWCC_SECURITY_LEVEL_SIGN_ALL are exclusive to each other.

If a bit is cleared in the enabSecurityFlags parameter bit mask, that same
bit cannot be set in either the prefSecurityFlags or reqSecurityFlags
parameter bit masks.

The requester will attempt to establish the level of security defined in the
prefSecurityFlags parameter on each established connection. However, a
connection will not fail if the preferred security level is not supported.

If a server does not support the level of security specified by the
reqSecurityFlags parameter, the authentication of the connection is not
allowed by the requester.

NCP Calls

None

See Also

NWCCSetSecurityFlags

Connection Service Group

Connection: Functions 46

NWCCLicenseConn

Licenses the specified connection

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCLicenseConn (
 NWCONN_HANDLE connHandle);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCLicenseConn
 (connHandle : NWCONN_HANDLE
) : NWRCODE;

Parameters

connHandle

(IN) Specifies an open connection handle in an unlicensed state.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

0x8
801

NWE_CONN_INVALID

0x8
869

NWE_ACCESS_VIOLATION

0x8
872

NWE_INVALID_OWNER

Remarks

Connection Service Group

Connection: Functions 47

NWCCLicenseConn causes a connection to become licensed. If
necessary, the license NCP will be sent. If the specified handle is already
in a licensed state, an error (NWE_HANDLE_ALREADY_LICENSED)
will be returned on most platforms.

Under Windows NT, SUCCESS will be returned if the specified handle is
already licensed.

Windows 95 will return SUCCESS as the requester does not support
NWCCLicenseConn.

NWCCLicenseConn is supported under VLMs.

If no connection exists, NWCCLicenseConn sets a flag indicating the
desire for the connection to be licensed once it has become authenticated.

NWCCLicenseConn is not supported on client32 requesters.

See Licensing / Unlicensing a connection: Example.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 48

NWCCMakeConnPermanent

Keeps the specified connection from being detached until
NWCCSysCloseConnRef is called

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCMakeConnPermanent (
 NWCONN_HANDLE connHandle);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCMakeConnPermanent
 (connHandle : NWCONN_HANDLE
) : NWRCODE;

Parameters

connHandle

(IN) Specifies the open connection handle associated with the
connection to be made permanent.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

0x8
801

NWE_CONN_INVALID

0x8
869

NWE_ACCESS_VIOLATION

0x8
872

NWE_INVALID_OWNER

Connection Service Group

Connection: Functions 49

Remarks

NWCCMakeConnPermanent keeps the connection from becoming
detached until the NWCCSysCloseConnRef function is called and
allows the connection to remain intact after the termination of all
processes having that connection open.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 50

NWCCOpenConnByAddr

Opens a connection using a network address

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCOpenConnByAddr (
 pNWCCTranAddr tranAddr,
 nuint openState,
 nuint reserved,
 pNWCONN_HANDLE pConnHandle);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCOpenConnByAddr
 (tranAddr : pNWCCTranAddr;
 openState : nuint;
 reserved : nuint;
 pConnHandle : pNWCONN_HANDLE
) : NWRCODE;

Parameters

tranAddr

(IN) Points to the NWCCTranAddr structure containing the transport
address to open the connection to.

openState

(IN) Specifies the state of the connection.

reserved

(IN) Reserved for future use. Set to NWCC_RESERVED.

pConnHandle

(OUT) Points to the connection handle.

Return Values

These are common return values; see Return Values for more
information.

Connection Service Group

Connection: Functions 51

0x0
000

SUCCESS

0x8
841

NWE_TRAN_INVALID_TYPE

0x8
867

NWE_INSUFFICIENT_RESOURCES

0x8
869

NWE_ACCESS_VIOLATION

0x8
86C

NWE_RESOURCE_LOCK

0x8
870

NWE_UNSUPPORTED_TRAN_TYPE

Remarks

The openState parameter can have the following values:

C
Val
ue

Pasc
al
Val
ue

Value Name

0x0
001

$00
01

NWCC_OPEN_LICENSED

0x0
002

$00
02

NWCC_OPEN_UNLICENSED

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 52

NWCCOpenConnByName

Resolves the given server name to a network address then creates a
connection to that address

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCOpenConnByName (
 NWCONN_HANDLE startConnHandle,
 pnstr8 name,
 nuint nameFormat,
 nuint openState,
 nuint tranType,
 pNWCONN_HANDLE pConnHandle);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCOpenConnByName (
 startConnHandle : NWCONN_HANDLE;
 name : pnstr8;
 nameFormat : nuint;
 openState : nuint;
 tranType : nuint;
 Var connHandle : NWCONN_HANDLE
) : NWRCODE;

Parameters

startConnHandle

(IN) Specifies the connection to use when resolving the name.

name

(IN) Points to the name of the server to which to connect.

nameFormat

(IN) Specifies the format of the server name.

openState

(IN) Specifies the desired open state of the connection.

tranType

(IN) Specifies the transport type.

Connection Service Group

Connection: Functions 53

(IN) Specifies the transport type.

pConnHandle

(OUT) Points to the connection handle to be returned and may be used
for all requests directed to the connection.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

NWE_CONN_INVALID

0x8
808

NWE_SERVER_NO_SLOTS

0x8
80A

NWE_SERVER_NO_ROUTE

0x8
83F

NWE_CONN_TABLE_FULL

0x8
841

NWE_TRAN_INVALID_TYPE

0x8
847

NWE_SERVER_NOT_FOUND

0x8
867

NWE_INSUFFICIENT_RESOURCES

0x8
868

NWE_STRING_TRANSLATION

0x8
869

NWE_ACCESS_VIOLATION

0x8
870

NWE_UNSUPPORTED_TRAN_TYPE

Remarks

startConnHandle is the connection to use when resolving a name. For
instance, if the name is a bindery name, the requester will scan the
bindery of the given connection for the required server name.

startConnHandle can also be zero if you don't care which connection is
used to resolve the name.

name points to the structure containing the name of the file server to
which to connect. The format and length of these strings are defined by

Connection Service Group

Connection: Functions 54

nameFormat.

tranType can have the following values:

C
Val
ue

Pasc
al
Val
ue

Value Name

0x0
001

$00
01

NWCC_TRAN_TYPE_IPX

0x0
002

$00
02

NWCC_TRAN_TYPE_UDP

0x0
003

$00
03

NWCC_TRAN_TYPE_DDP

0x0
004

$00
04

NWCC_TRAN_TYPE_ASP

0x8
000

$80
00

NWCC_TRAN_TYPE_WILD

NOTE: Under NETX and VLM, tranType can only be set to either
NWCC_TRAN_TYPE_IPX or NWCC_TRAN_TYPE_WILD. Otherwise,
NWCCOpenConnByName will return
NWE_UNSUPPORTED_TRAN_TYPE.

openState can have the following values:

C
Val
ue

Pasc
al
Val
ue

Value Name

0x0
001

$00
01

NWCC_OPEN_LICENSED

0x0
002

$00
02

NWCC_OPEN_UNLICENSED

nameFormat can have the following values:

C
Val
ue

Pasc
al
Val
ue

Value Name

0x0
002

$00
02

NWCC_NAME_FORMAT_BIND

Connection Service Group

Connection: Functions 55

0x0
008

$00
08

NWCC_NAME_FORMAT_NDS_TREE

See Opening a Connection Using a Server Name: Example.

NCP Calls

To be supplied

See Also

NWCCCloseConn, NWCCOpenConnByPref, NWCCOpenConnByRef

Connection Service Group

Connection: Functions 56

NWCCOpenConnByPref

Opens an initial connection using the configured preferred settings

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCOpenConnByPref (
 nuint tranType,
 nuint openState,
 nuint reserved,
 pNWCONN_HANDLE pConnHandle);

Parameters

tranType

(IN) Specifies the preferred or required transport type to be used.

openState

(IN) Specifies the state of the connection.

reserved

(IN/OUT) Reserved for future use. Set to NWCC_RESERVED.

pConnHandle

(OUT) Points to the connection handle to be returned.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

NWE_CONN_INVALID

0x8
808

NWE_SERVER_NO_SLOTS

0x8
80A

NWE_SERVER_NO_ROUTE

0x8 NWE_CONN_TABLE_FULL

Connection Service Group

Connection: Functions 57

83F

0x8
847

NWE_SERVER_NOT_FOUND

0x8
867

NWE_INSUFFICIENT_RESOURCES

0x8
869

NWE_ACCESS_VIOLATION

0x8
870

NWE_UNSUPPORTED_TRAN_TYPE

Remarks

NWCCOpenConnByPref is similar to NWCCOpenConnByName,
which uses the preferred server or preferred tree name, except that
NWCCOpenConnByPref uses the configured preferences of the
requester to establish an initial connection to a server.

NOTE: In the event that a connection to the preferred tree or server
cannot be established, another connection may be returned.

NWCCOpenConnByPref will return NWE_CONN_INVALID if the
platform being run is not Windows 95 since NWCCOpenConnByPref is
only successful on Windows 95.

The tranType parameter must be set to indicate the transport type desired
with the following values:

0x0001 NWCC_TRAN_TYPE_IPX

0x0002 NWCC_TRAN_TYPE_UDP

0x0003 NWCC_TRAN_TYPE_DDP

0x0004 NWCC_TRAN_TYPE_ASP

The openState parameter must be set to indicate the type of data desired
with the following values:

0x0001 NWCC_OPEN_LICENSED

0x0002 NWCC_OPEN_UNLICENSED

NCP Calls

To be supplied

See Also

NWCCCloseConn, NWCCOpenConnByName,
NWCCOpenConnByRef

Connection Service Group

Connection: Functions 58

NWCCOpenConnByRef

Opens a connection associated with the given connection reference

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCOpenConnByRef (
 nuint32 connRef,
 nuint openState,
 nuint reserved,
 pNWCONN_HANDLE pConnHandle);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCOpenConnByRef
 (connRef : nuint32;
 openState : nuint;
 reserved : nuint;
 pConnHandle : pNWCONN_HANDLE
) : NWRCODE;

Parameters

connRef

(IN) Specifies a reference, which identifies a valid connection.

openState

(IN) Specifies the state of the connection.

reserved

(IN) Reserved for future use. Set to NWCC_RESERVED.

pConnHandle

(OUT) Points to the connection handle to be returned.

Return Values

These are common return values; see Return Values for more
information.

Connection Service Group

Connection: Functions 59

0x0
000

SUCCESS

0x8
801

NWE_CONN_INVALID

0x8
836

INVALID_PARAMETER

0x8
869

NWE_ACCESS_VIOLATION

Remarks

NWCCScanConnRefs can be called to get the connection reference.

connRef can be used to get information about the connection, but a valid
connection handle must be used to make actual requests to the
connection.

openState can have the following values:

C
Val
ue

Pasc
al
Val
ue

Value Name

0x0
001

$00
01

NWCC_OPEN_LICENSED

0x0
002

$00
02

NWCC_OPEN_UNLICENSED

NCP Calls

To be supplied

See Also

NWCCCloseConn, NWCCOpenConnByName,
NWCCOpenConnByPref

Connection Service Group

Connection: Functions 60

NWCCQueryFeature

Determines if the Requester supports a given feature

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCQueryFeature (
 nuint featureCode);

Parameters

featureCode

(IN) Specifies the feature being queried.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

0x8
8FF

NWE_REQUESTER_FAILURE

Remarks

NWCCQueryFeature allows requesters to add incremental support for
the NWClient interface without requiring the larger libraries like
NWCalls and NWNet to keep track of requester versions and whether or
not they support a specific feature.

featureCode must be set to indicate the type of data desired with the
following values:

0x0001 NWCC_FEAT_PRIV_CONN

0x0002 NWCC_FEAT_REQ_AUTH

0x0003 NWCC_FEAT_SECURITY

0x0004 NWCC_FEAT_NDS

0x0005 NWCC_FEAT_NDS_MTREE

Connection Service Group

Connection: Functions 61

0x0006 NWCC_FEAT_PRN_CAPTURE

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 62

NWCCRenegotiateSecurityLevel

Sets a new security level for the specified connection

NetWare Server: 4.1x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCRenegotiateSecurityLevel (
 NWCONN_HANDLE connHandle,
 nuint32 securityFlags);

Pascal Syntax

Function NWCCRenegotiateSecurityLevel (
 connHandle : NWCONN_HANDLE;
 securityFlags : nuint32
) : NWRCODE;

Parameters

connHandle

(IN) Specifies the connection handle.

securityFlags

(IN) Specifies the desired level of security for the specified connection.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

0x8
801

NWE_CONN_INVALID

0x8
836

NWE_PARAM_INVALID

0x8
861

NWE_SIGNATURE_LEVEL_CONFLICT

0x8
869

NWE_ACCESS_VIOLATION

Connection Service Group

Connection: Functions 63

Remarks

In order to establish a new level of security with a server, the requester
must compare the desired security level with its own supported level and
the support level of the server. The actual security level cannot exceed
the supported levels of either the requester or the server.

Any changes in security levels will not actually occur until the next
authentication on the connection.

Before reducing the security level, you must first close the connection by
calling the NWCCSysCloseConnRef function and then reopen the
connection by calling one of the NWCCOpenConnBy* functions.

The securityFlags parameter can point to the following values which may
be ORed together:

0x00000000 NWCC_SECUR_SIGNING_NOT_IN_USE

0x00000001 NWCC_SECURITY_SIGNING_IN_USE

0x00000100 NWCC_SECURITY_LEVEL_CHECKSUM

0x00000200 NWCC_SECUR_LEVEL_SIGN_HEADERS

0x00000400 NWCC_SECURITY_LEVEL_SIGN_ALL

0x00000800 NWCC_SECURITY_LEVEL_ENCRYPT

NOTE: NWCC_SECUR_SIGNING_NOT_IN_USE and
NWCC_SECURITY_SIGNING_IN_USE are exclusive to each other.

NWCC_SECUR_LEVEL_SIGN_HEADERS and
NWCC_SECURITY_LEVEL_SIGN_ALL are exclusive to each other.

NCP Calls

None

See Also

NWCCOpenConnByAddr, NWCCOpenConnByName,
NWCCOpenConnByPref, NWCCOpenConnByRef,
NWCCSysCloseConnRef

Connection Service Group

Connection: Functions 64

NWCCScanConnInfo

Returns connection information for multiple connections

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCScanConnInfo (
 pnuint32 scanIterator,
 nuint scanInfoLevel,
 nptr scanConnInfo,
 nuint scanFlags,
 nuint connInfoVersion,
 nuint returnInfoLevel,
 pnuint returnConnInfo,
 pnuint32 connReference);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCScanConnInfo
(scanIterator : pnuint32;
 scanInfoLevel : nuint;
 scanConnInfo : nptr;
 scanFlags : nuint;
 connInfoVersion : nuint;
 returnInfoLevel : nuint;
 returnConnInfo : nptr;
 Var connReference : nuint32
) : NWRCODE;

Parameters

scanIterator

(IN/OUT) Inputs the iterator handle used. Must be initialized to zero
(0) for first scan and to restart a search. Outputs the next iteration
number; do not alter on subsequent scans.

scanInfoLevel

(IN) Specifies the data type of the scanConnInfo parameter.

scanConnInfo

(IN) Points to the search data used during the scan.

Connection Service Group

Connection: Functions 65

scanFlags

(IN) Specifies which type of connections (licensed/unlicensed and
public/private) to search and if the data passed into the scanConnInfo
parameter needs to match prospective connections.

connInfoVersion

(IN) Specifies the connection information version. Set to
NWCC_INFO_VERSION_1 or higher.

returnInfoLevel

(IN) Specifies the data type of the returnConnInfo parameter.

returnConnInfo

(OUT) Points to the returned information and is of the data type
specified in the returnInfoLevel parameter.

connReference

(OUT) Points to the connection reference associated with the returned
information (optional).

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

0x8
80E

NWE_BUFFER_OVERFLOW

0x8
864

NWE_INVALID_MATCH_DATA

0x8
866

NWE_NO_MORE_ENTRIES

0x8
868

NWE_STRING_TRANSLATION

0x8
86B

NWE_INVALID_LEVEL

Remarks

The scanInfoLevel and returnInfoLevel parameters can have the following
values (which correspond to the fields found in the NWCCConnInfo
structure):

Val Value Name Data Type of the returnConnInfo

Connection Service Group

Connection: Functions 66

ue parameter

0x0
000

NWCC_INFO_NONE NULL

0x0
001

NWCC_INFO_AUTH
ENT_STATE

pnuint

0x0
002

NWCC_INFO_BCAST
_STATE

pnuint

0x0
003

NWCC_INFO_CONN
_REF

pnuint32

0x0
004

NWCC_INFO_TREE_
NAME

pnstr of length
NW_MAX_TREE_NAME_LEN

0x0
005

NWCC_INFO_CONN
_NUMBER

pnuint

0x0
006

NWCC_INFO_USER_I
D

pnuint32

0x0
007

NWCC_INFO_SERVE
R_NAME

pnstr of length
NW_MAX_SERVER_NAME_LEN

0x0
008

NWCC_INFO_NDS_S
TATE

pnuint

0x0
009

NWCC_INFO_MAX_
PACKET_SIZE

pnuint

0x0
00A

NWCC_INFO_LICEN
SE_STATE

pnuint

0x0
00B

NWCC_INFO_DISTA
NCE

pnuint

0x0
00C

NWCC_INFO_SERVE
R_VERSION

pNWCCVersion

0x0
00D

NWCC_INFO_TRAN_
ADDR

pNWCCTranAddr

The returnInfoLevel parameter can also contain the 0xFFFF
NWCC_INFO_RETURN_ALL value of type pNWCCConnInfo.

Either the entire NWCCConnInfo structure or part of the
NWCCConnInfo structure can be returned using the returnConnInfo
parameter. If the entire NWCCConnInfo structure is being returned (
returnInfoLevel=NWCC_INFO_RETURN_ALL), the returnConnInfo
parameter must point to a buffer of type NWCCConnInfo. If part of the
NWCCConnInfo structure is being returned, the returnConnInfo
parameter must point to a buffer of the data type being requested.

If the return value for NWCCScanConnInfo is BUFFER_OVERFLOW
when using the NWCC_INFO_TRAN_ADDR or
NWCC_INFO_RETURN_ALL value for the returnInfoLevel parameter,
the len field in the NWCCTranAddr structure was passed an incorrect

Connection Service Group

Connection: Functions 67

amount. The NWCCGetConnRefInfo function can be called to retrieve
the transport address.

scanFlags can have the following values:

0x0
000

NWCC_MATCH_NOT_EQUALS: Specifies every connection
not matching a given data member should be scanned.

0x0
001

NWCC_MATCH_EQUALS: Specifies every connection
matching a given data member should be scanned.

0x0
002

NWCC_RETURN_PUBLIC: Specifies all public connections
should be considered in the scan.

0x0
004

NWCC_RETURN_PRIVATE: Specifies all private connections
should be considered in the scan.

0x0
008

NWCC_RETURN_LICENSED: Specifies that only licensed
connections are desired.

0x0
010

NWCC_RETURN_UNLICENSED: Specifies that only
unlicensed connections are desired.

NOTE: Note that NWCC_MATCH_NOT_EQUALS and
NWCC_MATCH_EQUALS may not be set simultaneously while all of
the other values for the scanFlags parameter may be ORed together.
Also, when the scanInfoLevel parameter is set to NWCC_INFO_NONE,
NWCC_MATCH_NOT_EQUALS and NWCC_MATCH_EQUALS are
ignored.

To have all public and private connections considered in a scan, do one of
these two:

Use both NWCC_RETURN_PUBLIC and
NWCC_RETURN_PRIVATE.

Do not use either NWCC_RETURN_PUBLIC or
NWCC_RETURN_PRIVATE.

To have all licensed and unlicensed connections considered in a scan, do
one of these two:

Use both NWCC_RETURN_LICENSED and
NWCC_RETURN_UNLICENSED.

Do not use either NWCC_RETURN_LICENSED or
NWCC_RETURN_UNLICENSED.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 68

NWCCScanConnRefs

Returns a connection reference for each connection on the workstation

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCScanConnRefs (
 pnuint32 scanIterator,
 pnuint32 connRef);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCScanConnRefs
 (scanIterator : pnuint32;
 connRef : pnuint32
) : NWRCODE;

Parameters

scanIterator

(IN/OUT) Points to an iterator (zero on the first scan).

connRef

(OUT) Points to the connection reference for each connection.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

0x8
80E

NWE_BUFFER_OVERFLOW

0x8
864

NWE_INVALID_MATCH_DATA

0x8
866

NWE_NO_MORE_ENTRIES

Connection Service Group

Connection: Functions 69

0x8
868

NWE_STRING_TRANSLATION

0x8
86B

NWE_INVALID_LEVEL

Remarks

The scanIterator parameter must not be altered on subsequent scans.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 70

NWCCSetCurrentConnection

Sets the current connection ID and current connection for the thread group
control structure

Local Servers: nonblocking

Local Servers: nonblocking

NetWare Server: 4.x

Platform: NLM

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCSetCurrentConnection (
 CONN_HANDLE connHandle);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCSetCurrentConnection
 (connHandle : CONN_HANDLE
) : NWRCODE;

Parameters

connHandle

(IN) Specifies the connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

0x8
90A

INVALID_CONNECTION

Remarks

NWCCSetCurrentConnection is similar to the SetCurrentConnection
and SetCurrentConnectionID functions, although

Connection Service Group

Connection: Functions 71

and SetCurrentConnectionID functions, although
NWCCSetCurrentConnection will accept a connection obtained through
the CLX library.

If you open a connection by calling the NWCCOpenConnByName
function, you can call NWCCSetCurrentConnection and pass the
connection handle returned by the NWCCOpenConnByName function.
The fopen function can then be called by specifying a file on the server
for which a connection was recently opened. The connection opened by
calling the NWCCOpenConnByName function will be used.

You can use the old CLIB connection model by calling
NWCCSetCurrentConnection followed by calling the
GetCurrentServerID and GetCurrentConnection functions.

NOTE: To bridge from a connection opened by an old NIT connection
function such as the AttachToFileServer function, set your current
server ID and pass in the connection allocated by the
AttachToFileServer function as the connection handle parameter for
any NWCalls function.

NOTE: If NWCCSetCurrentConnection is called from any platform
other than NLM, SUCCESS will be returned but no action will be
performed.

NCP Calls

None

See Also

fopen, NWCCOpenConnByName, SetCurrentConnection,
SetCurrentConnectionID

Connection Service Group

Connection: Functions 72

NWCCSetPrefServerName

Sets the prefServer parameter for the workstation

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCSetPrefServerName (
 pnstr prefServer);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCSetPrefServerName
 (prefServer : pnstr
) : NWRCODE;

Parameters

prefServer

(IN) Points to the string containing the preferred server name.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

Remarks

The prefServer parameter is read in from the NET.CFG file and is used by
the requester and determines to which server to connect when no other
connections are established, such as during the requester load process.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 73

NWCCSetPrimConn

Sets the primary connection for the workstation

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCSetPrimConn (
 NWCONN_HANDLE connHandle);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCSetPrimConn
 (connHandle : NWCONN_HANDLE
) : NWRCODE;

Parameters

connHandle

(IN) Specifies the connection handle to make primary.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

Remarks

The primary connection identifies the server to which the user originally
logged in. For NDS, the primary connection is the connection with the
writeable replica used during the login process.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 74

NWCCSetSecurityFlags

Sets the configured security flags for the requester

NetWare Server: 4.1x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCSetSecurityFlags (
 nuint32 prefSecurityFlags,
 nuint32 reqSecurityFlags);

Pascal Syntax

Functioin NWCCSetSecurityFlags (
 prefSecurityFlags : nuint32;
 reqSecurityFlags : nuint32
) : NWRCODE;

Parameters

prefSecurityFlags

(IN) Specifies the preferred (but not required) security level.

reqSecurityFlags

(IN) Specifies the required security flags for each connection.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

0x8
836

NWE_PARAM_INVALID

0x8
861

NWE_SIGNATURE_LEVEL_CONFLICT

Remarks

Connection Service Group

Connection: Functions 75

See Security Values.

NCP Calls

None

See Also

NWCCGetSecurityFlags

Connection Service Group

Connection: Functions 76

NWCCSysCloseConnRef

Closes and detaches the specified connection, including the connection
reference and all connection handles for this connection

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCSysCloseConnRef (
 nuint32 connRef);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCSysCloseConnRef
 (connRef : nuint32
) : NWRCODE;

Parameters

connRef

(IN) Specifies the connection handle to be destroyed.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

0x8
801

NWE_CONN_INVALID

0x8
869

NWE_ACCESS_VIOLATION

Remarks

NWCCSysCloseConnRef is similar to the NWCCCloseConn function.

Connection Service Group

Connection: Functions 77

The exception is that NWCCSysCloseConnRef forces all of the open
handles to the connection to be closed and detaches the connection.

NWCCSysCloseConnRef is a system level request that causes all
processes that are accessing this connection to lose access to the resources
on the connection.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 78

NWCCUnlicenseConn

Unlicenses the specified licensed connection

NetWare Server: 2.2, 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY NWRCODE NWCCUnlicenseConn (
 NWCONN_HANDLE connHandle);

Pascal Syntax

#include <nwclxcon.inc>

Function NWCCUnlicenseConn
 (connHandle : NWCONN_HANDLE
) : NWRCODE;

Parameters

connHandle

(IN) Specifies an open connection handle to be unlicensed.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESS

0x8
801

NWE_CONN_INVALID

0x8
815

NWE_HANDLE_ALREADY_UNLICENSED

0x8
869

NWE_ACCESS_VIOLATION

0x8
872

NWE_INVALID_OWNER

Connection Service Group

Connection: Functions 79

Remarks

A licensed connection can be unlicensed by calling
NWCCUnlicenseConn. In the requester, NWCCUnlicenseConn will
only unlicense the connection if there are no other open handles to that
connection that need to remain licensed.

NCP Calls

To be supplied

Connection Service Group

Connection: Functions 80

NWClearConnectionNumber

Logs out the specified connection

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWClearConnectionNumber (
 NWCONN_HANDLE connHandle,
 NWCONN_NUM connNumber);

Pascal Syntax

#include <nwconnec.inc>

Function NWClearConnectionNumber
 (connHandle : NWCONN_HANDLE;
 connNumber : NWCONN_NUM
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the server connection handle.

connNumber

(IN) Specifies the connection number to be cleared.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Connection Service Group

Connection: Functions 81

0x8
9C6

NO_CONSOLE_PRIVILEGES

0x8
9FD

BAD_STATION_NUMBER

Remarks

You must have SUPERVISOR or equivalent rights to call
NWClearConnectionNumber. Otherwise, NO_CONSOLE_PRIVILEGES
will be returned.

NWClearConnectionNumber clears a connection from a file server
connection table while the NWCCCloseConn function clears a local
connection handle for a client.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 210 Clear Connection Number

0x2222 23 254 Clear Connection Number (3.11+)

See Also

NWCCCloseConn

Connection Service Group

Connection: Functions 82

NWCLXInit

Initializes the CLX library

NetWare Server: 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY (NWRCODE) NWCLXInit (
 nptr reserved1,
 nptr reserved2);

Pascal Syntax

Function NWCLXInit (
 reserved1 : nptr;
 reserved2 : nptr
) : NWCCODE;

Parameters

reserved1

(IN) Is reserved (pass in NULL).

reserved2

(IN) Is reserved (pass in NULL).

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

Remarks

IMPORTANT: NWCLXInit must be called before calling any other
NWCC function.

NCP Calls

Connection Service Group

Connection: Functions 83

None

See Also

NWCLXTerm

Connection Service Group

Connection: Functions 84

NWCLXTerm

Terminates the CLX library and performs any necessary clean up

NetWare Server: 3.x, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwclxcon.h>

N_EXTERN_LIBRARY (NWRCODE) NWCLXTerm (
 nptr reserved);

Pascal Syntax

Function NWCLXTerm (
 reserved : nptr
) : NWCCODE;

Parameters

reserved

(IN) Is reserved; pass in NULL.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

NCP Calls

None

See Also

NWCLXInit

Connection Service Group

Connection: Functions 85

NWFreeConnectionSlot

Either removes all task dependencies on a task disconnect or completely
tears down the connection for a system disconnect

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwnet.h>
see also
#include <nwndscon.h>

NWCCODE N_API NWFreeConnectionSlot
 (NWCONN_HANDLE conn,
 nuint8 disconnectType);

Pascal Syntax

Function NWFreeConnectionSlot
 (conn : NWCONN_HANDLE;
 disconnectType : nuint8
) : NWCCODE;

Parameters

conn

(IN) Specifies the connection handle of the desired connection.

disconnectType

(IN) Specifies a system disconnect or a task disconnect.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8 INVALID_PARAMETER

Connection Service Group

Connection: Functions 86

836

0xF
EA0

ERR_NO_WRITABLE_REPLICAS

0xF
EB8

ERR_CONTEXT_CREATION

Remarks

A task disconnect keeps track of a connection in use count. When the
count sets to zero, the connection stays valid until its slot is needed for a
new connection.

A system disconnect tears down the connection completely. The task
disconnect decrements all the in-use counts to zero.

NETX does not support NWFreeConnectionSlot and will return an error
if VLMs are not running.

Under Client32, NWFreeConnectionSlot will return SUCCESSFUL even
if the connection being freed is the monitored connection.
NWFreeConnectionSlot makes a copy of the connection handle from the
Client32 requestor. It is this connection handle copy that will be freed
even if it is the monitored connection. However, the original connection
handle still exists.

NWFreeConnectionSlot will try to find another server to store the
attributes. If the server is not one of the connections for the client, a
connection will be made to the new server that has a writable replica.
This connection will become the monitored connection with the login
attributes while the original monitored connection will be freed.

If NWFreeConnectionSlot cannot find another writeable replica when
called to delete the monitored connection, one of the following two errors
will be returned:

ERR_CONTEXT_CREATION
ERR_NO_WRITABLE_REPLICAS

The disconnectType parameter will be one of the following:

SYSTEM_DISCONNECT
TASK_DISCONNECT

ERR_CONTEXT_CREATION is returned sometimes when the unicode
tables have not been initialized.

If ERR_NO_WRITABLE_REPLICAS is returned, the connection cannot be
deleted until the NWDSLogout function has been called since the server
has attributes that were created at login time.

NCP Calls

Connection Service Group

Connection: Functions 87

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

0x2222 104 02 Send NDS Fragmented Request/Reply

See Also

NWCCOpenConnByAddr, NWCCScanConnRefs,
NWCCOpenConnByRef, NWCCLicenseConn

Connection Service Group

Connection: Functions 88

NWGetConnectionHandle (obsolete 6/96)

Returns the workstations connection handle for the specified NetWare
server but is now obsolete. Call NWCCScanConnRefs followed by calling
NWCCOpenConnByRef instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetConnectionHandle
 (pnuint8 serverName,
 nuint16 reserved1,
 NWCONN_HANDLE N_FAR * conn,
 pnuint16 reserved2);

Pascal Syntax

#include <nwconnec.inc>

Function NWGetConnectionHandle
 (pServerName : pnuint8;
 reserved1 : nuint16;
 Var pConnHandle : NWCONN_HANDLE;
 reserved2 : pnuint16
) : NWCCODE;

Parameters

serverName

(IN) Points to the name of the target NetWare server.

reserved1

Is reserved (must be 0).

conn

(OUT) Points to the variable for the connection handle.

reserved2

Is reserved (pass NULL).

Connection Service Group

Connection: Functions 89

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
80F

NO_CONNECTION_TO_SERVER

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

Connection Service Group

Connection: Functions 90

NWGetConnectionIDFromAddress (obsolete 9/97)

Returns the connection handle associated with the given NetWare address
of the server but is now obsolete. Call the NWCCScanConnInfo,
NWCCOpenConnByRef, and NWCCLicenseConn functions instead.

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwnet.h>
see also
#include <nwndscon.h>

NWCCODE N_API NWGetConnectionIDFromAddress
 (nuint8 transType,
 nuint32 transLen,
 nuint8 N_FAR * transBuf,
 NWCONN_HANDLE N_FAR * conn);

Pascal Syntax

Function NWGetConnectionIDFromAddress
 (transType : nuint8;
 transLen : nuint32;
 transBuf : pnuint8;
 Var conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

transType

(IN) Specifies the transport protocol for the given transport buffer.

transLen

(IN) Specifies the transport buffer length (for example: IPX=12).

transBuf

(IN) Points to the transport-dependent address information (12 bytes
for IPX).

conn

(OUT) Points to the connection handle associated with the given
NetWare address.

Return Values

Connection Service Group

Connection: Functions 91

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
80F

NO_CONNECTION_TO_SERVER

0x8
841

BAD_TRAN_TYPE

Remarks

NWGetConnectionIDFromAddress (obsolete 9/97) will return a
licensed connection to the NetWare server if the connection is
authenticated. Call the NWDSUnlockConnection function to unlicense
the connection or place it on the LRU list to be cached.

NCP Calls

None

See Also

NWCCGetConnInfo, NWCCLicenseConn, NWCCOpenConnByAddr,
NWCCOpenConnByRef, NWCCScanConnInfo, NWCCScanConnRefs,
NWGetConnectionInformation

Connection Service Group

Connection: Functions 92

NWGetConnectionIDFromName (obsolete 9/97)

Returns the connection to a specified NetWare server but is now obsolete.
Call the NWCCScanConnInfo, NWCCOpenConnByRef, and
NWCCLicenseConn functions instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 3.x, 4.x (only with the NetWare DOS Requester)

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwnet.h>
see also
#include <nwndscon.h>

NWCCODE N_API NWGetConnectionIDFromName (
 nuint32 nameLen,
 nuint8 N_FAR *name,
 NWCONN_HANDLE N_FAR *conn);

Pascal Syntax

Function NWGetConnectionIDFromName
 (nameLen : nuint32;
 name : pnuint8;
 Var conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

nameLen

(IN) Specifies the length of the server name.

name

(IN) Points to the server name to look up in the connection table.

conn

(OUT) Points to the connection handle to the server name.

Return Values

These are common return values; see Return Values for more
information.

Connection Service Group

Connection: Functions 93

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Remarks

NWGetConnectionIDFromName (obsolete 9/97) only works with the
NetWare DOS Requester and will not work if NETX is being used as the
client shell. If NETX is loaded, NWGetConnectionIDFromName
(obsolete 9/97) returns 0x89FF.

NWGetConnectionIDFromName (obsolete 9/97) will return a licensed
connection to the NetWare server if the connection is authenticated. Call
the NWDSUnlockConnection function to unlicense the connection or
place it on the LRU list to be cached.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

See Also

NWCCGetConnInfo, NWCCLicenseConn, NWCCOpenConnByAddr,
NWCCOpenConnByRef, NWCCScanConnInfo, NWCCScanConnRefs,
NWGetConnectionInformation

Connection Service Group

Connection: Functions 94

NWGetConnectionInformation

Returns information about a logged in object

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetConnectionInformation (
 NWCONN_HANDLE connHandle,
 NWCONN_NUM connNumber,
 pnstr8 pobjName,
 pnuint16 pobjType,
 pnuint32 pobjID,
 pnuint8 ploginTime);

Pascal Syntax

#include <nwconnec.inc>

Function NWGetConnectionInformation
 (connHandle : NWCONN_HANDLE;
 connNumber : NWCONN_NUM;
 pObjName : pnstr8;
 pObjType : pnuint16;
 pObjID : pnuint32;
 pLoginTime : pnuint8
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the NetWare server connection handle.

connNumber

(IN) Specifies the NetWare server connection number for which the
information is being obtained.

pObjName

(OUT) Points to the name of the object whose connection number is
passed in connNumber (48 bytes, optional).

Connection Service Group

Connection: Functions 95

pObjType

(OUT) Points to the bindery object type of the client (optional).

pObjID

(OUT) Points to the bindery object ID of the client (optional).

pLoginTime

(OUT) Points to the time value when the object logged in at the
specified connection number (7 bytes, optional).

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
996

SERVER_OUT_OF_MEMORY

0x8
9FC

NO_SUCH_OBJECT

0x8
9FD

BAD_STATION_NUMBER

0x8
9FE

DIRECTORY_LOCKED

0x8
9FF

HARDWARE_FAILURE

Remarks

The pObjName, pObjType, pObjID, and pLoginTime parameter are included
in the returned information.

The system time clock is a 7-byte value contained in the pLoginTime
parameter and defined in the following format:

B
yt
e

Value Range

1 Year 0 through 179

2 Month 1 through 12

Connection Service Group

Connection: Functions 96

3 Day 1 through 31

4 Hour 0 through 23 (0 = 12 midnight; 23 = 11 PM)

5 Minut
e

0 through 59

6 Secon
d

0 through 59

7 Day of
Week

0 through 6, 0=Sunday

NOTE: For the year value, 80-99=1980-1999; 100-179=2000-2079. The
range 0-79 applies to 1900-1979, but a year in this range should not be
necessary since DOS cannot return a year value previous to 1980.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

See Also

NWCCGetAllConnInfo, NWGetUserInfo

Connection Service Group

Connection: Functions 97

NWGetConnectionList (obsolete 6/96)

Returns a list of all connection handles but is now obsolete. Call
NWCCScanConnRefs followed by calling NWCCOpenConnByRef
instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetConnectionList
 (nuint16 Mode,
 NWCONN_HANDLE N_FAR * connListBuffer,
 nuint16 connListSize,
 pnuint16 numConns);

Pascal Syntax

#include <nwconnec.inc>

Function NWGetConnectionList
 (Mode : nuint16;
 Var connListBuffer : NWCONN_HANDLE;
 connListSize : nuint16;
 pNumConns : pnuint16
) : NWCCODE;

Parameters

Mode

Is reserved (must be 0).

connListBuffer

(OUT) Points to the connection list for the workstation.

connListSize

(IN) Specifies the number of connections the connListBuffer parameter
can hold.

numConns

(OUT) Points to the number of connections returned in the

Connection Service Group

Connection: Functions 98

connListBuffer parameter.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
80D

CONNECT_LIST_OVERFLOW

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

Connection Service Group

Connection: Functions 99

NWGetConnectionNumber (obsolete 6/96)

Returns the connection number the requesting workstation uses to
communicate with the NetWare server (corresponds to the connection
handle) but is now obsolete. Call NWCCGetConnInfo instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetConnectionNumber
 (NWCONN_HANDLE conn,
 NWCONN_NUM N_FAR * connNumber);

Pascal Syntax

#include <nwconnec.inc>

Function NWGetConnectionNumber
 (connHandle : NWCONN_HANDLE;
 Var connNumber : NWCONN_NUM
) : NWCCODE;

Parameters

conn

(IN) Specifies the connection handle for the NetWare server.

connNumber

(OUT) Points to the variable containing the corresponding connection
number for the workstation on the NetWare server.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

Connection Service Group

Connection: Functions 100

0x8
801

INVALID CONNECTION

Remarks

The NetWare server maintains a connection table including connection
handles and passwords for all connected objects. After calling
NWGetConnectionNumber (obsolete 6/96), the connNumber parameter
contains the index into the connection table.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWCCGetConnInfo, NWGetConnectionInformation

Connection Service Group

Connection: Functions 101

NWGetConnectionStatus (obsolete 9/97)

Returns status information (server name, address, object type, etc.) about a
specified connection handle but is now obsolete. Call the
NWCCGetConnInfo and NWGetConnectionInformation functions
instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetConnectionStatus
 (NWCONN_HANDLE conn,
 CONNECT_INFO N_FAR * connInfo,
 nuint16 connInfoSize);

Pascal Syntax

#include <nwconnec.inc>

Function NWGetConnectionStatus
 (connHandle : NWCONN_HANDLE;
 Var pConnInfo : CONNECT_INFO;
 connInfoSize : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the connection handle of the NetWare server.

connInfo

(OUT) Points to the CONNECT_INFO structure.

connInfoSize

(IN) Specifies the size of the connStatusBuffe\r field.

Return Values

These are common return values; see Return Values for more

Connection Service Group

Connection: Functions 102

information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Remarks

NETX does not support CONNECTION_BROADCAST_AVAILABLE.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

Connection Service Group

Connection: Functions 103

NWGetConnectionUsageStats

Returns the usage statistics for a specified connection

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetConnectionUsageStats (
 NWCONN_HANDLE conn,
 NWCONN_NUM connNumber,
 CONN_USE N_FAR *statusBuffer);

Pascal Syntax

#include <nwconnec.inc>

Function NWGetConnectionUsageStats
 (connHandle : NWCONN_HANDLE;
 connNumber : NWCONN_NUM;
 Var pStatusBuffer : CONN_USE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

connNumber

(IN) Specifies the server connection number.

statusBuffer

(OUT) Points to the CONN_USE structure to receive the usage
statistics.

Return Values

These are common return values; see Return Values for more
information.

Connection Service Group

Connection: Functions 104

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
9C6

NO_CONSOLE_OPERATOR

0x8
9FD

UNKNOWN_REQUEST

Remarks

The client must have console rights to get usage statistics for connections
other than a client connection.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 229 Get Connection Usage Statistic.

Connection Service Group

Connection: Functions 105

NWGetConnInfo (obsolete 6/96)

Retrieves specified information about a connection but is now obsolete. Call
NWCCGetAllConnInfo or NWCCGetConnAddress instead.

NetWare Server: PNW, 2.2, 3.11, 3.12, 4.x

Platform: DOS (VLM only), NLM, OS/2, Windows 3.1, Windows NT (VLM
only), Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetConnInfo
 (NWCONN_HANDLE conn,
 nuint16 type,
 nptr data);

Pascal Syntax

#include <nwconnec.inc>

Function NWGetConnInfo
 (connHandle : NWCONN_HANDLE;
 connType : nuint16;
 pData : nptr
) : NWCCODE;

Parameters

conn

(IN) Specifies the connection for which to return information.

type

(IN) Specifies the type of information to retrieve.

data

(OUT) Points to a return buffer containing the desired information
(size depends on the type of information desired: usually an nuint16,
nuint32 or a string).

Return Values

These are common return values; see Return Values for more
information.

Connection Service Group

Connection: Functions 106

0x8
801

INVALID_CONNECTION

0x8
811

INVALID_SHELL_CALL

0x8
836

INVALID_PARAMETER

Remarks

The type parameter can have the following values:

3 NW_AUTHENTICATED: Returns 1 if authenticated. Otherwise an
nuint16.

13 NW_CONN_NUM: Returns a nuint16.

0x8001 NW_SERVER_ADDRESS: Returns a 12 byte address.

0x8002 NW_SERVER_NAME: Returns a 48 byte string containing the
server name.

INVALID_PARAMETER will be returned if the type parameter is set to
any of the following:

1 NW_CONN_TYPE

4 NW_PBURST

8 NW_VERSION

15 NW_TRAN_TYPE

0x8000 NW_SESSION_ID

NCP Calls

None

See Also

NWCCGetConnInfo, NWGetConnectionInformation

Connection Service Group

Connection: Functions 107

NWGetConnListFromObject

Returns a list of connection numbers a specified object has on a given server

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetConnListFromObject (
 NWCONN_HANDLE conn,
 nuint32 objID,
 nuint32 searchConnNum,
 pnuint16 connListLen,
 pnuint32 connList);

Pascal Syntax

#include <nwconnec.inc>

Function NWGetConnListFromObject
 (connHandle : NWCONN_HANDLE;
 objID : nuint32;
 searchConnNum : nuint32;
 pConnListLen : pnuint16;
 pConnList : pnuint32
) : NWCCODE;

Parameters

conn

(IN) Specifies the server to find connection numbers for.

objID

(IN) Specifies the object ID for which to get a list of connection
numbers.

searchConnNum

(IN) Specifies the connection number to start searching from.

connListLen

(OUT) Points to a return buffer containing the number of connections

Connection Service Group

Connection: Functions 108

in the connList parameter.

connList

(OUT) Points to a return buffer containing up to 125 connection
numbers.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
9FB

INVALID_PARAMETERS

NCP Calls

0x2222 23 31 Get Connection List From Object

Connection Service Group

Connection: Functions 109

NWGetDefaultConnectionID (obsolete 9/97)

Returns the default connection handle of the current session but is now
obsolete. Call the NWGetDefaultConnRef and NWGetNearestDSConnRef
functions instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetDefaultConnectionID
 (NWCONN_HANDLE N_FAR * conn);

Pascal Syntax

#include <nwconnec.inc>

Function NWGetDefaultConnectionID
 (Var pConnHandle : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(OUT) Points to the default connection handle.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Remarks

Connection Service Group

Connection: Functions 110

Remarks

The NetWare server containing the current directory for the connection is
the default NetWare server.

The default connection handle corresponds to one of the following.

If the current drive is a network drive, the default connection handle is
the server to which the drive maps.

If the current drive is not a network drive, the default connection
handle is the server to which the workstation first logged in (also
called primary server).

If the first and second conditions fail, the default server is the first
server in the connection list for the shell (happens if the workstation is
logged out of the primary server).

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 1 Ping for NDS NCP

See Also

NWCCGetPrimConnRef, NWGetPreferredConnName

Connection Service Group

Connection: Functions 111

NWGetDefaultConnRef

Returns the default connection reference of the current session

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

N_EXTERN_LIBRARY (NWCCODE) NWGetDefaultConnRef (
 pnuint32 pConnReference);

Pascal Syntax

#include <nwconnec.inc>

Function NWGetDefaultConnectionID (
 Var pConnReference : nuint32
) : NWCCODE;

Parameters

pConnReference

(OUT) Points to the default connection reference.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
80F

NO_CONNECTION_TO_SERVER

Remarks

The NetWare server containing the current directory for the connection is

Connection Service Group

Connection: Functions 112

The NetWare server containing the current directory for the connection is
the default NetWare server.

The default connection reference corresponds to one of the following.

If the current drive is a network drive, the default connection reference
is the server to which the drive maps.

If the current drive is not a network drive, the default connection
reference is the server to which the workstation first logged in (also
called primary server).

If the first and second conditions fail, the default server is the first
server in the connection list for the shell (which occurs if the
workstation is logged out of the primary server).

NCP Calls

None

See Also

NWCCGetPrimConnRef

Connection Service Group

Connection: Functions 113

NWGetInetAddr

Returns the internet address of the connNum parameter on the specified
NetWare server for the specified connection

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetInetAddr (
 NWCONN_HANDLE connHandle,
 NWCONN_NUM connNum,
 NWINET_ADDR N_FAR *pInetAddr);

Pascal Syntax

#include <nwconnec.inc>

Function NWGetInetAddr
 (connHandle : NWCONN_HANDLE;
 connNum : NWCONN_NUM;
 Var pInetAddr : NWINET_ADDR
) : NWCCODE;

Parameters

connHandle

(IN) Specifies the NetWare server connection handle associated with
the connNum parameter.

connNum

(IN) Specifies the connection number of the station whose
internetwork address is to be returned.

pInetAddr

(OUT) Points to the internetwork address of the connNum parameter
(10 bytes).

Return Values

Connection Service Group

Connection: Functions 114

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
9FF

Failure

Remarks

An internetwork address consists of the networkAddr and netNodeAddr
fields. (The netNodeAddr field is the physical address of the LAN board
for the workstation.) The internetwork address uniquely identifies a
workstation throughout an internetwork. The address can be used to
send packets directly to the workstation.

To print the contents of the pInetAddr parameter, swap each byte by
calling the NWLongSwap function on the networkAddr field, the
NWWordSwap function on the first 2 bytes of the netNodeAddr field , and
the NWLongSwap function on bytes 2 to 5 of the netNodeAddr field.
Otherwise, the pInetAddr parameter appears in the format other functions
expect.

See Listing Internetwork Addresses: Example.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 19 Get Internet Address

0x2222 23 26 Get Internet Address (new)

Connection Service Group

Connection: Functions 115

NWGetMaximumConnections (obsolete 9/97)

Returns the maximum number of connections available for the requesting
workstation but is now obsolete. Call the NWCCGetNumConns function
instead.

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include<nwconnec.h>
or
#include <nwcalls.h>

void N_API NWGetMaximumConnections (
 pnuint16 maxConns);

Pascal Syntax

#include <nwconnec.inc>

Procedure NWGetMaximumConnections
 (pMaxConns : pnuint16
);

Parameters

maxConns

(OUT) Points to the maximum number of connections available.

Return Values

None

Remarks

Under the OS/2 operating system, the maximum number of connections
(by default) is eight. However, the number can be increased to a
maximum of 32 per workstation (see NetWare Requester for OS/2,
Appendix B, part number 100-000492-001).

Under NETX, the maximum number of connections is eight.

Under VLMs, the maximum number of connections can be set in the
NET.CFG file and cannot exceed 50.

Connection Service Group

Connection: Functions 116

NCP Calls

None

Connection Service Group

Connection: Functions 117

NWGetNearestDirectoryService (obsolete 9/97)

Returns a connection to the nearest Directory Services NetWare server
(distance is determined by clock ticks) but is now obsolete. Call the
NWGetNearestDSConnRef and NWCCOpenConnByRef functions
instead.

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwnet.h>
see also
#include <nwndscon.h>

NWCCODE N_API NWGetNearestDirectoryService
 (NWCONN_HANDLE N_FAR * conn);

Pascal Syntax

Function NWGetNearestDirectoryService
 (Var conn : NWCONN_HANDLE
) : NWCCODE;

Parameters

 conn

(OUT) Points to a connection handle to the nearest NDS server in the
connection table.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Remarks

Connection Service Group

Connection: Functions 118

Remarks

If no NDS servers are found, INVALID_CONNECTION is returned.

NWGetNearestDirectoryService (obsolete 9/97) does not guarantee a
licensed connection to a NetWare server.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 22 Get Station's Logged Info (old)

0x2222 23 28 Get Station's Logged Info

0x2222 104 01 Ping for NDS NCP

See Also

NWCCGetConnInfo, NWCCOpenConnByName,
NWCCOpenConnByRef, NWCCScanConnRefs,
NWGetPreferredConnName, NWSetPreferredDSTree

Connection Service Group

Connection: Functions 119

NWGetNearestDSConnRef

Returns a connection reference to the nearest existing connection for a
Directory Services NetWare server (distance is determined by clock ticks)

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwndscon.h>
or
#include <nwnet.h>

N_EXTERN_LIBRARY (NWCCODE) NWGetNearestDSConnRef (
 pnuint32 connRef);

Pascal Syntax

Function NWGetNearestDirectoryService (
 connRef : pnuint32
) : NWCCODE;

Parameters

 connRef

(OUT) Points to a connection reference for the nearest NDS server in
the connection table.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
846

NWE_DS_NO_CONN

Remarks

If no NDS servers are found, NWE_DS_NO_CONN is returned.

Connection Service Group

Connection: Functions 120

If no NDS servers are found, NWE_DS_NO_CONN is returned.

NCP Calls

None

See Also

NWCCGetAllConnRefInfo, NWCCGetConnRefInfo,
NWCCOpenConnByRef, NWCCScanConnRefs,
NWGetPreferredConnName, NWGetPreferredDSServer (obsolete 6/96)
, NWSetPreferredDSTree

Connection Service Group

Connection: Functions 121

NWGetObjectConnectionNumbers

Returns a list of server connection numbers for clients logged in with the
specified object name and type

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetObjectConnectionNumbers (
 NWCONN_HANDLE conn,
 pnstr8 objName,
 nuint16 objType,
 pnuint16 numConns,
 NWCONN_NUM N_FAR *connList,
 nuint16 maxConns);

Pascal Syntax

#include <nwconnec.inc>

Function NWGetObjectConnectionNumbers
 (connHandle : NWCONN_HANDLE;
 pObjName : pnstr8;
 objType : nuint16;
 pNumConns : pnuint16;
 Var pConnHandleList : NWCONN_NUM;
 maxConns : nuint16
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

objName

(IN) Points to the bindery object name of the object whose network
server connection numbers are being obtained.

objType

(IN) Specifies the bindery object type of the object whose network

Connection Service Group

Connection: Functions 122

server connection numbers are being returned.

numConns

(OUT) Points to the number of server connections for the specified
object.

connList

(OUT) Points to an array of the server connection numbers for the
specified object.

maxConns

(IN) Specifies the size of the connection list array (maximum
length=50).

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
996

SERVER_OUT_OF_MEMORY

0x8
9F0

WILD_CARD_NOT_ALLOWED

0x8
9FC

NO_SUCH_OBJECT (2.x servers only)

0x8
9FE

DIRECTORY_LOCKED

0x8
9FF

HARDWARE_FAILURE

Remarks

If no client is logged in using the specified object name and object type,
the list length returned by the server is set to zero.

The numConns parameter value is used to index the array pointed to by
the connList parameter.

If an invalid object name or object type is passed on a 3.x or 4.x server,
NWGetObjectConnectionNumbers will return SUCCESS and the
numConns parameter will be zero indicating there are no connections
with the server.

Connection Service Group

Connection: Functions 123

If an invalid object name or object type is passed on a 2.x server,
NWGetObjectConnectionNumbers will return NO_SUCH_OBJECT.

NCP Calls

0x2222 23 17 Get File Server Information

0x2222 23 21 Get Object Connection List

0x2222 23 27 Get Object Connection List (if 3.11 server)

Connection Service Group

Connection: Functions 124

NWGetPrimaryConnectionID (obsolete 6/96)

Returns the primary network server connection handle for a workstation
but is now obsolete. Call NWCCGetPrimConnRef instead.

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include<nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetPrimaryConnectionID
 (NWCONN_HANDLE N_FAR *conn);

Pascal Syntax

#include <nwconnec.inc>

Function NWGetPrimaryConnectionID
 (Var pConnHandle : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(OUT) Points to the primary server connection handle for the
workstation.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
831

PRIMARY_CONNECTION_NOT_SERVER

Connection Service Group

Connection: Functions 125

Remarks

The initial primary connection handle is the ID of the server from which
the login script is read. It is set by utilities such as Login.

NCP Calls

None

Connection Service Group

Connection: Functions 126

NWGetTaskInformationByConn

Returns information about the active tasks a specified connection has

Local Servers: blocking

Remote Servers: blocking

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Connection

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWGetTaskInformationByConn (
 NWCONN_HANDLE conn,
 NWCONN_NUM connNum,
 CONN_TASK_INFO N_FAR *taskInfo);

Pascal Syntax

#include <nwmisc.inc>

Function NWGetTaskInformationByConn
 (conn : NWCONN_HANDLE;
 connNum : NWCONN_NUM;
 Var taskInfo : CONN_TASK_INFO
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.
NWCONN_HANDLE is equivalent to nuint16.

connNum

(IN) Specifies the connection number of the logged-in object for which
to get task information. NWCONN_NUM is equivalent to nuint16.

taskInfo

(OUT) Points to the CONN_TASK_INFO structure.

Return Values

These are common return values; see Return Values for more
information.

Connection Service Group

Connection: Functions 127

0x0000 SUCCESSFUL

0x8801 INVALID_CONNECTION

0x8996 SERVER_OUT_OF_MEMORY

0x89C6 NO_CONSOLE_PRIVILEGES

0x89FD BAD_STATION_NUMBER

0x88FE Unknown Packet Format

NCP Calls

0x2222 23 218 Get Connection's Task Information (2.x)

0x2222 23 234 Get Connection's Task Information (3.x-4.x)

Connection Service Group

Connection: Functions 128

NWIsIDInUse (obsolete 6/96)

Returns TRUE if the specified connection handle is in use but is now
obsolete

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWIsIDInUse
 (NWCONN_HANDLE conn);

Pascal Syntax

#include <nwconnec.inc>

Function NWIsIDInUse
 (connHandle : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle to check for use.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

ID is in use

non
zero

ID is not in use

Remarks

NWIsIDInUse (obsolete 6/96) is meaningless when VLMs are running.

Connection Service Group

Connection: Functions 129

NCP Calls

None

Connection Service Group

Connection: Functions 130

NWRequest

Passes an NCP request to the server

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows95

Service: Connection

Syntax

#include <nwmisc.h>
or
#include <nwcalls.h>

NWCCODE N_API NWRequest (
 NWCONN_HANDLE conn,
 nuint16 function,
 nuint16 numReqFrags,
 NW_FRAGMENT N_FAR *reqFrags,
 nuint16 numReplyFrags,
 NW_FRAGMENT N_FAR *replyFrags);

Pascal Syntax

#include <nwmisc.inc>

Function NWRequest
 (conn : NWCONN_HANDLE;
 functionID : nuint16;
 numReqFrags : nuint16;
 Var reqFrags : NW_FRAGMENT;
 numReplyFrags : nuint16;
 Var replyFrags : NW_FRAGMENT
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle.

function

(OUT) Receives the NCP function number.

numReqFrags

(OUT) Receives the number of fragments pointed to by the reqFrags
field (maximum is five).

reqFrags

(OUT) Points to the list of request fragments.

Connection Service Group

Connection: Functions 131

numReplyFrags

(OUT) Receives the number of fragments pointed to by the replyFrags
field (maximum is five).

replyFrags

(OUT) Points to the NW_FRAGMENT structure containing the list of
reply fragments.

Return Values

These are common return values; see Return Values for more
information.

0x0000 SUCCESSFUL

other Error from NCP or Requester

Remarks

The request and reply fragment buffers should not overlap. The total
length of the request and reply fragments should not exceed 576 bytes.

NCP Calls

None

Connection Service Group

Connection: Functions 132

NWSetPrimaryConnectionID (obsolete 6/96)

Sets or resets the primary connection handle but is now obsolete. Call
NWCCSetPrimConn instead.

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: DOS, NLM, OS/2, Windows 3.1, Windows NT, Windows 95

Service: Connection

Syntax

#include <nwconnec.h>
or
#include <nwcalls.h>

NWCCODE N_API NWSetPrimaryConnectionID
 (NWCONN_HANDLE conn);

Pascal Syntax

#include <nwconnec.inc>

Function NWSetPrimaryConnectionID
 (connHandle : NWCONN_HANDLE
) : NWCCODE;

Parameters

conn

(IN) Specifies the NetWare server connection handle to set as the
primary server.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

Remarks

The initial primary connection handle is the ID of the server from which

Connection Service Group

Connection: Functions 133

the login script is read. The primary connection handle is set by utilities
such as Login.

CAUTION: To avoid unpredictable results, call
NWSetPrimaryConnectionID (obsolete 6/96) cautiously in
applications that depend on the primary connection handle to point
to the actual primary server.

NCP Calls

None

Connection Service Group

Connection: Functions 134

NWUnlicenseConn (obsolete 6/96)

Unlicenses a connection but is now obsolete. Call NWCCUnlicenseConn
instead.

NetWare Server: 2.2, 3.11, 3.12, 4.x

Platform: UNIX

Service: Connection

Syntax

#include <nwconnec.h>

NWCCODE N_API NWUnlicenseConn(
 NWCONN_HANDLE conn);

Parameters

conn

(IN) Specifies the open connection handle needing the connection to be
unlicensed.

Return Values

These are common return values; see Return Values for more
information.

0x0
000

SUCCESSFUL

0x8
801

INVALID_CONNECTION

0x8
815

HANDLE_ALREADY_UNLICENSED

Remarks

When a connection is opened, it is automatically licensed. If the
application opening the connection does not require a licensed
connection, NWUnlicenseConn (obsolete 6/96) can be called to
unlicense the connection. In the requester, NWUnlicenseConn (obsolete
6/96) will only unlicense the connection if there are no other open handles
needing the licensed connection.

NCP Calls

Connection Service Group

Connection: Functions 135

None

See Also

NWCCLicenseConn

Connection Service Group

Connection: Functions 136

SetConnectionCriticalErrorHandler

Specifies a function to handle connection timeout errors

Local Servers: blocking

Remote Servers: N/A

SMP Aware: No

NetWare Server: 4.x

Platform: NLM

Service: Connection

Syntax

#include <nwconn.h>

int SetConnectionCriticalErrorHandler (
 int (func) (
 int fileServerID,
 int connection,
 int err));

Parameters

func

(IN) Specifies a custom function for handling connection timeout
errors.

Return Values

ESUCCESS or NetWare errors

Remarks

The func parameter is a custom function for handling connection timeout
errors. When a timeout occurs on a connection,
SetConnectionCriticalErrorHandler is passed the fileServerID, connection,
and err for the connection that failed. The error handling function should
return the number of times to try to restore the connection.

NCP Calls

None

Connection Service Group

Connection: Functions 137

Connection: Structures

Connection Service Group

Connection: Structures 138

CONN_TASK

Service: Connection

Defined In: nwmisc.h and nwmisc.inc

Structure

typedef struct {
 nuint16 taskNumber;
 nuint8 taskState;
} CONN_TASK;

Pascal Structure

CONN_TASK = Record
 taskNumber : nuint16;
 taskState : nuint8
 End;

Fields

taskNumber

Specifies the server task number for which information will be
returned.

taskState

Specifies the state of the task at the time of the request.

Remarks

The taskState field can have the following values:

0x00 Normal Task

0x01 TTS explicit transaction in progress

0x02 TTS implicit transaction in progress

0x04 Shared fine set lock in progress

Connection Service Group

Connection: Structures 139

CONN_TASK_INFO

Returns information according to the lockState field

Service: Connection

Defined In: nwmisc.h and nwmisc.inc

Structure

typedef struct {
 nuint16 serverVersion;
 nuint8 lockState;
 nuint16 waitingTaskNumber;
 nuint32 recordStart;
 nuint32 recordEnd;
 nuint8 volNumber;
 nuint32 dirEntry;
 nuint8 nameSpace;
 nuint16 dirID;
 nstr8 lockedName[256];
 nuint8 taskCount;
 CONN_TASK tasks[256];
} CONN_TASK_INFO;

Pascal Structure

CONN_TASK_INFO = Record
 serverVersion : nuint16;
 lockState : nuint8;
 waitingTaskNumber : nuint16;
 recordStart : nuint32;
 recordEnd : nuint32;
 volNumber : nuint8;
 dirEntry : nuint32;
 nameSpace : nuint8;
 dirID : nuint16;
 lockedName : Array[0..255] Of nstr8;
 taskCount : nuint8;
 tasks : Array[0..255] Of CONN_TASK
 End;

Fields

serverVersion

Specifies the server version (NW_ constants in nwserver.h).

lockState

Specifies one of five lock states that are used internally to determine
what information can be returned.

Connection Service Group

Connection: Structures 140

waitingTaskNumber

Specifies the task number returned when the lockState field has a
nonzero value.

recordStart

Specifies the start address of physical record returned when the
lockState field has a value of 1.

recordEnd

Specifies the end address of physical record returned when the
lockState field has a value of 1.

volNumber

Specifies the volume number of physical record or file returned when
the lockState field has a value of 1 or 2.

dirEntry

Specifies the directory entry of physical record or file returned when
the lockState field has a value of 1 or 2 (valid only in 3.11 or higher).

nameSpace

Specifies the name space of locked file (valid only in 3.11 or higher).

dirID

Specifies the ID of the directory (valid only in 2.x).

lockedName

Specifies the name of the locked physical record, file, logical record, or
semaphore.

taskCount

Specifies the number of tasks for which the CONN_TASK structure
will be returned.

tasks

Specifies the CONN_TASK structure containing information for each
task counted in the taskCount field.

Remarks

The lockState field can have the following values:

0 Normal (connection free to run)

1 Connection waiting on a physical record lock

2 Connection waiting on a file lock

3 Connection waiting on a logical record lock

4 Connection waiting on a semaphore

The nameSpace field can have the following values:

0 NW_NS_DOS

1 NW_NS_MAC

Connection Service Group

Connection: Structures 141

2 NW_NS_NFS

3 NW_NS_FTAM

4 NW_NS_OS2

4 NW_NS_LONG

Connection Service Group

Connection: Structures 142

CONN_USE

Returns connection usage statistics

Service: Connection

Defined In: nwconnec.h

Structure

typedef struct (
 nuint32 systemElapsedTime;
 nuint8 bytesRead[6];
 nuint8 bytesWritten[6];
 nuint32 totalRequestPackets;
) CONN_USE;

Pascal Structure

 CONN_USE = Record
 systemElapsedTime : nuint32;
 bytesRead : Array[0..5] Of nuint8;
 bytesWritten : Array[0..5] Of nuint8;
 totalRequestPackets : nuint32
 End;

Fields

systemElapsedTime

Indicates how long the server has been up. Currently
systemElapsedTime is returned in 18.2 ticks/second units. When it
reaches 0xFFFFFFFF, systemElapsedTime wraps back to 0.

bytesRead

Indicates the number of bytes the associated connection has read.

bytesWritten

Indicates the number of bytes the associated connection has written.

totalRequestPackets

Indicates the number of requests the associated connection has made.

Connection Service Group

Connection: Structures 143

CONNECT_INFO

Returns connection status information

Service: Connection

Defined In: nwconnec.h

Structure

typedef struct
{
 NWCONN_HANDLE connID;
 nuint16 connectFlags;
 nuint16 sessionID;
 NWCONN_NUM connNumber;
 nuint8 serverAddr[12];
 nuint16 serverType;
 nstr8 serverName[C_SNAMESIZE];
 nuint16 clientType;
 nstr8 clientName[C_SNAMESIZE];
} CONNECT_INFO;

Pascal Structure

Defined in nwconnec.inc

 CONNECT_INFO = Record
 connID : NWCONN_HANDLE;
 connectFlags : nuint16;
 sessionID : nuint16;
 connNumber : NWCONN_NUM;
 serverAddr : Array[0..11] Of nuint8;
 serverType : nuint16;
 serverName : Array[0..C_SNAMESIZE-1] Of nstr8;
 clientType : nuint16;
 clientName : Array[0..C_SNAMESIZE-1] Of nstr8
 End;

Fields

connID

Indicates the connection handle associated with the information in this
structure.

connectFlags

Indicates the flag whose values are defined:

C Pasc Flag Name Description

Connection Service Group

Connection: Structures 144

Valu
es

al
Val
ues

0x000
1

$000
1

CONNECTION_AVAILABLE Indicates if
the specified
connection
handle
hasn't been
allocated to a
process at
the
workstation.

0x000
2

$000
2

CONNECTION_PRIVATE

0x000
4

$000
4

CONNECTION_LOGGED_IN Indicates if
the client is
logged in on
the
connection.

0x000
4

$000
4

CONNECTION_LICENSED

0x000
8

$000
8

CONNECTION_BROADCAST_AV
AILABLE

Indicates if
broadcasts to
other
stations are
available on
the
connection.

0x001
0

$001
0

CONNECTION_ABORTED Indicates if
the
connection
was aborted.

0x002
0

$002
0

CONNECTION_REFUSE_GEN_BR
OADCAST

Indicates if
general
broadcasts
are not to be
received on
the
connection.

0x004
0

$004
0

CONNECTION_BROADCAST_DIS
ABLED

Indicates if
no
broadcasts
will be
received on
the
connection.

0x008
0

$008
0

CONNECTION_PRIMARY Indicates if
this

Connection Service Group

Connection: Structures 145

connection
handle is the
workstation'
s primary
connection
with the
network.

0x010
0

$010
0

CONNECTION_NDS Indicates if
the
connection is
a Directory
Services
connection.

0x040
0

$400
0

CONNECTION_PNW

0x800
0

$800
0

CONNECTION_AUTHENTICATE
D

Indicates if
the
connection is
authenticate
d.

sessionID

Indicates the current session ID. sessionID is only valid when VLMs are
installed on the workstation. If NETX.EXE is being used, sessionID is
always zero (0).

connNumber

Indicates the client's connection as seen from the NetWare server.

serverAddr

Indicates the Internet address consisting of the network number (first 4
bytes) and the physical node address (bytes 5-10).

serverType

Indicates the server's bindery object type.

serverName

Indicates the server's bindery name.

clientType

Indicates the client' bindery object type.

clientName

Indicates the client's bindery object name.

Connection Service Group

Connection: Structures 146

NW_FRAGMENT

Fragments the request into the appropriate packet size

Service: Connection

Defined In: nwmisc.h and nwmisc.inc

Structure

typedef struct {
 nptr fragAddress;
 #if defined(N_PLAT_NLM)||defined(WIN32)
 nuint32 fragSize;
 #else
 nuint16 fragSize;
 #endif
} NW_FRAGMENT;

Pascal Structure

 NW_FRAGMENT = Record
 fragAddress : nptr;
 fragSize : nuint16
 End;

Fields

fragAddress

Points to where the fragment starts.

fragSize

Specifies the size of the fragment (under NLM and Windows
platforms, of type nuint32).

Connection Service Group

Connection: Structures 147

NWCCConnInfo

Returns the specified information for a given connection

Service: Connection

Defined In: nwclxcon.h and nwclxcon.inc

Structure

typedef struct
 nuint authenticationState;
 nuint broadcastState;
 nuint32 connRef;
 nstr treeName[NW_MAX_TREE_NAME_LEN];
 nuint connNum;
 nuint32 userID;
 nstr serverName[NW_MAX_SERVER_NAME_LEN];
 nuint NDSState;
 nuint maxPacketSize;
 nuint licenseState;
 nuint distance;
 NWCCVersion serverVersion;
 pNWCCTranAddr tranAddr;
} NWCCConnInfo;

Pascal Structure

NWCCConnInfo = Record
 authenticationState : nuint;
 broadcastState : nuint;
 connRef : nuint32;
 treeName : Array[0..NW_MAX_TREE_NAME_LEN-1] Of nstr;
 connNum : nuint;
 userID : nuint32;
 serverName : Array[0..NW_MAX_SERVER_NAME_LEN-1] Of nstr;
 NDSState : nuint;
 maxPacketSize : nuint;
 licenseState : nuint;
 distance : nuint;
 serverVersion : NWCCVersion;
 {$IFDEF NWCC_INFO_VERSION_2}
 tranAddr : pNWCCTranAddr;
 {$ENDIF}
 End;

Fields

authenticationState

Indicates the Novell Directory Services™ authenticated state of the

Connection Service Group

Connection: Structures 148

specified connection:

C Value Pascal Value Value Name

0x0000 $0000 NWCC_AUTHENT_STATE_NONE

0x0001 $0001 NWCC_AUTHENT_STATE_BIND

0x0002 $0002 NWCC_AUTHENT_STATE_NDS

broadcastState

Indicates the message broadcast state of the specified connection:

C Value Pascal Value Value Name

0x0000 $0000 NWCC_BCAST_PERMIT_ALL

0x0001 $0001 NWCC_BCAST_PERMIT_SYSTEM

0x0002 $0002 NWCC_BCAST_PERMIT_NONE

0x0003 $0003 NWCC_BCAST_PERMIT_POLL

connRef

Indicates the connection reference for the specified connection handle.

treeName

Indicates the tree name of the specified connection if attached to
Directory Services. It has a maximum length of
NWA_MAX_TREE_NAME_LEN.

connNum

Indicates the connection number for the specified connection.

userID

Indicates the user for the specified connection.

serverName

Indicates the name of the server the connection is attached to. It has a
maximum length of NWA_MAX_SERVER_NAME_LEN.

NDSState

Indicates if the connection supports Novell Directory Services.

C Value Pascal Value Value Name

0x0000 $0000 NWCC_NDS_NOT_CAPABLE

0x0001 $0001 NWCC_NDS_CAPABLE

maxPacketSize

Connection Service Group

Connection: Structures 149

Indicates the maximum length of an Internet packet that can be
supported by this connection.

licenseState

Indicates if the connection is licensed:

C Value Pascal Value Value Name

0x0000 $0000 NWCC_NOT_LICENSED

0x0001 $0001 NWCC_CONNECTION_LICENSED

0x0002 $0002 NWCC_HANDLE_LICENSED

distance

Indicates distance in milliseconds to the given server (55 milliseconds
= 1 tick).

serverVersion

Points to the NWCCVersion structure returning the NetWare version.

tranAddr

Points to the NWCCTranAddr structure returning the type.

Remarks

The treeName structure field is used to give the tree name of a particular
connection in functions such as NWCCGetAllConnRefInfo and
NWCCGetConnRefInfo. You must strip off the trailing `_' characters
(that are padding the tree name out to the maximum length) to get a
matching valid tree name. Other functions that depend on a valid tree
name already strip the `_' characters.

Connection Service Group

Connection: Structures 150

NWCCTranAddr

Defines the transport address for the specified connection

Service: Connection

Defined In: nwclxcon.h

Structure

typedef struct
 nuint32 type;
 nuint32 len;
 pnuint8 buffer;
} NWCCTranAddr;

Pascal Structure

Defined in nwclxcon.inc

NWCCTranAddr = Record
 tranType : nuint32;
 len : nuint32;
 buffer : pnuint8
 End;

Fields

type

(IN/OUT) Specifies the type of the transport address:

C Value Pascal Value Value Name

0x0001 $0001 NWCC_TRAN_TYPE_IPX

0x0002 $0002 NWCC_TRAN_TYPE_UDP

0x0003 $0003 NWCC_TRAN_TYPE_DDP

0x0004 $0004 NWCC_TRAN_TYPE_ASP

len

(IN/OUT) Specifies the length of the buffer to hold the transport
address upon input. Specifies the amount of the buffer that was
actually used upon output.

buffer

(OUT) Points to a buffer containing the transport address.

Remarks

Connection Service Group

Connection: Structures 151

Remarks

If the value returned in the len field is greater than the original value
passed to the len field, the returned value specifies the total length of the
buffer that is needed to return all the information.

Connection Service Group

Connection: Structures 152

NWCCVersion

Defines the NetWare server version of the connection

Service: Connection

Defined In: nwclxcon.h

Structure

typedef struct
 nuint major;
 nuint minor;
 nuint revision;
} NWCCVersion;

Pascal Structure

Defined in nwclxcon.inc

 NWCCVersion = Record
 major : nuint;
 minor : nuint;
 revision : nuint
 End;

Fields

major

Indicates the major version of NetWare. For example, major will be 4
for NetWare 4.1.

minor

Indicates the minor version of NetWare. For example, minor will be 12
for NetWare 3.12.

revision

Indicates an interim release number.

Connection Service Group

Connection: Structures 153

NWINET_ADDR

Returns the internet address for the specified connection

Service: Connection

Defined In: nwclxcon.h

Structure

typedef struct
{
 nuint8 networkAddr[4];
 nuint8 netNodeAddr[6];
 nuint16 socket;
 nuint16 connType;
} NWINET_ADDR;

Pascal Structure

 NWINET_ADDR = Record
 networkAddr : Array[0..3] Of nuint8;
 netNodeAddr : Array[0..5] Of nuint8;
 socket : nuint16;
 connType : nuint16 (*0=not in use,2=NCP,3=AFP *)
 End;

Fields

networkAddr

Indicates the network address.

netNodeAddr

Indicates the network node address.

socket

Indicates the network socket.

connType

Indicates the connection type. Used for 3.11 and above only.

0=not in use

2=NCP

3=AFP

Connection Service Group

Connection: Structures 154

Connection Number and Task
Management

Connection Service Group

 155

Connection Number and Task
Management: Guides

The Connection Number and Task Management Services are available only
for managing connections in NLM applications. Use the Connection
Services to get and free connections using non-NLM applications.

Connection Number and Task Management: Task
Guide

Specifying a Connection Number

Logging In

Intervening on an Established Connection

Using Connections

Doing Work on a Single Connection

Multiple Thread Groups on a Single Connection

Doing Work by Proxy

Using Connection 0

Using the Number of an Already Logged-In Workstation

Allocating a New Connection Number and Logging In

Allocating One or More Tasks

Connection Number and Task Management:
Concept Guide

Overview of Connections and Tasks

Single Connection, Many Users

Current Connection and Task

NLM Applications and Connections

Connection Service Group

Connection Number and Task Management: Guides 156

Tasks in NetWare

Remote and Local Connections

Connection: Functions

Connection Service Group

Connection Number and Task Management: Guides 157

Connection Number and Task
Management: Tasks

NOTE: Connection Number and Task Management Services provide
connection functions for NLM development only.

Allocating a New Connection Number and
Logging In

An NLM can allocate a new connection number and then log in one of its
users on that connection. NLM applications that use connections in this way
fit the same profile as those that take over a user's connection. It is another
way that an NLM can do work for a user and charge the user for resource
consumption and preserve the user's trustee rights.

An NLM can allocate a new connection number with one of the following
functions:

AttachByAddress or AttachToFileServer

SetCurrentConnection

When an NLM calls one of these functions, it is attached to the server but
not authenticated (not logged-in). Therefore, it has very limited access
rights. Your NLM can then log in a user on that connection by calling
LoginObject, passing it the user's Directory or Bindery name, object type,
and password. (If you don't know the password, you can pass in
LOGIN_WITHOUT_PASSWORD.) The access rights of your NLM on that
connection are those of the particular user.

When using SetCurrentConnection, you may set any connection number.
However, on remote servers, you may set only those that your NLM has
logged in on with LoginToFileServer (Connection Services).

Allocating a Connection Number and Logging In: Example

Parent Topic:

Connection Number and Task Management: Guides

Allocating One or More Tasks

If you want to specify a task number other than the one your current thread

Connection Service Group

Connection Number and Task Management: Tasks 158

group has, you can do so with SetCurrentTask. It sets the current task to the
value you pass it as taskNumber.

You can also use SetCurrentTask to allocate one new task number for the
current thread group. If you pass -1 as the taskNumber, it allocates a new task
number; otherwise, it sets the current task to the value you pass it.

If you need more than one task number, use AllocateBlockOfTasks. This
function returns the first task number. If it fails, it returns zero

When you are finished using the tasks that were allocated by either
AllocateBlockOfTasks or SetCurrentTask, always call
ReturnBlockOfTasks to free the task numbers before unloading.

NOTE: The setupTasks function in Allocating One or More Tasks:
Example allows for single-task and multiple-task scenarios. It calls
AllocateBlockOfTasks if NumberOfTasks is greater than 1, and
SetCurrentTask with taskNumber as -1 if NumberOfTasks is less than one.
When SetCurrentTask is passed -1, it allocates a new task. If another
value had been passed, it would have set the current task to that
number. AllocateBlockOfTasks, on the other hand, simply allocates a
set of tasks without setting the current task.

Allocating One or More Tasks: Example

Parent Topic:

Connection Number and Task Management: Guides

Doing Work by Proxy

When an NLM does work by proxy, it makes requests to the server under
the connection number of the client on whose behalf it is making the
request.

An NLM can do work by proxy in a couple of ways. It can either get a
connection and log an object of its choosing in on that connection, or it can
temporarily take over the client's existing connection to the local server.

Logging In

Parent Topic:

Connection Number and Task Management: Guides

Doing Work on a Single Connection

One advantage of using a single connection is that your does not take up a
large number of connections on a server. A disadvantage is that if all clients
are being served on a single connection, there is no way to determine which
client requested the work. Consequently, there is no way to testing whether

Connection Service Group

Connection Number and Task Management: Tasks 159

the client has the trustee rights necessary to perform that request. Nor is
there a way to charge the client for using server resources.

An NLM can use a single connection to do all its work on behalf of all its
clients. It could use connection 0 or it could use a connection that it has
obtained by calling NWLoginToFileServer or NWAttachToFileServer.

Parent Topic:

Connection Number and Task Management: Guides

Intervening on an Established Connection

Call DisableConnection to prevent the server from filling any requests
other than those your NLM originates until your NLM is finished using a
connection. Be careful when calling this function since the client using the
specified connection is temporarily disabled.

Parent Topic:

Connection Number and Task Management: Guides

Logging In

In addition to being able to change your current connection and task
number, you can log an object in on any connection that your NLM has
allocated.

Your NLM can get a connection to a server, local or remote, and then log in
the client on that connection with LoginObject.

DisableConnection allows your NLM to disable a connection for any
object's requests except those originated by your NLM until it is finished
using the connection.

Parent Topic:

Connection Number and Task Management: Guides

Specifying a Connection Number

When making a request, an NLM can specify three types of connection
numbers:

connection 0

the number of an already logged-in workstation

a new connection number (obtained from a server)

Connection Service Group

Connection Number and Task Management: Tasks 160

Parent Topic:

Connection Number and Task Management: Guides

Using Connection 0

Because connection 0 is server-equivalent (an extension of the server), if an
NLM does work for its clients as connection 0, the server is not able to tell
which client it is servicing. For this reason, and because connection 0 has
unrestricted access to services, only NLM applications or their threads that
fit the following profile should do work as connection 0:

They are not depending on NetWare Accounting to track their users'
consumption of resources.

Their access to NetWare (trustee rights) never needs to be restricted.

Monitor and control programs fit this profile.

Parent Topic:

Connection Number and Task Management: Guides

Using Connections

Because NLM applications are loaded into server memory alongside the
server, they are granted special access to the server through connection zero
(0) on file server ID zero (0). Connection 0 denotes that the connection is
local to the server, as opposed to a connection sending requests from a
remote server or workstation.

See the figure Remote and Local NLM Applications for an illustration of
local and remote connections. The server where the NLM is loaded is file
server ID 0. Connection 0 is only valid when the thread group's current file
server ID is 0.

NOTE: NLM applications using connection 0 create an unsecure
environment. The server assumes that, since the request is on
connection 0, it need not worry about security. As you can see, NLM
applications are trusted partners working with the NetWare OS.

As trusted partners, NLM applications share in the control of certain
operating system resources, such as the CPU, file system, and connections.
This interaction in NLM applications the ability to manipulate connections
and tasks in ways not available to applications running on workstations.

Parent Topic:

Connection Number and Task Management: Guides

Connection Service Group

Connection Number and Task Management: Tasks 161

Using the Number of an Already Logged-In
Workstation

Your NLM may specify the connection number of a client so that its access is
limited to the trustee rights of the object logged in on that connection.

Most client-server programs that use the client's connection number
conform to a profile opposite that for connection 0:

They need charge the client for services consumed by the NLM on the
client's behalf.

They need to restriction the client's access to network resources. For
example, only the supervisor has the right to close the Bindery. But if an
NLM were doing work for a user that is not supervisor as connection 0, it
would execute a request from that user to close the Bindery. Also, you
wouldn't want all the users of your database NLM to have access to the
entire database.

An NLM that is using a client's connection number to access the file system
should do one of the following two things to ensure it has a unique
connection/task number pair:

1. To avoid accessing the file system at the same time as your client
workstation or other NLM applications, use DisableConnection to
temporarily reserve the workstation's connection number solely for the
use of the NLM. Call EnableConnection to reverse the effect of
DisableConnection. Be careful when calling this function since the
client using the specified connection is temporarily disabled.

2. Allocate a new task and set that to be your current task number using
SetCurrentTask.

Parent Topic:

Connection Number and Task Management: Guides

Connection Service Group

Connection Number and Task Management: Tasks 162

Connection Number and Task
Management: Examples

NOTE: Connection Number and Task Management Services provide
connection functions for NLM development only.

Allocating a Connection Number and Logging In:
Example

This example function shows the process of allocating a new connection
number and logging in a user on it. Although it shows AttachToFileServer
allocating a connection on the local server, you would use this function or
AttachByAddress the same way to get a connection to a remote server
(however, AttachByAddress uses Directory addressing information instead
of the server's name). Both these functions are in the Connection Services
group.

After it allocates a connection, the setupConnection example function
obtains the information it needs to log in a user with LoginObject. It uses
GetCurrentConnection to retrieve the current connection:

 if(rc = LoginObject(GetCurrentConnection(), objectName,
 OT_USER, password))

The objectName and password must be in upper case letters. Notice that
NWLstrupr is called to ensure the proper upper casing for the locale.

This function could have also used SetCurrentConnection to allocate an
unused connection number. It would have passed -1 as the
connectionNumber. This would have allocated a connection number and
made it the current thread group's current connection. Had it passed
another value besides -1, SetCurrentConnection would have made that the
thread group's current connection.

See Allocating a New Connection Number and Logging Infor further
information about this example code.

void setupConnection()
{
 int i;
 int rc;
 char *ptr;
 char serverName[48];
 char objectName[48];
 char password[48];

Connection Service Group

Connection Number and Task Management: Examples 163

 WORD fileServerID;
 GetFileServerName(0, serverName);
 if(rc = AttachToFileServer(serverName, &fileServerID))
 {
 printf("Error %d attaching to server %s\n", rc, serverName);
 }
 printf("Enter object name: ");
 scanf("%s", objectName);
 if(!(ptr = NWLstrupr(objectName)))
 printf("Error in NWLstrupr\n");
 i = 0;
 memset(password, 0, 48);
 printf("Enter password (or Return for NULL): ");
 while((rc = getch()) > (int) ' ')
 password[i++] = rc;
 printf("\n");
 if(!(ptr = NWLstrupr(password)))
 printf("Error in NWLstrupr\n");
 if(rc = LoginObject(GetCurrentConnection(), objectName, OT_USER,
 password))
 {
 printf("Error %d logging in to server %s\n", rc, serverName);
 cleanup(0);
 }
 printf("Logged into server %s successfully\n\n", serverName);
}

Parent Topic:

Connection Number and Task Management: Guides

Allocating One or More Tasks: Example

The following function example allocates single or multiple tasks. See
Allocating One or More Tasks for additional information about this code.

#define MAXIMUM_NUMBER_OF_TASKS 16
int NumberOfTasks;
int BeginningTaskNumber;
int TaskArray[MAXIMUM_NUMBER_OF_TASKS];
 .
 .
 .
void setupTasks()
{
 if(NumberOfTasks > 1)
 {
 if(!(BeginningTaskNumber =
 AllocateBlockOfTasks(NumberOfTasks)))
 {

Connection Service Group

Connection Number and Task Management: Examples 164

 printf("Error %d allocating block of tasks\n",
 BeginningTaskNumber);
 }
 }
 else
 {
 if((BeginningTaskNumber = SetCurrentTask(-1)) == -1)
 {
 printf("Error %d allocating task\n",
 BeginningTaskNumber);
 }
 .
 .
 .
 if(rc = ReturnBlockOfTasks(BeginningTaskNumber,
 NumberOfTasks))
 printf("Error %d returning tasks\n", rc);
 else
 printf("Cleaned up tasks successfully.\n");

Parent Topic:

Connection Number and Task Management: Guides

Connection Service Group

Connection Number and Task Management: Examples 165

Connection Number and Task
Management: Concepts

NOTE: Connection Number and Task Management provide
connection functions for NLM development only.

Connection Number and Task Management
Functions

The descriptions of these functions in Connection Number and Task
Management: Functions use the terms station, connection, and connection
number interchangeably.

Table auto. Connection Number and Task Management Functions

Function Purpose

AllocateBlockOfTasks Returns a set of unique task numbers for
the exclusive use of the requesting NLM.

CheckIfConnectionActiv
e

Checks if the specified connection number
is being used by a file access.

DisableConnection Temporarily prevents the server from
servicing any requests (except requests
made by the calling NLM) for the
specified connection number. Be careful
when calling this function since the client
using the specified connection is
temporarily disabled..

EnableConnection Reverses the effect of DisableConnection.

GetCurrentConnection Returns the calling thread group's current
connection number.

GetCurrentFileServerID Returns the calling thread group's current
file server ID.

GetCurrentTask Returns the calling thread group's current
task number.

LoginObject Logs in the specified object to the specified
connection number on the current file
server ID.

LogoutObject Logs out the object logged-in on the
specified connection number on the thread
group's current file server ID.

Connection Service Group

Connection Number and Task Management: Concepts 166

ReturnBlockOfTasks Frees the block of task numbers allocated
with AllocateBlockOfTasks or
SetCurrentTask.

ReturnConnection Frees a connection the NLM had allocated.

SetCurrentConnection For the current thread group, changes the
current connection number. Can also be
used to allocate a new connection number.

SetCurrentFileServerID Sets the current file server's ID.

SetCurrentTask Sets the calling thread group's current task
number, or allocates a new task by passing
in -1.

Parent Topic:

Connection Number and Task Management: Guides

Current Connection and Task

In NLM development, current connections and current tasks are part of a
thread group's context (information that lets the CPU pick up where it left
off when that thread was swapped out). An NLM has the ability to change
the connection or task number of the current thread (the one being
processed by the CPU).

For example, if you had an NLM that serves many clients, you might want
to use a single thread to do work for a number of them in succession. After
doing some work for one client, your NLM could call
SetCurrentConnection to change the connection number of that thread to a
different client's number. (This would set the current connection for the
entire thread group.) Then, after doing some work for that client, your NLM
could set the current connection to that of another client, and so on through
the list of its clients.

You could change task numbers in the same manner with SetCurrentTask
if you wanted to serve many or all of your clients on a single connection.
You would spawn as many thread groups as you had clients and then set a
different task number for each one. For example, if you had 10 clients and
the connection you are using to service them is 52, you would allocate 10
task numbers for Connection 52. Say the server allocated you tasks 1 to 10.
The connection/task number of the first thread group would be 52/1, the
second thread group would be 52/2, and so on.

Parent Topic:

Connection Number and Task Management: Guides

Multiple Thread Groups on a Single Connection

Connection Service Group

Connection Number and Task Management: Concepts 167

Multiple Thread Groups on a Single Connection

You could give multiple thread groups the same connectionNumber with
SetCurrentConnection. Then, with SetCurrentTask, you could assign each
of them a different taskNumber and have each of them perform a different
task for a single user. Multiple threads working a single connection can
accomplish the work more efficiently than if a single thread were doing
every single task involved. This is because, while a thread is waiting for
information (blocking), other threads are running.

In the following figure, three thread groups---TG 1, TG 2, and TG 3---each
have their connection set to 3 and each has a different task number. TG 1 is
task 1, TG 2 is task 2, and so on. In this way, each thread group has a unique
connection/task pair that is part of its own context.

To reduce the danger of duplicating a connection/task pair, call
AllocateBlockOfTasks to get a unique set of tasks for that connection. This
way you can use the server to keep track of task numbers.

A single connection works well for control and monitor types of programs,
where rights and accounting are not issues. But, if you want to preserve
your client's rights or track the client's use of resources, you will want to do
work for them by proxy.

Connection Service Group

Connection Number and Task Management: Concepts 168

Parent Topic:

Connection Number and Task Management: Guides

NLM Applications and Connections

An NLM obtains connections to a remote server in the same manner that a
workstation does. An NLM also can get additional connections to its local
server (besides connection 0).

To request a connection, an NLM uses the same functions that workstations
do, NWLoginToFileServer or NWAttachToFileServer (NetWare 3.x and
above). The difference between the NLM and the workstation is in the case
of a local connection the NLM request goes through the NetWare API and
directly into the NetWare OS. In the case of a remote connection, it goes out
on the wire the same as a workstation request.

Parent Topic:

Connection Number and Task Management: Guides

Overview of Connections and Tasks

A NetWare® server maintains a connection table which contains a series of
slots that represent connection numbers. When a remote client logs in to a
server, the server finds the first available slot and assigns that connection
number to the client. That slot then becomes the remote client's connection
number, which the client uses thereafter to identify itself to the server. The
allocated connection numbers are not necessarily consecutive numbers,
since a previously allocated connection number may be freed and available
for another remote client.

Remote and Local Connections

Tasks in NetWare

NLM Applications and Connections

Current Connection and Task

Parent Topic:

Connection Number and Task Management: Guides

Remote and Local Connections

All connections are considered to be remote or local. A workstation
connection is always a remote connection, since the machine it runs on is
physically separate from the server. An NLM connection, on the other hand,

Connection Service Group

Connection Number and Task Management: Concepts 169

physically separate from the server. An NLM connection, on the other hand,
can be remote or local. The connection is local when the NLM accesses the
server the NLM is loaded on, but remote when accessing other servers.

By default, NLM applications are automatically allocated connection zero
(0). Connection 0 gives your NLM unlimited access to the local server's file
system. In addition to connection 0, a local NLM frequently needs to get a
connection to the local server, and it always needs to do so to gain access to a
remote server.

The following figure shows a remote connection scenario. Workstations 1
and 48 have established connections to a server. Workstation 1 has
connection number 23, workstation 48 has connection number 93, and so on.
These workstations specify their connection numbers whenever they send a
request to the server, which uses the number to verify security and carry out
accounting and other functions.

Figure 1. Remote Connection to a Server

The following figure shows NLM applications that have remote and local
connections. NLM A is local to the server and has multiple connections
including connection 0. NLM applications B and S have remote connections

Connection Service Group

Connection Number and Task Management: Concepts 170

to the server and therefore have connections other than 0.

Figure 2. Remote and Local NLM Applications

Parent Topic:

Connection Number and Task Management: Guides

Single Connection, Many Users

Connection Service Group

Connection Number and Task Management: Concepts 171

An NLM can use task numbers to have the server perform tasks for multiple
users on a single connection. For obvious reasons, each connection/task
number pair you specify needs to be unique on that server. To allow your
NLM to service multiple users on a single connection, allocate a block of
tasks (AllocateBlockOfTasks) and then assign a different task to each user (
SetCurrentTask).

Parent Topic:

Connection Number and Task Management: Guides

Tasks in NetWare

In NetWare, a task is a program running on a network workstation or
server. NetWare uses a task number to identify each task.

NetWare assigns task numbers sequentially, beginning with task number
one. The combination of the connection number and the task number yields
a unique connection/task number pair. This connection number/task
number is unique only for a given computer.

NetWare uses the connection number/task number to manage network
resources. Since NLM applications can access resources on their own behalf
or on behalf of the client, NLM applications must specify both a connection
number and a task number when making a request.

To run more than one session on a single connection, the server allocates
task numbers, creating a connection/task number pair, as shown on
Connection 93 in the following figure. Tasks 1, 2, and 3 are all being
executed over Connection 93.

Figure 3. Remote Connection Task Numbers

Connection Service Group

Connection Number and Task Management: Concepts 172

Parent Topic:

Connection Number and Task Management: Guides

Connection Service Group

Connection Number and Task Management: Concepts 173

Connection Number and Task
Management: Functions

Connection Service Group

Connection Number and Task Management: Functions 174

AllocateBlockOfTasks

Returns a unique set of task numbers for the exclusive use of the requesting
NLM™ application

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x

SMP Aware: No

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

LONG AllocateBlockOfTasks (
 LONG numberWanted);

Parameters

numberWanted

(IN) Specifies the requested number of tasks in the set.

Return Values

This function returns the first task number in the set. It returns a value of
0 if no task numbers are available.

Remarks

Several entities can make requests to NetWare® 3.x and 4.x using a given
connection number. Unique task numbers enable the calling NLM to use
a connection number without any danger of conflict with other entities
using that same connection. AllocateBlockOfTasks returns a unique set
of task numbers, ensuring that the connection number/task number
combination of the NLM is unique.

AllocateBlockOfTasks allocates the requested number of consecutive
task numbers on the current connection for exclusive use by the NLM. An
NLM that meets the following criteria would call this function:

Needs more than one task number for a given connection number.

Uses connection 0 or uses a client's connection number.

The SetCurrentTask function should be used if the NLM needs only one
task.

Connection Service Group

Connection Number and Task Management: Functions 175

See Also

ReturnBlockOfTasks, SetCurrentTask

Connection Service Group

Connection Number and Task Management: Functions 176

CheckIfConnectionActive

Determines whether the specified connection number is processing a
file-service request

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: No

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

BYTE CheckIfConnectionActive (
 LONG connectionNumber);

Parameters

connectionNumber

(IN) Specifies the connection number being checked.

Return Values

If the connection is active and processing a file service request, the
function returns a value of 1. Otherwise, it returns a value of 0.

Remarks

The CheckIfConnectionActive function determines whether the
connection number is being used to process a file-service request. If the
connection is being used for a service other than a file service request, this
function returns 0.

See Also

DisableConnection

Connection Service Group

Connection Number and Task Management: Functions 177

DisableConnection

Temporarily prevents the server from servicing any requests (except
requests made by the calling NLM) for the specified connection number

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

int DisableConnection (
 LONG connection);

Parameters

connection

(IN) Specifies the connection number to disable.

Return Values

0 (0x00) ESUCCE
SS

Connection was disabled.

-1 EFAILU
RE

Connection is in use or already disabled.

Remarks

The DisableConnection function reserves the specified connection
number solely for the use of the NLM. It prevents both the workstation
and other NLM applications from using the connection number.
However, other NLM applications must cooperate by also calling this
function.

While the connection is temporarily disabled, the NLM can perform file
service functions without any conflict from the workstation or other NLM
applications. Disable a connection number for only a short period.

Once the NLM has used the specified connection number, the NLM
should call EnableConnection, allowing the server to again service
requests for the specified connection number.

Connection Service Group

Connection Number and Task Management: Functions 178

An NLM should check the completion code of this function to make sure
another NLM does not already have the connection disabled, or is
otherwise in an incompatible state (such as disconnecting or processing
an NCP request).

See Also

CheckIfConnectionActive, EnableConnection

Example

DisableConnection

#include <stdlib.h>
#include <stddef.h>
#include <nwcntask.h>

main()
{
 LONG connect;
 BYTE buffer[100];

 printf("connection # ");
 gets(buffer);
 connect = atoi(buffer);
 printf("%d\r\n",DisableConnection(connect));
 getch();
 printf("%d\r\n",EnableConnection(connect));
 getch();
}

Connection Service Group

Connection Number and Task Management: Functions 179

EnableConnection

Enables the server to service requests for the specified connection

Local Servers: nonblocking

Remote Servers: N/A

Classification: 3.x, 4.x

SMP Aware: Yes

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

int EnableConnection (
 LONG connection);

Parameters

connection

(IN) Specifies the connection number to enable.

Return Values

0 (0x00) ESUCCES
S

Connection was enabled.

Remarks

This function reverses the effect of the DisableConnection function,
allowing the server to again service requests for the specified connection
number.

Call EnableConnection only if you have previously called
DisableConnection successfully.

See Also

DisableConnection

Example

EnableConnection

Connection Service Group

Connection Number and Task Management: Functions 180

#include <stdlib.h>
#include <stddef.h>
#include <nwcntask.h>

main()
{
 LONG connect;
 BYTE buffer[100];

 printf("connection # ");
 gets(buffer);
 connect = atoi(buffer);
 printf("%d\r\n",DisableConnection(connect));
 getch();
 printf("%d\r\n",EnableConnection(connect));
 getch();
}

Connection Service Group

Connection Number and Task Management: Functions 181

GetCurrentConnection

Returns the current connection on the current server

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x

SMP Aware: No

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

LONG GetCurrentConnection (void);

Return Values

This function returns the current connection number.

Remarks

The current connection number is returned for the calling thread group.

The GetCurrentConnection function is identical to
GetConnectionNumber, except that the return type is LONG.

See Also

SetCurrentConnection

Connection Service Group

Connection Number and Task Management: Functions 182

GetCurrentConnectionID

See GetCurrentFileServerID

Connection Service Group

Connection Number and Task Management: Functions 183

GetCurrentFileServerID

Returns the current file server ID number

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.11, 3.12, 4.x

SMP Aware: No

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

WORD GetCurrentFileServerID (void);

Return Values

This function returns the current file server ID.

Remarks

If the file server ID is nonzero, the current server is remote. If the file
server ID is zero, the current server is local.

GetCurrentFileServerID is identical to GetDefaultFileServerID.

See Also

SetCurrentFileServerID

Connection Service Group

Connection Number and Task Management: Functions 184

GetCurrentTask

Returns the calling thread group's current task number

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x

SMP Aware: No

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

LONG GetCurrentTask (void);

Return Values

This function returns the current task number.

Remarks

The current task number is returned for the calling thread group.

See Also

SetCurrentTask

Connection Service Group

Connection Number and Task Management: Functions 185

LoginObject

Logs in the specified object to the specified connection number on the server

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x

SMP Aware: No

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

int LoginObject (
 LONG connection,
 char *objectName,
 WORD objectType,
 char *password);

Parameters

connection

(IN) Specifies the connection number the object is to be logged in to.

objectName

(IN) Specifies the string containing the name of the object.

objectType

(IN) Specifies the type of the object.

password

(IN) Specifies the string containing the object's password (lowercase
passwords can be specified).

Return Values

0 0x
00

ESUCCESS: Logout of object was successful

-1 EFAILURE: Connection number not valid

15
0

0x
96

ERR_SERVER_OUT_OF_MEMORY

Remarks

Connection Service Group

Connection Number and Task Management: Functions 186

LoginObject logs in the object on the specified connection on the local
server with the specified object name and type and with the specified
password.

Call SetCurrentConnection first to select the connection, or call
GetCurrentConnection to obtain the current connection. The current file
server ID does not change.

The objectType parameter classifies an object as a user, user group, server,
and so on. The following is a list of well-known object types:

Value Object Type

0xFFF
F

Wild

0x000
0

Unknown

0x000
1

User

0x000
2

User Group

0x000
3

Print Queue

0x000
4

File Server

0x000
5

Job Server

0x000
6

Gateway

0x000
7

Print Server

0x000
8

Archive Queue

0x000
9

Archive Server

0x000
A

Job Queue

0x000
B

Administration

0x002
4

Remote Bridge Server

0x004
7

Advertising Print Server

0x004
C

NetWare SQL

Connection Service Group

Connection Number and Task Management: Functions 187

0x800
0

Reserved up to

An NLM typically uses object type 1 (user) or a type that the developer
has requested from Novell®.

To log in as an object on a remote server, you must specify the object's
password for the password parameter. On the local server, an NLM
application can log in as an object without specifying the object's
password. This is done by specifying LOGIN_WITHOUT_PASSWORD
for the password parameter. If your application uses
LOGIN_WITHOUT_PASSWORD, it must ensure that NetWare security
is not breached.

See Also

NWLoginToFileServer, LogoutObject

Example

LoginObject

#include <stdio.h>
#include <stdlib.h>
#include <nwcntask.h>
#include <nwbindry.h>

main()
{
 BYTE *name;
 LONG log;
 name = "supervisor";
 printf ("SetCurrentConnection = %d\r\n", SetCurrentConnection(-1));
 log = LoginObject (GetCurrentConnection(), name, 0T_USER, " ");
 if(log)
 {
 printf ("login failed, rc = %d\n", log);
 getch ();
 return 1;
 }
 getch ();
 printf ("LogoutObject return = %d\r\n",
 LogoutObject (GetCurrentConnection()));
}

Connection Service Group

Connection Number and Task Management: Functions 188

LogoutObject

Logs out the logged-in object on the specified connection on the current
server

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x

SMP Aware: No

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

int LogoutObject (
 LONG connection);

Parameters

connection

(IN) Specifies the connection number from which the object is to be
logged out.

Return Values

0 (0x00) ESUCCESS Logout of object was
successful.

-1 EFAILURE Invalid connection
number or NLM has not
logged in to the
specified connection.

15
0

(0x96) ERR_SERVER_OUT_OF_ME
MORY

Remarks

LogoutObject only logs out connections on the current server (currently
selected file server ID).

LogoutObject destroys your connection to a remote server. Therefore, if
your current connection is to that server, your current connection is
changed. On a local server, this function does not destroy your
connection.

Connection Service Group

Connection Number and Task Management: Functions 189

See Also

LoginObject

Connection Service Group

Connection Number and Task Management: Functions 190

ReturnBlockOfTasks

Frees a block of task numbers

Local Servers: blocking

Remote Servers: nonblocking

Classification: 3.x, 4.x

SMP Aware: No

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

int ReturnBlockOfTasks (
 LONG startingTask,
 LONG numberOfTasks);

Parameters

startingTask

(IN) Specifies the first task number in the set.

numberOfTasks

(IN) Specifies the number of task numbers in the set.

Return Values

0 (0x00
)

ESUCCES
S

Block of task numbers are freed.

NetWare Error Not successful.

Remarks

The ReturnBlockOfTasks function frees one or more task numbers the
NLM previously allocated with the SetCurrentTask or
AllocateBlockOfTasks function. An NLM should call the
ReturnBlockOfTasks function to return the allocated task numbers
before unloading.

See Also

AllocateBlockOfTasks, SetCurrentTask

Connection Service Group

Connection Number and Task Management: Functions 191

ReturnConnection

Returns a connection number the NLM previously allocated

Local Servers: blocking

Remote Servers: blocking

Classification: 3.x, 4.x

SMP Aware: No

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

int ReturnConnection (
 LONG connectionNumber);

Parameters

connectionNumber

(IN) Specifies the connection number obtained with
SetCurrentConnection.

Return Values

0 (0x00) ESUCCESS Connection number returned.

Remarks

ReturnConnection returns a connection number previously allocated by
SetCurrentConnection, LoginObject, NWAttachToFileServer, or
LoginToFileServer.

See Also

NWAttachToFileServer, LoginObject, NWLoginToFileServer,
SetCurrentConnection

Example

ReturnConnection

#include <errno.h>
#include <nwcntask.h>

Connection Service Group

Connection Number and Task Management: Functions 192

#include "mystuff.h"

main()
{
 LONG conn;
 conn = SetCurrentConnection (-1);
 if (conn == EFAILURE) return 1;
 rc = LoginObject (conn, "serverX", MY_TYPE," ");
 if (rc) return 2;
 rc = LogoutObject (conn);
 if (rc) return 3;
 return ReturnConnection (conn);
}

Connection Service Group

Connection Number and Task Management: Functions 193

SetCurrentConnection

Changes the current connection number for the current thread group or
allocates a new connection number

Local Servers: nonblocking

Remote Servers: blocking

Classification: 3.x, 4.x

SMP Aware: No

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

LONG SetCurrentConnection (
 LONG connectionNumber);

Parameters

connectionNumber

(IN) Specifies the connection number to set.

Return Values

If successful, this function returns the connection number that was
current when you changed it so that you can change back to it if you
want to. If not successful, this function returns EFAILURE (-1).

Remarks

The SetCurrentConnection function sets the current connection number
for the current thread group. You can either pass -1 or a connection
number. If you pass -1, you allocate a new connection number for the
exclusive use of your NLM, which is made the thread group's current
connection. If you pass any other value, you change the thread group's
current connection to that value.

For example, if you have four connections, 1 through 4, and the current
connection is 2, you can change the current connection to 4 by passing 4.
If you get back 2, you know you have successfully changed the current
connection to 4. On the other hand, if you want to allocate a new
connection, you pass -1. If successful, you still get back 2, and your
current connection is an unknown number, which you can identify by
calling GetCurrentConnection (or by calling SetCurrentConnection
again to see what it returns).

When setting connections on the local server, you can set any available

Connection Service Group

Connection Number and Task Management: Functions 194

connection number; however, when setting connection numbers on a
remote server, you can set only those that your NLM has logged in on.

See Also

GetCurrentConnection, ReturnConnection

Example

SetCurrentConnection

#include <stdio.h>
#include <stdlib.h>
#include <nwcntask.h>
#include <errno.h>

main()
{
 int rc;
 rc = SetCurrentConnection (-1);
 printf ("SetCurrentConnection rc = %d\n", rc);
 if (rc == EFAILURE) return 1;
 printf("SetCurrentTask return value:%d\r\n",
 SetCurrentTask(5));
 printf("GetCurrentConnection %d\r\n",
 GetCurrentConnection());
 printf("GetCurrentTask (should be 5):%d\r\n",
 GetCurrentTask());
 getch();
}

Connection Service Group

Connection Number and Task Management: Functions 195

SetCurrentConnectionID

See SetCurrentFileServerID

Connection Service Group

Connection Number and Task Management: Functions 196

SetCurrentFileServerID

Sets the current connection ID (file server ID)

Local Servers: N/A

Remote Servers: blocking

Classification: 3.x, 4.x

SMP Aware: No

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

WORD SetCurrentFileServerID (
 WORD fileServerID);

Parameters

fileServerID

(IN) Specifies the file server ID to set.

Return Values

This function returns the old file server ID if successful. Otherwise, it
returns EFAILURE.

Remarks

If the file server ID is nonzero (remote server), a login operation must
have previously been performed on that server or
SetCurrentFileServerID returns an error.

After calling SetCurrentFileServerID, call SetCurrentConnection to set
the correct connection.

When changing to a remote server, the current connection is set to the
first connection number in the connection list for that server.
SetCurrentConnection can then be used to specify some other
connection.

When changing to a local server (zero), the current connection is set to the
first connection number in the local connection list. If no local logins have
been performed, the current connection is set to zero.

See Also

GetCurrentFileServerID

Connection Service Group

Connection Number and Task Management: Functions 197

SetCurrentTask

Sets the calling thread group's current task number

Local Servers: nonblocking

Remote Servers: nonblocking

Classification: 3.x, 4.x

SMP Aware: No

Service: Connection Number and Task Management

Syntax

#include <nwcntask.h>

LONG SetCurrentTask (
 LONG taskNumber);

Parameters

taskNumber

(IN) Specifies the task number to set.

Return Values

This function returns the old current task number if successful.
Otherwise, it returns EFAILURE.

Remarks

This function sets the current task number for the thread group. If the
taskNumber parameter is -1, a new task number is allocated. If the
taskNumber parameter is not -1, the current task is set to that value.

Call SetCurrentTask if the NLM needs to allocate only one task number
for the current connection number. If more than one task number is
needed, call AllocateBlockOfTasks.

See Also

AllocateBlockOfTasks, GetCurrentTask, ReturnBlockOfTasks

Connection Service Group

Connection Number and Task Management: Functions 198

